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Information limits and Thouless-Anderson-Palmer equations for spiked matrix models
with structured noise
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We consider a prototypical problem of Bayesian inference for a structured spiked model: a low-rank signal is
corrupted by additive noise. While both information-theoretic and algorithmic limits are well understood when
the noise is a Gaussian Wigner matrix, the more realistic case of structured noise still remains challenging. To
capture the structure while maintaining mathematical tractability, a line of work has focused on rotationally
invariant noise. However, existing studies either provide suboptimal algorithms or are limited to a special class
of noise ensembles. In this paper, using tools from statistical physics (replica method) and random matrix theory
(generalized spherical integrals) we establish the characterization of the information-theoretic limits for a noise
matrix drawn from a general trace ensemble. Remarkably, our analysis unveils the asymptotic equivalence
between the rotationally invariant model and a surrogate Gaussian one. Finally, we show how to saturate the
predicted statistical limits using an efficient algorithm inspired by the theory of adaptive Thouless-Anderson-

Palmer (TAP) equations.
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I. INTRODUCTION

Recovering a low-rank signal from a high-dimensional
observation corrupted by noise is an ubiquitous problem,
appearing, e.g., in sparse principal component analysis
(PCA) [1], community detection [2,3], group synchroniza-
tion [4], and submatrix localization or clustering [5]. In this
paper, we consider the prototypical task of estimating the
rank-1 signal X*X*T € RV from a symmetric matrix Y of
noisy observations given by

A
Y=-XXT+7Z, 1
N + ey

where A > O represents the signal-to-noise ratio (SNR) and
Z € RV*V is additive noise. This is often referred to as the
Johnstone spiked covariance model [6], and it was originally
formulated as a probabilistic model for PCA. Starting with
the seminal result of [7], the behavior of eigenvalues and
eigenvectors of (1) has been extensively studied in statistics
and random matrix theory, see e.g., [8—13]. Specifically, the
authors of [7] identified a phase transition phenomenon—
named BBP after their initials—tuned by the SNR A: Above
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the transition, the largest eigenvalue of Y detaches from the
bulk of the spectrum containing the noise eigenvalues, and the
top eigenvector of Y is correlated with X; below the transition,
the largest eigenvalue sits at the edge of the bulk, and the top
eigenvector exhibits vanishing correlation with X.

Going beyond the estimator obtained from the top eigen-
vector of Y, a line of work has focused on Approximate
Message Passing (AMP) algorithms. Originally proposed in
the context of compressed sensing [14] and CDMA [15],
AMP methods have since been developed for numerous high-
dimensional inference problems, including the estimation of
low-rank matrices [16,17] as in (1), generalized linear regres-
sion [18,19] and inference in multilayer models [20]. The
popularity of the AMP paradigm stems from its attractive
features: (i) AMP can be tailored to take advantage of struc-
tural information about the signal, in the form of a Bayesian
prior; (ii) the AMP performance in the high-dimensional limit
is precisely characterized by a low-dimensional deterministic
recursion known as state evolution [21,22]; and (iii) using
state evolution, it has been proved that AMP achieves Bayes-
optimal performance in a number of settings [17,23] and, even
when information-theoretic limits are not met, AMP remains
optimal among a vast class of efficient algorithms [24,25].

However, most theoretical studies on low-rank matrix es-
timation are limited by an independently and identically
distributed (i.i.d.) hypothesis on the noise matrix components.
In this setting, the fundamental limits of inference are well
understood [26-28], and they are achieved by an AMP al-
gorithm, unless there is a statistical-to-computational gap.
While some of the results on AMP can be generalized to the
broader class of i.i.d. sub-Gaussian matrices via universality
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arguments [29,30], the i.i.d. assumption is rather limiting:
These models remain structureless, and no concrete corre-
lations can appear in the data matrices. A way to relax
the identicality assumption was proposed in the mathemat-
ical physics literature of spin glasses, in the context of
the Sherrington-Kirkpatrick model. Specifically, the authors
of [31,32], and later [33-36], consider random couplings
whose variances depend on the index labeling the coupled
sites. This idea also appeared earlier in the context of in-
ference, under the name of spatial coupling [27,37,38]. Yet,
in the mentioned studies the independence hypothesis still
remains crucial.

In the seminal papers [39-41], the authors considered in-
stead a class of rotationally invariant matrices, which break
the independence between the elements of the coupling ma-
trices, leaving a model that is still tractable. The amount of
studies in this setting, or similar ones, see for instance [42—44]
for spin glasses, and [45-50] in inference, shows a growing
interest towards the topic. Even if the performance of spectral
PCA can be predicted with a fairly generic additive rotation-
ally invariant noise (see e.g., [10]), establishing how to factor
in also the prior information in the inference procedure, as
well as characterizing information-theoretic limits has proven
to be significantly more challenging.

