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Affiliations are included on p. 10.

Contributed by William Bialek; received February 13, 2024; accepted November 13, 2024; reviewed by Dmitri B. Chklovskii, Angela H. DePace,
Michael M. Desai, and Jane Kondev

Many biological systems operate near the physical limits to their performance,
suggesting that aspects of their behavior and underlying mechanisms could be derived
from optimization principles. However, such principles have often been applied only
in simplified models. Here, we explore a detailed mechanistic model of the gap
gene network in the Drosophila embryo, optimizing its 50+ parameters to maximize
the information that gene expression levels provide about nuclear positions. This
optimization is conducted under realistic constraints, such as limits on the number
of available molecules. Remarkably, the optimal networks we derive closely match the
architecture and spatial gene expression profiles observed in the real organism. Our
framework quantifies the tradeoffs involved in maximizing functional performance
and allows for the exploration of alternative network configurations, addressing the
question of which features are necessary and which are contingent. Our results suggest
that multiple solutions to the optimization problem might exist across closely related
organisms, offering insights into the evolution of gene regulatory networks.

gene regulatory networks | optimization | evolution | Drosophila

Optimization provides a mathematical framework for addressing fundamental problems
across the physical and statistical sciences. In evolutionary theory, stochastic optimization
underpins our understanding of how natural selection improves organismal fitness by
favoring adaptive traits that push against physical constraints (1, 2). Many biological
systems, such as photon counting in vision (3), diffraction-limited imaging in insect
eyes (4), and molecule counting in bacterial chemotaxis (5) exhibit performance that
approaches these physical limits.

Observations of near-optimal performance raise the possibility of using optimization as
a principle to derive nontrivial predictions about biological systems’ functional behavior
and underlying mechanisms (6, 7). Such approaches have been applied successfully to
simplified models, including coding efficiency in sensory processing (8–11), growth rates
in metabolic networks (12), matter flux in transport networks (13, 14), information
transmission in regulatory networks (15), and the design of molecular machines and
assemblies (16). However, these successes have often been limited to models that omit
many biological details or focus on optimizing single, isolated components of complex
systems.

A more ambitious goal is to use optimization to derive accurate, first-principles
predictions for complex, multicomponent biological systems, where interactions are
described in molecular detail. Here, we test the hypothesis that optimization, when
correctly formulated and constrained, can quantitatively predict the behavior of a
complex molecular system: a well-characterized genetic regulatory network involved in
Drosophila embryonic development. Specifically, we will search for network parameters
that maximize positional information (17)—the information, in bits, that local gene
expression levels provide about the position of a cell along the anterior–posterior (AP)
axis of the embryo. Information is limited by noise, and noise ultimately arises from the
randomness of individual molecular events, so we constrain our optimization by fixing
the mean numbers of molecules (mRNAs and proteins) to those observed experimentally.
In words, we are asking for the network that squeezes as much information as possible out
of a limited number of molecules. When made mathematically precise, this constrained
optimization makes quantitative predictions about the spatial patterns of gene expression,
their noise levels, their dynamics, and the regulatory interactions that control these
patterns. Perhaps surprisingly, we find solutions to our optimization problem that closely
resemble the real gap gene network in all these ways.
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We emphasize at the outset that there are many technical
problems to address in actually solving the optimization problem.
At each setting of the parameters, we must be able to estimate the
positional information. We must explore the parameter space in
some systematic way. We might want to use the observed patterns
of gene expression to help guide our search but we need to be sure
that the solutions we find do not depend on this guidance. We
expect multiple solutions and would like at least a preliminary
characterization of this diversity. We give a guide to these issues
in the main text, with details in SI Appendix.

If the optimization hypothesis holds, it could illuminate
many open questions about the evolution of genetic regulatory
networks (18). For example, we could explore whether the
presence of specific genes, interactions, or regulatory elements
is due to evolutionary necessity or historical contingency. While
this question is central to evolutionary biology (19), it cannot
be answered by genetic experiments alone, as these cannot
rule out alternative evolutionary pathways. Instead, we require
a theoretical framework that simulates alternative evolutionary
outcomes. Our optimization scheme allows us to add or remove
individual components of the network and reoptimize other
parameters, thereby exploring what is possible, for example,
in the absence of regulatory feedback loops. We will see that
features that might have seemed accidental or redundant are
likely necessary.

Additionally, we are interested in understanding the interplay
between optimization and developmental constraints. Could
different evolutionary outcomes have emerged given the known
physical constraints, particularly those related to the availability
of molecular resources? We can address these questions in our
optimization framework, which explicitly balances functional
performance against resource costs and constraints.

To be concrete we focus on the early stages of development
in the Drosophila embryo (20). Approximately two hours
postfertilization, the gap genes hunchback, Krüppel, giant, and
knirps exhibit intricate spatial and temporal expression patterns
along the embryo’s AP axis (21). These genes form a network
with inputs from the maternal morphogens (Bicoid, Nanos, and
Torso-like) (20, 22), and the output of the network in turn
drives the expression of downstream genes essential for body
segmentation (23).

At a critical developmental stage, the combination of four
gap gene expression levels encodes 4.3 ± 0.1 bits of information
about position along the AP axis (24, 25), sufficient for specifying
positions with a precision of about 1% of embryo length
(EL) (26); this matches the precision of downstream events, such
as the positions of stripes in pair-rule gene expression and the
formation of the cephalic furrow. Evidence suggests that this flow
of information—from encoding to readout—may operate near
optimal efficiency, subject to constraints on molecular counts
and mean resource usage (24, 26, 27). These observations led us
to focus on the gap gene network as a system in which to test the
optimization hypothesis.

While previous work has uncovered many features of the
gap gene network through quantitative experiments, genetic ma-
nipulations, and mathematical modeling (28–37), fundamental
questions remain. Is the network’s behavior shaped primarily
by its evolutionary history (38), or by the developmental and
physical constraints, such as limited molecular resources (39–41)?
Are all components, including the three maternal morphogens
and four gap genes, necessary? Most crucially, can we derive
the network’s behavior from an underlying theoretical principle,
rather than fitting its parameters to empirical data?

