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We prove that certain closable derivations on the GNS Hilbert space associated with a non-tracial
weight on a von Neumann algebra give rise to GNS-symmetric semigroups of contractive completely
positive maps on the von Neumann algebra.

1 Introduction
The interplay between derivations and symmetric semigroups of unital (or contractive) completely
positive maps has proven fruitful for applications in quantum information theory [3, 4, 14], operator
algebras [5, 13, 22, 23], and beyond. Using the framework of completely Dirichlet forms, this connection
is particularly well understood in the case of tracially symmetric semigroups after the seminal work of
Cipriani and Sauvageot [9, 24, 25].

In many situations, however, one encounters non-tracial reference states or weights: in quantum
statistical mechanics, the reference state is typically a Gibbs state, which is not a trace at finite
temperature; in quantum probability in the study of Lévy processes on compact quantum groups, the
natural reference state is the Haar state, which is only a trace for the class of compact quantum groups
of Kac type; and in the structure theory of von Neumann algebras, one is faced with non-tracial states
when the von Neumann algebra has a non-trivial type III summand.

In the non-tracial setting, the connection between derivations and symmetric semigroups of com-
pletely positive maps is much less understood. Recently, it was shown by the author that every GNS-
symmetric semigroup of unital completely positive maps gives rise to a canonical derivation via its
associated Dirichlet form [29]. This result was (partially) extended to KMS-symmetric semigroups by
Vernooij and the author [27].

There has also been work in the opposite direction, starting with a derivation to construct a
completely Dirichlet form [2, 7, 10, 18, 21, 29]. However, these results all rely on additional structural
assumptions on the derivation, usually some form of (approximate) innerness. This means that natural
examples like derivations arising from cocycles on non-unimodular groups or Voiculescu’s derivation
in non-tracial free probability could not be treated in this framework.

In this article, we prove in a general context that closable derivations give rise to GNS-symmetric
semigroups of completely bounded maps. More precisely, our main result is the following.
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Theorem. Let A be a Tomita algebra, H a normal Tomita bimodule over A and δ : A → H a
closable symmetric derivation. Let E be the closure of the quadratic form E0 given by dom(E0) =
dom(δ) and E0(a) = ‖δ(a)‖2

H . Then the strongly continuous semigroup associated with E is the
GNS implementation of a GNS-symmetric semigroup of contractive completely positive maps
on the left von Neumann algebra generated by A.

Here a normal Tomita bimodule is a bimodule over a Tomita algebra that additionally carries a
complex one-parameter group (Uz) and an involution J satisfying some compatibility conditions, and
a symmetric derivation δ : A → H is a map that intertwines the complex one-parameter groups and
involutions on A and H and satisfies the product rule

δ(ab) = aδ(b) + δ(a)b.

These objects were introduced in [29] and appear to be the natural non-tracial analogs of the Hilbert
bimodule and derivation occurring in the context of completely Dirichlet forms on tracial von Neumann
algebras.

Combined with the results from [29], we thus obtain a comprehensive picture of GNS-symmetric
quantum Markov semigroups analogous to the result of Cipriani and Sauvageot for tracially symmetric
semigroups. Among other potential applications, we hope that this result opens the gate for applications
to non-tracial free probability and deformation/rigidity theory of type III von Neumann algebras similar
to recent work in this direction in the tracial case.

One main difficulty when trying to prove that closable derivations generate completely Dirichlet
forms (or semigroups of completely positive maps) is that the property defining derivations, the product
rule, is an algebraic property, while Dirichlet forms are defined in terms of order properties, and the
domain of a derivation is not necessarily closed under order operations. As such, the problem of properly
dealing with domains is crucial. Note that it is unavoidable to allow for unbounded derivations as
everywhere defined derivations yield norm continuous semigroups of completely positive maps, which
is too restrictive for many applications.

In the tracial case, this difficulty can be overcome since order operations such as taking the positive
part can be expressed in terms of functional calculus and as such can be approximated by polynomials.
In the non-tracial case, the order operations can still be expressed in terms of functional calculus
in the setup of Haagerup Lp spaces, but the product rule is formulated in terms of Hilbert algebra
multiplication, which is different from the product of two operators in Haagerup L2 (which is only in L2

if it is zero). Therefore, it is not clear how to connect the two.
Instead of trying to follow the proof in the tracial setting, our proof strategy instead relies on

the Haagerup reduction method, which allows to embed a von Neumann algebra as an expected
subalgebra of a bigger von Neumann algebra that can be approximated by finite von Neumann
algebras. As it turns out, this reduction method is well suited to reduce the problem at hand to
the known case of tracial von Neumann algebras. One key challenge are again domain issues: For
the Haagerup construction one has to extend the derivation to a domain on a crossed product that
is sufficiently big, but such that the extension still satisfies the product rule. The essential new
technical ingredient to overcome this kind of domain problems lies in the introduction of a new locally
convex topology on the domain of a derivation that allows to extend derivations to derivations on a
completion.

As a final note, considering the results from [27], it is a natural question whether the results from the
present article can be extended to cover KMS-symmetric semigroups. For one, our methods crucially
use commutation with the modular group, which fails for KMS-symmetric maps if they are not GNS-
symmetric. But more severely, it seems like there are additional algebraic obstructions, already in finite
dimensions. It is shown in [27] that if E is a completely Dirichlet form on L2(Mn(C), ϕ), then there exist
self-adjoint matrices vj ∈ Mn(C) such that

E (ρ1/4xρ1/4) =
∑

j

tr(|ρ1/4[vj, x]ρ1/4|2),

where ρ is the density matrix inducing the state ϕ on Mn(C). However, without further assumptions
on the operators vj, the quadratic form on the right side of the previous equation is not necessarily a
completely Dirichlet form.
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1.1 Outline of the article
In Section 1 we recall some basics regarding modular theory, completely Dirichlet forms on standard
forms of von Neumann algebras and Tomita bimodules and derivations. In Section 2 we introduce a
topology on the domain of a derivation, the δ-topology, and show that derivations can be extended to
derivations on the completion in the δ-topology. In Section 3 we give a closability criterion for derivations
in our setting. In Section 4 we discuss how derivations can be extended to crossed products and discuss
how completely Dirichlet forms behave with respect to change of the reference weight. Then we state
and prove the main result of this article, Theorem 4.4, showing that the quadratic form associated with
a closable derivation is a modular completely Dirichlet form. Finally, in Section 5 we discuss several
classes of examples, including inner derivations, derivations arising in non-tracial free probability, and
derivations induced by cocycles on (possibly non-unimodular) locally compact groups.

1 Preliminaries
In this section we briefly recap some material concerning modular theory and in particular Hilbert and
Tomita algebras, completely Dirichlet forms, Tomita bimodules and derivations, which is used in the
later sections.

1.1 Modular theory
As our approach is formulated in the language of Hilbert and Tomita algebras, we summarize the
relevant definitions here. Our treatment mostly follows [26, Chapters VI–VII].

An algebra A with involution � (resp. �) and inner product 〈 · , · 〉 is called left (resp. right) Hilbert algebra if

• for every a ∈ A the map πl(a) : A → A, b �→ ab (resp. πr(a) : b �→ ba) is bounded;
• 〈ab, c〉 = 〈b, a�c〉 (resp. 〈ab, c〉 = 〈b, ca�〉) for all a, b, c ∈ A;
• the involution � (resp. �) is closable; and
• the linear span of all products ab with a, b ∈ A is dense in A.

