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1 | INTRODUCTION

Fix an integer m > 4. Fix integers F, ..., F,, € Z \ {0} and let

F(x):= ) Fx},

1<is<m
where x = (x4, ..., X,,,). We are interested in the behavior, as X — oo, of the point count
NpX) :=lix € Z" n[-X,X]™" : F(x) = 0}].
Certain varieties, V., play a key role. For each ¢ = (cy, ..., ¢,,,) € Z™ and field k, let
. m-1 . 3 _ —
Vc,k T (§1,...,§m)€[pk . Z Figi - Z cigi_o ?
1<i<m 1<ism
m_l . . . . .
where P""" is the projective space with coordinates &, &, overk.
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In the special case F = Y, <i<6 x?, with m = 6, we abbreviate N;(X) to N(X). In this case,
building on [9], the papers [10] and [8] each proved

N(X) <, X%, 1.1)

assuming Hypothesis HW of [9, Section 6]; [8, Section 4] for the Hasse-Weil L-function of each
smooth variety V, o with ¢ # 0. Unconditionally, by [17, Theorem 1.2],

N(X) <. X"/? /(log X)3/%~¢

for X > 2, via methods stemming from work such as [2, 4, 11, 18].

Hypothesis HW practically amounts to automorphy, plus the grand Riemann hypothesis
(GRH). Automorphy remains open [21, Appendix A]. Hooley suggested that a zero-density
hypothesis would suffice in place of GRH [9, p. 51]. Following the usual paths laid out in [12,
Theorem 10.4], a general such density hypothesis is provable assuming automorphy, a large sieve
inequality, and progress on the grand Lindel6f hypothesis (GLH).

In this paper, we show that a large sieve inequality by itself would imply Equation (1.1). The
precise large sieve inequality we need will be stated in Section 2, as Hypothesis 2.1.

Theorem 1.1. Suppose m € {5, 6}. Assume Hypothesis 2.1. Then
Np(X) <, X3(m=2)/4+¢ 1.2)

forallreals X > 1ande > 0.

For m = 6, the exponent in Equation (1.2) matches Equation (1.1). In Section 2, we state a more
general result, Theorem 2.7, valid for all m > 4. Our methods might also apply elsewhere [21,
Section 9.1]. For instance, Wang [20] explained how one may hope to use the modularity of elliptic
curves over Q to unconditionally produce an absolute constant § > 0 such that

fa€Z:1<a<AN\X?+y* +2° 1 x,p,2 € Z,0}| < AY77°.

This would then improve on the existing bound OE(A6/ 7+¢) due to Briidern [3].

Conventions

WeletZ,. :={n€Z : n>c}. Weletl; := 1ifastatement E holds, and 1 := 0 otherwise. For
integers n > 1, we let u(n) denote the Mdbius function.

We write f < g, or ¢ > f, to mean |f| < Cg for some C = C(S) > 0. The implied constant
C is always allowed to depend on m and F, in addition to S. We let O4(g) denote a quantity that
is kg g. Wewrite [ x¢ gif f <¢ g <5 f.

2 | FRAMEWORK AND RESULTS

Let D :=3([]1cicm Fl-)zm_2 € Z.Foreachc € Z™, let

Ale) =D 11 ((cf JEDV2+ ), vi(cf/Fi)1/2> €z 1)

(VgeensUp ) E{L,— 1} 1 2<ism
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For each field k in which A(c) is invertible, the variety V. is a smooth complete intersection, by
the Jacobian criterion for smoothness. Let

S:={cez™:Al)#0}, SC):=Sn[-C,C]". 2.2)

For each ¢ € S and prime p, we define a local Euler factor Lp(s, ¢), following Serre [16] and
Kahn [13, Section 5.6]. First, choose a prime Z # p, and let

M(c,2) 1= H" (V5 Q) /H"*(PE7,Qp),

where H/(W, Q,) denotes the ith #-adic cohomology group of W. Let M(c, # Yr € M(e, ¢) denote
the group of inertia invariants of M(c,?). Let «, j (p) €C, for 1 < j<dimM(c,? e, be the
geometric Frobenius eigenvalues on M(c, 2)'». Finally, let

5 . ac’j(p) . 5 —s\—1
& ;(p) 1= lm’ Ly(s,e) 1= H Q-a.;(pp) . (2.3)
1<j<dim M(c,£)'p

On multiplying over p, we obtain for each ¢ € S a global Hasse-Weil L-function

L(s,¢) := [[Lp(s.0) = D Ac(m)n*, (2.4)
p

n>1

for some coefficients A.(n) € C defined by expanding the product over p. We now state
Hypothesis 2.1. It asserts a large sieve inequality, Equation (2.5), in a certain range.

Hypothesis 2.1. For all reals C, N, ¢ > 0 with N < C3, we have

2

2

ceS(0)

Z v, A.(n)

n<N

<, C*max(C™,N) Z v, |? (2.5)

n<N

for all vectors (v,,);< <y € CIV).

We now make some general comments on L(s, ¢). By [13, Sections 5.6.3 and 5.6.4] and [15,
Corollary 1.2], the factors Lp(s, ¢) are independent of the choice of #, and we have

& ;(p)l < 1. (2.6)

By Equation (2.6), the product and series in Equation (2.4) converge absolutely for R(s) > 1.

We have dim M(c, #)'» < dim M(c, ¢) <, 1 by [14, Corollary of Theorem 3]. Therefore, by
Equation (2.6), we have 1.(n) <, n€ for alln > 1. Thus, Equation (2.5) is the large sieve inequality
that one would naturally expect to hold. In fact, Equation (2.5) could potentially hold in the range
N < C4 for any constant A > 0. However, we will only need it in the range N < C3.

The coefficients 1,(n) can be interpreted geometrically, but it would take us too far afield to
detail anything but the simplest case. For each ¢ € Z™ and prime p, let

l{x € Fy tF(x)=c-x=0}|—p™?
p—1

Ec(p)
pm=3/2"

Eo(p) := . E(p):=

a ‘T 'S202 ‘TY6LTY0Z

101//:sdny wouy
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wherec-x 1= Y, ¢ix;. If p + A(c), then M(c, £)r = M(e, ¢) and

Ap= Y  a.,p)=D"Ep), @7)

1<j<dim M(c,?)

by Equation (2.3) and the Grothendieck-Lefschetz trace formula.
We emphasize that our L-functions are normalized differently than in [8, 9]. If H(s, ¢) is the
L-function associated with V.  in [8, Section 4], then

m

— 3,0) = L(s, c).

H(s +
2

Proof framework

We will analyze N (X) using the delta method, due to [5, 7]. This method features some complete
exponential sums that we now recall. Let

i ) S.(n)
Sem) := o earren/n i) = RS VER 2.8)
1<asn:  1<Xq,..X,<n

ged(a,n)=1

for all ¢ € Z™ and integers n > 1. It is known that S, (n) is multiplicative in n, meaning that
S.(1) =1 and S.(nyn,) = S.(n;)S.(n,) whenever gcd(n,,n,) =1 [8, Lemma 4.1]. Thus, SE(n) is
also multiplicative in n. For each ¢ € 2™, let

®(c,s) 1= Z SE(n)n_S = HCIJP(C, s),

n>1 p

where ¢'p(c, s) 1= 2120 Sﬂ( pHp~5. Ultimately, we will see that Si(n) is related to 1,(n) in a way
that allows us to apply a large sieve inequality, like Equation (2.5), to the delta method.

Before proceeding, we recall two basic definitions from the theory of Dirichlet series. For
f>9: Z,, — C, the Dirichlet convolution f % g: Z,, — C is defined by the formula

(f * 9)n) := Y f@)g(b).

ab=n

A Dirichlet series )7, ., f(n)n™ is said to be invertible if f(1) # 0, or equivalently, if there exists
g: Zs, = Cwith (f * g)(n) =1,_;.