Optimization in a Realistic Context

To answer the questions outlined above, we formulated a detailed
and realistic spatial-stochastic model of gap gene regulation in
the Drosophila embryo. This model captures the regulation of
gap genes by maternal morphogens, cross-regulation among gap
genes, nuclear divisions, transcription, translation, degradation
processes, and the diffusion of gene products (Fig. 1, Box 1, and
SI Appendix, section 1). To apply our optimization principle we
search within this large class of models for those that generate
gene expression patterns encoding the maximum positional
information while respecting geometrical constraints, the known
temporal schedule of nuclear divisions, maternal input properties,
and the physical limits on the number of molecules in the gap
gene network that can be synthesized.

We take the spatial profiles and absolute levels of the three
maternal morphogens, as well as maximal gap gene transcription,
translation, and degradation rates to be fixed at their measured
or estimated values (Box 1 and SI Appendix, Table S2). This still
leaves more than 50 parameters which govern how gap genes
integrate transcriptional regulatory signals from other gap genes

Fig. 1. Deriving a genetic regulatory network from an optimization principle.
We simulate patterning during early fly development in a biophysically
realistic, spatial–stochastic gap gene expression model (Bottom; see Box 1)
that accounts for the stochastic gene expression dynamics in individual nuclei
along the anterior–posterior (AP) axis of the embryo. Regulatory interactions
among four gap genes (arrows between colored circles in each nucleus),
their response to three maternal morphogen gradients, and spatial coupling
between neighboring nuclei are parameterized by a set of over 50 parameters
�. For each parameter set, we numerically simulate the resulting noisy
gap gene expression patterns, compute the system’s positional information
I(g; x), and adjust � using stochastic optimization to iteratively maximize the
encoded I subject to physical constraints (Top). For details, see Box 1 and
SI Appendix, sections 1–5.
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Box 1.

Model Description and Assumptions

We model the expression of gap genes up to the readout time, 40 min into nuclear cycle 14 (T = 166 min postfer-
tilization) under physical constraints (SI Appendix, sections 1 and 5). First, we assume that the dynamics of gap gene
expression can be described by effective rates for mRNA and protein synthesis and degradation. mRNA dynamics
is assumed to set the slowest time scale (lifetime �M = 20 min), so that the corresponding protein concentrations
(lifetime �P = 10 min) track the mRNA levels. The maximal mRNA production rate at full activation, �max, reproduces
the maximal mRNA counts per nuclear volume reported for gap gene hb in early nuclear cycle 14 (Mmax ≈ 5·102) (39).
Proteins are produced from mRNA in bursts (burst size � = 12 per mRNA), leading to maximal average protein
number per nucleus Nmax ≈ 6 · 103. These parameters are assumed to be the same for all gap genes (40). Second,
while we have considered a description of nuclei distributed over the two-dimensional surface of the embryo, a one-
dimensional description provides a tractable approximation. In this model of pattern formation along the anterior–
posterior axis N = 70 nuclei are spaced uniformly at positions xi = i · Δ (with Δ = 8.5 μm) along the length
L = NΔ of the embryo (42). During the simulated time period, the embryo is a syncytium, allowing expression
levels in neighboring cells to be coupled via an effective diffusion constant D (baseline value D = 0.5 μm2/s, varied
in Fig. 3E) that includes both cytoplasmic diffusion and transport across the nuclear membrane. Third, the spatial
profiles of maternal inputs to the gap gene network (A = anterior, P = posterior, and T = terminal system; see Box
image) are established early and are assumed to be constant throughout the relevant time period. Fourth, the rate
of mRNA synthesis for each gene expressed at xi is modulated between zero and �max by local gap gene expression
levels gi = (g1

i , g
2
i , g

3
i , g

4
i ) and the local maternal input concentrations, ci = (cA

i , c
P
i , c

T
i ), as described by regulation

functions f� that parametrically differ between gap genes � but are the same for all positions i. Regulatory functions
are inspired by the Monod–Wyman–Changeux (MWC) model, where the expression of gene � switches between
active (probability f� ) and inactive (1− f� ) states; these probabilities depend on regulatory inputs as follows (43, 44):

f�(gi , ci , �) =
��

1 + exp (−F�(gi , ci , �))

F�(gi , ci , �) =
∑

�∈{1..4}
H��G log

1 +
g�i
K��G


︸ ︷︷ ︸

Self- and Cross-Reg.

+
∑

�∈{A,P,T}
H��M log

(
1 +

c�i
K��M

)
︸ ︷︷ ︸

Feed Forward (FF) Reg.

+ F0︸ ︷︷ ︸
Base Expr.

.

Here F0 is the bias toward active state in absence of any regulatory inputs; H��G and H��M are the strengths of the
regulatory inputs (H > 0 is activating and H < 0 repressive; |H| < Hmax cf. Fig 4C), by gap proteins (for self- and cross-
regulation) and maternal morphogen proteins (for feed forward regulation), respectively, while K��G and K��M are the
associated concentration thresholds. Taken together, we obtain a system of coupled stochastic differential equations
(SI Appendix, section 1),

∂tg�i = f�(gi , ci , �)︸ ︷︷ ︸
Regulated Production

−
1
��
g�i︸ ︷︷ ︸

Degradation

+
D
Δ2

∑
n

(g�n − g�i )︸ ︷︷ ︸
Diffusion

+
∑
k

Γki (�)︸ ︷︷ ︸
Noise

,

where n runs over all neighbors of nucleus i and Γki represent stochastic forces whose magnitude we derive in
SI Appendix, section 1 to account for the following noise processes: i) “input noise” caused by the random arrival
of TFs to gap gene CREs (45); ii) “output noise” due to stochastic mRNA and protein synthesis and degradation; iii)
“diffusion noise” due to stochastic spatial exchange of gap gene proteins between neighboring nuclei. Importantly,
the variances of these noise terms typically scale (inversely) with the number of gap gene products. We phenomeno-
logically add iv) “extrinsic noise” due to maternal morphogen variability as well as other sources of embryo-to-
embryo variation, where the contribution to the gap gene expression variance is assumed to be proportional to the
squared mean expression (46), with the coefficient of variation (CV2 = 0.02) estimated directly from measurements
(SI Appendix, Fig. S1).

