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Automatic feature selection andweighting in
molecular systems using Differentiable
Information Imbalance

Romina Wild1,5, Felix Wodaczek 2,5, Vittorio Del Tatto 1,5, Bingqing Cheng2,3 &
Alessandro Laio 1,4

Feature selection is essential in the analysis of molecular systems and many
other fields, but several uncertainties remain: What is the optimal number of
features for a simplified, interpretable model that retains essential informa-
tion?Howshould featureswithdifferent units be aligned, andhowshould their
relative importance be weighted? Here, we introduce the Differentiable
Information Imbalance (DII), an automated method to rank information con-
tent between sets of features. Using distances in a ground truth feature space,
DII identifies a low-dimensional subset of features that best preserves these
relationships. Each feature is scaled by a weight, which is optimized by mini-
mizing the DII through gradient descent. This allows simultaneously per-
forming unit alignment and relative importance scaling, while preserving
interpretability. DII can also produce sparse solutions and determine the
optimal size of the reduced feature space. We demonstrate the usefulness of
this approach on two benchmark molecular problems: (1) identifying collec-
tive variables that describe conformations of a biomolecule, and (2) selecting
features for training a machine-learning force field. These results show the
potential of DII in addressing feature selection challenges and optimizing
dimensionality in various applications. The method is available in the Python
library DADApy.

Data sets are growing in number, in width, and in length. This abun-
dance in data is generally used for two purposes: Predicting and
understanding; likewise, feature selection has two essential aims:
Model improvement and interpretability. Very often, most of the fea-
tures defining a data point are redundant, irrelevant, or affected by
large noise, and have to be discarded or combined, yet not many user-
friendly, reliable feature selection packages exist. For predictive
modeling, feature selection is an important preprocessing step, as it
helps to prevent overfitting and increases performance and efficiency1.
In a study on leukemia cancer, for example, it was demonstrated that
the disease can be best identified using just 19 out of more than 7000

genes2. The other aim of feature selection is finding interpretable low-
dimensional representations of high-dimensional or complex feature
spaces1, such as those generated by molecular dynamics (MD) simu-
lations, or learned by neural networks3, UMAP4,5 or stochastic neighbor
embedding methods6. For example, MD trajectories produce an
enormous number of variables, yet within one graph one can only
visualize the free energy landscape in two or three dimensions that are
preferably interpretable7. In fields like finance and medicine, finding a
small number of interpretable variables is especially important for
understanding the mechanisms of stock markets8 or diseases9–11 and
can improve predictions12.
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Feature selection methods can be broadly divided into wrapper,
embedded, and filter methods13. Wrapper methods use a downstream
task, such as a prediction, as the feature selection criterion, but suffer
fromcombinatorial explosion problems. If the downstream task is akin
to a classification problem, then embeddedmethods can performwell
because they incorporate feature subset selection into the training13.
These algorithms are often based on regression14,15 or on support
vector machines16,17. Filter methods, on the other hand, are indepen-
dent of a downstream task andmake useof a separate criterion to rank
features. They are chosen if the downstream tasks cannot be modeled
easily or involve several different models. While most wrapper and
embedded methods are supervised by definition, filter methods
include both, supervised and unsupervised formulations. Instead of
using target data, unsupervised filter techniques exploit the topology
of theoriginal datamanifold in variousways18–22. The classic supervised
filters include correlation coefficient scores, mutual information23, chi-
square tests, and ANOVA methods24, which are efficient but typically
consider one feature at a time, resulting in selected subsets with
redundant information1. Specific supervised feature subset evaluation
filters like FOCUS rely on enumerating all possible subsets25,26, similarly
to wrapper methods, and they are affected by the same combinatorial
problems. The relief algorithm and its variants26,27 aremore efficient as
they do not explicitly evaluate the feature subsets. Instead, they
employ nearest neighbor information to weight features, but the
identified subsets can still include redundant features26. A review of
feature selection filter methods can be found in ref. 28. Overall, the
field of feature selection is clearly lacking the numerous powerful and
out-of-the-box tools that are available in related fields such as dimen-
sionality reduction.

The first, shared challenge in most of these feature selection
approaches is related to the choice of the number of variables that are
actually necessary to describe the system. A lower bound to such a
number is provided by the intrinsic dimension29, which is the dimen-
sion of the manifold containing the data. However, this number is
often scale-dependent30 and position-dependent31. Moreover, if one
wants to visualize the data within a single graph, the number of vari-
ables is necessarily limited to two or three. One could show several
low-dimensional projections of a high-dimensional distribution, but
this comes at the cost of readability, and a single plot is often prefer-
able. This typically implies neglecting part of the information, and
poses the problem of choosing which variables should be retained for
visualization.

A second complication arises when the variables are hetero-
geneous; in many cases, a data point is defined by features with dif-
ferent nature and units of measures, sometimes referred to as multi-
view features32. For example, in atomistic simulations, one can
describe a molecule in water solution by providing the value of all the
distances between the atoms of the molecule, which are measured in
nanometers, together with the number of hydrogen bonds that they
formwith the solvent, which are dimensionless. In the clinical context,
the features associated with a patient may include blood exams, gene
expression data, and many others33. In order to mix heterogeneous
variables in a low-dimensional description, feature selection algo-
rithms should enable the automatic learning of feature-specific
weights to correct for units of measure32 and information content34.

In this work, we propose a feature selection filter algorithmwhich
mitigates many of the aforementioned problems. Our approach aims
tofinda small subset of features that canbest reproduce theneighbors
of the data points based on a target feature space that is assumed to be
fully informative. The algorithm finds, for each input feature, an opti-
mal weight that accounts for different units of measure and different
importanceof the features. It also provides information on the optimal
number of features.

The approach builds on a measure called Information Imbalance
(Δ), which allows comparing the information content of distances in

two feature spaces35. Informally, the Information Imbalance quantifies
how well pairwise distances in the first space allow for predicting
pairwise distances in the second space, in terms of a score between 0
(optimal prediction) and 1 (randomprediction). Thismeasurehasbeen
applied to find the most informative mix of containment measures for
the COVID-19 pandemic35, compare the information content of dif-
ferent machine learning interatomic potentials36, assess the informa-
tion content of chemical order parameters37, measure the relative
information content of Smooth Overlap of Atomic Orbitals (SOAP)
descriptors38, and recently, to infer the presence of causal links in high-
dimensional time series39. In all these works, the distance space max-
imizing the prediction quality has been constructed by means of
strategies including full combinatorial search of the optimal features37,
greedy search approaches33, and grid search optimization of scaling
parameters39, with drawbacks related to the algorithm efficiency.