Our work is based on approximations of Dirichlet series. For each ¢ € S, let ¥(c, s) be an invert-
ible Dirichlet series. The function ¢ = ¥(c, s), from S to the set of Dirichlet series, will be denoted
simply by W. For each ¢ € S and integer n > 1, let

b.(n), a.(n), a,(n)
be the n~s coefficients of the Dirichlet series

W(c,s), ¥(c,s)7 L, @(c,s)/¥(c,s),
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respectively. In terms of Dirichlet convolution, this means that
(@ #b)(W)=1,_,, a =S *a, Si=a xb,. (2.9)

For us, the following particular definition of approximation will be convenient.
Definition 2.2. Call ¥ an approximation of ® if the following three conditions hold:

(1) Ifc € S, then b.(n) is multiplicative in n.
(2) Forall c € S, integersn > 1, and reals € > 0, we have

max(|by(n)], |al(n)]) <, n° Y 1SH(d)].
din
(3) Forall ¢ € S and primes p + A(c), we have aé(p) < p /2

Theorem 2.3. Suppose that for each ¢ € S, we have

¥(c,s) € {d)(c,s), I 2xeo. ] Lp(s,c)(‘l)m%, L(s,c)(‘l)M3}.

prA(e) ptA(e)

Then, ¥ is an approximation of ®.

Theorem 2.3 provides natural examples of approximations. It will not be used until Section 8,
so we defer the proof to that section. For the rest of Section 2, fix an approximation ¥ of ®.

Hypotheses

Our main general result, Theorem 2.7, will assume that either of two specific hypotheses holds.
Our first hypothesis is the following:

Hypothesis 2.4. For all reals C,N,e > 0 with N < C3, we have

> [ bm

ceS(C) Inel

2
<, C*max(C"™,N)N (2.10)

for all real intervals I C (0, N].

The following two remarks may help to clarify the nature of this hypothesis.

(1) If¥ = L(s,c)!, then Hypothesis 2.4 would easily follow from GRH. On the other hand, if ¥ =
L(s, ¢), then Hypothesis 2.4 would follow from GLH plus a technical bound on [{c € S(C) :
L(s,c) hasapole at s = 1}|.

(2) A density bound, namely [{c € S(C) : | X,c; b.(n)| > N7}| <, C™*¢/N?°~! for N < C* and
o > 1/2, would follow from Hypothesis 2.4. But C"*+¢ /N29~1 could be quite large even if N =
C3 and o = 1. This is unlike in some density applications, for example, [12, Theorem 10.5],
where further input may be needed near o = 1.
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If ¥ = L(s,c)!, then Hypothesis 2.4 is perhaps unattractive in that b,(n) involves the Mbius
function u(n). We might thus wish to pass from b.(n) to a.(n). This is possible, to some extent, in
the situation of the following definition:

Definition 2.5. Call ¥ standard if for all ¢ € S, integers n > 1, and reals € > 0, we have
max(|b.(n)l, |a.(n)]) <, n°.
Let & € {0, 1} if W is standard, and let ¢ := 0 if ¥ is non-standard. Let
Ye(n) 1= (1 =98)-b(n) + 9§ - u(n)’a.(n). (2.11)

We now come to our main hypothesis: a large sieve inequality for y,, in a certain range.

Hypothesis 2.6. For all reals C,N,¢ > 0 with N < C3, we have

Z 2 U, V()

ceS(C) |nsN

2
<. Cmax(C™,N) ) |v,[? (2.12)

n<N

for all vectors (v,); <<y € CV.

Again, some brief remarks may be helpful.

(1) When § = 1, the factor u(n)? in Equation (2.11) simply restricts us to square-free moduli n.
(2) Hypothesis 2.6 remains open in general [21, Remark 4.1.10].

Results

Fix a smooth, compactly supported function w : R™ — R. Assume that

0¢{xeR": wkx)+0} (2.13)
Forreals X > 1, let
Np @) = D w@x/X) 1pp—- (214)
xezm

If m > 5, then let Nl’W »&X) 1= Np ,(X). If m =4, then let Y denote the set of two-dimensional
rational vector spaces L with F|; = 0, and let

N, (X) 1= Z w(x/X) 1px)=0- (2.15)
er’"\(ULGY L)

Theorem 2.7. Assume Hypothesis 2.6 or Hypothesis 2.4. Then for some constant ¢(F,w) € R, we
have

N}, (X) — e(F, w)X"™3 <, x3m=2/4%e, (2.16)

forallreals X > 1ande > 0.
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Note that m, F, w are fixed. In other words, the implied constant in Equation (2.16) is allowed
to depend on m, F, w in addition to €. Also, for numerical reference,

3(m - 2)/4 = 15 . lm:4 + 2.25 . lm:5 + 3 . 1m:6 + .-
In particular, if 5 < m < 6, then m — 3 < 3(m — 2)/4, and Equation (2.16) simply says

NF’w(X) <<€ X3(m—2)/4+€.

The rest of the paper is devoted to the proof of Theorems 1.1, 2.3, and 2.7. In Section 3, we reduce
Hypothesis 2.4 to Hypothesis 2.6. In Sections 4-7, we recall the delta method for N ,(X), then
analyze parts of it unconditionally and parts of it using Hypothesis 2.4. In Section 8, we tie together
the previous sections to complete the proofs.

3 | A CONVERSION BETWEEN STANDARD COEFFICIENTS

In this section, we prove a useful consequence of Hypothesis 2.6. First, we record some standard
lemmas that will be repeatedly used throughout the paper.

Lemma 3.1. Let N,h € Z,. Then, there are at most Oh(Nl/h) integers n € [N, 2N) such that
vp(n) > h holds for all primes p | n.

Proof. This is classical; see, for example, [1]. O

To proceed, we need to introduce some notation. We write u | v if there exists k € 7., withu |
vk, For an integer ¢ # 0, we let sq(c) (resp. cub(c)) denote the largest square-full (resp. cube-full)
positive integer divisor of c. We also let sq(0) := 0.

Lemma3.2. Let N,R € Z,,. Then, there are at most O.(N°€R®) positive integersn < N withn | R®.
Proof: We have ¥, e Loy < Xpreo(N/1)° = N[ g1 = p~) ™" < N°R°. O

Lemma 3.3. Let N € Z,,. Then, the following hold:
(1) We have

n~1/2 «_ N°.
n<N: n=sq(n)

(2) We have

2 sq(c)'/? <, N,
[c|<N

(3) Foranyt € R, we have

Z cub(n)’ <, . N¢ max(N, N/3+0),

1<n<N
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Proof.

(1): By the h = 2 case of Lemma 3.1 in dyadic intervals n € [2k, 2k*1), we have
Yy y

Z n—1/2 < Z (zk)l/Z(zk)—l/Z <, NE.

n<N: n=sq(n) 0<k<log, N
(2): There are at most N /d positive integers n < N with sq(n) = d. Therefore,

Z sq(c)l/z =2 2 Sq(n)l/Z <2 z N . d/? <, N+,
le|<N 1<n<N d<N': d=sq(d)

where the last inequality follows from Equation (1).
(3): There are at most N /n; positive integers n < N with cub(n) = n;. Thus

N
Z cub(n)’ < Z — - n}
1sn<N n3<N: ny=cub(ns) 3

< Y @HYEEHTIN <, N max(N,N'/3*),
0<k<log, N

by the h = 3 case of Lemma 3.1 in dyadic intervals ny € [2F,2K+1), O
Proposition 3.4. Fix an approximation W of ®. Assume Hypothesis 2.6. Then, Hypothesis 2.4 holds.