The model is solved in two steps (SI Appendix, section 2). In step one, we numerically integrate the deterministic
part of the equation system defined above to obtain the mean expression levels at each position along the embryo
axis at time T . Nuclear divisions are incorporated by doubling the maximal expression rate at the experimentally
determined division times (i.e., �max is only reached after the last division before T ). In step two, the means are used
to compute the full covariance matrix of the noise fluctuations in the gap protein levels, describing noise magnitude
(on-diagonal matrix elements) and correlations (off-diagonal matrix elements) across space and gap gene species.

(see Box 1, continued)
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Box 1. continued.

These two quantities are used to compute the decoding map (26) and the corresponding positional information
I(g; x) (25, 27) (SI Appendix, Fig. S2 and section 3).

Maximal copy number of gene products per nucleus and extrinsic noise imply that positional information must
be upper bounded. To reach its absolute maximum value of log2(N) ≈ 6 bits (error-free specification of N nuclei),
these constraints would have to be lifted, implying a slower developmental process (due to lower protein and mRNA
degradation rates) and/or a higher metabolic cost (due to higher transcription and translation rates). Within set rate
constraints, various networks differ in the amount of actual gene expression, which we quantify by “resource utiliza-
tion” (RU), the average expression across all gap genes and positions. RU = 1 means that gap gene expression is
fully induced, proceeding at the maximal rate, in every nucleus; for the Drosophila WT pattern, RU ≈ 0.2 (SI Appendix,
section 5).

Box Fig. 1: Spatial-stochastic model for gap gene expression. The gap gene regulatory network (center; colored
circles = gap genes; grayscale circles = maternal morphogens) in each nucleus transforms maternal inputs with
known spatial profiles (Left) into a gap gene expression pattern at readout time T (Right; solid lines = computed
mean expression; shade = computed SD). Each interaction in the network stands either for the feed forward (FF)
regulation of a gap gene by a morphogen input (light gray arrows), or for the regulation of a gap gene by other gap
genes or by itself (cross- and self-regulation, dark gray arrows), and is described by two parameters (concentration
threshold K and regulatory strength H; several parameter pairs are shown, corresponding to nearby thicker arrows).
All parameters denoted by regulatory arrows are jointly optimized to maximize positional information I(g; x).

and their morphogen inputs; we refer to all these parameters
together as � (SI Appendix, Table S3). As an example, for each
gene regulated by another, there is a parameter that measures
the concentration at which the regulator exerts a half-maximal
activating or repressive effect on its target and another parameter
that measures the strength of this regulatory interaction. Different
points in this 50+ dimensional space describe a wide spectrum
of regulatory networks and their diverse expression patterns,
most of which are very unlike the real one, even though they
are generated by networks that are physically possible given the
known component parts.

For any set of parameters, we simulate the time evolution of our
model, evaluating the mean spatial pattern of expression for all
four gap genes and their (co)variability at every nuclear location
along the AP axis. These calculations, carried out in the Langevin
formalism, are complex yet numerically tractable (SI Appendix,
section 2); they properly account for maternal morphogen
gradient variability and intrinsic biochemical stochasticity.

Positional information I(g; x) is the mutual information
between the set of gap gene expression levels g ≡ {g1, g2, g3, g4}
and the AP coordinate x (7, 24, 25, 27). This quantity can
be computed from the means and covariances of gap gene
expression, which are the results of our model simulation at
fixed � (Box 1 and SI Appendix, section 3 and Fig. S2). If the
gap gene system indeed has been strongly selected to maximize
positional information at some readout time T , then the real

network should be near the optimal setting of parameters,
�∗ = argmax� I (g(T ); x). This problem is well posed because
there are physical limits on the resources available to represent and
transmit information: The maximal rates of molecular synthesis
combine with degradation rates to limit the maximum number
of molecules for each chemical species, setting the scale of the
noise which in turn limits information transmission. In addition
to constraining the maximal synthesis rates, it also makes sense
to constrain the mean number of molecules actually used by the
embryo, and again we can estimate this number from experiment.

We have previously solved simplified versions of this con-
strained optimization problem on small subnetworks, which
inform the regulatory topology choices we make here (42, 43, 48–
51). For example, maximizing the information that the steady-
state gene expression level can provide about a single regulatory
input leads to a nontrivial induction curve; this happens because
maximizing information involves a compromise between mini-
mizing noise and making full use of the available dynamic range.
In addition, we have shown that where multiple genes respond to
a common activating input (as with gap genes and their maternal
inputs), they should mutually cross-repress to reduce redundancy.
Last, we also understood the beneficial role of gap gene product
diffusion and subcritical self-activation in simple genetic circuits,
providing intuitions and an interpretative framework for the
results we report below. Taken together, these previous results
suggest that we will find nontrivial optimal solutions also in the
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more complex case studied here and motivate the rich MWC
parameterization we chose to use (Box 1).

Despite this extensive theoretical groundwork, understanding
the entire network at the level where comparisons with data
are possible required a new computational strategy (Box 1).
We thus employed a large scale numerical approach, combining
simulation and optimization (Fig. 1). We emphasize that the class
of mechanistic regulatory network models that we explore is rich
enough to predict experimentally measurable noisy spatial gene
expression patterns but also bounded by quantitative biophysical
constraints. Taken together, this opens up a route toward deriving
the first ab initio prediction for a gene regulatory network in a
biophysically realistic context.

Comparing Optimal Networks with the Real
Network

We used a custom simulated annealing code to optimize the
gap gene system for positional information (Fig. 2A). Briefly,
we treat the positional information as the (negative) energy in
a Monte Carlo simulation, with parameters as the underlying
state. Changes are proposed one parameter at a time and
accepted or rejected by the Metropolis criterion; as we iterate
we slowly lower the effective temperature of the simulation.