A recent paper [51] takes a step forward by revealing
that, in order to achieve the information-theoretic limits, it is
necessary to apply a peculiar pre-processing function to the
data Y that depends on the type of correlations in the noise.
Despite the new mechanism pinpointed by [51], the analysis
has remained limited only to certain classes of noise distri-
butions, until now. The goal of the present paper is precisely
to elaborate a concise theory, and to formulate implementable
algorithms, that can be tailored to treat any kind of rotationally
invariant noise coming from a trace ensemble, i.e., whose
distribution is encoded in a matrix potential.

A. Our contributions

(i) Using the celebrated replica method [52] and the in-
homogeneous spherical integral of [51], we compute the
information-theoretic limits for low-rank estimation in the
presence of rotationally invariant noise. Specifically, we con-
sider the teacher-student scenario in (1), i.e., the teacher plants
arank-1 spike matrix inside an extensive-rank noise bulk, and
we compute the mutual information between the observation
Y, and the planted signal X*X*T.

(a) We simplify and solve numerically the fixed-point
equations coming from the replica symmetric variational
potential for the mutual information. Remarkably, thanks
to some inherent symmetries of the model, called Nishi-
mori identities, the fixed-point equations, which have func-
tions among their unknowns, reduce to one simple scalar
equation.

(b) The noise not being Gaussian, one cannot use the usual
I-MMSE relation [53] to compute the minimum mean-square
error (MMSE) from the mutual information. Nevertheless, our
final formula for the mutual information consists in a varia-
tional principle, whose order parameters, at their stationary
values, yield the MMSE when properly combined.

(ii)) We also express the mutual information between data
and ground truth using the AdaTAP formalism of [43], relying
on the validity of the latter in the presence of a spike. This
approach outputs the preprocessing function as a functional
of the matrix potential of the noise ensemble. Moreover, the
stationary point of the AdaTAP mutual information yields a
set of fixed-point equations, the TAP equations, that we turn
into an inference algorithm for the spike with an appropriate
update rule.

(iii) We run numerical experiments supporting the con-
sistency between the fixed point of the TAP equations of
point (ii) and our replica prediction for the MMSE. We test
our TAP-inspired algorithm also on covariance matrices built
from a bioinformatics dataset (Hapmap3 [54]), where we plant
suitably generated spikes. We verify that, even if the noise
matrix is not rotational invariant, our TAP algorithm, when
properly initialized, is still able to find the spikes with a
performance close to the one predicted by the Bayes-optimal
replica theory. This evidence supports the conjecture already
formulated in [51], stemmed from [55,56], about a possi-
ble universality of our information-theoretic analysis, which
could thus extend beyond the rotational invariance assumption
to cases where the eigenbasis of the noise is invariant under
more restrictive transformations.

II. SETTING

Let the data be constructed, conditionally on the unknown
spike X*X*T, according to (1), with a randomly generated
noise matrix

N
Z =0"DO ~ Cy exp (—ETrV(Z)> dZ, 2)

where dZ =[], dZ; and Z; = Z;; for any 1 <i,j <N,
and Cy is a normalizing constant depending on the matrix
potential V. The matrices have O(1) spectral norm (i.e., in-
dependent on N) and the signal vector X* has i.i.d. entries
drawn from a prior distribution Py with zero mean and unit
second moment. With an abuse of notation, we use Py (Xx) in-
stead of P)?N (x). Here, and throughout the paper, any function
f applied to a symmetric matrix M with eigendecomposi-
tion M = ODOT is actually applied only to its eigenvalues
(Dp)icy: f(M) := Of(D)OT, (D) = diag(f(Di))icy-

We highlight that, compared to the previous study [51]
where the matrix potential was restricted to be a low-degree
polynomial, here V can be any analytic function.

The posterior measure of the problem is given by

Cy
Py (Y)

dPyy (x|Y) = dPy(x)e 2 TVY-3D - (3)
where the evidence, i.e., the probability of the observations, is

Py(Y)=Cy /N dPy(x)e” 2TV =3, “)
R

Our main object of interest is the free entropy (or minus the
free energy) defined as

1
fv = Eylog Z(Y), o)
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where
Z(Y) ;:/ dPX(X)ef%(TrV(YfﬁxxT)fTrV(Z)) ©6)
RN

and in particular its high-dimensional limit

f = lim fy.