Proof. First, suppose & = 0. Then, y, = b, by Equation (2.11). For C, N, I as in Hypothesis 2.4, the
bound (2.12) with v,, := 1,; thus trivially implies Equation (2.10), as desired.

Now, suppose 4 = 1. Then in particular, ¥ is standard. For the rest of the proof, let C,d, N
denote positive variables. For integers d and intervals I, let

Ad D) 1= Y Teg(a = H(Wac(n).

nel

We have y.(n) = u(n)*a.(n) by Equation (2.11). Taking v, := 1,er1geq(d,m=1 #(n) in Equa-
tion (2.12), and observing that u(n)* = u(n), we find that Hypothesis 2.6 implies

Y 1A, D? <. C°max(C™,N)N (31
ceS(0)

uniformly over reals C, integers d, reals N < C3, and real intervals I C (0, N].
To proceed, we rewrite b.(n) using multiplicativity. First, by Equation (2.9), for primes p we
have

b.(p) = —a.(p).

Furthermore, an integer n > 1 can be uniquely expressed in the form n,d, where d is square-full,
n, is coprime to d, and n, is square-free. Therefore, for all n > 1, we have

bc(n) = Z lgcd(d,nl):l /"(nl)ac(nl) . 1d:sq(d) bc(d) (3-2)

nid=n

We note here that u(n,) is supported on square-free integers n; .

a ‘T 'S202 ‘TY6LTY0Z

101//:sdny wouy
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Consider a real C, a real N < C?, and a real interval I C (0, N]. Let B,(I) := Yt be(n). By
Equation (3.2), we have

B.(I) = Z Locadng)=1 M(M)ac(ny) - 1g—gqa) be(d)

nydel

= Z b.(d) - A.(d,I/d).
d<N: d=sq(d)

By the Cauchy-Schwarz inequality over d, it follows that
> BMPF< Y ( > |bc(d>|2d—1/2>< > d1/2|Ac<d,I/d)|2>
ceS(C) ceS(C) d<N: d=sq(d) d<N: d=sq(d)

< N° ) Y dYV*ALd1/d)P,

ceS(C)d<N: d=sq(d)

(3.3)

by Lemma 3.3(1), since b.(d) <. d° by Definition 2.5. Yet for all integers d, we have

Y 1A I/d)? <, C°max(C™,N/d)(N/d)
ceS(C)

by Equation (3.1), since N/d < N < C3 and I /d C (0, N/d]. Plugging this into Equation (3.3), we
get

Y B <. N° Y dV2[CTmax(C™, N/d)(N/d)]
ceS(C) d<N: d=sq(d)

<, N*C°max(C™,N)N,

where the second inequality follows from Lemma 3.3(1) and the trivial bound max(C™,N/d) <
max(C™, N). Thus, Equation (2.10) holds, uniformly over C, N, I. O

4 | DELTA METHOD INGREDIENTS

Let X > 1. Assume Equation (2.13), that is, that w is supported away from 0 € R™. Such an
assumption is implicit in some of the integral estimates in [7, 8]. Set

Yy = xWeeh)/2 = x3/2, (4.1)
Fix €, € (0,1071°] and set
Z =Y /X% = x1/2e, (4.2)
Let gy(x) := exp(—(1 — x?)7!) for |x| < 1, and gy(x) := 0 for |x| > 1. Let

49,(4x — 3)

o(x) := —/yER OIS

a ‘T 'S202 ‘TY6LTY0Z

101//:sdny wouy
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Forx >0andy € R, let
1 . |yl
h(x,y) := —.(9(XJ)— 9(—.>>.
g{x] Xj

This is precisely the function h(x, y) defined in [7, Section 3]. For ¢ € Z™ and n > 0, let
Ic(n) = / w(x/X) h(n/Y’ F(x)/YZ) e—27ri(c4x/n) dx
xXERM

Let |c]| := max;;,(lc;|). We now recall two standard results on the integral I.(n).

Proposition 4.1 [7, par. 1 of Section 7]. The functions n — I .(n) are supported on a range of the
formn < My(F,w)Y, uniformly over ¢ € 2™, for some constant My(F,w) > 0.

Lemma 4.2 [8, (3.9)]. If |lc|| = Z and n > 1, then I.(n) <A llc||=4, for all A > 0.
Proposition 4.1 and Lemma 4.2, together with the trivial bound |S,(n)| < n!*™, imply

Y72 n S (mI(n)] <0 X4, (4.3)

nzl|le||>Z

for all A > 0. Here, S.(n) is defined as in Equation (2.8). By [7, Theorem 2, (1.2)], we have

A+ 0 (Y NDNp,(X) =Y 72 ) D' n S (I (n). (4.4)

n=1cez™

Equivalently, in terms of Sﬂ(n), we have

1+ 04X )N, ) =X Y Y =25k )1, (n). (4.5)

nx1cez™

In view of Equation (4.3), analyzing Ny ,,(X) reduces to understanding the quantity

Ty =X Z Z n(l_m)/zSg(n)Ic(n). (4.6)

nzlcel—-z,z]m
(Here, I.(n) = 1.(n) 1,y (F w)y - But it is more convenient to keep the factor 1, <y, (r )y implicit,

in order to allow for more flexible technique later on.)
We now recall some standard formulas for S, at primes p and prime powers p'.

Proposition 4.3. Say p } c. Then Sg(p) = Eﬂ(p) + 0(p~1/2).

Proof. Let

l{x € Fj} : F(x) =0} — p"~!

E(p) := o1
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DIAGONAL CUBIC FORMS AND THE LARGE SIEVE 11 of 29

By [8, p. 680], we have S.(p) = p*E.(p) — pE(p) and E(p) < p™2/2, Thus,
Se(p) = P*Ec(p) + O(p"™/?).
Now divide by p(m+1)/2, O
Proposition 4.4. Say p + A(c). Then, S.(p') = 0 for all integers | > 2.
Proof. This follows immediately from [8, Lemma 4.4]. O

Fix an approximation ¥ of ®. Recall the definition of S from Equation (2.2). For each ¢ € S,
we have Sﬂ = a * b, by Equation (2.9). The following result controls the coefficients a/. and b,.

Proposition 4.5. Letc € S. Then a/,(n) is multiplicative in n. Moreover, for all primes p and integers
k > 1, we have

a,(p)  Lpae < p/?

max(|a,(pO)1. [b(p¥)) <. ¥ + P Y ISUA - 1pjac0)-
d|p¥

Proof. By Equation (2.9), we have (a, * b,)(n) =1,_, and a = Si * a,. Since bc,SE are multi-
plicative, it follows that a,, aé are too. It remains to bound aé(pk), bc(pk). When p | A(c), there is
nothing to prove, since condition (2) in Definition 2.2 already gives what we want. Now assume

D 1 A(c). Then condition (3) in Definition 2.2 gives aé(p) < p~1/2. On the other hand, Eﬂ(p) <1
by Equations (2.7) and (2.6). Therefore, condition (2) in Definition 2.2 gives

be(p"), al(p) <. P Y 1SKd)] < p*e,
d|p¥

because Sg(p) = Eﬁ(p) + O(p~'/?) < 1 by Proposition 4.3 and SE(pl) - 15, = O by Proposition 4.4.
This completes the proof. O

Let w(n) denote the number of distinct prime factors of n. The following result, which is due to
[8, 9], gives a general pointwise bound on Si(n).

