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Abstract

Consider the random variable Tr(f1(W )A1 . . . fk(W )Ak) where W is an N ×N Her-
mitian Wigner matrix, k ∈ N, and choose (possibly N -dependent) regular func-
tions f1, . . . , fk as well as bounded deterministic matrices A1, . . . , Ak. We give a
functional central limit theorem showing that the fluctuations around the expectation
are Gaussian. Moreover, we determine the limiting covariance structure and give
explicit error bounds in terms of the scaling of f1, . . . , fk and the number of traceless
matrices among A1, . . . , Ak, thus extending the results of [14] to products of arbitrary
length k ≥ 2. As an application, we consider the fluctuation of Tr(eitWA1e

−itWA2)/N

around its thermal value Tr(A1)Tr(A2)/N
2 when t is large and give an explicit formula

for the variance.
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1 Introduction

The eigenvalues {λj}Nj=1 of a large N × N Hermitian random matrix W constitute
a strongly correlated system of random points on the real line. Due to the strong
dependence, classical central limit theorems (CLTs) aimed at independent or weakly
dependent random variables do not apply. However, the linear statistics Tr f(W ) =∑N

j=1 f(λj) with a regular test function f : R→ R have a variance of order one (see [31])
and, in fact, satisfy a central limit theorem with a Gaussian limit, as shown, e.g., in [32]
for the Wigner case and in [30] for invariant ensembles, see also [47, 48]. Remarkably,
the effect of the dependent random variables only manifests in the anomalous scaling,
and removing the classical N−1/2 prefactor fully compensates for the correlations. We
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Multi-point functional CLT for Wigner matrices

emphasize that this question is well-studied for Wigner matrices, see, e.g., [25, 3, 37,
43, 50, 4, 33] and that recent work by Diaz and Mingo [19] establishes a CLT for a large
class of random matrix models and expresses the limiting covariance structure in terms
of a Fréchet integral.

Note that the information obtained from a CLT is twofold: It characterizes the
fluctuations of the linear statistics around its mean as Gaussian and simultaneously
identifies the limiting variance or, more generally, the limiting covariance structure. To
generalize the CLT for

∑
j f(λj), the linear statistics can be modified in different ways.

First, one may replace the N -independent function f by a function of the build

f(x) = g(Nγ(x− E)) (1.1)

where g is a regular N -independent function, E ∈ R lies in the limiting spectrum of W ,
and N−γ is larger than the typical eigenvalue spacing around E. Considering the linear
statistics for a function f that is concentrated around a value E on a mesoscopic scale
allows us to zoom into the spectrum and thus study the problem locally. For Wigner
matrices, this problem was studied by He and Knowles in [27, 26, 28], yielding a tracial
CLT for the bulk spectrum that spans the entire mesoscopic regime. Similar questions
have also been studied for other models, including deformed Wigner matrices [29, 34],
generalized Wigner [35], and Wigner-type [41] matrices, sample covariance matrices
[2, 34], Haar distributed random matrices on the classical compact groups [45, 46, 49], β-
ensembles [8, 44, 7, 6, 24, 9], free sums [5], and non-Hermitian random matrices [10, 20].
See also [14] and references therein for a discussion of further examples and previous
results.

The second generalization addresses that
∑N

j=1 f(λj) is inherently tracial, i.e., the
statistics only involve the eigenvalues of the random matrix, but not its eigenvectors. By
testing f(W ) against a bounded deterministic matrix A with ‖A‖ ≤ 1, i.e., by modifying
the centered statistics to the form

Tr[f(W )A]− ETr[f(W )A] =

N∑
j=1

f(λj)〈uj , Auj〉 − E[. . . ], (1.2)

the normalized eigenvectors u1, . . . ,uN of W enter into the problem. In the Wigner
case, Lytova [36] obtained a CLT for (1.2) on macroscopic scales including an explicit
formula for the limiting variance. We refer to the CLTs that also involve eigenvectors as
functional in contrast to the tracial CLTs above. The recent paper [14] extended these
results to all mesoscopic scales and further established that decomposing the matrix A

in (1.2) according to

A = 〈A〉Id + Åd + Åod, 〈A〉 := 1

N
TrA,

gives rise to three asymptotically independent fluctuation modes. Here, Id denotes
the identity matrix, and Åd and Åod denote the diagonal and off-diagonal components
of Å = A− 〈A〉Id, the traceless part of A, respectively. Moreover, the results in [14] show
that the modes corresponding to the tracial and traceless part of A fluctuate on different
scales in the mesoscopic regime and two modes of the build (1.2) are asymptotically
independent if the involved functions live on different scales.

In this work, we study a third generalization of the original linear statistics
∑N

j=1 f(λj),
which extends (1.2) from involving one (possibly N -dependent, mesoscopically scaled)
function of W and one (possibly traceless) bounded deterministic matrix to alternating
products involving k ∈ N functions and bounded deterministic matrices, respectively.
More precisely, we consider the fluctuation of the statistics

Y := 〈f1(W )A1f2(W )A2 . . . fk(W )Ak〉 − E〈f1(W )A1f2(W )A2 . . . fk(W )Ak〉, (1.3)
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Multi-point functional CLT for Wigner matrices

show that Y satisfies a CLT with a Gaussian limit and give the limiting covariance struc-
ture as well as explicit error estimates. This generalizes [14, Thm. 2.4] to arbitrary k ≥ 1.
We refer to the result as a multi-point functional CLT. Similar to the results in [14], we
further verify that two modes are asymptotically independent if the functions fj are
rescaled to different scales or around different numbers Ej via (1.1). However, while
the k = 1 case only allows for two relevant classes of deterministic matrices (correspond-
ing to the tracial and traceless modes, respectively), considering k ≥ 2 further allows us
to pinpoint the size of the limiting covariance explicitly in terms of the lengths of the
matrix products and the number of traceless matrices involved. We further find that two
modes of the build (1.3) are asymptotically independent whenever the total number of
traceless matrices involved is odd.

A key ingredient for studying the fluctuation of (1.3) is information on the 1/N cor-
rection to E〈f1(W )A1 . . . fk(W )Ak〉, which was included in the error terms of previous
results (cf. [12, Cor. 2.7]). Before considering the CLT, we hence give an expansion of
the expectation. Note that the leading term of this expansion was already identified
in [13, 12]. As the corresponding local laws are obtained by induction, the limiting object
naturally arises through a recursion. The explicit form of the expectation obtained in [13]
from solving the recursion mirrors the combinatorics encountered in (first-order) free
probability, e.g., for the alternating moments E〈W1D1 . . .WkDk〉 of a finite family of inde-
pendent Wigner matrices (Wj)j and a finite family of deterministic matrices (Dj)j (see,
e.g., [39, Sect. 4.4]). Note, however, that free probability methods are typically restricted
to (N -independent) polynomials and often require an independent family of Wigner ma-
trices, while the resolvent approach presented in [13, 12] applies to a much wider class
of functions including resolvents and mesoscopically rescaled Sobolev functions. In a
similar spirit, the limiting covariance in our CLT also naturally arises through a recursion
which can be solved to obtain an explicit formula. We carry out the necessary combina-
torics in the companion paper [40] to show that the parallels to free probability identified
in [13] for the expectation continue to hold for the fluctuations. More precisely, the
structure of the limiting covariance in our CLT mirrors the combinatorics in second-order
free probability theory (see [39, Ch. 5] and [15] for an introduction) and, in the special
case fj(x) = x, correctly reproduces the structure of the fluctuation moments of Wigner
and deterministic matrices that was recently computed in [38]. To avoid introducing
additional notation, we work with the recursive definitions in the present paper and only
refer to the formulas in [40] for explicit computations and examples.

Lastly, as an application of the functional CLT, we consider the special case fj(x) = eitjx

with tj ∈ R. Interpreting W as the Hamiltonian of a mean-field quantum system and the
deterministic bounded matrix A as an observable, the quantity

A(t) := eitWAe−itW

describes the Heisenberg time evolution of A. In this context, applying the CLT for the
linear statistics (1.3) yields information about the fluctuations around the equilibrium in
certain thermalization problems. For k = 1, the main interest lies in a CLT for averages
of diagonal eigenvector overlaps 〈uj , Auj〉 (see [14, Thm. 2.3]) due to their connection to
the fluctuations in the eigenstate thermalization hypothesis (see [17]) which is referred
to as quantum unique ergodicity in mathematics (see [42], further references can be
found in [11]). For k ≥ 2, the statistics in (1.3) translate to the simultaneous time
evolution of different observables in the same quantum system. It is expected that two
observables A1(t) and A2 become thermalized for t � 1, i.e., that

〈A1(t)A2〉 ≈ 〈A1〉〈A2〉
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Multi-point functional CLT for Wigner matrices

in the large t regime. More precisely, if both A1 and A2 are traceless we have

〈A1(t)A2〉 = 〈A1A2〉
J1(2t)

2

t2
+

ξ(t)

N
+O

( Nε

N3/2

)
(1.4)

for any fixed t ∈ R, where J1 denotes a Bessel function of the first kind and ξ(t) is a
centered Gaussian random variable with a t-dependent variance. The first term of (1.4)
was established in the recent paper [13] in the form of a law of large numbers-type result
with an effective but non-optimal error bound. Applying our functional CLT for k = 2

shows that the fluctuations around the thermal value are Gaussian and thus gives the
second term of the expansion. Considering asymptotics for t � 1 after letting N → ∞
further yields an explicit expansion for the variance in the regime that is relevant for
thermalization.

We conclude this section with a brief overview of the paper. After introducing some
commonly used notations, we collect our assumptions on the Wigner matrix W in As-
sumption 1.1. We then briefly recall the optimal multi-resolvent local law [12, Thm. 2.5],
which constitutes one of the key tools for the analysis. The main results of the paper
are then given in Section 2. We start by giving a precise expansion of the expecta-
tion E〈f1(W )A1 . . . fk(W )Ak〉 beyond the leading term (Theorem 2.4). Considering the
fluctuations of the statistics in (1.3), we then establish a CLT and give an explicit formula
for the limiting covariance (Theorem 2.7, Corollary 2.9). This is followed by a discussion
of the result, including the asymptotics in the mesoscopic regime (Theorem 2.10), suffi-
cient conditions for two modes to be asymptotically independent (Corollary 2.11) as well
as the case of multiple independent Wigner matrices. We conclude Section 2 by applying
the functional CLT to thermalization problems. In Section 3, we consider the special
case of the resolvents fj(W ) := G(zj) = (W − zj)

−1 for some suitable spectral parame-
ters zj ∈ C, which provides the key ingredient for the proof of our main results. Here,
the first step is introducing a recursively defined set function E [·] (Definition 3.1), which
we then identify as the subleading 1

N term of the expectation E〈G(z1)A1 . . . G(zk)Ak〉.
This added resolution is the main tool in proving the CLT in the case that all functions fj
are resolvents (Theorem 3.8). The role of the limiting covariance in the theorem is played
by a recursively defined set function m2[·|·] (Definition 3.5). Lastly, the proofs are given
in Section 4. To keep the presentation concise, some routine calculations are deferred to
the appendix.

1.1 Notation and conventions

We start by introducing some notation used throughout the paper. For two positive
quantities f, g, we write f . g and f ∼ g whenever there exist (deterministic, N -
independent) constants c, C > 0 such that f ≤ Cg and cg ≤ f ≤ Cg, respectively.
We denote the Hermitian conjugate of a matrix A by A∗ and the complex conjugate
of a scalar z ∈ C by z. Moreover, ‖ · ‖ denotes the operator norm, Tr(·) is the usual
trace and 〈·〉 = N−1 Tr(·). We further denote the covariance of two complex random
variables Y1, Y2 by Cov(Y1, Y2) and follow the convention

Cov(Y1, Y2) = E(Y1 − EY1)(Y2 − EY2),

i.e., the covariance is linear in the first and anti-linear in the second entry. For k, a, b ∈ N
with a ≤ b, we set [k] = {1, . . . , k} and adopt the interval notation [a, b] = {a, a+ 1, . . . , b}.
We further write 〈a, b] or [a, b〉 to indicate that a or b are excluded from the interval,
respectively. Ordered sets are denoted by (. . . ) instead of {. . . }.

Given a matrix A ∈ CN×N , the traceless part of A is denoted by Å := A − 〈A〉Id
where Id denotes the identity matrix. Further, a := diag(A) denotes the diagonal matrix
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obtained from extracting only the diagonal entries of A and A1 �A2 denotes the entry-
wise (or Hadamard) product of two matrices A1 and A2. For a Hermitian matrix W

and z1, . . . , zk ∈ C\R, we write the corresponding resolvents as Gj = G(zj) := (W−zj)
−1

and index products of resolvents using the interval notation

G[a,b] := GaGa+1 . . . Gb

for a, b ∈ N with a ≤ b. Recalling that angled brackets indicate that an edge point of
the interval is excluded, we write G〈a,b] and G[a,b〉 to exclude Ga or Gb from the product,
respectively. Moreover, G∅ is interpreted as zero. Note that this notation differs slightly
from [13, 12]. As we often consider alternating products of resolvents with deterministic
matrices A1, . . . , Ak, define Tj := GjAj and apply the same interval notation as above to
write

T[k] := T1 . . . Tk = G1A1 . . . GkAk, T[a,b] := TaTa+1 . . . Tb. (1.5)

Again, angled brackets are used to exclude Ta or Tb from the product, respectively,
and T∅ is interpreted as zero. We call a product of the type (1.5) resolvent chain of
length k.

Throughout the paper, we assume W to be an N × N complex1 Wigner matrix
satisfying the following assumptions.

Assumption 1.1. The matrix elements of W are independent up to Hermitian sym-
metry Wij = Wji and we assume identical distribution in the sense that there is a
centered real random variable χd and a centered complex random variable χod such
that Wij

d
= N−1/2χod for i < j and Wjj

d
= N−1/2χd, respectively. We further assume

that E|χod|2 = Eχ2
d = 1 as well as the existence of all moments of χd and χod, i.e., there

exist constants Cp > 0 for any p ∈ N such that

E|χd|p + E|χod|p ≤ Cp.

Lastly, we assume that the pseudo-variance vanishes, i.e.,

Eχ2
od = 0.

We further introduce the notation

κ4 := E|χod|4 − 2 (1.6)

for the normalized fourth cumulant of the off-diagonal entries. Note that the notation
matches [14], however, we restrict the model to complex matrices with vanishing
pseudo-variance, i.e., EW 2

ij = 0 for i 6= j, for technical simplicity. The more general
model from [14] is studied for macroscopic scales in the companion paper [40], and the
necessary modifications for an extension to mesoscopic scales are sketched.

The eigenvalue density profile of W is described by the semicircle law (see, e.g., [1,
Ch. 2] for some background), i.e., the probability measure with density

ρsc(x) :=

√
4− x2

2π
1[−2,2](x) (1.7)

which mainly enters our analysis in the form of its Stieltjes transform

m(z) :=

∫
ρsc(x)

x− z
dx, z ∈ C \R. (1.8)

1The same method applies to the real case with only small modifications. For simplicity of the presentation,
we restrict the following analysis to the complex case only.
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We remind the reader that m(z) is the unique solution of the Dyson equation

− 1

m(z)
= m(z) + z, =z=(m(z)) > 0 (1.9)

and that its derivative satisfies

m′(z) =
m(z)2

1−m(z)2
. (1.10)

Given fixed z1, . . . , zk ∈ C \R, set mj = m(zj) and m′
j = m′(zj), respectively, and let

qi,j =
mimj

1−mimj
, (1.11)

possibly setting qj,j = m′
j whenever i = j. Moreover, we define the iterated divided

difference for finite multi-sets {z1, . . . , zk} ⊂ C \R recursively by

m[z1, . . . , zk] :=
m[z2, . . . , zk]−m[z1, . . . , zk−1]

zk − z1
(1.12)

whenever there are two distinct z1 6= zk among z1, . . . , zk and otherwise set

m[z, . . . , z︸ ︷︷ ︸
k times

] :=
m(k−1)(z)

(k − 1)!

where m(k−1) is the (k − 1)-th derivative of the function m in (1.8). Note that this is
well-defined in the sense that m[z1, . . . , zk] is independent of the ordering of the multi-
set {z1, . . . , zk}. We abbreviate m[1, . . . , k] := m[z1, . . . , zk] and note that qi,j in (1.11)
coincides with m[i, j].

1.2 Preliminaries: multi-resolvent local laws

Before considering the fluctuations, we briefly recall the optimal multi-resolvent local
law [12, Thm. 2.5], which characterizes the deterministic approximation of 〈T[1,k]〉. We
start by introducing the commonly used definition of stochastic domination.

Definition 1.2 (Stochastic domination). Let

X =
{
X(N)(u)

∣∣∣N ∈ N, u ∈ U (N)
}
and Y =

{
Y (N)(u)

∣∣∣N ∈ N, u ∈ U (N)
}

be two families of non-negative random variables that are indexed by N and possibly
some other parameter u. We say that X is stochastically dominated by Y , denoted
by X ≺ Y or X = O≺(Y ), if, for all ε, C > 0 we have

sup
u∈U(N)

P
(
X(N)(u) > NεY (N)(u)

)
≤ N−C

for large enough N ≥ N0(ε, C).

Given z1, . . . , zk ∈ C and matrices A1, . . . , Ak, we define the set function2 M[k] = M[1,k]

for k ≥ 2 through the recursion

M[k] = m1

(
A1M[2,k] + q1,k〈A1M[2,k]〉+

k−1∑
j=2

〈M[1,j]〉
(
M[j,k] + q1,k〈M[j,k]〉

))
(1.13)

2Note that M[k] depends on (zj)j∈[k] and (Aj)j∈[k], i.e., both the spectral parameters and the deterministic
matrices are indexed by the same set. We hence interpret M(·) as a function of the (ordered) index set to
match the notation in the following sections.
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with initial condition M[1] = m1Id. This function was introduced in [13, Lem. 5.4] and
an explicit (non-recursive) formula for M[k] was given in [13, Thm. 3.4]. However, we
will only use the recursive definition in the present paper. Analogously to (1.13), we may
define MS for any (cyclically) ordered set S = (s1, . . . , sk) instead of an interval. In this
case, we write

MS = M(s1,...,sk). (1.14)

The set function M[k] plays the role of the deterministic approximation of T[1,k〉Gk in the
following multi-resolvent local laws.

Theorem 1.3 (Multi-resolvent local law, [12, Thm. 2.5]). Fix ζ > 0 and k ∈ N. Let
z1, . . . , zk ∈ C \ R with maxj |zj | ≤ N100 and d := minj dist(zj , [−2, 2]), deterministic
matrices A1, . . . , Ak ∈ CN×N with ‖Ai‖ . 1 such that a out of them are traceless. Set
further η∗ := minj |=zj | ≥ N−1+ζ . Recalling that Tj = GjAj , we have the averaged local
law

〈T[1,k]〉 = 〈M[k]Ak〉+O≺

( 1

Nη∗ η
k−a/2−1
∗

)
, (1.15)

and for x,y ∈ CN with ‖x‖, ‖y‖ . 1 we have the isotropic local law

〈x, T[1,k〉Gky〉 = 〈x,M[k]y〉+O≺

( 1
√
Nη∗ η

k−a/2−1
∗

)
. (1.16)

Note that A1, . . . , Ak ∈ CN×N are, in fact, N -dependent quantities, but we do not
carry the N -dependence explicitly. As we frequently encounter 〈M[k]Ak〉 in the following
sections, we further introduce the notation3

m1[T1, . . . , Tk] = m1[z1, A1, . . . , zk, Ak] := 〈M[k]Ak〉. (1.17)

It is immediate from (1.13) that the function m1[·] satisfies the recursion

m1[T1, . . . , Tk] = m1

(
m1[T2, . . . , Tk] + q1,km1[T2, . . . , Tk−1, Gk]〈Ak〉 (1.18)

+

k−1∑
j=2

m1[T1, . . . , Tj−1, Gj ]
(
m1[Tj , . . . , Tk] + q1,km1[Tj , . . . , Tk−1, Gk]〈Ak〉

))
with initial condition m1[T1] = 〈A1〉m1. The arguments in the notation m1[T1, . . . , Tk]

indicate the deterministic approximation of 〈T1 . . . Tk〉. Whenever A1 = · · · = Ak = Id, it
follows that the deterministic approximation is given by the iterated divided differences,
i.e.,

m1[G1, . . . , Gk] = m[1, . . . , k], (1.19)

which can be seen from the resolvent identity

GjGj−1 =
Gj −Gj−1

zj − zj−1
(1.20)

and the averaged local law (1.15). Note that (1.15) and (1.16) may also be applied for
any product Ts1 . . . Tsk−1

Gsk that is indexed by a (cyclically) ordered set S = (s1, . . . , sk)

instead of an interval. In this case, the deterministic approximation is given by (1.14).
We further note the following a priori bounds for m[·], m1[·], and M[·] (cf. Lemma 2.4

and Appendix A of [12]). Recall that ηj = =zj is N -dependent in the mesoscopic regime.