N—oo

From the above, we can define a Hamiltonian function
Hy(x, A, X*, Z) = Hy(x) equal to

N A
Hy(x) = 7 (TrV (Y — NXXT) — TrV(Z)) @)

and interpret the problem as a spin-glass model where Y,
or equivalently the independent Z and X*, play the role of
quenched disorder. The subtraction of the term TrV(Z) is
needed to ensure that the Hamiltonian remains of O(N), and
thus the free entropy stays O(1) in the thermodynamic limit
N — o0. In fact,

1
Hy(x) = %/ dt Tr|:V/<Z + %(X*X”‘T — xxT))
0

x (X*X*T — XXT)] = O(N), ®)

since the difference between the two projectors in the last line
is at most rank two and the related eigenvalues remain O(1).

The free entropy is intimately connected to the mutual
information between data and signal,

I(X*X*T;Y) = —Eylog Py (Y) + Ez log Cve—%TrV(Z)
= —N/y. )

Finally, let us recall some basic concepts from random ma-
trix theory. For a square symmetric random matrix M € R¥*V
with real eigenvalues {);(M)}, denote the associated resolvent
matrix

Gu(@) =@y —M)", zeC\{LMhw. (10

Notice that the resolvent matrix shares the same eigenvectors
with M. Assume that the empirical spectral density (ESD)
i)ﬁv ) of M converges weakly almost surely to a distribution

oM, 1.e.,
1 N N
~(N) —00
Pu’ = El 83,M) — M- 11
i

We can then define the Stieltjes transform associated with the
random matrix ensemble of M,

gm(@) :=Ep D ~ py. (12)

z—D’
gm(2) is well defined for z € C outside the support of py.
Under the aforementioned hypothesis on the ESD, the Stieltjes

J

F= extr{i, f dz[v%z) log (1 + 2B(2)) — 2
4mi r

2

AB(2)M (2)?

1 —Agz(2)

+2—ﬁ1m+%+ﬂiz,xlog/ dPX(x)exp(\/c?Zx— q—;vxz—i—n%Xx) —i—mm—i—%—ﬂ——
R

transform is closely related to the resolvent matrix through

1
Jim ﬁTrGM(Z)ZgM(Z) (13)

almost surely. Denote the inverse function of gy, (z) as £y (g)-
Then the R-transform of M is given by

1
Rm(8) == ¢m(8) — —. (14)

The resolvent and the R-transform play a crucial role in our
analysis since they encode all the relevant combinatorics of
the random matrix ensemble. As we shall see later, the re-
solvent allows us to define a new family of order parameters,
which are quadratic forms of replicas drawn from the poste-
rior with the resolvent mediating their product. In one shot,
this new family of overlaps encompasses all the new order
parameters that were introduced in [51], as well as additional
ones.

III. INFORMATION LIMITS THROUGH
THE REPLICA METHOD

In this section we analyze the spiked model with generic
rotationally invariant noise using the powerful replica method
from statistical physics of disordered systems [52,57]. This
method is nonrigorous, but it is believed to be exact for the
asymptotic analysis of a broad class of spin glass, inference
and learning models. Historically, one of the first proofs of
its exactness was given for the Sherrington-Kirkpatrick model
by Guerra [58] and Talagrand [59], and later remarkably re-
fined by Panchenko leveraging ultrametricity [60]. Moreover,
the replica symmetry assumption we are going to employ
during the analysis is intimately connected to concentration-
of-measure phenomena proven in broad generality in optimal
Bayesian inference [61,62]. We, therefore, conjecture that
the analysis below leads to asymptotically exact formulas.
For further discussions on the topic, we refer the reader to
Refs. [28,63-66].

We now state our main result from the information-
theoretic perspective. This comes in the form of a variational
formula for the free entropy. The physical meaning of some
of the order parameters entering these formulas is given in the
replica analysis of the next section.

Result (Information-theoretic limits: Replica free entropy
and minimum mean-square error). Let I' be an arbitrary con-
tour in the complex plane C that encircles all eigenvalues
of the matrix Y — xx7/N for any choice of x with positive
measure according to the prior Py. Let M and B be defined
by (35), (36), and let the random variables Z ~ N'(0, 1) and
X ~ Px as well as D, D' ~ pz i.i.d. from the noise asymp-
totic spectral density. The replica free entropy at the replica
symmetric level (which is exact in Bayes-optimal inference)
is given by

+2M (M (z) + 2é(z)B(z)}

1

2 2
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1 o 1 g—(@G+MmD)> 1 g —m?
1
+ o b dV @log (1 - agr(a) (s)
4mi r

with an extremization with respect to nine scalar order parameters (m, g, v, m, 4, v, m, g, v) and four functions (M, B, M, f?)
from C to C. The extremization selects the solution of the saddle-point equations, obtained by equating to zero the gradient
of the replica potential {- - - }, which maximizes it. After simplifications of the replica saddle-point equations, this can also be

written as

f = max £ om, i) — %]EDV/(D), (16)
22 V(D) — V(D) m? 1 m
RS AN ’ / / _ _Z —m) — —
P n, i) = == Ep py QD)QDH (D)H (D) — — =3 log(1 —m) — 5

i 1 1 1
+Ezx log / dPx (x) exp («/thx - %xz + thx) + 5Eplog H(D) — S Ep (m — - Q(D)2>H(D),
R —m

with
J(x) == AV (x) — AzEDNPZW, (18)
1 -1
H(x) = <— — - J(x)) , (19)
1—m
and Q(x) is the solution of
00 = i — —— 4225, VD=V D) by,
1—m x—D