Proposition 4.6. For some constant Ap > 0, we have

215k < AR T ged(cub(n)?, ged(eub(n), sq(c))*) /™

1<ism

forallc € Z™ and integers n > 1.
Proof. By definition, Sﬂ(n) = p~(m+1)/ 25.(n). Moreover, since F is diagonal, we have

Se(ph) < p 1+ T ged(cub(ph?, ged(eub(ph), sa(e))*) /2,

1<ism
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by [8, (5.1) and (5.2)] for I > 2 and [6, Lemma 11] for [ = 1. The desired result follows immediately
from the multiplicativity of S,. [l

‘We have stated Proposition 4.6 uniformly over ¢ € Z™. We proceed to analyze the vectors c in
sets based on which coordinates c; are nonzero. For the rest of Section 4, we fix a set

1c{1,2,..,m} (4.7)
Let
R :={c€ezZ"n[-Z,Z]" : 1,4 = ligg foralli € {1,2,...,m}}. (4.8)

By definition, if c € R, then ¢; # 0 ifand only ifi € T.
Proposition 4.6 implies that for all ¢ € R and integers n > 1, we have

n=1/28%(n) <, n cub(n)m=17/6 H ged(cub(n), sq(c;))' /4. (4.9)

i€l
We will repeatedly use Equation (4.9) later in the present paper. We now turn to I.(n).

Lemma 4.7 [7, 8]. Assume | I| > 1. Then uniformly over c € R, reals n > 1, and integers k € {0,1},
we have

Xl -mHID/A e[\ /2
nk(8/0n) I (n) <., X’"+5<—|r|l ”> H <%> )
iel l

Proof. By [8, Lemma 3.2], since F is diagonal, we have

1/2 1/4
n*(@/0n) 1 (n) <. (@)XW [] min l(}%) ’<Xﬁlcll> ]

1<ism

/2 1/4
X”C” m+e n ! n
<|— )X .
< n ) 11 (%) 1;! Xllell

iel

(4.10)

After writing ()%Cil)l/ 2= (}ﬁ)l/z(%)l/ 2 in the final line of Equation (4.10), the desired

inequality follows from the fact that 1 — |Z|/2—(m — |I|)/4=1—(m + |I|)/4. O
For later convenience, we now make a definition: for ¢ € Z™ and integers N > 1, let

Mellieon :=  sup  ((n)] + [n(8/dm)I.(n))). (4.11)
neR: N<n<4N

In the rest of Section 4, we will concern ourselves only with ¢ € R such that A(c) # 0.If | Z| = 0,
then no such c exist, because R = {0} by Equation (4.8). Therefore, we may and do assume |Z| > 1
for the rest of Section 4. To proceed further, we break R into dyadic pieces. For each i € 7, let
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DIAGONAL CUBIC FORMS AND THE LARGE SIEVE 13 of 29

1

C,e{2t :t ez} with1<C; < Z. Write

={ceR :|g| €[C;,2C)) foralli e 13}, C .= malx(Ci). (4.12)
e

Proposition 4.8. Suppose N, € Z,, and Ny < XOW, Then

2

Z la,(no)l | <. X6N3+(’"‘|1|>/3 HCi-
ceC: A(e)#0 | ny€[Ny.2Ny) [

Proof. Consider an integer ny € [No,2Np). If ne 1= [ p°?™) and n, :=sq(n,/n,), then
Proposition 4.5 implies

a(ng) = aé<nnz > -al(ny) - al(n,)

c'*2

n —1/2+¢
0
< < > : n; : |aé(nc)|

neny

—1/2+¢ 1/2
< P gy dl(n).

Since n, | A(e)*® and n, is square-full, we find, upon summing over n,, that

N, _
> lalny)l <. > —0 NG (neny) 2 al(n)]

n.n
ny€[Ny,2Ny) Neny<2Ng: c2
nelA(e)®, ny=sq(n,)

1/2+2¢ -1/2( 1
< NO/ 2 ne / la,(n,)l
ne<2Nj:
nelA(e)®

1/242¢

<. N, (N,C)* maj\)]( n, 12 la,(no)l,

ne<2
n IA(C)""

where we have used Lemma 3.3(1) to sum over n, < 2N, /n,, and then used Lemma 3.2 to bound
the sum over n, by a maximum. Furthermore,

1/2 2 1/2
nrgzal\);o n, |a (no)l <. Nj dmz}{}x d=/=|S(d)l,

nelA(©)® dIA(C)°°
since a.(n,) <. ng Zdlnc |Sg(d)| by condition (2) in Definition 2.2. But

max d- 1|Sn(d)|2 Z max d- 1|Sn(d)|2

<2N,:
ceC: Ale)#0 dIA(Q)®

<. N(()m—|1|)/3+2€ Z H sq(cl-)l/z

ceCiel
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14 of 29 | WANG

by Equation (4.9), since ged(cub(d), sq(c;))'/* < sq(c;)'/4. Yet

Z H sq(e)'/? <, H ce, (4.13)

ceCiel i€l

by Lemma 3.3(2). Proposition 4.8 follows upon combining the previous four displays. O
We are now prepared to prove a crucial bound for Section 5.

Lemma 4.9. Suppose Ny, N € Z,; and Ny, N < XOW), Let

Q=Ilhon D, lallnol.

ny€[Ny,2Ny)

Then
1/2
< Z Qi) <<E Xm+€Né/2+(m_|I|)/6(X/N)1_(m+|Zl)/4 max[Zl+(|I|_m)/4’ 1]
ceR: A(c)#0

Proof. With notation as in Proposition 4.8, consider an element ¢ € C. Then by Equa-
tion (4.12), we have |c;| < C; for all i € I, whence ||c|| < C. Now Equation (4.11) and Lemma 4.7

imply

el o << XX C/NYHIDA T (c/C)M 2,

i€l
since |Z| > 1. By Proposition 4.8, it follows that

Qz <, X2m+35N3+(WI—|I|)/3(XC/N)2—(m+|I|)/2 HC‘
(o
ceC: A(c)#0 iel

By Equation (4.12) we have 1<C<Z, since 1<C;<Z for all i. The quantity

C2=(mHID/2 [T, ., € = €2+UTI=m)/2 s maximized either at C =Z or C =1, so we conclude
that

Q2 <<€ X2m+3eNé+(m—|Z|)/3(X/N)2—(m+|I|)/2 max[z2+(|l|—m)/2 1]
c >+l
ceC: A(c)#0

Summing over all possibilities for C, we get

Q2 <<5 X2m+4€Né+(m_|II)/3(X/N)2_(m+|Il)/z maX[Z2+(|I|_m)/2 1]
Z c , 1.
cER A(Q)£0

Lemma 4.9 follows upon taking a square root. O

Having analyzed I, and a/, above, we now concentrate on b, for the rest of Section 4.
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Proposition 4.10. Let the C;, as well as C and C, be as specified before Proposition 4.8. Suppose

N, € Z,, and N; < X°W. Then

2

x> Y bl | < XNPREHCTIETT ¢,

ceC: A(c)#0 | n€[N1,2N,] el

Proof. We mimic the proof of Proposition 4.8. Consider an integer n; € [Ny,2N;]. If n, :=

11 PIAGE) p“»"™), then by Proposition 4.5 and the multiplicativity of b,, we have
bc(nl) = bc(nl/nc) bc(nc) <<e (nl/nc)€ |bc(nc)| S ni |bc(nc)|'

Upon summing over n;, then,

N
Y bl Y Nflbe(n)|

n€[N,2N; ] Ne<2Np i neA(e)> €

142 -1
<, N;7*cC¢ nrg%\)]i n=|b.(n)|
by Lemma 3.2. Condition (2) in Definition 2.2 implies

-1 2¢ -1k
max n~|b.(n)| <. N2¢ max n"|S.(n)|.
max 0~ [be(m)] < Ni* max ! [5¢(n)

But by Equation (4.9), we have

Z max n_2|SE(n)|2 <, N;* max(l,N1_1+(m_|ll)/3) Z H sq(c;)'/%.
ceC

<
<2y ceC iel

The desired result follows upon combining the last three displays with Equation (4.13).

