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Abstract

Machine Learning and Al have the potential to transform data-driven scientific discovery,
enabling accurate predictions for several scientific phenomena. As many scientific questions
are inherently causal, this paper looks at the causal inference task of treatment effect
estimation, where the outcome of interest is recorded in high-dimensional observations
in a Randomized Controlled Trial (RCT). Despite being the simplest possible causal setting
and a perfect fit for deep learning, we theoretically find that many common choices in the
literature may lead to biased estimates. To test the practical impact of these considerations,
we recorded ISTAnt, the first real-world benchmark for causal inference downstream tasks
on high-dimensional observations as an RCT studying how garden ants (Lasius neglectus)
respond to microparticles applied onto their colony members by hygienic grooming.
Comparing 6 480 models fine-tuned from state-of-the-art visual backbones, we find that
the sampling and modeling choices significantly affect the accuracy of the causal estimate,
and that classification accuracy is not a proxy thereof. We further validated the analysis,
repeating it on a synthetically generated visual data set controlling the causal model. Our
results suggest that future benchmarks should carefully consider real downstream scientific
questions, especially causal ones. Further, we highlight guidelines for representation
learning methods to help answer causal questions in the sciences.

Code: https://github.com/CausallearningAI/ISTAnt
Data: https://doi.org/10.6084/m9.figshare.26484934.v2

1 Introduction

Uncovering the answer to many scientific questions requires analyzing massive amounts of data
that humans simply cannot process on their own. For this reason, leveraging machine learning and
Al to help answer scientific questions is one of the most promising frontiers for Al research. As
aresult, Al is now predicting how proteins fold [Jumper et al., 2021]], new materials [Merchant et al.;
2023|], precipitation forecasts [Espeholt et al., [2022]], and animal behaviors [Sun et al.}[2023]]. Even
predicting counterfactual outcomes for treatment effect estimation appears to be possible [Feuerriegel
et al.}2024]. In scientific applications, these predictions are often incorporated into broader analyses
to draw new physical insights. In this paper, we focus on the problem of estimating the strength
of the causal effect of some variable on another, which is a common type of question across
disciplines [Robins et al.| 2000} [Samet et al., 2000, [Van Nes et al.l 2015/ [Runge, [2023]].

While our discussion and conclusions are general, we follow a simple real-world example throughout
the paper: behavioral ecologists want to study the social hygienic behavior in ants and, thereby, the
ability of the insects to remove small particles from the body surface of exposed colony members.
Such grooming behavior performed by nestmates plays an important role in restoring a clean body
surface of the contaminated individual, which, in case of infectious particles being groomed off,
assures the health of the individual and prevents disease spread through the colony’s [Rosengaus et al.}
1998| Hughes et al., 2002} Konrad et al., 2012]]. To study whether different microparticles differ sys-
tematically in their induction of grooming behavior, the biologists thus perform an experiment under
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controlled conditions, where a focal worker ant is treated randomly with either of two microparticle
types, and the behavior of two untreated colony members towards the treated ant is filmed in multiple
replicates. This is followed by detailed behavioral observation to quantify ant activity, as well as
statistical data analysis to determine if treatment has a significant effect. This step could obviously be
entirely replaced with deep learning, dramatically accelerating the workflow. In fact, many data sets
and benchmarks have been proposed with the specific reason of supporting downstream science in
behavioral ecology and biology [Sun et al., 2023| Beery et al., 2018 Kay et al.| 2022 |Chen et al.,
2023]] and other scientific disciplines [Beery et al., 2022} Lin et al.,[2023, [Moen et al., 2019].

Our paper questions the simplicity of this narrative in both theory and practice. While we take
experimental behavioral ecology as an example for our motivation and experiments, our theoretical
results and experimental conclusions are general, and we expect them to be applicable across
disciplines. Our key contributions can be summarized as follows:

* We theoretically show how many design choices can affect the answer to a causal question, from the
data used for training, the architecture choices, and even seemingly innocuous standard practices
like thresholding the predictions into hard labels, or using held out accuracy for model selection (a
common practice in many Al for science benchmarks, e.g., [Sun et al.| 2023])). To facilitate future
research on representation learning for causal downstream tasks, we formulate the representation
desiderata to obtain accurate estimates for downstream causal queries together with best practices.

» To showcase the practical impact of these design choices, we design and collect a new dataset,
ISTAnt, from a real randomized controlled trial, reflecting a real-world pipeline in experimental
behavioral ecology, which we will release to accelerate research on representation learning for
causal downstream tasks. To the best of our knowledge, this is the first real-world data set
specifically designed for causal inference downstream tasks from high-dimensional observations.

* On our dataset, we fine-tune 6 480 state-of-the-art methods [Dosovitskiy et al., [2020, [Zhai et al.}
2023, |Radford et al., 2021} He et al.,[2022] |Oquab et al.| 2023]] in the few- and many-shot settings.
Empirically, we confirm that the seemingly innocuous design choices like which samples to
annotate, which model to use, whether or not to threshold the labels, and how to do model selection
have a major impact on the accuracy of the causal estimate. Since our ground-truth estimate of
the causal effect depends on the trial’s design, we propose a new synthetic benchmark based on
MNIST [LeCun, |1998] controlling for the causal model, and we replicated the analysis.

2 Setting

We consider the RCT setting, where binary treatments 7" are randomly assigned within an experiment
with controlled settings W. In many applications, the outcome of interest Y is not measured
directly. Instead, it is collected in high-dimensional observations X — e.g., frames from a video of the
experiment. Our goal is to estimate the causal effect of 7" on Y, which is quantified by the estimation
of the Average Treatment Effect (ATE), i.e.:

ATE :=E[Y|do(T = 1)] — E[Y|do(T = 0)]. (1

Assuming an RCT (i.e., Ignorability Assumption [Rubin, [1978]]) is the ideal setting for causal
inference because the ATE directly identifies in the Associational Difference (AD), i.e.,

AD :=E[Y|T = 1] - E[Y|T = 0). @)

However, annotating Y from the high-dimensional recordings X requires costly manual annotations
from domain experts. Leveraging state-of-the-art deep learning models, we can hope to alleviate
this effort. Instead of labeling all the data, we only partially annotate it. We introduce a binary
variable S, indexing whether a frame is annotated by a human observer or not. We denote the
annotated samples with Dy = {(W;,T;, X;,Y;) : S; = 1}, and the not annotated ones with
D, ={(W;,T;, X;) : S; = 0}™,. We use D; to train or fine-tune a deep learning model to estimate
the labels on D,,. Next, we leverage the Ignorability Assumption on the full RCT to identify the ATE
in the AD and consistently estimate it. Ideally, it would be most useful if Dy = (), but for the purpose
of this paper, we assume that at least some samples are annotated, for example, during quality controls.