Here we make a major step forward by introducing the Differ-
entiable Information Imbalance DII, which allows learning the most
predictive feature weights by using gradient-based optimization
techniques. The input feature space, aswell as the ground truth feature
space (targets, labels), can have any number of features. This provides
a data analysis framework for feature selection where the optimal
features and their weights are identified automatically. Moreover,
carrying out the optimization with a sparsity constraint, such as L1
regularization, allows finding representations of a data set formed by a
small set of interpretable features. If the full input feature set is used as
ground truth, then the approach can be used as an unsupervised fea-
ture selector, whereas it acts in a supervised fashion if a separate
ground truth is employed. To our knowledge, there is no other feature
selection filter algorithm implemented in any available software
package which has above mentioned capabilities. The DII algorithm is
publicly available in the Python package DADApy40 and a compre-
hensive description can be found in the according documentation41,
which includes a dedicated tutorial.

In the following, wewill first show the effectiveness of ourmethod
on artificial examples in which the optimal set of features is known.
Then wemove to a real-world application and show that our approach
allows addressing one of the most important challenges in molecular
modeling and solid state physics: Identifying the optimal set of col-
lective variables (CVs) for describing the configuration space of a
molecular system. As a second application, we use our method to
select a subset of Atom Centered Symmetry Functions (ACSFs),
descriptors of atomic environments, as input for a Behler-Parrinello
machine learning potential42, which learns energies and forces in sys-
tems of liquid water. In the same application, we show that SOAP43,44

descriptors can be used as ground truth to choose informative subsets
of ACSF descriptors.

Differentiable Information Imbalance
Given a data set where each point i can be expressed in terms of two
feature vectors, XA

i 2 RDA and XB
i 2 RDB (i = 1, …, N), the standard

Information ImbalanceΔ(dA→ dB) provides ameasure of the prediction
power which a distance built with features A carries about a distance
built with features B. The Information Imbalance is proportional to the
average distance rank according to dB, restricted to the nearest
neighbors according to dA35:

Δ dA ! dB
� �

: =
2

N2

X
i, j: rAij = 1

rBij : ð1Þ

Here, rAij (resp. r
B
ij) is the distance rank of data point j with respect to

data point i according to the distancemetric dA (resp. dB). For example,
rAij = 7 if j is the 7th neighbor of i according to dA. ΔðdA ! dBÞ will be
close to 0 if dA is a good predictor of dB, since the nearest neighbors
according to dA will be among the nearest neighbors according to dB. If
dA provides no information about dB, instead, the ranks rBij in Eq. (1) will
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be uniformly distributed between 1 and N − 1, and ΔðdA ! dBÞ will be
close to 1. As shown in ref. 39, the estimation of Eq. ((1)) can potentially
be improvedby considering kneighbors for eachpoint. ConsideringdB

as the ground truth distance, the goal is identifying the best features in
space A tominimize Δ(dA → dB). If the features in A and the distances dA

are chosen in such a way that they depend on a set of variational
parametersw, finding the optimal feature space A requires optimizing
Δ dAðwÞ ! dB
� �

with respect to w. However, Δ is defined as a condi-
tional average of ranks, which cannot be minimized by standard
gradient-based techniques.

Here we extend Eq. (1) to a differentiable version that we call
Differentiable Information Imbalance (DII) in order to automatically
learn the optimal distance dA(w). We approximate the non-differenti-
able, rank-dependent sum in Eq. (1) by introducing the softmax coef-
ficients cij:

DII dAðwÞ ! dB
� �

: =
2

N2

XN
i, j = 1

ð j≠iÞ

cijðλ,dAðwÞÞ rBij , ð2Þ

where

cijðλ,dAðwÞÞ := e�dA
ij ðwÞ=λP

mð≠iÞe
�dA

imðwÞ=λ
: ð3Þ

The coefficients cij in Eq. (2) approximate the constraint rAij = 1, such

that cij ! δ1, rAij
as λ → 0 (δ denotes the Kronecker delta). Therefore, as

illustrated in the tutorial Differentiable Information Imbalance
in ref. 41, in the limit of small λ the DII converges to Δ:

lim
λ!0

DII dAðwÞ ! dB
� �

=Δ dAðwÞ ! dB
� �

: ð4Þ

For any positive and small λ, the quantityDIIðdA ! dBÞ canbe seen as a
continuous version of the Information Imbalance, where the coeffi-
cients cij assign, for eachpoint i, a non-zero and exponentiallydecaying
weight to points j ranked after the nearest neighbor in space dA. The
parameter λ is chosen according to the average and minimum nearest
neighbor distances (see “Methods”).

The DII is differentiable with respect to the parametersw for any
distance dA which is a differentiable function of w. In this work, we
assume that the variational parameters are weights,w= ðw1, . . . ,wDA Þ,
scaling the features in space A as w� XA

i = ðw1 X 1
i , . . . ,w

DA XDA
i Þ (the

symbol ⊙ denotes the element-wise product). We construct dA(w) as
the Euclidean distance between these scaled data points, dA

ij ðwÞ=
k w� ðXA

i � XA
j Þ k. In this case, the coefficients cij can be written as

cij =
e� w� XA

i �XA
j

� ��� ���� ��=λ
P

mð≠iÞe
� w� XA

i �XA
mð Þ

�� ���� ��=λ , ð5Þ

and the derivatives ofDIIðdAðwÞ ! dBÞ with respect to the parameters
wα can be computed:

∂
∂wα

DII dAðwÞ ! dB
� �

=
2wα

λN2

X
i, j

ði≠jÞ

cij r
B
ij

� ðXα
i � Xα

j Þ
2

k w� ðXA
i � XA

j Þ k
+
X
mð≠iÞ

cim
ðXα

i � Xα
mÞ

2

k w� ðXA
i � XA

mÞ k

 !
:

ð6Þ

These derivatives can be used in gradient-based methods to minimize
the DII with respect to the variational weights.

If one aims at a low-dimensional representation of the feature
space A, as in the case of feature selection, it is desirable that several of
the weights are set to zero. While for up to DA ~ 10 a full combinatorial
search of all feature subsets can be carried out, optimizing theDII over
each subset, for larger feature spaces a sparsification heuristic
becomes necessary. We complement the DII optimization with two
approaches for learning sparse features: Greedy backward selection
and L1 (lasso) regularization. Greedy selection removes one feature at a
time from the full set, according to the lowest weight. L1 regularization
selects the subset of features that optimizes the DII while simulta-
neously keeping the L1 norm of the weights small (see “Methods”).
While greedy backward selection gives reliable results for up to ≈100
features, in larger feature spaces this algorithm becomes computa-
tionally demanding, and it is advisable to use L1 regularization to find
sparse solutions.