Lemma 4.11. Suppose N| € Z,; and N} < XOW, Then

2

Z |bc(n1)| <. XeNinax(2,1+(m—|ll)/3)Z|I|.
ceR: A(e)#0\ n,€[N;,2N,]

Proof. This follows from Proposition 4.10 upon summing over all possibilities for C.

We need the following lemma in Section 5. Let
B:=1+10-M,(F,w) < 1.

Lemma 4.12. Assume Hypothesis 2.4. Then

2

2 2 b.(n,)| <. min (X":Zle,Xezll|Ninax(2’1+(m_|ll)/3)>,
ceER: A(c)#0 |n €l

for all positive integers N; < BY and real intervals I C [N, 2N, ].

(4.14)

(4.15)
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16 of 29 | WANG

Proof. The bound X¢Z™N, in Equation (4.15) follows upon applying Equation (2.10) with C =

(2@)"/3Z and N = 2N;. Meanwhile, X<Z|ZINT*@ 1D/ comes from Lemma 4.1, O

5 | CONTRIBUTION FROM SMOOTH HYPERPLANE SECTIONS

Recall the key quantity X, from Equation (4.6), involving a sum over ¢ € [-Z, Z]™. In this section,
we concentrate on vectors ¢ € S(Z) = S n[—Z, Z]™, in the notation of Equation (2.2). Let

5 =X )Y a2 i, (n).

ceS(Z) n>1

We will prove the following result:

Theorem 5.1. Assume Hypothesis 2.4. Then

T) <, X240, (5.1)
For each n > 1, we have Si(n) = Ynon,=n Ge(Mo)b.(ny), since SE = a, * b, by Equation (2.9).
Thus
=X ) Y al(ng) Y (non) ™21 (ngny by(ny). (52)
ceS(Z) ny=1 ny>1

By Proposition 4.1, we have I (n) = 0 when n > Y /10, where f is as in Equation (4.14). Thus

5=X7 ) Y Qenpy (5.3)

ce€S(2) (Ny.N7)eA
where
A :={(Ng,N)) €{2' 1 t € Z,,}* : NyN; < Y /10},

QeNgNy °= Z al(ng) Z (non) 21 (nonyb(ny).

nyE€[Ny,2N,) n;€[N1,2N;)

For convenience, let N := NNy, let B,(J) := anej b.(n,) for intervals J, and let

Venmon, = D (non) ™I (ngnbe(n,).
n,€[Ny,2Ny)

Recall ||1.]l; «n from Equation (4.11). We now have enough notation to state a key lemma:

Lemma 5.2. Let (N, N;) € A. Then, there exists a probability measure v = vy ., supported on
the real interval [N, 2N, ], such that for all c € S and n, € Z N [Ny, 2N,), we have

Vengn, < NN on / |B.([N7, x))| dv(x). (5.4)
X€[N,2N,]
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DIAGONAL CUBIC FORMS AND THE LARGE SIEVE | 17 of 29

Proof. Letc € S and ny € Z N [N,, 2N,). For brevity, let I(n) = n="™/2[ (n). Then

QengN, = Z I(ngny) - b(ny).
n;€[Ny,2N7)

By partial summation over n, it follows that

D¢ o8, | < I Lo v anyy BN, 2N D)+ 1o 1T ()| o v an) Z |B.([Ny, k)l
ke[N;.2Ny)

N
<K NN oo any 1Be(IN1, 2N))| + No I () o (v 4y Z |B.([N1, k),
1 ke[N;,2N;)

where || f (")l Lo (v .an]) = SUPren,ang S (r)] for continuous functions f : [N,4N] — C. Here

max([|1(r) | oo nangys N I Ol ooy anyy) < N2 o
by Equation (4.11). Finally, let
V:=—52N1+N— Z 61{’
1 ke[N;,2N))

where &, is the Dirac measure supported on the singleton set {k}. Then, v is a probability measure
supported on [N, 2N, ]. Also, the last three displays imply Equation (5.4). O

Let (N, N;) € A. Let T and R be as in Equations (4.7) and (4.8), respectively. Since we are
presently only interested in ¢ € S, we may and do assume |Z| > 1. For each ¢ € S, we have

/
IQcnom, | < D, 186010) Oy, |
ny€[Ng,2Ny)

SNCE Y Y el | BN, )| V(o).
Vloe[No,ZNo) XE[N1,2N1]

where the first and second inequality are justified by the triangle inequality and Lemma 5.2,
respectively. Abbreviating B.([N, x)) to B.(x) for convenience, we deduce that

I\ 1/2
D |<>C,NO,N1|<<€X’"+€Q1< > < / |Bc(x)|dv>> (5.5)
x€[N;,2N, |

ceR: A(c)#0 ceR: A(c)#0

by the Cauchy-Schwarz inequality and Lemma 4.9, where
Ql = N(l—m)/ZNé/2+(m_|1|)/6(X/N)1—(m+|I|)/4 maX[Zl+(|Z|_m)/4, 1] (56)

Now, for the rest of Section 5, we assume Hypothesis 2.4. We have

2
(/ IBC(x)ldv> <</ |Bc(x)|2 dy
x€[N7,2N, ] x€[N;,2N;]
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18 of 29 | WANG

by the Cauchy-Schwarz inequality, so

2\1/2 1/2
RV VAT
ceR A(c)£0 \JXEIN.2N,] x€[N1.2N1] ceR ' A(e)#0

<, X°Q,
by Equation (4.15), where

max(2,1+(m—|1|)/3))1/ : (5.7)

Q, := min (Zle,Z|I|N1
Lemma 5.3. We have Q,Q, < X3/2~m/4+0(),
Proof. We split the proof into four cases.

Case I: |I| = m. Then, Q, = (Z’”Nl)l/z, since |Z| = m and N; > 1. Therefore, Q,Q, = Qs,
where

Qs 1= Z"/>N\* . NN (X /) max(Z, 1] (5.8)

But Q; = Z™/2X'~™/2 max|Z, 1], since N;N, = N. By Equation (4.2), we have Z = X!/2+é » 1,
SO

Q; = x1-m/2714m/2 _ x3/2-m/4+(1+m/2)e;_
Thus, Q;Q, = Q; <, X3/2-m/4+0(c))

Case2: |I| = m —1and N, > Z. Then Q, = (Z™N,)'/2, by Equation (5.7). Therefore, Q;Q, =
Q,4, where

Q, = Zm/ZNl—m/ZN((]m—|I|)/6(X/N)1—(m+|l|)/4 maX[Z1+(|I|—m)/4’1]’
since NN, = N. Since (m — |I|)/6 > 0 and N, = N/N; < N/Z, we have
Q, < ZMANM2(N [ Z)m=IID/6(x /NI mHID/A pax [ Z1+(T=m)/4 ), (5.9)
The right-hand side of Equation (5.9) is decreasing as a function of N, because
1-m/2+(m—|I))/6 -1+ (m+|I|)/4=(I|-m)/12<0. (5.10)
Since N > N, > Z, it follows that

Q4 < Zm/ZZl—m/Z(Z/Z)(m—|1|)/6(X/Z)1—(m+|1|)/4 max[Z1+(|l|_m)/4, 1]

<<€0 XO(EO)Xl_(WH'IZI)/S max[Xl/z"'(III_m)/g’ 1]’
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since Z = X/2*% But |I| = m — 1, so

X1=0mHID/8 pax [x1/2+UTI=m/8 1] = max[x3/2-m/4, x9/8-m/4] = x3/2-m/4, (5.11)

Thus, QQ; = Q4 <, X3/2-m/4+0(<)

Case 3: 1 < |I| < m — 2. By Equation (5.7), we have Q, < (Z'“N?lax(z’”(m_lII)/S))l/z. Since
NN, = N, it follows that Q,Q, < Qs, where

Qs = Z|1|/2Ninax(1/2,(m—III)/6)N1—m/2N(()m—III)/6(X/N)1—(m+|1|)/4 maX[Zl+(|I|—m)/4’ 1].