(20

Finally, MRS represents the set of solution(s) of the following
fixed-point equations:

m=—Ryzy(1—m),
m = EzxX(x)s, (21)

where (-); denotes the expectation with respect to the pos-
terior of a scalar Gaussian channel with signal-to-noise ratio
ﬁ/l’

fdpx(x)e«/%Zerrhfo%xzf(x)
= 7 Z,X): = A A i)
(fO)a = (fNa(Z, X) [ dPy(x)eY/moxtimX =52

(22)

Recall that [ dPy(x)x* = 1. Let m, be the value of the
order parameter m picked by the above extremization, i.e., the
solution of (21), which maximizes fR5(m, 7). The asymptotic
minimum mean-square error corresponding to the Bayes-
optimal estimator (i.e., the posterior mean) E[X*X*T | Y] is
given by

1

Jlim mIEHX*X*T —EX*X*T | Y][g=1—-m. (23)
The above generic formula for the replica free entropy is
rather involved. Note that, fortunately, it is not needed to eval-
uate it in order to access the most interesting quantity, namely,
the MMSE. The latter is instead obtained by solving the much
simpler system (21). From (21) it is also clear that our equa-
tions reduce to the correct ones for Wigner noise. In that case

a7

(

the matrix potential is simply V (x) = x?/2, and hence the pre-
processing is J(x) = Ax — A%. Therefore, R;z_;2(1 —m) =
A2(1 —m) — A2 = —A%m. This is indeed already sufficient
to recognize the standard fixed-point equation for low-rank
matrix estimation (see for instance [26]). For this specific
setting, one can also reconstruct the free entropy, since under
Gaussian noise we can use the relation

ﬂ _ deS

2 m;
=Y o amy =" 24
an = an e Mm) = 24

Integrating then with respect to the SNR one gets back the
standard formula for the spiked Wigner model. For non-
Wigner noises, the above relation is no longer available, and
hence we cannot rewrite the free entropy in a simpler form.

The necessary simplifications to go from the replica free
entropy to these simpler equations will be explained in
Sec. III B.

A. Analysis by the replica method

We now provide the derivation of the previous result.
Before replicating the partition function we are going to re-
express it in a more amenable form. We start by extracting
the matrix entering the potential in the log-likelihood term
of the partition function using Cauchy’s formula. We will
then repeatedly use Sherman-Morrison’s formula to deal with
inverses of rank-one perturbations of matrices,

z — N dPX(X)e—%Tr(V(Y—‘ﬁxxT)—TrV(Z)) (25)

= [Exf,,%Trv(Z)—%Trﬁ. d2V (@)(ely Y+ 5 xxT)"!
N N

=Exexp| =TrV(Z) — —Tr @ dzV (z)
2 4rri r

Jouo- poemroro))

N1+ £xTGy(2)x

013081-4
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N
= CExexp (4 ?g
= CE,exp < N jgsz (z) log <1 + ixTGy(Z)X>)
4 N

=:CQY) (26)

vk XTGy (2)°x
TN ExTGy(ox

where we used 3,Gy (z) = —Gy (z)? and an integration by part

in the last equality. Here,

C :=exp (—];(TrV(Y) — TrV(Z)))

is a multiplicative constant yielding an additive constant in the
free entropy

1 1 1
—ElogZ = —ElogC+ —EInQ. 27
v log yitlogC+ ZEin 27)

We will compute it separately but for now we focus on the
computation of the latter term by the replica method.

We are now ready to replicate. We denote with the replica
index O the signal X* = x,. We then get that

EQ" =]E/l_[dPX(xa)
a=0
N - !/ aa
X exp o Zﬁdzv (z)log (1 + AB*“(2)) ],
a=1

where we introduce the following order parameters for 1 <
a < n, which are generalized data-dependent self-overlap
functions:

B*(z) := ]lvx;Gy(z)xa e C. (28)
As the expectation with respect to the signal (replica 0) is now
explicit, the remaining disorder expectation E¢ is with respect
to the noise Haar distributed eigenbasis only. Indeed, averag-
ing or not with respect to the eigenvalues of the noise does
not change the final result as long as its empirical spectral law
converges. We can thus consider the N-dependent sequence of
eigenvalues deterministic. We now introduce delta functions
in their Fourier form, together with the conjugate order pa-
rameters, in order to fix the B**(z) definitions. Jointly denote
DliB, B] := I—[Z:] DI[iB*, B*] for the differential element in
functional (path) integrals. The replicated partition function
[EQ" then becomes