Results
Benchmarking the approach: Gaussian random variables and
their monomials
We first test theDII approach using two illustrative exampleswhere the
distances dA(w) and dB are built with the same features, so that the
target weights minimizing Eq. (2) are known. In particular, we take as
ground truth distance dB the Euclidean distance in the space of the
scaled data points wGT ⊙ Xi, where the weights wGT are fixed and
known. We aim at recovering the target weights by scaling the
unscaled input features, w ⊙ Xi, with the proposed DII-minimization.

In each example, we carry out several optimizations, both without
any regularization term and in presence of a L1 penalty, which induces
sparsity in the learned weights. For each optimization, we employ a
standard gradient descent algorithm, initializing the parameters w
with the inverse of the features’ standarddeviations (see “Methods” for
further details). In order to judge the quality of the recovered weights
in the various settings, we calculate the cosine similarity between the
vector of the optimizedweights andwGT. This evaluationmetric, which
is bounded between 0 (minimum overlap) and 1 (maximum overlap),
only depends on the relative angle between the two vectors, reflecting
the fact that theDII allows to recover the targetweights up to auniform
scaling factor (“Methods”).

In the first example, we use a data set of 1500 points drawn from
a 10-dimensional Gaussian with unit variance in each dimension, and
we construct a ground truth distance dB by assigning non-zero
weights wα

GT to all its 10 components (Table 1). The target weights
w6

GT tow10
GT are close to zero, such that these features carry almost no

information.
The optimization without any L1 regularization yields a very good

result in terms of DII and overlap (blue in Fig. 1A I and II). If a soft L1
regularization strength is employed, the results are qualitatively the
same, but the irrelevant features α = 6–10 receive zero weights, indu-
cing sparsity and leading to an effective feature selection (green in
Fig. 1A II). Table 1 shows the learned weights for different strengths of
the L1 penalty, scaled in suchaway that the largestweight is identical to
the largest component ofwGT. Since inDII only the relative weights are
important, this scaling is permissible and helps illustrating the com-
parison. By increasing the regularization strength, more features are
set to zero following the order of their ground truth weights. When
features of higher importance, namely with higher ground truth
weights, are forced to zero by the regularization, then the resultingDII
increases and the cosine similarity decreases, showcasing the loss of
information (Fig. 1A II, Table 1).

Secondly, to test the method in a high-dimensional setting, we
created a data set with 285 features including all the products up to
order three of the 10 Gaussian random variables used in the previous
example. Products of Gaussian random variables are distributed
according to Meijer G-functions, which may not be Gaussian45. The
ground truth distance dB is here built by only selecting ten of these
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monomials, with various weights (Table 2). All other feature weights in
the ground truth can be considered zero.

Since in this case the correct solution is very sparse in the full
feature space, an appropriate sparsity-inducing regularization
becomes essential to obtain good results. Without any L1 regulariza-
tion, all the 285 features receive a non-zeroweight. Even if, in this case,
the ground truth features are assigned the highest weights, there
might not be a clear cut-off in theweight spectrum to distinguish them
from the less-informative features.

As shown in Fig. 1B, the correct level of regularization can be
identified by computing the DII as a function of the non-zero features
or regularization strength. The intermediate L1 strength of 0.0001

results in the best performance, as it coincides with the lowest DII and
the largest weight overlap (orange in Fig. 1B I and II). The eight most
relevant ground truth features are correctly identified, with an overlap
between the learned and the ground truthweights which is remarkably
close to 1.

Furthermore, panel I in Fig. 1B shows that weights found with L1
regularization have a lower DII than the ones without L1 regularization
in the same optimization time, whichmeans that the weights resulting
from a certain level of regularization are effectively better than the
unregulated ones. As in the previous example, when the regularization
is too strong, someof the relevant features are discarded, resulting in a
drop in theweight overlap and an increase in theDII (Fig. 1B II, Table 2).

Table 1 | Ground truth weights, optimized weights, and optimization details for the 10 Gaussian random variables corre-
sponding to Fig. 1A

Features L1 reg. Nnz. DII

X 1 X2 X3 X4 X5 X6 X 7 X8 X9 X 10

Ground truth weights

5.0 2.0 1.0 1.0 0.5 10−4 10−4 10−4 10−4 10−4

DII optimized weights

5.0 2.3 1.2 1.2 0.6 10−9 10−12 10−9 10−9 10−9 None 10 0.003

5.0 2.1 1.1 1.1 0.5 0 0 0 0 0 0.0001 5 0.002

5.0 2.0 1.1 1.1 0 0 0 0 0 0 0.0002 4 0.005

5.0 0.5 0 0.2 0 0 0 0 0 0 0.0068 3 0.039

5.0 0.6 0 0 0 0 0 0 0 0 0.01 2 0.085

The feature space consists of ten independent and identically distributedGaussian randomvariables, X1–X10. The same features are used as ground truth, but scaled.Optimizedweights are shown at
selected L1 regularization strengths (L1 reg.), and the resulting number of nonzero features (Nnz.) and Differentiable Information Imbalance (DII) are provided.

Fig. 1 | DII feature selection applied to Gaussian random variables and their
monomials. A The input features are ten independent and identically distributed
Gaussian randomvariables, X1–X10. The same features are used as ground truth, but
scaled. I Differentiable Information Imbalance (DII), with (orange) and without
(blue) L1 regularization in the optimization. The insets show two exemplary fea-
tures, with the weights during optimization (orange) and the ground truth weights
(gray). II Cosine similarity (overlap) of the ground truth and optimized weights in

gray, andDIIs in blackwith coloredmarkers, for several L1 strengths and associated
numbers of non-zero features. Table 1 provides the ground truth and optimized
weights for points in this graph. B The feature space consists of the 285monomials
up to order three of the ten Gaussian random variables from (A). As ground truth,
ten features were selected at random and scaled,while all the other featureweights
are zero. I, II Analogous to (A). Table 2 provides the ground truth and optimized
weights for points in this graph. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-55449-7

Nature Communications |          (2025) 16:270 4

www.nature.com/naturecommunications


We then benchmarked the DII method against other feature
selection methods. We perform the benchmark on the example with
285 monomials, in which the ground truth is known.

There are very few methods available in software packages
which can be applied to the specific task we are considering, which is
selecting and scaling features from a high-dimensional input space
to be maximally informative about a multi-dimensional continuous
ground truth, defining a pairwise distance. Considering filter meth-
ods, we compare DII to relief-based algorithms (RBAs), specifically
RReliefF and MultiSURF, implemented in scikit-rebate46, which
support a continuous ground truth26. RBAs are filter methods that
weight features, but importantly only work with a one-dimensional
ground truth. This poses a problem for all use cases in this paper
because the ground truth is always defined by themulti-dimensional
vector of features used to compute the target distance. RBAs
extended to the multi-label case47,48 but, to our knowledge, are not
implemented in software packages. We apply scikit-rebate RReliefF
and MultiSURF for each ground truth dimension individually, and
sum the resulting weights with and without prior importance cutoff
(see Supplementary Information). The methods detect the most
important input feature in most cases, leading to overall cosine
similarities ranging from 0.56 to 0.84 for the various settings
(Supplementary Fig. 1).