Since N, > 1 and N;N, = N, we have mex(lﬂ’(m_lll)/é)Ném_lll)/6 < Nmax(1/2,(m=IID/6) Thys,
Qs < Z|I|/2Nmax(1/2,(m—|I|)/6)N1—m/2(X/N)1—(m+|Z|)/4 maX[Zl+(|I|_m)/4, 1]. (5.12)

The right-hand side of Equation (5.12) is weakly decreasing in N, because

max(1/2,(m —|I|)/6)+1—-—m/2 -1+ (m+ |I|)/4 =max(1/2,(m—|TI])/6)+ (|I|—m)/4

<0,
in view of the inequality |Z| — m < —2. Since N > 1 and |Z| < m, it follows that
Qs < 7\ T1/2x1=(m+|1])/4 maX[Zl+(|l|_m)/4, 1]
< 7|2 1=(m+|1])/4

<<€0 XO(EO)X3/2—m/4’

since Z = X*/#*%. Thus, Q,Q, < Qs <, X3/2~m/4+0(0),

Case 4: |I| = m —1 and N; < Z. Arguing as in Case 3, we have Q;Q, < Qs. But if we hold
N, constant, and plug N, = N/N; into Qs, then Qs is decreasing in N, by Equation (5.10). Since
N > Ny, it follows that Q5 < Qg4, where

Q= Z'”/ZNf‘aX(l/z’(m_'l')/G)N;_m/Z(X/Nl)1‘(’"‘”'1')/4 max[Z1+(ZI=-m)/4 1],
But Qg is increasing in N, because
max(1/2,(m —|I|)/6)+1—-m/2—-1+(m+ |I|)/4=1/4>0,
in view of the equality |Z| = m — 1. Since N; < Z and |Z| = m — 1, it follows that

Q6 < ZII|/221/221—H1/2(X/Z)1—(m+|I|)/4 maX[Zl+(|Z|_m)/4, 1]
=7 (X/Z)l—(m+|I|)/4 max[Z“('I'_m)/“, 1]

g, XOCX1=0n+ID/S gy [x1/2+(T1=m)/8 1]
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since Z = X'/2*%. But |I| = m — 1, ot follows from Equation (5.11) that Q <<, XC(0)X3/2=m/4,
Thus, Q,Q, < Q5 < Qg <, X3/2-m/4+0(cp), 0O

Remark 5.4. Interestingly, the quantity Q; in Equation (5.8) is constant over (N, N;) € A.

By Lemma 5.3, the left-hand side of Equation (5.5) is < X m+0(¢) x3/2=m/4 Upon summing
over (N, N;) € A and the set of 2™ — 1 possible sets R, it follows from (5.3) that

Z] <<€0 X—3Xm+O(EO)X3/2—m/4 - X3(m—2)/4+0(50)_

This yields the desired inequality, Equation (5.1).

6 | CONTRIBUTION FROM THE CENTRAL TERMS

Here, we address the ¢ = 0 contribution to Equation (4.6), using the theory of I(n) developed in
[7]. We roughly follow [7, Section 12, par. 2]. Let

22 c= X—3 Z n(l—m)/ZSa(n)IO(n). (61)

n>1

We begin with a slight extension of [19, Lemma 4.9].

Lemma 6.1. IfN > 1, then 3,y on) 1" |So(n)] < N&=m/3+,

Proof. We have S(u)(n) <, n!'/?*¢ cub(n)™/° by Proposition 4.6. Thus
n"Sy(n) <. n' "M% cub(n)™/°.

Taking t = m/6 in Lemma 3.3(3), we get

Z n_mlso("l)l <. Nl—m/2+e max(N,N1/3+m/6) — N(4—m)/3+€’
ne[N,2N)

where we note that max(N, N1/3+m/6) = N1/3+m/6 pecause N > 1 and m > 4. O

Lemma 6.1 implies, in particular, the familiar fact that the singular series

© 1= ) n"Sy(n) (6.2)

nx1

converges absolutely for m > 5. It is also known that the real density

Ogow -= lim (2e)7! w(x)dx (6.3)

=0 [F(x)l<e
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DIAGONAL CUBIC FORMS AND THE LARGE SIEVE 210f29

exists; see, for example, [7, Theorem 3]. Yet for all n < Y, [7, Lemma 13] implies
XMg(n) = 0y + 04((0/Y)D), (6.4)
forall A > 0. If m > 5, then via Equation (6.4) with A = (m — 4)/3, we get

z n " Se(MX " y(n)
n<My(F,w)Y

ww D, nSem+ D O/ Y) I P S (m)])

n<My(F,w)Y n<My(F,w)Y

=0

— O.oo’w@ + OS(Y(4—m)/3+€)’

by Lemma 6.1 and Equation (6.2). Also, by Proposition 4.1, we have I,(n) =0 for all n >
My(F,w)Y. Since n™"Sy(n) = n(l_m)/zsg(n) and Y = X3/2, it follows that if m > 5, then

2, = X" 04,,@ + O XM/ = g @XM + 0, (X(M2/2Fe), (6.5)
where X, is the quantity defined in Equation (6.1). On the other hand, for all m > 4,

T, <X™E Y M Sy(n)] < X (6.6)
n<My(F,w)Y

by Proposition 4.1 and Lemma 6.1, since I(n) < X™ by [7, Lemma 16].

7 | CONTRIBUTION FROM SINGULAR HYPERPLANE SECTIONS

In this section, we study the quantity

5y =X > n(=m/28% ()1 (n). (7.1)
nz1 ce[-Z,Z]™: A(c)=0, c#0

We will prove the following result, extending work of Heath-Brown. Recall the definitions of
Ng ,(X)and N IF »X) from Equations (2.14) and (2.15), respectively.

Theorem 7.1. If m > 5, then
3, <, X3m=2/4+0(), (7.2)
0
If m = 4, then
%y = N, (X) = N, (X) + O (X3(m=2)/4+0C0)), (7.3)
The cases m = 4 and m = 6 of this result are due to Heath-Brown. For instance, the estimate

(7.3) for m = 4 follows directly from [8, Lemmas 7.2 and 8.1], in view of the tail estimate (4.3).
Therefore, we may and do assume m > 5, for the rest of Section 7.
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We combine ideas from [8, 9]. Let T and R be as in Equations (4.7) and (4.8), respectively.
Since we are only interested in ¢ # 0, we may and do assume |Z| > 1. Let C and C be as in
Equation (4.12), for some C; € {2' : t € Z,(} with1 < C; < Z.

By Proposition 4.1, the sum X; from Equation (7.1) is supported on n < M,(F, w)Y. Let

DIEES D) > nRSi (). (7.4)
n<My(F,w)Y ceC: A(c)=0

Now, consider an element ¢ € C with A(c) = 0, assuming such a c exists. Denote the nonempty
fibers of the map Z — @%/(@%)?, i — F;c; mod (Q%)? by

I(k) :={i € I : Fyc; = g, mod (Q*)*},

for 1 < k < K, say, where the g, are signed, nonzero square-free integers. Trivially, we have
Yi<k<k |Z(k)| = |I|. For each i € I(k), we may write

¢, = gF e (7.5)

with e; € Z. Moreover, by Equation (2.1) and the Q-linear independence of square roots of distinct
square-free integers, we may choose the signs of the integers e; so that

Z Fi(e;/F;)* = 0. (7.6)

ieL(k)
Since ¢; # 0 implies ¢; # 0 for all i € I(k), we immediately deduce from Equation (7.6) that
IZ(k)| > 2. (7.7)

We now prove a general lemma that will allow us, in Lemma 7.3, to exploit the structure
uncovered in the previous paragraph.