Besides the clear statistical power considerations, recovering the full RCT enables the identification
of the causal estimands. Estimating the ATE only on D, may not be feasible even if one aims to
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adjust for W due to possible violations of the Positivity Assumption (i.e., 0 < P(T = 1|W =
w) <1 Vw:P(W =w) > 0). In principle, S should be assigned randomly (independent from
any other variable), but for practical reasons, it is often a function of the experiment settings W'.
For example, when annotating grooming in behavioral experiments, experts annotate experiment
by experiment, marking the beginning and end of each behavior event, allowing for some selection
bias. The experimental setup can be described with the causal model in Figure[I] where we omit the
corresponding exogenous random noises for simplicity. For simplicity of exposition, we will now
assume a binary outcome, but all the following results naturally generalize to the continuous case.

Motivating Application and the ISTAnt Dataset.  Ants show strong hygiene behaviors and
remove any particles that attach to their body surface, including dust, dirt, and infectious particles.
In a process termed “grooming”, they use their mouthparts to pluck off adhering particles, collect and
compact them in a pouch in their mouth, and later expulse them as pellets. As a social behavior, ants
groom one another to keep all colony members clean and healthy. To understand how social insects
like ants may react to changes in their ecosystem, it is of great interest to research in collective
hygiene how different particles differentially affect the intensity of grooming by colony members.
For this purpose, we recorded groups of three Lasius neglectus worker ants interacting in a controlled
environment, where we treated one focal ant by applying either of two microparticle types to its
body surface and observed the grooming activity of the other two towards it. Our exemplary task
is to estimate the causal effect of the microparticle type on ant behavior. Sample frames of these
recordings used to build our new benchmark are reported in Figure [2]

Key research question. Predicting animal behavior is a standard machine learning and
computer vision task [[Sun et al.} [2023] [Chen et al.,[2023]]. At the same time, we hope to use these
predictions within the context of a causal downstream task. In this paper, we question whether
the naive application of deep learning methods leads to consistent estimates that can be used to
draw scientific insights, even if the data we collect is ideal, i.e., a randomized controlled trial.
Likewise, in causal inference, the factual effects are always assumed to be given, and the statistical
consideration of using machine learning to estimate them is missing.

3 Biases in downstream ATE estimation from ML pipelines

In this section, we formalize a model’s bias for a downstream Treatment Effect Estimation and its
relationship with (vanilla) prediction accuracy measures. We then highlight possible sources of biases
from both the data and the model.

Definition 3.1 (Treatment Effect Bias). Let f : X — Y a model for Ey [Y|X = x]. We define the
treatment effect bias of f w.rt. a treatment T on an outcome Y and a signal X as:

TEB := | Ex do(r=1)[f(X)] = Eyjaor=0)[Y] | = | Ex|do(r=0)[f(X)] = Eyjao(r=0)[Y] | (3)

Interventional Bias under Treatment Interventional Bias under Control




f is treatment effect unbiased if TEB = 0, i.e., the difference among the systematic errors per
intervention (over/under estimating) compensates, or directly, the ATE on the predicted outcomes
equals the true ATE (despite possible misclassification).

Lemma 3.1 (Informal). Assuming the setting described in Section |2} A predictive model f
for the factual outcomes with accuracy 1-¢ can lead to |TEB(f)| = T Pr=n = 26 which

invalidates any causal conclusion when the ATE is comparable with € and/or the dataset is
unbalanced in T.

A formal statement and proof for Lemma [3.1]is reported in Appendix [A.T} Lemma [3.T]explicits that
misclassification can lead to biased causal conclusion, but not necessarily. Clearly, if the prediction
accuracy is perfect (i.e., ¢ = 0), also the objective of treatment effect estimation is perfect. However,
for each error rate € > 0, several predictions with different treatment effect biases are possible, from
0 to the worst-case scenario W(T:t)’ which drastically invalidates any causal conclusion for

€ > 0 or strongly unbalanced dataset with respect to the treatment assignment. Accuracy and similar
metrics do not provide a full picture of the goodness of a model for such a downstream task.

Due to the Fundamental Problem in Casual Inference [Holland, [1986]], we cannot estimate the treat-
ment effect bias directly. By design (i.e., Ignorability Assumption), the interventional expectations
are identified in the conditional ones on the whole population, but not on D, individually due to
the effect modifications activated by conditioning on S. Still, in practice, a validation set, ideally
Out-of-Distribution from the training sample in D;, can be considered to approximate the TEB.

Links to Fairness This idea of enforcing similar performances (or at least similar systematic errors)
among the treated and controlled groups can be revisited in terms of fairness requirements [[Verma and
Rubin, [2018]]. In particular, it strictly relates to Treatment Equality [Berk et al.,[2021]], where the ratio
of false negatives and false positives for both treated and control groups is enforced to be the same,
while in TEB we measure the difference, but in a similar spirit. In our setting, the difference is actually
a more stable measure since the ratio can be ill-defined when the number of false positive predictions
approaches 0. This discussion leaves open where the bias originates and, in the fairness literature,
this is reflected in the distinction between bias preserving and bias transforming metrics [Wachter
et al.,|2021]]. For our purposes, the data as a whole is assumed unbiased in principle since we assume
an RCT, but the sampling scheme .S could introduce bias in the training data. Orthogonally, the
model choices can amplify existing data biases differently or even introduce new ones.

Data bias from sampling choice From the assumed causal model illustrated in Figure[I] we have
that P(X:Y)IS=0 generally differs from P(X:Y)I5=1_ Indeed, conditioning on S acts as an effect
modification on X and Y. It follows that the risk in predicting Y over the annotated population can
differ from the expected risk over the whole population, i.e.:

Ex,v)s=1[L(f(X),Y)] # Ex v)[L(f(X),Y)]. “4)

Due to this distribution shift, we should expect some generalization errors at test time through
empirical risk minimization even if ny — oco. It follows that the Conditional Average Treatment Effect
(CATE) estimate for the experimental settings poorly represented in Dy can introduce bias in D,,.

Mitigation: Randomly assigning S is crucial to suppress any backdoor path and avoid generaliza-
tion errors. Model selection should also take into account the TEB. Although we cannot estimate
it directly, a validation set, ideally Out-of-Distribution in W, should be considered to bound the
TEB, replacing the interventional distributions with the corresponding conditionals.

Model bias from the encoder choice Since X is high-dimensional, we decompose the model f in
h o e, where e is an encoder potentially pre-trained on a much larger corpus through a representation
learning algorithm and h is a simple decoder (e.g., multi-layer perceptron) for classification. A good
representation should be both sufficient and minimal [Achille and Soattol 2018]]. If a representation
is only sufficient, redundant information from W or S could be preserved, potentially leading to
systematic errors on D,, due to spurious correlations and the abovementioned covariates shift. Frozen
state-of-the-art models are most likely not minimal for our task, making the sampling choices even
more relevant. If the representation is not sufficient, then it is biased by definition.



Mitigation: Before deploying a new backbone, one should attempt to quantify its biases. If needed,
new methodologies to mitigate this bias during adaptation should be investigated. Overall, models
with lower bias may be preferable even if they have lower accuracy.