/ DIiB, B | [ dPx (x,)
a=0
X exp ( Z% dzV'(z)log (1 + AB““(z)))
asn

x Eg exp (Z% dZBau(Z)(NBW(Z) - x!Gy (Z)Xa)>

asn

The z integral is on the contour I'. In order to perform the
quenched average over O we need to decompose explicitly the
data into signal plus noise. The last term can then be simplified

using Sherman-Morrison again,

X7Gy(@)x, _ 1 | 1Gz(2)x0x] Gz (2)
N TN (GZ(Z) + N(1 = £x]Gz(2)x)
_ X[Gz()% | MMy’ ’ (29)
N 1 —Agz(2)

where we introduce the main order parameters, i.e., general-
ized overlaps between replicas and the ground-truth (which,
by Bayes optimality, also corresponds to the generalized over-
lap between different replicas): for 1 < a < n,

1

§XiGz(x0 € C. (30)
Note that by definition and independence of signal and noise
we have

MP(z) =

1
Jim ZxGz(2)%0 = g2(2)- €2))

Let us make a remark concerning the generalized over-
lap function M“(z). By expanding in series the resolvent
around z — +00, we realize that it corresponds to the gen-
erating function for an infinite family of scalar overlaps
(]%,xg ZkXo)k>0- A similar observation can be made for B*(z),
which encodes (jlvngkxa)@o. The first few of these over-
laps are the order parameters identified in [51]. We note that
the analysis of [51] is restricted to low-degree polynomials
for the potential V. This is because the number of order
parameters—and, therefore, the number of replica saddle-
point equations—grows with the degree of the polynomial,
which quickly leads to intractable, noninterpretable, formu-
las. However, by identifying these generating function order
parameters, we can easily encode such infinite families of
scalars and write down compact equations. This is one key
mechanism that allows us to treat generic potential functions
V. Similar ideas have been used to study gradient-flow dy-
namics in [67-70].

We consider a replica symmetric ansatz: for all replica
indices 1 < a < n, we set

(B“(2), B“(2)) = (B(2), B(2)),
(M (2), M (2)) = (M(2), M(2)).
This implies the following simplifications for the

replicated partition function: letting this time D[---] =
DIiB, B, iM, M], we have

RS ansatz: {

EQ" = /D[ -Jexp <i\/nl % dzV'(z)log (1 + AB(z))

2
—Nn ?§ MM 7{ dzM ()M (2)
“T-2e20) Argz(2) r
+ Nn f dzB(z)B(z) + NnIRS>, (32)
r

where we also define

exp(NnIRS) =Egexp (

> f dz (B(Z)XTGZ(Z)Xa

asn

+M2)x] Gz(z)xa>> : (33)

013081-5



BARBIER, CAMILLI, XU, AND MONDELLI PHYSICAL REVIEW RESEARCH 7, 013081 (2025)

The above integral I®S is an instance of the inhomogeneous spherical integral defined and analyzed in [51]. A key property
of this integral is that it depends on the replicas only through their overlap structure, which, under a replica symmetric ansatz,
reads

XIxp/N=¢q, 1<a<b ,
RS ansatz: X Xa/N=m, 1<a<n, (34)
xIx,/N=v, 1<a<n

Let us define

M) = L M(z)dz 35)
2ni Jr z—x
By = RS B(z)dz (36)

2mi Jr 7—x

It is important to note that in general B(x) # B(x) and M (x) #* M (x) because they might not be holomorphic. Then, the result of
the inhomogeneous spherical integral reads [51]

vo g 1 1 §— (n+MD))>
IRS(q’m v, B M)_extr(,,lvq){mm—l—?—T—EEDlog(v— +ZB(D))—§IE __q_+2B(D)
L s — = 2= 4 o) 37)
———=loglv—q)— ——— .
2 BT O Ty T E

As before, the extremization picks the maximizing saddle point. Now, fixing the overlap definitions (34) using additional delta
functions in Fourier form, under the same replica ansatz for the Fourier conjugates, we reach after standard manipulations (see,
e.g., [51),

AB(2)M(z)?

fD[ ]/dqdqdvdvdmdmexp (i\’ fsz (z)log (1 + AB(z)) — Nn % =)
— A8z

A o - - N
+an dzM ()M (z) +an dzB(z)B(z) +NnIRS(q, m,v, B, M)+ Trlvf) — Nnmm
r r

Nn(n—1)
2

qq+Nlog/ HdPX(xa)exp<— —Zx +m2xoxa~|—q Z Xa)Cb)) (38)

R+t a=0 I1<a<b<sn
In order to decouple the replicas in the last term we use an Hubbard-Stratonovich transform: with Z ~ N (0, 1),

E(x )6 2 Za—1 a+m Y a1 X0Xa+q Zl<u<b<n XaXp ]EZ X0 (]E e LM 2+mx0x+fo)”

The final steps are then an integration with respect to the order parameters by saddle point, followed by an application of the
replica trick (assuming commutation of thermodynamic and replica limits for the saddle-point integration),

1 1 1
lim —EInQ = lim lim — InEQ" = lim lim — InEQ", 39)

N—o0 N—oon—0 Nn n—0N—->oco Nn

as well as a change of variables (2iM, 2miB) — (M, B).