3Note that m1[T1, . . . , Tn] is a deterministic quantity. We slightly abuse notation to use the symbol Tj =
GjAj and the tuple (zj , Aj) interchangeably, as this allows writing some equations more compactly.
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Lemma 1.4. Let k ∈ N, pick spectral parameters z1, . . . , zk and deterministic matrices
such that a matrices among A1, . . . , Ak are traceless. Further, set η∗ = minj |=zj | and
assume d := minj dist(zj , [−2, 2]) ≤ 1. Then,

|m[1, . . . , k]| . 1

ηk−1
∗

,

|m1[T1, . . . , Tk]| .
1

η
k−1−da/2e
∗

,∣∣∣(M[k])ij

∣∣∣ ≤ ‖M[k]‖ .
1

η
k−1−da′/2e
∗

,

where a′ denotes the number of traceless matrices among A1, . . . , Ak−1 and dxe denotes
the upper integrer part of x ∈ R. Generically, the above bounds are sharp4 when not
all =zj have the same sign.

Theorem 1.3 together with the optimality of the bounds in Lemma 1.4 asserts that the
deterministicM[k] is indeed the leading order approximation of T[1,k〉Gk. In particular, the
error terms in (1.15) and (1.16) are smaller than the natural upper bound on their leading
term by a factor of (Nη∗)

−1 and (Nη∗)
−1/2, respectively. We remark that the sharpness

of the bounds in Lemma 1.4 was discussed in [12, App. A] and follows in essence from a
suitable integral representation for m[·] as well as the non-recursive formulas for m1[·]
and M[k]. If all =zj have the same sign, the iterateded divided difference stays bounded
due to the smoothness of (1.8) in the bulk, showing that the bound in Lemma 1.4 cannot
be sharp in this case.

2 Main results

The main result of the present paper is a functional CLT for the centered statistics

Y (k,a)
α := 〈f1(W )A1 . . . fk(W )Ak〉 − E〈f1(W )A1 . . . fk(W )Ak〉, (2.1)

where α is a multi-index containing the deterministic matrices and test functions involved
and a denotes the number of traceless matrices among A1, . . . , Ak. Note that we omit the
superscripts of Y (k,a)

α whenever a or k are not used explicitly. The test functions f1, . . . , fk
are chosen according to the following set of assumptions.

Assumption 2.1 (Test functions). For k, p ∈ N let g1, . . . , gk ∈ Hp
0 (R) be (N -independent)

real-valued compactly supported test functions with ‖gj‖Hp
0
. 1. Fixing δ, γ ≥ 0 as well

as γ1, . . . , γk ≥ 0 either as

(1) [Macro] δ = γ = γ1 = · · · = γk = 0 or as

(2) [Meso] δ > 0, γ ∈ (0, 1), and 0 < γj ≤ γ,

we pick (N -independent) reference energies Ej ∈ [−2 + δ, 2− δ] for j = 1, . . . , k. Lastly,
we define the test function rescaled to a scale N−γj around Ej by

fj(x) := gj(N
γj (x− Ej)). (2.2)

Note that Assumption 2.1 includes both themacroscopic scale (1) and the bulk regime
for mesoscopic scales (2). While it is possible to mix both regimes by choosing part of
the test functions to satisfy (1) and the remaining ones to satisfy (2), the error estimate
obtained from the results below is of the same size as if all functions were chosen on the
mesoscopic scale. Treating this mixed regime optimally would require a multi-resolvent

4The bounds are "sharp" in the sense that they are optimal in the class of bounds involving only η∗ in the
small η∗ regime, see also [12].
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local law that carries the number of spectral parameters with N -dependent imaginary
part as a parameter. Since the present paper focuses on the proof of the multi-point
functional central limit theorem, we use the already established Theorem 1.3 as input
and choose either (1) or (2) for all test functions.

We further remark that the restriction to real-valued test functions is only for sim-
plicity. The extension of the results in this section to complex-valued g1, . . . , gk fol-
lows by standard arguments. Moreover, as one can decompose any matrix Aj in Yα

as Aj = 〈Aj〉Id + Åj , by multi-linearity, it is sufficient to consider Yα for deterministic
matrices Aj that are either traceless or equal to the identity matrix.

Throughout the paper, we denote the multi-index α in the form

α := ((g1, γ1, E1, A1), . . . , (gk, γk, Ek, Ak))

with gj , γj , and Ej chosen following Assumption 2.1. Moreover, we introduce Fj :=

fj(W )Aj and use the interval notation

F[i,j] := fi(W )Ai . . . fj(W )Aj

for i < j as well as F∅ = 0. Note that (gj , γj , Ej , Aj) and Fj contain the same infor-
mation. For this reason, we will occasionally abuse notation and use both quantities
interchangeably.

We further introduce the random variables

X(k,a)
α := 〈T[1,k]〉 − E〈T[1,k]〉 = 〈G1A1 . . . GkAk〉 − E〈G1A1 . . . GkAk〉, (2.3)

as a special case of (2.1). By a suitable functional calculus (cf. [16]), information on (2.3)
carries over to the general statistics (2.1), thus yielding a key tool for the proof of our
main results. We, therefore, consider the analog of the results in Sections 2.1 and 2.2
for the resolvent case separately in Section 3. Throughout the paper, we write

α = ((z1, A1), . . . , (zk, Ak))

for the multi-index in (2.3) containing the spectral parameters z1, . . . , zk appearing in the
resolvents as well as the deterministic matrices. Whenever we do not need the number k
of resolvents (resp. deterministic matrices) in the product or the number a of traceless
deterministic matrices among A1, . . . , Ak explicitly, we again omit the superscript, and
further occasionally abuse notation to use (zj , Aj) and Tj = GjAj interchangeably. In the
context of (2.2), we may interpret the resolventG(z) as a function rescaled to scale |=z|−1

around <z (even though the corresponding function g is not compactly supported). The
analog of Assumption 2.1 for the spectral parameters now reads as follows.

Assumption 2.2 (Spectral parameters). Let k ∈ N. Fixing δ, ζ ≥ 0 either as

(1) [Macro] δ = ζ = 0 or as

(2) [Meso] δ > 0 and ζ ∈ (0, 1),

pick (N -independent) reference energies Ej ∈ [−2 + δ, 2 − δ]. We choose the spectral
parameters z1, . . . , zk ∈ C such that zj = Ej + iηj with |ηj | & N−ζ and maxj |zj | ≤ N100.

Note that we consider spectral parameters zj for which |=zj | is either of order
one (macroscopic scale) or only slightly above the typical eigenvalue spacing (mesoscopic
scales). Whenever |ηj | is small, we further restrict to the bulk regime, i.e., those zj for
which <zj is bounded away from the boundary of the support of the semicircle density
at ±2.
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2.1 The 1
N term of E〈f1(W )A1 . . . fk(W )Ak〉

We start our analysis by considering an expansion of E〈F[1,k]〉 which identifies the
subleading 1/N term. To state the theorem, we introduce a set function E [·] that plays
the role of the 1/N term for the resolvent case E〈T[1,k]〉. Note that E [·] characterizes the
error of order 1/N that is obtained from interchanging 〈T[1,k]〉 − E〈T[1,k]〉 and 〈T[1,k]〉 −
m1[T1, . . . , Tk], i.e., it relates Xα in (2.3) to the bounds in the local law (1.15). The proof
of Lemma 2.3 is carried out in Section 4.2 and a discussion of the properties of E [·] is
included in Section 3.1.

Lemma 2.3. Let k ∈ N, W be a Wigner matrix satisfying Assumption 1.1, and fix
spectral parameters z1, . . . , zk satisfying Assumption 2.2 as well as deterministic matrices
A1, . . . , Ak with ‖Aj‖ . 1. Moreover, assume that a matrices among A1, . . . , Ak are
traceless. Then there exists a set function E [·] (defined recursively in Definition 3.1
below) such that

E〈T1 . . . Tk〉 = m1[T1, . . . , Tk] +
κ4

N
E [T1, . . . , Tk] +O

( Nε

N
√
Nη∗ η

k−a/2
∗

)
(2.4)

with m1[·] as in (1.17), κ4 as in (1.6), and η∗ := minj |=zj |.
We remark that (cf. Lemma 3.2 below)

E [T1, . . . , Tk] .
1

η
k−1−da/2e
∗

,

i.e., there is a clear distinction between an O(1) leading term, an O(N−1) subleading
term, and an O(Nε−3/2) error term for (2.4) in the macroscopic regime (Part (1) of
Assumption 2.2), but the hierarchy of the three summands is not as distinct in the
mesoscopic regime (Part (2) of Assumption 2.2). However, the resolution given in
Lemma 2.3 is sufficient for the proofs that follow, see also Remark 3.3 below. We now
give the expansion of E〈F[1,k]〉.
Theorem 2.4. Let k ∈ N and pick deterministic matrices A1, . . . , Ak ∈ CN×N with
‖Aj‖ . 1 such that a out of them are traceless. Let further W be a Wigner matrix
satisfying Assumption 1.1 and let f1, . . . , fk be test functions satisfying Assumption 2.1
with p = k − ba/2c+ 1. Then, for any ε > 0, we have the expansion

E〈F[1,k]〉 =
1

πk

∫
Rk

∫
[0,10]k

[ k∏
j=1

(∂z(fj)C,p)(zj)
]
m1[G(z1)A1, . . . , G(zk)Ak]dη[k]dx[k]

+
κ4

Nπk

∫
Rk

∫
[0,10]k

[ k∏
j=1

(∂z(fj)C,p)(zj)
]
E [G(z1)A1, . . . , G(zk)Ak]dη[k]dx[k]

+O
(Nε maxj ‖fj‖Hp

N3/2

)
(2.5)

where we write zj = xj + iηj , dx[k] = dx1dx2 . . . , dxk as well as dη[k] = dη1dη2 . . . dηk,
and (fj)C,p denotes the almost analytic extension of fj of order p (see (4.37) for the
detailed definition of (fj)C,p).

Theorem 2.4 follows from Lemma 2.3 and the Helffer-Sjöstrand formula (see [16]). As
a similar argument will be used for the more involved proof of the multi-point functional
CLT in Theorem 2.7, we omit the details here.

It follows from (93) in [14] that E [T1] is given by

E [T1] = 〈A1〉
m5

1

1−m2
1

= 〈A1〉m′
1m

3
1. (2.6)
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Hence, computing the second integral in (2.5) shows that the 1/N term E [f1(W )A1]

of E〈f1(W )A1〉 is

E [f1(W )A1] = 〈A1〉
(∫ 2

−2

f1(x)ρsc(x)dx+
κ4

2π

∫ 2

−2

(x4 − 4x2 + 2)f1(x)√
4− x2

dx− f1(0)

2

)
,

where ρsc denotes the density of the semicircle law in (1.7). We remark that this formula
was already included in [14, Thm. 2.4]. Theorem 2.4 hence generalizes Equation (21)
in [14] to arbitrary k ≥ 1 in the setting of Assumptions 1.1 and 2.1.

2.2 Statement of the multi-point functional CLT

We now state our main result, the multi-point functional CLT for the statistics Yα

in (2.1). To give the limiting covariance structure explicitly, we introduce a set function
m2[·|·] to play the role of the leading term of the (appropriately scaled) covariance5

of 〈T[1,k]〉 and 〈T[k+1,k+`]〉 in the same way that M[k] and m1[·] do for the expectation
of T[1,k〉Gk (see Theorem 1.3 as well as (1.17)). Recall that we use (zj , Aj) and Tj

interchangeably. In particular, we may write

m2[α|β] = m2[T1, . . . , Tk|Tk+1, . . . , Tk+`]

where the two multi-indices α and β contain the spectral parameters and deterministic
matrices in T1, . . . , Tk and Tk+1, . . . , Tk+`, respectively.

Lemma 2.5. Fix k, ` ∈ N, let α, β be two multi-indices of length k and `, respectively, and
letW be a Wigner matrix satisfying Assumption 1.1. Pick two sets of spectral parameters
z1, . . . , zk and zk+1, . . . , zk+` that either both satisfy Case 1 or both satisfy Case 2 of
Assumption 2.2, and denote η∗ = minj |=zj |. Moreover, pick deterministic matrices
A1, . . . , Ak+` with ‖Aj‖ . 1 such that a matrices among A1, . . . , Ak and b matrices among
Ak+1, . . . , Ak+` are traceless. Then there exists a set function m2[·|·] (defined recursively
in Definition 3.5 below) such that

N2EX(k,a)
α X

(`,b)
β = m2[α|β] +O

( Nε

√
Nη∗ η

k−a/2
∗ η

`−b/2
∗

)
(2.7)

for any ε > 0.

We remark that (cf. (3.14) below)

|m2[T1, . . . , Tk|Tk+1, . . . , Tk+`]| .
1

η
k+`−d(a+b)/2e
∗

,

i.e., there is a clean distinction between an O(1) leading term and an O(Nε−1/2) error
term for (2.7) in the macroscopic regime (Part (1) of Assumption 2.2), but the hierarchy
of the two summands may not be as distinct in the mesoscopic regime (Part (2) of
Assumption 2.2), see also Remark 3.9 below. The statistics Xα and the corresponding
CLT, as well as the properties of the function m2[·|·] are discussed in more detail in
Section 3.2. Moreover, explicit (non-recursive) formulas for m2[·|·] are derived in the
companion paper [40]. We further recall the following definition.

Definition 2.6. Consider two functions of the Wigner matrix W in Assumption 1.1,
which we denote as N -dependent random variables X(N) and Y (N). We say that X(N) =

Y (N) +O(N−c) with c > 0 in the sense of moments if for any polynomial P it holds that

EP(X(N)) = EP(Y (N)) +O(N−c+ε),

5Note the similarity between the notations m1[·] and m2[·|·], which take one and two resolvent chains as
arguments, respectively.
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for any small ε > 0, where the implicit constant in O(·) only depends on the polynomial P
and the constants in Assumption 1.1.

The main result of the paper can now be stated as follows.

Theorem 2.7 (Multi-point functional CLT). Under the assumptions of Theorem 2.4 it holds
that, for any ε > 0, the centered statistics (2.1) are approximately distributed (in the
sense of moments) as

NY (k,a)
α = ξ(α) +O

(Nε maxj ‖fj‖Hp

√
N

)
(2.8)

with a centered (N -dependent) Gaussian process ξ(α) satisfying

E[ξ(α)ξ(β)] (2.9)

=
1

πk+`

∫
Rk

dx[k]

∫
[0,10]k

dη[k]

[ k∏
i=1

(∂z(fi)C,p)(zi)
] ∫

R`

dx[k+1,k+`]

∫
[0,10]`

dη[k+1,k+`]

×
[ ∏̀
j=k+1

(∂z(fj)C,q)(zj)
]
m2[G(z1)A1, . . . , G(zk)Ak|G(zk+1)Ak+1, . . . , G(zk+`)Ak+`].

Here, zj = xj+iηj , dx[i,j] = dxidxi+1 . . . ,dxj as well as dη[i,j] = dηidηi+1 . . . , dηj for i < j,
and (fj)C,p denotes the almost analytic extension of fj of order p. Further, β denotes
another multi-index of length ` containing the deterministic matrices Ak+1, . . . , Ak+`

with ‖Aj‖ . 1 out of which b are traceless, as well as the test functions fk+1, . . . , fk+`

satisfying Assumption 2.1 with q = ` − bb/2c + 1. Recall that m2[·|·] was introduced in
Lemma 2.5.

The key ingredient for the proof of Theorem 2.7 is the case of all fj being resolvents,
which we discuss in detail in Section 3.2 below. The full multi-point functional CLT is
then obtained from the resolvent CLT using the Helffer-Sjöstrand formula (cf. [16]). We
carry out the argument in Section 4.5.

2.3 Discussion of the multi-point functional CLT for mesoscopic scales

In this section, we consider the mesoscopic regime of Theorem 2.7 (Case 2 of
Assumption 2.1) in more detail. A key ingredient in this discussion is the decomposition

m2[·|·] = mGUE [·|·] + κ4mκ[·|·] (2.10)

for the set function m2[·|·] in Lemma 2.5 into two functions mGUE [·|·] and mκ[·|·] that do
not depend on any parameters of the underlying Wigner matrix W . Equation (2.10)
induces a similar decomposition for the limiting covariance in (2.9). We remark that
the two contributions are not of comparable size in the mesoscopic regime and that the
summand with prefactor κ4 is of lower order. This reduces the leading term in (2.9) to
the case κ4 = 0, thus simplifying it considerably. We give a brief example in the resolvent
case to illustrate this phenomenon. More general bounds are given in Lemma 3.7 below.
Recall that we may interpret the resolvent G(z) as a function rescaled to scale |=z|−1

around <z to match (2.2).

Example 2.8. For k = ` = 1, we have by (92) of [14] (or Definition 3.5 below) that

m2[T1|T2] := 〈A1A2〉
m2

1m
2
2

(1−m1m2)
+ 〈a1a2〉 · κ4m

3
1m

3
2 (2.11)

+ 〈A1〉〈A2〉
( m′

1m
′
2

(1−m1m2)2
− m2

1m
2
2

(1−m1m2)
+ 2κ4m1m

′
1m2m

′
2 − κ4m

3
1m

3
2

)
,
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where ai denotes the diagonal part of the matrix Ai. Assuming that ‖A1‖, ‖A2‖ . 1 and
|=z1|, |=z2| ≥ η∗, a brief computation using the explicit explicit form

m(z) =
−z +

√
z2 − 4

2

of the solution to (1.9) shows that |(1−m1m2)
−1| . η−1

∗ . Hence, the function m2[T1|T2]

in (2.11) satisfies the bounds

m2[T1|T2] .

{
η−2
∗ , if 〈A1〉〈A2〉 6= 0,

η−1
∗ , if 〈A1〉〈A2〉 = 0.

Both inequalities are sharp if =z1 and =z2 have opposite signs. We further note that

mGUE [T1|T2] .

{
η−2
∗ , if 〈A1〉〈A2〉 6= 0,

η−1
∗ , if 〈A1〉〈A2〉 = 0,

mκ[T1|T2] = O(1),

i.e., the two parts of m2[·|·] (cf. decomposition in (2.10)) do not contribute equally
unless η∗ & 1 (macroscopic regime).

We hence restrict the following discussion to the case κ4 = 0. Even with this
simplification, the limiting covariance in Theorem 2.7 may be tedious to compute using
the recursive definition of m2[·|·] alone. In the companion paper [40], we consider the
recursion defining m2[·|·] in detail and derive explicit formulas. Combining [40, Thm. 2.4]
with (2.9) then yields a more direct way of computing the limiting covariance which is
fully explicit whenever κ4 = 0. The result is given in Corollary 2.9 below. We emphasize
that Eξ(α)ξ(β) is a sum of terms that decompose into a product of a function of the
deterministic matrices A1, . . . , Ak and an expression in the test functions f1, . . . , fk+`,
respectively. Moreover, the combinatorics underlying the summation mirror those
encountered in second-order free probability theory. The proof of Corollary 2.9 is given
in Section 4.6.