Let M be a von Neumann algebra and ϕ a normal semi-finite faithful weight on M. We write nϕ for the
definition ideal {x ∈ M | ϕ(x∗x) < ∞} and (πϕ , L2(M, ϕ), �ϕ) for the associated semi-cyclic representation.

The prototypical example of a left Hilbert algebra is A = �ϕ(nϕ ∩ n∗
ϕ) with the product �ϕ(x)�ϕ(y) =

�ϕ(xy), the involution �ϕ(x)� = �ϕ(x∗) and the inner product inherited from L2(M, ϕ), that is,
〈�ϕ(x), �ϕ(y)〉 = ϕ(x∗y). In this case, πl(A)′′ = πϕ(M). We write Aϕ for this left Hilbert algebra.

Conversely, every left Hilbert algebra A gives rise to a von Neumann algebra πl(A)′′ acting on the
completion of A and a weight

ϕ : πl(A)′′+ → [0, ∞], ϕ(x) =
⎧⎨⎩‖ξ‖2 if x1/2 = πl(ξ),

∞ otherwise.

If A is a full left Hilbert algebra [26, Definition VI.1.16], then ϕ is a normal semi-finite faithful weight on
πl(A)′′, and A is canonically isomorphic to Aϕ .

Let H be the completion of the left Hilbert algebra A. Since the involution � on A is closable, its
closure S on H exists and has a polar decomposition S = J
1/2. The operator 
 is a non-singular positive
self-adjoint operator, called the modular operator, and J is an anti-unitary involution, called the modular
conjugation. IfA is the left Hilbert algebra associated with a weight ϕ, we write 
ϕ and Jϕ for the associated
modular operator and modular conjugation. We write �′

ϕ : n∗
ϕ → L2(M, ϕ) for the map x �→ Jϕ�ϕ(x∗).

If A is full, the modular conjugation J gives rise to the positive self-dual cone P = {πl(a)Ja | a ∈ A} and
πl(A)′′ is in standard form [26, Definition IX.1.13].

The modular operator 
 gives rise to a point weak∗ continuous group of automorphisms x �→ 
itx
−it

on πl(A)′′. If ϕ is a normal semi-finite faithful weight on M, the group σϕ given by σ
ϕ
t (x) = π−1

ϕ (
it
ϕπϕ(x)
−it

ϕ )

is called the modular group associated with ϕ.
If (αt)t∈R is a point weak∗ continuous group of ∗-automorphisms on M, then an element x ∈ M is

called entire analytic if the map t �→ αt(x) has an extension z �→ αz(x) to the complex plane such that
z �→ ω(αz(x)) is analytic for every ω ∈ M∗. The entire analytic elements form a weak∗ dense ∗-subalgebra
of M.
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A Tomita algebra is a left Hilbert algebra A endowed with a complex one-parameter group (Uz)z∈C of
algebra automorphism such that

• z �→ 〈a, Uzb〉 is analytic for all a, b ∈ A;
• (Uza)� = Uz̄(a�) for all a ∈ A, z ∈ C;
• 〈Uza, b〉 = 〈a, U−z̄b〉 for all a, b ∈ A, z ∈ C; and
• 〈a�, b�〉 = 〈U−ib, a〉 for all a, b ∈ A.

Note that every Tomita algebra becomes a right Hilbert algebra when endowed with the involution

A → A, a �→ a� = U−i(a
�).

For a full left Hilbert algebra A let

A0 =
{

ξ ∈
⋂
n∈Z

D(
n)

∣∣∣∣ 
nξ ∈ A for all n ∈ Z

}
.

For every ξ ∈ A0 the map t �→ 
itξ has an entire analytic extension z �→ Uzξ with Uzξ ∈ A0 for all z ∈ C.
This makes A0 into a Tomita algebra such that πl(A0)

′′ = πl(A)′′.
In particular,

(Aϕ)0 = {�ϕ(x) | x ∈ nϕ ∩ n∗
ϕ , x entire analytic for σϕ}.

1.2 Completely Dirichlet forms
Completely Dirichlet forms in the non-tracial setting were introduced by Goldstein and Lindsay [15,
16] in the language of GNS Hilbert spaces of states (or weights) and by Cipriani [7] in the language
of standard forms with a fixed cyclic vector. Our approach is somewhat different from both of these
formulations in that we use left Hilbert algebras, but in view of the previous subsection it is equivalent to
the formulation by Goldstein–Lindsay (and to that of Cipriani in case the left Hilbert algebra has a unit).

Let A be a full left Hilbert algebra with completion H. Let C be the closure of {
1/4a | a ∈ A, 0 ≤ πl(a) ≤
1}, and let PC be the metric projection onto C. We say that a closed densely defined quadratic form E

on H is a Dirichlet form with respect to A if E ◦ J = E and E (PC(a)) ≤ E (a) for all a ∈ H with Ja = a.
The Dirichlet form E is called completely Dirichlet form if for every n ∈ N the quadratic form

E (n) : H ⊗ Mn(C) → [0, ∞], E (n)([ξij]) =
n∑

i,j=1

E (ξij)

is a Dirichlet form with respect to A� Mn(C). Here Mn(C) carries the normalized Hilbert–Schmidt inner
product and the multiplication and involution on A�Mn(C) are given by [aij][bij] = [

∑
k aikbkj], [aij]� = [a�

ji].
A (completely) Dirichlet form with respect to A is called modular (or GNS-symmetric) if E ◦ Ut = E for

all t ∈ R.
Completely Dirichlet forms are of particular interest for their connection to semigroups of contractive

completely positive maps on von Neumann algebras. Let us briefly sketch this correspondence. Proofs
can be found in [16, Theorems 4.9, 5.7] for the wider class of KMS-symmetric semigroups. The result for
GNS-symmetric semigroups follows from the fact that GNS symmetry is equivalent to KMS symmetry
and commutation with the modular group (see, e.g., [1, Proposition 6.1]).

Let M be a von Neumann algebra. A quantum dynamical semigroup is a semigroup of normal contractive
completely positive operators on M that is continuous in the point weak∗ topology. If ϕ is a normal semi-
finite faithful weight on M, a quantum dynamical semigroup (Pt) is called GNS-symmetric with respect
to ϕ if ϕ ◦ Pt ≤ ϕ for all t ≥ 0 and

ϕ(Pt(x)∗y) = ϕ(x∗Pt(y))

for all x, y ∈ nϕ and t ≥ 0.
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Every GNS-symmetric quantum dynamical semigroup gives rise to a strongly continuous semigroup
(Tt) on L2(M, ϕ), its GNS implementation, acting by Tt�ϕ(x) = �ϕ(Pt(x)) for x ∈ nϕ , and the associated
quadratic form is a modular completely Dirichlet form with respect to Aϕ . Vice versa, the strongly
continuous semigroup associated with a modular completely Dirichlet form is the GNS implementation
of a GNS-symmetric quantum dynamical semigroup.

We call a completely Dirichlet form a quantum Dirichlet form if the associated quantum dynamical
semigroups consists of unital maps. A criterion in terms of the form itself is given in [29, Proposition 3.2].

1.3 Tomita bimodules and derivations
Tomita bimodules were introduced in [29] as codomains of the derivations associated with modular
completely Dirichlet forms.