Once we have “cooled” sufficiently, the optimum is refined using
a final round of gradient descent. Details are in SI Appendix,
section 4.

We first focused on our main hypothesis: Is there a gap gene
network that maximizes positional information and generates
patterns of gap gene expression similar to those of the wild-
type (WT) fruit fly? This question is complicated for multiple
reasons. On the one hand, our optimization problem may not
have any nontrivial solutions, or it may have solutions that we
cannot find using our stochastic optimization, due to the curse
of dimensionality. Alternatively, our optimization problem may
have a multitude of locally optimal solutions, each corresponding
to a maximum of positional information in the parameter space,
but with very different gene expression patterns. In this latter
case, it is technically challenging to find a particular local
optimum or ascertain whether such an optimum exists close to
the observed pattern. In what follows, we first describe our search
for a Drosophila-like optimal solution, and second, explore the
ensemble of all optimal solutions we could find.

To look for a Drosophila-like optimal solution, we first biased
our search toward the known patterns of gene expression using a
method that interpolates smoothly between optimization and
pure data fitting (52); we then removed the bias to be sure
that we have found a true optimum. This approach works by

A B

D

E

C

F

Fig. 2. Networks that maximize information transmission recapitulate the measured gap gene expression patterns and the regulatory network interactions.
(A) Positional information increases during a single optimization run, starting with the homogeneous profile at 0 bits (encircled 1), proceeding through more
complex spatial patterns (encircled 2 to 4), to the final solution (encircled 5, pattern in panel B) that reaches ∼4.2 bits (dashed blue line). (B) Predicted optimal
(Left) vs. measured gap gene expression pattern (Right; 47), 40 min into NC14 (blue = hunchback/Hb; green = giant/Gt; yellow = Krüppel/Kr; red = knirps/Kni;
shade = SD in gene expression). Positional information estimate from data is consistent with that reported in ref. 24. (C) Measured vs. predicted mean
expression (Top) and variability (Bottom) are highly correlated (color code as in B; Pearson p < 10−3). (D) Predicted gap gene regulatory network (Left; blunt
arrows = repression; circular arrows = self-activation) vs. literature-based reconstruction (Right; 21). Interaction strength is depicted by the width of the arrows.
(E) Predicted (Left) vs. measured (Right) decoding map (Bottom) shows a nearly unambiguous code (diagonal band) with ∼1.5% median positional error and few
outlier positions (Top Inset) (26). (F ) Fitting the model to mean WT gap gene expression profiles yields lower positional information (upper histogram; gray bars
= distribution over replicate fits starting with random parameters, N = 32; red bars = distribution over replicate fits “relaxed” from the optimized solution, N
= 250; horizontal error bars show mean ± SD), compared to the optimized solution (blue dashed line). The optimal solution better recapitulates the mean WT
pattern compared to model fitting with random initial parameters; “relaxation” from the optimal solution does not significantly improve the fit (lower histogram
showing goodness-of-fit as R2; colors as above).

PNAS 2025 Vol. 122 No. 1 e2402925121 https://doi.org/10.1073/pnas.2402925121 5 of 11

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 I
ST

 A
U

ST
R

IA
 -

 L
IB

R
A

R
Y

; I
N

ST
IT

U
T

E
 O

F 
SC

IE
N

C
E

 &
 T

E
C

H
N

O
L

O
G

Y
 o

n 
Ja

nu
ar

y 
20

, 2
02

5 
fr

om
 I

P 
ad

dr
es

s 
81

.2
23

.1
4.

21
0.

https://www.pnas.org/lookup/doi/10.1073/pnas.2402925121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2402925121#supplementary-materials


augmenting the function we are trying to optimize—positional
information—with a weak “force” that pulls the gene expression
patterns toward those observed in WT embryos. A key innovation
here is to keep this effective force small by a proper choice of its
Lagrange multiplier, thereby ensuring that stochastic annealing
is dominated by optimization of positional information and
not by fitting (SI Appendix, section 4). We emphasize that
once a solution is found in this manner, we verify explicitly
that it is indeed a true maximum, by numerically evaluating
the derivatives of positional information with respect to all its
parameters (SI Appendix, Fig. S3). Fig. 2A shows the optimization
trajectory (increasing positional information and corresponding
expression patterns) that found an optimal solution very close to
the experimentally measured one, compared next.

Fig. 2B compares the gap gene expression profiles generated
by the optimized network to data. The match in mean expression
profiles is very good (Fig. 2C ) although not perfect, a point we
briefly return to later. The predicted gap gene variability similarly
recapitulates the measured behavior.

The mechanistic nature of our model allows us to understand
how the optimal pattern emerges. For example, the precision of
the system output, manifested in the low variability (∼10%) of
gap gene expression levels at a fixed position, is achieved through
a combination of temporal averaging and spatial averaging via
diffusion, which substantially reduces noise components trans-
mitted from upstream regulators and morphogens (42, 53, 54).
The spatial patterns of expression in the optimal solution are
shaped significantly by mutual repression and self-activation,
closely mimicking what has been inferred about the structure
of the network from genetic interventions (Fig. 2D). Opti-
mization correctly predicts strong mutual repression between
hunchback and knirps, between giant and Krüppel, as well
as most weak repressive interactions and self-activation of
hunchback (54); see SI Appendix, Fig. S4 for detailed analysis
of regulatory interactions. Together, these factors combine to
encode positional information nearly unambiguously, with a
median positional error of ∼1.5% (Fig. 2E); even the elevated
positional uncertainty around the cephalic furrow and in the far
posterior is consistent between the optimal prediction and the real
embryo (26).