To state the result, we denote by NCP (k) the set of non-crossing partitions of [k],
by

−−−→
NCP (k, `) the set of non-crossing permutations of the (k, `)-annulus, and by K(π)

the Kreweras complement associated with an element π ∈ NCP (k) or π ∈
−−−→
NCP (k, `),

respectively. Moreover, the first and second-order cumulants h◦ and h◦◦ associated with
set functions h[·] and h[·|·] are computed recursively from the moment-cumulant relations

h[S] =
∑

π∈NCP (S)

∏
B∈π

h◦[B], (2.12)

h[S1|S2] =
∑

π∈
−−−→
NCP (|S1|,|S2|)

∏
B∈π

h◦[B] +
∑

π1×π2∈NCP (|S1|)×NCP (|S2|),
U1∈π1,U2∈π2 marked

h◦◦[U1|U2]
∏

B∈π1\U1

∪π2\U2

h◦[B].

(2.13)

The full definitions and some illustrative examples are, e.g., given in [40, Sect. 1]
or [39].

Corollary 2.9. Consider the setup of Theorem 2.7 for κ4 = 0. Then,

Eξ(α)ξ(β) =
∑

π∈
−−−→
NCP (k,`)

( ∏
B∈K(π)

〈 ∏
j∈B

Aj

〉) ∏
B∈π

Φπ,B(fj |j ∈ B) (2.14)

+
∑

π1×π2∈NCP (k)×NCP (`),
U1∈π1,U2∈π2 marked

( ∏
B1∈K(π1),
B2∈K(π2)

〈 ∏
j∈B1

Aj

〉〈 ∏
j∈B2

Aj

〉)
Φπ1×π2,U1×U2

(f1, . . . , fk+`).
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The functions Φπ,B and Φπ1×π2,U1×U2
in (2.14) are given by

Φπ,B(fj |j ∈ B) = sc◦[B], (2.15)

where sc◦[·] denotes the first-order free cumulant function associated with

sc[i1, . . . , in] :=

∫ 2

−2

[ n∏
j=1

fij (x)
]
ρsc(x)dx, (2.16)

with ρsc as in (1.7), and

Φπ1×π2,U1×U2
(f1, . . . , fk+`) = sc◦◦[U1|U2]

∏
B1∈π1\U1,
B2∈π2\U2

sc◦[B1]sc◦[B2]. (2.17)

Here, sc◦◦[·|·] denotes the second-order free cumulants associated with sc[·] in (2.16) and

sc[i1, . . . , in|in+1, . . . , in+m] :=
1

2

∫ 2

−2

∫ 2

−2

( n∏
j=1

fij (x)
)′( m∏

j=1

fin+j (y)
)′
u(x, y)dxdy, (2.18)

where the integral kernel u : [−2, 2]× [−2, 2] → R is given by

u(x, y) :=
1

4π2
ln
[ (√4− x2 +

√
4− y2)2(xy + 4−

√
4− x2

√
4− y2)

(
√
4− x2 −

√
4− y2)2(xy + 4 +

√
4− x2

√
4− y2)

]
. (2.19)

We remark that the structure of (2.14) resembles the formula in [38, Thm. 6] for the
covariance of alternating products of GUE and deterministic matrices in second-order
free probability. This connection is discussed further in the companion paper [40]. In
particular, applying Theorem 2.7 and (2.14) for f1(x) = · · · = fk+`(x) = x reproduces the
corresponding formulas in [38] (cf. [40, Cor. 2.11]).

Theorem 2.7 and Corollary 2.9 identify the limiting process ξ(α) in terms of the test
functions f1, . . . , fk+`. Similar to [14, Sect. 2.3] in the case k = ` = 1, we can make use
of the mesoscopic scaling (2.2) to give asymptotic formulas in terms of the functions
g1, . . . , gk+` whenever γj > 0 for all j. The key quantities sc[·] and sc[·|·] characterizing the
covariance structure of two modes Y (k,a)

α and Y
(`,b)
β can then be conveniently expressed

in terms of the L2 and Ḣ1/2 inner products

〈f, g〉L2 :=

∫
R

f(x)g(x)dx, 〈f, g〉Ḣ1/2 :=

∫
R2

f(x)− f(y)

x− y

g(x)− g(y)

x− y
dxdy.

Theorem 2.10 (Bulk scaling asymptotics). Under the assumptions of Theorem 2.7, pick
test functions f1, . . . , fk+` that satisfy Assumption 2.1 with some δ, γj > 0.

(i) Whenever γ1 = · · · = γn+m = γ and the functions fi1 , . . . , fin+m
are rescaled around

the same E0 ∈ [−2 + δ, 2− δ], it holds that

Nγsc[i1, . . . , in+m] = ρsc(E0)
〈 n∏

j=1

gij ,

n+m∏
j=n+1

gij

〉
L2

+O
(
N−γ

)
,

sc[i1, . . . , in|in+1, . . . , in+m] =
1

4π2

〈 n∏
j=1

gij ,

n+m∏
j=n+1

gij

〉
Ḣ1/2

+O
(
N−γ

)
.

(ii) If γi1 = · · · = γim+n
= γ, but the functions fi1 , . . . , fin+m

are not rescaled around
the same energy, we have the bounds

Nγsc[i1, . . . , in+m] = O
(
N−γ

)
,

sc[i1, . . . , in|in+1, . . . , in+m] = O
(
N−γ

)
.

Recall that Ei1 , . . . , Ein+m
are fixed and N -independent.
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(iii) If Ei1 = · · · = Ein+m
, but the scales γ1, . . . , γn+m do not all coincide, we have the

bounds

Nγminsc[i1, . . . , in+m] = O
(
N−(γmin,2−γmin)

)
,

sc[i1, . . . , in|in+1, . . . , in+m] = O
(
N−(γmin,2−γmin)

)
.

with γmin = minj γij and γmin,2 = min{γij |γij > γmin}.

The implicit constants in the error terms depend only on δ and the scaling exponents γj
as well as the test functions g1, . . . , gk+` through ‖gj‖Hp

0
and |suppgj |.

The proof of Theorem 2.10 follows from the definition of sc[·] in (2.16) and (careful)
integration by parts of (2.18). We omit the details.

Note that the random variables ξ(α1), . . . , ξ(αk) obtained for k ≥ 1 multi-indices
α1, . . . , αk are jointly Gaussian as a consequence of Theorem 3.8 below. Next, we
discuss conditions under which two modes Yα and Yβ in Theorem 2.7 are asymptotically
independent. The case k = ` = 1 of Corollary 2.11 was already discussed in [14,
Thm. 2.13].

Corollary 2.11 (Independent modes). Under the assumptions of Theorem 2.7, let α
and β be multi-indices such that the test functions f1, . . . , fk associated with α are
all rescaled around a common reference energy Eα on the scale γα > 0 and the test
functions fk+1, . . . , fk+` associated with β are all rescaled around Eβ on the scale γβ > 0.
Further, assume that α and β contain a and b traceless matrices, respectively, and denote
by ξ(α) and ξ(β) the corresponding limiting Gaussian processes in Theorem 2.7.

(i) If Eα 6= Eβ , then the processes ξ(α) and ξ(β) are asymptotically independent in the
sense that ∣∣E[ξ(α)ξ(β)]∣∣ . N−min{γα,γβ}.

(ii) If γα 6= γβ , then the processes ξ(α) and ξ(β) are asymptotically independent in the
sense that ∣∣E[ξ(α)ξ(β)]∣∣ . N−|γα−γβ |.

(iii) If a+ b is odd, then the processes ξ(α) and ξ(β) are always asymptotically indepen-
dent in the sense that

E[ξ(α)ξ(β)] = O
(Nε maxi∈[k] ‖fi‖Hp maxj∈[k+1,k+`] ‖fj‖Hq

√
N

)
,

where p = k − ba/2c+ 1 and q = `− bb/2c+ 1, i.e., the leading deterministic term
in (2.9) has the same size as the error term in Theorem 2.7.

The proof of Corollary 2.11 is immediate from Theorem 2.10 and Remark 3.9 on
independent modes in the resolvent CLT. As mκ[·|·] is negligible in the mesoscopic
regime (cf. bounds in Lemma 3.7), Theorem 2.10 is indeed enough to conclude.

Remark 2.12 (Multiple independent Wigner matrices). In both cases of Assumption 2.1,
the high-probability sense of Theorem 2.7 allows us to generalize the result to multiple
independent Wigner matrices by resolving the individual matrices iteratively while
conditioning on all others. We remark that a similar mechanism has also been applied for
computing the deterministic approximation of 〈f1(Wi1)A1 . . . fk(Wik)Ak〉 if Wi1 , . . . ,Wik

are taken, possibly with repetitions, from a family of independent Wigner matrices
(see [13, Ext. 2.13]). We give an example in the case k = ` = 2. Let W,W ′ denote
two independent GUE matrices and pick bounded deterministic matrices A1, . . . , A4
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with 〈Aj〉 6= 0 as well as test functions f1, . . . , f4 satisfying Case 2 of Assumption 2.1
with p = 3. Then,

N2E
[(
〈f1(W )A1f2(W

′)A2〉 − E〈f1(W )A2f2(W
′)A2〉

)
×
(
〈f3(W )A3f4(W

′)A4〉 − E〈f3(W )A3f4(W
′)A4〉

)]
= sc◦◦[1|3]〈A1f2(W

′)A2〉〈A3f4(W
′)A4〉+ sc◦[1, 3]〈A1f2(W

′)A2A3f4(W
′)A4〉

+ sc◦[1]sc◦[3]N
2E
[(
〈A1f2(W

′)A2〉 − E〈A2f2(W
′)A2〉

)
×
(
〈A3f4(W

′)A4〉 − E〈A3f4(W
′)A4〉

)]
+O

(Nε max{‖f1‖H3 , ‖f3‖H3}√
N

)
= 〈A1A2〉〈A3A4〉(sc◦◦[1|3]sc◦[2]sc◦[4] + sc◦◦[2|4]sc◦[1]sc◦[3])
+ 〈A1A4〉〈A2A3〉sc◦[1, 3]sc◦[2, 4] + 〈A1A2A3A4〉sc◦[1, 3]sc◦[2]sc◦[4]

+ 〈A2A1A4A3〉sc◦[1]sc◦[2, 4]sc◦[3] +O
(Nε maxj ‖fj‖H3√

N

)
.

In the first step, we conditioned on W ′ and applied Theorem 2.7 as well as Corollary 2.9,
treating W ′, and hence fj(W

′), as deterministic. After computing the leading term,
Corollary 2.9 is applied again for W ′. Lastly, the remaining terms are identified using the
local law [12, Cor. 2.7], which yields a total of five summands. In contrast, if W = W ′,
all terms on the right-hand side of (2.14) may contribute. For k = ` = 2, this yields 27
terms in total (cf. [40, Ex. 1.18]). Analogous statements hold for an arbitrary number of
independent Wigner matrices with possible repetitions. We remark that the underlying
combinatorial structure for n independent GUE matrices is given by the so-called non-
mixing annular non-crossing permutations and non-mixing marked partitions for n

colors, which was also established in [38] for the special case f1(x) = · · · = fk(x) = x

and general Wigner matrices.

2.4 Application to thermalization problems

We now specialize Theorem 2.7 to the functions fj(x) = eitjx with (N -independent)
numbers tj ∈ R. Recall that

A(t) := eitWAe−itW (2.20)

describes the Heisenberg time evolution of an observable A and that it follows from [13,
Cor. 2.9] that the observables A1(t) and A2 become thermalized for t � 1, i.e., that

〈A1(t)A2〉 ≈ 〈A1〉〈A2〉

in the large t regime. Fixing t ∼ 1 and using Theorem 2.7, we readily conclude that the
fluctuations around the thermal value are Gaussian and can give the leading terms of
the variance explicitly by taking an t → ∞ limit after letting N → ∞. As the random-
ness in 〈A1(t)A2〉 cancels out if either A1 = Id or A2 = Id, we omit the deterministic
term 〈A1〉〈A2〉 from the following result and assume w.l.o.g. that 〈A1〉 = 〈A2〉 = 0.

Corollary 2.13. Let κ4 = 0, 〈A1〉 = 〈A2〉 = 0, and ‖A1‖, ‖A2‖ . 1. Then,

〈A1(t)A2〉 = 〈A1A2〉
J1(2t)

2

t2
+

ξ(t)

N
+O

( Nε

N3/2

)
,

in the sense of moments, where A1(t) is as defined in (2.20), J1 is a Bessel function of
the first kind, and ξ(t) is a centered Gaussian random variable. In the t → ∞ limit, the
variance of ξ(t) satisfies the asymptotics

Var[ξ(t)] = 〈|A1|2〉〈|A2|2〉+O
( 1

t2

)
(2.21)
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and we further obtain

Eξ(t1)ξ(t2) = 〈|A1|2〉〈|A2|2〉
(J1(2(t1 − t2))

t1 − t2

)2
+O

( 1

(min{t1, t2})2
)
. (2.22)

In particular, ξ(t1) and ξ(t2) are asymptotically uncorrelated if we take an |t1 − t2| → ∞
limit after letting N → ∞.

Corollary 2.13 follows directly from Theorem 2.7 and Corollary 2.9 by specifying the
test functions. We carry out the details in Section 4.7 and remark that the case κ4 6= 0

can be treated analogously. As the proof of Corollary 2.13 only uses the macroscopic
regime of Theorem 2.7, the quantity 〈A1(t)A2〉 is even accessible for more general Wigner
matrices using [40, Thm. 2.9]. However, the resulting expressions for the variance are
much more involved and may require some terms to be computed recursively. We hence
restrict the detailed discussion to the GUE case.

Remark 2.14. The O(t−2) term in (2.21) can be given more explicitly, as the limiting
variance can be read off from Corollary 2.9 or [37, Sect. 2] (since t is fixed). We obtain

Var[ξ(t)] = 〈|A1|2〉〈|A2|2〉
(
1− J1(2t)

2

t2

)2
+ |〈A1A

∗
2〉|2
[(J1(4t)

2t
− J1(2t)

2

t2

)2
+ 2sc◦◦[+,+]

J1(2t)
2

t2
− 2sc◦◦[+,−]

J1(2t)
2

t2

]
+
(
〈A1A2A

∗
1A

∗
2〉+ 〈A2A1A

∗
2A

∗
1〉
)(J1(4t)

2t
− J1(2t)

2

t2

)J1(2t)
t2

+
(
〈|A1A2|2〉+ 〈|A2A1|2〉

)(
1− J1(2t)

2

t2

)J1(2t)2
t2

where

sc◦◦[+,+] =
1

2π2

∫ 2

−2

∫ 2

−2

(eitx − eity

x− y

)2 4− xy
√
4− x2

√
4− y2

dxdy − J1(4t)

2t
+

J1(2t)
2

t2
,

sc◦◦[+,−] =
1

2π2

∫ 2

−2

∫ 2

−2

1− cos(t(x− y))

(x− y)2
4− xy

√
4− x2

√
4− y2

dxdy − 1 +
J1(2t)

2

t2
.

Note that the 〈|A1|2〉〈|A2|2〉 term is the only one having a O(1) contribution, in fact, its
coefficient is 1 + O(t−3). The first summand of the |〈A1A

∗
2〉|2 term is O(t−3) while the

double integrals behave like t for t → ∞. Hence the entire |〈A1A
∗
2〉|2 term is O(t−2). In

the remaining contributions, the largest term is O(t−3) with the lower-order terms being
as small as O(t−6).

3 Central limit theorem for resolvents

In this section, we supply the recursive definitions of the set functions E [·] and m2[·|·]
introduced in Lemmas 2.3 and 2.5, respectively, and study their properties. We further
state the analog of Theorem 2.7 for the resolvent case, which constitutes the main
ingredient for the proof of the multi-point functional CLT.

3.1 The 1
N term of E〈T[1,k]〉

As a first step, we revisit the function E [·], starting with its recursive definition.

Definition 3.1. Let (T1, . . . , Tk) be an ordered set of CN×N matrices of the form Tj =

GjAj . We define E [·] to be the set function taking values in C that satisfies the linear
recursion with a source term (in the last two lines)

E [T1, . . . , Tk]

EJP 29 (2024), paper 191.
Page 17/49

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1247
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Multi-point functional CLT for Wigner matrices

= m1

(
E [T2, . . . , Tk−1, TkA1] + q1,kE [T2, . . . , Tk−1, GkA1]〈Ak〉

+

k−1∑
j=1

E [T1, . . . , Tj−1, Gj ]
(
m1[Tj , . . . , Tk] + q1,km1[Tj , . . . , Tk−1, Gk]〈Ak〉

)
+

k∑
j=2

m1[T1, . . . , Tj−1, Gj ]
(
E [Tj , . . . , Tk] + q1,kE [Tj , . . . , Tk−1, Gk]〈Ak〉

)
(3.1)

+
∑

1≤r≤s≤t≤k

〈M[r] �M[s,t]〉〈M[r,s] � (M[t,k]Ak)〉

+ q1,k
∑

1≤r≤s≤t≤k

〈M[r] �M[s,t]〉〈M[r,s] �M[t,k]〉〈Ak〉
)

and the initial condition E [∅] = 0. Note that E [T1, . . . , Tj−1, Gj ] = E [G1] for j = 1 and
E [Tj , . . . , Tk−1, Gk] = E [Gk] for j = k. Moreover, recall that � denotes the Hadamard
product, M[·] was defined through the recursion in (1.13), m1[·] was defined in (1.17),
and q1,k = m1mk

1−m1mk
.

We remark that M[k] is diagonal whenever A1 = · · · = Ak = Id. In this case, the last
two lines of (3.1) are readily evaluated and the recursion simplifies to

E [G1, . . . , Gk] =
m1

1−m1mk

(
E [G2, . . . , Gk] +

k−1∑
j=1

E [G1, . . . , Gj ]m[j, . . . , k]

+

k∑
j=2

m[1, . . . , j]E [Gj , . . . , Gk]

+
∑

1≤r≤s≤t≤k

m[1, . . . , r]m[r, . . . , s]m[s, . . . , t]m[t, . . . , k]
)
,

where m[·] denotes the iterated divided differences in (1.12). Note that E [T1, . . . , Tk] is
generally not of order one, but its size is given in terms of η∗ and the number of traceless
matrices among A1, . . . , Ak. We give a simple bound in the following lemma. The proof is
carried out in Section 4.1.

Lemma 3.2. Under the assumptions of Lemma 2.3, let a among the matrices A1, . . . , Ak

be traceless. Then,

|E [T1, . . . , Tk]| .
1

η
k−1−da/2e
∗

. (3.2)

Remark 3.3. Lemma 3.2 shows that the sub-leading term in (2.4) involving E [·] may be
smaller than the O(Nε/(N

√
Nη∗η

k−a/2
∗ )) error term in some regimes. However, as we

only apply (2.4) in the form

E〈T[1,k]〉 = m1[T1, . . . , Tk] +O
( 1

Nη
k−1−a/2
∗

+
Nε

N
√
Nη∗ η

k−a/2
∗

)
for the proof of the CLT in the resolvent case in Section 4.4, a more careful resolution of
the error is not needed.

Note that applying (3.1) once yields the formula

E [T1] = 〈A1〉
m5

1

1−m2
1

= 〈A1〉m′
1m

3
1,

and we readily reobtain (93) of [14] by Lemma 2.3.
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Having identified the function E [·] as the 1/N term of E〈T[1,k]〉, we may use identities
that are valid on the random matrix side, i.e., the left-hand side of (2.4), to derive further
identities for E [·] (cf. the “meta argument” below [12, Lem. 4.1]). They are listed in
Corollary 3.4 below and the proof is given in Appendix A. In fact, these identities can
also be proven from Definition 3.1 directly, however, using (2.4) allows for a shorter
proof. Note that m[·] satisfies the same properties by [13, Lem. 5.4].

Corollary 3.4. Let k ∈ N and (T1, . . . , Tk) be an ordered set of CN×N matrices of the
form Tj = GjAj . Then

(i) E [·] is cyclic in the sense that E [T1, . . . , Tk] = E [T2, . . . , Tk, T1].

(ii) Whenever z1 6= zk and Ak = Id, we have

E [T1, . . . , Tk−1, Gk] =
E [T2, . . . , Tk−1, GkA1]− E [T1, . . . , Tk−1]

zk − z1
. (3.3)

(iii) Whenever A1 = · · · = Ak = Id and the spectral parameters z1, . . . , zk are distinct,
E [·] has a divided difference structure, i.e.,

E [G1, . . . , Gk] =
E [G2, . . . , Gk]− E [G1, . . . , Gk−1]

zk − z1
(3.4)

and we have the closed formula

E [G1, . . . , Gk] =

k∑
j=1

∏
i 6=j

1

zi − zj
E [Gj ] =

k∑
j=1

∏
i 6=j

m[i, j]

mi −mj
E [Gj ] (3.5)

with m[·] as in (1.19) and E [Gj ] = m′
jm

3
j . Moreover, E [·] is invariant under any

permutation of z1, . . . , zk in this case.