As a second benchmark we use a method from scikit-learn49,
which can handle the task’s requirements: The decision tree regressor
(sklearn.tree.DecisionTreeRegressor). Unlike DII and the
RBAs, thismethod is not a filter but an embeddedmethod. The feature
selection is determined as a side product during the building of a
regressor model. There is no filter algorithm implemented in scikit-
learn which can solve a problem as posed here. Two distinct feature
importance measures implemented with the approach, the Gini
importance and the Permutation importance, lead to feature vectors
with a cosine similarity of up to 0.83 with respect to the ground truth.
In comparison, the DII method with a L1regularization of 0.0001
(orange in Fig. 1B) finds a weight vector with eight non-zero weights
and a cosine similarity of 0.99.

In conclusion, in both examples the DIImethod is able to recover
the ground truth weights with good accuracy, and better than the very
few other applicable methods, as measured by a larger weight overlap
with the ground truth. In the following sections, we apply our feature
selection method to cases in which the optimal solution is not known
and illustrate how our approach can be used to give an explicit system
description by extracting few features from a larger data set.

Identifying the optimal collective variables for describing a free
energy landscape of a small peptide
We now illustrate how the DII can be used to identify the most infor-
mative CVs to describe the free energy landscape of a biomolecule. As
opposed to the previous example, in this test the ground truth vari-
ables and the input variables are different sets.

We consider a temperature replica-exchange MD simulation
(400 ns, 340K replica analyzed only, dt = 2 fs)50 of the 10-residue
peptide CLN02551, which folds into a β-hairpin. The data set is com-
posed of 1429 frames (subsampled from 41,580 trajectory frames)
containing all atom coordinates. The ground truth metric dB is con-
structed in the feature spaceof all the 4278pairwise distances between
the 93 heavy atoms of the peptide, which can be assumed to hold the
full conformational information of the system. We consider a feature
space Awith ten classical CVs that do not depend on knowledge of the
folded state of theβ-hairpin peptide: Radius of gyration (RGYR), anti-β-
sheet content, α-helical content, number of hydrophobic contacts,
principal component 1 (PC1), principal component 2 (PC2), principal
component residuals, the number of hydrogenbonds in the backbone,
in the side chains, and between the backbone and side chains
(“Methods”).

Since the CV feature space is only 10-dimensional, it is possible to
look for the optimal distance dA by an exhaustive search of all possible
1023 subsets containing one to ten CVs, without using the L1 regular-
ization to produce sparse solutions. For each subset of CVs, the DII is
used as a loss to automatically optimize the scaling weights, which are
initialized to the inverse standard deviations of the corresponding
variables. Even when all feature subsets can be constructed, gradient
descent optimization of the DII is useful, as the most naive choices of
the scaling weights—setting them to the inverse standard deviations of
the variables, or all equal to 1—likely define suboptimal distances, since
the CVs have different units of measure and importance. The optimi-
zation of the feature weights for all 1023 subsets takes about 4.5 h on a
CentOS Linux 7with 24 CPUs Intel Xeon E5-2690 (2.60GHz) with 15 GB
RAM using the function “return_weights_optimize_dii” with 80 epochs
(Fig. 2A, green curve).

Figure 2A shows the results of the subset optimizations by com-
puting theDIIwith block cross-validation (see “Methods”). The training
andvalidationDIIs averagedover all cross-validation splits, showahigh
degree of consistency, verifying the transferability of the DII results
between non-overlapping pieces of the trajectory. As shown in the
inset graph in Fig. 2A, the DII result improves during the gradient
descent optimization. The best single CV is anti-β-sheet content, while

Table 2 | Ground truth weights, optimized weights and optimization details for the 285 monomials corresponding to Fig. 1B

Features L1 reg. Nnz. DII

X5 X1 X5 X6 X3
ðX2Þ2 X6 X10 X1 X2

X8 ðX10Þ2 X8 X5 X8 Other

Ground truth weights Sum

10.0 7.0 6.0 5.0 5.0 4.0 3.0 2.0 1. 0 1.0 0

DIIoptimized weights

10.0 6.2 6.9 2.9 6.1 5.1 2.2 2.5 0.8 0.7 72.4 None 285 0.006

10.0 6.2 6.9 2.9 6.1 5.1 2.2 2.4 0.8 0 53.0 4 × 10−6 117 0.006

10.0 4.5 6.0 1.8 5.1 4.0 1.6 1.6 0 0 8.9 5 × 10−4 19 0.005

10.0 6.2 6.5 3.7 5.6 4.5 3.1 2.1 0.7 0 2.6 5 × 10−5 11 0.005

10.0 6.3 6.3 5.0 5.4 4.3 3.0 2.1 0 0 0 0.0001 8 0.003

10.0 6.9 6.2 0 5.7 3.1 0 0 0 0 3.8 0.0014 6 0.020

2.3 1. 1 1.4 0 0 0 0 0 0 0 10 0.0038 4 0.212

10.0 0 0 0 0 0 0 0 0 0 0 0.0023 1 0.606

The feature space consists of the 285 monomials up to order three of ten Gaussian random variables. As ground truth, ten features were selected at random and scaled, while all the other feature
weights are zero.Optimizedweights are shown at selected L1 regularization strengths (L1 reg.), and the resulting number of nonzero features (Nnz.) andDifferentiable Information Imbalance (DII) are
provided. The sum of the remaining 275 non-ground-truth weights is shown (Sum).
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the best triplet contains RGYR, PC1, and PC2 with weights of 1.0, 3.5,
and 4.7. Remarkably, the weight of PC2 is higher than the weight of
PC1, confirming that the gradient optimization of theDII provides non-
trivial results. We estimated the density in the space of the best three
scaled variables (Fig. 2B) using point-adaptive k-NN (PAk)52, imple-
mented in the DADApy package40. The free energy derived from this
density clearly shows two favorable main states, which are the folded
β-hairpin state and a denatured collapsed state53 with negative values
of the free energy in Fig. 2B.

The cluster centers found by Density Peak Clustering in its unsu-
pervised extension54 are depicted by the renderings denoted “col-
lapsed”, “intermediate”, and “β-pin” in Fig. 2C, while additional
example structures from less favorable free energy regions are shown
around Fig. 2B. The clustering was also performed in the full space of
all 4,278 heavy atom distances, which holds the full information of the
system.