We emphasize that physical constraints are an essential
building block for the predictions we report here; they are also
the only route by which quantitative empirical data inform our
calculations. Constraints enter not only in the form of a fixed
embryo and nuclear geometry and readout time (Box 1) but
specifically as maximal molecular production and degradation
rates for gap gene mRNA and proteins. These rates limit
the maximal number of independent gap gene products per
nucleus and correspond, on a molecular level, to fully induced
transcription and translation unfolding at the maximum possible
pace. Within these maximal constraints, which we hold fixed
to experimentally estimated values (Box 1 and SI Appendix,
sections 1 and 5), expression still varies across gap genes and
spatial locations. Averaging over these variations defines the
average resource utilization (RU, Box 1) at each setting of
the parameters. Our optimal solutions are therefore further
constrained to match the empirically determined RU of the
Drosophila WT pattern; we explore alternative RU values further
below.

Ab initio optimization performed here makes only minimal use
of prior knowledge to derive a wide range of predictions: while we
fix a small number of resource constraints to measured values as
noted above, optimization predicts the values of many more free

parameters that determine the gap gene interaction network and
its resulting expression patterns. The biasing procedure described
above weakly couples to measured expression data to make our
search more efficient, but it is not essential for testing our primary
hypothesis. Taken together, the optimization approach stands
in stark contrast to traditional model fitting, which uses gap
gene expression data in full to set the constraints as well as infer
all of the regulatory parameters (52). This distinction has three
important consequences.

First, in traditional model fitting the objective functions are
purely statistical (e.g., maximum likelihood in some model,
mean-square-error, ...), lacking any biological interpretation.
In contrast, our strategy of optimizing positional information
is grounded by a meaningful and independently measurable
phenotype of the patterning system. Indeed, our optimal solution
(Fig. 2 A and B) reaches 4.2 bits, to be compared with 4.2
to 4.3 bits estimated directly from data (24, 25). The actual
information transmitted through this network thus agrees with
the optimum within ∼0.1 bit, or ∼2.5% of the total.

Second, if we perform a conventional fitting of parameters,
minimizing the mean-square-error of the predicted mean gap
gene expression, the best fits underestimate the positional infor-
mation (Fig. 2 F, Top). This is because such fitting fails to take
into account the structure of the noise in the system, and its func-
tional consequences. Furthermore, the goodness-of-fit landscape
is very rugged, so that many fits starting from random initial pa-
rameters get trapped in suboptimal solutions; optimizing the po-
sitional information regularizes this ruggedness and leads to solu-
tions whose goodness-of-fit cannot be significantly improved fur-
ther (Fig. 2 F, Bottom). In other words, the network that we pre-
dict through optimization cannot be brought significantly closer
to the real network even by fitting to data, either starting with ran-
dom parameters (Fig. 2F, “Fit”) or relaxing from the information-
maximizing solution (“Relax”) . As an aside, this implies that any
quantitative deviations we observe in Fig. 2B between the optimal
prediction and the WT pattern arise because the class of models
we consider still is a bit too restrictive in its expressive power.

Third, optimization with no biasing toward the WT expres-
sion pattern can identify novel, locally optimal solutions that
maximize positional information and are thus functionally near
degenerate, yet are qualitatively different from the gene expression
patterns observed in the real embryo. These solutions are found
by independent optimization runs from random initial parameter
combinations and can terminate at very different points in the
high-dimensional parameter space. If we focus on fitting to the
observed patterns, we would have no way of finding or assessing
these alternative networks. We examine these solutions next, as a
segue into related evolutionary questions.

Multiple optimization runs produce diverse solutions that
locally maximize positional information while not exceeding
the resource utilization of the wild-type pattern. Together,
these solutions constitute the “optimal ensemble”. A natural
comparison is provided by the “random ensemble”, where
parameters � are drawn independently and uniformly from broad
but realistic intervals. The vast majority of the random ensemble
forms no patterns (I ≈ 0 bits); we thus focus our comparisons in
Fig. 3 on a functionally relevant nontrivial subset of the random
ensemble. Optimization for positional information automatically
leads to significantly lower positional error (Fig. 3A), a higher
number of boundaries where gap gene expression switches from
low to high or vice-versa (“slopes”), more uniform utilization of
resources across gap genes (i.e., the four gap genes each drive close
to one-quarter of total expression), as well a slight but significant
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C D E

F

B

Fig. 3. Optimal and random gap gene network ensembles. (A) Patterning phenotypes for optimal ensemble (color, solutions from “WT RU” ; N = 324) vs.
random ensemble (gray, including only solutions >0.5 bit that are at or below WT resource utilization; random choice of N = 319 solutions meeting this
criterion) reveal that high positional information (leftmost; violet, red, yellow indicate lowest, middle, highest third of the information interval) correlates with
low positional error, high number of gap gene “slopes,” and a more uniform utilization of resources across the four gap genes (red numbers = ensemble
medians). (B) Within the optimal ensemble, higher information correlates with higher dynamical stability, i.e., lower pattern rate-of-change [each dot = one
optimal solution; red ellipse = 1 SD contour in the I vs. RoC plane; color code and optimal ensemble as in (A); N = 324]. (C) Random (gray, N = 1,580,129) and
various optimal ensembles (red = resource utilization bounded by Drosophila WT denoted by a dashed horizontal yellow line, N = 350; magenta = progressively
smaller resource utilization; blue = WT resource utilization plus a bound on pattern rate-of-change, N = 607; green = no resource utilization or rate-of-change
bounds, N = 239) depicted in the information vs. resource utilization plane (each dot = unique parameter combination). Histograms in the margins show
the raw counts of evaluated parameter combinations. Inset: Information vs. resource utilization (median, 0.1 to 0.9-quantile intervals over ensembles in the
main panel shown as central white squares and ribbons, respectively). Three example solutions are depicted by boxed numbers and shown in panel (D). (D)
Example optimal solutions (denoted by boxed 1 to 3) from panel (C), optimized at fixed gap product diffusion (D = 0.5 μm2/s). An example solution (boxed
4) where D was also optimized, from the ensemble shown in panel (E). All these solutions qualitatively match WT gap gene expression domains (Top) and the
regulatory network architecture. (E) Mean positional information (Top) and pattern rate-of-change (Bottom) as a function of the gap gene diffusion constant D
(empty circles = mean across optimal ensembles), capped at WT resource utilization (red) or with an additional rate-of-change constraint (blue). Solid red and
blue circles = mean values for the case where D itself is also a free optimization parameter; yellow shade = broad range of D consistent with literature reports.
Example solution with optimal D is denoted by boxed 4 and is shown in panel (D); two example solutions at suboptimal D are denoted by boxed 5 and 6 and
are shown in panel (F ). (F ) Two example solutions optimized at lower-than-optimal (Top) and higher-than-optimal (Bottom) diffusion constant values. Unless
specified otherwise, the averages plotted in this figure were computed over N ≳ 100 independent optimization runs starting from random initial parameters.

