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A major obstacle to predictive understanding of evolution stems from the complexity of biological systems, which prevents detailed 
characterization of key evolutionary properties. Here, we highlight some of the major sources of complexity that arise when relating mo
lecular mechanisms to their evolutionary consequences and ask whether accounting for every mechanistic detail is important to accur
ately predict evolutionary outcomes. To do this, we developed a mechanistic model of a bacterial promoter regulated by 2 proteins, 
allowing us to connect any promoter genotype to 6 phenotypes that capture the dynamics of gene expression following an environmen
tal switch. Accounting for the mechanisms that govern how this system works enabled us to provide an in-depth picture of how regulated 
bacterial promoters might evolve. More importantly, we used the model to explore which factors that contribute to the complexity of this 
system are essential for understanding its evolution, and which can be simplified without information loss. We found that several key 
evolutionary properties—the distribution of phenotypic and fitness effects of mutations, the evolutionary trajectories during selection 
for regulation—can be accurately captured without accounting for all, or even most, parameters of the system. Our findings point to 
the need for a mechanistic approach to studying evolution, as it enables tackling biological complexity and in doing so improves the 
ability to predict evolutionary outcomes.
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Introduction
A major challenge in studying evolution is understanding how 
changes at the molecular level scale up and affect phenotypes, 

organismal fitness, and evolutionary outcomes (Doebeli et al. 2017; 

de Visser et al. 2018)—a challenge that is difficult to meet due to 

the complexity of biological systems. Some of the major factors 

that give rise to complexity in evolution include: (1) Mechanisms 

that determine the effects of mutations and the epistatic interactions 
between them. In other words, how mutations (genotype) alter 

the functioning of a system (phenotype), and how those changes 

to phenotype alter organismal fitness (Charlesworth and 

Charlesworth 2017; Yi and Dean 2019). While genotype-phenotype- 

fitness mapping has been extensively studied (Eyre-Walker and 
Keightley 2007; Pigliucci 2010; Lehner 2013; Kemble et al. 2019), it is 

either limited to the simplest systems or is not comprehensive 

(Szathmáry 1993; Schuster et al. 1994; Haldane et al. 2014; Yi and 

Dean 2019). (2) The intractably large mutational sequence space, 

which is impossible to explore experimentally and even computa

tionally. Hence, a key challenge in predicting evolutionary outcomes 

is discerning how that space is constrained—understanding what 

phenotypes are at all accessible through mutations, and how those 

constraints arise from molecular mechanisms governing the 

function of a system (Jacob 1977). Doing so minimizes the size of 

the mutational space that must be explored to accurately describe 

evolutionary dynamics. (3) The relationship between random se
quences and their associated phenotypes, which is key for explaining 
de novo evolution of biological systems (Hledík et al. 2022). 
Understanding what phenotypes arise from random sequences 
further increases the sequence space that needs to be covered by 
genotype-phenotype-fitness mapping (Schuster et al. 1994; Yona 
et al. 2018; De Boer et al. 2020; Lagator et al. 2022). (4) The fact that 
the distribution of mutational effects can change as the sequence evolves 
(Orr 2003; Sanjuan et al. 2004; Couce et al. 2024), further raising the 
need for an accurate and comprehensive genotype-phenotype- 
fitness map that minimizes unjustified approximations. (5) The com
plex manner in which organisms navigate fitness landscapes, posing 
a difficulty in predicting what mutants, with what phenotypes (and 
with what fitness) get fixed in the population as a consequence of selec
tion (de Visser and Krug 2014; Lässig et al. 2017).

To illustrate these various factors that make the evolutionary 
process complex, consider the study of bacterial gene regulation 
and its evolution. For the simplest components of gene regulation 
in prokaryotes—constitutive promoters that only bind RNA 
polymerase (RNAP)—predictive genotype-phenotype-fitness map
ping at steady-state expression levels is available (Kinney et al. 
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2010; Einav and Phillips 2019; Lagator et al. 2022). In other words, we 
can predict the effects of mutations in constitutive promoters 
and even, to an extent, the epistatic interactions between them 
(Lagator, Paixão, et al. 2017). Furthermore, there is a solid mechanis
tic understanding of the relationship between random sequences 
and their associated phenotypes, which allows not only predictions 
of gene expression levels from random sequences but also of de novo 
promoter evolution (Payne and Wagner 2014; Tuğrul et al. 2015; 
Aguilar-Rodríguez et al. 2018; Lagator et al. 2022). The existing under
standing of GP mapping in constitutive prokaryotic promoters lends 
itself to describing the structure of promoter fitness landscapes 
as well as the phenotypic outcomes of selection in bacteria 
(Otwinowski and Nemenman 2013; Haldane et al. 2014; 
Aguilar-Rodríguez et al. 2017), yeast (De Boer et al. 2020; Vaishnav 
et al. 2022), and multicellular organisms (Duque et al. 2014; Fuqua 
et al. 2020). Put together, we have a solid basis to study how the 
steady-state expression levels arising from constitutive promoters 
in prokaryotes can evolve, as we can predict how any mutation alters 
the phenotype and, to a lesser extent, how those phenotypic changes 
might impact organismal fitness.

However, even gene regulation at a single promoter is notably 
more complex than just steady-state expression levels based on 
RNAP binding alone. Most prokaryotic promoters are regulated 
by at least 1 transcription factor (TF), which can either reduce (re
pressor) or enhance (activator) the binding of RNAP. The fact that 
promoters are regulated, as opposed to constitutively expressed, 
means that they can exist in multiple states corresponding to 
each of the environments they are responsive to. In addition, 
following environmental change that affects the concentration 
of the TF in the cell, regulated promoters go through a transient 
phase before reaching a new steady-state expression level 
(Longo and Hasty 2006; Yosef and Regev 2011; Shih and Fay 
2021). This means that the promoter sequence, as well as the TF 
and RNAP concentrations, affects not only steady-state pheno
types (one expression level per environment) but also the multiple 
phenotypes describing the dynamics of gene expression.

The main aim of this work is to provide a primer on how to study 
biological systems of increasing complexity in order to understand 
their evolution. Building on previous works that adopted a mechan
istic approach to study the evolution of gene regulation (Ackers et al. 
1982; Dean and Thornton 2007; Vilar 2010; Josephides and Moses 
2011; Pai et al. 2015), we argue that knowing the mechanisms gov
erning system’s function can be utilized to ask detailed questions 
about its evolution and to simplify the complexity of the system 
without sacrificing accuracy of evolutionary predictions.

To this end, we developed a novel modeling approach that cap
tures the dynamics of gene expression from a bacterial promoter 
regulated by RNAP and a repressor. Focusing on the dynamics of 
gene expression, as opposed to only the steady-state expression le
vels, allowed us to connect a genotype (promoter sequence) to 6 
phenotypes which might all contribute to overall fitness. While an
swering some specific questions about the evolution of this system, 
our aim was to present a primer on how to utilize interdisciplinary 
approaches to connect the mechanistic, molecular level under
standing of a system to the key quantities that define its evolution 
and how doing so allows accounting for greater complexity. To this 
end, we considered the most complete and complex version of our 
model, which accounted for the largest number of parameters de
scribing how the system works, as the benchmark against which 
we compared simpler model versions to understand how complex
ity could be reduced. Each section of this article explores the utility 
of our mechanistic approach when trying to understand a key evo
lutionary property: (1) the phenotypic effects of mutations; (2) the 

nature of constraints in GP mapping; (3) de novo evolution of se
quences toward new functions; (4) how the distribution of mutational 
effects depends on current fitness; and (5) what phenotypes (and with 
what fitness) get fixed in the population.

Materials and methods
Model
Experimental system and measurements
We used a synthetic system based on the Lambda phage switch, in 
which we decoupled the cis- (promoter) and trans- (transcription 
factor) regulatory elements, as previously described in Lagator, 
Paixão, et al. (2017). We removed cI and substituted cro with 
venus-yfp (Nagai et al. 2002) under control of PR promoter, followed 
by a T1 terminator sequence. The OR3 site was removed in order to 
remove the PRM promoter. Separated by a terminator sequence and 
500 random base pairs (bp), we placed cI under the control of PTET, 
an inducible promoter regulated by TetR (Lutz and Bujard 1997), 
followed by a TL17 terminator sequence. In this way, concentration 
of CI TF in the cell was under external control, achieved by addition 
of the inducer anhydrotetracycline (aTc). The entire cassette was 
inserted into a low-copy number plasmid backbone pZS* carrying 
a kanamycin resistance gene (Lutz and Bujard 1997).

We measured the ON->OFF dynamics of gene expression in the 
wild-type PR system in the following manner. Six replicates were 
grown overnight in M9 media, supplemented with 0.1% casamino 
acids, 0.2% glucose, and 50 μg/ml kanamycin. The absence of the 
inducer aTc indicates that these cells were grown in the ON state 
overnight. Overnight cultures were diluted 100×, grown for 2 h un
der the same conditions, and then diluted again at 100×. At this 
point, each replicate population was diluted into 2 conditions: 
same as the overnight growth (in this case, ON state); different 
state to the overnight, in this case achieved by adding 10 ng/ml 
aTc. Fluorescence of growing replicate populations was measured 
every 10 min in Bio-Tek Synergy H1 platereader. The measured 
fluorescence was always corrected for the autofluorescence of 
the media. Populations were always grown at 37°C. To measure 
OFF->ON dynamics, we used the same protocol, but have grown 
overnight cells in the presence of 10 ng/ml aTc. These wild-type 
PR measurements served as the basis to derive model parameters.

Thermodynamic model
The thermodynamic model is a well-established model for gene 
regulation which provides a highly quantitative mapping from 
promoter sequences to gene expression levels that is compatible 
with biophysical measurements (Shea and Ackers 1985; Bintu, 
Buchler, Garcia, Gerland, Hwa, Kondev, Kuhlman, et al. 2005; 
Bintu, Buchler, Garcia, Gerland, Hwa, Kondev, and Phillips 2005; 
Kinney et al. 2010; Lagator et al. 2022). It uses statistical mechanics 
to describe equilibrium probabilities of different molecules bind
ing to the sequence of interest, and uses these to model the ex
pression levels of the gene of interest.

The thermodynamic model requires us to know: (1) all the 
possible binding configurations; (2) binding energies (and interact
ing energies) associated with each binding configuration; and (3) 
intracellular concentrations of the binding molecules.

Binding configurations. Binding configurations are specific to 
each system—in our system, the following binding states are pos
sible (Fig. 2b): 

1) empty state, i.e. nothing is bound;
2) RNAP bound to, e.g. PR promoter;
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3) one CI dimer bound to either OR1 or OR2;
4) two CI dimers cooperatively bound to both OR1 and OR2.

In each of these binding states, different binding locations are pos
sible. For example, RNAP can bind to its strongest binding site at 
−35 and −10, or at any other part of the sequence. Of course, bind
ing to other parts of the promoter sequence is often very unlikely 
and will contribute very little to total binding. However, when 
there is no one clear strong binding site, binding to these weaker 
binding sites can cumulatively contribute to expression (Lagator 
et al. 2022).

Besides the 4 states accounted for by our model, there are other 
possible configuration, such as RNAP and CI both binding at the 
same time to different binding sites (without steric hindrance). 
Another example would be 3 CI dimers simultaneously bound to 
the DNA. However, these configurations are extremely unlikely 
and contribute negligible amount to total binding on any pro
moter sequences we used in this study. They would become sig
nificant (and important to include) only if strong RNAP and CI 
binding sites would not overlap. We include some of them in the 
evolutionary calculations—for details on that see Methods section 
Evolutionary model.

Binding energies. Each of the 4 configurations has an energy of 
binding that is obtained using EMs of RNAP and CI. The energy 
matrix (EM) contains the information about how every possible 
point mutation in the DNA binding site of a given molecule im
pacts its overall binding energy. As such, each DNA binding mol
ecule has a unique EM associated with it, which can be thought 
of as a unique representation of that molecule’s function, much 
like the amino acids sequence is a 2D representation of that 
molecule’s 3D structure. Therefore, in our system, we require 
2 EMs, 1 for description of RNAP and 1 for CI (Supplementary 
Fig. 1). EMs are 4 × L matrices whose elements give the energy 
contribution of the given nucleotide (rows) at given position 
(columns) to the total binding energy. The total binding energy 
is then the linear sum of individual energies, summing up a con
tribution of each residue at each position in the binding site 
(Fig. 2b). We used the previously published EMs for RNAP 
(Lagator et al. 2022) and the extrapolated EM for Lambda CI 
(Igler et al. 2018).

Expression and probability of expressing state. One of the main 
assumptions of the thermodynamic model is that the rate of ex
pression—and thus steady-state expression level—is proportional 
to the probability that expressing state occurs. In our system, the 
expressing state is the one that contains RNAP bound to the pro
moter. Therefore, we can write the probability of finding the sys
tem in the state with RNAP bound as follows:

PE =
Σi[RNAP]e−ER

i

1 + Σi[RNAP]e−ER
i + Σi[CI2]e−ECI

i + Σi[CI2]2e−ECI
i

−ECI
i+24

+ε
(1) 

The numerator is the Boltzmann weight of the RNAP bound state, 
while the denominator represents the sum of Boltzmann weights 
of all possible configurations. Ei

R and Ei
CI are binding energies of 

RNAP and CI, respectively, to binding site i, which represents every 
possible binding position along the sequence. [RNAP] and [CI2] re
present the available RNAP and CI dimer concentration, respect
ively, and ϵ > 0 represents the cooperativity energy between 2 CI 
dimers whose binding sites are 24 bp apart (distance normally ob
served in the Lambda PR promoter). For the wild-type PR sequence, 
there is only 1 significant RNAP binding site, and 2 CI binding sites 

(OR1 and OR2) to which CI can cooperatively bind. All energies are 
in the units of kBT.

