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Abstract
We investigate the relation between Bose–Einstein condensation (BEC) and superfluidity in the
ground state of a one-dimensionalmodel of interacting bosons in a strong randompotential.We
prove rigorously that in a certain parameter regime the superfluid fraction can be arbitrarily small
while complete BECprevails. In another regime there is both complete BEC and complete super-
fluidity, despite the strong disorder.

1. Introduction

One of the intruiging issues in the theory of superfluidity is the question of its relation to Bose–Einstein
condensation (BEC). A precise formulation of this question requires precise definitions of the concepts. In the
case of BEC, the universally accepted definition is in terms of themacroscopic occupation of some one particle
state,measured by the largest eigenvalue of the one particle densitymatrix of themany body state [1]. In the case
of superfluidity, on the other hand, the definition is not so clear cut. As emphasized by Leggett [2] onemust
distinguish between dynamical aspects such as frictionless flow at afinite speed, and the response of the system
to an infinitesimally small imposed velocity field, e.g. through slow rotation of a container. The latter is easier to
handlemathematically and in the followingwe shall use the customary definition of the superfluid fraction as
the second derivative with respect to the velocity at zero of the energy per particle [3]. This definition can
equivalently be formulated in terms of twisted boundary conditions.

For liquid helium4 there is experimental and numerical evidence for almost complete superfluidity near
absolute zerowhile the BEC fraction is less than 10% [4]. Also, a one-dimensional hard-core Bose gas is an
example of a system that is superfluid in the ground state butwhere BEC is absent. In general it has been argued,
see e.g. [5], that neither condition is necessary for the other, and that disordermay destroy superfluidity while
BECprevails [6–9]. Amathematical investigation of this question, however, is hampered by the fact that a
rigorous proof of BEC in a systemof interacting Bosons is a notoriously difficult problem that has only been
solved in a few special cases. One such case is the proof of both complete BEC and complete superfluidity in the
ground state of a dilute Bose gas in a smooth trapping potential in theGross Pitaevskii (GP) limit [10, 11].

In recent years the interplay between interactions and disorder inmany body systems has been studied in
manyworks, both theoretically and experimentally. It is not the intention here to give a review of the subject but
wemention the references [12–24] as a representative sample. In [25] (see also [26]) a one-dimensionalmodel
of an interacting Bose gas was studied and it was shown that complete BEC in the ground statemay survive a
strong randompotential in an appropriate limit. On the other hand, the randompotentialmay have drastic
effects on thewave function of the condensate and this can be expected to influence the superfluid behavior. In
this paper we analyze the density distribution of the condensate in thismodel in some detail and its implications
for superfluidity. Ourmain result is a rigorous proof that in a certain parameter regime the superfluid fraction
can be arbitrarily small although complete BECprevails, while in another regime there is both complete BEC
and complete superfluidity.
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Themodel we consider is the Lieb–Linigermodel [27] of bosonswith contact interaction on the unit interval
butwith an additional external randompotential ωV .We shall, however, notmake any use of the solution via
Bethe-ansatz in [27] of themodel without randompotential. TheHamiltonian on theHilbert space

⊗L z([0, 1], d ) N2 symm of square integrable symmetric wave functions of z z( ,..., )N1 with ⩽ ⩽z0 1i is

∑ ∑γ δ= −∂ + + −ω
= <

( )H V z
N

z z( ) ( ), (1)
i

N

z i

i j

i j

1

2
i

where γ ⩾ 0 andwe shall take periodic boundary conditions for the kinetic energy operator. Units have been
chosen such that Planckʼs constantℏ is 1 and the particlemass is1/2. The randompotential is taken to be

∑σ δ= −ω
ω( )V z z z( ) (2)

j

j

withσ ⩾ 0 independent of the random sampleωwhile the obstacles ωz{ }j arePoisson distributedwith density

ν ≫ 1, i.e., theirmean distance isν−1. TheHamiltonian (1) can be defined rigorously via the quadratic formon
the Sobolev space ⊗H ([0, 1] )N1 given by the expression on the right hand side of (1), noting that functions in the
Sobolev space can be restricted to hyperplanes of codimension 1. (The Sobolev spaceH ([0, 1]1 ) consists of
functions on[0, 1]that together with theirfirst derivative are square integrable.)