Let A be a Tomita algebra. A Tomita bimodule over A is an inner product space H endowed with non-
degenerate commuting left and right actions of A, an anti-isometric involution J : H → H and a
complex one-parameter group (Uz) of isometries such that

• ‖aξb‖ ≤ ‖πl(a)‖‖πr(b)‖‖ξ‖ for a, b ∈ A, ξ ∈ H ;
• 〈aξb, η〉 = 〈ξ , a�ηb�〉 for a, b ∈ A, ξ , η ∈ H ;
• Uz(aξb) = (Uza)(Uzξ)(Uzb) for a, b ∈ A, ξ ∈ H , z ∈ C;
• J (aξb) = (Jb)(J ξ)(Ja) for a, b ∈ A, ξ ∈ H ; and
• UzJ = J Uz̄ for z ∈ C.

Let H̄ be the completion of H . The first two bullet points imply that πl(a) �→ (ξ �→ aξ) extends
to a non-degenerate ∗-homorphism from πl(A) to B(H̄ ). If this map can be extended to a normal
∗-homomorphism from πl(A)′′ to B(H̄ ), then we say that H is a normal Tomita bimodule. Requiring
normality for the right action instead leads to the same notion of normal Tomita bimodule.

If A is a Tomita algebra and H a bimodule over A, we call a linear map δ : A → H a derivation if it
satisfies the product rule

δ(ab) = aδ(b) + δ(a)b

for a, b ∈ A. If H is a Tomita bimodule over A, we say that a derivation δ : A → H is symmetric if
δ ◦ J = J ◦ δ and δ ◦ Uz = Uz ◦ δ for all z ∈ C.

If A is a full left Hilbert algebra and E a modular quantum Dirichlet form with respect to A, it is
shown in [29, Theorem 6.3] that

AE = {a ∈ A0 | Uza ∈ dom(E ) for all z ∈ C}

is a Tomita subalgebra of A0 and a core for E . Moreover, by [29, Theorem 6.8] there exists a Tomita
bimodule H over A and a symmetric derivation δ : AE → H such that

E (a, b) = 〈δ(a), δ(b)〉H

for a, b ∈ AE .
Under the minimality condition H = lin{δ(a)b | a, b ∈ AE }, the pair (H , δ) is uniquely determined

by E up to isometric isomorphism preserving the Tomita bimodule structure and intertwining the
derivations [29, Theorem 6.9]. By a slight abuse of notation, any such pair (H , δ) is called the first-order
differential structure associated with E . If H is a normal Tomita bimodule, the quantum Dirichlet form E

is called �-regular. A characterization in terms of the carré du champ is given in [29, Theorem 7.2].

2 δ-topology and completeness
In this section we introduce a locally convex topology on the domain of a closable symmetric derivation,
called the δ-topology. This topology is strong enough to ensure that the derivation extends to a derivation
on the completion, which is a key technical ingredient in the proof of the main theorem later.

For the definition of the δ-topology recall that the Mackey topology τ(M, M∗) on a von Neumann
algebra M is the finest linear topology T on M such that the topological dual of (M, T ) is M∗. Equivalently,
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it is the finest locally convex topology on M that coincides with the strong∗ topology on norm bounded
sets [12, Proposition 2.11, Remark 2.12]. It has the advantage over the other usual locally convex
topologies on M of being complete, which is convenient for several of the following arguments.

Let A be a Tomita algebra with completion H, let H be a normal Tomita bimodule over A and δ : A →
H a symmetric derivation. We define the δ-topology Tδ on A as the coarsest locally convex topology
that makes the maps

A → H ⊕ H̄ , a �→ (
na, δ(
na))

continuous with respect to the norm topology on H ⊕ H̄ for all n ∈ Z and the maps

A → B(H), a �→ πl(

na)

continuous for the Mackey topology on B(H) for all n ∈ Z. Clearly, the δ-topology is stronger than the
topology induced by the graph norm (‖·‖2

H
+ ‖δ(·)‖2

H )1/2.

Lemma 2.1. If E is a �-regular modular quantum Dirichlet form and (H , δ) the associated first-
order differential structure, then AE is complete in the δ-topology.

Proof. Let (aj) be a Cauchy net in AE with respect to the δ-topology. In particular, (
naj, δ(
naj))j is
Cauchy in H⊕ H̄ for all n ∈ Z. Since 
n and δ are closable on AE , it follows that there exists a ∈ H such
that (
naj, δ(
naj)) → (
na, δ̄(
na)) for all n ∈ Z. In particular, a ∈ ⋂

n∈Z dom(
n) and 
na ∈ dom(δ̄) =
dom(E ) for all n ∈ Z.

Moreover, as the Mackey topology is complete, for n ∈ Z there exists xn ∈ B(H) such that πl(

naj) → xn

with respect to τ(B(H), B(H)∗). For b ∈ AE we have

xnb = lim
j

πl(

naj)b = lim

j
πr(b)
naj = πr(b)
na.

Since AE is dense in H, it follows that 
na ∈ A
′′
E and πl(


naj) → πl(

na) for all n ∈ Z.

Altogether we conclude that a ∈ AE and aj → a in the δ-topology. �

Lemma 2.2. If A is a Tomita algebra, H a Tomita bimodule over A and δ : A → H a closable
symmetric derivation, the inclusion of A into its completion H extends to an injective map
from the completion of A in the δ-topology to H.

Proof. We have to show that if (aj) is a Cauchy net in A with respect to the δ-topology and aj → 0 in H,
then aj → 0 in the δ-topology. Since 
n, n ∈ Z, and δ are closable, we have (
naj, δ(
naj)) → 0 for all n ∈ Z.
Furthermore, using the completeness of the Mackey topology and a similar argument as in the previous
lemma, one sees that πl(


naj) → 0 in τ(B(H), B(H)∗) for all n ∈ Z. Hence, aj → 0 in the δ-topology. �

Let Â
δ

denote the set of all elements a ∈ H for which there exists a net (aj) in A such that aj → a in H

and (aj) is Cauchy in the δ-topology. By the previous lemma, Â
δ

is a completion of A in the δ-topology,

and we call it simply the δ-completion of A. It is not hard to see that Â
δ

is a Tomita subalgebra of (A′′)0

and contained in dom(δ̄).
Recall that if H is a normal Tomita bimodule over A, we can continuously extend the left and right

action of A and the maps J and Ut, t ∈ R, to the Hilbert completion H̄ . This is usually not possible for
Uz, z ∈ C \ R. We define

H a = {ξ ∈ H̄ | t �→ Ūtξ has an entire extension}.
If it exists, this entire extension is unique and will be denoted by z �→ Ūzξ . Clearly, H ⊂ H a and Uz ⊂ Ūz

for all z ∈ C.

Lemma 2.3. If we endow H a with the coarsest locally convex topology that makes

H a → H̄ , ξ �→ Ūinξ

continuous for all n ∈ Z, then H a is complete.
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Proof. If A is the unique non-singular positive self-adjoint operator in H̄ such that Ūt = Ait for
t ∈ R, then H a = ⋂

n∈Z dom(An) and H a is the projective limit of the Banach spaces (dom(An) ∩
dom(A−n), ‖·‖H̄ + ‖An · ‖H̄ + ‖A−n · ‖H̄ ) in the topology described in the lemma. In particular, H a is
complete. �

Since H is a normal Tomita bimodule over A, the Hilbert completion H̄ has a canonical structure of
a πl(A)′′-πl(A)′′ correspondence determined by

πl(a) · ξ · Jπr(b)∗J = aξb

for a, b ∈ A and ξ ∈ H .
If a ∈ Â

δ
, (aj) is a net in A such that aj → a in the δ-topology and ξ ∈ H̄ , then

Ūt(πl(a) · ξ) = lim
j

Ūt(πl(aj)ξ) = lim
j

πl(Utaj)Ūtξ = πl(Uta) · Ūtξ .