The relation between CI monomer and dimer concentrations. As 
binding to OR1 and OR2 occurs by CI dimers (quantity required in 
the thermodynamic model) and not monomers [quantity ob
tained from the mass action kinetics (MAK) model], we compute 
the relationship between the two. Let us denote the rate of 2 CI 
monomers forming a CI dimer as k1 and the opposite dissociation 
rate as k2. We can assume that the system is in chemical equilib
rium, meaning that the processes of dimerization and dissociation 
occur faster than the changes in CI concentration. The relation
ship between CI monomer and dimer concentrations can there
fore be expressed as: 2[CI]↔ k1

k2
[CI2] (note that k1/k2 marks the 

rates of forward and reverse reactions, respectively).
This means that we can rewrite eq. (1) as:

PE =
Σi[RNAP]e−ER

i

1 + Σi[RNAP]e−ER
i + Σiω1[CI]2e−ECI

i + Σiω1[CI2]4e−ECI
i

−ECI
i+24

+ε
(2) 

where ω1 = k1/k2 contains the rates describing relation between CI 
monomers and dimers.

Reference points of energies. The quantities appearing in 
Boltzmann weights (eq. 2) are the binding energies of RNAP and 
CI and their concentrations. The binding energies are relative to 
the unbound state. However, the EM produces only the change 
in binding energy, relative to the reference point—the sequence 
of the wild-type Lambda PR promoter.
Given that the binding energies in eq. (2) are the changes relative 
to these reference points, the binding energies of the reference 
points must be taken into account:

PE =
Σig1[RNAP]e−ER

i

1 + Σig1[RNAP]e−ER
i + Σiω[CI]2e−ECI

i + Σiω[CI2]4e−ECI
i

−ECI
i+24

+ε
(3) 

where g1 = e−ER
wt represents the Boltzmann weight of RNAP bind

ing to the wild-type PR sequence, and ω = ω1 e−ECI
wt is the combin

ation of dimer/monomer rates (ω1) and Boltzmann weights of CI 
binding to the wild-type sequence of OR1. Note that, as ER and 
ECI represent the energies relative to the reference points (wild- 
type PR sequence), their binding energies to the reference se
quence are by definition zero.

Changes in CI concentration are much slower than the equilibra
tion of the system. The thermodynamic model described above 
gives the prediction of expression where all quantities are as
sumed to be in equilibrium. However, in our system, the concen
tration of repressor varies, potentially violating this assumption. 
Yet, if the time scales on which CI concentration varies is much 
slower than the time scale on which the equilibrium is estab
lished, the assumption of equilibrium would still be satisfied. In 
our case, the time scale of varying CI concentration is hours, 
much longer than the rates at which RNAP transcribes DNA.

MAK model
The second part of the model is the MAK, which follows the con
centration of repressor CI and fluorescence protein YFP. The con
centration of CI is used to model the probability of RNAP being 
bound and, hence, the rate of yfp expression (eq. 3), while the 
YFP concentration is used as a proxy for gene expression. We 
used 2 Ordinary Differential Equations (ODEs), 1 for each concen
tration. Both have 2 terms, one that describes the production of 
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the molecule, and the second with processes that lower the 
concentration.

We model CI concentration as:

d[CI]
dt

= RCIfCI(t) −
[CI]
τCI

(4) 

where RCI represents the production rate of CI, fCI(t) is the delay in 
production rate that takes values between 0 and 1, and τCI de
scribes the effects of dilution and degradation.

When studying the dynamics of gene expression in the system 
switching from an ON to OFF state, the PTET promoter is induced, 
leading to expression and production of CI. However, there exist a 
delay between the introduction of the inducer into the system and 
the CI repressor binding to the promoter. This delay is due to (1) 
diffusion of inducer into the cell and to its binding target, TetR re
pressor; (2) transcription and folding of CI protein; and (3) diffu
sion of CI to its cognate binding site. We do not model the 
details of these 3 contributions in details but lump them into 1 de
lay, described by:

fCI(t) =
tn

tn + τn
1

(5) 

where τ1 is the effective time scale of delay, and n is the effective 
Hill coefficient (or sharpness) of delay. This equation ensures 
that the production rate of CI for t ≪ τ1 is zero, while for t ≫ τ1, pro
duction rate converges toward RCI.

Similarly, the production of CI for the OFF->ON dynamics is de
layed by the inducer of the system being removed from the sys
tem. This occurs due to the inducer (that allows CI production 
by binding to TetR and removing it from the PTET promoter) lingers 
in cells after they are transferred into the ON environment (no CI 
and hence no inducer). This leads to continued, but diminishing, 
production of CI in the environment where no inducer is present, 
which reaches the steady state when the inducer is diluted 
through cell division as the inducer is not actively removed from 
cells. We describe this process by:

fCI(t) =
τβ
2

tβ + τβ
2

(6) 

where τ2 is the effective time scale, and β is the effective Hill coef
ficient (or sharpness). This equation ensures that for t ≪ τ2, the 
production of CI is RCI, from which point it decreases toward 
zero when t ≫ τ2.

Finally, we rely on the above to model the concentration of 
YFP, which is in our study used as a proxy for gene expression 
levels:

d[YFP]
dt

= RYFPPE(t) =
[YFP]
τYFP

(7) 

where RYFP represents the basal production rate of YFP, and PE(t) 
is the probability of RNAP being bound (leading to expression), 
obtained from eq. (3). PE changes as a function of time as the 
concentration of CI (which appears in PE) also changes with 
time. PE takes values between 0 and 1. Here, we assume that 
the probability of RNAP being bound is linearly proportional to 
the rate of expression, as typical for the thermodynamic model 
of gene expression (Bintu, Buchler, Garcia, Gerland, Hwa, 
Kondev, and Phillips 2005). τYFP describes the dilution and deg
radation of the YFP protein.

Obtaining the parameters for the model
Each of the models (TD and MAK) require a different set of para
meters. The TD model includes the following parameters (eq. 3): 
(1) prefactor in the RNAP bound state g1[RNAP] (which we can 
treat as 1 parameter); (2) scaling factors that determine the units 
of EM elements α and ι for RNAP and CI energy matrices, respect
ively; (3) prefactor in CI bound states, ω; (4) cooperativity ϵ be
tween 2 CI dimers bound at OR1 and OR2. The MAK model 
parameters include (eqs. 4 and 7): (1) YFP and CI production rates 
(RYFP and RCI, respectively); (2) dilution and degradation times of 
YFP and CI (τYFP and τCI, respectively); and (3) parameters β, n, τ1, 
and τ2 describing delay in the production of CI. These model para
meters were obtained from different independent datasets, de
scribed below.

Thermodynamic model parameters. The parameters for the 
thermodynamic model are the parameters that describe the 
steady-state expression—the expression in ON and OFF states with
out any temporal dynamics between the states. These parameters 
were obtained from previously published works (Igler et al. 2018; 
Lagator et al. 2022): g1[RNAP] = 3.27; RNAP EM scaling α = 4.85 kBT; 
cooperativity between CI dimers ϵ = 3.22 kBT; ω[CI]2steady state = 0.01; 
and CI EM scale ι = 3.00 kBT. The EMs were also obtained from these 
published works (Supplementary Fig. 1).

MAK model parameters. The MAK model parameters are those 
that describe the temporal change in CI and YFP concentration. 
The steady-state concentration of CI is given as follows:

d[CI]
dt

= RCIfCI(t) −
[CI]
τCI

= 0 (8) 

[CI]steady state = RCIfCI(t)τCI = 0, in ON environment
RCI τCI, in OFF environment

􏼚

(9) 

Alternatively, the steady-state concentration of YFP is expressed 
as follows:

d[YFP]
dt

= RYFPPE(t) −
[YFP]
τYFP

= 0 (10) 

[YFP]steady state = RYFPPEτYFP

=
RYFPPON

E τYFP, in ON environment

RYFP POFF
E τYFP, in OFF environment

􏼨

(11) 

where PON
E and POFF

E represent PE in ON and OFF states, respective
ly. In PE, the appropriate value of [CI]steady state is used.

YFP production rate only determines units of YFP. We next show 
that YFP production rate, RYFP, only determines the units of YFP 
concentration. In other words, YFP production rate only scales 
with YFP concentration. If we rewrite [YFP] = [yfp] · RYFP, and use 
this in eq. (7), we obtain an ODE with rescaled YFP concentration 
(marked by [yfp]) but where the production rate does not appear in 
the ODE:

RYFP
d[yfp]

dt
= RYFPPE(t) − RYFP

[yfp]
τYFP

→
d[yfp]

dt
= PE(t) −

[yfp]
τYFP

(12) 

As YFP production rate is not present in the ODE, it follows that it 
does not determine the dynamics of YFP in our model.

CI production rate is determined from the steady-state OFF 
expression. Similarly as for YFP, CI production rate also deter
mines only the units of CI concentration and not its dynamics. 
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As the maximum effective steady-state concentration of CI is al
ready determined by the steady-state expression in the presence 
of CI, we set RCI to be such that the constraint ω[CI]steady state =  
0.01 is met. In practice, this means we can set ω = 0.01 and 
[CI]steady state = 1, following that RCI = 1/τCI.

Normalization of YFP to the wild-type ON expression. Due to ex
perimental reasons, YFP expression values in experimental data 
have arbitrary units. Therefore, we decided to normalize all YFP 
expression measurements and predictions by wild-type PR ON ex
pression. In other words, the wild-type ON expression is set to 
have value 1. The steady-state concentration of YFP of the wild- 
type PR promoter in the ON environment is therefore written as:

[YFP]ON
WT = RYFPτYFPPWT

E ([CI] = 0) (13) 

=RYFPτYFP
Σig1[RNAP]e−ER

i,WT

1 + Σig1[RNAP]e−ER
i,WT

(14) 

Effectively, we set RYFP = 1, and normalize all YFP results by 
[YFP]ON

WT. One can think of this expression as constraining the 
YFP production rate RYFP such that wild-type expression in ON en
vironment equals 1.

Determining the dynamical MAK parameters. The remaining 
parameters that needed to be determined were τCI and τYFP, which 
capture the dilution and degradation rate of CI and YFP, respect
ively; and the 4 parameters that describe delay in CI production 
(τ1, τ2, n, and β). We used the wild-type temporal expression curves, 
from ON->OFF and OFF->ON to fit these parameters. We obtained 
that τCI = τYFP = 60 min, which corresponds to the dilution of both 
molecules due to cell growth. This agrees with the fact that active 
degradation of both YFP and CI is generally very slow in cells. We 
obtained τ1 = 70 min; τ2 = 70 min; n = 2; and β = 5 which are all 
within the expected range of values.

Model agreement with the data
To validate the performance of the model, we created 9 PR pro
moter mutants, which our model predicted to affect the binding 
of RNAP and CI in different ways: (1) not to significantly affect 
the binding of either; (2) primarily impair RNAP binding; (3) pri
marily impair CI binding; and (4) impair the binding of both, 
RNAP and CI (Supplementary Table 1). Importantly, all the para
meters were obtained from either independent steady-state data
sets (Igler et al. 2018; Lagator et al. 2022), or from the expression 
dynamics of the wild-type PR system only. This means that the 
prediction of these mutants is parameter free as no parameter 
was fitted from this set of data.

We ordered oligonucleotides containing the desired mutants 
from Sigma-Aldrich, and cloned them into the wild-type PR system 
by restriction/digestion. We verified each cloned mutant by 
Sanger sequencing. We measured the dynamics of their expres
sion in the same manner as that of the wild-type PR promoter 
(see section Experimental system and measurements).

To test the goodness of fit, we computed the Pearson correl
ation coefficient between all the time points of the 9 predicted 
and measured temporal dynamics of gene expression. We ob
tained that ρON→OFF = 0.90 and ρOFF→ON = 0.90. Next, we tested 
the predictive power of the MAK model independently, as TD 
models have been evaluated previously on this (Igler et al. 2018; 
Lagator et al. 2022) and similar systems (Vilar 2010; Razo-Mejia 
et al. 2014). To test only the goodness of fit of the MAK model, 

we wanted to remove the potential error in determining the 
steady-state expressions. In other words, if the steady-state va
lues are wrong, this will result in the wrong prediction of the tem
poral dynamics. Therefore, we normalized all the temporal 
dynamics curves of both model and experimental data in such a 
way that they all shared the same starting and ending point. 
This way, we compared if the model and data trajectories that 
now share the same ON and OFF steady-state expression levels, 
also share the same dynamics (Fig. 2; Supplementary Fig. 2). The 
agreement between model and data is very high with Pearson 
correlation coefficient ρON→OFF = 0.98 and ρOFF→ON = 0.96. These 
evaluations quantitatively show that, while TD gives good predic
tion and represents the state-of-the-art modeling, the MAK model 
gives almost perfect prediction of the dynamics with very little de
viations from the experimental data (Fig. 2).

Calculation of phenotypic landscapes
To compute the phenotypic landscapes, we use all double mu
tants of the wild-type sequence. The reason why we have not 
used single mutants is that for the sequence of length L = 67 bp, 
there are only 201 single mutants, most of them having little or 
no effect on the phenotypes (Supplementary Fig. 3). In contrast, 
the total number of double mutants is ≈20,000, which gives high 
enough sample to explore the properties of the phenotypic land
scapes without being too computationally demanding.