Discretization Bias We can encounter a final source of bias in post-processing the predictions.
Indeed, despite the majority of the classification methods directly modeling the conditional expec-
tation E[Y|X = z], we could naively be tempted to binarize this estimate to the most probable
prediction or setting a fixed threshold. See indeed how the default choices for the predict module,
even in established libraries, e.g., Logistic Regression implementation in sklearn.linear_model
[Pedregosa et al., 2011], is to output the most probable prediction directly. Similarly, even econML,
the most popular library for causal machine learning [Battocchi et al.l 2019], allows for binary out-
come prediction methods. Despite being apparently innocent and common practice in classification,
discretizing the conditional expectation is biased for downstream treatment effect estimation.

Theorem 3.1. [Informal] Let a binary classification model converge to the true probability
of the outcome given its (high-dimensional) signal. Then, its discretization (i.e., rounding the
prediction to {0,1} with a fixed threshold) also converges, but to a different quantity with a
different expectation. It follows that, for causal downstream tasks from ML pipelines, discretizing
the predictions biases the ATE estimation.

A formal statement and proof of Theorem [3.1]is reported in Appendix [A.2] It shows that even if
we rely on a consistent estimator of the factual outcome for each subgroup, its discretization would
still converge but on a different quantity, i.e., it is biased. There is then no reason to discretize a
model for E x [Y|X] if we can model it directly, e.g., using sigmoid or softmax activation [Senn
and Julious, 2009, Fedorov et al.| 2009]]. Likewise, if there is uncertainty over human annotations
(e.g., because multiple raters disagree), the soft label should be used and not the majority one.

Example 1. To intuitively visualize this result, con- 035
sider a generative process following the causal model T
introduced in Figure Let f a model for E[Y | X = ~=- AD (discr)

EAD (discr)
x| trained by logistic regression over n samples and
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f* its discretization. Let the Empirical Associational
Difference (EAD) of [ converge to its AD, then the

EAD of f* still converges but to its own AD, which
significantly differs (depending on the randomness
in P(Y|X) mechanism). In Figure |3} we report the
results of a Monte Carlo simulation for an instance n
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Mitigation: Never arbitrarily discretize predictions for downstream treatment effect estimation.

4 Related Works

Representation learning for scientific applications The setting we consider is very common, and
there are several benchmarks that have studied representation learning as a means to help domain ex-
perts in sciences, for example, [Sun et al.;[2023|Beery et al.|[2018| Kay et al.|[2022,|/Chen et al.| 2023]]
in ecology alone. However, these works focus on downstream prediction accuracy following standard
machine learning evaluation practices, which do not necessarily indicate good downstream causal
predictions. One notable positive example is/Beery et al.|[2018]], as computing the prediction accuracy
separately for different locations allows us to estimate the bias of the model. Overall, we argue that
when the ultimate purpose of training a machine learning model is to support scientists in answering
some research question that is causal in nature, the specific question should be part of the design and
evaluation of the benchmark. For this reason, our paper uniquely starts from the causal downstream
task. Only then can we formalize the properties that methods should have in order to do well and be



useful in answering the overarching scientific question. To the best of our knowledge, ours is the first
real-world computer vision data set with an associated well-defined and real causal downstream task.

Causal representation learning In our analysis (both theoretically and experimentally), we fo-
cused on traditional representation learning algorithms, but there is a whole community interested in
identifying causal variables from high-dimensional observations [Scholkopf et al., 2021]]. Superfi-
cially, identifying Y may be useful to estimate the ATE. However, all existing methods seem to cover
two main classes of assumptions that are unfortunately inapplicable to our setting. Interventional
methods [|Ahuja et al.,|2023| [Buchholz et al.|[2023| [Squires et al.,[2023| |Varici et al.} 2023, [Zhang
et al.| 2024] require intervening on the behavior Y, which is practically impossible and, even if we
could, then we would not need to identify it. Multi-view approaches [Ahuja et al.,|[2022| Brehmer
et al., 2022} [Locatello et al., 2020, von Kiigelgen et al.,|2021} [Yao et al.||2024]] would require access to
positive and negative pairs of samples with respect to Y. However, it is not clear how to construct such
pairs in our setting without knowing Y already. Further, all these approaches only cover continuous
variables. A notable exception is |[Kivva et al.| [2021]], which covers discrete variables but has a
non-degeneracy assumption (Assumption 2.4) that is severely violated in our case (i.e., most pixels
are not affected by the behavior variable because ants are small). For these reasons, despite having a
very clear causal downstream task, we had to resort to classical representation learning algorithms
that are not identifiable. We hope that our data set can serve as a new real-world benchmark for
developing algorithms with realistic assumptions that can be applied in practice.

Other Related Works In causal inference, only (Chakrabortty et al.|[2022]] shows how to use
semi-supervised learning to perform imputation on missing effect annotations. Unfortunately, their
setting is comparatively very low-dimensional (observations are 200 binary variables). Instead, we
consider high-dimensional real-world images in a representation learning setting, which introduces
additional new challenges as described in Section[3] Remarkably, they do not discute discretization
bias. |Curth et al.|[2024]] already mentioned that the Positivity and Ignorability/Unconfoundness
Assumptions are critical for using machine learning in the context of ATE estimation. However, their
work does not explain precisely how confounding effects can arise in the representation learning
setting, which we thoroughly addressed. Close in spirit to our discussion are [[Angelopoulos et al.,
2023| [Zrnic and Candes| [2024], considering the role of predictions in statistical estimates. Our setting
is related but additionally motivated by the hope of leveraging causal identification properties on the
prediction-powered dataset.

S Experimental setup

We validate the theoretical results from Section [3|on our new real-world dataset. We assume D; U D,
being a full RCT, and we compare the treatment effect biases among several design choices in
annotating and modeling. Overall, we fine-tuned 6 480 different models and tested all the mitigations
proposed. We then replicate the experiments on CausalMNIST, a new synthetic benchmark we
propose that allows controlling for the causal effect.

5.1 New real-world dataset: ISTAnt

We applied microparticles to the body surface of a (focal) Lasius neglectus worker ant and recorded
the behavioral reaction this treatment elicits in two other worker ants from the same colony. To
distinguish between the treated individual and the untreated two nestmates, the latter had been color-
coded by a dot of blue or orange paint, respectively, before the experiment. We used two different
microparticle treatments to compare grooming responses by the nestmates between treatment types,
assigning them at random (i.e., RCT). For five batches, we simultaneously filmed nine ant groups
of three ants each under a single camera setup in a custom-made box with controlled lighting and
ventilation. In total, we collected 44 videosﬂ of 10 minutes at 30fps each for a total of 792 000 frames
annotated following a blind procedure, and we run the analysis at 2fps for a total of 52 800 frames.
More details about the experiment design are reported in Appendix [C| We remark that this is the first
real-world data set for treatment effect estimation from high-dimensional observations, which we will
release to accelerate future research. Since it encompasses a real-world scientific question, we can, at

'One video was discarded for analysis since a leg of one of the two nestmates got stuck in the dot of the color
code, impairing its behavior.



best, enforce the Ignorability Assumption by design in the trial. We do not have actual control over
the underlying causal model and the causal effect. We take the treatment effect estimation computed
with the expert annotations as ground truth.