The populations of both, β-pin and collapsed clusters show a
remarkable overlap between the clustering structures obtained in the
optimal 3-plet case and from the full feature space of 4,278 heavy atom
distances. Taking the cluster populations from the full space as ground
truth classes, such overlap can be simply measured as the fraction of
points (trajectory frames) that belong to the same cluster in both
representations, also referred to as cluster purity55: The β-hairpin
cluster from the 3-plet space has 87% purity, and the collapsed state
cluster has 92% purity, considering the full space as reference. Taken
together, all clusters have a 89% overall cluster purity towards the full
space clusters. This consistency also emerges by visually comparing

the red and blue renderings of the two dominant cluster centers (left
and right structures in Fig. 2C). As a comparison, running the cluster-
ing algorithm using the single best CV, the anti-β-sheet content, brings
to an overall cluster purity of 45%, i.e., the trajectory frames clustered
into the pin, collapsed, or other clusters using the single best variable,
capture 45% of the same frames of the according clusters using the full
space for clustering. Hence, no single one-dimensional CV is infor-
mative enough to describe CLN025 well, but a combination of only
three scaled CVs carries enough information to achieve an accurate
description of this system.

Because of the good performance of decision tree regression on
the previous example and its ability to handle multi-target (even high-
dimensional), continuous ground truth data, we apply this feature
selection algorithm also to this use case (Supplementary Information).
The best three variables using the Gini importance weights are: 0.29
anti-β-sheet content, 0.25 PC1, 0.1 PC2; using the permutation impor-
tance they are: 1.27 PC1, 1.04 anti-β-sheet content, 0.97 PC2. Clustering
in these reduced spaces leads to maximum cluster purities compared
to the full space clusters of 55% for Gini importance and 63% for the
permutation importance and several additional inconsistencies when
compared to the full space clustering (Supplementary Fig. S2 and
Supplementary text).

We also test the robustnessof themethodusing four uncorrelated
trajectory blocks and performing the DII-optimization in each of these
blocks. The resulting DIIs, as well as selected features and their
weights, show excellent consistency across the blocks (Supplementary
Figs. S4 and S5).
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Fig. 2 | DII feature selection for describing the free energy landscape and
conformations of CLN025. A Green: Optimal Differentiable Information Imbal-
ance (DII) results for collective variable (CV) subsets of different sizes with gradient
descent optimized weights for 1429 data points evenly sampled from the full tra-
jectory. The green star marks the DII result of the optimally scaled 3-plet, which
defines the coordinate system for (B). Inset: DII gradient descent optimization for
the optimal 5-plet. Blue and orange: Average and standard deviations of the DII
calculated from block cross validation with 4 non-overlapping training data sets
and 84 validation sets of 1428 points each.B Free energy isosurfaces in the space of
the optimal 3-plet of CVs (radius of gyration (RGYR), principal components 1 and 2

(PC1 and PC2), with weights of 1.0, 3.5, and 4.7), corresponding to three different
values of the free energy. The renderings around the free energy surfaces show
sampled conformations of the peptide at different values of the CVs and free
energy. C Red and blue renderings are cluster centers obtained from the optimal
3-plet space and from the full space of all pairwise heavy atom distances, respec-
tively. The two main cluster centers of both belong to the dominant peptide con-
formations: The β-pin and the collapsed denatured state. The collapsed and β-pin
clusters identified in the optimal 3-plet space share 92% and 87% of the frames with
the corresponding full space clusters. Source data are provided as a Source
Data file.
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Feature selection for machine learning potentials
In another use caseof theDII approach, we demonstrate its capabilities
for selecting features for training Behler-Parrinello machine learning
potentials (MLPs)42. MLPs can learn energy and forces of atomic con-
figurations derived from quantum mechanical calculations. The
Behler-Parrinello MLP uses ACSF as inputs for the predictions56. The
ACSFs are a large set of radial and angulardistribution functions,which
describe the environment around an atom, and are permutationally,
rotationally, and translationally invariant.

The data set used here consists ofN ~ 350 atomic environments of
liquid water molecules, derived from a larger data set that has pre-
viously been used to fit a MLP, which can accurately predict various
physical properties of water57. The input features in this example are
176 ACSF descriptors (see “Methods”). The ACSF descriptor dimen-
sions combinatorially grow with the number of atom types, which
makes them computationally costly and makes feature selection
attractive58. Since the ACSF space is too large for full combinatoric
feature selection, we search for sparse solutions using both L1

regularized DII and greedy backward selection (“L1 reg.” and “greedy”
in Fig. 3, see “Methods”). We aim to select informative ACSFs before
the training to reduce the number of input features and thus reduce
the training and prediction time.

While DII can be used as an unsupervised feature selector when
the feature space is reduced against itself as ground truth, it can also
incorporate a separate feature space as ground truth in a supervised
fashion. This is especially useful when a comprehensive ground truth
exists. In the case of atomic environments, one of the most complete,
accurate, and robust descriptions is given by the SOAP descriptors43,44,
basedon the expansion of the local density in spherical harmonics. 546
SOAP features (nmax = 6, lmax = 6) are defined as the ground truth for
feature selection. In this manner, we can put SOAP and ACSF, two
comprehensive representations of atomic environments, into
relation59 and show that SOAP is a suitable ground truth to select
informative ACSFs as inputs for a MLP. The SOAP space captures the
full spacial arrangement of atoms by encoding the local atomic den-
sities and accounting for symmetries44. Both SOAP and ACSF
descriptor spaces, as well as further local atomic density descriptors,
such as the atomic cluster expansion (ACE) representation, have been
shown to be compressible without significant loss of information,
improving computational efficiency60,61.

The resulting DII for various numbers of ACSFs can be seen in
Fig. 3A. With both greedy and L1 regularized selection, we find that the
optimized DII asymptotically approaches an optimal value with grow-
ing number of non-zero features. However, even relatively small fea-
ture spaces with ~10–30non-zero features have lowDII values,making
effective feature selection possible. We validate the selected features
and their weights on validation sets of atomic environments of equal
size as the training set. The resultingDIIs are slightly higher butmostly
comparable to the training DIIs, showcasing the robustness and
transferability of the results. As a sanity check for our selection, we also
show that randomly selected feature sets have a significantly higherDII
than optimized sets, meaning they are less informative about the
ground truth space (Fig. 3A gray).