Thus, if ξ ∈ H a, then z �→ πl(Uza) · Ūzξ is an entire continuation of t �→ Ūt(πl(a) · ξ), which implies
πl(a)ξ ∈ H a. Likewise, if b ∈ Â

δ
, then ξ · Jπr(b)∗J ∈ H a. It is then routine to check that the bimodule

structure given by aξb = πl(a) · ξ · Jπr(b)∗J, then group (Ūz)z∈C and the restriction of J̄ make H a into a
Tomita bimodule over Â

δ
.

Lemma 2.4. If A is a Tomita algebra, H is a Tomita bimodule over A and δ : A → H is a closable
symmetric derivation with closure δ̄, then δ̄(Â

δ
) ⊂ H a and δ̄ : Â

δ → H a is a symmetric
derivation.

Proof. If a ∈ Â
δ

and (aj) is a net in A such that aj → a in the δ-topology, then

Ūtδ̄(a) = lim
j

Utδ(aj) = δ(Utaj) = δ̄(Uta).

It follows that t �→ Ūt δ̄(a) has the entire continuation z �→ δ̄(Uza), which implies δ̄(a) ∈ H̄ a.
Again, routine computations show that the restriction of δ̄ to Â

δ
is a symmetric derivation from

Â
δ

to H a. �

3 Closability of derivations
In this section we give a simple criterion for the closability of derivations inspired by a well-known result
(see [28, Section 4] and [19, Lemma 3.9] for the non-tracial case) on the closability of the derivation used
in free probability.

If A is a Tomita algebra and H is a Tomita bimodule over A, we say that ξ ∈ H is a bounded vector if
there exists C > 0 such that ‖aξb‖ ≤ C‖a‖‖b‖ for all a, b ∈ A. In this case, the maps a �→ aξ and b �→ ξb
extend to bounded linear operators from the completion H of A to H , which we denote by R(ξ) and
L(ξ), respectively.

Lemma 3.1. Let A be a Tomita algebra, H a normal Tomita bimodule over A and δ : A → H a
derivation. If δ(A) is contained in the space of bounded vectors, then dom(δ∗) is a subbimodule
of H and

δ∗(aξb) = a∗δ∗(ξ)b − L(δ(a∗))∗(ξb) − R(δ(b∗))∗(aξ)

for a, b ∈ A and ξ ∈ dom(δ∗).

Proof. Let a, b, c ∈ A and ξ ∈ dom(δ∗). By the product rule,

〈aξb, δ(c)〉 = 〈ξ , a∗δ(c)b∗〉
= 〈ξ , δ(a∗cb∗) − δ(a∗)cb∗ − a∗cδ(b∗)〉
= 〈aδ∗(ξ)b − L(δ(a∗))∗(ξb) − R(δ(b∗))∗(aξ), c〉.

Thus, aξb ∈ dom(δ∗) and the claimed identity for δ∗(aξb) holds. �
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Lemma 3.2. Let A be a Tomita algebra, H a normal Tomita bimodule over H and δ : A → H a
derivation. If δ(A) is contained in the space of bounded vectors and dom(δ∗) generates H as
an A-bimodule, then δ is closable.

Proof. By the previous lemma, dom(δ∗) is a subbimodule of H . Hence, if dom(δ∗) generates H as an
A-bimodule, then it is dense in H̄ . Therefore, δ is closable. �

4 Completely Dirichlet forms associated with closable derivations
In this section we prove the main theorem of this article, Theorem 4.4, showing that the closure of the
quadratic form associated with a closable symmetric derivation is a modular completely Dirichlet form.

As mentioned in the introduction, we rely on Haagerup’s reduction method. To set the stage for its
use, we first discuss crossed products of Tomita algebras and Tomita bimodules. To extend closable
symmetric derivations to a sufficiently large domains on the crossed product, we use the δ-completion
technique developed in Section 2. Further, to reduce the problem to the tracial case, we need a “change
of reference weight” argument and an analysis of approximation properties of completely Dirichlet
forms. This will be dealt with in the following lemmas. Finally, in Proposition 4.6 we discuss the relation
between the derivation we started with and the first-order differential structure of the associated
completely Dirichlet form.

Let A be a Tomita algebra, H a normal Tomita bimodule over A and δ : A → H a closable symmetric
derivation. Throughout this section we endow A with the δ-topology and H with the projective topology
induced by the maps H → H̄ , ξ �→ Ūinξ for n ∈ Z, and we assume that A and H are complete in these
topologies. As discussed in Section 2, this can always be achieved by passing to the completions.

Let G be a countable subgroup of R, viewed as discrete group. The vector space Cc(G;A) ∼= Cc(G) � A

can be made into a Tomita algebra by the operations

(a ∗ b)(g) =
∑
h∈G

U−ha(g − h)b(h),

a�(g) = U−g(a(−g)�),

(Uza)(g) = Uza(g).

Moreover, the vector space Cc(G; H ) becomes a normal Tomita bimodule over Cc(G;A) with the
operations

(aξ)(g) =
∑
h∈G

U−ha(g − h)ξ(h)

(ξb)(g) =
∑
h∈G

U−hξ(g − h)b(h)

(J̃ ξ)(g) = U−gJ ξ(−g)

(Ũzξ)(g) = Uzξ(g).

Furthermore, 1Cc(G)�δ : Cc(G;A) → Cc(G; H ) is a closable symmetric derivation, whose closure we denote
by 1 ⊗ δ̄.

We write Ã for the (1 � δ)-completion of Cc(G;A), H̃ for Cc(G; H )a and δ̃ for the restriction of 1 ⊗ δ̄ to
Ã. By Lemma 2.4 the map δ̃ is a (closable) symmetric derivation from Ã to H̃ .

Lemma 4.1. If x ∈ L(G) ⊗ C1H̄ and a ∈ Ã, then xa, ax ∈ Ã and δ̃(xa) = xδ̃(a), δ̃(ax) = δ̃(a)x.

Proof. Let x = y ⊗ 1 with y ∈ L(G), let (yi) be a bounded net in C[G] such that yi → y in the strong∗

topology and let xi = yi ⊗ 1. Clearly, xi → x in the Mackey topology.
If a ∈ Cc(G;A), then xia ∈ Cc(G;A) and 
n(xia) = xi


na, (1�δ)(xia) = xi(1�δ)(a), πl(

n(xia)) = xiπl(


na).
It follows that xia → xa in �2(G;H), the net (xia) is Cauchy in the δ̃-topology and (1� δ)(xia) → x(1� δ)(a).
Thus, xa ∈ Ã and δ̃(xa) = xδ̃(a).
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A similar argument shows that if (aj) is a Cauchy net in Cc(G;A) with respect to Tδ̃ and aj → a in
�2(G; H ), then (xaj) is Cauchy with respect to Tδ̃ and xaj → xa in �2(G; H ). Hence, if a ∈ Ã, then xa ∈ Ã

and δ̃(xa) = xδ̃(a). The statement for ax can be proven analogously. �

For the next lemma recall that Aϕ = �ϕ(nϕ ∩n∗
ϕ) is the full left Hilbert algebra induced by the weight

ϕ, the cone Cϕ is the closure of {
1/4
ϕ a | a ∈ Aϕ , 0 ≤ πl(a) ≤ 1}, and Mϕ denotes the centralizer of ϕ.

Lemma 4.2. Let M be a von Neumann algebra, ϕ a normal semi-finite faithful weight on M and
x ∈ Mϕ be positive and invertible. Let ψ = ϕ(x1/2 · x1/2).