Since ourmodel is formulated in thefixed interval[0, 1]the particle density ρ tends to infinity as → ∞N .
Equivalently, we could have considered themodel in an interval −L L[ 2, 2]and takingN and → ∞L with
ρ = N L fixed, as done for instance in [24]. As explained in [26], section 4.4, the two viewpoints are connected
by simple scaling. For the purpose of the present investigationwe find it convenient to stick to themodel in the
unit interval. Physically, this can also be regarded as amodel of a gas in a very thin circular annulus.

In addition to the particle numberN themodel (1) has three parameters: ν, γ and σ. The limiting caseσ = ∞
amounts to requiring thewave function to vanish at the positions of the obstacles ωz j . In [25] it is shown that as

→ ∞N for fixed values of the parameters BEC takes place in the ground state. The ground state energy and the
wave function of the condensate are described by aGP energy functional (see below, equation (6)). In [25] it is
furthermore proved that the corresponding energy becomes deterministic, i.e., independent ofω in probability,
if the parameters satisfy the conditions

ν γ ν
ν

σ ν
ν γ

≫ ≫ ≫
+ +( )

1 ,
(ln )

,
1 ln 1

. (3)
2 2

In [25] it is explainedwhy these conditions are also necessary in order to obtain a deterministic energy and they
will be presupposed in all statements about themodel in the following.

Our newfindings about themodel can be summarized as follows.

MainResults:

• If γ ν≲ 2 the superfluid fraction is arbitrarily small, i.e., it goes to zero in the limit (3).

• The same holds forν γ ν≪ ≪2 4 providedσ γ ν γ≫ ( )2 2 1 2.

• If γ σν≫ ( )2 there is complete superfluidity, i.e., the superfluid fraction tends to 1.

The estimates that lead to these assertions are contained in equations (5), (60) and (63) below. Figure 1
illustrates the parameter regionswith andwithout superfluidity. (Note thatwe are concernedwith asymptotic
parameter regimes and the boundaries of the colored areas are notmeant to indicate sharp transitions.)

We nowdescribe briefly the organization of the paper. In the following section 2wefirst recall from [25] the
description of the ground state properties of theHamiltonian (1), in particular BEC, in terms of aGP functional.
For this it is not necessary to assume the special potential (2), andwe can state the results for an arbitrary
nonnegative potentialV. The same holds in section 2.2wherewe show that superfluidity in the ground state of
themany bodyHamilonian is, in the largeN limit, equivalent to superfluidity described in terms of theGP
theory. In section 3we shall derive a closed formula for the superfluid fraction ρsf :

⎛
⎝⎜

⎞
⎠⎟∫ρ ψ=

−
−

z z( ) d , (4)sf

0

1

0

2
1

whereψ0 is theminimizer of theGP energy functional.
A further general result (for an arbitrary nonnegative potentialV) that we prove in section 4 is an estimate for

the deviation of the density from1 in the sup norm∥ ∥∞· :

2
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∫
ψ

ψ γ

∥∣ ∣ − ∥

+ ∥∣ ∣ − ∥
⩽∞

∞

V
1

1 1

2
. (5)

0
2 2

0
2

3 2

0

1

When applied to = ωV V this leads immediately to the sufficient criterion γ σν≫ ( )2 for complete superfluidity.
The absence of superfluidity in the randompotential for weak interactions and/or high density of scatterers

is derived in section 5.

2. BEC and superfluidity in theGP limit

2.1. BEC
An important fact about theHamiltonian (1) that was proved in [25] is BEC in the ground state in the limit when

→ ∞N and γ isfixed (GP limit), or does not grow too fast withN. This holds in fact also if ωV is replaced by an
arbitrary positive potentialV. Thewave function of the condensate (eigenfunction to the highest eigenvalue of
the one particle densitymatrix) is theminimizerψ0 of theGP energy functional

⎜ ⎟
⎛
⎝

⎞
⎠ ∫ψ ψ ψ γ ψ= ′ + +z V z z z z[ ] ( ) ( ) ( )

2
( ) d (6)GP

0

1
2 2 4

with the normalization∫ ψ =| | 1
0

1 2 . Theminimizerψ0 is also the ground state of themeanfieldHamiltonan

∫γ ψ γ ψ= −∂ + + ∣ ∣ − ∣ ∣h V z( )
2

(7)z
2

0
2

0

1

0
4

with eigenvalue  ψ=e [ ]0
GP

0 . The average occupation of the one particle stateψ0 in themany-body ground state

Ψ0 ofH is Ψ ψ ψ Ψ= 〈 〉N a a, ( ) ( )0 0
†

0 0 0 with ψa ( )†
0 and ψa ( )0 the creation and annihilation operators forψ0. BEC

is expressed through the estimate

⎜ ⎟⎛
⎝

⎞
⎠ γ γ− ⩽

−
− { }N

N

e

e e
N1 (const. ) min , , (8)0 0

1 0

1 3 1 2

where e1 is the second lowest eigenvalue of themeanfieldHamiltonian (7).Moreover, the ground state energy
per particle ofH converges to theGP energy e0, see equations (14) and (17) below.