3.2 Statement of the resolvent central limit theorem

The main result of this section is a CLT for resolvents that identifies the joint dis-
tribution of multiple modes of the type (2.3), i.e., X(ki,ai)

αi with different ki, ai, and αi,
as asymptotically Gaussian in the sense of moments. We start by defining the set func-
tion m2[·|·], which characterizes the limiting covariance of the random variables Xα

and Xβ involving two distinct multi-indices α and β. Note that we only use the following
recursive definition in the present work. However, closed formulas are obtained in the
companion paper [40].

Definition 3.5. Let S1 = (T1, . . . , Tk′) and S2 = (Tk′+1, . . . , Tk′+`′) be two (ordered)
finite sets of complex N × N -matrices of the form Tj = GjAj . We define m2[·|·] as
the (deterministic) function of pairs of sets S1, S2 with values in C and the following
properties:

(i) Symmetry: m2[·|·] is symmetric under the interchanging of its arguments, i.e., for
any sets B1 ⊆ S1, B2 ⊆ S2 we have

m2[(Ti, i ∈ B1)|(Tj , j ∈ B2)] = m2[(Tj , j ∈ B2)|(Ti, i ∈ B1)].

(ii) Initial condition: For any sets B1 ⊆ S1, B2 ⊆ S2 we have

m2[(Ti, i ∈ B1)|∅] = m2[∅|(Tj , j ∈ B2)] = 0. (3.6)

(iii) Recursion: Let B1 ⊆ S1 and B2 ⊆ S2 be ordered subsets with |B1| = k ≤ k′ and
|B2| = ` ≤ `′ elements, respectively. We index the matrices in B1 by [k] and the
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matrices in B2 by [k + 1, k + `]. The function m2[·|·] satisfies the following linear
recursion

m2[T1, . . . , Tk|Tk+1, . . . , Tk+`]

= m1

(
m2[T2, . . . , Tk−1, GkAkA1|Tk+1, . . . , Tk+`]

+ q1,km2[T2, . . . , Tk−1, GkA1|Tk+1, . . . , Tk+`]〈Ak〉

+

k−1∑
j=1

m2[T1, . . . , Tj−1, Gj |Tk+1, . . . , Tk+`] (3.7)

×
(
m1[Tj , . . . , Tk] + q1,km1[Tj , . . . , Tk−1, Gk]〈Ak〉

)
+

k∑
j=2

m1[T1, . . . , Tj−1, Gj ]
(
m2[Tj , . . . , Tk|Tk+1, . . . , Tk+`]

+ q1,km2[Tj , . . . , Tk−1, Gk|Tk+1, . . . , Tk+`]〈Ak〉
)
+ sGUE + sκ

)
where the source terms sGUE and sκ are given by

sGUE :=
∑̀
j=1

(
m1[T1, . . . , Tk, Tk+j , . . . , Tk+j−1, Gk+j ]

+ q1,km1[T1, . . . , Tk−1, Gk, Tk+j , . . . , Tk+j−1, Gk+j ]〈Ak〉
)

(3.8)

sκ := κ4

k∑
r=1

k+∑̀
s=k+1

( s∑
t=k+1

〈M[r] �M(s,...,k+`,k+1,...,t)〉〈(M[r,k]Ak)�M[t,s]〉

+

k+∑̀
t=s

〈M[r] �M[s,t]〉〈(M[r,k]Ak)�M(t,...,k+`,k+1,...,s)〉
)

+ κ4q1,k

k∑
r=1

k+∑̀
s=k+1

( s∑
t=k+1

〈M[r] �M(s,...,k+`,k+1,...,t)〉〈M[r,k] �M[t,s]〉

+

k+∑̀
t=s

〈M[r] �M[s,t]〉〈M[r,k] �M(t,...,k+`,k+1,...,s)〉
)
〈Ak〉. (3.9)

Recall that � denotes the Hadamard product, q1,k = m1mk

1−m1mk
withm1,mk as in (1.8),

M(... ) was introduced in (1.14), and m1[·] was defined in (1.17).

Remark 3.6. The special role of m1 in (3.7) is a result of the identity (4.12) used for
the proof of Lemma 2.5 in Section 4.3 below. Similar to the recursion for m1[·] in [12,
Lem. 4.1], it is possible to derive a version of (3.7) for every j = 2, . . . , k that singles out
the factor mj instead of m1 on the right-hand side, i.e., (3.7) is only one element in a
family of equivalent recursions for m2[·|·].

The linearity of the recursion and the two different types of source terms induce
the decomposition (2.10), where mGUE [·|·] satisfies (3.7) for κ4 = 0, and κ4mκ[·|·] sat-
isfies (3.7) without sGUE . We remark that by [13, Thm. 3.4], both m1[·] and M(·) are
fully expressible as functions of A1, . . . , Ak+` and m1, . . . ,mk+`. Hence, the same holds
for the source term sGUE + sκ in (3.7), eventually making m2[·|·] a function of the same
quantities. Similarly, we have the decomposition

m̃[·|·] = m̃GUE [·|·] + κ4m̃κ[·|·], (3.10)
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for the function m̃[·|·] defined by the relation

m̃[1, . . . , k|k + 1, . . . , k + `] := m2[G1, . . . , Gk|Gk+1, . . . , Gk+`] (3.11)

in the special case A1 = · · · = Ak = Id.
Next, we consider the size of m2[·|·]. We have the following bounds, which we prove

in Section 4.1.

Lemma 3.7. Under the assumptions of Lemma 2.5, we have the estimates∣∣mGUE [T1, . . . , Tk|Tk+1, . . . , Tk+`]
∣∣ . 1

η
k+`−d(a+b)/2e
∗

, (3.12)

∣∣mκ[T1, . . . , Tk|Tk+1, . . . , Tk+`]
∣∣ . 1

η
k+`−1−d(a+b)/2e
∗

. (3.13)

In particular, mκ[·|·] is dominated by mGUE [·|·] on all mesoscopic scales and it holds that∣∣m2[T1, . . . , Tk|Tk+1, . . . , Tk+`]
∣∣ . 1

η
k+`−d(a+b)/2e
∗

. (3.14)

After this preparation, we state a CLT for resolvents which generalizes [14, Thm. 4.1]
to handle resolvent chains of arbitrary length in the setting considered. The proof follows
by induction on the number of factors X

(kj ,aj)
αj using the bounds from Lemma 2.5 and its

proof as input. We give it in Section 4.4.

Theorem 3.8 (CLT for resolvents). Fix p ∈ N, let α1, . . . , αp be multi-indices, and let W
be a Wigner matrix satisfying Assumption 1.1. Moreover, for every j = 1, . . . , p pick a
set of spectral parameters z(j)1 , . . . , z

(j)
kj

such that either all sets satisfy Case 1 or all sets
satisfy Case 2 of Assumption 2.2, and denote η∗ = mini,j |=z(j)i |. Moreover, for every
j = 1, . . . , p, pick deterministic matrices A

(j)
1 , . . . , A

(j)
kj

with ‖A(j)
i ‖ . 1 such that aj of

them are traceless. Then,

NpE
( p∏

j=1

X(kj ,aj)
αj

)
=

∑
Q∈Pair([p])

∏
{i,j}∈Q

m2[αi|αj ] +O
( Nε

√
Nη∗

∏p
l=1 η

kl−al/2
∗

)
(3.15)

for any ε > 0. Here, m2[·|·] is as in Definition 3.5 and Pair(S) denotes the pairings of a
set S. Equation (3.15) establishes an asymptotic version of Wick’s rule and hence identi-
fies the joint limiting distribution of the random variables (X

(kj ,aj)
αj )j as asymptotically

complex Gaussian in the sense of moments in the limit Nη∗ → ∞.

Remark 3.9 (Independent modes). Note that (3.14) implies that two modes X
(k1,a1)
α1

and X
(k2,a2)
α2 in Theorem 3.8 are asymptotically uncorrelated whenever a1 + a2 is odd

and η∗ � 1. This feature is exclusive to the mesoscopic regime, as all modes contribute
equally in the macroscopic regime, i.e., if η∗ & 1. In the case k = 1, we may also write
the deterministic matrix as

A = 〈A〉Id + Åd + Åod (3.16)

with Ad and Aod denoting the diagonal and off-diagonal part of Å = A−〈A〉Id, respectively.
The three resulting modes 〈A〉Tr f(W ), Tr f(W )Åd, and Tr f(W )Åod are asymptotically
uncorrelated as Nη∗ → ∞ (cf. [14, Thm. 2.4]). Since this is a consequence of 〈B1B2〉
and 〈B1〉〈B2〉 vanishing whenever B1 6= B2 and B1, B2 ∈ {Id, Åd, Åod}, this phenomenon
is exclusive to the k = 1 case and decomposing A1, . . . , Ak for k ≥ 2 according to (3.16)
does not yield 3k uncorrelated modes in general. As an example, consider the case k = 2

with two deterministic matrices A and B, where applying (3.16) gives rise to 9 distinct
modes. Here, computing the covariance, e.g., of Tr[G1ÅdG2B̊d] and Tr[G1ÅodG2B̊od],
yields terms that involve longer products, e.g., 〈ÅdÅodB̊dB̊od〉, which do not vanish in
general.
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Similar to Corollary 3.4, we may use identities that are valid on the random matrix
side, i.e., the left-hand side of (2.7), to derive further identities among the recursively
defined quantities m̃[·|·] and m2[·|·]. The proof is analogous to the proof of Corollary 3.4
and hence omitted. We refer to Appendix A for the setup of the necessary “meta
argument”.

Corollary 3.10. Let S1, S2 6= ∅ be two ordered multi-sets. Then

(i) m̃[S1|S2] is invariant under any permutation of the elements of S1 as well as S2.

(ii) m2[·|·] is cyclic in the sense that

m2[(Tj , j ∈ S1)|T1, . . . , Tk] = m2[(Tj , j ∈ S1)|T2, . . . , Tk, T1].

(iii) Whenever the spectral parameters indexed by S1 and S2 are distinct, m̃[·|·] has an
entry-wise divided difference structure, i.e.,

m̃[S1|1, . . . , k] =
m̃[S1|2, . . . , k]− m̃[S1|1, . . . , k − 1]

zk − z1
, (3.17)

and we have the closed formula

m̃[S1|S2] =
∑

(s,t)∈S1×S2

( ∏
i∈S1,
i 6=s

1

zi − zs

∏
j∈S2,
j 6=t

1

zj − zt

)
m̃[s|t]

=
∑

(s,t)∈S1×S2

( ∏
i∈S1,
i 6=s

m[i, s]

mi −ms

∏
j∈S2,
j 6=t

m[j, t]

mj −mt

)
m̃[s|t] (3.18)

with m̃[s|t] = m′
sm

′
t

(1−msmt)2
. Recall that m̃[·|·] was defined in (3.11).

(iv) Whenever z1 6= zk and Ak = Id, we further have

m2[(Tj , j ∈ S1)|T1, . . . , Tk−1, Gk]

=
m2[(Tj , j ∈ S1)|T2, . . . , Tk−1, GkA1]−m2[(Tj , j ∈ S1)|T1, . . . , Tk−1]

zk − z1
. (3.19)

Moreover, we have the following alternative integral representation for m̃GUE [·|·] (cf.
decomposition in (3.10)). The proof of Corollary 3.11 is carried out in Section 4.3 below.

Corollary 3.11. Let k, ` ∈ N. Then,

m̃GUE [1, . . . , k|k + 1, . . . , k + `] (3.20)

=
1

2

∫ ∫ ( k∑
i=1

1

(x− zi)2
·
∏
j 6=i

1

x− zj

)( k+∑̀
i=k+1

1

(y − zi)2
·
∏
j 6=i

1

y − zj

)
u(x, y)dxdy

with the kernel u : [−2, 2]× [−2, 2] → R in (2.19).

Remark 3.12. It is readily checked that the kernel u is non-negative and has a logarith-
mic singularity at x = y. Using that the two-body stability operator of the underlying
Dyson equation (1.9) is given by B(z1, z2) = 1−m(z1)m(z2), we can also express (2.19)
in terms of 1× 1 determinants as

u(x, y) = − 1

2π2
<
(
ln(det[B(x+ i0, y + i0)])− ln(det[B(x+ i0, y + i0)])

)
to match the formulas in [41, Sect. 7] for k = ` = 1 and A1 = A2 = Id. Note that W being
a GUE matrix corresponds to the choice β = 2 and C(4) = 0 in the notation of [41].
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4 Proofs

4.1 Proof of Lemmas 3.2 and 3.7 (size of E [·] and m2[·|·])
In this section, we prove the estimates identifying the size of E [·] and m2[·|·]. We start

by noting two bounds for q1,2 that are used for both proofs.

Lemma 4.1. Let z1, z2 ∈ C and define the constants η∗ := min{|=z1|, |=z2|} as well as
ζ := π−1 min{|=m1|, |=m2|}. Then,

|q1,2| = |m[1, 2]| =
∣∣∣ m1m2

1−m1m2

∣∣∣ . {ζ−1, if =z1,=z2 have the same sign,

η−1
∗ , if =z1,=z2 have opposite signs.

The estimates in Lemma 4.1 are immediate from the explicit form m(z) = (−z +√
z2 − 4)/2 of the solution to (1.9). Next, we establish the estimate for E [·].

Proof of Lemma 3.2. We show (3.2) by induction. The base case k = 1 readily follows
using (2.6) and the explicit form m(z) = (−z +

√
z2 − 4)/2. Note that =m(z) can be

bounded from below independently of η∗ for both the macroscopic scale and the bulk
regime of the mesoscopic scales (cf. Assumption 2.2). Next, assume that the bound
in (3.2) holds for up to k − 1 matrices T1, . . . , Tk−1. W.l.o.g. assume further that Ak is
either traceless or equal to the identity matrix.

We start by considering the case where Ak = Id and =z1 and =zk have opposite
signs. Here, (3.2) follows immediately by using Corollary 3.4(ii) and applying the
induction hypothesis for E [T2, . . . , Tk−1, GkA1] and E [T1, . . . , Tk−1], respectively. Note
that |z1 − zk| ≥ 2η∗ by assumption, which completes the bound for the right-hand side
of (3.3).

In the remaining cases, (3.2) follows from the recursion (3.1), which allows rewrit-
ing E [T1, . . . , Tk] in terms of m1[·] and values of E [·] for which the induction hypoth-
esis applies. Whenever =z1 and =zk have the same sign, Lemma 4.1 yields q1,k .
π/min{|=m1|, |=mk|}. Thus, estimating the right-hand side of (3.1) using Lemma 1.4 and
the induction hypothesis yields the claim. In particular, we obtain η∗ with the exponent
−(k − 1 − da

2 e) by using the inequality dx
2 e + dy

2 e ≥ dx+y
2 e for x, y ∈ N to combine the

powers of η∗ when products with M[·] are considered.
Whenever =z1 and =zk have opposite signs, the prefactor q1,k is of size η−1

∗ . However,
it only remains to consider the case 〈Ak〉 = 0 for this setting, in which the terms involving
q1,k on the right-hand side of (3.1) do not contribute. Hence, (3.2) again follows from
Lemma 1.4 and the induction hypothesis.

Next, we show the estimates for mGUE [·|·], mκ[·|·], and m2[·|·]. To illustrate the tools
at hand, the bound for mGUE [·|·] is obtained from the explicit formula in [40, Thm. 2.4]
while the bound for mκ[·|·] is proved using the recursion (3.7). We start with a lemma.

Lemma 4.2. Under the assumptions of Lemma 2.5, let A1 = · · · = Ak+` = Id and κ4 = 0.
Then,

|m̃GUE [1, . . . , k|k + 1, . . . , k + `]| . 1

ηk+`
∗

(4.1)

|m◦◦[1, . . . , k|k + 1, . . . , k + `]| . 1

ηk+`
∗

(4.2)

where m◦◦[·|·] denotes the second-order free cumulant function associated with the
iterated divided differences m[·] and m̃GUE [·|·].

If all =zj have the same sign, m̃GUE [·|·] stays bounded due to the divided difference
structure (3.18) and smoothness of m̃GUE [s|t]. Hence, the bound is not sharp in this
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case. We expect, however, that (4.1) is generically sharp if not all =zj have the same
sign. Note that a sharp bound in (4.1) immediately implies sharpness of (4.2) and (3.12)
using the same argument as in [12, App. A].

Proof of Lemma 4.2. The bound (4.1) follows by induction on k and `. As the base case
k = ` = 1 is covered by Example 2.8, assume that the bound for m̃GUE [·|·] holds for
up to k − 1 indices in the first argument and a fixed number ` indices in the second
argument. Recall that m̃GUE [·|·] is symmetric under the interchanging of its arguments
by Definition 3.5(i) such that it is sufficient to carry out the induction step for one of the
arguments only. We distinguish two cases for zk depending on the sign of its imaginary
part.

Case 1: =z1 and =zk have the same sign: We note that |q1,k| ≤ π/min{|=m1|, |=mk|}
by Lemma 4.1, where the right-hand side can be bounded from above independently of η∗
under Assumption 2.2. Rewriting m̃GUE [1, . . . , k|k+1, . . . , k+ `] using the recursion (3.7),
the bound (4.1) follows directly from the induction hypothesis and the estimate for m[·]
from Lemma 1.4.

Case 2: =z1 and =zk have opposite signs: Recalling that m̃GUE [·|·] has a divided dif-
ference structure (cf. Corollary 3.10), it follows from the induction hypothesis that

|m̃GUE [1, . . . , k|k + 1, . . . , k + `]|

=
∣∣∣m̃GUE [2, . . . , k|k + 1, . . . , k + `]− m̃GUE [1, . . . , k − 1|k + 1, . . . , k + `]

z1 − zk

∣∣∣
.

1

ηk−1+`
∗ |z1 − zk|

.

As =z1 and =zk are assumed to have opposite signs, we have |z1 − zk| ≥ 2η∗, which
gives (4.1). This concludes the induction step.

The bound (4.2) form◦◦[·|·] is an immediate consequence of the second-order moment-
cumulant relation (2.13) as well as the estimates in (4.1) and Lemma 1.4. Note that
resolving the relation for m◦◦[1, . . . , k|k+1, . . . , k+ `] is straightforward, as its coefficient
in the representation of m̃GUE [1, . . . , k|k + 1, . . . , k + `] is equal to one.

Proof of Lemma 3.7. Given Lemma 4.2, (3.12) readily follows from [40, Thm. 2.4]. We
omit the details but include a brief sketch of the argument for the convenience of the
reader. First, consider the case k = ` = 2. Here,

mGUE [T1, T2|T3, T4] = 〈A1〉〈A2〉〈A3〉〈A4〉m◦◦[1, 2|3, 4] + 〈A1A2〉〈A3〉〈A4〉m◦◦[1|3, 4]m◦[2]

+ 〈A1A2〉〈A3A4〉m◦◦[1|3]m◦[2]m◦[4] + . . .