Lemma7.2. LetJ € Z,,, letd,,...,d; € Z,,, and let G, Ey, ..., E; € Ry. Then

Z H Z dil/ZSH(Zw(di)Gl/in)-

1<9<G: 1<isT 1<e;<E;: 1<i</
u(gr=1 d;lsq(ge?)
Proof. By Holder’s inequality over g, we may assume that E; = --- = E; = E andd, = -+ =d; =

d, say. Let S :={h | d : u(h)> = 1}. Now consider integers g,e > 1 with g square-free. Then,
sq(ge?) = ged(g, e)e?. Therefore, if d | sq(ge?), and we let h := ged(g, e, d), then

hes, @/m]e,

whence e is divisible by the integer [] /) plUp@/WI21 5 (d/n)/2. Thus, given h € S, the
number of possible e € [1, E] is at most E /(d /h)'/2. It follows that

Y A< YdP 1y, E/d/W)') = Y Ay, - RPE), (7.8)
1<e<E: hesS hesS
dlsq(ge?)
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for every square-free g > 1. By Equation (7.8), and Hélder’s inequality over h, we get

J
Y @< ¥ (2<>)

1<9<G: 1<e<E: 1<9<G: hes
u(g)?=1 \ dlsq(ge?) u(g)*=1

< Z |S|J—1 Z(lhlg ,h1/2E)J

1<g9<G: hes
u(g)*=1

<ISP Y G/myn' /By

hes:
h<G

<ISI'G"/°E’,
where in the last step we note that h//2~1 < G//2-1, This suffices, since |S| = 2¢(@, O

Lemma 7.3. Letn > 1 be an integer. Then

Z n_llsg(n)l2 <, n° cub(n)m-11D/3 H Ci1/2+€.
ceC: A(c)#0 ie1

Proof. Let n; :=cub(n). Fix a set J C T with |J|>2. Let G €{2' : t € Z,(}, and let E; :=
(2F,C;/G)'/? for each i € J. Let 7(-) be the divisor function. Then

Z H 2 ged(ns, sq(gFi—leiZ))l/z

191€[G,26): €T |¢;|<(2F;C;/ 191/
u(lg)?=1 gF;e?ez\{0}

<27 N ] Y ged(ng,sq(ge?)V?

9g€[G,2G): ieJ 1<e;<E;
u(g)*=1

SN | DR

9€[G,2G): €] d;n; 1<e;<E;:
u(g)*=1 d;lsq(ge?)

i H(T(I’l3)2G1/2Ei)
ieJ
= 21"l (n T T @Ficp'/?,
ieJ

where in the penultimate step we use Lemma 7.2 for each possible choice of divisors d; | n;, and
we note that 22() < 2%(") < 7(n;). Moreover, if G > min;¢ ;(2F;C;), then

Y I Y scdnsaF'e)'? =0,

|91€[G,26): 1€ |¢;|<(2F,C;/1g1)'/?:
u(lgl)?=1 gF;lelez\{0}
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since the sum over one of the variablese; € Z \ {0} is empty. On summing the penultimate display
overall G € {2' : t € Z,,} with G < min;c ;(2F;C;), we conclude that

> 11 D> ged(ns,sq(gF e < g1 ns [[@FCHYE (7.9)
9EZ\0}: €T |e;|<(2F;C;/1gDY?: ieJ
u(lgh?=1 gFle2ez\{0}

Recall the constraints (7.5) and (7.7) on {c € C : A(c) = 0}. Applying Equation (7.9) with J =
I(k), for each k € [1, K], and multiplying the resulting K inequalities, we get

_ 1/2
I X I 3 edmsa@ren”<n[[c” @10
1<k<K g,€z\{0}: ieI(k) |€i|<(2FiCi/|9k|)1/23 ieT
u(lgeD?=1 ocF;le2ez\{o}

since K < |I| € m, and the variables m, F; are fixed. On summing Equation (7.10) over all possible
choices for the sets Z(k) C T, we deduce that

> ] ecdns. sae)? <. ns ] )/ (7.11)
ceC: A(c)=0 i€l iel
Lemma 7.3 follows immediately from Equations (4.9) and (7.11). O

Remark 7.4. Interestingly, the proof of Equation (7.11) uses the constraint (7.6) only through
Equation (7.7).

Taking n, = 1 in Equation(7.11) implies

. _ 1/2+¢
lfcec: A =0} < []c,/*™
ie1
Therefore, Lemma 7.3 implies
> n2ISim)] <, nf cub(m)™IIV/S T ¢/, (7.12)
ceC: A(c)=0 iel

by the Cauchy-Schwarz inequality over c.
LetNe{2f :te 7o} with 1 < N < My(F,w)Y. By Lemma 4.7, Equation (7.12), and the t =
(m — |I])/6 case of Lemma 3.3(3), the sum

%=X Y > nR2ISim(n)|

nE[N,2N) ceC: A(c)=0
satisfies the bound =5 <, X" 73*€Q,, where

Q7 = Nl—m/Z(XC/N)l—(m+|I|)/4 maX(N,N1/3+(m_|I|)/6)Clll/z

= X1-(T1+m)/4 o (NI+HIZI=m)/4 N1/3+(1T1=m)/12) c1+(T|=m)/4

a ‘T 'S202 ‘TY6LTY0Z

101//:sdny wouy

35UBD| SUOLULLIOD BANERID) 3|1 dde U Aq pauseA0b 8.2 SSPILE YO 88N J0 S3|NJ 10j ARIq 1T BUIIUO AB|IM UO (SUONIPUOD-pUB-SULBI LD A 1M A1 | BUI|UO//SdIY) SUONIPUOD PUe SLB | 3L 385 [G202/TO/ET] uo Ariqiauliuo A8|im BusnvaLeI0D AQ 8000L SIW/ZTTT OT/I0P/LI0Y A8 | 1M ARiq1pul|uo
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Since N1 *+(ZI=m/4 — (N1/3+(11=m)/12)3 '\ye will analyze Q, according to the sign of
e 1= 1+(I| —m)/4.
CaseI: e < 0. Then, since N, C > 1, we have

Q7 < Xl—(|1|+m)/4 SX(G—WI)/4,

where the final inequality holds because X > 1 and |I| >
Case 2: ¢ > 0. Then, since N < Y and C <« Z, we have

Q, < X\ -(TH+m)/4y 1e(1Tl=m)/4 Z1+(T|-m)/4

Plugging in Equations (4.1) and (4.2), we get

Q7 <<€0 Xl—(lZ|+m)/4+O(eO)(X2)1+(|I|—m)/4 — X3+(|Z|—3m)/4+0(60)‘

Moreover, if | Z| < 2m — 6, then 3 + (|I| —3m)/4 < (6 — m) /4.
If m > 6,then 1 < |I| < m < 2m — 6, so regardless of what |Z] is, it follows that

ES <<50 Xm—3+€0Q7
<. Xm—3+€0X(6—m)/4+O(eo)
0

— XS(m—Z)/4+O(<—:0)

whence by summing over all possibilities for N and C we get
23’24 <<€0 X3(m—2)/4+0(60),
where X;,%, are as defined in Equations (7.1) and (7.4), respectively. This completes the proof
of Equation (7.2) for m > 6. For the rest of Section 7, we relinquish the previous definitions of C
and C.
For m = 5, we first show that a natural extension of [8, Lemma 7.1] holds.