overallocation of resources in the anterior, as can be seen in data as
well (see SI Appendix, Fig. S5 for further patterning phenotypes).
Within the optimal ensemble, solutions with higher information
tend to be more dynamically stable at readout time (Fig. 3B),
which we quantify by pattern rate-of-change (RoC), the mean
(absolute) temporal derivative of gap gene expression (55). Low
RoC is relevant since pair-rule genes appear to read out gap
gene expression via fixed decoding rules (26, 29), implying that
temporally varying solutions could cause larger spatial drifts in
pair-rule stripes.

Networks in the random ensemble that transmit large amounts
of information are exceedingly rare: The probability of drawing

a network with positional information of 4 bits or more by
chance is �10−6 (Fig. 3C ). In contrast, optimization strongly
and robustly enriches solutions above 4 bits (Fig. 3C ). In our
optimization, we have constrained the maximum numbers of
molecules, and the real embryo uses ∼20% (RU = 0.2) of
this maximum, on average. This resource utilization appears
necessary for high-information solutions, whereas permitting
more utilization within the same maximal rate limits does not
noticeably increase positional information. In fact, among >103

optimization runs we never found a solution exceeding 5 bits,
indicating that such information values likely cannot be accessed
within realistic constraints.
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The random and the optimal ensemble are closely related to the
evolutionary concepts of the neutral and the selected phenotype
distributions (56). The random ensemble delineates what is
physically possible in the absence of selection for function: the
entire space of expression patterns and derived phenotypes that
can be achieved with a fixed cast of molecular players by sampling
a broad range of regulatory parameters. This is analogous
to the definition of a neutral distribution over phenotypes
in evolutionary biology, which likewise samples the range of
phenotypes reachable by randomly sampling the corresponding
genotypes, either computationally with some model genotype–
phenotype map (57) or experimentally (58, 59). In contrast to the
random ensemble, the optimal ensemble delineates solutions that
maximize function within fixed physical constraints. How closely
natural selection could approach this optimality (as quantified by
the selected phenotype distribution), or indeed has approached
it (via the actual WT pattern), depends on selection strength
and its history, genetic load, linkage disequilibrium, and other
limitations that are of negligible concern to in silico optimization.
Successful prediction of the pattern in Fig. 2B confirms our
primary hypothesis and implies that selection was sufficiently
strong to overcome such limitations and push the gap gene system
beyond neutral evolution and evolutionary tinkering (60) toward
optimality (6, 52, 61). Even in strictly ab initio runs with zero bias
toward the WT pattern we repeatedly find solutions that closely
reproduce the overall size and placement of expression domains
in Drosophila (Fig. 3D and SI Appendix, Fig. S6), the encoded
positional information, as well as the regulatory interactions.
Tantalizing early experimental work suggests that dipteran species
related to Drosophila may feature a broadly consistent gap gene
domain arrangement whose expression domains are, however,
shifted (62, 63) or swapped (64), as we find in our optimal
ensembles (SI Appendix, Fig. S6).

Taken together, our results imply a nuanced interplay of
evolutionary necessity and contingency. In the 50+ dimen-
sional parameter space of possible networks, there is a highly
nonrandom, locally optimal solution that produces expression
patterns very similar to what we see in real fly embryos, but
there are many other local optima that transmit about the
same amount of positional information; all of these solutions
are rare in the random ensemble. Careful analysis of optimal
ensembles suggests that three or more interacting gap genes are
necessary for a wide spectrum of optimal solutions, while with
less genes the optimal patterns are much more stereotyped (SI
Appendix, Figs. S8–S10). It is an open question whether network
architectures that enable such a wide spectrum could themselves
be evolutionarily favored due to higher evolvability (65). It is
also an open question whether alternative optima quantitatively
recapitulate gap gene patterns seen in other dipterans or whether
the degeneracy is removed by selection for additional phenotypes
beyond positional information.

Alternatives to the Real Network

Our theory provides a framework within which we can explore
tradeoffs beyond the structure of the gap gene network. In our
standard optimal ensemble (“WT RU” in Fig. 3C ), we have
taken the effective diffusion constant of gap gene products to
be a fixed physical property of the embryo, D = 0.5 μm2/s, in
line with existing measurements (41). In fact, D lumps together
multiple microscopic processes, including actual diffusion of
gap gene products through the cytoplasm, import and export
across the nuclear membrane, and binding/unbinding to various
cytoplasmic components. It is therefore likely that the effective

D could change and be tuned by evolution, so long as it remains
far below the “speed limit” set by the bare cytoplasmic diffusion,
which appears to be the case (66). Therefore, we can view D as
one more parameter to be optimized.

Remarkably, we find that there is a broad optimum for D at
the experimentally estimated value (Fig. 3E). Larger diffusion
constants lead to a precipitous drop in information even when
all other parameters � are reoptimized because high diffusion
smooths gap gene profiles to the extent that adjacent nuclei
can no longer be distinguished reliably (Fig. 3 F, Bottom). On
the other hand, slower diffusion does not serve as effectively to
average over local super-Poisson noise sources; the optimization
algorithm compensates by finding parameters that generate more
and steeper transitions between high and low expression levels
(Fig. 3 F, Top), but even these unrealistic patterns do not transmit
quite as much information. Thus, a single parameter displaced
away from its optimum causes significant decreases in positional
information; to lessen the impact the optimization algorithm
adjusts other network parameters, driving the predicted patterns
of gene expression away from what we see in the real embryo.