The average limiting free entropy expression still requires us to compute LI In C. One may think it is irrelevant; however, it
is a function of the SNR and concurs to the value of the mutual information and some of its fundamental properties (for instance,
monotonicity and concavity). We can again use Cauchy’s integral representation and the Sherman-Morrison formula for V (Y),

iE logC = —lETr(V(Y) —-V(Z)) = —#]ETI% dzV (2)(Gy (z) — Gz(2))
N 2 4 r

x; G (2)Xo
=——FE¢dzv Z
Ari ff ¢ (Z)N (1 - 2x]Gz(2)x0)’

which in the large-N limit converges to

1 1 10.8z(z) 1 B
]VE IOgC — rmﬁdZV(Z)m 47‘[ dZV (2) IOg(l )ng(Z)) (40)

Combining everything in (27) yields formula (15).

013081-6
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B. Simplifying the saddle-point equations

In this section we show how to go from the variational
formulation (15) for the free entropy, to a simpler for-
mula (16), (17) with only two order parameters. Before giving
the complete set of saddle-point equations derived from (15),
we stress that the physical meaning of some order parameters
makes it possible to fix directly their values to their expecta-
tion (assuming concentration), obtainable using the Nishimori
identities, see [[26], Proposition 15] for a proof.

Nishimori identity. For any bounded function f of the sig-
nal X*, the data Y and of conditionally i.i.d. samples from the
posterior x/ ~ Pyjy(- 1Y), j = 1,2, ..., n, we have that

E(f(Y, X", x%, ..., x") = E(f(Y,x', x%, ..., x"Y),

where the bracket notation ( - ) is used for the joint expectation
over the posterior samples (x/) j<n» and IE is over the signal X*
and data Y.

To begin with, recall that we fixed v to be the squared
norm of a sample from the posterior rescaled by the number
of components. Assume that concentration effects take place,
i.e., that the order parameters of the problem are limiting val-
ues of self-averaging quantities, as they should in this optimal
setting [61], and denote

GZx+inxX — #xz
(Flay o= LRI T I@
j‘ dPy (x)e\/EZ,H—mxX— Hox

Using the Nishimori identity, we have that

1 1
v=lim =E(|x||*) = lim —E|X*||>=1. (42)
N—oo N N—oo N

We have ¥ = 0 because by Bayes optimality the constraint
v = 1 is already enforced by the prior without the need of a
delta constraint. The Nishimori identity also imposes

m=q. @3)

Moreover, B(z) is also fixed by the Nishimori identity (below
N 1is large and equalities are understood up to a vanishing
correction as N — 00),

B(z) = %E(XTGY(Z)X>
1
= JEXTGr (X

1 A Gz()X*X*TG
~ lpx| G+ 2 Z(Z)L) z(2) |y
N N 1= 2XTG (X"

rgz(2)®
=gz(z) + 1= 2@
_ 82(2)
S 1=agz(@)
where we used the Nishimori identity in the second equality,
Sherman-Morrison in the third one, and

(44)

1
SEXTGZ0X = g2(2)

in the fourth (by independence of the signal and noise).
We now state the complete set of saddle-point equa-
tions obtained by canceling the gradient of the replica free

entropy potential {---} in (15) with respect to the order pa-
rameters. The parameter with respect to which the derivative is
computed in order to obtain a certain saddle-point equation is
reported in the round parenthesis. Let

H(x) = (® —§+2B(x))", (45)
R(x) := G — v(m + M(x))>. (46)

Let D ~ pz be drawn from the spectral distribution of the
noise. Then the saddle-point equations read

(m): m = —Ep(m + M(D))H (D)
(§): q=—EpH(D)’R(D)
(@) : v=EpH(D)(1 — H(D)R(D))

m
(m) : —ﬁ1+ﬁ1+1—=0

-9
@:4—q= 17—
—q
(w)y: v=1
. AM (2)*
B): Bz) — ———
(B): B(z) 1= 7g,(2)