Lemma7.5. [f5< m < 6andC > 1, then |{c € Z" n[-C,C]™ : A(c) = 0}| <, C""—3*¢,
Proof. For m = 6, this follows directly from [8, Lemma 7.1]. Now, suppose m = 5. A partition of m

is an infinite, weakly decreasing sequence of nonnegative integers 4,, 4,, ..., such that 3}, ., 4, =
m. For any partition of m, let

e =21t —2)-1 55

for k > 1. Let 6 denote the maximum value of % 21«;1 e, over all partitions of m. By [8, p. 687], we
have |{c € Z"™ n[-C,C]™ : A(e) = 0}| <, C¥*.
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Clearly A; < [m/3] = 1,s0¢, = Oforallk > 3.1f1, < 1,thene, = 0forallk > 2,50 3, ., e, =
e <m—21f1, > 2,thend; <m—4,<3,50¢, <2forallk >1,whence }, ., e, = e, +e, <4
In either case, Y., e, < 4. Therefore, 0 <2 =m - 3. O

‘We now recall a bound from [8] that is valid for all m > 4.

Lemma 7.6. Fixe > 0. Suppose 1 < N < X3/2 and 1 <« C < X'/2¥¢, Let

A=Y D q " Se()1(@).

N<g<2N C<|lc]|<2C: A(e)=0

Then, there exist reals X;,X,,X; > 1 and an integer H > 1 such that X,X,X; < N and

(m=2)/4
1+m/2,2/342 3 1+2m/3
A < XN T2 3 Sy kam/ HI/Z(XC) NN, (H),

where in terms of the quantity D = 3([ ], ;< F)*"™ from Section 2, we let

Ny = Z Leub(g)=11g,=cub(g,) Lg; |
(91,92,93): X;<q;<2X;

Ny(H) := Z 111a(c)=0-

C<lells2C

Proof. This is immediate from [8, pp. 688-689, from the definition of A on p. 688 to the definition
of M,(H) on p. 689]. What Heath-Brown calls P (resp. X), we call X (resp. N). Moreover, in terms
of Heath-Brown’s notation n and G, our m and A satisfy m = n and A(c) = 3G(c). However, our
C,q,¢,X;,X,,X5, H match Heath-Brown’s notation. O

Applying Lemma 3.1 to g, and Lemma 3.2 to g3, it is clear that

N <, X1X1/3

X;.
Now, assume 5 < m < 6. Then, N,(H) = 0 unless H < 2C, in which case
N(H) <, (C/HY"

by Lemma 7.5. Plugging the last two displays into Lemma 7.6, with € : = ¢, we get

A<, X’"+O(€0)N"”X2+m/2 Ltam/3 5 1+2m/3H1/2( )(m 2)/4<_>m_3.
2 3 XC H

Since m — 3 > 1/2, we have H'/2(C/H)" 3 < C™~3. Moreover, m < 6 implies 2 + m/2 >

2m/3, so X2+’"/ XL (XX, X5)2m/2 = N2+M/2, Thus
(m-2)/4
A < XTHOGINZm/ 2(}%) cm3, (7.13)
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Since2 —m/2 + (m —2)/4 = (6 — m)/4 > 0 (resp. since m — 3 > (m — 2)/4), the right-hand side
of Equation (7.13) is weakly increasing in N (resp. in C). Therefore

A <<€0 Xm+O(€0)(X3/2)Z—m/Z(Xl/Z)m—3 =X3m/4+3/2+0(€0)'

Summing over 1 < N = My(F,w)Y /2" and 1 < C = Z/2%> with ky, k, € Z,, we get

23 < X—3X3m/4+3/2+0(€0) — X3(m—2)/4+O(eo)’

where X, is the quantity defined in Equation (7.1). This completes the proof of Equation (7.2).

8 | PROOF OF MAIN RESULTS

In this section, we first prove Theorem 2.7, because it builds directly on our work in Sections 4-7
on the delta method. We then prove Theorem 2.3 using Equations (2.6), (2.7), and Proposition 4.3.
Finally, we combine Theorems 2.3 and 2.7 to prove Theorem 1.1.

Proof of Theorem 2.7. By Proposition 3.4, we see that Hypothesis 2.6 implies Hypothesis 2.4. There-
fore, we may and do assume Hypothesis 2.4. Now recall the quantity X, from Equation (4.6). By
Equation (4.5) and the tail estimate (4.3), we have

Np (X)) = Zg <4, X
Case 1I: m = 4. Then, adding Equations (5.1), (6.6), and (7.3) together, we get

Z) =2, + 2, + I3 = Ny (X) = N}, (X) + O, (x3m=2/4+060)) 4 o (xm=3+<0),

It follows that N, (X) <. X 3(m=2)/4+0(c0)  Let ¢(F,w) := 0.
Case 2: m > 5. Then adding Equations (5.1), (6.5), and (7.2) together, we get

To =2 + 2, + I3 = o(F,w)X" 7 + 0, (X320 4 o, (x4,

where ¢(F,w) := o, ,©. It follows that N ,(X) — ¢(F, w)X"~3 <, X3(m=2)/4+0(co)
In each case, taking ¢, — 0 gives the desired result, Equation (2.16). O

Proof of Theorem 2.3. Let ¢ € S. Since ¥(c, s) has an Euler product, condition (1) in Definition 2.2
clearly holds. It remains to prove that conditions (2) and (3) hold.

Case 1: ¥(c, s) = ®(c, s). Then, conditions (2) and (3) are trivial, since

(be(n), al(n)) = (i), 1,,_)).

Case 2:¥(c,s) =[] PHAG) @, (c, s). Then, conditions (2) and (3) are trivial, since

(be(1), aL(1)) = () - Lyeqnaeyy=1s Se() - Lyyaeye)-
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Case 3: ¥(c, ) € {[1 pjace) Lp(s, ¢)=D"7 L(s,¢)"V"’}. Then by Equation (2.6), we have
b.(n),a.(n) <, n°. (8.1

But aé = Sﬂ * a,, by Equation (2.9). Therefore, condition (2) holds. Furthermore, if p + A(c), then
a.(p) = —b.(p) by Equation (2.9) and b.(p) = (—1)"32.(p) = Eg(p) by Equation (2.7), so

a(p) = S{p) + a(p) = Si(p) — E(p) < p~*/2
by Proposition 4.3. Therefore, condition (3) also holds. 1

Proof of Theorem 11. Let W :=L(s,c)™Y"". Then, ¥ is an approximation of ®, by Theo-
rem 2.3. Moreover, ¥ is standard by Equation (8.1) and Definition 2.5. Now, let § := 1. Then,
7c(n) = u(n)™A,(n) by Equation (2.11), since for all primes p we have a.(p) = (=1)"21.(p) by
the definition of a,. Upon plugging in u(n)™v,, for v, in Hypothesis 2.1, we immediately find that
Hypothesis 2.6 holds. Let ¢ : R — R be a nonnegative, smooth, compactly supported function
such that¢(t) = 1forallt € [1,4],and ¢c(¢t) = O forall t & [%, 8]. Let

w(x) :=g< D x§>.

1<ism

Then, Theorem 2.7 implies Ny ,(X) <, X3("=2/4+¢ for all X > 1. Since w(x/2¥) =1 forall x €
Z™ in the annulus 4% < X iciam X < 4k+1 it follows that

NpeX)—-1=|ixe Z" n[-X,X]" : F(x) =0, x # 0}

<Y NewW@H

0<k<log,(4mXx2)

<. Z (2k)3(m—2)/4+5
0<k<log, (4mX?)

< ((4mX2)1/2)3(m—2)/4+6

<<€ X3(m—2)/4+€’
for all X > 1. This implies Theorem 1.1. O
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