2.2. Superfluidity
Todiscuss superfluidity wemodify the kinetic termof theHamiltonian, replacing ∂i by ∂ + vi with a velocity

∈v .4We thus consider

Figure 1.Red: absence of superfluidity. Green: complete superfluidity.

4
More correctly, v stands formass times velocity andwith our choice of units themass is1/2, so v is really half the physical velocity.

3
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∑ ∑γ δ= ∂ + + + −
= <

{ }( )H v V z
N

z zi ( ) ( ) (9)v

j

N

z j

i j

i j

1

2

j

on ⊗L z([0, 1], d )2 N
symm with periodic boundary conditions. Note that we could equivalently consider the

Hamiltonianwithout v in the kinetic term if we impose twisted boundary conditions on thewave function in
each variable zj, i.e.

Ψ Ψ= −− + − +( ) ( )z z v z z..., , 1, ,... exp ( i ) ..., , 0, ,... . (10)j j j j1 1 1 1

The unitary transformation between a periodic wave functionΨper and the corresponding twistedwave function
Ψtwist is

Ψ Ψ= − + ⋯ +( )( )z z v z z z z( ,..., ) exp i ( ,..., ). (11)N N Ntwist 1 1 per 1

LetE v( )0
QM denote the ground state energy of (9) and let e v( )0 denote the corresponding ground state energy

of themodifiedGP functional

⎜ ⎟
⎛
⎝

⎞
⎠ ∫ψ ψ ψ ψ γ ψ= ′ + + +z v z V z z z z[ ] i ( ) ( ) ( ) ( )

2
( ) d . (12)v

GP

0

1
2 2 4

For small enough v,v has a uniqueminimizer, denoted byψv, and e v( )0 is equal to the ground state energy of the
meanfieldHamiltonian

∫γ ψ γ ψ= ∂ + + + ∣ ∣ − ∣ ∣( )h v V z zi ( ) ( )
2

. (13)v z v v

2 2

0

1
4

Takingψ ⊗
v

N as trial function for theHamiltonianHvwe obtain

⩽E v N e v( ) ( ). (14)0
QM

0

For the lower boundwewrite in the sameway as equation (7) in [25]

⎜ ⎟

⎜ ⎟
⎧⎨⎩

⎛
⎝

⎞
⎠

⎫⎬⎭
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

∑

∑

ε

ε γδ

= − − ∂ + +

+ ∂ + + ∂ + + −

=

<

( )

( )( )

H
N

N
v V z

N
v v z z

1
1

2
i ( )

1

2
i i ( ) . (15)

v

j

N

z j

i j

z z i j

1

2

2 2

j

i j

Wemaynowuse the diamagnetic inequality ([28], page 193) to bound an expectation value of the second term
with respect to anywave functionΨ frombelowby the expectation value of

⎡
⎣⎢

⎤
⎦⎥∑ ε γδ−∂ − ∂ + −

<
( )N

z z
1

2
( ) (16)

i j

z z i j
2 2

i j

with respect to Ψ| |. Proceeding exactly as in [25], equations (12)–(17), we can thus boundHv frombelow in
terms of themeanfieldHamiltonianwith controlled errors terms, arriving at the lower bound for the ground
state energy

γ γ⩾ − −( { })E v N e v N( ) ( ) 1 (const) min , . (17)0
QM

0
1 3 1 2

Weconclude that in theGP limit the superfluid fraction

ρ = −
→ →∞

( )
v N

E v Elim
1

lim
1

( ) (0) (18)
v N

sf

0 2 0
QM

0
QM

is the same as the corresponding quantity derived from theGP energy, i.e.