Annotation Sampling Annotating frames individually is significantly more expensive in terms of
time and not adopted in practice. The practical gold standard through current software for human
annotation is per-video random annotation, where only a few videos taken at random are fully
annotated. We compared this criterion with per-video batch (W;) and per-video position (W)
annotation criteria, where only the videos in certain batches or positions were considered in Dy. For
each of the three criteria, we further considered a many-shots (Ds > D,,) and a few-shots setting
(Ds < D,,). Details about the dataset splitting per annotation criteria are in Appendix [D.1]

Modeling We modeled f as a composition of a freezed pre-trained encoder e and a multi-layers
perceptron & fine-tuned on D,. For the encoder, we compared six different established Vision
Transformers (ViT), mainly varying the training procedure: ViT-B [Dosovitskiy et al.,2020], ViT-L
[Zhai et al.,|2023]], CLIP-ViT-B,-L [Radford et al.,2021]], MAE [He et al.,[2022], DINOv2 [Oquab
et al.,|2023]]. For each encoder, we considered the representation extracted (i) by the class encoder
(class), (ii) by the average of all the other tokens (mean), or (iii) both concatenated (all). For each
representation extracted we trained different heads, varying the number of hidden layers (1 or 2 layers
with 256 nodes each with ReLU activation), learning rates (0.05, 0.005, 0.0005) for Adam optimizer
[Kingma and Ba, 2014]] (10 epochs) and target (independent double prediction of "blue to focal’ and
“orange to focal’ grooming, or unique prediction of grooming either *blue to focal” or ’orange to
focal’) via (binary) cross-entropy loss. We either discretized or not the output of the model, already
in [0, 1] due to the sigmoid final activation. For each configuration, we repeated the training with five
different random seeds. A summary of the architectures and training description is in Appendix

Evaluating For each trained model, we computed the binary cross-entropy loss, accuracy, balanced
accuracy, and TEB on validation; and accuracy, balanced accuracy, TEB, and TEB using discretization
on the full dataset D = D; U D,, (where the average potential outcomes in the TEB are estimated
by the sample mean). Since the ATE does not have a reference scale, for interpretation purposes,
we replaced the TEB with Treatment Effect Relative Bias (TERB = TEB/ATE) in the visualizations.

5.2 CausalMNIST

CausalMNIST is a new synthetically generated visual dataset we designed for downstream treatment
effect estimation. It is a colored manipulation of the MNIST dataset [LeCun, [1998]], following
an underlying generative process in agreement with the causal model assumed in our framework
(see Figure[I). We explicitly controlled the ATE and generated 400 different samples from such a
population (each one as large as the MNIST dataset, i.e., 60k images), allowing for Monte-Carlo
simulations to accurately provide confidence intervals of our estimations. We omitted a comparison
among pre-trained encoders since the visual task is relatively simple and can be solved directly by a
simple convolutional neural network in a supervised fashion. A full description of the dataset is in
Appendix [E] together with its experiments, which align with our conclusions from ISTAnt.

6 Results

Annotating criteria matter Theory suggests that biased annotating criteria (i.e., depending on
the experimental settings) can lead to biased treatment effect estimation, wrongly retrieving the
conditional treatment effect on unseen experimental settings. Figure |4| validates this observation,
particularly in the few-shots regime. Despite the average estimation of the TEB is (almost) always
biased, as illustrated in Table|l} the distribution for (per-video) random annotation is more centered
towards 0. The benefits of random sampling are less obvious in the many-shots regime since D,,
becomes less and less Out-of-Distribution. Still, this setting is rarely the case in practice since
scientist hope to label |D;| < |D,,| frames to have a concrete advantage in their workflow.

Encoder Bias Vanilla classification evaluation (e.g., accuracy, Fl-score, etc.) well describes the
goodness of a representation for a predictive downstream task. However, it is still unclear how to
measure the goodness of a representation for a causal downstream task since we do not directly
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Figure 5: Scatter plot comparing the TERB and
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different downstream prediction performances,
all the encoders (with excepts of MAE) lead to
similar TERB (up to £ 50%).

observe the ground truth (fundamental problem of Causal Inference). Even in our simple setting
where we can easily identify the treatment effect over the whole population, it is not possible to
condition just on a biased subsample (e.g., the validation set). Figure [5|shows clearly how the TERB
doesn’t correlate with balanced accuracy on the whole sample once it is sufficiently good (i.e., > 0.9).
Even among models with balanced accuracy > 0.95 we estimated TERBs up to 4= 50%, which can
drastically lead to wrong causal conclusions. Among the different encoders, MAE is significantly
underperforming all the others. We postulate the reason for this gap is that the masked reconstruction
training leads to overly focus on background conditions instead of the comparatively small ants.
Evidence for this hypothesis is reported in Table [2] where we observe that for ‘position” splitting
criteria, the Fréchet Distance between the extracted embeddings by MAE in D, and D,, is maxima
and significantly higher than for the other splittings, probably due to spurious correlation with the
background which is indeed non changing as much for “random” and “experiment” splitting. Despite
some (e.g., DINOv2 and CLIP-ViT-L) having better downstream predictive performances, the other
encoders all have similar TERB ranges. New criteria to better estimate and bound the treatment effect
bias already on validation and methodologies to unbias these models during training are required.

Discretization Bias We considered the absolute value of the TEB over all the 6 480 fine-tuned
models, evaluating independently the models predicting both ‘Blue to Focal’ and ‘Orange to Focal’
grooming for a total of 9 720 evaluations. We tested (¢-test):

Ho : E[|TEB(f)|] = E[ITEB(Lj0.5,1 (/)] vs Hi:E[TEB(f)[] < E[TEB(Ljo.5,11(f))I] ()

We found strong statistical evidence to confirm that discretizing the model outcome worsens treatment
effect estimation (¢ statistic=-10.42, p-value=1.07 - 10~2%), confirming Theorem.



Prediction is not Causal Estimation Distinct statistical and causal objectives cannot be used as a
proxy for one another. We already formalized this in Lemma[3.T|and partially observed it in Figure 3]
In Figure[f] we systematically show it by comparing the rank-correlation among 1 620 models. We
further observed that simply computing the TEB on a small validation is a better predictor of the TEB
over the full dataset than the metrics focused on prediction accuracy (even on the full dataset). For the
few-shot and experiment sampling (the most realistic), if we select the single best model on validation
based on the TEB versus the accuracy, we underestimate the effect by 11% and 18%, respectively.
While this is not perfect, is a significant improvement. We encourage future research to investigate
theoretical generalization guarantees and new techniques to approximate the TEB on validation data.