Phenotypic landscapes with continuous energies
To obtain the binding energies to a given binding site, we use the 
EM on the binding site sequence. However, to disentangle the 
effects of the discreteness of EMs and the specific promoter archi
tecture (i.e. the relative position of binding sites in the promoter), 
we explored the phenotypic landscapes where binding energies 
are not constraint by the sequence but can take any value in a con
tinuous. This gave us the limits to the phenotypic space that the 
system can explore imposed by biophysical constraints, excluding 
the effects coming from the sequence (discrete energy and archi
tecture of binding sites). Even though there are potentially many 
binding sites for RNAP and CI, we took into account only the bind
ings to the strongest binding sites: RNAP binding to its strongest 
binding site on the promoter and CI binding to OR1 and/or OR2. In 
other words, we assume only these 3 binding sites exist which is 
a valid approximation as binding to other positions is much less 
likely. This gave us a 3D problem where 3 binding energies are in
dependently and continuously varied.

Furthermore, to fairly compare the double mutant phenotypic 
landscapes of continuous energies with energies determined from 
the EMs, we limited the range of continuous binding energies. The 
range of the binding energies to the 3 sites (1 for RNAP and 2 for CI) 
was limited to the range that can be explored by double mutants 
when modeled using the discrete energies from the EMs. For ex
ample, for continuous RNAP binding energy, we find (using the 
EM) the highest and lowest energy of binding to PR for double mu
tants. This range is between −5.32 and 9.70 kBT (where wild-type 
binding energy is the reference point with energy zero). The range 
of binding energies for OR1 and OR2 is (−0.75, 7.43) kBT and (−1.69, 
7.43) kBT, respectively.

Varying overlap between OR1 and −10 region
To study the effects of overlap between RNAP and CI binding site, 
we varied the overlap between OR1 and −10 region of the wild-type 
PR sequence. To do this, we rely on the fact that an EM is a re
presentation of the corresponding molecule’s binding function. 
This meant that we could adjust the RNAP EM in such a way 
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that the −10 region was moved, changing the number of bp that 
overlap between −10 and OR1. Specifically, if the −10 position 
was moved by h bp downstream, we increased the spacer between 
−35 and −10 by h. The spacer penalties were also corrected, allow
ing now for h larger spacer. By moving the −10 position, we have 
effectively changed the size of EM to 4 × (L + h). To keep the binding 
to wild-type sequence unaffected by this change, we adjusted the 
wild-type entries within the EM. As per our definition, the EM 
elements representing wild-type sequence have a value zero. 
This means that in each EM column, there is one element with 
zero energy contribution, representing wild-type nucleotide 
(Supplementary Fig. 1). The 3 remaining elements have nonzero 
values and represent the energetic effects of mutating from the 
wild-type to another nucleotide in that position. Therefore, each 
column in the new EM was adjusted, such that the element 
representing WT sequence was assigned zero value, while the re
maining 3 elements in the column were given the corresponding 
3 nonzero values. In other words, the wild-type nucleotide in 
the column was adjusted due to the movement of −10 region by 
h bp. This ensured that expression of the wild-type sequence 
was always predicted to be the same, for all tested promoter 
architectures.

Shuffling the elements of the EMs
We randomly shuffled the elements of an EM without repetitions. 
This maintained the original distribution of elements in the EM 
but destroyed any internal structure of the EM. To have a common 
reference point between different EMs, we fixed the elements in 
the EM that represent the wild-type sequence. This way, the ex
pression of the wild-type sequence was not affected by the shuffle.

Computing the surface area of phenotypic 
landscapes
A set of points in space does not have a volume (or surface). 
Therefore, to compute the surface area of a phenotypic landscape, 
we assumed that each mutant is represented with a square of 
edge length a, which is centered around the point of the mutant 
in phenotypic space. Assuming a square instead of a circle is com
putationally easier to implement, as surface area of a set of non
disjoint circles is a nontrivial task. To compute the surface area of 
a set of mutants in the phenotypic space, we first represented the 
phenotypic space with a grid. The size of each tile in the grid was 
much smaller than the size of mutant’s square a. Next, for each 
mutant, we marked which tiles of the grid are covered by this mu
tant’s square. Doing this for all mutants allowed us to calculate 
the surface area of mutants in the phenotypic space, which was 
proportional to the total number of marked tiles.

We measured all 6 phenotypes first for the wild-type promoter 
(with the exception of OFF expression which was in units of wild- 
type ON expression), meaning that the scale of each phenotypic 
value was 1. Therefore, our square size for each mutant was set 
to be a = 0.01, representing a small change in phenotypes which 
could potentially be explored by intrinsic noise. However, the sur
face areas of various phenotypic landscapes do not qualitatively 
change with other values of a (Supplementary Fig. 8).

Evolutionary model
To model how random sequences evolve regulated promoter 
function, we used the strong-selection-weak-mutation (SSWM) 
model with single point mutations being introduced into the sys
tem (Gillespie 1983; Tuğrul et al. 2015). The model assumes that 
point mutations are rare such that at any given time only a single 
mutation is competing to be fixed in the population. The next 

mutation emerges only when that mutation is fixed or eliminated 
from the population. As the average time scale is determined by 
the arrival of a new mutation, we use the inverse mutation rate 
as the unit of time for estimating how quickly promoters evolve.

What configurations lead to expression/repression
For the wild-type system, there already exist strong RNAP binding 
sites with 2 CI binding sites overlapping it. However, when 
evolving a regulated promoter de novo, it is not entirely clear 
which promoter architectures (relative location of RNAP and CI 
binding sites) are productive. In the absence of more detailed 
experimental knowledge of how promoter architecture impacts 
promoter regulation, we assumed that the binding of CI down
stream of the RNAP binding sites or if their binding sites over
lapped in sequences would lead to repression. We considered 
binding of CI upstream of the RNAP binding sites not to lead to 
repression by itself (although, note, that it could contribute to re
pression by stabilizing binding to another CI binding site through 
cooperativity).

Fitness function
To describe the fitness function around its global maximum/ 
peak, we used the Taylor expansion around it and wrote the 
quadratic term. However, as we did not want to consider situa
tions when fitness was negative, as we started from random se
quences that did not have promoter function and assumed that 
no improvement in their function would have a negative impact 
on the host. This assumption is not necessarily accurate, as, for 
example, constitutive expression without repression could in
deed negatively affect organismal fitness. These more complex 
scenarios were beyond the scope of this work. Hence, we de
scribed fitness as

F ≈ 1 −
s
d

􏽘d

i=1

pi

p∗i
− popt

i

􏼠 􏼡2

(15) 

where s represents the selection coefficient, the sum goes over 
different phenotypes i, and pi* is the normalizing factor of 
phenotype pi that determines the units. pi* = pi

WT for all pheno
types, except for OFF expression which is measured in units of 

ON wild-type expression, i.e. pWT
ON , as by construction. pi

opt is the 

optimal value of pi with highest fitness and equals pi
opt = 1 for 

all phenotypes except for OFF expression, which has value of 
pi

opt = 0.0012. In other words, we expressed phenotypes in their 
wild-type units (with the exception of OFF expression), and 
modeled expression toward wild-type PR values of each 
phenotype.

The sum inside the fitness function can be written as:

􏽘d

i=1

pi

p∗i
− popt

i

􏼠 􏼡

= (ON − 1)2 + (OFF − 0.0012)2
􏽺������������������􏽽􏽼������������������􏽻

2D

+
slopeON→OFF

slopeWT
ON→OFF

− 1

􏼠 􏼡2

+
slopeOFF→ON

slopeWT
OFF→ON

− 1

􏼠 􏼡2

+
lagON→OFF

lagWT
ON→OFF

− 1

􏼠 􏼡2

+
lagOFF→ON

lagWT
OFF→ON

− 1

􏼠 􏼡2

(16) 

where ON and OFF are already, by construction, in the units of 
wild-type ON expression. If evolving only steady-state expres
sion, only the first 2 parts of the sum are taken (marked by 
brackets with 2D). Alternatively, evolving all 6 phenotypes re
quires all 6 contributions. This makes sure that the optimal 
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value of fitness is F = 1, while F < 1 for any other nonoptimal 
phenotypes.

However, the fitness function in eq. (15) is a quadratic form, ap
proximating the peak only around the neighborhood of the peak. 
To ensure that the fitness function is limited between 0 and 1 
throughout the entire landscape, we generalized the fitness func
tion to

F = exp −s
1
d

􏽘d

i=1

pi

p∗i
− popt

i

􏼠 􏼡2
⎡

⎣

⎤

⎦ (17) 

which can be approximated by a quadratic form for phenotypes 
close to the optimal value.

Fixation probability
The fixation probability is given by the Kimura fixation probability

pfix =
1 − e−2ΔF

1 − e−2ΔFN (18) 

where N is the population size and ΔF = Fnew
Fold 

– 1, or the relative 

change in fitness between the old and the new mutation. As typ
ical bacterial population sizes are relatively large, the denomin
ator will mostly have a small contribution.

Thermodynamic model applied to random sequences. To com
pute the probability of expressing state, we must take into ac
count those binding configurations that were highly unlikely 
when we were exploring only the mutational neighborhood of 
the wild-type PR sequence. This means that we need to extend 
the set of the binding configurations that we model to include: 
(1) unbound state; (2) only RNAP bound; (3) only CI bound; (4) CI 
bound upstream of RNAP; and (5) CI bound downstream of 
RNAP. As mentioned above, the productive states that lead to ex
pression are (2) and (4). We can write the probability of states (2) or 
(4) occurring as:

pE =
w2 + w4

1 + w2 + w3 + w4 + w5
(19) 

w1 = 1 (20) 

w2 ∝
􏽘M−LR+1

i=1

[RNAP]e−ECI
i (21) 

w3 ∝
􏽘M−LCI+1

i=1

[CI]2e−ECI
i (22) 

w4 ∝
􏽘M−LCI−LR+1

i=1

[CI]2e−ECI
i

􏽘M−LR+1

i=1

[RNAP]e−ER
i (23) 

w5 ∝
􏽘M−LR−LCI+1

i=1

[RNAP]e−ER
i

􏽘M−LCI+1

i=1

[CI]2e−ECI
i (24) 

where w1−5 represent Boltzmann weights for states (1)–(5); M, LR, 
and LCI are the total sequence length, the RNAP binding site 
length, and the CI binding site length, respectively. All other mod
el formulations were the same as described above.

Computation and visualization of phenotypic and fitness 
landscape
If we rewrite the Boltzmann weights as w3 = [CI]2w3, 
w4 = [CI]2w4, and w5 = [CI]2w5, we can write the probability of 
expression as:

pE =
w2 + [CI]2w̅4

1 + w2 + [CI]2(w̅3 + w̅4 + w̅5)
(25) 

which can be represented as

pE =
K1 + [CI]2K2

1 + K1 + [CI]2(K2 + K3)
(26) 

where K1 = w1 represents productive configurations with only 
RNAP bind; K2 = w4 configuration with CI bound upstream of 
RNAP, both leading to expression. K3 = w3 + w5 represents unpro
ductive configurations that do not leading to expression—see eq. 
(19).

For a fixed value of K1, K2, K3, all phenotypes are exactly deter
mined via TD and MAK models. Therefore, using these 3 para
meters, we can characterize the whole fitness landscape (shown 
in Fig. 6g).

Geometric model
To test how the description of the evolutionary dynamics of evolv
ing promoters depended on accounting for the underlying biophys
ical mechanisms of promoter function, we used 2 alternative 
models. In the first, the phenotypic values of mutations were drawn 
from a geometric distribution (“Geometric model on phenotype”). 
Here, mutations had an effect on phenotypes, as opposed to mod
eling their effect on Boltzmann weights first. The second consid
ered that mutations alter binding energies (and through them 
Boltzmann weights) first, and through those changes affected the 
phenotypes (“Geometric model on binding energies”).

Geometric model on phenotypes
In the geometric model where the effects of each mutation were 
reflected in a random change in the phenotypes, we varied all phe
notypes in the following way: each mutation had a fixed effect size 
in the phenotypic space, meaning that the mutant had a fixed 
Euclidean distance in the phenotypic space from the initial point. 
This meant that vector of changes in phenotypes was described by 
dp
�→

= Σidpi, where dpi is a change in phenotype i and | dp
�→
| is fixed. 

Therefore, the new value of phenotype i is pinitial + dpi, where pinitial 

is the initial value of this phenotype. To obtain dp
�→

, we randomly 
drew numbers in the range of (−1, 1) for each of the phenotypes, 
and at the end normalizing the vector to the desired amplitude. 
We used dp

�→
= 0.3.

Geometric model on Boltzmann weights
As we can represent our phenotypic landscape with 3 effective 
Boltzmann weights (see section Evolutionary model), we also mod
eled each mutation as an effective change in the sizes of 
Boltzmann weights. Similarly as for phenotypes, the effects of mu
tations were represented by a vector dp

�→
= Σidri of fixed size in the 

Boltzmann weight space. However, as Boltzmann weights take va
lues that vary many orders of magnitude, we decided that each 
mutation will have a relative effect on each Boltzmann weight: 
Kmutant

i = Ki(1 + dri), where Ki represents Boltzmann weight i. We 
constrain dp

�→
to be fixed at 1. Relative change in Boltzmann weights 

can be represented by an additive change in effective binding 
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energies of the 3 productive configurations of the system. We can 
write each of the 3 Boltzmann weights as Ki = e−Ei , i ∈ {1,2,3}, 
with Ei representing the effective binding energy of configuration 
i. Therefore, as each mutation leads to a relative change 
in Boltzmann weights Ki, we can write Kmutant

i = Ki(1 + dri) and 
−Emutant

i = log Kmutant
i = log (Ki(1 + dri)) = log Ki + log dri = −Ei + dri, 

if dri ≪ 1.