ρ = −
→

( )
v

e v elim
1

( ) (0) . (19)
v

sf

0 2 0 0

Note that in (18) the order inwhich the limits are taken is important in general. Also, there is no factor 2 on the
right side of (18) because with our choice of units themass is1/2. Using theGPminimizer for v=0 as a trial state
for (12) we see that ρ ⩽ 1sf . Note also that the error term in (17) is independent ofV and uniformly small in γ for
γ ≪ N 2 3. Finally, we remark that the energy defined by (12)with periodic boundary conditions is the same as
the energy defined by the functional without v in the kinetic term, i.e., (6), butwith twisted boundary conditions.

4
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3. Proof of equation (4)

In this sectionwe shall prove the formula (4) for the superfluid density.We start with the variational equation for
ψv which is

ψ ψ γ ψ ψ μψ∂ + + + ∣ ∣ =( )v z V z z z z zi ( ) ( ) ( ) ( ) ( ) ( ). (20)z v v v v v

2 2

Wemultiply this by ψ̄v and take the imaginary part, to obtain

I⎡⎣ ⎤⎦ψ ψ ψ∂ ∣ ∣ − =( )v z z z z( ) ¯ ( )d ( ) d 0. (21)z v v v
2

Hence there exists a constant ∈C such that

I⎡⎣ ⎤⎦ψ ψ ψ= ∣ ∣ −z z z v z C¯ ( )d ( ) d ( ) . (22)v v v
2

Since

I⎡⎣ ⎤⎦∫ ψ ψ= −e v v v z z z zd ( ) d 2 2 ¯ ( )d ( ) d d (23)v v0
0

1

we actually see that =C e v v1/2 d ( ) d0 . Sinceψv depends continuously on v for small v and is without zeros for

v=0, it also has no zeroes for small v. Hencewe can divide by ψ∣ ∣z( )v
2 and obtain

I⎡⎣ ⎤⎦ψ ψ

ψ ψ
′ =

∣ ∣
= −

∣ ∣
S z

z z z

z
v

C

z
( ) :

¯ ( )d ( ) d

( ) ( )
. (24)

v v

v v
2 2

Since ′S is, in fact, the derivative of the phase ofψv, i.e.,ψ ψ= ∣ ∣z z( ) ( ) ev v
S zi ( ), we have, for a systemwith periodic

boundary conditions

∫ π′ =S z z n( )d 2 (25)
0

1

for ∈n . Appealing again to continuity ofψv in v and the fact thatψv is a real function for v=0,we conclude that
n=0 for small enough v. Therefore

∫ ψ= ∣ ∣−v C z z( ) d . (26)v
0

1
2

Weplug this into (23), to obtain

⎛
⎝⎜

⎞
⎠⎟∫ ψ′ = = ∣ ∣−

−
e v C v z z( ) 2 2 ( ) d . (27)v0

0

1
2

1

With

ρ =
′

→

e v

v
lim

( )

2
(28)

v

sf

0

0

this leads to the formula (4).

4. Proof of equation (5)

Wenowderive the bound (5)which quantifies the deviation of theGPminimizer from a constant in terms of the
average value of the randompotential and the interaction strength.

Functions f in the Sobolev spaceH ([0, 1])1 are continuous, and hence∫ =f 0
0

1
implies that =f z( ) 0 for

some ∈z [0, 1]. For such f, we have

∫= ′f x f y f y y( ) 2 ( ) ( )d (29)
z

x
2

and hence

∥ ∥ ⩽ ∥ ′∥ ∥ ∥∞f f f2 , (30)2
2 2

where∥ ∥∞· is the sup norm and∥ ∥· 2 the L
2-norm.We apply this to ψ= −f x x( ) | ( )| 12 for an L2-normalized

functionψ . This gives

5

New J. Phys. 17 (2015) 013022 MKönenberg et al



ψ ψ ψ ψ ψ ψ ψ∥ − ∥ ⩽ ∥ ′ ∥ ∥ − ∥ ⩽ ∥ ′∥ ∥ ∥ ∥ − ∥∞ ∞1 4 1 4 1 . (31)2 2
2

2
2 2

2
2

We further bound ψ ψ∥ ∥ ⩽ + ∥ − ∥∞ ∞1 | | 12 2 and hencefind

ψ ψ
ψ

ψ
∥ ′∥ ∥ − ∥ ⩾

∥ − ∥

+ ∥ − ∥
∞

∞

1
1

4

1

1 1
. (32)2

2
2

2 2

2

In particular, for γ > 0

∫ψ γ ψ ψ γ ψ γ

γ γ ψ ψ

γ γ ψ

ψ

∥ ′∥ + = ∥ ′∥ + ∥ − ∥ +

⩾ + ∥ ′∥ ∥ − ∥

⩾ +
∥ − ∥

+ ∥ − ∥
∞

∞

2 2
1

2

2
2 1

2 2

1

1 1
. (33)