If E is a modular (completely) Dirichlet form on L2(M) with respect to Aϕ , x dom(E ) ⊂ dom(E ) and
E (xa, b) = E (a, xb) for all a, b ∈ dom(E ), then E is also a modular (completely) Dirichlet from
with respect to Aψ .

Proof. Since x is invertible, the weight ψ is faithful and Jψ = Jϕ , and since x commutes with (
it
ϕ), we

have 
it
ψ = xit
it

ϕ(·)x−it = 
it
ϕ(xit · x−it).

Let A be the positive self-adjoint operator associated with E and Tt = e−tA. The commutation relation
x dom(E ) ⊂ dom(E ) and E (xa, b) = E (a, xb) for a, b ∈ dom(E ) implies that x commutes strongly with
A1/2. Hence Tt(xa) = xTt(a) for all a ∈ H and t ≥ 0. Since Tt commutes with Jϕ , we also have Tt(ax) = Tt(a)x
for a ∈ H, t ≥ 0. In particular, (Tt) and (
is

ψ) commute.
Moreover, Cψ = x1/4Cϕx1/4. Indeed, a direct computation shows that nψ = nϕ and �ψ(y) = �ϕ(y)x1/2

for y ∈ nϕ . Hence, if y ∈ nϕ with 0 ≤ y ≤ 1, then



1/4
ψ �ψ(y) = x1/4
1/4

ϕ 
ϕ(y)x1/4 ∈ x1/4Cϕx1/4.

The converse inclusion follows by swapping the roles of ϕ and ψ .
Therefore, if a ∈ Cψ , then

Tt(a) = x1/4Tt(x−1/4ax−1/4)x1/4 ∈ Cψ .

Thus, E is a Dirichlet form with respect to Aψ by [16, Theorem 5.7]. The result for completely Dirichlet
forms follows easily by applying the same argument to the forms E (n) on L2(M ⊗ Mn(C)). �

Lemma 4.3. Let M be a von Neumann algebra and ϕ a normal semi-finite faithful weight on M.
Let (Mn) be an increasing sequence of von Neumann subalgebras with weak∗ dense union and
assume that Mn is the range of a ϕ-preserving conditional expectation En on M. Let Hn denote
the closure of �ϕ(nϕ ∩ Mn) and let Pn denote the orthogonal projection from H to Hn.

If E is a closed densely defined quadratic form on H such that for every n ∈ N the quadratic form
E |Hn is a Dirichlet form with respect to �ϕ(nϕ ∩ n∗

ϕ ∩ Mn) and E ◦ Pn ≤ E , then E is a Dirichlet
form with respect to Aϕ .

Proof. Let (Tt) be the strongly continuous semigroup associated with E . Since E ◦ Pn ≤ E , we have
Tt(Hn) ⊂ Hn by Ouhabaz’ theorem [20, Corollary 2.4]. Thus, Tt commutes with Pn, and it is easy to see
that (TtPn) is the semigroup associated with E |Hn , viewed as semigroup on H. In particular, TtPnJϕ = JϕTtPn.
In the limit we obtain TtJϕ = JϕTt.

It remains to show that Tt(Cϕ) ⊂ Cϕ for all t ≥ 0. A direct computation shows that En and Pn are
related by Pn�ϕ(x) = �ϕ(En(x)). Moreover, En is GNS-symmetric with respect to ϕ, which implies that Pn

commutes with (
it
ϕ). Thus, Pn(Cϕ) is the closure of {
1/4

ϕ �ϕ(x) | x ∈ nϕ ∩n∗
ϕ ∩ Mn, 0 ≤ x ≤ 1}. In particular,

Pn(Cϕ) ⊂ Cϕ .
Since En is a Dirichlet form with respect to �ϕ(nϕ ∩ n∗

ϕ ∩ Mn) and (TtPn) is the associated semigroup,
we have TtPn(Cϕ) ⊂ Pn(Cϕ). Moreover, since

⋃
n Mn is weak∗ dense in M, we have Pn → 1 strongly by

Kaplansky’s density theorem. Therefore, Tt(Cϕ) ⊂ Cϕ . �

To prove that the quadratic form associated with a closable symmetric derivation is a completely
Dirichlet form, we will reduce the problem to the tracially symmetric case by means of Haagerup’s
reduction method. We only recall the necessary definitions here and refer to [17] for proofs in the case
of states and to [6] for the extension to weights.
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Let M = πl(A)′′, let ϕ be the weight induced by the full left Hilbert algebra A
′′ on M, let G = ⋃

n∈N 2−n
Z,

let M̃ = M �σϕ G = πl(Ã)′′ and let ϕ̃ be the dual weight of ϕ on M̃. Let (an) be a sequence of self-adjoint
elements of L(G) ⊗ C1 ⊂ Z (M̃ϕ̃ ), ϕn = ϕe−an , Mn = M̃ϕn and τn = ϕn|Mn . Here Nψ denotes the centralizer of
the weight ψ on N and Z (M) is the center of the von Neumann algebra N.

By [6, Theorem 8.1] the sequence (an) can be chosen such that

• Mn is semi-finite with normal semi-finite faithful trace τn;
• for each n ∈ N there exists a conditional expectation En from M onto Mn such that ϕ̃ ◦ En = ϕ̃ and

σ
ϕ̃
t ◦ En = En ◦ σ

ϕ̃
t for all t ∈ R; and

• En(x) → x strongly∗ for every x ∈ M.

In the following we fix a sequence (an) with these properties. The concrete construction is irrelevant for
our purposes.

Theorem 4.4. Let A be a Tomita algebra with completion H, let H be a normal Tomita bimodule
over A and δ : A → H a closable symmetric derivation. The closure E of the quadratic form

H → [0, ∞], a �→
⎧⎨⎩‖δ(a)‖2

H if a ∈ A,

∞ otherwise

is a modular completely Dirichlet form with respect to A
′′. If moreover A is unital, then E is a

modular quantum Dirichlet form.

Proof. We continue to use the notation from the previous discussion. The derivation δ̃ : Ã → H̃ is a
restriction of 1 ⊗ δ̄. Let Ẽ denote the closure of the quadratic form

�2(G;H) → [0, ∞], a �→
⎧⎨⎩‖δ̃(a)‖2

H̃
if a ∈ Ã,

∞ otherwise.

It is clear that Ẽ (a) = ‖(1 ⊗ δ̄)(a)‖2
�2(G;H̄ )

for a ∈ dom(Ẽ ). Furthermore, dom(Ẽ ) = dom(1 ⊗ δ̄) and the

strongly continuous semigroups (Tt) and (T̃t) associated with E and Ẽ , respectively, are related by T̃t =
id�2(G) ⊗ Tt.

The map ι : H → �2(G;H), a �→ �0 ⊗ a is an isometric embedding such that ι(CA′′ ) = C
Ã

′′ ∩ ι(H). Thus,

if Ẽ is a (completely) Dirichlet form with respect to Ã
′′
, then E is a (completely) Dirichlet form with

respect to A
′′.

Since M is in standard form on H and M̃ is in standard form on �2(G;H), these spaces can be
canonically identified with L2(M, ϕ) and L2(M̃, ϕ̃), respectively, and we will tacitly do so in the following.
Under these identifications, A′′ = Aϕ , Ã

′′ = Aϕ̃ and 
it
ϕ̃

= id�2(G) ⊗ 
it
ϕ .

Let

An = {x ∈ nϕ̃ ∩ n∗
ϕ̃ ∩ Mn | �ϕ̃(xe−an/2) ∈ Ã}.