Computing distribution of fitness effects for the 
geometric model
To compute the distribution of fitness effects (DFEs) of the 2 geo
metric models, we used the original model (Fig. 2) and randomly 
drew sequences (to avoid any bias) until we found a genotype 
with the desired fitness value. This was done to determine the ori
ginal sequences into which we introduced every possible single 
and double mutation to obtain the DFE, as we did with the original 
model (Fig. 3). Having obtained the Boltzmann weights and pheno
types of this genotype from the original model, we computed all 
possible single mutants around it using either the Geometric mod
el on phenotypes or on effective Boltzmann weights. For each mu
tant, we randomly drew a vector of fixed size dr1

�→
, which 

represents the change in either phenotypes or Boltzmann weights. 
To compare the DFEs of these 2 models with the original model, 
we also needed to compute double mutant effects. We did this 
by applying the procedure described above twice; first to obtain 
single mutants, and the second time to get double mutants. In 
other words, first a random vector dr1

�→
was applied on the original 

phenotypes/Boltzmann weights to model the effects of single mu
tations, and then, a second random vector dr2

�→
was applied on the 

new phenotypes/Boltzmann weights of the single mutation. This 
provided a double mutant effect. To compute the means and 
standard deviations of these DFEs, we used 30 sequences with dif
ferent genotypes for each given fitness value (Fig. 6d).

Obtaining the architecture of Escherichia coli promoters
Using the data from RegulonDB, we obtained sequences of all 
known Escherichia coli promoters regulated by σ70 sigma factor 
(∼2,000) and the consensus binding sequences of all known 
E. coli TFs obtained based on ∼3,700 TF binding sites from E. coli 
(Tierrafría et al. 2022). To find the cognate binding sites for each 
TF, we matched the consensus sequences of each TF to each of 
the ∼2,000 promoters, considering a TF to be involved in the regu
lation of a promoter if its consensus binding sequence can be 
found within that promoter sequence. To find the −35 and −10 re
gion of each promoter, we used the σ70–RNAP EM (Lagator et al. 
2022) and considered the position with highest likelihood (lowest 
binding energy) for σ70–RNAP to be the primary binding site. We fo
cused only on the σ70 promoters as it is the only sigma factor with a 
known EM. Furthermore, to be consistent with our experimental 
system, we used only the data where the TF was known to have 
the repressor function, leading to the mapping of 700 TF binding 
site positions relative to the RNAP binding site. These were then 
classified in one of the 3 architectures (Fig. 7a).

Results
Effect of mutations on multidimensional 
phenotypes
Experimental system
In order to develop a mechanistic model that can predict the 
effects of mutations on dynamical gene expression phenotypes, 
we focused on the canonical model system in bacterial 

genetics—the Lambda bacteriophage promoter PR (Ptashne et al. 
1980). Relatively simple regulated promoters, such as Lambda 
PR, are the fundamental building blocks of gene regulatory net
works and, hence, provide a relevant starting point for under
standing the forces that shape gene regulatory evolution. PR is a 
repressible promoter: in the absence of the TF CI, RNAP binds to 
the −10 and −35 sites with high affinity and leads to strong expres
sion; when CI is present in the system, it cooperatively binds to its 
2 binding sites, OR1 and OR2, competitively preventing RNAP from 
binding, and in doing so repressing the promoter (Fig. 1b). In the 
experimental synthetic system we used, we placed the cI gene un
der an inducible PTET promoter on the same small copy number 
plasmid—SC101* origin with 2–3 copies (Lutz and Bujard 1997)— 
as the PR promoter, enabling external control of CI concentrations. 
The PR promoter, which controlled the expression of a yellow 
fluorescence marker (yfp) in our system, was also modified to ex
clude the OR3 site, and, with it, the PRM promoter that is typically 
present on the reverse complement. This choice simplified the 
regulation of the system while also ensuring expression does not 
occur on the opposite strand. The plasmid was placed in the 
MG1655 K12 strain of E. coli, modified to express the tetracycline 
repressor (TetR).

In our experiments, this system could exist in 2 distinct states 
(Fig. 1). In the “ON” state, CI is not present, and hence, only RNAP 
binding determines YFP expression levels. In the “OFF” state, CI is 
present at a high concentration, fully repressing the wild-type PR 

promoter. In order to study the dynamics of gene expression in 
this system, we considered switching in both directions: from 
“ON->OFF” state and from “OFF->ON” state. In other words, we 
would maintain the system under one condition (either “ON” or 
“OFF”) for a sufficiently long time to ensure that steady-state ex
pression levels are reached. Then, we induce the other state by ei
ther stimulating (“ON->OFF”) or stopping (“OFF->ON”) cI 
expression. Note that we consider dynamics of gene expression 
at the population rather than single cell level, meaning that dy
namics in our work are the average response over all the indivi
duals in the population. We summarized the steady-state and 
the dynamics of gene expression through 6 distinct phenotypes 
(Fig. 1b): (1) steady-state “ON” expression level; (2) steady-state 
“OFF” expression level; (3) the duration of the lag when the system 
is switching from “ON->OFF”, defined as the time from induction 
of the system to the point when the expression level is 50% of the 
maximum range between “ON” to “OFF”; (4) lag when the system is 
switching from “OFF->ON”; (5) the slope at the point lag is mea
sured when the system is switching from “ON->OFF”; and (6) the 
slope when the system is switching “OFF->ON”. We also some
times considered the amplitude (the difference between “ON” 
and “OFF” expression levels), but we did not treat it as a distinct 
phenotype. To avoid the obvious effect of amplitude on the slope 
(twice the amplitude would mean twice the slope), we rescaled the 
slope with the amplitude. While we define 6 phenotypes, an in
crease compared with the more common approach of observing 
only steady-state expression levels, it is still a simplified way of de
scribing dynamics of gene expression.

Effect of mutations on multidimensional 
phenotypes—predictive model
To describe the steady-state and temporal dynamics of gene expres
sion, we combined 2 modeling approaches—the statistical thermo
dynamic model of steady-state expression and the MAK (Fig. 2).

The thermodynamic (TD) model describes the mapping be
tween the genotype and the steady-state expression levels (Shea 
and Ackers 1985; Bintu, Buchler, Garcia, Gerland, Hwa, Kondev, 
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and Phillips 2005). For a given promoter and the molecules that 
bind and regulate it, the TD model calculates the equilibrium 
probability of finding the system in all possible binding states 
and then assumes that the steady-state expression levels are 
proportional to the probability of finding the system in a product
ive state. Specifically, the model system used in this study (Fig. 2) 
can be in 4 distinct states (Fig. 2b, part II): (1) no molecules bound 
to the promoter; (2) RNAP bound; (3) repressor bound; and (4) 2 re
pressors bound cooperatively to both binding sites. From 
these 4 states, only (2) is productive and leads to transcription. 
To calculate the energy of binding for each molecule that binds 
the PR promoter, the TD model uses the EMs of RNAP and CI 
(Supplementary Fig. 1), as well as the strength of cooperative 
binding between 2 repressors (relevant only in state 4). The 
EM contains the information about how every possible point 
mutation in the DNA binding site of a given molecule impacts 
its overall binding energy (Kinney et al. 2010; Lagator et al. 
2022). We obtained the EMs for RNAP and CI (Supplementary 
Fig. 1), as well as all other parameters required to predict 
steady-state expression levels with the TD model, from pub
lished works (Sarai and Takeda 1989; Igler et al. 2018; Lagator 
et al. 2022).

The MAK uses standard ODEs to describe the temporal dynamics 
of molecular concentrations in a system. In our system, MAK ac
counts for the changes in concentrations of the repressor CI and 
the measurable system output, YFP. While we assume a constant 
and high concentration of RNAP, the concentrations of CI and YFP 

change due to their variable production and dilution rates. MAK 
also models the delay in response of the regulatory elements to 
an external condition (in our system, the addition or removal of 
the inducer). MAK assumes the probability of binding from the 
TD model to be proportional to the rate of production of YFP 
(Fig. 2b, part III). To fit the MAK parameters, and hence, to model 
the dynamics of the system, we minimized the mean square error 
of the predicted vs measured temporal dynamics of the wild-type, 
unmutated PR system in both “ON->OFF” and “OFF->ON”, dis
cussed below.

To validate the performance of this model, we created 9 PR pro
moter mutants (Supplementary Table 1), predicted to affect the 
binding of RNAP and CI in qualitatively different ways: (1) not to 
significantly affect the binding of either; (2) primarily impair 
RNAP binding; (3) primarily impair CI binding; and d) impair the 
binding of both, RNAP and CI. These mutants were predicted 
based on the TD model and carried between 2 and 7 mutations 
each compared to the wild-type PR promoter. We measured the 
temporal dynamics of these mutants when switching from 
“ON->OFF” and “OFF->ON”, and found that our combined model 
predicted their gene expression dynamics well (Fig. 2c and d; 
Supplementary Fig. 2). The bulk of the error in predictability of 
our model came from the TD part, likely due to the low accuracy 
of the CI EM [as we previously observed (Igler et al. 2018)]. We fur
ther confirmed that the error mostly originated from the TD part 
by fixing steady-state expression levels to the measured values 
(which were previously predicted using the model trained on 

Fig. 1. Regulated promoter as a model system to study evolution of systems with complex phenotypes. a) A regulated promoter can be characterized 
through its genotype (blue) and a specific promoter state (ON, OFF, or the transient, dynamical, state between them, red). The promoter state is 
determined by the environment (orange). Hence, a change in the environment gives rise to a complex set of phenotypes that capture the steady-state and 
the dynamics of gene expression (teal) and which, in turn, alter the fitness of the organism in an environment-dependent manner. b) We used 
components of the Lambda bacteriophage PR promoter as the model regulated promoter. Specifically, the promoter, controlling the expression of a yellow 
fluorescent marker protein venus-yfp, contains a strong RNAP binding site (marked as −10 and −35) and 2 repressor (Lambda CI) binding sites (OR1 and 
OR2). On the opposite strand of the same small copy number plasmid, we placed the Lambda cI gene under an inducible control of the PTET promoter. The 
environment exists in 2 possible states, defined by the presence (OFF expression) or the absence (ON expression) of the inducer of the repressor CI. The 
switch between these 2 states leads to a dynamical change in the gene expression phenotype, either from ON->OFF (shown here) or OFF->ON, from which 
we measure several phenotypes—amplitude, slope, and lag. The system can be described through 6 phenotypes (2 dynamic phenotypes for ON->OFF, 2 
dynamic for OFF->ON dynamics, and 2 steady-state phenotypes). The changes in these phenotypes depend on the promoter sequence. Changes to 
phenotypes alter fitness, with optimal fitness in this study defined as the value of the 6 phenotypes corresponding to that of the wild-type Lambda PR 

promoter. Note that a different definition of the optimal fitness would not qualitatively alter any of the presented findings.
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the wild-type alone) and found the model fit dramatically im
proved temporal dynamics for all mutants (Fig. 2c and d).

While inferring a more precise model from a larger dataset, one 
that better accounts for other mechanisms involved in regulating 
gene expression levels, or a nondeterministic model that captures 

the stochasticity in gene expression, would better reflect on the 
reality of bacterial gene regulation, that was not the main aim 
of our study. Rather, we looked for a model that captures gene 
expression dynamics sufficiently well to serve as a source of 
biophysically realistic effects of mutations, allowing us to tackle 

Fig. 2. Modeling multidimensional gene expression phenotypes. a) Schematic of the mechanisms involved in gene regulation that were explicitly 
modeled, shown for 2 environments—without (ON) and with (OFF) Lambda CI. b) Details of the model that link genotype to phenotype. RNAP EM is used to 
determine the binding energy of RNAP to a given sequence (ER), which determines the ON expression levels. The ability of CI to repress, when present in 
the environment, depends on its binding energy to OR1 (ECI,1) and OR2 (ECI,1) (determined by its EM), as well as the cooperativity between 2 CI dimers (ϵ). Red 
rectangles in the matrices indicate the lowest energy residue for each position in the binding site of RNAP or CI. The thermodynamic part of the model (I 
and II) predicts the probability of the promoter being in one of 4 possible states: empty (unbound), RNAP bound, 1 CI molecule bound, or both CI molecules 
bound cooperatively. It does so based on the binding energies of RNAP and CI to a given promoter sequence, and the concentrations of those molecules. 
Gene expression levels are then considered proportional to the probability of finding the system in the productive state (PON), when RNAP is bound. We 
assume the concentration of RNAP is constant in a cell. We use MAK to determine the concentration of the repressor based on its production rate (RCI) and 
dilution rate stemming from cell division (τ) (III). To model the expression level of the fluorescence marker, and hence the multidimensional phenotypes 
of the given promoter mutant, MAK part of the model relies on the calculated probability of RNAP being bound (PON) and the dilution rate (τ). All model 
parameters were inferred only from the multidimensional gene expression phenotypes of the wild-type PR promoter, not any of the mutant promoters. c) 
Model predictions of multidimensional gene expression phenotypes for the wild-type PR promoter and one mutant (marked with arrows in d). Model 
predictions made by predicting every aspect of the models (I–III) were less accurate than the predictions made by fitting the thermodynamic component 
of the models (I and II) and predicting the MAK component (III). d) Prediction error for all 9 tested mutants, based on predicting all components of the 
model (blue) or those based on fitted thermodynamic components (red). Most of the error of the models come from the poor predictions of the 
thermodynamic component of the model, likely stemming from the limited precision of the CI EM.
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biological complexity in the form of multidimensional pheno
types. While still approximate, we therefore consider our most 

complex version of the model (i.e. containing most detail about 

the underlying mechanisms) to “accurately reflect promoter evo

lution” and benchmark less complex models against it.