+ 〈A1〉〈A2A4〉〈A3〉m◦[1, 2, 3, 4] + 〈A1〉〈A2A3A4〉m◦[1, 2, 3]m◦[4]

+ . . . ,

where m◦[·] and m◦◦[·|·] denote the first and second-order free cumulant functions asso-
ciated with the iterated divided differences m[·] and m̃GUE [·|·]. Note that the Kreweras
complement is defined differently for non-crossing partitions and annular non-crossing
permutations, and that both types of terms appear in the explicit formula for mGUE [·|·]
in [40, Thm. 2.4] (similarly to (2.14) above). By Lemmas 1.4 and 4.2, the largest con-
tribution is obtained from m◦◦[1, 2|3, 4] and m◦[1, 2, 3, 4], respectively, yielding a total
bound of order η−4

∗ . Note, however, that these leading terms may vanish if at least one
of the deterministic matrices is traceless, resulting in a smaller bound overall. This
effect gets stronger the more traceless matrices are included. In the case that all
four matrices A1, . . . , A4 are traceless, only 10 out of the initial 29 terms contributing
to mGUE [T1, T2|T3, T4] remain, yielding a bound of order η−2

∗ .
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For general k and `, the estimate for mGUE [·|·] is obtained from a careful balancing
of the sizes of the largest cycles (resp. blocks) in the non-crossing permutation (resp.
partition) π which governs the contribution of m◦[·|·] (resp. m◦◦[·|·]), and its Kreweras
complement K(π) which governs the contribution of A1, . . . , Ak+`. This yields∣∣∣ ∑

π∈
−−−→
NCP (k,`)

( ∏
B∈K(π)

〈 ∏
j∈B

Aj

〉) ∏
B∈π

m◦[B]
∣∣∣ . ( 1

η∗

)k+`−d(a+b)/2e

where the leading contribution is obtained for an annular non-crossing permutation π

with |K(π)| ≤ k + `− d(a+ b)/2e, and∣∣∣ ∑
π1×π2∈NCP (k)×NCP (`),

U1∈π1,U2∈π2 marked

( ∏
B∈K(π1)
∪K(π2)

〈 ∏
j∈B

Aj

〉)
m◦◦[U1|U2]

∏
B1∈π1\U1,
B2∈π2\U2

m◦[B1]m◦[B2]
∣∣∣

.
( 1

η∗

)k+`−da/2e−db/2e
.

where the leading contribution is obtained for a marked partition π = π1 × π2 satisfying
|K(π1)| ≤ k − da/2e and |K(π2)| ≤ l − db/2e. In particular, the two parts of mGUE [·|·] only
contribute equally to (3.12) if da

2 e+ d b
2e = da+b

2 e.
The bound (3.13) follows by induction on k and `. As the base case k = ` = 1 is

again covered by Example 2.8, assume that the bound for mκ[·|·] holds for a multi-
index of length at most k − 1 in the first argument and a multi-index of length ` in the
second argument. Recalling that mκ[·|·] is symmetric under the interchanging of its
arguments, it is sufficient to carry out the induction step for one of the arguments only.
To simplify notation, set β = {(zk+1, Ak+1), . . . , (zk+`, Ak+`)}. We further assume w.l.o.g.
that each Aj is either traceless or equal to the identity matrix. Similar to the proof of
Lemma 3.2, we distinguish two cases depending on the deterministic matrices A1, . . . , Ak.

Case 1 (∃j such that Aj = Id): We start by noting that mGUE [·|·] satisfies (i)-(iv) of
Corollary 3.10. This implies that the same holds for mκ[·|·] = m2[·|·]− mGUE [·|·]. In the
following, we denote s := sign(=zj) = sign(=zj+1) whenever =zj and =zj+1 have the same
sign. Using the divided difference structure, we rewrite mκ[T1, . . . , Tk|Tk+1, . . . , Tk+`] as
a contour integral

mκ[T1, . . . , Tj−1, Gj , Tj+1, . . . , Tk|β] (4.3)

=
1

2πi

∫
R

mκ[. . . , Tj−1, G(x+ iη)Aj+1, . . . |β]−mκ[. . . , Tj−1, G(x− iη)Aj+1, . . . |β]
(x+ isη − zj)(x+ isη − zj+1)

dx

whenever 0 < η < =zj ,=zj+1 (s = 1) or =zj ,=zj+1 < −η < 0 (s = −1), or as

mκ[T1, . . . , Tj−1, Gj , Tj+1, . . . , Tk|β] (4.4)

=
mκ[T1, . . . , Tj−1, GjAj+1, . . . , Tk|β]−mκ[T1, . . . , Tj−1, Tj+1, Tj+2, . . . , Tk|β]

zj − zj+1

if =zj and =zj+1 have opposite signs. Estimating (4.3) and (4.4) using the induction
hypothesis yields (3.13).

Case 2 (all A1, . . . , Ak traceless): As mκ[·|·] solves the recursion (3.7) without the
source term sGUE we can rewrite mκ[T1, . . . , Tk|Tk+1, . . . , Tk+`] in terms of m1[·] and
values of mκ[·|·] for which the induction hypothesis applies. Note that 〈Ak〉 = 0 implies
that all terms with prefactor q1,k on the right-hand side of (3.7) vanish. The desired
estimate thus readily follows from the induction hypothesis and Lemma 1.4. For the
source term sκ in (3.9), we obtain, e.g.,∣∣〈M[r] �M(s,...,k+`,k+1,...,t)〉〈M[r,k] �M[t,s]〉

∣∣
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≤ 1

N2

∑
x,y∈[N ]

∣∣(M[r])xx(M(s,...,k+`,k+1,...,t))xx(M[r,k])yy(M[t,s])yy
∣∣

.
( 1

η∗

)k+`−d(a+b)/2e

for any 1 ≤ r ≤ k and k+1 ≤ s ≤ t ≤ k+`. Recall that dx
2 e+dy

2 e ≥ dx+y
2 e for any x, y ∈ N,

which yields the desired exponent −(k + `− da+b
2 e) for η∗ when bounds are multiplied.

This concludes the proof of (3.13).
The bound (3.14) for m2[·|·] is immediate form the decomposition (2.10) using the

estimates (3.12) and (3.13).

4.2 Proof of Lemma 2.3 (expansion for E〈T[1,k]〉)
We use proof by induction to establish (2.4). As the base case E〈T∅〉 is trivial, assume

that the expansion in Lemma 2.3 holds for resolvent chains of length up to k − 1. We
further assume w.l.o.g. that each Aj is either traceless or equal to the identity matrix.

First, consider resolvent chains that contain at least one deterministic matrix Aj = Id,
i.e., that are of the form T[1,k] = T[1,j〉GjGj+1Aj+1T〈j+1,k] with the indices j, j + 1 being
interpreted mod k due to the cyclicity of the trace and the function E [·]. In this case,
rewriting the product GjGj+1 allows us to obtain the claim directly from the induction
hypothesis. We distinguish two cases depending on the imaginary parts of zj and zj+1.

Case 1 (=zj and =zj+1 have the same sign): Let again s := sign(=zj) = sign(=zj+1).
By the residue theorem, we can write the product GjGj+1 as a contour integral (cf.
Equation (3.14) in the proof of [12, Lem. 3.2])

GjGj+1 =
1

π

∫
R

=G(x+ iη)

(x+ isη − zj)(x+ isη − zj+1)
dx, Gj = G(zj), (4.5)

whenever 0 < η < =zj ,=zj+1 (s = 1) or =zj ,=zj+1 < −η < 0 (s = −1). Note that
both m1[·] and E [·] have a similar representation, as

m1[T1, . . . , Tj−1, Gj , Tj+1, . . . , Tk]

=
1

2πi

∫
R

m1[. . . , Tj−1, G(x+ iη)Aj+1, . . . ]−m1[. . . , Tj−1, G(x− iη)Aj+1, . . . ]

(x+ isη − zj)(x+ isη − zj+1)
dx (4.6)

by the residue theorem and [13, Lem. 5.4] as well as

E [T1, . . . , Tj−1, Gj , Tj+1, . . . , Tk]

=
1

2πi

∫
R

E [. . . , Tj−1, G(x+ iη)Aj+1, . . . ]− E [. . . , Tj−1, G(x− iη)Aj+1, . . . ]

(x+ isη − zj)(x+ isη − zj+1)
dx (4.7)

using (3.3). Note that that (3.3) can be verified directly from the recursion (3.1). This
distinction is crucial, as we use (2.4) later to apply the “meta argument” for the proof
of Corollary 3.4 (see Appendix A). Rewriting the left-hand side of (2.4) using (4.5)
and (4.6), we obtain an integral involving a resolvent chain of length k− 1. Note that the
parameter η has to be chosen large enough, e.g., as η ≥ η∗. By the induction hypothesis,
it now follows that

E(〈T[1,k]〉 −m1[T1, . . . , Tk])

=
κ4

2πiN

∫
R

E [. . . , Tj−1, G(x+ iη)Aj+1, . . . ]− E [. . . , Tj−1, G(x− iη)Aj+1, . . . ]

(x+ isη − zj)(x+ isη − zj+1)
dx

+O
( Nε

N
√
Nη∗ η

k−a/2
∗

)
.
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Evaluating the integral using (4.7) gives (2.4) as desired.
Case 2 (=zj and =zj+1 have opposite signs): Applying the resolvent identity (1.20)

and the divided difference structure of m1[·] (cf. [13, Lem. 5.4]) yields

E(〈T[1,k]〉 −m1[T1, . . . , Tk])

= E
( 〈T[1,j〉GjAj+1T〈j+1,k]〉 − 〈T[1,j〉T[j+1,k]〉

zj − zj+1

− m1[T1, . . . , Tj−1, GjAj+1, Tj+2, . . . , Tk]−m1[T1, . . . , Tj−1, Tj+1, Tj+2, . . . , Tk]

zj − zj+1

)
=

κ4

N

E [T1, . . . , Tj−1, GjAj+1, Tj+2, . . . , Tk]− E [T1, . . . , Tj−1, Tj+1, Tj+2, . . . , Tk]

zj − zj+1

+O
( Nε

N
√
Nη∗ η

k−1−a/2
∗ |zj − zj+1|

)
by the induction hypothesis. As =zj and =zj+1 are assumed to have opposite signs, it
follows that |zj − zj+1| ≥ 2η∗. The claim is now immediate from (3.3).

It remains to consider T[1,k] for which all matrices A1, . . . , Ak are traceless. Here, we
start the induction step by introducing

Wf(W ) := Wf(W )− ẼW̃ (∂
W̃
f)(W ) (4.8)

with ∂
W̃

denoting the directional derivative in direction W̃ and W̃ denoting an inde-
pendent GUE matrix with expectation Ẽ. Comparing with the cumulant expansion
formula (see, e.g., Equation (94) in [14] or the more general version in [22, Prop. 3.2]),
we find that the renormalization in (4.8) cancels out the second-order term in the cu-
mulant expansion of EWf(W ). In particular, EWf(W ) = 0 whenever W itself is a GUE
matrix. Applying (4.8) for the resolvent f(W ) = (W − z)−1 yields the formulas

WG1 = WG1 + 〈G1〉G1,

WT1 . . . Tk = WG1A1T[2,k] +

k∑
j=2

〈T[1,j〉Gj〉T[j,k], (4.9)

and we further recall the identities

〈G1 −m1〉 =
1

1−m2
1

(−m1〈WG1〉+m1〈G1 −m1〉2) (4.10)

〈T1〉 −m1[T1] = −m1〈WT1〉+m2
1〈G1 −m1〉〈A1〉+m1〈G1 −m1〉〈T1 −m1[T1]〉 (4.11)

from (96) in [14]. To complete the induction step, we need the analog of (4.11) for
general k ≥ 1. This allows rewriting N(〈T[1,k]〉 − m1[T1, . . . , Tk]) in terms of shorter
chains, and the claim follows by showing that the expectation matches the right-hand
side of (3.1) up to an O(Nε/(

√
Nη∗η

k−a/2
∗ )) error.

A brief calculation (see Equation (5.21) in [13]) yields

〈T[1,k]〉 = m1

(
− 〈WT[1,k]〉+ 〈T[2,k]A1〉+

k−1∑
j=2

〈T[1,j〉Gj〉〈T[j,k]〉+ 〈G1 −m1〉〈T[1,k]〉

+ 〈T[1,k〉Gk〉〈(Gk −mk)Ak〉
)
. (4.12)

Next, we rewrite the equation to the form(
1 +O≺

( 1

Nη∗

))
(〈T[1,k]〉 −m1[T1, . . . , Tk])
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= m1

(
− 〈WT[1,k]〉+ (〈T[2,k〉GkAkA1〉 −m1[T2, . . . , Tk−1, GkAkA1])

+

k−1∑
j=1

(〈T[1,j〉Gj〉 −m1[T1, . . . , Tj−1, Gj ])m1[Tj , . . . , Tk] (4.13)

+

k∑
j=2

m1[T1, . . . , Tj−1, Gj ](〈T[j,k]〉 −m1[Tj , . . . , Tk])

+

k∑
j=2

(〈T[1,j〉Gj〉 −m1[T1, . . . , Tj−1, Gj ])(〈T[j,k]〉 −m1[Tj , . . . , Tk])
)
,

where we applied (1.15) for 〈G1 −m1〉 on the right-hand side and used (1.18) to get the
matching recursive form for m1[T1, . . . , Tk]. Note that m1[T1, . . . , Tj−1, Gj ] = m1[G1] for
j = 1 resp. m1[Tj , . . . , Tk] = m1[Tk] for j = k on the right-hand side of (4.13) and recall
that we set 〈Ak〉 = 0 and a = k in the case considered. Moving the factor (1+O≺((Nη∗)

−1)

to the right-hand side, multiplying (4.13) with N and taking the expectation yields

NE(〈T[1,k]〉 −m1[T1, . . . , Tk]) =
(
m1 +O≺

( 1

Nη∗

))(
−NE〈WT[1,k]〉+ κ4E [T1, . . . , Tk]

− κ4

∑
1≤r≤s≤t≤k

〈M[r] �M[s,t]〉〈M[r,s] � (M[t,k]Ak)〉
)

+O
( Nε

√
Nη∗ η

k/2
∗

)
by the induction hypothesis, (3.1) and the expansion 1

1+x = 1 + O(x). We further
applied (1.15) twice for the last line of (4.13) to obtain

(〈T[1,j〉Gj〉 −m1[T1, . . . , Tj−1, Gj ])(〈T[j,k]〉 −m1[Tj , . . . , Tk]) = O≺

( 1

N2η
k/2+1
∗

)
.

Note that the index j appears in both terms and that the last factor of T[1,j〉Gj being a
resolvent implies that the term contains only j − 1 traceless matrices. It follows that

NE(〈T[1,j〉Gj〉 −m1[T1, . . . , Tj−1, Gj ])(〈T[j,k]〉 −m1[Tj , . . . , Tk]) = O
( Nε

(Nη∗) η
k/2
∗

)
,

i.e., the term is indeed part of the error. Hence, (2.4) is established if

NE〈WT[1,k]〉 = −κ4

∑
1≤r≤s≤t≤k

〈M[r]�M[s,t]〉〈M[r,s]�(M[t,k]Ak)〉+O
( Nε

√
Nη∗ η

k/2
∗

)
. (4.14)

By cumulant expansion (cf. Equation (94) in [14]), the underlined term on the left-hand
side of (4.14) is given by

NE〈WT[1,k]〉 =
∑
n≥2

∑
x,y∈[N ]

∑
ν∈{xy,yx}n

κ(xy, ν)

n!
E∂ν(T[1,k])yx, (4.15)

where ∂xy denotes the directional derivative in the direction of the xy entry of W

and κ(xy, ν) denotes the joint cumulant of Wxy,Wν1 , . . . ,Wνn for any n-tuple of double
indices ν = (ν1, . . . , νn). Note that the n = 1 term of the expansion (4.15) is canceled out
by the renormalization (4.8).

Recall that κ(xy, ν) ∼ N−(|ν|+1)/2 by the scaling ofW . It is hence sufficient to estimate
the terms for n ≥ 4 trivially using the bounds from Lemma 1.4, as the factor N2 obtained
from the double summation is canceled by the bound for the cumulant. Note that since

∂xy(T[1,k])vw =

k∑
r=1

(T[1,r〉Gr)vx(T[r,k])yw,
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every derivative yields an additional resolvent factor, which increases the size of the
bound for the corresponding resolvent chain by η−1

∗ . However, each derivative also
“breaks” the chain it acts on and increases the total number of resolvent chain entries in
the term by one. This compensates for the additional factor η−1

∗ (cf. Lemma 1.4) such
that the power of η−1

∗ contained in the bound for ∂ν(T[1,k])yx does not depend on the
order of the derivative. We conclude that∑

n≥4

∑
x,y

∑
ν∈{xy,yx}n

κ(xy, ν)

n!
E∂ν(T[1,k])yx = O

( Nε

√
Nη∗ η

k/2
∗

)
and identify the term as part of the error in (2.4). It remains to consider the n = 2

and n = 3 contribution to (4.15). Recall that we write T[i,j] = Ti . . . Tj for i ≤ j and
T[i,i〉 = T∅ = 0.

Estimate for the n = 2 term of (4.15): Evaluating the derivative yields, e.g.,

(∂xy)
2(T[1,k])yx = −∂xy

k∑
r=1

(T[1,r〉Gr)yx(T[r,k])yx

=

k∑
r=1

( r∑
s=1

(T[1,s〉Gs)yx(T[s,r〉Gr)yx(T[r,k〉)yx

+

k∑
s=r

(T[1,r〉Gr)yx(T[r,s〉Gs)yx(T[s,k])yx

)
,

which only involves xy or yx entries of a resolvent chain. Note that the contribution
for the case x = y consists of just one sum and is, therefore, of lower order by power
counting. We thus refer to any xy or yx entries as off-diagonal below. Further, we obtain

∂xy∂yx(T[1,k])yx =

k∑
r=1

( r∑
s=1

(T[1,s〉Gs)yx(T[s,r〉Gr)yy(T[r,k])xx

+

k∑
s=r

(T[1,r〉Gr)yx(T[r,s〉Gs)yy(T[s,k])xx

)
,

which involves two diagonal and one off-diagonal entries. The other terms arising
for n = 2 are of a similar structure, i.e., they involve either zero or two diagonal entries.

As every term involves at least one off-diagonal entry of a resolvent chain, we use
a procedure called isotropic resummation to estimate the x and y summations. To
illustrate the strategy, consider the sum

N−3/2
∑

x,y∈[N ]

(T[1,r〉Gr)yx(T[r,s〉Gs)yy(T[s,k])xx (4.16)

with fixed 1 ≤ r ≤ s ≤ k. The factor N−3/2 in front of the term accounts for the size of
the cumulant κ(xy, xy, yx). First, insert the deterministic approximation of the diagonal
terms to decompose the resolvent chain entries in (4.16) into a deterministic term
satisfying the bounds in Lemma 1.4 and a fluctuation that is controlled by the local
law (1.16). Recalling that

‖M[i,j]Aj‖ . ‖M[i,j]‖ .
1

η
(j−i)/2
∗

(4.17)

for i ≤ j by Lemma 1.4, as M[i,j] involves j − i traceless matrices and ‖Aj‖ . 1 by
assumption, and that

max
x,y∈[N ]

|((T[i,j〉Gj −M[i,j])Aj)xy| = O≺

( 1
√
Nη∗ η

(j−i)/2
∗

)
(4.18)
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by the isotropic local law (1.16), we obtain the bound

|(T[1,r〉Gr)yx| ≤ ‖M[r]‖+ max
x,y∈[N ]

|(T[1,r〉Gr −M[r])yx| = O≺

( 1

η
(r−1)/2
∗

+
1

√
Nη∗ η

(r−1)/2
∗

)
.

Recall that we abbreviated M[r] = M[1,r]. Putting everything together, it follows that

N−3/2
∑

x,y∈[N ]

(T[1,r〉Gr)yx(T[r,s〉Gs −M[r,s])yy(T[s,k] −M[s,k]Ak)xx = O≺

( 1
√
Nη∗ η

k/2
∗

)
and we can include this term in the error in (2.4). Recall that we consider N(E〈T[1,k] −
m1[T1, . . . , Tk]), i.e., the error terms obtained differ from (2.4) by a factor of N .

Next, let dvec(A) = (Ajj)
N
j=1 denote the (column) vector consisting of the diagonal

entries of a matrix A ∈ CN×N . In this notation, we have

N−3/2
∑

x,y∈[N ]

(T[1,r〉Gr)yx(M[r,s])yy(M[s,k]Ak)xx

= N−3/2〈dvec(M[r,s]), T[1,r〉Grdvec(M[s,k]Ak)〉

with deterministic vectors dvec(M[r,s]) and dvec(M[s,k]Ak) satisfying

‖dvec(M[r,s])‖ ≤
√
N‖M[r,s]‖ = O

( √
N

η
(s−r)/2
∗

)
,

‖dvec(M[s,k]Ak)‖ ≤
√
N‖M[s,k]Ak‖ = O

( √
N

η
(k−s)/2
∗

)
,

by (4.17). Recalling that T[1,r〉Gr contains r − 1 traceless matrices by assumptions, we
obtain

N−3/2
∑

x,y∈[N ]

(T[1,r〉Gr)yx(M[r,s])yy(M[s,k]Ak)xx = O≺

( 1
√
Nη∗ η

k/2−1
∗

)
from (4.17) and (1.16). Hence, the term can be included in the error in (2.4).