Figure 6: Spearman rank-order correla-

tion matrix comparing different metrics

for model selection on validation (sub-

100 script val) and over the full dataset (sub-

script D). We considered all the 1 620

I0.75 fine-tuned models to predict ‘Blue to

Focal’ or ‘Orange to Focal’ grooming

in few-annotations regime (i.e., |D;| <

|Ds|). Standard prediction metrics on

validation correlate, but they are almost

independent of the ITEBI,,;. Similarly,

they correlate with the prediction met-

rics on the full dataset but poorly pre-

dict the ITEBlp. On the other hand,

ITEBI,; is the most correlated metric

with ITEBIp, unlike even the prediction
-1.00 metrics on the full dataset.
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Discussion Overall, our results clearly show that it is possible to leverage pre-trained deep learning
models to accelerate the annotation of experimental data and obtain downstream causal estimates that
are consistent with those from domain experts. At the same time, we find that experimental practices
need to incorporate the specific needs of these causal downstream tasks. While our theoretical
statements are “worst case scenarios” and only indicate that bias can arise (but does not always
have to), we find empirical validation that it unfortunately easily manifests in practice. Remarkably,
the fact that we performed and collected data within a randomized controlled trial, which is the
best-case scenario of causal inference, did not alleviate the issue. Therefore, we can expect that the
opportunities for bias can be even greater in observational settings, and even greater care is needed in
model selection with the TEB and adaptation-time debiasing techniques.

7 Conclusions and Limitations

As Al models are increasingly used to answer scientific questions and support human decision-
making, it is important to understand how design choices in machine learning pipelines affect the
final results. In this paper, we took a closer look at the impact of pre-trained deep learning models
in answering downstream causal treatment effect questions. We presented a real-world example in
experimental behavioral ecology, creating the first-ever data set for treatment effect estimation from
high-dimensional observations. Both theoretically and empirically, we observed that common choices,
most notably discretizing the predictions and using in-distribution accuracy for model selection,
can significantly affect the downstream conclusions. Two clear limitations of this work are that we
did not do anything to the training to mitigate the bias, we kept the backbones frozen, and we did
not incorporate the unlabelled data for semi-supervised training. Here, it would be very interesting
to study how tools developed in the fairness literature can be extended to causal questions. For
future benchmarks targeting scientific applications, we remark that it is vital to include the actual
downstream question in the design of the data set. Otherwise, there is a risk that any model produced
on that data may be unusable in practice, as it can bias the answer on an otherwise perfectly designed
experiment. Finally, we would recommend that future work in causal representation learning starts
from a clear downstream task like the one presented in this paper and works backward to reasonable
assumptions. To facilitate this process, we will release our data set including all the experimental



variables, so that relevant future work on e.g., discovering confounding or semi-supervised effect
discovery, can take place on a real problem.
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A  Proofs

A.1 Proof of Lemma[3.1]

Lemma. Let T ~ Be(pr), Y ~ Be(py), X ~ PX andlet f : X — [0,1] a model for
Ey[Y|X = x| Assuming (i) Ignorability (i.e, T L Y|do(T = 1),Y|do(T = 0)), (ii)
Ex[[11,1(f(X)) = f(X)|] = 0 where k € [0, 1], and (iii) f with accuracy 1 — ¢, i.e., :

P(Ly(f(X)=Y)=1—€ withe€[0,1], (Classification Accuracy)

then ITEB(f)I< W(th) and the worst-case ITEB(f)I:W(th)
all the misclassification over (or under) estimates the factual outcome in the smaller in size
treatment group.

> 2e¢ is reached when

Proof. Starting from the definition of Treatment Effect Bias and using assumption (i):

ITEB(f)| = [(Ex|ao(r=1)[f (X)] = Eyjaor=0)[Y]) = (Ex|do(r=0)[f (X)] = Ey|aor=0)[Y])| =

Interventional Bias under Treatment Interventional Bias under Control
= [(Exjr=1[f(X)] = Eyjr=1[Y]) = (Ex|r=0[f(X)] = Eyjr=o[Y])| =
€1 €0
= |e1 — €o| < er] + |eo (6)
where
et = Ex =1 [f(X)] = Ey|p=1[Y] Vt€{0,1} (N

represent the overestimation of each conditional outcome expectation (i.e., conditional bias under
treatment/control).

By assumption (iii) and the law of total probability:

=P Ly (f(X) #Y) =
=P Ly (f(X) #Y|T=0) - P(T=0) +P (Lppy(f(X) #YIT=1)-P(T=1). (8)
By Jensen’s inequality and linearity of the expected value:

let] = [Ex,v)r=[f(X) = Y]] <
< Ex vy =l f(X) = Y]] =
=Ex,v)r=¢[[f(X) = L,y (f (X)) + 1y (f(X)) = Y]] <
< Ex ) r=e[f(X) = Ly (F (XD + Ex vy r=e[| L (f (X)) = Y] =
=Ex,v)r=[|f/(X) = Lp g (fF (X)) +P (Lpey(F(X) #Y[T =1t). 9)

Combining Equation[8]and [9] we using the assumption (ii), for all ¢ € {0, 1} we have:

€= leol - P(T =0) +|ea| - P(T'= 1) = Ex[|Tpe,1)(f (X)) = F(X)]] =
=leo| - P(T'=0)+le1| - P(T=1) (10)
And finally, combining this with Equation[6] we get:

€

min; P(T =t)’ an

ITEB(f)| <

The bound we found corresponds to the worst-case scenario where we misclassify, only overesti-
mating or only underestimating, always in the least probable treated group. Since 7T is binary, then
(min; P(T =t)) > 0.5, and so the thesis.

Comment: Assumption (ii) is only used to find the worst-case scenario explicitly. Similar results can
be stated bounding this discretization error.

O
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A.2  Proof of Theorem[3.1]
Theorem. Let T ~ Be(pr), Y ~ Be(py) and X ~ PX. Forallt € {0,1}, let 7,(X,t) a
succession converging in mean L' to 7(X ,t) .= Ey[Y|X,T =t} i.e.,

Ex [|72(X,1) = 7(X,1)]] = 0 (12)

Let 7;(X,t) = Ly 1) (Tn(X, 1)) for all n and 7% (X ,t) = 117 (7(X, 1)), where 1y, 4y :
R — {0, 1} is the indicator function with threshold k € [0,1]. Assuming 7(X,t) having
continuos CDF (i.e., Fr(x 1) € CY), then:

Ex [|75(X,t) — 7°(X,t)|]] =0 (13)
but
]EX[T*(X,t)] =+ IEX[T(X,t)] VEk € [0, 1]/1?;, (14)

i.e., they are generally different unless for a value k € [0, 1] depending on the distribution of
7(X, t) (not observed in practice).

Proof. Convergence in mean L! of that binarized estimator (Equation follows directly from the
fact the L' convergence implies convergence in distribution and Portmanteau Thereom (using the
continuity assumption of 7(X, t) CDF).

It only remains to show that the expectations of their limits generally differ. By developing the
expected value of the 7*( X, t) we have:

Ex [r(X, )] = / Ly (X, 1) dPx = (15)

=P(r(X,t) > k) #Ex[r(X,t)] Wte{0,1},ke[0,1]/k.  (16)

where, by definition, k is the a-quantile for 7(X,t), with « = 1 — Ex[7(X,t)] (uniqueness due to
the continuity of 7(X, t) CDF).