To show that the features selected by DII are indeed physically
relevant, we report in Fig. 3B the root-mean-square error of atomic
forces for Behler-Parrinello MLPs using ACSF subsets of different
sizes (nACSF∈ {10, 18, 25, 38, 50, 176}). We find that MLPs with fea-
tures selected by L1 regularized DII optimization outperform random
input features for all tested numbers of input features nACSF. The
difference in prediction accuracy is most pronounced at small nACSF,
where it is least likely that random selection chooses meaningful
features. After nACSF ≈ 20 input features, the optimized subsets reach
an accuracy of <100meV, which is on par with the original MLP
trained on these data57. Compressions of local atomic density
representations for machine learning potentials have also previously
been shown to require a minimum set size of 10–20 PCA features,
since further compression fails to faithfully preserve the geometric
relationships between data points and leads to increased prediction
errors62. With nACSF = 50 input features, the MLP performs roughly
equally well to using the full data set, while having less than half the
run-time (Fig. 3C). This shows that DII can be used to select features
for downstream tasks such as energy and force fitting in MLPs, by
optimizing for a complex ground truth and finding a space with
fewer but optimally weighted features that contain the same
information.

Discussion
This work presents the Differentiable Information Imbalance, DII,
designed to automatically learn the optimal distance metric dA over a
set of input features. Themetric reproduces the neighborhoods of the
data points as faithfully as possible according to a ground truth dis-
tance dB. Here dA is defined as the Euclidean distance, and the opti-
mization parameters are weights that scale individual features, such

Fig. 3 | DII feature selection for efficient training of a Machine Learning
Potential (MLP).ADifferentiable Information Imbalance (DII) selecting theoptimal
feature subsets from DA = 176 Atom Centered Symmetry Functions (ACSF)
descriptors, against a ground truth of DB = 546 Smooth Overlap of Atomic Orbitals
(SOAP) descriptors, using a data set ofN ~ 350 atomic environments. The optimized
DII per number of non-zero features is shown by blue circles and orange diamonds,
using L1 regularized search and greedy backward selection, respectively. The filled
area represents validationdata in the formof theminimumandmaximumDII on 10
batches of ~350 atomic environments other than the ~350 environments used for
DII feature selection. The DII for randomly selecting a certain number of non-zero
features is depicted as graybars between the lowest andhighestDII foundwithin 10
random selections. B Test root-mean-square error (RMSE) with features chosen via
L1 regularizedDII (blue circles) and at random (gray triangles) by Behler-Parrinello-
typeMLPs42 as implemented in n2p279,80. SixMLPswith different train-test splits per
number of non-zero features are trained. Markers represent their average RMSE,
the filled area shows the range from worst to best performer. C Run-time of force
and energy prediction on a single structure performed by the sameMLPs as in (B).
The filled area shows the range from worst to best performer, despite being barely
visible due to similar run-times across the six MLPs. Source data are provided as a
Source Data file.
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that the presented DII is an automatic and universal feature selection
and weighting algorithm.

While many other methods are restricted to single variable out-
puts as “labels” or “targets”,DII can handle any dimensionality of input
and output. Continuous and discrete data is supported and the
method can be used in a supervised and unsupervised manner. The
weights are optimized automatically, and by using the values of theDII
as a quality measure one can compare the information content of
several feature sets, and select the sets corresponding to the lowestDII
for each number of features, such as in Supplementary Fig. S6. It is one
of very few filter methods that account for feature dependencies but
do not rely on explicit feature subset evaluation26.

In illustrative examples where the optimal feature weights are
known, we showed that theDII can reliably find the correctly weighted
ground truth features out of high-dimensional input spaces. The
behavior of the DII as a function of the subset size appears to be anti-
correlated with the cosine similarity between ground truth and opti-
mizedweights. This implies that theDII value canbe used for assessing
the quality of the selected feature subsets when the actual ground
truth weights are unknown. The weighted feature sets as provided by
DII optimization have a higher cosine similarity to the ground truth
than sets derived from two other feature selection classes, RBAs46 and
decision tree regressions.

We further applied the method to analyze a MD simulation of a
biomolecular system. Extracting a small subset of informative CVs
from a pool of many candidate CVs from a MD trajectory is a general
problemwith both practical and conceptual benefits, including using
such CVs in enhanced sampling techniques and obtaining an inter-
pretable description of the free energy landscape. For the peptide
CLN025, the selected CVs are the first two principle components (3.5
PC1, 4.7 PC2) and the radius of gyration (1.0 RGYR). Applying clus-
tering in the space of these three scaled CVs leads to the correct
identification of the β-pin state and collapsed denatured state of
CLN025, in accordance with the clusters built from a much larger
feature space, which includes all heavy atom distances. The reduced
space clusters are highly meaningful with a 89% overall cluster purity
towards the extended space clusters, while reduced variable spaces
built from clustering results of the decision tree regression lead to
lower cluster purities. Tests of uncorrelated parts of the MD trajec-
tory show great consistency of the results, highlighting the robust-
ness of the method.

In a second application, our method successfully selects highly
informative subsets of input features for training a Behler-Parrinello
machine learning potential that achieves optimal performance in
terms of the mean absolute error of force and energy. We find that
using just 50 informative ACSF descriptors selected by our approach,
instead of 176, significantly reduces the MLP’s computational cost,
cutting the runtime by one third while maintaining nearly the same
accuracy.

The DII is not necessarily a simple monotonic function of the
number of non-zero features post-optimization (cardinality). In some
cases, the selection of additional features can introduce noise or
redundancies that can negatively impact the description of the
ground-truth space. Furthermore, if the optimal non-zero features for
a two-dimensional description are, say, X3 and X61, the optimal features
for a three dimensional description could be completely different, say
X5, X9, and X44. The DII is hence also not necessarily a submodular
function of the number of features.

To extract small subsets of features from high dimensional input
data, we implemented two different sparsity inducing heuristics: L1
regularization and greedy backward optimization. Greedy algorithms
have previously been shown to be a fast and effective alternative to
convex L1 regularization in sparse coding63, and work even if the pro-
blem is only approximately submodular64.When a feature space is very
large, greedy backward optimization will lead to long calculations and

L1 regularization becomes more suitable. Both heuristics are able to
find relevant results in the examples presented here.

Like RBAs26, alsoDII has a computational complexity ofOðN2 � DÞ,
where N is the number of points and D is the number of features.
However, by applying a simple subsampling trick (see “Methods”), the
computational complexity reduces up to OðN � DÞ with a degradation
of the accuracy which is barely detectable (Supplementary Fig. S3).

The requirement of a ground truth reference space could pose a
difficulty to some applications. In MD simulations, all heavy atom dis-
tances are a good, translationally invariant alternative to the set of all
atomic positions, if one wants to completely encode the conformation
of a molecule. In other cases, if no independent ground truth is known
or a lower-dimensional subspace is desired, the full space could be used
as ground truth. This approach could be employed, for example, for
large gene sequencing data with thousands of features and just hun-
dreds of data points. In this fashion, the method acts as an unsu-
pervised feature selection filter. An open question in this case is the
relative weighting of the ground truth features.