It remains to estimate the two terms in (4.16) that involve one deterministic and one
fluctuation term each. By the Cauchy-Schwarz inequality, we obtain

N−3/2
∑

x,y∈[N ]

(T[1,r〉Gr)yx(T[r,s〉Gs −M[r,s])yy(M[s,k]Ak)xx

≤ N−3/2‖T[1,r〉Gr‖ · ‖dvec(T[r,s〉Gs −M[r,s])‖ · ‖dvec(M[s,k]Ak)‖

with a similar bound holding for the term involving M[r,s] and (T[s,k] −M[s,k]Ak). Note
that

‖dvec(T[r,s〉Gs −M[r,s])‖ ≤
√
N max

x∈[N ]
|(T[r,s〉Gs −M[r,s])xx| = O≺

( 1

η
(s−r+1)/2
∗

)
,

‖T[1,r〉Gr‖ ≤ ‖M[r]‖+N max
x,y∈[N ]

|(T[1,r〉Gr −M[r])xy| = O≺

( 1

η
(r−1)/2
∗

+

√
N

η
r/2
∗

)
by (4.17), (4.18), and the fact that ‖B‖ ≤ N maxx,y |Bxy| for any matrix B ∈ CN×N .
Overall, we obtain

N−3/2
∑

x,y∈[N ]

(T[1,s〉Gs)yx(T[s,r〉Gr)yy(T[r,k])xx = O≺

( 1
√
Nη∗ η

k/2
∗

)
,
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i.e., the term is part of the error in (2.4). The other terms arising from ∂ν(T1 . . . Tk)yx
with ν ∈ {xy, yx}2 are treated similarly. Hence, the entire n = 2 contribution of (4.15)
can be included in the error term in (2.4).

Computation of the n = 3 term of (4.15): By a similar computation as in the n = 2

case, the terms arising from ∂ν(T[1,k])yx for |ν| = 3 involve either zero, two, or four
diagonal entries of a resolvent chain. Whenever a term contains off-diagonal entries,
we can include it in the error in (2.4) by decomposing each resolvent chain entry into
a deterministic and a fluctuation part. Note that M(·) is not necessarily diagonal, i.e.,
applying (1.16) alone is not sufficient. However, as every fluctuation term contributes
a factor N−1/2 and the presence of off-diagonal terms allows us to apply the Cauchy-
Schwarz inequality to estimate the remaining (deterministic) double sum, we gain a
factor N−1/2 over the trivial bound as needed.

It remains to evaluate the contributions that consist of four diagonal entries, which
can only occur for ν ∈ {(xy, yx, yx), (yx, xy, yx), (yx, yx, xy)}. Here,

∂ν(T[1,k])yx = −
∑

1≤t≤s≤r≤k

(T[1,t〉Gt)yy(T[t,s〉Gs)xx(T[s,r〉Gr)yy(T[r,k])xx

−
∑

1≤r≤s≤t≤k

(T[1,r〉Gr)yy(T[r,s〉Gs)xx(T[s,t〉Gt)yy(T[t,k])xx − . . . (4.19)

where the terms that are not written out in the last line involve two off-diagonal entries
and, therefore, can be included in the error term. Since κ(xy, ν) = κ4/N

2 for the cases
considered, we obtain∑
x,y

∑
ν∈{xy,yx}3

κ(xy, ν)

6
E∂ν(T[1,k])yx

=
κ4

2N2

∑
x,y

(
−

∑
1≤t≤s≤r≤k

(M[t])yy(M[t,s])xx(M[s,r])yy(M[r,k]Ak)xx

−
∑

1≤r≤s≤t≤k

(M[r])yy(M[r,s])xx(M[s,t])yy(M[t,k]Ak)xx

)
+O

( Nε

N
√
Nη∗ η

k−a/2
∗

)
= −κ4

∑
1≤r≤s≤t≤k

〈M[r] �M[s,t]〉〈M[r,s] � (M[t,k]Ak)〉+O
( Nε

N
√
Nη∗ η

k−a/2
∗

)
where the last equality follows from the definition of the Hadamard product and the fact
that the two sums involving r, s, t are the same up to relabeling of the indices. Note that
the term in (4.19) is counted for each ν ∈ {(xy, yx, yx), (yx, xy, yx), (yx, yx, xy)} when
summing over ν ∈ {xy, yx}3 while the other choices for ν yield lower-order terms.

Adding the contributions to (4.15) together, the cumulant expansion evaluates to

−NE〈WT[1,k]〉 = κ4

∑
1≤r≤s≤t≤k

( 1

N2

∑
x,y

(M[r])yy(M[r,s])xx(M[s,t])yy(M[t,k]Ak)xx

)
+O

( Nε

√
Nη∗ η

k−a/2
∗

)
.

We conclude that N(E〈T[1,k]〉 −m1[T1, . . . , Tk]) coincides with the right-hand side of (3.1)
up to an error term and an additional factor κ4. Applying the recursion thus yields

N(E〈T[1,k]〉 −m1[T1, . . . , Tk]) = κ4E [T1, . . . , Tk] +O
( Nε

√
Nη∗ η

k−a/2
∗

)
as claimed.
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4.3 Proof of Lemma 2.5 (leading term of EXαXβ)

We start by noting some general estimates for X
(k,a)
α and its derivatives that are

needed for the proof of Lemma 2.5.

Lemma 4.3 (A priori estimates). ForX(k,a)
α = 〈T[1,k]〉−E〈T[1,k]〉 and its derivatives ∂νX

(k,a)
α

for any multi-index ν, we have the estimate

|∂νX(k,a)
α | = O≺

( 1

Nη
k−a/2
∗

)
. (4.20)

Moreover, we have the more precise expansions for the first and second derivatives

∂xyX
(k,a)
α = − 1

N

[ k∑
r=1

(M(r,...,k,1,...,r))yx +O≺

( 1
√
Nη∗ η

k−a/2
∗

)]
, (4.21)

∂vw∂xyX
(k,a)
α =

1

N

[ k∑
r=1

( r∑
s=1

(M(r,...,k,1,...,s))wx(M[s,r])yv

+

k∑
s=r

(M[r,s])wx(M(s,...,k,1,...,r))yv

)
+O≺

( 1
√
Nη∗ η

k−a/2
∗

)]
. (4.22)

Proof. The bounds in (4.21) and (4.22) follow directly from (1.16), Lemma 1.4, and

∂xy〈T[1,k]〉 = − 1

N

k∑
r=1

(T[r,k]T[1,r〉Gr)yx,

∂vw∂xy〈T[1,k]〉 =
1

N

k∑
r=1

( r∑
s=1

(T[r,k]T[1,s〉Gs)wx(T[s,r〉Gr)yv

+

k∑
s=r

(T[r,s〉Gs)wx(T[s,k]T[1,r〉Gr)yv

)
.

The claim (4.20) follows inductively by (1.16) and Lemma 1.4. Note that (4.20) is also
true for ν = ∅ since

X(k)
α = (〈T[1,k]〉 −m1[T1, . . . , Tk])− (E〈T[1,k]〉 −m1[T1, . . . , Tk]) = O≺

( 1

Nη
k−a/2
∗

)
as a consequence of (1.15) and Lemma 2.3.

Proof of Lemma 2.5. We use proof by induction on the length of the multi-indices α

and β. First, note that the left-hand side of (2.7) vanishes if either 〈T[1,k]〉 or 〈T[k+1,k+`]〉
is zero, i.e., if one of the terms is indexed by the empty set. Comparing with (3.6), the
base case is established. Due to the symmetry of the expression, it is further sufficient to
carry out the induction step for one of the arguments only. Assume that (2.7) holds for
multi indices α of length 1, . . . , k − 1 and multi-indices β of a fixed length ` ≥ 1. We need
to show that the leading term of N2EX

(k)
α X

(`)
β is given by m2[T1, . . . , Tk|Tk+1 . . . Tk+`] and

estimate the error term. W.l.o.g. assume that each Aj is either traceless or equal to the
identity matrix.

As a first step, consider resolvent chains T[1,k] that contain at least one deterministic
matrix Aj = Id, i.e., that are of the form T[1,k] = T[1,j〉GjGj+1T〈j+1,k] with the indices
being interpreted mod k due to the cyclicity of the trace and the first entry of m2[·|·]. In
this case, rewriting the product GjGj+1 in terms of a single resolvent allows us to obtain
the claim directly from the induction hypothesis. We distinguish two cases depending on
the imaginary parts of zj and zj+1.
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Case 1: =zj and =zj+1 have the same sign: Let s := sign(=zj) = sign(=zj+1) and re-
call from (4.5) that the product GjGj+1 can be rewritten as a contour integral using
the residue theorem. We obtain a similar contour integral formula for m2[·|·] using the
divided difference structure in (3.19), namely

m2[T1, . . . , Tj−1, Gj , Tj+1, . . . , Tk|β] (4.23)

=
1

2πi

∫
R

m2[. . . , Tj−1, G(x+ iη)Aj+1, . . . |β]−m2[. . . , Tj−1, G(x− iη)Aj+1, . . . |β]
(x+ isη − zj)(x+ isη − zj+1)

dx.

Note that (3.17) can be verified directly from the recursion (3.7), which is crucial if we
want to use Lemma 2.5 in the “meta argument” to prove Corollary 3.10. Rewriting the
left-hand side of (2.7) using (4.6) yields a contour integral with an integrand of the form
N2EX

(k)
α′ X

(`)
β for a multi-index α′ of length k − 1 and without the identity matrix Aj = Id,

i.e., the number of traceless matrices a is unchanged. By the induction hypothesis, we
thus obtain

N2EX(k)
α X

(`)
β

=
1

2πi

∫
R

m2[. . . , Tj−1, G(x+ iη)Aj+1, . . . |β]−m2[. . . , Tj−1, G(x− iη)Aj+1, . . . |β]
(x+ isη − zj)(x+ isη − zj+1)

dx

+O
( Nε

√
Nη∗ η

(k+`−1)−(a+b)/2
∗

)
where the integral evaluates to m2[α|β] by (4.23). Hence, (2.7) holds in the case consid-
ered.

Case 2: =zj and =zj+1 have opposite signs: Applying (1.20) and the divided differ-
ence structure of m2[·|·], it follows that

N2EX(k,a)
α X

(`,b)
β

= N2E
( (〈T[1,j〉GjAj+1T〈j+1,k]〉 − E〈T[1,j〉GjAj+1T〈j+1,k]〉)

zj − zj+1

−
(〈T[1,j〉T[j+1,k]〉 − E〈T[1,j〉T[j+1,k]〉)

zj − zj+1

)
X

(`,b)
β

=
m2[T1, . . . , Tj−1, Tj+1, . . . , Tk|β]−m2[T1, . . . , Tj−1, TjAj+1, Tj+2, . . . , Tk|β]

zj − zj+1

+O
( Nε

√
Nη∗η

k+`−(a+b)/2−1
∗ |zj − zj+1|

)
= m2[T1, . . . , Tk|β] +O

( Nε

√
Nη∗ η

k+`−(a+b)/2
∗

)
,

since |zj − zj+1| ≥ 2η∗ in the case considered. This concludes the proof of (2.7) for
resolvent chains that contain at least one deterministic matrix Aj = Id.

It remains to consider T[1,k] for which all matrices A1, . . . , Ak are traceless, i.e., for
which a = k. The argument is similar to the proof of Lemma 2.3, i.e., we rewrite
N2EX

(k,a)
α X

(`,b)
β in terms of covariances of smaller chains and show that it satisfies the

recursion (3.7) up to an Nε/(
√
Nη∗η

k−a/2
∗ η

`−b/2
∗ ) error.

Combining (4.13) and Lemma 2.3 yields the starting point

X(k,a)
α = m1

(
− (〈WT[1,k]〉 − E〈WT[1,k]〉) + (〈T[2,k〉GkAkA1〉 − E〈T[2,k〉GkAkA1〉)

+

k−1∑
j=1

(〈T[1,j〉Gj〉 − E〈T[1,j〉Gj〉)m1[Tj , . . . , Tk] (4.24)
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+

k∑
j=2

m1[T1, . . . , Tj−1, Gj ](〈T[j,k]〉 − E〈T[j,k]〉)
)
+O≺

( 1

N
√
Nη∗ η

k/2
∗

)
.

Next, multiply (4.24) by N2X
(`)
β and compute the expectation. Applying the induction

hypothesis for any terms for which the first factor involves a resolvent chain of length at
most k − 1 yields

N2E
(
X(k)

α X
(`)
β

)
= m2[α|β]−

∑̀
j=1

(
m1[T1, . . . , Tk, Tk+j , . . . , Tk+j−1, Gk+j ]

− κ4

k∑
r=1

k+∑̀
s=k+1

( s∑
t=k+1

〈M[r] �M(s,...,k+`,k+1,...,t)〉〈(M[r,k]Ak)�M[t,s]〉

+

k+∑̀
t=s

〈M[r] �M[s,t]〉〈(M[r,k]Ak)�M(t,...,k+`,k+1,...,s)〉
)

+N2E
(
(〈WT[1,k]〉 − E〈WT[1,k]〉)X

(`)
β

)
+O

( Nε

√
Nη∗ η

(k+`)/2
∗

)
,

where we used the recursion (3.7) to introduce m2[α|β]. It remains to compute

N2E
(
(〈WT[1,k]〉 − E〈WT[1,k]〉)X

(`)
β

)
= N2E

(
〈WT[1,k]〉X

(`)
β

)
.

By cumulant expansion, we obtain

N2E
(
〈WT[1,k]〉X

(`)
β

)
= −

∑̀
j=1

E〈T[1,k]T[k+j,k+`]T[1,k+j〉Gk+j〉

+N

3∑
n=2

∑
x,y∈[N ]

∑
ν∈{xy,yx}n

κ(xy, ν)

n!
E∂ν

(
(T[1,k])yxX

(`)
β

)
(4.25)

+O
( Nε

√
Nη∗ η

(k+`)/2
∗

)
,

where the n = 1 term was evaluated using (4.8) and the terms for n ≥ 4 were again
estimated trivially using that κ(xy, ν) ∼ N−(|ν|+1)/2 due to the scaling of W as well as
the bounds from Lemmas 1.4 and 4.3. By the isotropic local law (1.16) we have

E〈T[1,k]T[k+j,k+`]T[1,k+j〉Gk+j〉

= m1[T1, . . . , Tk, Tk+j , . . . , Tk+j−1, Gk+j ] +O
( Nε

(Nη∗) η
(k+`)/2
∗

)
,

which yields an error term that can be included in the error in (2.7). Hence, it only
remains to consider the contributions for n = 2 and n = 3.

Estimate for the n = 2 term of (4.25): Evaluating the derivative ∂ν((T[1,k])yxX
(`)
β ) al-

ways yields at least one xy or yx entry of a resolvent chain, which we can use to apply
isotropic resummation (cf. estimate for (4.16) above). Note thatX(`)

β always contributes a
factor N−1 due to Lemma 4.3, either from evaluating derivatives using (4.21) and (4.22),
or from the trivial estimate (4.20). The additional factor N in front of the x, y summation
in (4.25) is thus balanced out. Overall, we obtain

N
∑
x,y

∑
ν∈{xy,yx}2

κ(xy, ν)

2
E∂ν

(
(T[1,k])yxX

(`)
β

)
= O

( Nε

√
Nη∗ η

k−a/2
∗ η

`−b/2
∗

)
.

In particular, the n = 2 term can be included in the error in the last line of (4.25).
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Computation of the n = 3 term of (4.25): By applying the Leibniz rule, we distribute
the derivatives as

E∂ν

(
(T[1,k])yxX

(`)
β

)
=

∑
ν1∪ν2=ν

E
(
∂ν1(T[1,k])yx∂ν2X

(`)
β

)
and distinguish three cases for ν1:

Case 1 (|ν1| = 3): The derivative ∂ν1
(T[1,k])yx arising in this case was already computed

in the proof of Lemma 2.3. Using (4.19) and (1.16), it follows that

N
∑
x,y

∑
ν∈{xy,yx}3

κ(xy, ν)

6
E
(
(∂ν(T[1,k])yx)X

(`)
β

)
= −κ4

N

∑
x,y

∑
1≤r≤s≤t≤k

(M[r])yy(M[r,s])xx(M[s,t])yy(M[t,k]Ak)xxEX
(`)
β

+O
( Nε

√
Nη∗ η

k−a/2
∗ η

`−b/2
∗

)
= O

( Nε

√
Nη∗ η

k−a/2
∗ η

`−b/2
∗

)
,

since X
(`)
β is centered. We hence include the term in the error in (4.25).

Case 2 (|ν1| = 1): Evaluating the ∂ν derivative yields either zero, two, or four diagonal
entries of a resolvent chain. Whenever the term contains an xy or yx entry, we use
isotropic resummation to identify the term as part of the error in (4.25). It remains to
consider the case ν1 = (yx) and ν2 ∈ {(xy, yx), (yx, xy)}. Here, we compute

∂ν1
(T[1,k])yx = −

k∑
r=1

(T[1,r〉Gr)yy(T[r,k])xx,

∂ν2
X

(`)
β =

1

N

k+∑̀
s=k+1

( s∑
t=k+1

(T[s,k+`]T[k+1,t〉Gt)yy(T[t,s〉Gs)xx

+

k+∑̀
t=s

(T[s,t〉Gt)yy(T[t,k+`]T[k+1,s〉Gs)xx

)
+ . . . ,

where the terms that are left out contain at least one off-diagonal entry of a resolvent
chain and hence can be included in the error term in (4.25) by isotropic resummation.
Applying (1.16) and recalling that κ(xy, ν) = κ4/N

2 in the case considered, it follows
that

N
∑
x,y

κ4

N2
E
((

∂ν1
(T[1,k])yx

)(
∂ν2

X
(`)
β

))

= − κ4

N2

∑
x,y

( k∑
r=1

k+∑̀
s=k+1

(M[r])yy(M[r,k]Ak)xx

( s∑
t=k+1

(M(s,...,k+`,k+1,...,t))yy(M[t,s])xx

+

k+∑̀
t=s

(M[s,t])yy(M(t,...,k+`,k+1,...,s))xx

))
+O

( Nε

√
Nη∗ η

k−a/2
∗ η

`−b/2
∗

)
(4.26)

which can again be rewritten using the definition of the Hadamard product. Note that
we obtain six terms of the form (4.26) in total from applying the Leibniz rule.

Case 3 (|ν1| even): For both |ν1| = 0 and |ν1| = 2, the derivative always contains
at least one off-diagonal entry of a resolvent chain. Therefore, we can apply isotropic
resummation and include the term in the error in (4.25).

EJP 29 (2024), paper 191.
Page 35/49

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1247
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Multi-point functional CLT for Wigner matrices

Adding the contributions to (4.25) back together, the cumulant expansion evaluates
to

−N2E
(
〈WT[1,k]〉X

(`)
β

)
=
∑̀
j=1

m[T1, . . . , Tk, Tk+j , . . . , Tk+`, Tk+1, . . . , Tk+j−1, Gk+j ]

+ κ4

k∑
r=1

k+∑̀
s=k+1

( s∑
t=k+1

〈M[r] �M(s,...,k+`,k+1,...,t)〉〈(M[r,k]Ak)�M[t,s]〉

+

k+∑̀
t=s

〈M[r] �M[s,t]〉〈(M[r,k]Ak)�M(t,...,k+`,k+1,...,s)〉
)
+O

( Nε

√
Nη∗ η

k−a/2
∗ η

`−b/2
∗

)
.

We conclude that, up to an O(Nε/
√
N) error, E(X(k)

α X
(`)
β ) equals the right-hand side

of (3.7). Applying the recursion yields

E
(
X(k)

α X
(`)
β

)
= m2[α|β] +O

( Nε

√
Nη∗ η

k−a/2
∗ η

`−b/2
∗

)
which completes the induction step.

It remains to establish the alternative integral representation for m̃GUE [·|·].