O
B Additional Examples

B.1 Full Description Example ]]

Let’s consider the following structural causal model in alignment with the generative process in
Figure[I] Noises:

np ~ Be(pr) (17
nw,nx % N(0,1) (18)
ny ~N(0,0%) (19)
where pr € (0,1) and 0% > 0. and structural equations:

T :=np (20)
W :=nw 21
X:=T+W+nx (22)
Y =1y 400)(X +1v) (23)

By the Law of Total Probability and additivity of Gaussian distributions, it follows:
X ~N(pr,2+pr-(1—-pr)) (24)
X|T=1~N(1,2) (25)
X|T =0~ N(0,2) (26)
YT =1~ Be <¢ <1>> 27
Y|T =0~ Be(0.5) (28)
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. 1 ifEy[Y]X]>0.5
Yo {O if otherwise 29)
Then:
Y*|T =1 ~ Be(é(1/V?2)) ~ Be(0.76) (30)
Y*|T = 0 ~ Be(0.5) 31)
And:
1
ADyp=¢ | —— | - 05 32
YT =9 (\/m) (32)
ADy- 7 = ¢(1/V2) — 0.5 # ADy (33)

Let f(x) a logistic regression estimator for E[Y'|X = z] and:

(a) = {1 iff)>05 o -

0 if otherwise

Setting pr = 0.5 and J% = 1, we run a Monte-Carlo simulation with 50 different random seeds
per sample size n, estimating the associational difference by the empirical associational difference

(EAD), i.e., using the sample mean. The results are reported in Figure We observe that f leads to
a consistent estimate of the true associational difference, which corresponds to the ATE due to the
Ignorability Assumption encoded in the causal model:

EAD¢ x) 1 5 ADy.r = ATEy (35)
and so:

EAD —5 ADy+ 7 = ATEy~ (36)

f+(x),T

But, according to Theorem@, its discretization is biased:
ADy. 1 — ADy 1 = (¢(1/\/§) - ¢(1/\/§)) ~0.042 > 0 37)

and more generally, the stronger is the variance in the effect random noise ny-, the bigger is the bias.

C ISTAnt

In our study, we analyzed grooming behavior in the ant Lasius neglectus in groups of three worker
ants. The workers for the experiment were obtained from their laboratory stock colony, which had
been collected from the field in 2022 in the Botanical Garden Jena, Germany. Ant collection and
all experimental work were performed in compliance with international, national and institutional
regulations and ethical guidelines. For the experiment, the body surface of one of the three ants was
treated with a suspension of either of two microparticle types (diameter 5 um) to induce grooming by
the two nestmates, which were individually color-coded by application of a dot of blue or orange paint,
respectively. The three ants were housed in small plastic containers (diameter 28mm, height 30mm)
with moistened, plastered ground and the interior walls covered with PTFE (polytetrafluoroethane)
to hamper climbing by the ants. Filming occurred in a temperature- and humidity-controlled room
at 23°C within a custom-made filming box with controlled lighting and ventilation conditions. We
set up nine ant groups at a time (always containing both treatments) and placed them randomly on
positions 1-9 marked on the floor in a 3x3 grid with a distance of about 3mm from each other. Figure
illustrates the filming box and the displaying of the containers in each batch. The experiment was
performed on two consecutive days. Videos were acquired using a USB camera (FLIR blackfly S
BFS-U3-120S4C, Teledyne FLIR) with a high-performance lens (HP Series 25mm Focal Length,
Edmund optics 86-572) in OBS studio 29.0.0 [Baileyl [2017] at a framerate of 30 FPS and a resolution
of 2500x2500 pixels. From each original video (105x105 mm), we generated 9 individual videos
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.mkv (each 32x32 mm, 770x770 pixels) by determining exact coordinates per container from one
frame in GIMP 2.10.36 [Kimball and Mattis| 2023]] and cropping of the videos with FFmpeg 6.1.1
2006]. Annotation was performed over two consecutive days by three observers who had not
been involved in the experimental setup or recording and were unaware of the treatment assignments
to ensure bias-free behavioral annotation. They annotated the behavior of the ants during video
observations, using custom-made software that saves the start and end frames of behaviors marked in
a . csv file. In one of the videos, one of the nestmates’ legs got inadvertently stuck to its body surface
during the color-coding, interfering with its behavior, so the video was discarded. This left 44 videos
from 5 independent setups (n=24 of treatment 1 and n=20 of treatment 2) of 10 minutes each for a
total of 792 000 annotated frames. For each video, we provide the following information: the number
of the set to which it belongs (1-5); the number of the position within the set reflecting the position of
the ant group under the camera (1-9), for which we also provide ‘coordinates’ in the 3x3 grid (taking
values -1/0/1 for both X and Y axis); treatment (1 or 2); the hour of the day when the recording was
started (in 24h CEST); experimental day (A or B); the top left coordinate of the cropping square from
the original video (CropX/CropY); the person annotating the video (given as A, B, C); the date of
annotation (1: first day, 2: second day) and in which order the videos were annotated by each person
(both reflecting a possible training effect of the person).

(a) Camera set-up (b) Filming box (c) Containers grid

Figure 7: Visualizations of the filming box set-up inside a temperature- and humidity-controlled
room.

D Detailed Experimental Settings

In this section, we provide additional information on the experimental settings for the main experi-
ments (on ISTAnt dataset). In particular, we describe the annotation splitting criteria selected, then
the modeling choices and the training details. We run all the analyses using 48GB of RAM, 20 CPU
cores, and a single node GPU (NVIDIA GeForce RTX2080Ti). The main bottleneck in the analysis
is the feature extraction from the pre-trained Vision Transformers. We estimate 96 GPU hours to
fully reproduce all the experiments described in the main paper.

D.1 Splitting Criteria

Let W, € {1,...,5} representing the number of batch experiment and Ws € {1, ..., 9} the relative
position of a video inside its batch. We defined the annotation splitting criteria based on the value of
the experiment settings W, and W5, in agreement with Table[3]

where Q = {(1,2), (1,3),(2,4),(2,5),(3,1),(3,2), (4, 3), (4,4), (5,9)}. For validation (used to
generate the Figure[6)) we consider 1 000 random frames from D,,.

D.2 Additional Models details

We extracted once the embedding of each frame in the dataset using a pre-trained encoder, and we
fine-tuned multi-layer perceptron (MLP) heads for classification according to the training details
reported in Table [d] We considered the following encoders for feature extraction, also report the
corresponding Hugging Face code ID for reference:
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Annotations Criteria Dy N D. Ny

Random (Wi, Wa) ¢ Q 42000 (Wy,W) € Q10800
Many Experiment Wi #5 42 000 Wy =5 10 800

Position Wy # 8 46 800 Wy =8 6 000
Random (Wi, W3) €Q 10800 (Wi, Wa) ¢ Q 42000
Few Experiment W, =1 10 800 Wy #1 42 000
Position Wy =1 6 000 Wy #1 46 800

Table 3: Annotation splitting criteria details for the extensive experiments on ISTAnt described in
Section [5|and|[6]

» ViT-B [Dosovitskiy et al., 2020]: google/vit-base-patchl16-224

ViT-L [Zhai et al.,2023]]: google/siglip-base-patchl16-512

CLIP-ViT-B [Radford et al., 2021]]: openai/clip-vit-base-patch32

CLIP-ViT-L [Radford et al.,[2021]: openai/clip-vit-large-patch14-336
* MAE [He et al.l 2022],: facebook/vit-mae-large