Constraints on GP mapping
Starting with the wild-type Lambda PR promoter, we used our 
model to exhaustively explore the effect of all possible single 
and double mutants on all 6 phenotypes (Fig. 3; Supplementary 
Fig. 3). We were specifically interested in the correlations between 
phenotypes, asking whether mutations alter the phenotypes inde
pendently of each other or not. We refer to these correlations as 
constraints, as they limit the possible states that the system can 
adopt and define what phenotypes can be achieved through mu
tation, or, in other words, the distribution of phenotypic effects 
of mutations. While the constraints can be understood as statis
tical dependencies in the full 6D space of measured phenotypes, 
we can conveniently visualize them in 2D projection planes that 
represent all possible pairs of phenotypes.

We measure the constraints acting on GP mapping by 2 quan
tities. First, we determine the envelope—the total range of pheno
types that could possibly emerge in the system (Fig. 3a). We do 
this by allowing the binding energies between RNAP/CI and the 
promoter to assume any continuous energy value from the min
imum to the maximum energy value observed in the EM, rather 
than the discrete energy penalties accessible via point mutations. 
The envelope, therefore, gave us the limits to the phenotypic space 
that the system can explore arising from the biophysical con
straints inherent to protein-DNA binding, excluding the effects 
arising from the specific TFs (their EMs) or the specific architecture 
of the promoter (the position of the TF binding sites). Second, we 
quantified how evenly the envelope surface is explored through 
mutations (Fig. 3b). To get a more complete picture of the con
straints shaping GP mapping, we focused on double mutants 
(Fig. 3), as they cover the 2D phenotypic space more fully than 
the single mutants (Supplementary Fig. 3). Together, these 2 mea
sures quantify the phenotypic space that could possibly be ex
plored and how that space is actually explored through mutations.

The GP map of the PR promoter is heavily constrained, as double 
mutants explore only a portion of the possible landscape (Fig. 3c 
and d). For example, with respect to the 2D combination of “ON” 
and “OFF” phenotypes, only ∼40% of the possible space can be ex
plored by any number of mutations. Strikingly, double mutants 
can explore less than 10% of that space (Fig. 3c), indicating heavy 
constraints acting on steady-state expression levels. In fact, it is 
not possible to explore more than 55 or 40% of the total phenotypic 
space through any number of mutations or, specifically 2 muta
tions, respectively (Fig. 3d), meaning that a large portion of the pos
sible phenotypic space (the envelope) can never be accessed 
through a smaller number of point mutations in the promoter.

The observed heavy constraints do not imply that the system is 
robust and that mutations cannot drastically alter one or more 
phenotypes. In fact, many double mutants have a large effect on 
the phenotypes. This finding goes against a common assumption 
of quantitative genetics—that small genetic changes (i.e. individ
ual mutations) lead to small phenotypic changes (Milocco and 
Salazar Ciudad 2020). While the observed constraints do not imply 
that the system is robust, they do set a limit to the possible pheno
typic states that can be achieved. A more constrained system is 
less likely to lead to evolutionary innovations (Ciliberti et al. 
2007), as mutations result in a smaller set of possible phenotypic 
states, limiting the extent to which the system can explore the 
full, unconstrained phenotypic landscape. These constraints 
give rise to canalization in bacterial promoters (Wagner et al. 
1997), whereby the same value of 1 phenotype can be achieved 
by many mutations. Because a more constrained system can as
sume a reduced number of possible phenotypic states, evolu
tion is also more likely to be repeatable and to undergo the 

Fig. 3. Constraints on GP mapping. a) Illustration of the 2 ways in which 
we define constraints between 2 phenotypes: (1) the maximum area that 
is achievable through mutations (the envelope), shown as the thick black 
line; and (2) the phenotypic surface of the envelope covered by mutations, 
capturing the correlations between mutations and their density in the 
phenotypic space. b) The phenotypic surface is calculated by allowing 
each mutation to occupy a pre-defined rectangle around the value of each 
of its associated 6 phenotypes, and then calculating the surface area 
covered by those rectangles (for more information, see Computing the 
surface area of phenotypic landscapes). c) Left: phenotypic landscape of 
double mutants visualized in 2D, in this case between steady-state ON 
and OFF expression levels. The black line is the envelope, showing the total 
range of phenotypes that can be achieved through mutations. The white 
point shows the wild-type PR promoter phenotypic value; colored circles 
are the phenotypic effects of mutations. The color of points indicates how 
the mutation alters steady-state ON and OFF expression levels. Right: 2 
ways of quantifying constraints, both calculated as normalized 
phenotypic volume: (1) the ratio of the envelope (defined as illustrated in 
a) and the bounding box that is defined by the extremal values of the 
envelope (gray rectangle in a), shown in light teal; and (2) the ratio of area 
of all double mutant volumes (defined as illustrated in b) and the 
bounding box that is defined by the extremal values of the envelope (gray 
box in a), shown in dark teal. d) Left: visualization; and Right: 
quantification of the constraints, for all possible pairs of phenotypes. 
Colors of points are the same as in c). Note that quantifying constraints 1 
phenotype at the time (i.e. in 1D) would yield higher quantities for 
normalized phenotypic volume, while quantifying in 3 or more 
dimensions would produce lower estimates. We examined 2 phenotypes 
at the time for ease of visualization.
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same pathways during the adaptive process (de Visser and Krug 
2014).

Constraints on GP mapping—mechanistic origins
The model also allowed us to understand the mechanistic origins 
of the constraints observed in Fig. 3. Understanding not only what 
mutations do but also why is critical for developing a more predict
ive understanding of evolution, as it enables generalizing beyond 
a specific system being studied.

Several key properties of the system that might impact the con
straints on GP mapping include: (1) the concentration of the TF; (2) 
the architecture of the promoter, meaning the relative position of 
TF and RNAP binding sites; and (3) the factors that impact the 
binding energies of RNAP and CI.

TF concentrations
The concentration of the CI repressor in the PR system is affected by 
its production, and dilution rates. The production rate is determined 
by the inducer, while the dilution rate results from the combined ef
fect of the cell division, transmembrane dilution, and protein deg
radation. In our model, the output of the system, YFP, has the 
same dilution rate as CI. Our model reveals that CI production 
and dilution rates impact most phenotypes individually and, in 
most cases, in a monotonic fashion (Fig. 4a; Supplementary Fig. 4). 
When considering the constrains that emerge between pairs of phe
notypes, CI production and dilution rates alter the limits of pheno
typic values that can be achieved (i.e. the envelope) as well as the 
manner in which mutations explore the envelope (Fig. 4a and b). 

In other words, the concentrations of molecules in the system affect 
the maximum phenotypic range that can be achieved and how 
evenly that space is explored.

Promoter architecture
Each bacterial promoter has a specific architecture, determined by 
the relative position of RNAP and TF binding sites in it. The wild-type 
PR promoter contains 1 strong RNAP binding site consisting of the 
−10 and −35 elements, and 2 binding sites for the CI repressor, 
OR1 and OR2. In the wild-type promoter, OR1 has a 10 bp overlap 
with the extended −10 RNAP element [note that our recent work 
identified more than the core 6 bp region of the −10 element to dir
ectly affect RNAP binding (Lagator et al. 2022)]. This means that mu
tating those 10 positions in the promoter affects the binding of both 
RNAP and CI simultaneously. In order to more clearly understand 
the role that promoter architecture plays in constraining the 6 
gene expression phenotypes, we considered a changing number of 
nucleotides that overlap between OR1 and the extended −10 foot 
of RNAP. By construction, CI binds OR1 in each architecture variant 
with equal affinity—an assumption that ignores the potential role of 
other, poorly understood mechanisms involved in TF-DNA binding 
(see Methods section Varying overlap between OR1 and −10 region).

The critical property that changes as the overlap between the 
binding sites of 2 molecules changed was the number of positions 
that, when mutated, affect the binding of both instead of just 1 mol
ecule. We expected that greater overlap would result in greater con
straints, as the effects of mutations on RNAP and CI binding would 
be correlated. However, we instead found that smaller overlap led 

Fig. 4. Mechanistic origins of GP constraints. a) The role of 2 key parameters in the MAK—CI production rate (RCI) and the dilution rate of CI and YFP (τ)—on 
the phenotypic constraints. The table shows the effect of the 2 parameters on phenotypic constraints (here measured as the total size of the envelope), 
with “−” and “+” indicating a negative and a positive effect, respectively, “− +” a nonmonotonic relationship, and the circle indicating that phenotype is not 
affected by the parameter. The plots show visually how the envelope changes with the changes in CI production rate. b) Impact of CI production rate (RCI) 
and the dilution rate of CI and YFP (τ) on the normalized phenotypic volume, i.e. the extent to which mutations evenly explore the space within the 
envelope. c) The role of promoter architecture on the constraints (here defined as the normalized phenotypic volume). Promoter architecture is defined as 
the number of bp that overlap between the RNAP and CI binding sites. d) Role of RNAP and CI EM structures on the set of pairwise normalized phenotypic 
volumes, explored by shuffling the EMs. To do this, the distribution of EM elements was maintained, and only their position shuffled. Bars are mean 
phenotypic volumes of 1,000 randomized EMs (either RNAP, CI, or both EMs were randomized), normalized to the phenotypic volume of the wild-type 
matrices (dashed line).
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to increased constraints (Fig. 4c), meaning that promoter architec
tures with more independent binding of RNAP and CI have a stron
ger correlation between phenotypes and hence could explore a 
smaller portion of the total phenotypic landscape surface area. 
This somewhat counter-intuitive finding stems from the fact that, 
when there is no overlap, a point mutation can affect either the 
binding of CI or of RNAP, while with overlap it can affect the binding 
of one, the other, or, critically, both simultaneously. In fact, binding 
site overlap can magnify the effects of point mutations in a system 
like ours. For example, one mutation can simultaneously increase 
RNAP binding and decrease CI binding leading to a greater increase 
in expression levels than can be achieved if the binding sites do not 
overlap. Such nontrivial interactions can only be elucidated through 
a mechanistic model.

Binding energies
The fundamental summary of a key function of bacterial TFs 
(namely, their binding affinity to DNA) is contained within their 
EMs, which describe the effect of every possible point mutation 
in the binding site on the energy of binding between a given TF 
and DNA. Constraints in GP mapping can arise from 2 properties 
of each EM (Supplementary Fig. 1): some mutations within a pos
ition affect the binding energy more than others; and some posi
tions contribute more to the overall binding than others.

We explored the extent to which the specific structure of RNAP 
and CI EMs affected the constraints in the multidimensional phe
notypes. To do this, we created 1,000 alternate EMs for both, RNAP 
and CI, in which we kept the wild-type sequence intact (meaning 
that the sequence with the lowest binding energy was always the 
same) but shuffled randomly the specific entries in the matrix.

For most pairs of phenotypes, shuffled RNAP EMs decreased, 
while shuffled CI EMs increased, the total surface area explored 
by mutations (Fig. 4d). In other words, the wild-type RNAP im
poses fewer constraints than one would predict based on rando
mized EMs, while the wild-type CI imposes greater constraints. 
This might be a consequence of different roles that the 2 mole
cules play in regulation. RNAP is a molecule that requires flexibil
ity in its binding, because it regulates the expression of >70% of all 
E. coli promoters (Tierrafría et al. 2022). Our results suggest that 
this functional requirement of RNAP is aided by the structure of 
its EM. For CI, which is supposed to bind only a few specific promo
ters and whose promiscuous binding elsewhere might even be 
deleterious, the EM is more constrained than predicted.

Put together, the constraints acting on gene expression pheno
types in our system arise from varied aspects of the system, such 
as the binding of TFs/RNAP to DNA and the free concentrations of 
these molecules in the cell. The factors that come from the MAK 
part of the model—concentrations of molecules—are responsible 
for setting the limit to the phenotypes that can be achieved (the 
envelope), while also affecting the manner in which mutations ex
plore the phenotypic space (phenotypic volume). The factors that 
influence the TD part of the model—promoter architecture and 
the structure of the EMs—primarily affect how freely mutations 
explore that envelope. In other words, only the MAK predomin
antly constrain the maximum values of phenotypes achievable 
through mutations, while both parts of the model shape how eas
ily those values are reached. This suggests that, if all we are inter
ested in is the maximum range of phenotypic values but not how 
easily those phenotypes can be realized by mutations, it would be 
sufficient to reduce EMs, which are complex, high-dimensional 
mathematical objects, to a small number of summary statistics. 
We will return to this idea later in the manuscript.

De novo promoter evolution—phenotypes 
and fitness of random sequences
So far, we examined how the 6 dynamical phenotypes are affected 
by mutations in an existing, functional Lambda PR promoter, allow
ing us to understand the mechanistic constraints shaping the evo
lution of already functional promoters. To understand de novo 
promoter evolution, we need to describe the phenotypes and fitness 
associated with random sequences, and then examine what trajec
tories they might take as they evolve under selection for regulation. 
In doing so, our approach is inspired by previous works on bacterial 
(Berg et al. 2004; Mustonen and Lässig 2005; Aguilar-Rodríguez et al. 
2018) and eukaryotic (Stone and Wray 2001; Wray et al. 2003; Chen 
and Rajewsky 2007) gene regulatory elements, with the added com
plexity of examining multiple gene expression phenotypes as op
posed to focusing only on steady-state expression levels or the 
underlying sequence variation.