Since ean/2 ∈ M̃ϕ̃ , if x ∈ An, then

�ϕ̃(x) = �ϕ̃(xe−an/2)ean/2 ∈ Ã

by Lemma 4.1. Reversing the roles of e−an/2 and ean/2 we get

An = {x ∈ nϕ̃ ∩ n∗
ϕ̃ ∩ Mn | �ϕ̃(x) ∈ Ã}.

Since Ã is a Tomita algebra, it follows easily that An is a ∗-algebra. Define an An-An-bimodule structure
on �2(G; H̄ ) by

xξy = �ϕ̃(x) · ξ · �′
ϕ̃ (y).

Using that H̃ is a Tomita bimodule over Ã, it is not hard to see that this left and right action are
contractive (anti-) ∗-homomorphisms. Moreover, J̃ extends to an anti-unitary involution on �2(G; H̄ )

intertwining the left and right action. We still denote this extension by J̃ .

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2024/14/10597/7672873 by Institute of Science and Technology Austria user on 27 January 2025



Modular Completely Dirichlet forms as Squares of Derivations | 10607

Let

∂n : An → L2(M̃, ϕ̃), ∂n(x) = δ̃(�ϕ̃(xe−an/2)).

Since e−an/2 ∈ M̃ϕ̃ and x ∈ M̃ϕn , we have

∂n(x∗) = δ̃(�ϕ̃(x∗e−an/2))

= δ̃(�′
ϕ̃ (e−an/2x∗))

= δ̃(J̃�ϕ̃(xe−an/2))

= J̃ δ̃(�ϕ̃(xe−an/2))

= J̃ ∂n(x).

Moreover, it follows from Lemma 4.1 combined with e−an/2 ∈ M̃ϕ̃ and x, y ∈ M̃ϕn that

∂n(xy) = δ̃(�ϕ̃(xye−an/2))

= �ϕ̃(x) · δ̃(�ϕ̃(ye−an/2)) + δ̃(�ϕ̃(x)) · �ϕ̃(ye−an/2)

= �ϕ̃(x) · δ̃(�ϕ̃(ye−an/2)) + δ̃(�ϕ̃(xe−an/2)) · �ϕ̃(ean/2ye−an/2)

= �ϕ̃(x) · δ̃(�ϕ̃(ye−an/2)) + δ̃(�ϕ̃(xe−an/2)) · �′
ϕ̃ (σ

ϕn

−i/2(y))

= �ϕ̃(x) · δ̃(�ϕ̃(ye−an/2)) + δ̃(�ϕ̃(xe−an/2)) · �′
ϕ̃ (y)

= x∂n(y) + ∂n(x)y.

The operator ∂n is closable when viewed as operator in L2(Mn, τn) since δ̃ is closable and the map �τn (x) �→
�ϕ̃(xe−an/2) extends to an isometry ιn from L2(Mn, τn) to L2(M̃, ϕ̃).

Since τn is a trace, [8, Theorem 4.5] implies that the closure Qn of the quadratic form

L2(Mn, τn) → [0, ∞], a �→
⎧⎨⎩‖∂n(x)‖2 if a = �τn (x), x ∈ An,

∞ otherwise

is a completely Dirichlet form.
Let Hn = �ϕ̃(nϕ̃ ∩ n∗

ϕ̃
∩ Mn) and let En be the closure of the quadratic form

Hn → [0, ∞], a �→
⎧⎨⎩‖δ̃(a)‖2 if a ∈ Ã,

∞ otherwise.

In other words, En = Qn ◦ ι−1
n .

Note that ιn maps {�τn (x) | x ∈ nϕ̃ ∩ n∗
ϕ̃

∩ Mn, 0 ≤ x ≤ 1} onto {�ϕ̃(xe−an/2) | x ∈ nϕ̃ ∩ n∗
ϕ̃

∩ Mn, 0 ≤ x ≤ 1}.
Since ϕn is a trace on Mn, the latter set coincides with {�ϕn (x) | x ∈ Aϕn ∩ Hn, 0 ≤ x ≤ 1}. It follows that En

is a completely Dirichlet form with respect to Aϕn ∩ Hn.
Moreover,

En(

it
ϕn

a) = En(e−ian/2t(
it
ϕ̃a)eian/2t)

= ‖e−ian/2t(Ũtδ̃(a))eian/2t‖2

= ‖δ̃(a)‖2

= En(a)

for a ∈ Ã. This can easily be extended to the closure so that En is a modular completely Dirichlet form.
By Lemma 4.1 we have e−an/2 dom(En) ⊂ dom(En) and En(ean/2a, b) = En(a, e−an/2b) for a, b ∈ dom(En).

Furthermore, e−an/2 ∈ M̃ϕ̃ . Hence, En is also a modular completely Dirichlet form with respect to Aϕ̃ ∩Hn =
�ϕ̃(nϕ̃ ∩ n∗

ϕ̃
∩ Mn) by Lemma 4.2.
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Let Pn denote the orthogonal projection from �2(G;H) onto Hn. By definition, Ẽ |Hn = En. To apply
Lemma 4.3, we have to check that E ◦ Pn ≤ E .

Let (Tt) be the strongly continuous semigroup associated with E . As discussed above, (id�2(G) ⊗ Tt)

is the strongly continuous semigroup associated with Ẽ . The modular group of ϕn is given by 
it
ϕn

=
e−itan (id�2(G) ⊗ 
it

ϕ)(·)eitan . Since (Tt) commutes with (
it
ϕ) and ean ∈ L(G) ⊗C1H, the semigroup (id�2(G) ⊗ Tt)

commutes with (
it
ϕn

).
Since Mn is the centralizer of ϕn, the subspace Hn is the fixed-point set of (
it

ϕ̃n
). In particular, (id�2(G) ⊗

Tt)(Hn) ⊂ Hn. From Ouhabaz’s theorem [20, Corollary 2.4] we deduce E ◦ Pn ≤ E .
Now Lemma 4.3 shows that E is a modular completely Dirichlet form with respect to Aϕ̃ .
If A is unital with unit 1A, then the left and right action of A on H are unital since they are non-

degenerate by definition. Thus,

δ(1A) = 1A · δ(1A) + δ(1A) · 1A − δ(1A) = 0

and hence E (1A) = 0. Thus, Tt(1A) = 0, which implies that E is a quantum Dirichlet form. �

In the situation of the previous theorem, we call E the completely Dirichlet form associated with δ.

Remark 4.5. If A is not unital, the completely Dirichlet form associated with a derivation is not
necessarily a quantum Dirichlet form, even in the commutative case. For example, this is the
case for the standard Dirichlet energy E (f ) = ∫

�
|∇f |2 with domain H1

0(�) if � is a bounded
Lipschitz domain.

Proposition 4.6. If A is a unital Tomita algebra, H a normal Tomita bimodule over A and δ : A →
H a closable symmetric derivation with associated completely Dirichlet form E , then the first-
order differential calculus associated with E is a corestriction of (H a, δ̄|AE

). In particular,

δ̄(ab) = aδ̄(b) + δ̄(a)b

for a, b ∈ AE .

Proof. Since A is unital, E is a modular quantum Dirichlet form by 4.4. Let (HE , δE ) be a first-order
differential calculus associated with E . By definition, A ⊂ AE ⊂ A

′′ and the graph norm of δ̄ coincides
with the graph norm of δE on AE . Thus πl(A)′′ is strong∗ dense in πl(AE )′′ and A is a core for δE . It follows
that the linear hull of {δE (a)b | a, b ∈ A} is dense in HE .

Let

U : lin{δE (a)b | a, b ∈ A} → H , U(δE (a)b) = δ(a)b.