We next address the question of evolutionary necessity and
sufficiency. To this end, we make structural changes to the
network and then reoptimize all of its parameters to explore
“alternative evolutionary histories” that could have unfolded with
changed molecular components or mechanisms. As an example,
Fig. 4A characterizes solutions obtained using 1, 2, · · · , 5 gap
genes, subject to the same total resource utilization as the
WT, plotting the positional information vs. the rate at which
expression patterns are changing at readout time. Networks that
transmit 4 bits or more—as in the real embryo—are completely
inaccessible using only one or two gap genes, even though
these networks are allowed to utilize the same total number of
molecules as in the optimal four-gene networks above. Such
networks also do not produce a wide spectrum of optimal
solutions (SI Appendix, Figs. S8 and S9).

With three gap genes, the optimized networks grow sig-
nificantly more diverse and can transmit a total information
comparable to what is seen experimentally, but detailed analysis
reveals that the three-gene networks all have local defects where
the positional error spikes above 5 to 10% of the embryo
length (SI Appendix, Fig. S7), in contrast to the much more
uniform distribution of precision along the length of the real
embryo (24); we can quantify this by looking at the variations
in the positional error along the AP axis (Fig. 4 A, Inset). This
failure of the three-gene networks arises because they cannot
realize a sufficient number of slopes or switches between high
and low expression levels. Four gap genes thus are necessary to
ensure that high positional information translates into defect-free
patterning not just on average, but uniformly across the entire AP
axis of every embryo (24). The marginal benefit of a putative fifth
gap gene appears small and may not be sufficient to establish the
required additional regulatory mechanisms or to maintain them
at mutation–selection balance (67).

We can explore, in the same spirit, the role of the multiple
maternal morphogens. In the fly embryo, the anterior (A, Bicoid),
posterior (P, Nanos), and terminal (T, Torso-like) systems jointly
regulate gap gene expression (26). In our model, we can remove
one or two of these inputs and reoptimize all the parameters of the
gap gene network, and find that there are moderate yet statistically
significant losses in both positional information and stability
(Fig. 4B). The impact of primary morphogen deletions is limited
because the optimization algorithm adjusts the gap gene cross-
regulation parameters to restore informative spatial patterns. This
ability, however, disappears entirely if gap gene cross-regulation
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A B C

Fig. 4. Necessity and sufficiency of gap gene regulatory network mechanisms. (A) Optimal ensembles (transparent symbols = individual optimal solutions;
solid symbols = ensemble medians) for networks with 1, 2, · · · , 5 gap genes (legend colors) optimized at the WT resource utilization (for reference, red diamond
+ red ellipse at 1 SD = WT-like optimal ensemble from Fig. 3B). Solutions delineate the accessibility frontier (dotted black line for visual guidance) in positional
information (I) vs. pattern rate-of-change (RoC) plane. (Inset) While the median positional error (white squares) plateaus for optimal networks with 3 gap genes
or more, the variability in positional error (ribbons denote 0.1- and 0.9-quantiles across AP positions in individual embryos) significantly shrinks only with 4 gap
genes or more (red arrow). (B) Optimal ensembles for networks responding to different subsets of the three morphogens (A = anterior; P = posterior; T =
terminal; red/purple circle symbols = ensemble median; red dots, diamond, ellipse = WT-like ensemble as in A). Optimal ensembles for purely feed-forward
(FF) networks, i.e., no gap gene self- or cross-regulation, denoted in bluish hues (legend). (C) Positional information in optimal ensembles with gap gene self-
and cross-regulation (red = with APT morphogens, purple = with A morphogen only) or without self- and cross-regulation (blue = “FF only” networks with
APT morphogens), for different maximal regulatory strength, Hmax. White squares denote the median over optimal ensembles in (A and B); ribbons denote
the corresponding 0.1- and 0.9- quantile ranges. Lower Hmax values potentiate the advantage of optimal networks with self-regulation, cross-regulation, and
three maternal morphogens, compared to architectures deficient in these mechanisms. Unless specified otherwise, the averages plotted in this figure were
computed over N ≳ 100 independent optimization runs starting from random initial parameters.

is not permitted and the gap gene network is feed-forward (FF)
only (light gray arrows in Box figure, Fig. 4B); in the absence of
cross-regulation, removal of each primary morphogen system is
associated with a large decrease in positional information.

Fig. 4B suggests that stable, high information patterns could
be generated by utilizing all three maternal morphogens even
without the ability of gap genes to regulate one another. But
in the absence of cross-regulation, the time scale for variations
in the pattern is determined solely by the intrinsic lifetime
of the most stable species (mRNA). In contrast, gap gene
interactions allow for the emergence of longer time scales which
both slow the variations and can reduce noise by temporal
averaging (49); possible evidence for these effects has been
discussed previously (55). Evolutionarily, adding gap gene cross-
regulation creates variability in the rate-of-change phenotype that
could additionally be selected for. Indeed, the WT-like solution
of Fig. 2B falls close to the accessibility frontier of Fig. 4B (star
symbol), suggesting such a preference.

Last, we varied the maximal allowed strength of regulatory
interactions, Hmax (Box 1), in our model. This parameter deter-
mines how strongly each individual input, either a morphogen
or a gap gene acting via self- or cross-regulation, can impact the
expression of a target gap gene. While in simple thermodynamic
models of gene regulation Hmax sets the maximal number of tran-
scription factor molecules that bind cooperatively to their target
sites as they regulate a single gene, such molecular interpretation is
too narrow for nonequilibrium regulatory schemes that are likely
relevant for metazoans (44, 68, 69). Even though higher values
of Hmax do lead to steeper induction curves and more sensitive
regulatory response around the half-induction point, mimicking
implications of a higher “effective cooperativity,” Hmax should be
construed more broadly than as requiring the binding of many
TF molecules simultaneously.