2
2

0

1
4

2
2 2

2

2

2
2

2

3 2

2 2

2

For ⩾V 0 theGPminimizerψ0 satisfies (takeψ ≡ 1as a trial function)

∫ ∫ ∫ ∫ψ γ ψ ψ ψ γ ψ γ∥ ′∥ + ∣ ∣ ⩽ ∥ ′∥ + ∣ ∣ + ∣ ∣ ⩽ +V z z z V
2

( ) ( ) d
2 2

, (34)0 2
2

0

1

0
4

0 2
2

0

1

0
2

0

1

0
4

0

1

so

∫
ψ

ψ γ

∥∣ ∣ − ∥

+ ∥∣ ∣ − ∥
⩽∞

∞

V
1

1 1

2
. (35)

0
2 2

0
2

3 2

0

1

Since∫ ωV
0

1
is close toνσ with high probability, in the sense that the ratio converges to 1 in probability, we see

that ψ∣ ∣0
2 and hence also ψ∣ ∣−0

2 converges uniformly to 1 if γ σν≫ ( )2 as the parameters tend to∞. Thus the
superfluid fraction is equal to 1 by equation (4).

5. Absence of superfluidity

If is any (measurable) subset of[0, 1]with length | | it follows from equation (4) and theCauchy–Schwarz
inequality that


∫

ρ
ψ

⩽
∣ ∣z z( ) d

. (36)sf 0
2

2

Toprove that superfluidity is small we have therefore to identify subsets such that ∫ ψ z z| ( )| d0
2 is small, while

| | is not too small.
The randompoints ωz j split the interval[0, 1] into subintervals = ω ω

+z z[ , ]j j j 1 of various lengths

ℓ = −ω ω
+z zj i j1 . The lengths are independent randomvariables5 with identical probability distribution

ℓ ν ℓ=ν
νℓ−Pd ( ) e d . (37)

Weanticipate that intervals of small lengths have small occupation and shall therefore take

 = ⋃
ℓ ℓ⩽

(38)
j

j
: ˜j

with a suitably chosen ℓ̃. The average length of is

∫ν ℓ ℓ νℓ= = − +
ℓ

ν
νℓ−( )( )L Pd ( ) 1 1 ˜ e . (39)

0

˜
˜

In particular it tends to 1 if and only ifℓ ν≫ −˜ 1.
With the notation

∫ ψ= ∣ ∣n z z( ) d (40)j
GP

0
2

j

5
Strictly speaking, because of thefixed endpoints 0 and 1, the interval lengths are not quite independent, but since the number of intervals is

very large this does not affect the estimates.

6
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wedefine

∫ ∑ψ= ∣ ∣ =ω
ℓ ℓ⩽

N z z n( ) d . (41)s j, 0
2

˜

GP

j

Note thatψ0 andn j
GP also depend onω but we have suppressed this in the notation for simplicity.

Our estimate on ωNs, is based on estimates on theGP energy that were derived in [25]. These involve some
auxiliary quantities that we now recall.

5.1. The energy between obstacles
The energy in an interval where the obstacles are placed only at the endpoints is given by suitable rescaling of the
energy functional

⎜ ⎟
⎛
⎝

⎞
⎠ ∫φ φ κ φ α φ φ= ′ + + +κ α ( )x x x[ ] d ( )

2
( )

2
(0) (1) (42),

0

1
2 4 2 2

with κ ⩾ 0 andα ⩾ 0. Let κ αe ( , )denote the auxiliaryGP energy

κ α φ=
φ

κ α
∥ ∥ =

e ( , ) inf [ ]. (43)
1

,
2

The corresponding energy for an interval of lengthℓwithmass∫ φ = n| |
Interval

2 , coupling constant γ and

strength σ of the obstacle potential is then, by scaling

ℓ
ℓγ ℓσn

e n( , ). (44)
2

We shall use the following bounds on κ αe ( , ) that were derived in [25], equations (32) and (41):

κ κ α κ α∞ ⩾ ⩾ ∞ − −( )e e e K( , ) ( , ) ( , ) 1 (45)1 2

and

κ α α α
α

⩾ ⩾
+

e e
C

( , ) (0, )
1

. (46)

with constantsK andC independent of κ andα.