By [29, Lemma 5.9] the map U is well defined and extends to an isometric AE -bimodule map from H̄E

to H̄ such that U(δE (a)) = δ(a) for a ∈ A.
If a ∈ AE , let (an) be a sequence in A such that ‖an − a‖δ̄ → 0. As discussed above, this implies

δE (an) → δE (a). Hence, U(δE (a)) = δ̄(a). If a, b ∈ AE , then

δ̄(ab) = U(δE (ab))

= U(aδE (b) + δE (a)b)

= aU(δE (b)) + U(δE (a))b

= aδ̄(b) + δ̄(a)b.

Moreover, δJ = J δ can be extended by continuity to δ̄J = J δ̄, and

C → H̄ , z �→ δ̄(Uza)

is an entire continuation of t �→ Utδ̄(a) for a ∈ AE by [29, Lemma 6.6].
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Thus, δ̄(AE ) ⊂ H a and δ̄ is a symmetric derivation on AE . The statement now follows from the
uniqueness of the first-order differential calculus associated with a modular completely Dirichlet form
[29, Theorem 6.9]. �

Remark 4.7. The previous result holds more generally with the same proof if A is not necessarily
unital, but the completely Dirichlet form associated with δ is still a quantum Dirichlet form.

Remark 4.8. In the light of Lemma 2.2, one has Â
δ ⊂ AE in the situation of the previous

proposition. It is an interesting question if one always has equality or if different derivations
with δ-complete domains can have the same associated completely Dirichlet form.

5 Examples
In this section we present several classes of derivations that give rise to modular completely Dirichlet
forms according to Theorem 4.4. The first three classes of examples concern inner derivations, before
we treat derivations arising in non-tracial free probability in Example 5.4 and derivations induced by
cocycles on locally compact groups in Example 5.5.

Example 5.1. Let A be a Tomita algebra, H a normal Tomita bimodule over A and ξ ∈ H be a
bounded vector. Assume that there exists ω ∈ R such that Utξ = eiωtξ for all t ∈ R. The map

δ : A → H ⊕ H , a �→ i(ξa − aξ , (J ξ)a − a(J ξ))

is a bounded derivation, and it is symmetric when H ⊕H is endowed with the involution (η, ζ ) �→
(J ζ , J η) and the complex one-parameter group (e−iωzUz, eiωzUz).

It follows that the closure of the quadratic form

A → [0, ∞), a �→ ‖ξa − aξ‖2
H + ‖(J ξ)a − a(J ξ)‖2

H

is a (bounded) modular completely Dirichlet form with respect to A
′′. In the case H = A, this was

first proven by Cipriani [7, Proposition 5.3]. See also [29, Proposition 5.5] for arbitrary Tomita
bimodules H over A.

The next example is a (partial) extension of the previous example allowing for vectors implementing
the inner derivation that are not necessarily bounded.

Example 5.2. LetA be a Tomita algebra with Hilbert completionH. For ξ ∈ dom(
1/2) the operator

π0
l (ξ) : A → H, a �→ ξa

is closable since π0
l (ξ �) ⊂ π0

l (ξ)∗. Likewise, if ξ ∈ dom(
−1/2), then

π0
r (ξ) : A → H, a �→ aξ

is closable with π0
r (ξ �) ⊂ π0

r (ξ)∗. Hence, if ξ ∈ dom(
−1/2)∩dom(
1/2), then π0
l (ξ)−π0

r (ξ) is closable
with π0

l (ξ �) − π0
r (ξ �) ⊂ (π0

l (ξ) − π0
r (ξ))∗.

Now assume that there exists ω ∈ R such that 
itξ = eiωtξ for all t ∈ R. This implies in particular
ξ ∈ dom(
−1/2) ∩ dom(
1/2).

Similar to the last example, one can turn A⊕A into a Tomita bimodule over A if one equips it with
the usual bimodule structure, the involution (η, ζ ) �→ (Jζ , Jη) and the complex one-parameter
group (e−iωzUz, eiωzUz).Then the map

δ : A → A ⊕ A, a �→ i(ξa − aξ , (Jξ)a − a(Jξ))

is a closable symmetric derivation.
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Thus, the closure of the quadratic form

A → [0, ∞), a �→ ‖ξa − aξ‖2
H + ‖(Jξ)a − a(Jξ)‖2

H

is a modular completely Dirichlet form with respect to A
′′. This result has first been obtained by

Cipriani and Zegarlinski [10, Theorem 2.5].

The previous examples require eigenvectors of the modular group to construct a symmetric deriva-
tion, which may be hard to find. In the following examples we show that in certain situations one can
start with an arbitrary element if one “averages” the action of the modular group to ensure modularity.

Example 5.3. Let M be a von Neumann algebra with separable predual. A normal semi-finite
weight faithful weight ϕ on M is called integrable [11, Definition II.2.1] if

qϕ =
{

x ∈ M :
∫
R

σ
ϕ
t (x∗x) dt exists in the σ -strong topology

}

is weak∗ dense in M.
If ϕ is integrable, the set

A = {�ϕ(x) | x ∈ M analytic for σϕ , σϕ
z (x) ∈ qϕ ∩ q∗

ϕ ∩ nϕ ∩ n∗
ϕ for all z ∈ C}

is a Tomita subalgebra of (Aϕ)0 with Hilbert completion L2(M) and πl(A)′′ = M, as can be seen from
[11, Lemma II.2.3] together with a standard mollifying argument.

Let (Vt) be the translation group on L2(R), that is, Vtf (s) = f (s + t), and let L2(R)a be the set of all
entire analytic elements for (Vt). Endow L2(R)a �A with the left and right action of A given by
a(f ⊗b)c = f ⊗abc, the complex one-parameter group (Vz�Uz)z∈C and the involution f ⊗a �→ f̄ ⊗Ja.
It can be checked that this makes L2(R)a �A into a normal Tomita bimodule, which we denote
by H .

Let a ∈ dom(

1/2
ϕ ) ∩ dom(


−1/2
ϕ ) with Ja = a and define

δ : A → L2(R; L2(M)), δ(b)(s) = (U−sa)b − b(U−sa).

We have

δ(Utb)(s) = (U−sa)(Utb) − (Utb)(U−sa)

= Ut((U−(s+t)a)b − b(U−(s+t)a))

= Utδ(b)(s + t).

Thus, δ ◦ Ut = (Ut ⊗ Vt) ◦ δ. In particular, δ maps into H a.
It is not hard to check that δ : A → H a is a symmetric derivation. To show closability, first note

that for every fixed s ∈ R the map b �→ δ(b)(s) is closable as seen in the previous example. If
bn → 0 and δ(bn) → ξ , then there exists a subsequence such that δ(bnk )(s) → ξ(s) for a.e. s ∈ R.
Closability of the map b �→ δ(b)(s) implies ξ(s) = 0 for a.e. s ∈ R, which proves the closability of
δ.

Thus, the closure of the quadratic form

A → [0, ∞), b �→
∫
R

‖(U−sa)b − b(U−sa)‖2 ds

is a modular completely Dirichlet form.
If we drop the assumption Ja = a, a similar argument shows that the closure of the quadratic

form

A → [0, ∞), b �→
∫
R

(‖(U−sa)b − b(U−sa)‖2 + ‖(U−sJa)b + b(U−sJa)‖2) ds

is a modular completely Dirichlet form with respect to A
′′.
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A similar construction is possible if one starts with a weight with periodic modular group instead
of an integrable weight and integrates over a period of the modular group.

The following class of examples of derivations was introduced by Nelson [19] in the context of non-
tracial free probability.