Proof of Corollary 3.11. We use proof by induction, starting with the base case k = ` = 1.
While we could establish (3.20) directly using a similar computation as in [14] or [41], it
is much quicker to read off the kernel from the existing literature. To do so, note that
the function m̃GUE [1|2] and its counterpart for W being a GOE matrix only differ by a
constant factor. More precisely, evaluating (92) of [14] for GOE (σ = 1, κ4 = 0, ω̃2 = 0)
yields

lim
N→∞

N2Cov(〈G1 − EG1〉, 〈G2 − EG2〉) = 2 · m′
1m

′
2

(1−m1m2)2
= 2 · m̃GUE [1|2]. (4.27)

This allows us to obtain the desired integral representation for m̃GUE [1|2] from [18,
Thm. 2.3], which only applies to real symmetric Gaussian matrices. Applying the theorem
yields

lim
N→∞

N2Cov(〈G1 − EG1〉, 〈G2 − EG2〉) =
∫
R

∫
R

1

(x− z1)2
1

(y − z2)2
u(x, y)dxdy, (4.28)

where u is given by

u(x, y) =

√
4− x2

√
4− y2

π2
·
∫ 1

0

1− w2

w2(x− y)2 − wxy(1− w)2 + (1− w2)2
dw. (4.29)

In the notation of [18], Equation (4.28) corresponds to considering a matrix-valued
Gaussian process for which the distribution at time 1 coincides with the law of a
GOE matrix V , as well as the functions f(x) = (x − z1)

−1 and g(y) = (y − z2)
−1 for

fixed z1, z2 ∈ C with =z1,=z2 & 1. We remark that the functions f and g indeed satisfy
the polynomial bound assumed in [18, Thm. 2.3]. As (4.28) is obtained for the fixed times
s = t = 1, we omit the time dependence from the kernel. By substituting v = ( 1−w

1+w )2 and
using partial fractions, the w-integration in (4.29) can be carried out explicitly, yielding
the form in (2.19).

Comparing (4.27) and (4.28), we obtain (3.20) in the case k = ` = 1.
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The induction step uses the divided difference structure from Corollary 3.10(iii) and
is similar to the proof of [13, Lem. 4.1]. Assume that the integral representation (3.20)
holds for m̃GUE [S1|S2] with |S1| = k and |S2| ≤ ` for some fixed k ≥ 1. We start by
rewriting

m̃GUE [1, . . . , k|k + 1, . . . , k + `+ 1]

=
m̃GUE [1, . . . , k|k + 2, . . . , k + `+ 1]− m̃GUE [1, . . . , k|k + 1, k + 3, . . . , k + `+ 1]

zk+2 − zk+1
,

where the induction hypothesis applies to both summands in the numerator, respectively.
Noting that

k+∑̀
i=k+2

1

(y − zi)2
·
∏
j 6=i

1

y − zj
−

k+∑̀
i=k+1
i 6=k+2

1

(y − zi)2
·
∏
j 6=i

1

y − zj

= (zk+2 − zk+1)

k+∑̀
i=k+1

1

(y − zi)2
·
∏
j 6=i

1

y − zj
,

we obtain (3.20) as claimed. Since m̃GUE [S1|S2] = m̃GUE [S2|S1] by definition, the same
argument applies for the other entry of m̃GUE [·|·].

4.4 Proof of Theorem 3.8 (CLT for resolvents)

We use proof by induction over the number of factors on the left-hand side of (3.15).
To keep the notation simple, we drop the superscripts (kj , aj) of X

(kj ,aj)
αj throughout this

section. First, the base case p = 1, 2 readily follows from the definition and Lemma 2.5,
which give EXα1

= 0 and

N2E(Xα1
Xα2

) = m2[α1|α2] +O
( Nε

√
Nη∗ η

k1−a1/2
∗ η

k2−a2/2
∗

)
,

respectively. Next, fix p ∈ N and assume that

NpE
( p∏

j=1

Xαj

)
=

∑
Q∈Pair({1,...n})

∏
(i,j)∈Q

m2[αi|αj ] +O
( Nε

√
Nη∗

∏p
l=1 η

kl−al/2
∗

)
(4.30)

holds for n = 1, . . . , p. It remains to consider Np+1E(Xα1
. . . Xαp+1

). When writing
out any of the factors, we label the spectral parameters and matrices involved with a
superscript 1, . . . , p+ 1 according to the factor they appear in.

We start by considering the case k1 = 1 and inductively extend the statement to
larger products. For the first part of the induction step, we need to compute

Np+1E
(
(〈T (1)

1 〉 − E〈T (1)
1 〉)Xα2 . . . Xαp+1

)
. (4.31)

Combining (4.11) and Lemma 2.3 (together with (4.10) and Theorem 1.3) yields

〈T (1)
1 〉 − E〈T (1)

1 〉 = −m(z
(1)
1 )
(
〈WT

(1)
1 〉+ q

(1)
1,1〈WG

(1)
1 〉〈A(1)

1 〉
)

− κ4

N
E [T1] +O≺

( 1

N
√
Nη∗ η

k1−a1/2
∗

)
, (4.32)

where the superscript in q(1) indicates that the arguments are taken from α1. We
use (4.32) to replace the first factor in (4.31). The underlined terms are again treated by
cumulant expansion. This yields

−m(z
(1)
1 )Np+1E

(
〈WT1〉Xα2

. . . Xαp+1

)
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= m(z
(1)
1 )

p+1∑
i=2

ki∑
j=1

E
(
〈T (1)

1 T
(i)
j . . . T

(i)
ki

T
(i)
1 . . . T

(i)
j−1G

(i)
j 〉 ·Np−1

∏
r 6=1,i

Xαr

)
−m(z

(1)
1 )Np

∑
n≥2

∑
x,y∈[N ]

∑
ν∈{xy,yx}n

κ(xy, ν)

n!
E∂ν

(
(T

(1)
1 )yxXα2

. . . Xαp+1

)
, (4.33)

where the n = 1 contribution was again evaluated using (4.8) and the computations in
the proof of Lemma 4.3. Note that we obtain one term for each resolvent in the product
Xα2

. . . Xαp+1
from applying the Leibniz rule. By the local law (1.15), we have

E〈T (1)
1 T

(i)
j . . . T

(i)
ki

T
(i)
1 . . . T

(i)
j−1G

(i)
j 〉

= m1[T
(1)
1 , T

(i)
j , . . . , T

(i)
j−1, G

(i)
j ] +O

( Nε

Nη∗ η
ki−(a1+ai)/2
∗

)
.

Further, note that every Xαj
contains a normalized trace, which yields a total of p

factors N−1 when the derivative ∂ν((T
(1)
1 )yxXα2

. . . Xαp+1
) is evaluated. We can hence

argue as in the proof of Lemma 2.5 to conclude that the contributions for n ≥ 4 in (4.33)
are sub-leading. Similarly, most of the terms arising for n = 2 and n = 3 in (4.33) were
already computed in the proof of Lemma 2.5 and their treatment here is analogous. We,
therefore, focus on the differences between (4.25) and (4.33) below. Recall that |ν1|
denotes the total number of derivatives acting on (T

(1)
1 )yx in a given term.

Estimate for the n = 2 term of (4.33): Compared to (4.25), new terms only arise if
|ν1| = 0 and the two derivatives act on different factors of the product Xα2

. . . Xαp+1
. As

the resulting derivative always includes the off-diagonal entry (T
(1)
1 )yx, we obtain

Np
∑
x,y

∑
ν∈{xy,yx}2

κ(xy, ν)

2
E∂ν

(
(T

(1)
1 )yxXα2 . . . Xαp+1

)
= O

( Nε

√
Nη∗

∏p+1
l=1 η

kl−al/2
∗

)
by isotropic resummation. Recall that every Xαj contains a normalized trace such that
the factor N−p in front of the sum is balanced out.

Computation of the n = 3 term of (4.33): We distinguish three cases for |ν1|.
Case 1 (|ν1| = 3): After evaluating the derivative, we apply (1.16) to get

N
∑
x,y

∑
ν∈{xy,yx}3

κ(xy, ν)

6
E
(
(∂ν(T1)yx)Xα2 . . . Xαp+1

)
= −κ4m(z

(1)
1 )4〈A(1)

1 〉E
(
Xα2

. . . Xαp+1

)
+O

( Nε

√
Nη∗

∏p+1
l=1 η

kl−al/2
∗

)
.

In particular, adding the above terms for the cumulant expansions resulting from the
two underlined terms in (4.32) yields

−m(z
(1)
1 )
(
− κ4m(z

(1)
1 )4〈A(1)

1 〉 − κ4q
(1)
1,1m(z

(1)
1 )4〈A(1)

1 〉
)
E
(
Xα2

. . . Xαp+1

)
= κ4E [T1]E

(
Xα2

. . . Xαp+1

)
.

Case 2 (|ν1| = 1): Whenever the two remaining derivatives act on different factors of
the product Xα2

. . . Xαp+1
, (4.21) always yields an off-diagonal entry of a resolvent chain

that can be used to apply isotropic resummation. We can thus include any terms of this
build in the error in (4.33). Otherwise, we evaluate the term similar to (4.26). Let again
ν2 = ν \ ν1. For i = 2, . . . , p+ 1, it follows that

Np
∑
x,y

κ4

N2
E
((

∂ν1
(T1)yx

)
Xα2

. . . Xαi−1

(
∂ν2

Xαi

)
Xαi+1

. . . Xαp+1

)
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= −κ4

ki∑
s=1

( s∑
t=1

m(z
(1)
1 )2〈A(1)

1 �M
(i)
[s,t]〉〈M

(i)
(t,...,ki,1,...,s)

〉

+

ki∑
t=s

m(z
(1)
1 )2〈A(1)

1 �M
(i)
(s,...,ki,1,...,t)

〉〈M (i)
[t,s]〉

)
E
( ∏

r 6=1,i

Xαr

)
+O

( Nε

√
Nη∗

∏p+1
l=1 η

kl−al/2
∗

)
,

where the superscript in M (i) indicates that the arguments are taken from αi. Recall
that � denotes the Hadamard product. We emphasize that this term is obtained six times
in total when all mixed derivatives obtained from the Leibniz rule are summed up.

The last case for n = 3 (|ν1| even) can be treated similarly to the corresponding cases
of (4.25). We omit the details.

Repeating the expansion for the 〈WG
(1)
1 〉 term in (4.32), we hence obtain

Np+1E
(
−m(z

(1)
1 )
(
〈WT

(1)
1 〉+ q

(1)
1,1〈WG

(1)
1 〉〈A(1)

1 〉
)
Xα2 . . . Xαp+1

)
= Np−1E

( ∏
r 6=1,j

Xαr

)
·m(z

(1)
1 )

p+1∑
i=2

[ ki∑
j=1

m1[T
(1)
1 , T

(i)
j . . . T

(i)
j−1, G

(i)
j ]

+ q
(1)
1,1

ki∑
j=1

m1[G
(1)
1 , T

(i)
j . . . T

(i)
j−1, G

(i)
j ]〈A(1)

1 〉

+ κ4

ki∑
s=1

( s∑
t=1

m(z
(1)
1 )2〈A(1)

1 �M
(i)
[s,t]〉〈M

(i)
(t,...,ki,1,...,s)

〉

+

ki∑
t=s

m(z
(1)
1 )2〈A(1)

1 �M
(i)
(t,...,ki,1,...,s)

〉〈M (i)
[s,t]〉

)
+ κ4q

(1)
1,1

ki∑
s=1

( s∑
t=1

m(z
(1)
1 )2〈(A(1)

1 )xx �M
(i)
[s,t])〉〈M

(i)
(t,...,ki,1,...,s)

〉

+

ki∑
t=s

m(z
(1)
1 )2〈A(1)

1 �M
(i)
(t,...,ki,1,...,s)

〉〈M (i)
[s,t]〉

)
〈A(1)

1 〉
]
+O

( Nε

√
Nη∗

∏p+1
l=1 η

kl−al/2
∗

)
.

Adding the contribution for all three terms in (4.32) together allows rewriting (4.31) as

Np+1E
(
(〈T (1)

1 〉 − E〈T (1)
1 〉)Xα2

. . . Xαp+1

)
=

p+1∑
i=2

m2[T
(1)
1 |T (i)

1 , . . . , T
(i)
ki

] ·Np−1E
( ∏

r 6=1,j

Xαr

)
+O

( Nε

√
Nη∗

∏p+1
l=1 η

kl−al/2
∗

)
,

where we used (3.7) with k = 1 and ` = ki. As the remaining product only consists of
p− 1 factors, we can apply the induction hypothesis (4.30) and conclude

Np+1E
( p+1∏

j=1

Xαj

)
=

∑
Q∈Pair([p+1])

∏
(i,j)∈Q

m2[αi|αj ] +O
( Nε

√
Nη∗

∏p+1
l=1 η

kl−al/2
∗

)
(4.34)

for the case α1 = {(z(1)1 , A
(1)
1 )}.

Assume next that (4.34) holds for all multi-indices α1 that consist of up to k1 − 1 pairs
(z

(1)
j , A

(1)
j ), and consider α1 of length k1. As in the base case, we replace the factor Xα1

in the product by its leading term using (4.24). This gives

Np+1E
(
Xα1

. . . Xαp+1

)
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= Np+1m(z
(1)
1 )E

((
− 〈WT

(1)
1 . . . T

(1)
k1

〉

+ (〈T (1)
2 . . . T

(1)
k1−1G

(1)
k1

A
(1)
k1

A
(1)
1 〉 − E〈T (1)

2 . . . T
(1)
k1−1G

(1)
k1

A
(1)
k1

A
(1)
1 〉

+
κ4

N
E [T (1)

2 , . . . , T
(1)
k1−1, G

(1)
k1

A
(1)
k1

A
(1)
1 ])

+

k−1∑
j=1

(〈T (1)
1 . . . T

(1)
j−1G

(1)
j 〉 − E〈T (1)

1 . . . T
(1)
j−1G

(1)
j 〉 (4.35)

+
κ4

N
E [T (1)

1 , . . . , T
(1)
j−1, G

(1)
j ])m1[T

(1)
j , . . . , T

(1)
k1

]

+

k∑
j=2

m1[T
(1)
1 , . . . , T

(1)
j−1, G

(1)
j ](〈T (1)

j . . . T
(1)
k1

〉 − E〈T (1)
j . . . T

(1)
k1

〉+ κ4

N
E [T (1)

j , . . . , T
(1)
k1

])
)

+
κ4

N
E [T (1)

1 , . . . , T
(1)
k1

]
)
Xα2 . . . Xαp+1

)
+O

( Nε

√
Nη∗

∏p+1
l=1 η

kl−al/2
∗

)
,

where the underlined term can again be treated by cumulant expansion. Similar to (4.33),
we evaluate

Np+1E
(
−m(z

(1)
1 )〈WT

(1)
1 . . . T

(1)
k1

〉Xα2 . . . Xαp+1

)
= m(z

(1)
1 )

p+1∑
i=2

(
ki∑
j=1

m1[T
(1)
1 , . . . , T

(1)
k1

, T
(i)
j , . . . , T

(i)
j−1, G

(i)
j ]

+ κ4

k1∑
r=1

k+∑̀
s=k+1

( s∑
t=1

〈M (1)
[r] �M

(i)
(s,...,ki,1,...,t)

〉〈(M (1)
[r,k]A

(1)
k )�M

(i)
[t,s]〉 (4.36)

+

ki∑
t=s

〈M (1)
[r] �M

(i)
[s,t]〉〈(M

(1)
[r,k]A

(1)
k )�M

(i)
(t,...,ki,1,...,s)

〉
))

Np−1E
( ∏

r 6=1,i

Xαr

)
+O

( Nε

√
Nη∗

∏p+1
l=1 η

kl−al/2
∗

)
,

and apply the induction hypothesis (4.30) for the product of p − 1 factors. Note that
any terms remaining in (4.35) now involve at most k1 − 1 resolvents in the first factor.
Hence, (4.34) applies and we obtain, e.g.,

Np+1E
(
(〈T (1)

2 . . . T
(1)
k1−1G

(1)
k1

A
(1)
k1

A
(1)
1 〉 − E〈T (1)

2 . . . T
(1)
k1−1G

(1)
k1

A
(1)
k1

A
(1)
1 〉)

p+1∏
r=2

Xαr

)
=

p+1∑
r=2

m2[T
(1)
2 , . . . , T

(1)
k1−1, G

(1)
k1

A
(1)
k1

A
(1)
1 |T (r)

1 , . . . , T
(r)
ki

]
( ∑

Q∈Pair([p+1]\{1,i})

∏
(i,j)∈Q

m2[αi|αj ]
)

+O
( Nε

√
Nη∗

∏p+1
l=1 η

kl−al/2
∗

)
.

Moreover, note that (4.36) contains the source term of the recursion for E [·] (cf. Lem-
ma 2.3), which we can combine with the terms involving E [·] in (4.35). Using (3.1), the
terms cancel. We conclude that (4.35) evaluates to

Np+1E
(
X(k1)

α1
. . . X(kp+1)

αp+1

)
=

p+1∑
r=2

[
m(z

(1)
1 )
( kr∑

j=1

m1[T
(1)
1 , . . . , T

(1)
k1

, T
(r)
j , . . . , T

(r)
j−1, G

(r)
j ]
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+ κ4

k1∑
r=1

k+∑̀
s=k+1

( s∑
t=1

〈M (1)
[r] �M

(i)
(s,...,ki,1,...,t)

〉〈(M (1)
[r,k]A

(1)
k )�M

(i)
[t,s]〉

+

ki∑
t=s

〈M (1)
[r] �M

(i)
[s,t]〉〈(M

(1)
[r,k]A

(1)
k )�M

(i)
(t,...,ki,1,...,s)

〉
)

+m2[T
(1)
2 , . . . , T

(1)
k1−1, G

(1)
k1

A
(1)
k1

A
(1)
1 |T (r)

1 , . . . , T
(r)
kr

]

+

k∑
j=2

m1[T
(1)
1 , . . . , T

(1)
j−1, G

(1)
j ]m2[T

(1)
j , . . . , T

(1)
k1

|T (r)
1 , . . . , T

(r)
kr

]

+

k∑
j=2

m2[T
(1)
1 , . . . , T

(1)
j−1, G

(1)
j |T (r)

1 , . . . , T
(r)
kr

]m1[T
(1)
j , . . . , T

(1)
k1

]
)]

×
( ∑

Q∈Pair([p+1]\{1,i})

∏
(i,j)∈Q

m2[αi|αj ]
)
+O

( Nε

√
Nη∗

∏p+1
l=1 η

kl−al/2
∗

)
=

∑
Q∈Pair([p+1])

∏
(i,j)∈Q

m2[αi|αj ] +O
( Nε

√
Nη∗

∏p+1
l=1 η

kl−al/2
∗

)
where the last equation follows from (3.7). Hence, (4.34) also holds for α1 of length k1.
Moreover, (4.30) stays true if the product on the left-hand side contains p + 1 factors,
which concludes the proof of (3.15).

4.5 Proof of Theorem 2.7 (multi-point functional CLT)

The proof of the multi-point functional CLT in Theorem 2.7 consists of two parts. In the
first step, we use Helffer-Sjöstrand representation (see [16]) to express f1(W ) . . . fk(W )

as an integral of products of resolvents at different spectral parameters. This relates
the linear statistics Yα back to the resolvent chains studied in Section 3. The second
step is the computation of the leading terms, which establishes the covariance structure
in (2.9).

By eigenvalue rigidity (see e.g., [21, Thm. 7.6] or [23]), the spectrum ofW is contained
in [−2 − ε, 2 + ε] for any small ε > 0 with very high probability. In particular, we have
(f · χ)(W ) = f(W ) with very high probability for any smooth cutoff function χ that is,
e.g., equal to one on [−5/2, 5/2] and equal to zero on [−3, 3]c. It is thus sufficient to
consider fj ∈ Hp

0 ([−3, 3]) =: Hp
0 , i.e., Soboloev functions on R that are non-zero only

on [−3, 3]. Moreover, recall that every deterministic matrix Aj in the product F[1,k] can
be decomposed as Aj = 〈Aj〉Id + Åj with 〈Åj〉 = 0. We thus assume w.l.o.g. that the
deterministic matrices Aj are either traceless or equal to the identity matrix. Moreover,
we restrict the following argument to the case a = k, i.e., all deterministic matrices are
traceless, and fix p = dk/2e+1 (resp. q = d`/2e+1) throughout. The proof in the general
case is analogous and hence omitted.