5.2. The interval density functional
With ℓ ⩾n ( ) 0 amass distribution on intervals of various lengthsℓwe define an ‘interval density functional’, see
[25], equation (42), as

 ∫ν ℓ
ℓ

ℓ
ℓ ℓγ= ∞ν

∞
n P

n
e n[ (·)] d ( )

( )
( ( ) , ) (47)IDF

0 2

with corresponding energy

 ∫ν γ ν ℓ ℓ= =ν
∞{ }e n P n( , ) inf [ (·)] : d ( ) ( ) 1 . (48)IDF IDF

0

This energy (denoted by γ νe ( , )0 ) is in [25], theorem 3.1, proved to be the deterministic limit (in probability) of
theGP energy under the conditions (3). Theminimization problem (48) is conveniently treated by introducing
a Lagrangemultiplier μ for the normalization condition on ℓn ( ). In [25], equations (45)–(47), it is shown that

μ γ ν γ∼ ( )f , (49)2

where  →+ +f : denotes the function

⎧
⎨⎪
⎩⎪

=
⩽

+
⩾f x

x
x

x
x( )

1 for 1

(1 ln )
for 1. (50)

2

Also γ ν γ ν γ∼e f( , ) ( )IDF 2 . A further result derived in [25] is that theminimizing ℓn ( )of the interval density
functional is nonzero if and only if μℓ π>2 2.We can therefore expect that themass (40) is small in intervals j

such thatℓ μ⩽ (const.)j andwe shallmake use of this in the following considerations.

5.3. Absence of superfluidity for γ ν≲ 2

Thefirst step is to split theGP energy γ ν σωe ( , , )GP , which is theminimumenergy of (6)with ωV in place ofV,
into contributions from ‘large’ and ‘small’ intervals:
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∑ ∑γ ν σ
ℓ

ℓ γ ℓ σ
ℓ

ℓ γ ℓ σ⩾ +ω
ℓ ℓ ℓ ℓ⩾ <

( ) ( )e
n

e n
n

e n( , , ) , , , (51)
j

j
j j j

j

j
j j j

GP

˜

GP

2
GP

˜

GP

2
GP

j j

where

ℓ μ= s˜ (52)

with a suitable s to be chosen later, and (by (49) and (50))

μ ν

ν γ
∼

+( )( )1 ln
. (53)

2

2
2

Note that, sinceσ ν ν γ≫ + +(1 ln (1 ))2 wehave

ℓσ ≫˜ 1 (54)

for γ ν≲ 2.
We estimate the sumover the small intervals using equations (46) and (52):

∑ ∑ ∑
ℓ

ℓ γ ℓ σ
ℓ

ℓ σ
ℓ

ℓ σ
ℓ σ

σ
ℓ ℓσ

μ σℓ
σℓ

⩾ ⩾
+

⩾
+

=
+

ℓ ℓ ℓ ℓ ℓ ℓ

ω ω

< < <
( ) ( )

( )

n
e n

n
e

n C

N
C

N
C

s

, 0,
1

·
˜ 1 ˜

·
˜

1 ˜ . (55)

j

j
j j j

j

j
j

j

j

j

j

s s

˜

GP

2
GP

˜

GP

2
˜

GP

2

, , 2

j j j

For the sumover the large intervals we use (45) to estimate

∑ ∑

∑

ℓ
ℓ γ ℓ σ

ℓ
ℓ γ ℓ σ

ℓ
ℓ γ ℓσ

⩾

⩾ ∞ −

∑

∑

ℓ ℓ ℓ ℓ⩾ = − ⩾

= −

−

ω

ω
( )

( ) ( )

( ) ( )

n
e n

n
e n

n
e n K

, inf ,

inf , 1 ˜ . (56)

j

j
j j j

n N

j

j
j j j

n N
j

j

j
j j

˜

GP

2
GP

1 ˜
2

1 2

1 2

j
i s

j

i s

,

,

Apart from the factor ℓσ− −K(1 ( ˜ ) )1 2 the right side is theGP energy forσ = ∞with normalization

∫ ψ = − ωN| | 1 s
2

, instead of∫ ψ =| | 12 . By simple scaling this is − ωN1 s, times the theGP energywith

normalization 1 and γ replaced by γ− ωN(1 )s, , which in turn is not smaller than − ωN(1 )s,
2 times