Furthermore, even though themethod can be applied to any data
set, it is most suitable for continuous features. A limitation is given by
ground truthmetrics withmany nominal or binary features, which can
lead to a degenerate ground truth rank matrix, making the optimiza-
tion more difficult.

The Differentiable Information Imbalance introduced in this work
could have relevant implications in a wide range of distance-based
methods, such as k-NN classification, clustering, and information
retrieval. The approach could also be used to identify how much
information original features carry compared to otherwise not-
interpretable transformations such as UMAP4 or highly non-linear
neural network representations, by optimizing the original features
towards such representations. Defining a new feature by combining
several input features through a (possibly nonlinear) function might
bring to even more compressed and informative representations,
although this could reduce interpretability. DII has also potential
applications beyond feature selection with automatic weighting. Spe-
cifically, constructing a distance space dA(w) with a more expressive
functional form, compared to the one used in this work, opens up to
applications in fields such as dimensionality reduction65,66 and metric
learning67.

The Differentiable Information Imbalance has been implemented
in the Python library DADApy40 and is well-documented41, including a
tutorial for ease of use. This accessibility allows for a wide audience to
explore further use cases and limitations effectively.

Methods
Adaptive softmax scaling factor λ
Qualitatively, the scaling factor λ in the softmax coefficient cij(λ, w)
defines the size of the neighborhoods in the input space dA(w) used for
the rank estimation. Since λ is the same for everydata point, regardless
of whether the point is an outlier or within a dense cloud, this factor
mainly decides how many neighbors are included in dense regions of
the data manifold. Importantly, choosing λ too small makes the opti-
mization less efficient, as in the limit λ→ 0 the derivative of theDII (see
Eq. (6)) can be shown to vanish for almost all values of the para-
meters w.

To automatically set λ, we take the average of two distance vari-

ables, d̂
A

min and d̂
A

avg, which heuristically define the “small distance”

scale in space dA. Both of these numbers are based on d̂
A

i , here
denoting the difference between 2nd and 1st nearest neighbor dis-

tances for each data point i, d̂
A

i =d A
ik � d A

ij , where rAij = 1 and rAik = 2:

d̂
A

min : = min
i

d̂
A

i , ð7aÞ
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d̂
A

avg : =
1
N

X
i

d̂
A

i : ð7bÞ

Setting λ to the average of d̂
A

min and d̂
A

avg at each step of the DII opti-
mization has proven to enhance both the speed and stability of
convergence. Indeed, using differences between nearest neighbor
points to determine λ is more robust than using nearest neighbor
distances directly, as in high dimensions first-, second-, and higher-
order neighbor distances tend to be very similar on a relative
scale68,69.

Invariance property of the DII
In the limit λ→ 0, theDII defined in Eq. (2) is invariant under any global

scaling of the distances in space A, dA
ij 7!jcjdA

ij with c 2 R. Similarly, in

the small λ regime, DII(dA(w) → dB) is invariant under any uniform
scaling of the weight vector, w ↦ cw, if dA(w) is built as the usual
Euclidean distance in the scaled feature space. This property can be
easily verified by observing that the softmax coefficients cij can be
replaced by δ1, rAij

when λ → 0, and the ranks rAij are invariant under a

global scaling of the distances dA
ij . The same invariance holds even for

λ > 0 if λ is chosen adaptively (“Methods”), as in the adaptive scheme a

global scaling of the distances dA
ij implies a scaling of λ by the same

factor, which leaves the cij coefficients untouched.

Optimization of the DII
The optimization of the DII is implemented in FeatureWeight-
ing.return_weights_optimize_dii in DADApy by gradient des-
cent utilizing the analytic derivative of the DII. The default value of the
initial featureweights is the inverse standard deviation of each feature.
Pseudocodes of the DII optimization algorithms are provided in the
Supplementary Information (section “Pseudocodes”).

Learning rate decay. We employ two different schemes of learning
rate decay, (1) cosine learning rate decay and (2) exponential learning
rate decay. When both schemes are evaluated, we select the solution
with lower DII among those found with the two schemes. In the
first scheme, the learning rate is updated according to
ηk =0:5η0 � ð1 + cosð πk

nepochs
ÞÞ, where k denotes the training epoch, η0 the

initial learning rate, and nepochs the total number of epochs in the
training. The exponential decay follows ηk = η0 � 2�k

10 . This schedule
cuts the learning rate by half every 10 epochs. While the cosine decay
leads to optimal results in the absence of L1 regularization, or for
weak regularization, the exponentially decaying learning rate is
especially suited for high L1 regularization. In both schemes, “GD
clipping” is used, as described hereafter in the section on L1
regularization.

L1 regularization. This method is implemented in DADApy in Fea-
tureWeighting.return_weights_optimize_dii when a L1 pen-
alty different from 0 is chosen, and several different L1 values are
screened in FeatureWeighting.return_lasso_optimization_
dii_search. Optimizing the DII with respect to the feature weights
while simultaneously introducing sparsity, i.e., limiting the number of
features used, can be considered a convex optimization problem of
the form:

min
w2RD

f ðwÞ+pΩðwÞð Þ, ð8Þ

where f : RD ! R is a differentiable function such as
DII dAðwÞ ! dB
� �

, at least locally convex, and Ω : RD ! R is a
sparsity-inducing, non-smooth, and non-Euclidean norm with
penalization strength p70. We use the L1 norm, ΩðwÞ=PD

α = 1jwαj

(also called lasso regularization):

min
w2RD

DII +pΩðwÞð Þ= min
w2RD

2

N2

XN
i, j = 1

ð j≠iÞ

cijðλ,dAðwÞÞ rBij +p
XD
α = 1

jwαj

0
BBBBB@

1
CCCCCA
ð9Þ

The L1 norm has the shortcoming that in N≪D setting, with very
few samples but many dimensions, a maximum of N variables can be
selected. The L1 regularization tends to select just one variable from a
group of correlated variables and ignore the others71, which helps
building optimal groups of maximally uncorrelated features (see
Supplementary Information in ref. 33).