1
= _IED|:D (H(D) — R(D)H(D)ﬂ
—Z

. 1 -
(M) : M(z) = IED[D —m+ M(D))H(D)}
o AV(@) Ao
(B) : TESYTA) +2B) =0
WBM(z) .
M): - =" 4t M@z =0
) 1 —2gz(2) M@

where we usedv = 1,0 = 0.
We can now simplify. Firstly, from (#71), (§), and (43), we
have

m=q=EX(x), and m=4g. “@7
Then, from (m) and (¢), we have
m
g=m=m—- ——. (48)
1—m
From (g) and (v), we have
m=1—EpH(D). (49)
From (B) and (M), we have
N A
B(z) = —EV’(Z)(I — 18z(2)), (50)
M(z) = =)V (M (2). (51)

Let us keep in mind that B(z) is not holomorphic, and M(z)is
in general not holomorphic either.
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The complex integrals in B and M can be performed by the
residue theorem,

. 1 d A
B(x) = _?ﬁ : [—EV’(Z)(l - kgz(z))]
r

2ni Jrz —x
A, 1 dz [, V()
=—=V — A E
2 (x)+4m'£z—x|: DD—J
A A2 V'(x)—-V'(D)
==V —Ep——= 52
V@) + SRy (52)
and similarly for the other function
- 1 dz
M) =—5—= ¢ — V' (@M (@)
2ni Jrz—x
1 dzV'(z A2 -
- @ (m + M(D))H(D)
2ni Jr z—x z—D

=A’E

\"4 — V(D -
D(’C)—D()(m +MO)HD),  (53)

where we used (M), (50), and (51).
Finally, let us denote

J(x) := —2B(x), (54)

which leads to (18) according to (52). Recall that v = 1 ac-
cording to (v). Then, the definition of H(x) and (48) lead
to (19). Combining (19) with (49) gives the crucial formula
for the signal-to-noise ratio 7 of the effective Gaussian scalar
channel associated with the model,

m = _RJ(Z)(I — m) (55)
This forms the fixed-point equations together with
m = EX (x), (56)

after noticing that the posterior mean (41) simplifies to (22)
when § = iz and ¥ = 0. The above analysis gives the simpli-
fied saddle-point equations (21).

To obtain (17), we simply represent all order parameters
through m, /i and Q(x) := m + M (x), while (20) is obtained
from (53). We also simplify two contour integrals as follows.
The first integral is

— L % dzM ()M (z)
2mi r

_ 1 2,7 2
=— @ dzA V' (M (2)
27Tl r

Q(D)Q(D')H(D)H (D")
(D —-2)(D' —2)

V(D) - V(D)
D—-D

with D, D' i.i.d. from p; and where we have used (51), (M)
and the residue theorem. The second integral is

_ 1 VA
=-— Q dzA"V ()Ep
2mi r

= AEQ(D)Q(D')H(D)H (D)

’

L, f dzB(2)B(z) = —L. f dzV'(2)gz(2)
2mi Jr dmi Jr

- —%EDV’(D), (57)

where we have used (50) and the residue theorem.

Finally, notice that at the saddle point, specifically us-
ing (44), the first term in the free entropy (15) is precisely

L f d2V'(2)log (1 — Agz(2)). (58)
47'[[ r

which cancels with the constant evaluated in (40).

C. Relation to a Gaussian surrogate model

We can notice that the replica saddle-point equations (as
well as the TAP equations defined in the next section) are
closely related to those appearing in the Gaussian noise case.
In fact, the replica saddle-point equations for Gaussian noise
(with SNR 1) read as follows:

m=xm, m=EX{x). (59)
Therefore, by choosing
A= -Rizy(1 —my)/m,

where m,, takes the value at the extremizer of (21), the Gaus-
sian model and the rotational invariant model share the same
fixed point and, thus, the same minimum mean-square error
(but not necessarily the same mutual information).

IV. THOULESS-ANDERSON-PALMER FREE
ENTROPY AND EQUATIONS

Along the lines of [51], we employ here the adaTAP ap-
proach [43,71-74] as an alternative to the replica method.
AdaTAP offers the advantage of expressing the free entropy
as a variational principle over an extensive number of pa-
rameters, which can be interpreted as site marginal means
and variances for every variable in the system, namely signal
components in our setting. Strictly speaking, before our study,
the validity of this approach was verified only for spin-glass
models containing at most two-body interactions, mediated by
rotationally invariant matrices. In contrast, our model is not
quadratic, but the precise point of the first steps of the replica
computation is to make it quadratic. Hence, we take again as
a starting point (recall that the notation Ey means integration
against the prior P2"V),