Extending our model (Fig. 2) to any random sequence relies on 
our previous work that allowed predicting RNAP binding to any 
random sequence, and the assumption that the binding of CI to 
random sequences (as opposed to mutants around the given wild- 
type) can be predicted from its EM. We also assume that any ran
dom sequence can, in principle, act as a repressible promoter, if it 
binds RNAP and a repressor. We evaluated phenotypes associated 
with random sequences, which play a key role in determining evo
lutionary outcomes but are rarely done (some examples in bacter
ial regulatory elements: Horwitz and Loeb 1986; Yona et al. 2018; 
Lagator et al. 2022). We examined how the phenotypic effects of 
random sequences were distributed, in order to understand how 
likely a random sequence is to bind RNAP and CI. To explore the 
phenotypic effects of random sequences, we sampled 2 × 109 ran
dom 80 bp long sequences. For random sequences, we evaluated 
binding of both, RNAP and CI, to all possible configurations in 
each 80 bp sequence, meaning that we did not constrain their 
binding to any specific binding sites like in previous sections. We 
assumed that if a predicted CI binding site overlapped or was 
downstream of the predicted RNAP binding site, the system was 
repressed. In contrast, if no CI binding sites were predicted or if 
they were found upstream of the RNAP binding site, no repression 
occurred. The cooperativity between 2 CI molecules would stabil
ize their binding only if the 2 binding positions were 16–18 bp 
apart, mimicking the architecture of the wild-type PR promoter.

We found that for all 6 phenotypes, functional sequences were 
very rare with most random sequences being nonfunctional 
(Fig. 5a), as previously observed for simple regulated promoters 
(Maerkl and Quake 2007; Kinney et al. 2010) and proteins (Maerkl 
and Quake 2009; Jacquier et al. 2013). This finding was in contrast 
to the previous observations that random sequences often contain 
constitutive promoters (Horwitz and Loeb 1986; Yona et al. 2018; 
Lagator et al. 2022), suggesting that it is the more constrained pro
tein (CI in our case, see Fig. 4d) that imposes the limits on the rates 
of promoter evolution.

To describe the fitness of a given random sequence, we assumed 
a quadratic fitness landscape with the phenotypic values of the 
wild-type Lambda PR defining the optimum. The fitness of each se
quence was calculated as the distance of each of the 6 phenotypes 
(Fig. 5a) from the optimum (PR) value of that phenotype, with each 
phenotype carrying equal weight. In this way, we assigned a fitness 
value to each of the 2 × 109 random sequences in order to charac
terize the distribution of fitness values across the entire genotypic 
space. The assumption of a quadratic fitness landscape might not 
capture how selection acts on promoter sequences, as it is more ac
curate near the assumed optimal wild-type than further away 
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from it and the phenotypes might not equally contribute to organ
ismal fitness. In spite of the potential shortcomings, we rely on this 
model of fitness as it is commonly used in evolutionary biology and 
use it to illustrate how a mechanistic framework can be utilized to 
tackle biological complexity.

There is a general belief based on experimental findings (Sanjuan 
et al. 2004; Jacquier et al. 2013; Metzger et al. 2016; Duveau et al. 2017) 
that function among random sequences is vanishingly rare, al
though this view has been challenged (Yona et al. 2018; De Boer 
et al. 2020; Lagator et al. 2022). The mechanistic approach we 
adopted allowed us to quantify the probability of random sequences 
being functional, and we found that functional repressible promo
ters (those with phenotypes at least somewhat similar to the wild- 
type PR promoter) were rare, occurring with probabilities of 10−5– 
10−7. While small, the likelihood of evolving a functional repressible 
promoter is orders of magnitude higher than it could be if TF and 
RNAP binding was less tolerant to sequence variations (as captured 
by their EMs).

De novo promoter evolution—evolutionary 
trajectories
The distributions of phenotypes and fitness of random sequences 
describe the potential starting points for repressible promoter 
evolution. As a miniscule portion of random sequences acts as 
repressible promoters, selection must be involved for regulated 
promoters to emerge. To simulate such evolution, we started 
with 2,000 random, 80 bp long sequences and used an SSWM 
model adapted from Tuğrul et al. (2015). As mentioned above, 
optimal fitness was defined as the Lambda PR values of each of 
the 6 phenotypes.

We first asked whether the 6 phenotypes appeared in the simu
lated populations in a specific order. As expected, ON expression 
always emerged first, often orders of magnitude faster than other 
phenotypes. The emergence of RNAP binding before CI binding 
sites is not only predicated on the fact that repression cannot occur 
before expression, but also likely on the rapid emergence of RNAP 
binding sites in random sequences (Yona et al. 2018; Lagator et al. 
2022). However, there was also an order in which other phenotypes 
emerged in the population (Fig. 5c; Supplementary Fig. 5), implying 
that selection for multiple phenotypes might be more predictable 
than expected, even though the time to evolve regulation is highly 
variable and unpredictable (Fig. 5d).

Intuitively, selecting for an additional phenotype might slow 
down evolution, because each phenotype needs to reach its own 
optimum. Starting from the same 2,000 random sequences, we 
compared how rapidly regulated promoter evolved when selection 
acted on all 6 phenotypes (6D) or only on 2 phenotypes (ON and OFF 
expression—2D). Interestingly, selecting on all 6 phenotypes led to 
more rapid rates of evolution, while being less precise (Fig. 5e): the 
populations selected in 6D more rapidly approached the optimum 
(Fig. 5e, top), but were less likely to reach the exact fitness of the 
wild-type PR, compared to the populations selected only for ON 
and OFF expression (Fig. 5e, bottom), presumably because they 
were stuck on a relatively high but still suboptimal fitness peak.

The observed evolutionary dynamics stem from the con
straints and correlations that characterize the GP landscape 
(Fig. 3). The constrained nature of the GP landscape of the evolving 
promoters means that a mutation that alters one phenotype is 
likely to alter other phenotypes as well. Early on during selection, 
most random sequences have very low fitness meaning that mu
tations are more likely to have a neutral or beneficial effect (Fisher 
1930). Under such conditions, correlations between phenotypes 
mean that a mutation that is beneficial for 1 phenotype is also 

Fig. 5. Evolution of regulated promoters from random sequences. a) 
Phenotypic effects of random sequences, shown as the probability density 
function (PDF) for 2 × 109 fully random sequences (black and gray) or for 
2,000 random sequences at the end of their simulated evolution toward PR 

promoter function (red and dark red). Distributions are shown for all 6 
phenotypes: ON, OFF, ON->OFF lag, OFF->ON lag, ON->OFF slope, and 
OFF->ON slope. All phenotypic values are relative to Lambda PR 

phenotypic values, except the OFF expression, which is represented as the 
repression ratio (ratio of ON and OFF expression levels). b) Fitness 
distribution of 2 × 109 fully random sequences (black) or for 2,000 random 
sequences at the end of their simulated evolution toward PR promoter 
function (red). Each of the 6 phenotypes equally contributes to overall 
fitness, with the fitness peak defined as the Lambda PR values of each 
phenotype. The distribution can be split into 4 sections, defined with 
respect to the mechanistic functioning of the system: (1) ON = OFF = 0; (2) 
0 < ON = OFF < ONPR; (3) ON = OFF > ONPR; (4) 0 < OFF < ON < ONPR. c) Time 
trajectories of phenotypes, showing the order in which phenotypes evolve. 
Each curve represents a median of 2,000 sequences for which evolution 
was simulated. For a better comparison on the order of when phenotypes 
evolve, we normalized phenotypes to start at 0 and end at 1. See 
Supplementary Fig. 5 for nonnormalized results. The 4 gray lines are, in 
order left to right, ON->OFF lag, OFF->ON lag, OFF->ON slope, and ON-OFF 
slope. d) Simulated rates of promoter evolution for 2,000 random 
sequences, showing the large variance in the distribution of times taken 
for selection of Lambda PR-like phenotypic values (time is shown in log 
units). The colored line is the average. e) Top: evolving promoters by 
selecting for only 2 phenotypes (ON and OFF states, referred to in the plot 
as “2D”) is robustly almost 2-fold slower than selecting for all 6 phenotypes 
(“6D”) across a wide range of selection strengths. Bottom: Proportion of 
evolved sequences as a function of fitness threshold (fitness value, relative 
to the wild-type Lambda PR phenotypic values, above which the promoter 
was considered evolved). With higher fitness threshold to consider a 
promoter evolved, increasing proportion of sequences get trapped in a 
local optimum, leading to lower proportion of evolved sequences. This 
effect is more pronounced when selecting all 6 phenotypes (6D).
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more likely to be beneficial for 1 or more other phenotypes. 
However, as the population approaches the optimum, the likeli

hood of a mutation having a beneficial effect on any of the pheno
types decreases. Correlations between phenotypes when the 
population is near the optimum mean that when a mutation 

emerges that is beneficial for 1 phenotype, its overall effect on fit
ness might be diminished as it is more likely to have a negative ef

fect on at least 1 other phenotype. In general, the closer the 
population is to the optimum, the more likely is the existence of 

correlations between phenotypes to slow down evolution, poten
tially explaining why the selection on 6 phenotypes was less likely 
to reach the precise fitness optimum.

DFEs in evolving promoters
The manner in which a population can navigate a fitness landscape 
depends on the current genotype of that population. In other words, 
during the course of evolution as mutations are fixed in the popula
tion, the DFE can also change (MacLean et al. 2010; de Visser and Krug 
2014; Seetharaman and Jain 2014; Couce et al. 2024). The mutational 
space of even a short sequence like a bacterial promoter is too large 
to explore comprehensively, posing a massive challenge for under
standing how DFEs change during evolution. However, this problem 
would be significantly diminished if DFEs depended on the fitness of 
the organism and not just its genotype (Kryazhimskiy et al. 2009). In 
spite of the potential dependency of DFEs on current fitness, the 

Fig. 6. Fitness effects of mutations as a function of promoter evolution. a) DFEs obtained by modeling the effect of every possible single and double point 
mutation for 100 replicate runs of evolving a promoter from a random sequence. DFEs were obtained at 4 different points along promoter evolution, when the 
evolving sequence had a fitness of 0.35, 0.55, 0.75, or 0.85 (indicated by the horizontal line) relative to the fitness of the Lambda PR promoter (defined to be the 
fitness optimum). Gray lines are all the DFE estimates of all 100 replicate evolving promoters, the black line is the mean. Red and green bars delineate 
beneficial (green) and deleterious (red) mutations. b) Proportion of neutral, beneficial, and deleterious mutations changes as the function of promoter fitness. 
Deleterious and beneficial mutations were defined as those mutations that alter fitness by at least 0.02 (which was the background noise value in our system). 
Error bars are standard error of the mean of 100 replicates. c) Representation of the fitness landscape along which random sequences evolve toward Lambda 
PR function. The landscape is represented with respect to the total binding energies between DNA and RNAP or CI (taking into account possible binding at 
multiple sites within the promoter). Contours show lines of equal fitness. Numbers 1–4 correspond to the mechanistically interpretable states of the evolving 
promoter, as seen in Fig. 5b. Red lines are individual example trajectory replicates for 6 evolving promoters, which all follow an ordering where the RNAP 
binding site evolves first, followed by the evolution of CI binding. Black distributions along the x- and y-axes are the binding energies of RNAP and CI to random 
sequences. d) Comparison of how the 3 models predict promoter evolution: (1) the full biophysical model, based on a comprehensive GP mapping (Fig. 2); (2) 
the traditional implementation of the Fisher’s geometric model, where phenotypic values are drawn in 6D space at random from a fixed distribution without 
accounting for any underlying mechanisms; (3) a modified Fisher’s geometric model, where we draw 2 biophysical parameters (binding energies of RNAP and 
CI)—instead of 6 phenotypes as in (2)—independently from a fixed distribution. Top left: the difference in mean of DFE and fitness of starting (random) 
genotype as a function of fitness. Negative values represent that the majority of mutations are deleterious. Top right: mean effect of mutations on ON 
expression as a function of fitness. Middle right: mean effect on OFF. Middle left: Standard deviation of DFEs as a function of fitness. Error bars represent 
standard deviation of mean and SD estimates over 100 replicates. Bottom: Time spent within the fitness interval of 0.1. The results are the median of 2,000 
evolving sequences. Note that, while the values predicted by the geometric models depend on the specific parameters used, changes in these parameters 
would not affect the overall trends (for specific values we used, see Geometric model of Materials and methods).
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numerous experimental descriptions of DFEs almost exclusively fo
cus on a given point in evolutionary time (Eyre-Walker and Keightley 
2007; Soskine and Tawfik 2010; Kemble et al. 2019). We studied the re
lationship between current genotype, fitness, and DFEs by examin
ing the fitness effects of all possible single and double mutations at 
several points during the simulated de novo promoter evolution of 
2,000 random 80-bp sequences (see De novo promoter evolution— 
evolutionary trajectories).

The DFEs of evolving promoters changed during evolution 
(Fig. 6a). As the population moved toward its optimum, the fre
quency of deleterious mutations increased, although with a sharp 
decline for highly adapted promoters (Fig. 6b)—suggesting that 
the peak of the fitness landscape for repressible promoters con
tains a plateau. The width of the distribution also increased as 
the population approached the optimum, suggesting that muta
tions in promoters with higher fitness were more likely to drastic
ally alter fitness, typically negatively (Fig. 6a).

Importantly, the DFEs of evolving promoters were largely de
pendent on the fitness of those promoters, rather than their spe
cific genotype. The dependency of DFEs on fitness was strong 
and consistent across all 2,000 evolving sequences (Fig. 6a). 
Hence, the relationship between promoter DFEs and current fit
ness is determined by the mechanisms of promoter function in 
a manner that is largely independent of the starting random se
quence or the particular mutations that get fixed. The consistency 
of promoter evolution is also captured by the observation that the 
proportion of beneficial mutations is relatively constant as the 
population evolves (except at very low fitness values) (Fig. 6b). 
Consequently, the structure of the fitness landscape and the man
ner in which populations navigate that landscape is surprisingly 
consistent and does not strongly depend on the particular starting 
sequence (Fig. 6c, red trajectories which all follow nearly the same 
path in the fitness landscape). This phenomenon, if generalizable 
to other systems (Kryazhimskiy et al. 2009; Aggeli et al. 2021), 
would result in more repeatable adaptation pathways that are de
fined predominantly by a single, scalar quantity (current fitness), 
which would dramatically reduce the complexity that must be ac
counted for to accurately describe evolution.