DINOV2 [Oquab et al.l 2023]]: facebook/dinov2-base

Model/Hyper-parameters Value(s)
Encoders [CLIP-ViT-L, CLIP-ViT-S, DINOv2, MAE, ViT-L, ViT-S]
Encoder (token) [class, mean, all]
MLP (head): hidden layers [1,2]
MLP (head): hidden nodes 256
MLP (head): activation function ReLU + Sigmoid output
Tasks [all, or]
Dropout No
Regularization No
Loss BCELoss (with positive weighting
Loss: Positive Weight %%Yy
Learning Rates [0.05, 0.605, 0.0005]
Optimizer Adam (81 = 0.9, 8, = 0.9, = 1078)
Batch Size 256
Epochs 10
Seeds [0,1,2,3,4]

Table 4: Model and training details for the extensive experiments on ISTAnt described in Section

and @

Encoder (token) refers to which embedded tokens were considered for representation from each
ViT. ‘class’ stands for the class taken, ‘mean’ for the mean of all the other tokens and ‘all’ for their
concatenation. Task refers to which outcome we aimed to model directly: either the two independent
grooming events (‘Blue to Focal’ and ‘Orange to Focal’) or the single grooming event (‘Blue or
Orange to Focal’). Overall, we finetuned:

N = Nsplitting criteria * Mencoders * Mtokens * Ntasks * Thidden layers * Tlearningrates * Tlseeds

=6-6-3-2-2-3-5=16480 (38)

heads.
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E CausalMNIST

E.1 Data generating process

To replicate the results on ISTAnt controlling for the causal model, we proposed CausalMNIST: a
colored manipulated version of MNIST [1998]], defining a simple causal downstream task
(treatment effect estimation). Starting from MNIST dataset, we manipulated the background color B
of each image (1: green, O: red), and the pen color P (1: white, O: black) to enforce the following
Conditional Average Treatment Effect:

E[Y|do(B =1),P =1] —E[Y|do(B=0),P=1] =04 (39)
E[Y|do(B =1),P =0] —E[Y|do(B =0),P =0] =0.2 (40)

and Average Treatment Effect:
E[Y|do(B =1)] —E[Y|do(B =0)] = 0.3 41

where Y is a binary variable equal to 1 if the represented digit is strictly greater than d € R, 0
otherwise. |Arjovsky et al.| [2019]] already proposed a colored variant of MNIST as a benchmark
for robustness in a multi-environment setting, but without controlling for any causal model and
presenting a causal downstream task. A simple interpretation of this new task is estimating the effect
of the background on the chances of writing a big digit (i.e., greater than d).

To obtain a sample from such a population manipulating MNIST dataset, we converted each gray
image into a RGB, coloring the background B and the pen P according to Bayes’ rule:

P(Y =y|B=0b,P=p)-P(B=0,P=p)

P(B=bP=plY =y) = P =) Vb, p,y € {0,1}
(42)
Since the digits in MNIST dataset are uniformly distributed:
Y ~ Be(py) @3)
where py = (9 — d)/10.
We then set:
B,P "% Be(0.5) (44)
and:
P(Y =1B=1P=1)=py +02 45)
PY=1B=0,P=1)=py —0.2 (46)
PY=1B=1,P=0)=py +0.1 47
P(Y=1B=0,P=0)=py — 0.1 (48)
in agreement with the Law of Total Probability and assuming d € {1,2, ..., 7}.
Opverall, the final structural causal model can be summarized as follows:
* Noises (independent):
npg ~ Be(0.5) (49)
np ~ Be(0.5) (50)
nx ~ P"X (28]
ny ~ P"Y (52)
B=1; P=1; ¥=1 B=0; P=0; Y=0 B=1,; P=1; Y=0 B=0; P=0; Y=0 B=0; P=1; ¥=0 B=1; P=1; ¥=1

Figure 8: Random samples from Causal MNIST dataset.
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* Structural equations:

B:=np (53)
P:=np (54)
X := f1(B,P,nx) (55)
Y = fo(X,ny) (56)

where P"*, P™¥ | f; and f5 are unknown and characteristic of MNIST dataset. The corresponding
causal model matches the setting described in Section 2| where B represents the treatment 7" and P
the experiment settings W. In this analysis, we set d = 3. Six examples of colored handwritten
digits from CausalMNIST are reported in Figure

E.2 Experimental Setting

Annotation Sampling Similarly to ISTAnt experiments, we compare the random annotation, where
S is assigned independently from P, and a biased annotation, where only the images with a black pen
(P = 0) are annotated in both few and many annotation setting. The biased annotation criteria don’t
provide any information in D, about the white pen (P = 1) CATE, and retrieving the annotations
on D,, becomes mandatory. Unfortunately, a model could misclassify the new images under this
covariate shift or hallucinate just for a specific treatment group (e.g., green background and white
pen), leading to a biased estimate of the ATE. In Table[5] we summarize the 4 different annotation
sampling proposed. For validation, we consider a random subsample of D,, as large as D;. Please
observe that for the biased subsampling, not all the images with black pen (P=0) are allocated D;.
Indeed, since P(P = 0) = 0.5 > —2:=— (in both few and many annotations regime), then D,

Ns+naq
contains both images of hand-written digits in white and black.

Annotations  Criteria D, N D. Ty
Man Random random 12 000 random 48 000
y Biased  only black (P=0) 12000 the remaining (mixed) 48 000
Random random 1 800 random 58 200
Few

Biased  only black (P=0) 1800 the remaining (mixed) 58 200

Table 5: Annotation splitting criteria details for CausalMNIST experiments.

Modeling Since the vision task is relatively simple, i.e., extracting features from a pre-trained
VisionTransformer is unnecessary, we don’t replicate the comparison among different backbones,
but we directly model the outcome through a simple Convolutional Neural Network. On the other
hand, since we have control over the data-generating process, we generated CausalMNIST 100 times
for each annotation sampling criteria using different random seeds, and we trained a Convolutional
Neural Network (ConvNet) for each of them (i.e., Monte Carlo simulations). This way, comparing
the different models, we still replicated the results for (i) data bias, (ii) discretization bias, and (iii)
evaluation metrics already obtained for ISTAnt. The proposed ConvNet architecture consists of two
convolutional layers followed by two fully connected layers. The first convolutional layer applies
20 filters of size 5x5 with ReLU activation, followed by a 2x2 max-pooling layer. The second
convolutional layer applies 50 filters of size 5x5 with ReLU activation, followed by another 2x2
max-pooling layer. The output feature maps are flattened and passed to a fully connected layer with
500 neurons and ReLLU activation. The final fully connected layer reduces the output to a single logit
for binary classification (mapped to a probability through the sigmoid function). Table[6]reports a
full description of the training details for such a ConvNet.