Optimizations presented so far used Hmax = 50, sufficiently
high not to impose any functional constraint. As Hmax is lowered
and the constraint kicks in, the optimal feed-forward solution
of Fig. 4B (dark blue) suffers large drops in encoded positional
information (Fig. 4C ). Optimal feed-forward architectures are
thus heavily reliant on regulatory interaction strengths that

appear unrealistic; at Hmax = 50 a change in single regulatory
input concentration of 10 percent can change the target gene
induction by more than five-fold. Further, one might have been
tempted to interpret Fig. 4B by saying that cross-regulation
and multiple input morphogens provide alternative or even
redundant paths to high information transmission, but we see
that this degeneracy is lifted when we limit the regulation strength
to more realistic levels. From an evolutionary perspective, gap
gene cross-regulation, therefore, is favorable for two reasons:
First, it generates temporally stable phenotypes at the accessibility
frontier (as in Fig. 4B); and second, it permits high information
solutions also in networks where the strength of individual
regulatory interactions is limited (as in Fig. 4C ).

Discussion

The idea that living systems can approach fundamental physical
limits to their performance, and hence optimality, goes back at
least to explorations of the diffraction limit in insect eyes and the
ability of the human visual system to count single photons (6).
The specific idea that biological systems optimize information
transmission emerged shortly after Shannon’s formulation of
information theory, in the context of neural coding (7, 70).
Despite this long history, most efforts to derive the behaviors and
mechanisms of biological systems from an optimization principle
have been carried out in very simplified contexts, using functional
models with a small number of parameters. Here we have instanti-
ated these ideas in a realistic context, using models that permit in-
terpretation in terms of molecular mechanisms and interactions,
as well as direct connections to rich experimental observations.

We focused on the Drosophila gap gene system, one of the
paradigms for developmental biology and for physical precision
measurements in living systems (71). Our work extends previous
mathematical models of this system (28–36, 72–75), as well
as attempts to predict it ab initio (76–78). In particular,
we systematically incorporate the unavoidable physical sources
of noise, highlighting how patterning precision can emerge
from noisy signals by a synergistic combination of multiple
mechanisms. Crucially, we do not fit the parameters of the model
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to data, but rather derive them via optimization. In contrast to
previous prediction attempts, our constraints and comparisons
to data are not stylized, but fully quantitative and commensurate
with the precision of the corresponding experiments.

We have found networks that maximize positional information
with a limited number of molecules, and there is at least
one local optimum quantitatively matching a large range of
observations in the wild-type Drosophila system: the spatial
patterns of expression and variability, the resulting decoding
map, the molecular architecture of the network, and even subtle
biases in spatial resource utilization. This result validates the
optimization hypothesis.

While the observed gap gene network is a solution to the
problem of optimizing positional information, this does not
mean that the evolutionary trajectory leading to modern flies
is anything like our optimization algorithm. When viewed in the
broader context of arthropod developmental patterning systems,
the Drosophila network can be seen as a synchronous limiting
version of a more dynamic, clock-and-wavefront-like patterning
strategy (35, 36, 76, 79, 80). Importantly, these two viewpoints
are not incompatible: Multiple evolutionary routes could lead
toward the same local optimum. Our approach optimizes just
for the information content of the final pattern, without making
statements about the intermediate patterns that a single embryo
passes through. Moreover, some of our results, such as the
rate-of-change stability (Fig. 3B), dynamical slow-down (SI
Appendix, Fig. S5), and timescale lengthening of the best-scoring
patterns could tentatively point to the emergence of dynamical
systems that maximize instantaneous positional information by
momentarily “freezing,” within a defined readout time window,
an otherwise quite dynamic gene expression profile.

Our optimization framework provides a platform for exploring
the necessity and sufficiency of various network components that
ensure maximal information transmission. Using this framework
to deliver on our introductory questions, we have established
that four gap genes appear necessary for defect-free patterning
and that the apparent redundancy between the three maternal
morphogens and gap gene cross-regulation is lifted under
reasonable constraints on the strength of regulatory interactions.

Numerical optimization is not evolutionary adaptation: our
results depend on the postulated fitness proxy, i.e., positional
information, as well as on the scope of the search space within
which we look for optimal solutions. We believe that there are
strong justifications for our choices. First, we previously reported

empirical signatures of optimality in positional encoding (15,
24, 26). Second, we consider a space of models for the gap
gene network at least as rich as has been tried in the past, with
parameters that could plausibly be tuned by evolutionary changes
in gap gene enhancers, which is believed to be the dominant, fast
mode of adaptation for gene regulatory networks.

Despite these caveats, our results provide an intriguing perspec-
tive on evolutionary questions. Discussions about the interplay of
evolutionary optimization and developmental constraints, neces-
sity versus contingency, and limits to selection have a venerable
history (38, 81). Rather than discussing these questions in quali-
tative terms, here we explored the role of physical constraints and
tradeoffs quantitatively, in the context of an expressive mechanis-
tic model, using the powerful concepts of the random and the op-
timal ensembles. In the words of Jacob (60), the random ensemble
delineates the space of the “possible.” Within this space, our opti-
mization principle is equivalent to the hypothesis that positional
information is a proxy for fitness and selection pressure is strong,
identifying a much more restricted optimal ensemble. It is surpris-
ing that this principle alone is sufficient to ensure that the optimal
ensemble contains a solution very close to Jacob’s “actual,” the
Drosophila gap gene network that we observe and measure.
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45. G. Tkačik, T. Gregor, W. Bialek, The role of input noise in transcriptional regulation. PLoS One 3,
e2774 (2008).

46. P. S. Swain, M. B. Elowitz, E. D. Siggia, Intrinsic and extrinsic contributions to stochasticity in gene
expression. Proc. Natl. Acad. Sci. U.S.A. 99, 12795–12800 (2002).

47. J. O. Dubuis, R. Samanta, T. Gregor, Accurate measurements of dynamics and reproducibility in
small genetic networks. Mol. Syst. Biol. 9, 639 (2013).
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