γ ν ∞ωe ( , , ).GP Wecan further estimate

γ ν γ ν σ− ∞ ⩾ −ω ω ω ω( ) ( )N e N e1 ( , , ) 1 2 ( , , ) (57)s s,
2 GP

,
GP

and putting (55), (56) and (57) together we obtain

γ ν σ
μ

σℓ
σℓ

γ ν σ
μ

ℓσ⩾
+

+ − −ω
ω ω

ω −( )( ) ( )e
N

C

s
N

e
K

( , , )
·

˜

1 ˜ 1 2
( , , )

1 ˜ . (58)s s

GP

, 2 ,

GP
1 2

If ν, γ and σ tend to infinity under the constraints (3), the ratio γ ν σ μωe ( , , )GP stays bounded (in probability)

according to theorem 3.1 in [25].Moreover, for if γ ν≲ 2 we have by (53) and (3)

σℓ σ μ= ≫s˜ 1. (59)

For γ ν σ μ> ωC s e2 ( , , )2 GP we thus arrive at an estimate for themass in the small intervals:

γ ν σ
μ

μ
σ

⩽ω
ωN

e
(const. )

( , , )
· , (60)s,

GP 1 4

1 2

and since, by (59)

μ σ ≪ 1 (61)1 4 1 2

wehave shown that →ωN 0s, in probability if γ ν≲ 2 and the conditions (3) holds.

Now according to (36) the superfluid fraction is bounded from above by ω ωN Ls,
2 where ωL is the total length

of intervals of length ℓ⩽ ˜. The latter converges in probability to the expectation value

∫ν ℓ ℓ νℓ= = − +
ℓ

ν
νℓ−( )( )L Pd ( ) 1 1 ˜ e , (62)

0

˜
˜
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provided the fluctuations remain small. For γ ν≪ 2 wehaveℓν ≫˜ 1 (by (53)) and the length L converges to 1 as
ν → ∞, while for γ ν∼ 2 the length stays bounded away from0becauseℓν˜ isO (1). Thefluctuations are

ν−O ( ).1 2 Hence the superfluid fraction tends to 0 in probability for γ ν≲ 2.

5.4. The case γ ν≫ 2

Here μ γ∼ andwe takeℓ μ γ ν∼ ∼ ≪− − −˜ 1 2 1 2 1.We need in any caseσℓ ≫˜ 1, i.e.,σ γ≫ 1 2, which is
compatible with the conditions (3). In the sameway as abovewe obtain (60), this timewith μ γ∼ .

Sinceνℓ ν γ∼ ≪˜ 11 2 , however, the average length of the small intervals is now ν γ∼ ≪L ( ) 11 2 2 rather
thanO (1) as for γ ν≲ 2. To exclude superfluidity we need

γ σ γ ν∼ ≪ω ( )( )N L 1 (63)s,
2 1 4 1 2 2

2

which holds for

σ γ ν γ≫ ( ) . (64)2 4 1 2

This condition is still not sufficient, however, because the estimate ν γ∼ωL ( )1 2 2 can only be claimed to be true
in probability as long as thefluctuations of the random variable ℓ= ∑ω ℓ ℓ⩽L j˜

j
are small compared to its average

value, L. A sufficient condition for this is that ∫ν ℓ ℓ ≪ℓ
νP Ld ( )

0

˜
2 2, which holds for γ ν≪ 4. Altogether we

conclude that the superfluid fraction tends to 0 in probability, if (64) together withν γ ν≪ ≪2 4 hold.

6. Concluding remarks

Wehave studied superfluidity in the ground state of a one-dimensionalmodel of bosonswith a repulsive contact
interaction and in a randompotential generated by Poisson distributed point obstacles. In theGP limit this
model always shows complete BEC, but depending on the parameters, superfluiditymay ormay not occur. In
the course of the analysis we derived the closed formula (4) for the superfluid fraction, expressed in terms of the
GPwave function.

The advantage of thismodel is that it is amenable to a rigorousmathematical analysis leading to
unambiguous statements. It has its limitations: nothing is claimed about positive temperatures and the proof of
BEC requires that the ratio between the coupling constant for the interaction and the density tends to zero as

→ ∞N . Nevertheless, to our knowledge this is the onlymodel where a Bose glass phase in the sense of [9], i.e.,
complete BECbut absence of superfluidity, has been rigorously established so far.
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