Evaluation We collected the same evaluation metrics for each training on both validation and the
full dataset as described in Section[3l
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Hyper-parameters Value(s)

Pre-Processing Normalization
Dropout No
Regularization No
Loss BCELoss
Loss: Positive Weight No
Learning Rates 0.001
Optimizer Adam (81 = 0.9, B2 = 0.9,¢ = 1078)
Batch Size 64
Epochs 6
Seeds {0,1, ..., 99}

Table 6: Training details for the ConvNets training on CausalMNIST.

E.3 Results

We run all the analysis using 10GB of RAM, 8 CPU cores, and a single node GPU (NVIDIA
GeForce RTX2080Ti). The main bottleneck of each experiment is re-generating a new version
of CausalMNIST from MNIST dataset. We estimate a total of 6 GPU hours to reproduce all the
experiments described in this section.

Annotation criteria matter Theory suggests that biased annotating criteria (i.e., depending on
the experimental settings) can lead to biased treatment effect estimation, wrongly retrieving the
conditional treatment effect on unseen experimental settings. Figure 0] validates this observation, and
the results are validated via the ¢-tests reported in Table[7] Overall, the results perfectly align with the
analogous discussion on ISTAnt.

Many annotations Few annotations
0.3 0.3
0.2 A 0.2 1
_—
0.1 A 0.1 1

2

Z 0.0 0.0

w ;i
—0.1 A —0.1 A
-0.2 1 -0.2 1
-0.3 -0.3

T T T T
Random Biased Random Biased

Figure 9: Violin plots comparing the Treatment Effect Relative Bias (TERB) per annotation criteria
criteria in few and many annotations regime varying the seeds. Biased annotations lead to biased
ATE estimation (i.e., TERB#0) and random annotation should be preferred.

Discretization bias We considered the absolute value of the TEB over all the 400 experiments, and
we tested (¢-test):

Ho : E[[TEB(f)|] = E[[TEB(Ljo5,1)(f))I] wvs Hi:E[TEB(f)[]# ]E[ITEB(]l[o.5,1](f))|](57)
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Annot.  Criteria t p-value

Random 4.421 2.5-107°
biased  4.030 1.1-10~*

Random 1.607 0.111
Biased 3911 1.7-107%

Many

Few

Table 7: Two-sided t-test for Hy : E[TEB(f)] = 0. We found statistical evidence to reject the
hypothesis that f is unbiased for (almost) each annotation criterion.

We found no statistical evidence to reject the null hypothesis (¢ statistic=1.188, p-value=0.235).
Still, this result doesn’t contradict Theorem @ where we show that predictions, discretized and not,
generally differ in expectation, but they can still be close (by chance). Some evidence of this undesired
discretization effect can still be observed in the distribution of the TEB(f) and TEB(1[g 5 1 (f)) as
illustrated in Figure [T0| for both random and biased sampling. In random sampling, in particular
TEB(1[g.5,11(f)) mean in random sampling is positive and 72.5% higher than TEB(f) mean.

Random Biased
0.3 0.3
0.2 0.2 1
I —_—
0.1 4 0.1 1 ]
o
= 0.0
= ¥
r‘ N )
—0.1 1 —-0.1 1 5 —
—0.2 A —-0.2 1
-0.3 -0.3

T T T T
Probs Discretized Probs Discretized

Figure 10: Violin plots of the TERB of the model (discretized or not) for both random and biased
annotation sampling, varying number of annotations (few/many) and seeds.

Prediction is not Causal Estimation Distinct statistical and causal objectives cannot be used as a
proxy for one another. We already formalized this in Lemma 3.1 and discussed it for ISTAnt dataset.
In Figure[TT]and [12] we systematically show it again for our new synthetic benchmark by comparing
the rank-correlation among 200 ConvNets using random and biased sampling, respectively. Both
matrices fully align with the discussion presented for the ISTAnt dataset in Section [6]
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Figure 11: Spearman rank-order correlation matrix comparing different metrics for model selection
on validation (subscript val) and over the full dataset (subscript D). We considered all the 200
models trained with random sampling, varying the number of annotations (few and many) and
seeds. Standard prediction metrics on validation strongly correlate, but they are less associated with
ITEBI,;. Similarly, they correlate with the prediction metrics on the full dataset but poorly predict
the ITEBIp. On the other hand, ITEBI,; is the most correlated metric with ITEBIp, unlike even the
prediction metrics on the full dataset.
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Figure 12: Spearman rank-order correlation matrix comparing different metrics for model selection
on validation (subscript val) and over the full dataset (subscript D). We considered all the 200
models trained with biased sampling, varying the number of annotations (few and many) and seeds.
Standard prediction metrics on validation strongly correlate, but they are less associated with ITEBI, ;.
Similarly, they correlate with the prediction metrics on the full dataset but poorly predict the ITEBIp.
On the other hand, ITEBI,,; is the most correlated metric with ITEBIp, unlike even the prediction
metrics on the full dataset.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract, we claim that we theoretically discuss potential sources of
biases in downstream treatment effect estimation from Machine Learning pipelines in
randomized controlled trials. In the paper, we discuss it in Section [3](proofs in Appendix
[A). In the abstract, we claim that we validate our results experimentally, introducing a new
real-world dataset and a new synthetic one. In the paper, we introduce the new benchmarks
in Section 2] Appendix [E]and[C| and we report the results in Section [p|and Appendix

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Section[7]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Theoretical results are introduced in Section |3|and the corresponding proofs
are reported in Appendix [A]

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Full description of the data generating process, experiment settings and analysis
are reported in Section [5|and[6]and Appendix [E] [C| and

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide open access to the code on GitHub
(https://github.com/CausalLearningAI/ISTAnt) and the data on FigShare
(https://doi.org/10.6084/m9.figshare.26484934.v2).

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all the experimental settings for the real-world experiment in
Appendix [D] and the settings for the synthetic experiments in Appendix [E]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We support all our results (both synthetic and real-world) with confidence
intervals and statistical tests (see Example|[I] Section [6]and Section [E) specifying the factor
of variabilities.

Guidelines:
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8.

10.

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Computer resource requirements are discussed in Appendix [D]and [E]
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: Data collection and all experimental work were performed in compliance with
international, national and institutional regulations and ethical guidelines.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:
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Justification: We believe this work has no specific positive or negative societal impacts
except to potentially accelerate science on an important topic for biodiversity (which is
discussed in the paper).

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible

release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Both data and analysis don’t poses such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use our proprietary assets and publicly available public assets (pre-trained
Hugging Face models and MNIST dataset), which we correctly acknowledge and cite (see

Appendix [E and D).
Guidelines:

* The answer NA means that the paper does not use existing assets.
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13.

14.

15.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The main new asset is the real-world dataset, which we release and describe
athttps://doi.org/10.6084/m9.figshare.26484934.v2. A more extended descrip-
tion of the dataset is also included in Appendix [C| We also submit all the code on GitHub at
https://github.com/CausallearningAI/ISTAnt and in the supplementary material
to reproduce the results fully. The supplementary materials consist of 3 folders, ISTAnt
containing the code for the analysis on the real-word dataset, CausalMNIST for the analysis
of the synthetic dataset and Example 1 to reproduce the simulations in Example|[T}

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not work with human subjects or crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not work with human subjects or crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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