Example 5.4. Let M be a von Neumann algebra, ϕ a normal faithful state on M and B ⊂ M a
∗-subalgebra. Let ∂ : B → M⊗M be a linear map such that

∂(xy) = (x ⊗ 1) · ∂(y) + ∂(x) · (1 ⊗ y)

for x, y ∈ B. Note that Nelson works with M⊗Mop instead, but under the identification x ⊗ y �→
x ⊗ yop, the M-bimodules M⊗M and M⊗Mop (with the bimodule structure used in [19]) are
isomorphic.

Let ω ∈ R and write M∞ for the set of entire analytic elements for σϕ . We call the map ∂ an eω-
modular derivation if B ⊂ M∞, B is invariant under σ

ϕ
z for all z ∈ C, ∂(B) ⊂ M∞ � M∞ and

∂(σ ϕ
z (x)) = eiωz(σ ϕ

z ⊗ σϕ
z )(∂(x))

for all x ∈ B and z ∈ C. Note that this differs from [19, Definition 3.2] since we work with M instead
of Mop in the second tensor factor.

One example given by Nelson is the free difference quotient from free probability (see [19,
Definition 3.4] in the non-tracial case). Given a ∗-subalgebra B of M and an element a ∈ M
that is algebraically free from B (and a∗ is algebraically free from a if a �= a∗), let

∂a : B[a] → B[a] � B[a], ∂a(a) = 1 ⊗ 1, δ|B = 0

(and δa(a∗) = 0 if a∗ �= a). If a is an eigenvector of 
ϕ to the eigenvalue eω, then ∂a is an eω-modular
derivation.

Let us see how an eω derivation gives rise to a symmetric derivation in our sense. For x, y ∈ M let
(x ⊗ y)† = y∗ ⊗ x∗. The conjugate derivation of ∂ is the map

∂̂ : B → M∞ � M∞, ∂̂(x) = ∂(x∗)†.

Let A = �ϕ(B). Since B is consists of the analytic elements for σϕ and is invariant under σ
ϕ
z for

z ∈ C, the set A is a Tomita subalgebra of (Aϕ)0 = �ϕ(M∞).
Let H = (�ϕ(M∞) � �ϕ(M∞))⊕2 with left and right action of A given by

a(ξ1 ⊗ η1, ξ2 ⊗ η2)b = (aξ1 ⊗ η1b, aξ2 ⊗ η2b),

involution J given by (ξ1 ⊗ η1, ξ2 ⊗ η2) �→ (Jη2 ⊗ Jξ2, Jη1 ⊗ Jξ1), and complex one-parameter group
(Uz) = (eiωz
iz

ϕ⊗ϕ , e−iωz
iz
ϕ⊗ϕ). One can check that this makes H into a normal Tomita bimodule

over A.
Let

δ : A → H , δ(�ϕ(x)) = (�ϕ⊗ϕ(∂(x)), �ϕ⊗ϕ(∂†(x))).

The product rule for ∂ and ∂̂ translate to the product rule for δ, the eω modularity of ∂ ensures
δ ◦ 
iz

ϕ = Uz ◦ δ and the definition of ∂̂ and J are tailored to guarantee δ ◦ Jϕ = J ◦ δ.
All of these properties follow by routine calculations, let us just show the product rule (for the first

component of) δ as illustration. Let δ1(�ϕ(x)) = �ϕ⊗ϕ(∂(x)). By the product rule for ∂ we have

δ1(�ϕ(xy)) = �ϕ⊗ϕ((x ⊗ 1)∂(y) + ∂(x)(1 ⊗ y))

= �ϕ⊗ϕ((x ⊗ 1)�ϕ⊗ϕ(∂(y)) + ∂(x))(1 ⊗ σ
ϕ

−i/2(y))

= (πl(�ϕ(x)) ⊗ 1)δ1(�ϕ(y)) + (1 ⊗ πr(�ϕ(y)))δ1(�ϕ(x)).

Thus, if δ is closable, the closure of the associated quadratic form is a completely Dirichlet form
with respect to Aϕ on the GNS Hilbert space L2(M, ϕ).
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To compare that to the result of Nelson, he showed [19, Proposition 4.4] that one gets a completely
Dirichlet form on the GNS Hilbert space L2(Mϕ , ϕ) of the centralizer Mϕ of ϕ, which is of course a
tracial von Neumann algebra.

Our methods allow to extend this result to the “fully” non-tracial setting in that we obtain a
modular completely Dirichlet form on the GNS Hilbert space of M on not just of the centralizer.
Note, however, that Nelson’s definition of the map δ between L2 spaces seems slightly different,
owing to the use of M⊗Mop instead of M⊗M.

The last example concerns group von Neumann algebras. The case of discrete groups was treated in
[9, Section 10.2], but to cover general locally compact groups, possibly non-unimodular, one needs the
theory for non-tracial reference weights as developed here.

Example 5.5. Let G be a locally compact group with left Haar measure μ and modular function

G. As discussed in [26, Proposition VII.3.1], the space Cc(G) of compactly supported continuous
function on G with the L2 inner product, the convolution product, the involution f �(g) =

G(g)−1f (g−1) and the complex one-parameter group Uzf (g) = 
G(g)izf (g) forms a Tomita
algebra. We write λ and ρ for the associated left and right action of Cc(G) on L2(G) and AG

for the associated full left Hilbert algebra.
Let π be a strongly continuous orthogonal representation of G on the real Hilbert space H. A

continuous map b : G → H is called 1-cocycle if b(gh) = b(g) + π(g)b(h) for all g, h ∈ G. We
extend π to a unitary representation of G on the complexification HC of H and write ξ �→ ξ̄ for
the anti-unitary involution induced by H ⊂ HC.

On Cc(G; HC) define a left and right action of Cc(G) by

(f ∗ ξ)(g) =
∫

G
f (h)π(h)ξ(h−1g) dμ(h)

(ξ ∗ f )(g) =
∫

G
f (h−1g)ξ(h) dμ(h),

an anti-unitary involution by (J ξ)(g) = −
G(g)−1/2π(g)ξ(g−1) and a complex one-parameter
group by Uzξ(g) = 
G(g)izξ(g). One can check that Cc(G; HC) with this operations is a Tomita
bimodule over Cc(G).

Let

δ : Cc(G) → Cc(G; HC), δ(f )(g) = f (g)b(g).

Using the cocycle property of b, one gets

δ(f1 ∗ f2)(g) =
∫

G
f1(h)f2(h−1g) dμ(h) b(g)

=
∫

G
f1(h)f2(h−1g)(π(h)b(h−1g) + b(h)) dμ(h)

= (f1 ∗ δ(f2))(g) + (δ(f1) ∗ f2)(g).

It is readily verified that δ also satisfies δ ◦ J = J ◦ δ and δ ◦ Uz = Uz ◦ δ for all z ∈ C. Hence, δ is a
symmetric derivation. As a multiplication operator, it is clearly closable.

Therefore,

E : L2(G, μ) → [0, ∞], E (f ) =
∫

G
|f (g)|2‖b(g)‖2 dμ(g)

is a modular completely Dirichlet form with respect to AG. The associated quantum dynamical
semigroup on L(G) is given by

Pt

(∫
G

x̂(g)λ(g) dμ(g)

)
=

∫
G

e−t‖b(g)‖2
x̂(g)λ(g) dμ(g).
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In this case, complete positivity of Pt also follows directly from Schönberg’s theorem as g �→ ‖b(g)‖2

is a conditionally negative definite function on G.
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