Let f ∈ Hp
0 and define the almost analytic extension of f of order p by

fC(z) = fC,p(x+ iη) :=
[ p−1∑
j=0

(iη)j

j!
f (j)(x)

]
χ̃(Nγη) (4.37)

where χ̃ is a smooth cutoff function that is equal to one on [−5, 5] and vanishes on
[−10, 10]c. Note that (4.37) together with (2.2) implies the bound∫

R

|∂zfC,p(x+ iη)|dx . ηp−1‖f‖Hp . ηp−1Nγp. (4.38)
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By Helffer-Sjöstrand representation, we have

f(λ) =
1

π

∫
C

∂zfC(z)

λ− z
d2z, (4.39)

where d2z = dxdη denotes the Lebesgue measure on C ≡ R2 with z = x + iη and
∂z = (∂x + i∂η)/2. Applying (4.39) for f1, . . . , fk, respectively, we obtain

Y (k,a)
α =

N

πk

∫
Ck

[ k∏
j=1

(∂z(fj)C)(zj)
](

〈G(z1) . . . G(zk)Ak〉 − E〈G(z1) . . . G(zk)Ak〉
)
d2z[k+`]

(4.40)

with d2z[k+`] = d2z1 . . . d
2zk+`. Let c > 0 and define

η0 := N−1+c.

We start by showing that the contribution from the regime |ηj | ≤ η0 for some j ∈ [k] to
the integral (4.40) is negligible. W.l.o.g. assume that |ηj | ≤ η0 only for the single index
j = 1. The general case is similar and yields an even smaller bound (cf. proof of [13,
Thm. 2.6]). Our key tool is the following variant of Stokes’ theorem∫ 10

−10

∫ 10

η̃

∂zΦ(x+ iη)h(x+ iη)dxdη =
1

2i

∫ 10

−10

Φ(x+ iη̃)h(x+ iη̃)dx, (4.41)

which holds for any η̃ ∈ [0, 10], and for any Φ, h ∈ H1(C) ≡ H1(R2) such that ∂zh = 0

on the domain of integration and Φ vanishes on the left, right, and top boundary of the
domain of integration. Applying (4.41) repeatedly for the variables z2, . . . , zk and intro-
ducing the interval notation dx[i,j] = dxidxi+1 . . . dxj as well as dη[i,j] = dηidηi+1 . . . dηj
for i < j, we obtain

∣∣∣ ∫ dx[k]

∫
|ηi|≥η0,
i∈[2,k]

dη[2,k]

∫ η0

−η0

dη1

[ k∏
j=1

(∂z(fj)C)(zj)
](
〈G(z1)A1 . . . G(zk)Ak〉

− E〈G(z1)A1 . . . G(zk)Ak〉
)∣∣∣

=
1

2k−1

∣∣∣ ∫ dx[k]

∫ η0

−η0

dη1(∂z(f1)C)(z1)
[ k∏
j=2

(fj)C(xj + iη0)
]

×
(
〈G(z1)A1G(x2 + iη0) . . . G(xk + iη0)Ak〉 − E〈G(z1)A1G(x2 + iη0) . . . G(xk + iη0)Ak〉

)∣∣∣
=: I1 + I2,

where I1 and I2 contain the |η1| ≤ ηr := N−5k and the ηr ≤ |η1| ≤ η0 regime of the η1
integration, respectively. For the smallest values of η1, the trivial estimate

|〈G(z1)A1 . . . G(zk)Ak〉| ≤
∏
j

‖G(zj)Aj‖ ≤
∏
j

|ηj |−1

together with (4.38) implies that
I1 . N−k

as the xj-integral of (fj)C(xj + iη0) for j ∈ [2, k] is of order one due to Assumption 2.1.
For I2, we use the bound

|〈G(z1)A1 . . . G(zk)Ak〉| ≺ Nk/2−1
∏
j∈[k]

1

ρ(xi + iN−2/3)

(
1 +

1

N |ηj |

)
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from [12, Lem. 6.1]. Here, ρ(z) := π−1|=m(z)| for z ∈ C \ R denotes the harmonic
extension of the semicircle density with ρ(x+ i0) = ρsc(x). This yields

I2 ≺ η0(Nη0)
k/2‖f1‖Hp .

Overall, we conclude that

Y (k,a)
α =

N

πk

∫
Rk

dx[k]

∫
[η0,10]k

dη[k]

[ k∏
j=1

(∂z(fj)C)(zj)
]

×
(
〈G(z1)A1 . . . G(zk)Ak〉 − E〈G(z1)A1 . . . G(zk)Ak〉

)
(4.42)

+O≺

(
η0(Nη0)

k/2 max
j

‖fj‖Hp

)
Equation (4.42) now reduces the proof of the multi-point functional CLT for general
f1, . . . , fk to the CLT for resolvents in Theorem 3.8.

It remains to compute the covariance structure (2.9). By (4.42) and Lemma 2.5, we
have

E
(
Y (k,a)
α Y

(`,b)
β

)
=

1

πk+`

∫
Rk

dx[k]

∫
[η0,10]k

dη[k]

[ k∏
i=1

(∂z(fi)C,p)(zi)
] ∫

R`

dx[k+1,k+`]

∫
[η0,10]`

dη[k+1,k+`]

×
[ ∏̀
j=k+1

(∂z(fj)C,q)(zj)
]
m2[G(z1)A1, . . . , G(zk)Ak|G(zk+1)Ak+1, . . . , G(zk+`)Ak+`]

+O≺

(Nε maxi∈[k] ‖fi‖Hp maxj∈[k+1,k+`] ‖fj‖Hq

√
N

)
(4.43)

where we estimated the error coming from Lemma 2.5 as

1

πk+`

∫
Rk+`

dx[k+`]

∫
[η0,10]k+`

dη[k+`]

[ k+∏̀
j=1

(∂z(fj)C)(zj)
]

×
(
N2E

[
(〈G(z1) . . . Ak〉 − E〈G(z1) . . . Ak〉)(〈G(zk+1) . . . Ak+`〉 − E〈G(zk+1) . . . Ak〉)

]
−m2[G(z1)A1, . . . , G(zk)Ak|G(zk+1)Ak+1, . . . , G(zk+`)Ak+`]

)
= O

(Nεη
3/2
0 maxi∈[k] ‖fi‖Hp maxj∈[k+1,k+`] ‖fj‖Hq

√
N

)
.

More precisely, we considered the regime η1 ≤ · · · ≤ ηk and ηk+1 ≤ · · · ≤ ηk+`, as
all other regimes give the same contribution by symmetry, and applied (4.41) for the
variables i ∈ [2, k] and j ∈ [k + 2, k + `]. Estimating the remaining ∂z(f1)C,p(z1) and
∂z(fk+1)C,q(zk+1) using (4.38), we obtain a bound of order |η0|p+q. Recall that applying
Lemma 2.5 yields an (

√
Nη∗η

k+`−(a+b)/2
∗ )−1 error, where η∗ = minj ηj = η0 due to the

choice of domain of integration.

4.6 Proof of Corollary 2.9 (limiting covariance in Theorem 2.7)

Equation (2.14) is immediate from the explicit formula for mGUE [·|·] in [40, Thm. 2.4].
Moreover, the proof of (2.15) identical to [13, Lem. 4.1], as the integral defining Φπ

only involves first-order free cumulants. We hence only focus on the proof of (2.17).
Abbreviate U = U1 ∪ U2 and note that

Φπ1×π2,U1×U2
(f1, . . . , fk+`)
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=
1

πk+`

(∫
R|U|

∫
[η0,10]|U|

[ ∏
j∈U

(∂z(fj)C)(zj)
]
m◦◦[U1|U2]

∏
j∈U

d2zj

)
×

∏
B∈π1∪π2

not marked

(∫
R|B|

∫
[η0,10]|B|

[ ∏
j∈B

(∂z(fj)C)(zj)
]
m◦[B]

∏
j∈B

d2zj

)
,

where we set again d2zj = dxjdηj for zj = xj + iηj . In particular, the product in the last
line can again be evaluated using [13, Lem. 4.1]. It remains to compute the integral
involving m◦◦[U1|U2]. We claim that

1

π|U |

∫
R|U|

∫
[η0,10]|U|

[ ∏
j∈U

(∂z(fj)C)(zj)
]
m[U1|U2]

∏
j∈U

d2zj

= sc[i1, . . . , in|in+1, . . . , in+m] +O
(
η20(Nη0)

(|U |)/2 max
i∈[k]

‖fi‖Hp max
j∈[k+1,k+`]

‖fj‖Hq

)
(4.44)

where U1 = {i1, . . . , in} and U2 = {in+1, . . . , in+m}. The corresponding result for sc◦◦[·|·]
is then immediate from the second-order moment-cumulant relation (2.13).

To establish (4.44), we use the explicit integral representation for m̃[·|·] from Corol-
lary 3.11 and rewrite the resulting multi-integral involving the kernel (2.19). Let again
U := U1 ∪U2. Noting that both |x− zj | and |y− zj | are bounded from below by η0 for any
j and recalling the bound (4.38) for the almost analytic extension, we have∫

[−2,2]2

∫
R|U|

∫
[η0,10]|U|

∣∣∣[ ∏
j∈U

(∂z(fj)C)(zj)
]( ∑

i∈U1

1

(x− zi)2
·
∏
j 6=i

1

x− zj

)
×
( ∑

i∈U2

1

(y − zi)2
·
∏
j 6=i

1

y − zj

)u(x, y)
2

∣∣∣[ ∏
j∈U

d2zj

]
dxdy < ∞

for any fixed N , as the zj integrations are bounded by an (N -dependent) constant, which
is integrable w.r.t. to the measure ν(dx, dy) = u(x, y)dxdy (cf. Remark to Corollary 3.11).
Hence, Fubini’s theorem allows interchanging the order of integration and move the x

and y integrations inside. A brief calculation using (4.41) yields∫
R

∫
[ηr,10]

(∂z(fj)C)(zj)
1

x− zj
d2zj = πf(x) +O(ηr)

with ηr = N−5k, and we further have

1

π

∫
R

∫
[η0,10]

(∂z(fj)C)(zj)
( 1

x− zj

)2
d2zj = f ′(x) +O(ηr)

using integration by parts. Hence,

1

π|U |

∫
R|U|

∫
[η0,10]|U|

[ ∏
j∈U

(∂z(fj)C)(zj)
]

×
( ∑

i∈U1

1

(x− zi)2
·
∏
j 6=i

1

x− zj

)( ∑
i∈U2

1

(y − zi)2
·
∏
j 6=i

1

y − zj

)[ ∏
j∈U

d2zj

]
=
( ∑

i∈U1

f ′
i(x) ·

∏
j 6=i

fj(x)
)( ∑

i∈U2

f ′
i(y) ·

∏
j 6=i

fj(y)
)

+O
(
η20(Nη0)

(|U |)/2 max
i∈[k]

‖fi‖Hp max
j∈[k+1,k+`]

‖fj‖Hq

)
such that (4.44) follows from the Leibniz rule. Recall the [ηr, η0] regime can be added back
in exchange for an O(η20(Nη0)

(|U |)/2 maxi∈[k] ‖fi‖Hp maxj∈[k+1,k+`] ‖fj‖Hq ) error. This
yields (4.44), which concludes the proof of (2.17).
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4.7 Proof of Corollary 2.13 (application to thermalization)

Throughout the proof, we set f̃j(x) = eitjxχ(x) with a symmetric smooth cutoff func-
tion χ that is equal to one on [−5/2, 5/2] and equal to zero on [−3, 3]c. By eigenvalue
rigidity, the functions f̃j(W ) and fj(W ) = eitjW coincide with high probability and we
can use them interchangeably. The deterministic approximation as well as the Gaussian
fluctuations around it are now immediate from [12, Cor. 2.7] and Theorem 2.7, respec-
tively. Note that we use the multi-point functional CLT for the macroscopic regime due
to t ∈ R being N -independent. The limiting variance can be read off from Corollary 2.9.
Observing that

〈A1(t)A2〉 = 〈eitWA∗
1e

−itWA∗
2〉

we set f1(x) = eitx, f2(x) = e−itx, f3(x) = eitx, and f4(x) = e−itx as well as A3 = A∗
1,

and A4 = A∗
2 to apply (2.14). As A1 and A2 are assumed to be traceless, only the terms

corresponding to the permutations

π ∈ {(14)(23), (13)(24), (1)(24)(3), (14)(2)(3), (1)(24)(3), (13)(2)(4)} ⊂
−−−→
NCP (2, 2) (4.45)

as well as the terms corresponding to the marked partitions

π ∈
{{

{1}, {2}
}
×
{
{3}, {4}

}
,
{
{1}, {2}

}
×
{
{3}, {4}

}
,
{
{1}, {2}

}
×
{
{3}, {4}

}
,{

{1}, {2}
}
×
{
{3}, {4}

}}
(4.46)

contribute to the limiting variance of 〈A1(t)A2〉. Note that the marked blocks in (4.46)
are distinguished by underlining.

It remains to discuss the t → ∞ limit. We have∫ 2

−2

eitxρsc(x)dx =
J1(2t)

t

where J1 is a Bessel function of the first kind obeying the asymptotics

J1(x) = − cos
(
x+

π

2

)√ 2

πx
+O

( 1

x3/2

)
, x � 1.

In particular,

sc◦[1] = sc[1] =
J1(2t)

t
= O

( 1

t3/2

)
, t � 1.

Hence, it readily follows that the term corresponding to 〈A1A3〉〈A2A4〉 = 〈|A1|2〉〈|A2|2〉
is the largest among the contributions from

−−−→
NCP (2, 2) for large t, giving

sc◦[1, 4]sc◦[2, 3] =
(
1− J1(2t)J1(2t)

t2

)(
1− J1(2t)J1(2t)

t2

)
= 1 +O

( 1

t3

)
, t � 1,

where we also used the symmetry J1(−x) = −J1(x). Moreover, we obtain that, e.g.,

sc◦[1]sc◦[2, 3]sc◦[4] = O
( 1

t3

)
, t � 1,

with the remaining permutations in (4.45) yielding contributions of comparable or lower
order in the t → ∞ limit.

Lastly, we consider the marked partitions in (4.46), which correspond to the term
of Var[ξ] that contains 〈A1A2〉〈A3A4〉 = |〈A1A2〉|2. As we work in the macroscopic regime
of Theorem 2.7, Equation (2.18) coincides with the limiting covariance structure of the
CLT in [37, Sect. 2]. Hence, we obtain, e.g.,

sc[1|4] = 1

2π2

∫ 2

−2

∫ 2

−2

1− cos(t(x− y))

(x− y)2
4− xy

√
4− x2

√
4− y2

dxdy. (4.47)
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In particular, the cutoff χ does not enter the computation. Note that the expressions
for sc[1|4] and sc[2|3] resp. sc[1|3] and sc[2|4] yield the same contribution by symmetry.
The integral on the right-hand side of (4.47) is finite, however, it will grow with t as t → ∞.
To identify the asymptotics, we distinguish between the contributions of the bulk regime

4− xy
√
4− x2

√
4− y2

= O(1),

and the edge regime where the denominator (
√
4− x2

√
4− y2)−1 becomes singular. As

lim
t→∞

1

t

∫ 2

−2

∫ 2

−2

1− cos(t(x− y))

(x− y)2
= 4π,

the contribution of the bulk is readily identified to be O(t). In the edge regime, we
expand the square root in the denominator and further consider the contributions around
the diagonal (|x − y| . t−1) and away from it separately whenever x and y are close
to the same value. This also yields a bound of order O(t), implying that sc[1|4] = O(t).
Recalling the identity sc◦◦[1|4] = sc[1|4]− sc◦[1, 4] from (2.13), we obtain

sc◦◦[1|4]sc◦[2]sc◦[3] = O
( 1

t2

)
, t � 1.

The other marked partitions in 4.46 give rise to terms of comparable order. Summing up
all contributions yields (2.21). The proof of (2.22) is analogous and hence omitted.

A Proof of Corollary 3.4 (meta argument)

Recall from Lemma 2.3 that

E〈T1 . . . Tk〉 = m1[T1, . . . , Tk] +
κ4

N
E [T1, . . . , Tk] +O

( Nε

N
√
Nη∗ η

k−a/2
∗

)
,

i.e., E [T1, . . . , Tk] constitutes the first subleading term of E〈T1 . . . Tk〉. In particular, we
have

N(E〈T1 . . . Tk〉 −m1[T1, . . . , Tk]) = κ4E [T1, . . . , Tk] +O
( Nε

√
Nη∗ η

k−a/2
∗

)
, (A.1)

where the quantity on the left-hand side of (A.1) satisfies the properties stated in
Corollary 3.4. For E〈T1 . . . Tk〉, this is immediate from the cyclicity of the trace and the
resolvent identity GkG1 = Gk−G1

zk−z1
, while the corresponding properties for m1[·] follow

from (1.17) and [13, Lem. 5.4]. Note that (3.4) is a special case of (3.3) and that (3.5)
is obtained by iterating (3.4). Once the formula (3.5) is established, the permutation
symmetry readily follows from the divided difference structure. Hence, Corollary 3.4(iii)
follows from (i) and (ii).

It remains to show that E [·] satisfies the same cyclicity and divided difference proper-
ties as the quantity on the left-hand side of (A.1). Note that simply taking the N → ∞
limit and applying Lemma 2.3 is not sufficient if Aj 6= Id for some j, as the deterministic
matrices are themselves N -dependent quantities. Instead, let L ∈ N and consider the
NL×NL Wigner matrix W as well as the deterministic matrices A1, . . . ,Ak ∈ CNL×NL.
Here, W is defined using the same random variables χd, χod as W (i.e.,

√
NW and√

NLW have the same entry distribution) and we define

Aj := Aj ⊗ IdL×L, j = 1, . . . , k,
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where ⊗ denotes the tensor product, i.e.,

Aj =

 (Aj)11IdL×L · · · (Aj)1N IdL×L

...
. . .

...
(Aj)N1IdL×L · · · (Aj)NN IdL×L

 .

Next, let Gj := (W − zj)
−1 and Tj := GjAj for j = 1, . . . , k and denote by m1[T1, . . . ,Tk]

the deterministic approximation of 〈T1 . . .Tk〉. As both W and W are Wigner matrices
and 〈AiAj〉 = 〈(AiAj)⊗ IdL×L〉 = 〈AiAj〉 by definition of the tensor product, it follows
from the closed form of m1[·] in [13, Thm. 2.6] that

m1[T1, . . . ,Tk] = m1[T1, . . . , Tk]. (A.2)

Similarly, the 1/N error term of E〈T1 . . .Tk〉 is given by E [T1, . . . , Tk], since (A.2) ensures
that we obtain the same recursion from Definition 3.1.

We thus conclude that

|E [T1, . . . , Tk]− E [T2, . . . , Tk, T1]|

≤ |E [T1, . . . , Tk]−N(E〈T1 . . .Tk〉 −m1[T1, . . . ,Tk])|

+ |E [T2, . . . ,Tk,T1]−N(E〈T2 . . .Tk,T1〉 −m1[T2, . . . ,Tk,T1])|

= O
( (NL)ε
√
NLη∗ η

k−a/2
∗

)
by Lemma 2.3 for any η∗ � (NL)−1. Letting L → ∞ while keeping all other parameters
N, z1, . . . , zk, A1, . . . , Ak fixed yields

E [T1, . . . , Tk] = E [T2, . . . , Tk, T1],

i.e., E [·] is cyclic as claimed in part (i) of Corollary 3.4. Similarly, we obtain that∣∣∣E [T1, . . . , Tk−1, Gk]−
E [T2, . . . , Tk−1, GkA1]− E [T1, . . . , Tk−1]

zk − z1

∣∣∣ = O
( (NL)ε
√
NLη∗ η

k−a/2
∗

)
whenever z1 6= zk and Ak = Id, which implies (3.3). Recalling that (i) and (ii) of
Corollary 3.4 imply (iii), the proof is complete.
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