Naive gradient descent with L1 regularization usually does not
produce sparse solutions, as a weight becomes zero only when it falls
directly onto zero during the optimization72. This is very unlikely with
most learning rate regimes. Instead, we employ the two-step weight
updating approach also known as “GD clipping”72:

wα
t + 1

2
=wα

t �
∂DII dAðwÞ ! dB

� �
∂wα

if wα
t + 1

2
> 0 thenwα

t + 1 = max 0,wα
t + 1

2
� ηp

� �
if wα

t + 1
2
< 0 thenwα

t + 1 = min 0,wα
t + 1

2
+ηp

� ���� ���
ð10Þ

Here, p denotes the L1 penalty strength, and t is the epoch index. First,
the update is performed only with the GD term, which may result in a
change of sign for the weight. Subsequently, the L1 term is applied,
shrinking the weight magnitude. If this shrinkage would change the
weight’s sign, the weight is instead set to zero. Since the DII is sign
invariant, all weights are kept positive during the optimization.

Backward greedy optimization. This approach is implemented in
DADApy in FeatureWeighting.return_backward_greedy_dii_
elimination. It starts with a standard optimization run using all the
DA features of the input space. From the solution of the first optimi-
zation, the feature corresponding to the smallest weight is discarded
(set to zero), and a new optimization withDA − 1 features is carried out.
This procedure is iterated until the single most informative feature is
left. The greedy backward approach is an alternative to the L1 reg-
ularization and is applicable to moderately large data sets with
DA≲ 100 features and N≲ 500 data points, since the computational
complexity scales linearly with the number of features.

A linear scaling estimator of the DII
The DII scales quadratically with the number of points N, with a com-
putational complexity ofOðN2 � DÞ, whereD is the number of features.

The computational time can be dramatically decreased by sub-
sampling the rows of the matrices rij, dij and cij appearing in Eq. (2),
reducing them to a rectangular shape Nrows ×N (with Nrows <N) (see
Supplementary Information “Tests of scalability and robustness”). This
subsampling is performed only once at the beginning of the training,
so that the rectangular shape of such matrices is kept fixed during all
theDIIoptimization. If theDII is written as the average ofN conditional
ranks,

DII dAðwÞ ! dB
� �

=
2
N

1
N

XN
i = 1

XN
j = 1

ð j≠iÞ

cijðλ,dAðwÞÞ rBij

0
BBBBB@

1
CCCCCA=

2
N
hrBjrA � 1i ,

ð11Þ
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the subsampling is equivalent to replacing 1=N
PN

i= 1 with
1=Nrows

PNrows
i = 1 . This means computing the average of Nrows conditional

ranks instead of N. Different schemes to set Nrows result in different
scaling laws of the algorithm with respect to N. Setting Nrows to a
fraction of N (green curve in Supplementary Fig. S3A, Nrows =N/2)
brings to a quadratic scaling with a smaller prefactor, while sampling a
fixed number of points Nrows independently of N (red curve,
Nrows = 100) brings to a linear scaling OðN � DÞ. In the latter case we
observe a striking reduction of the runtime, while the accuracy of the
recovered weights is almost perfectly preserved (Supplementary
Fig. S3B).

Extraction of collective variables from the CLN025 MD
simulation
All CVs were extracted from theMD simulation using PLUMED 273. The
ground truth pairwise heavy atom distances were computed using the
“DISTANCE” CV on all pairs of non-hydrogen atoms. The RGYR was
obtained with the “GYRATION” CV and the Cα atoms. The number of
hydrophobic contacts were calculated using the “COORDINATION”CV
(R0= 0.45) and using the amino acids THR, TRP, and TYR of CLN025,
and sidechain carbons not directly bonded with an electronegative
atom. The number of hydrogen bonds was also calculated using the
“COORDINATION” CV (R0= 0.25). For backbone H-bonds and side-
chain H-bonds only hydrogens and oxygens of the backbone and the
sidechain were considered, respectively, while for the sidechain-to-
backbone interactions, the cross of these were considered. For the
quantification of the alpha-helical content and the anti-parallel beta
sheet content, the CVs “ALPHARMSD” and “ANTIBETARMSD” were
used with all residues of the peptide. For the principle components
PC1, PC2, and the PCA residual, first a pdb file containing the average
structure of the trajectory and the two first principle directions was
created using the CVs “COLLECT_FRAMES_ATOMS” with all heavy
atoms, and “PCA” using the previous output and optimal alignment.
Subsequently, each frame of the trajectorywas projected onto the two
principle components referenced in the pdb file using “PCAVARS”.

Block cross validation of CLN025
To account for the equilibration of the system, the first ~15 ns of the
trajectory were discarded throughout the analysis (1580 of 41,580
trajectory frames). Block cross validation (Fig. 2A) was carried out by
splitting the remaining frames into 4 consecutive blocks. The training
blocks were built by subsampling each block to every 7th frame to de-
correlate, leaving 1428points per training block. The optimal tuple and
weight results fromeach trainingblockwereused to calculate theDII in
21 validation sets built from the remaining three blocks (repeatedly
subsampling each block with stride 7, starting from frames 1 to 7),
totaling 84 validation sets.

ACSF and SOAP descriptors
The systems for creatingACSF and SOAPdescriptors are basedon 1593
liquidH2O structureswhose forces and energies were found usingDFT
via the CP2K74 package with the revPBE0-D3 functional. We use the
DScribe Python package75,76 to calculate SOAP and ACSF descriptors
from the atomicpositions. Thedata pointswere chosen as follows: The
1593 structures (with 64 H2O molecules each) yielded 192,000 atomic
environments, fromwhich a subset of ~350was sampled to reduce the
computational time of feature selection. The ACSF descriptors were
constructedon a grid of hyperparameters (G2:η∈ [10−3, 100.5] logspace
nη = 15, RS =0, G4: η∈ [10−3, 100.5] logspace nη = 6, ζ∈ {1, 4}, λ∈ [ −1, 1]
linspace nλ = 4, RS =0), resulting in 176 (+2 cutoff functions) different
features for each atomic environment. The 546 SOAP descriptors were
selected with nmax = 6, lmax = 6 and a cutoff radius of 6 Å.

The optimization of ACSF with respect to the ground truth of
SOAP is carried out starting from γi = 1 ∀ i∈ [1, 176].

JAX version of DII
In order to benefit from modern machine learning GPU-based calcu-
lation speed, a GPU-compatible implementation written with the JAX
library77 is also provided within the same package.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated by feature selection in this study have been
deposited on OSF at the following URL: https://osf.io/swtg5. The pro-
cessedmolecular dynamics andH2O structure data are also available at
OSF. The data files necessary for carrying out all analyses and source
data are available at the same OSF URL. Source data are provided with
this paper.

Code availability
The Python code to replicate and extend our study is available on
GitHub at the following URL: https://github.com/sissa-data-science/
DADApy under the Apache License 2.0. The according documentation
can be found in ref. 41. The code at the time of publishing can be built
under the Apache License 2.0 from: https://doi.org/10.5281/zenodo.
1427789978.
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