DFEs in evolving promoters—functional models
Our model allowed us to investigate whether this consistency of 
promoter evolution observed across random sequences was 
caused by specific mechanisms of promoter function. To explore 
this question, we simulated the evolution of the same 2,000 ran
dom sequences toward the same fitness peak, but we determined 
the phenotypic effects of novel mutations during evolution in 3 dif
ferent ways. The first represents “realistic” evolution and used the 
full model (Fig. 2), meaning that phenotypic effects of mutations 
were determined by the biophysical mechanisms underpinning 
promoter function. The second used a geometric model assigning 
each mutation a random effect on each of the 6 phenotypes in an 
independent and equally distributed manner, without accounting 
for how those mutations affect the binding energy first (“geometric 
model—6D phenotypes”). As such, this model is akin to methods 
typically employed in population genetics (Mustonen and Lässig 
2005; Charlesworth and Charlesworth 2017), which assume the 
phenotypic (or fitness) effects of mutations without accounting 
for the underlying mechanisms that determine those effects. The 
third used a geometric model to select binding energies from an as
sumed distribution with the same range of values as the RNAP and 
Lambda CI EMs, but without accounting for the internal structure 
of the EMs (“geometric model—binding energies”). In other words, 
we assumed random energy penalties associated with every 

mutation but then assigned values to the 6 phenotypes using the 
full model, meaning that the “geometric model—binding energies” 
accounted for the nonlinear relationship between binding energy 
and gene expression captured by the TD model, while the “geomet
ric model—6D phenotypes” did not.

Not accounting for the relationship between the biophysics of 
protein-DNA binding and how it shapes the effects of mutations re
sulted in significantly different descriptions of promoter evolution 
(Fig. 6d; Supplementary Figs. 6 and 7). The underlying mechanisms 
introduce structure into the genotype-phenotype-fitness mapping 
that is critical for accurately capturing evolutionary dynamics. 
This is likely because the full model, compared to the “geometric 
model—6D phenotypes”, determines phenotypic effects of muta
tions in a nonlinear fashion (Fig. 2), while also accounting for the con
straints that emerge from the relationship between protein-DNA 
binding and the 6 promoter phenotypes (Fig. 3). However, the intern
al structure of the RNAP and Lambda CI EMs (i.e. how the energy pen
alties are actually distributed within the matrices) was not crucial for 
accurately modeling evolution, as the geometric model based on 
binding energies described similar evolutionary trajectories as the 
full model albeit with different time scale estimates. As such, the 
relative difference in the effects of individual mutations on the bind
ing energy was not critical for modeling evolution, compared to ac
counting for the inherent mechanistic relationship between 
genotype and the gene expression phenotypes. In other words, to ac
curately model evolution (which we determined by comparing the 2 
simplified models to the full model), it is (1) critical to account for the 
mechanism linking genotypic to phenotypic changes—in this case, 
the nonlinear relationship between binding energy and gene expres
sion dictated by thermodynamics, and, therefore (2) sufficient to 
know only the range of values within the EMs, but not the actual dis
tribution of values—dramatically reducing the number of variables 
needed to capture evolutionary trajectories from 152 (RNAP and CI 
EMs) to 2 (minimum and maximum energy values in those EMs). 
Therefore, the ability to simplify systems in this manner is contin
gent on knowing what level to draw the phenotypic effects from. 
Accurately capturing the evolution of bacterial promoters requires 
accounting for the effects of mutations on binding energies, rather 
than directly modeling evolutionary dynamics by assuming effects 
of mutations directly on gene expression phenotypes.

Genotypes of the evolved promoters
From a theoretical perspective, predicting how a population tra
verses a given fitness landscape has received more attention 
than predicting the outcomes of evolution (Charlesworth and 
Charlesworth 2017; de Visser et al. 2018). This is, in large part, 
due to the lack of comprehensive GP maps, resulting in an ad
vanced understanding of how selection operates but a relatively 
poor description of the genotypes that actually evolve.

The GP map of multidimensional gene expression phenotypes 
that we developed allowed us to not only understand how repress
ible promoters evolve but also what genotypes were favored by 
selection. Specifically, we were interested in what promoter archi
tectures were more likely to emerge when random sequences 
evolved into repressible promoters. Informed by the architecture 
of most repressible bacterial promoters (Tierrafría et al. 2022), we 
considered CI binding sites that overlap with RNAP binding sites 
or are downstream of them to lead to repression. Then, we observed 
the number of CI binding sites that evolved (see Methods). We also 
observed the architecture of the promoters that emerged, defined as 
the relative position of the strongest (dominant) CI binding site rela
tive to the RNAP binding site (Fig. 7a).
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The likelihood of emergence was not random for the 3 pro
moter architectures—the dominant CI binding site was more 
likely to appear downstream of the RNAP binding site rather 
than overlapping with it (Fig. 7b). The evolved promoter architec
ture (i.e. the location of the strongest binding site) also impacted 
the total number of CI binding sites that needed to evolve in order 
to reach wild-type PR levels of repression (Fig. 7c). The likelihood 
of a given architecture emerging was related to its speed of 
evolution (Fig. 7d) which was, at least in part, affected by 
the constraints associated with that architecture (Fig. 4c). 
Furthermore, the RNAP binding site, which always evolves first 
(Fig. 5c), introduced further constrains on the emergence of 
CI binding site(s). For example, when the dominant CI binding 
site evolved between the RNAP −10 and −35 binding site (archi
tecture II), it often required additional CI binding sites to reach 
the fitness optimum (Fig. 7c). This is because the direct overlap 
between CI and RNAP binding sites limited the range of muta
tions that could increase CI binding (i.e. increase fitness) without 
negatively affecting RNAP binding (which would decrease 
fitness).

Selection acting only on 2 phenotypes (ON and OFF) predicted 
different evolutionary outcomes (promoter architectures and 
binding site numbers) to selection acting on all 6 phenotypes, 
with 6D selection resulting more frequently in multiple CI binding 
sites (Fig. 7c). Furthermore, the predicted rates of evolution of the 
3 architectures were also different between selection for 2 vs all 6 
phenotypes (Fig. 7d).

It remains unexplored whether selection in repressible promo
ters actually acts on dynamical (6D) or only on steady-state (2D) 
phenotypes. To indirectly examine this question, we collected the 
information about all known promoters in E. coli from RegulonDB 
(Tierrafría et al. 2022). Specifically, we classified all known repress
ible promoters into the 3 promoter architectures (Fig. 7a), using 
the information about the known position of repressor binding sites 
relative to the RNAP binding sites. Interestingly, we found that the 
largest number of known promoters had a repressor binding site be
tween the −10 and −35 RNAP sites (architecture II) (Fig. 7e). Our 
model predicted this architecture to arise most rapidly when selec
tion acts on 6 phenotypes, but not when it acts on only 2 (Fig. 7d). 
Therefore, while a multitude of factors likely contributed to 

Fig. 7. Genotypic structure of evolved promoters. a) Example of the 3 possible promoter architectures that can emerge as random sequences evolve 
toward regulated promoters. These include the strongest CI binding site emerging upstream (architecture I), in between (architecture II), or downstream 
(architecture III) of the RNAP binding sites. b) We observed the distribution of promoter architectures following the evolution of 2,000 random sequences 
of 80 bp toward regulated promoters (i.e. toward Lambda PR-like function). c) The number of CI binding sites that emerged in the 2,000 evolved promoters 
depended on the architecture that was evolving, as well as whether selection was acting on 2 (only ON and OFF) or all 6 phenotypes. d) Time to promoter 
evolution, measured in 1/μ where μ is the mutation rate and based on the evolution of 2,000 sequences with population size N = 106. Error bars are 
standard deviations across all promoters that evolved that architecture. Time to promoter evolution depended on the architecture that was evolving, as 
well as whether selection acting on 2 or all 6 phenotypes. e) Using the data from RegulonDB, we obtained the position of binding relative to the RNAP 
binding site of all known E. coli repressible promoters (over 700). These were classified in one of the 3 architectures shown in panel a).

Linking molecular mechanisms to evolution | 17
D

ow
nloaded from

 https://academ
ic.oup.com

/genetics/article/229/2/iyae191/7909256 by library@
ist.ac.at user on 16 April 2025



architecture II being the most common in the E. coli genome, one of 
them might be that selection more frequently acts on dynamical ra
ther than just steady-state phenotypes.

Discussion
The main aim of this study was to serve as a primer on how mech
anistic models can be utilized to account for and tackle molecular 
and biophysical complexity in the context of evolution. Even in 
simple biological systems like ours, consisting of 3 molecular compo
nents (RNAP, CI, and the promoter), the mapping of genotype onto 
phenotypes onto fitness is extremely complex due to the mutational 
space being prohibitively large; a change in genotype potentially al
tering multiple cellular phenotypes; the unclear and gene-specific 
relationship between phenotypic change and fitness; and the de
pendency of phenotype-fitness mapping on the environment. A nat
ural consequence of this complexity is the drive to focus on studying 
specific examples—the forms that survived competition and selec
tion—in order to understand the strategies that made them success
ful. This comes at the cost of not understanding why any of the 
myriad other possible forms did not arise or get fixed in a population. 
To paraphrase François Jacob: evolutionary biology is focused on 
studying the “actual” at the cost of not understanding the “possible” 
(Jacob 1977). In this work, we build on previous works and ideas 
(Ackers et al. 1982; Dean and Thornton 2007; Vilar 2010; Josephides 
and Moses 2011; Pai et al. 2015) to put forward a primer to resist 
this drive, by utilizing a mechanistic model to remain tied to the ac
tual while enabling the exploration of the possible.

Besides our main aim of providing a primer for the analysis of 
complexity in biology and evolution from a mechanistic starting 
point, we also provided a range of novel findings about the evolu
tion of bacterial promoters. We identified the mechanistic con
straints acting on GP mapping in promoters, with the envelope 
(total range of possible phenotypes) set by the MAK and its cover
age (manner in which that space is explored through point muta
tions) by the EMs of the DNA binding proteins (Fig. 3). Various 
cellular and genetic parameters, such as the concentration of 
the repressor or the architecture of the promoter, also affected 
the nature of GP mapping. Selection for constitutive expression 
evolves fast (Yona et al. 2018; Lagator et al. 2022) while regulation 
takes longer (Fig. 5), although if regulation is selected for based on 
the 6 gene expression phenotypes it might proceed faster than if 
selection acts only on steady-state expression levels (Fig. 7d). 
The outcomes of evolution, in terms of the promoter architectures 
that evolved, also depended on whether selection was acting on 6 
or 2 phenotypes (Fig. 7c), These, and various other findings we re
ported, were made possible by our use of a mechanistic model to 
study promoter evolution, as it allowed dissecting the contribu
tion of individual factors in a manner that would be difficult to 
replicate experimentally or with a more generic model.

The observation that quantitative descriptions of at least 
some key evolutionary properties require only a handful of para
meters gives credence to the idea that extending the findings 
based on the modeling of Lambda PR promoter to other regulated 
promoters, or even to more complex networks, might be relative
ly straightforward (Vilar 2010; Josephides and Moses 2011). 
Modeling-wise, the fundamental aspects of the MAK part of the 
model ought to be true for any dynamical molecular system 
(Chen et al. 2010). Similarly, utilizing thermodynamics to con
struct a model for any promoter or a network of any size is pos
sible (Bintu, Buchler, Garcia, Gerland, Hwa, Kondev, Kuhlman, 
et al. 2005; Bintu, Buchler, Garcia, Gerland, Hwa, Kondev, and 
Phillips 2005). The major difficulty in accurately mapping 

genotype to phenotype in other networks comes from the fact that 
the predictive power of the TD model relies on having the relevant 
EMs (Kinney et al. 2010; Vilar 2010), and obtaining EMs is labor- 
and time-intensive (Barnes et al. 2019; Ireland et al. 2020). And yet, 
our results suggest that for understanding many aspects of pro
moter evolution, using easy-to-derive summary statistics of EMs 
(their extremal values) might be sufficient, providing a key insight 
into how our model can be extended to other systems. This is why 
not only describing GP mapping, but also understanding its mechan
istic origins, ought to form a crucial and major direction in studying 
evolution as it allows parsing which components of a complex bio
logical system are the key drivers of its evolution.

However, relying on a mechanistic model also meant that, 
somewhat ironically, we had to make a lot of concessions and sim
plifications that limit the generalizability of our conclusions. Gene 
expression levels, both at the transcriptional and especially at 
translational levels, are not determined only by the binding ener
gies between TFs and DNA. In fact, numerous other mechanisms 
involved in the regulation of gene and protein expression levels 
have been described, and accounting for them forms the obvious 
extension of the work presented here. Furthermore, both compo
nents of our model—TD and MAK—are deterministic and do not 
account for the temporal and between-individual stochasticity 
in gene expression, which can play a role in function and evolu
tion of regulatory systems (Arkin et al. 1998; Rosenfeld et al. 
2005; St-Pierre and Endy 2008; Metzger et al. 2015). The model is 
also not calibrated to account for the effects of random mutations 
as accurately as the effects of the mutations around a given (wild- 
type) promoter sequence (Vilar 2010). Incorporating additional 
mechanisms involved in gene regulation can extend the muta
tional space in which the model predictions are accurate 
(Lagator et al. 2022), with more studies in this direction needed.

While we demonstrate the importance of accounting for how 
DFEs change as a function of fitness (Fig. 6a), we also use DFEs as 
a simplified description of the fitness landscape as a whole. In real
ity, fitness landscapes are much more complicated. One important 
contributor to fitness landscape structure is the interactions be
tween mutations (Phillips 2008; de Visser and Krug 2014), and our 
model accounts for just 1 source of such epistatic interactions 
(Lagator, Paixão, et al. 2017). In particular, our model does not ac
count for sign epistasis, which can occur between mutations in a 
promoter (Lagator et al. 2016) and is a major contributor to fitness 
landscape complexity (Poelwijk et al. 2011). Similarly, our work 
does not account for any potential interactions between mutations 
in promoters and TFs, which can have unpredictable consequences 
(Lagator, Sarikas, et al. 2017). Furthermore, not each phenotype is 
going to equally contribute to fitness like we assumed in this 
work. In other words, some of our 6 phenotypes might contribute 
more to fitness than others. The complex interaction between 
phenotype and fitness will always be dependent on the specific 
properties of the molecular system and the organism that are under 
selection imposed by particular environmental conditions.

We also assumed that the fitness landscape is quadratic. We 
have no experimental access to the actual, environment-dependent 
fitness function of our system. Moreover, our system is a synthetic
ally simplified version of the natural lambda switch. Hence, we 
needed to make an assumption for fitness in lieu of actual experi
mental measurements and selected a commonly used, quadratic 
model that stabilizes phenotypes at their WT values corresponding 
to a single peak in the phenotype space. This model has 4 attractive 
features: (1) phenotypes with highest fitness correspond, by con
struction, to a functional regulated promoter (high ON state, 
low OFF state, WT dynamics); (2) this model is a theoretically 
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well-understood approximation for generic single-peaked fitness 
functions close to their fitness optimum (although we also simulate 
far away from the peak); (3) the same mathematical form of the fit
ness function generalizes to phenotypes of different dimensions, al
lowing us to compare how the dimensionality of the phenotype 
affects our conclusions (Fig. 5); and (4) this choice of the fitness func
tion naturally connects to the geometric model (Fig. 6). Quadratic fit
ness is a minimal model with these properties, in the sense that any 
nontrivial results on evolutionary dynamics (e.g. possible multiple 
fitness peaks in the genotype space and sign epistasis) must be a con
sequence solely of the genotype-to-phenotype map rather than of 
the fitness function defined on top of any phenotypes. In other 
words, while modeling more complicated fitness functions would 
certainly be possible and possibly more realistic, such models would 
introduce additional structure(s) for which we have no justification 
in experiment or published literature.

Tackling complexity in evolution includes 2 key challenges. First 
is generating or simulating data that captures that complexity. Our 
approach was to develop a mechanistic model of gene expression 
dynamics from a repressible bacterial promoter that accounted 
for well-understood physical and chemical properties of proteins 
and DNA (while, inevitably, making various simplifications). The 
model allowed us to obtain estimates of phenotypes and fitness 
from a large number of random (neutral) and selected genotypes, 
resulting in a more realistic genotype-phenotype-fitness mapping 
than commonly used when modeling evolution, with potentially 
important consequences for the understanding of basic evolution
ary properties (Hledík et al. 2022).

Importantly, the mechanistic model enabled addressing the se
cond challenge in tackling complexity in evolution: how can the 
complexity be reduced without sacrificing evolutionary detail. To 
explore the ways in which mechanistic models can be utilized to 
address this challenge, we assumed that the full model could cap
ture promoter evolution. That assumption, which we openly ac
knowledge is likely incorrect due to the various shortcomings of 
our model as discussed above, nevertheless provided us with a 
baseline for comparison of evolutionary predictions from various 
simplified (in terms of the number of parameters) versions of the 
model. We found that, in our system, accurate description of sev
eral key evolutionary properties was possible without accounting 
for every parameter that contributed to them. For example, under
standing what phenotypes can be accessed through mutations 
does not require examining every possible mutant. In fact, the total 
range of phenotypic values accessible through mutations (envelope 
in Fig. 3) can be discerned by knowing only the minimum and max
imum effects a mutation could have, as it did not require account
ing for the discreetness of individual mutation effects. Similarly, 
only the total range of mutational effects (minimum and max
imum EM values) on the phenotype was required to accurately cap
ture the evolutionary dynamics of promoters (Fig. 6d). In other 
words, the biophysically realistic link between mutations and their 
phenotypes, even a simplified one, was sufficient to alter predic
tions of evolutionary dynamics compared to assigning fitness ef
fects directly from genotype as typically done when modeling 
evolution (Mustonen et al. 2008; Charlesworth and Charlesworth 
2017). The reduction in complexity needed to capture the evolu
tionary dynamics was also justified when considering the fitness 
effects of mutations during the course of evolution, as the distribu
tions of fitness effects largely depended only on the fitness of the 
current genotype (Fig. 6b). In contrast to most models of evolution
ary dynamics, the mechanistic approach we used is not generic but 
rather refers to a specific system, meaning that the above predic
tions can be empirically tested.

Our aim was to develop a primer on how to tackle molecular 
complexity in order to better understand evolution. Relying on a 
mechanistic model provided novel insights into the regulation of 
regulated promoters. More importantly, utilizing a mechanistic 
model allowed us to understand when the complexity of the stud
ied system could be reduced without sacrificing the understanding 
of how that system evolves. As such, we show how building effect
ive, mechanistic models that capture aspects of the underlying 
molecular complexity can provide critical insights into what inter
mediate phenotypes, nonlinear interactions and constraints must 
be considered, and which can be ignored, if we want to get an ac
curate picture of how a biological system evolves.
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sequence-a-primer or upon request.

Supplemental material available at GENETICS online.

Acknowledgments
The authors thank Nick Barton, Stepan Denisov, Claudia Igler, 
Srdjan Sarikas, Anna Staron, and the anonymous reviewers for 
useful comments and discussions that helped improve our work.

Funding
Funding for this work was provided by the Wellcome Trust–Royal 
Society Sir Henry Dale Fellowship (216779/Z/19/Z) and the Royal 
Society Research Grant (RG\R2\232522) to M.L.

Conflicts of interest
The author(s) declare no conflict of interest.

Author contributions
Conceptualization and Writing—review & editing: R.G., C.C.G., 
G.T., and M.L. Methodology, Investigation, and Visualization: 
R.G., G.T., and M.L. Funding acquisition and Supervision: C.C.G., 
G.T., and M.L. Writing—original draft: R.G. and M.L.

Literature cited
Ackers GK, Johnson AD, Shea MA. 1982. Quantitative model for gene 

regulation by lambda phage repressor. Proc Natl Acad Sci U S A. 
79(4):1129–1133. doi:10.1073/pnas.79.4.1129.

Aggeli D, Li Y, Sherlock G. 2021. Changes in the distribution of fitness 
effects and adaptive mutational spectra following a single first 
step towards adaptation. Nat Commun. 12(1):5193. doi:10.1038/ 
s41467-021-25440-7.

Aguilar-Rodríguez J, Payne JL, Wagner A. 2017. A thousand empirical 
adaptive landscapes and their navigability. Nat Ecol Evol. 1(2):45. 
doi:10.1038/s41559-016-0045.

Aguilar-Rodríguez J, Peel L, Stella M, Wagner A, Payne JL. 2018. The 
architecture of an empirical genotype-phenotype map. Evolution. 
72(6):1242–1260. doi:10.1111/evo.13487.

Linking molecular mechanisms to evolution | 19
D

ow
nloaded from

 https://academ
ic.oup.com

/genetics/article/229/2/iyae191/7909256 by library@
ist.ac.at user on 16 April 2025

http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyae191#supplementary-data
https://github.com/Lagator-Group/Linking-Molecular-Mechanisms-to-their-Evolutionary-consequence-a-primer
https://github.com/Lagator-Group/Linking-Molecular-Mechanisms-to-their-Evolutionary-consequence-a-primer
https://github.com/Lagator-Group/Linking-Molecular-Mechanisms-to-their-Evolutionary-consequence-a-primer
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyae191#supplementary-data
https://doi.org/10.1073/pnas.79.4.1129
https://doi.org/10.1038/s41467-021-25440-7
https://doi.org/10.1038/s41467-021-25440-7
https://doi.org/10.1038/s41559-016-0045
https://doi.org/10.1111/evo.13487


Arkin A, Ross J, McAdams HH. 1998. Stochastic kinetic analysis of devel

opmental pathway bifurcation in phage lambda-infected Escherichia 
coli cells. Genetics. 149(4):1633–1648. doi:10.1093/genetics/149.4.1633.

Barnes SL, Belliveau NM, Ireland WT, Kinney JB, Phillips R. 2019. 
Mapping DNA sequence to transcription factor binding energy 
in vivo. PLoS Comput Biol. 15(2):e1006226. doi:10.1371/journal. 
pcbi.1006226.

Berg J, Willmann S, Lässig M. 2004. Adaptive evolution of transcrip
tion factor binding sites. BMC Evol Biol. 4(1):42. doi:10.1186/ 
1471-2148-4-42.

Bintu L, Buchler NE, Garcia HG, Gerland U, Hwa T, Kondev J, 
Kuhlman T, Phillips R. 2005. Transcriptional regulation by the 
numbers: applications. Curr Opin Genet Dev. 15(2):125–135. doi:
10.1016/j.gde.2005.02.006.

Bintu L, Buchler NE, Garcia HG, Gerland U, Hwa T, Kondev J, Phillips R. 
2005. Transcriptional regulation by the numbers: models. Curr 
Opin Genet Dev. 15(2):116–124. doi:10.1016/j.gde.2005.02.007.

Charlesworth B, Charlesworth D. 2017. Population genetics from 1966 
to 2016. Heredity (Edinb). 118(1):2–9. doi:10.1038/hdy.2016.55.

Chen K, Rajewsky N. 2007. The evolution of gene regulation by tran
scription factors and microRNAs. Nat Rev Genet. 8(2):93–103. doi:
10.1038/nrg1990.

Chen WW, Niepel M, Sorger PK. 2010. Classic and contemporary ap
proaches to modeling biochemical reactions. Genes Dev. 24(17): 
1861–1875. doi:10.1101/gad.1945410.

Ciliberti S, Martin OC, Wagner A. 2007. Innovation and robustness in 
complex regulatory gene networks. Proc Natl Acad Sci U S A. 
104(34):13591–13596. doi:10.1073/pnas.0705396104.

Couce A, Limdi A, Magnan M, Owen SV, Herren CM, Lenski RE, 
Tenaillon O, Baym M. 2024. Changing fitness effects of mutations 
through long-term bacterial evolution. Science. 383(6681): 
eadd1417. doi:10.1126/science.add1417.

De Boer CG, Vaishnav ED, Sadeh R, Abeyta EL, Friedman N, Regev A. 
2020. Deciphering eukaryotic gene-regulatory logic with 100 mil
lion random promoters. Nat Biotechnol. 38(1):56–65. doi:10.1038/ 

s41587-019-0315-8.
de Visser JAGM, Elena SF, Fragata I, Matuszewski S. 2018. The utility 

of fitness landscapes and big data for predicting evolution. 
Heredity (Edinb). 121(5):401–405. doi:10.1038/s41437-018-0128-4.

de Visser JAGM, Krug J. 2014. Empirical fitness landscapes and the 
predictability of evolution. Nat Rev Genet. 15(7):480–490. doi:10. 
1038/nrg3744.

Dean AM, Thornton JW. 2007. Mechanistic approaches to the study of 
evolution: the functional synthesis. Nat Rev Genet. 8(9):675–688. 
doi:10.1038/nrg2160.

Doebeli M, Ispolatov Y, Simon B. 2017. Towards a mechanistic foun
dation of evolutionary theory. eLife. 6:e23804. doi:10.7554/eLife. 
23804.001.

Duque T, Samee MAH, Kazemian M, Pham HN, Brodsky MH, Sinha S. 
2014. Simulations of enhancer evolution provide mechanistic in
sights into gene regulation. Mol Biol Evol. 31(1):184–200. doi:10. 
1093/molbev/mst170.

Duveau F, Toubiana W, Wittkopp PJ. 2017. Fitness effects of cis- 
regulatory variants in the Saccharomyces cerevisiae TDH3 pro
moter. Mol Biol Evol. 31(11):2908–2912. doi:10.1101/154039.

Einav T, Phillips R. 2019. How the avidity of polymerase binding to the – 
35/–10 promoter sites affects gene expression. Proc Natl Acad 
Sci U S A. 116(27):13340–13345. doi:10.1073/pnas.1905615116/-/DC 
Supplemental.

Eyre-Walker A, Keightley PD. 2007. The distribution of fitness effects of 
new mutations. Nat Rev Genet. 8(8):610–618. doi:10.1038/nrg2146.

Fisher RA. 1930. The Genetical Theory of Natural Selection. Oxford, 
UK: Clarendon Press.

Fuqua T, Jordan J, Van Breugel ME, Halavatyi A, Tischer C, Polidoro P, 

Abe N, Tsai A, Mann RS, Stern DL, et al. 2020. Dense and pleiotrop
ic regulatory information in a developmental enhancer. Nature. 
587(7833):235–239. doi:10.1038/s41586-020-2816-5.

Gillespie JH. 1983. Some properties of finite populations experiencing 
strong selection and weak mutation. Am Nat. 121(5):691–708. doi:
10.1086/284095.

Haldane A, Manhart M, Morozov AV. 2014. Biophysical fitness land
scapes for transcription factor binding sites. PLoS Comput Biol. 
10(7):e1003683. doi:10.1371/journal.pcbi.1003683.
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