N A
Q = Eyexp (4— f dzV'(z)log (1 + —XTGy(Z)X))
Tl Jr N

= Ex f DIB, iB] exp (% 7§ dzV'(z)log (1 + AB(Z)))
r

i
X exp < ?g B(z)(NB(z) — XTGy(Z)X)dz>
I

= /D[B, iBlexp (% % dzV'(z)log (1 + AB(2))
r

i
+N ?é B(z)B(z)dz)Ex exp (%XTJ (Y)X>, (60)
T
where
J(Y) = -2 yg B(2)Gy (2)dz
r

will end up being equal to (18). The last factor in (60) is pre-
cisely a two-body (quadratic) model, whose partition function
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is therefore computable via the adaTAP approach. Define
9(Y) := log Ex exp (1xTJ(Y)x). (61)

Then, following Opper and Winther’s prescription [43], the
TAP representation of the auxiliary free entropy ¢(Y) reads

N

Vi cio; —logo; — 1

orap(Y) = Z [Aimi + 3(0,- +m?) + +
i=1

: 1
+log / dPX(x)e“szz] + 5mTJ(Y)m

— % log det (diag(c) — J(Y)), (62)

where m = (m;)i<y, ¢ = (¢i)igy and an implicit extremiza-
tion with respect to the parameters A;, m;, y;, 0;, ¢; is intended.
Since we are interested only in leading terms, we can carry out
some simplifications of the above.

First of all, a common assumption in the thermodynamic
limit (see [43,44]) is that of homogeneous variances o; = o
together with y; = y, which in turn yields ¢; = c. Let us now
focus on the determinant term in ¢ap, wWhich is supposed to
reconstruct the Onsager reaction term in the TAP equations.
We argue that at leading order it does not depend on the
spike, nor on the specific realization of Z. The leading con-
tribution is determined just by the spectral distribution of Z.
Assume J(Y) is a regular enough nonlinearity applied to the
eigenvalues of a matrix whose spectrum consists of a bulk of
eigenvalues inherited by Z, plus possibly one spike detached
from the mentioned bulk. The nonlinearity changes the shape
of the spectrum, but it preserves the bulk-plus-spike structure.
A spike of one or few eigenvalues cannot alter the spectral
distribution of the overall matrix. From these considerations
we get

% log det (diag(c) — J(Y)) =~ % logdet (cly — J(Z))

~ g]E log(c —J(D)), (63)

where E is intended over D, distributed according to the
asymptotic spectral density of the noise. Hence, the TAP rep-
resentation of the overall extensive free entropy of the model
at leading order in N reads [equalities are up to a constant and
a Oy (1) correction]

N

—1 -1
logQ2 = eXtr{ Z |:)L,~ml~ + g(a —i—mlz) + %
i=1

+log/dPX(x)e szz} _ %VIElog (c — J(D))
1 N ,

+-m"J(Y)m+ — % dzV'(z)log (1 + AB(z))
2 4ri Jr

N 7§ B(Z)B@dz}. (64)
T

Extremization is now intended with respect to A;, m;, ¥, 0, ¢
but also the two functions B, B. As anticipated, extremizing
with respect to B and B only results in matching the coupling
matrix J(Y) with the preprocessed matrix using (18).

We can now write the TAP equations. Define for future
convenience the Bayes “denoiser”

(65)

Extremization with respect to ¢ yields o = g;z,)(c), namely

1
Cc = ; + RJ(Z)(O'). (66)

Recall that we are looking for equilibrium configurations that
satisfy Nishimori identities, so in the limit we must have

1 N
Za—i—m 1, thatiso =1—4, (67)
i=1

where § := 1 Y,

gets

m?. Cancelling the o derivative, one then

1
y=-—-c+ == —Ryz)(0) = —Ryz)(1 — §). (68)

Finally, extremizing with respect to A; and m; yields the final
TAP equations for our model,

m=(J/(Y)m+ym,y), y=-Ryz(l-q). (69

where 7 is applied componentwise to the vector in the first
entry.

The outcome of this analysis is a fundamental equiva-
lence between the original model with nonlinear likelihood
governed by V and a model quadratic in x, with effective
interaction matrix J(Y). The equivalence is information-
theoretic: the two models have asymptotically the same free
entropy and, therefore, mutual information and minimum
mean-square error. The main advantage of this equivalence
resides in the fact that since the effective model is quadratic,
we are able to employ known analytical and algorithmic ap-
proaches in the next section.

Algorithm (Optimal data pre-processing, and TAP iter-
ations). Define the optimal preprocessing function J(x) as
in (18). Let m® = \/NU[(Y) with v1(Y) the unit norm first
principal component of Y (or possibly another choice of ini-
tialization). For ¢+ > 1 the TAP iterations are defined as

m' =mm' + (1 - (Y)m' +y'm'~', y),
. o L lm?
y = _RJ(Z)(l —q ), q = N s (70)

where 7 is defined in (65), we use a damping parameter T €
[0, 1) for improved numerical stability, and Rz, is the R-
transform of the asymptotic spectral density of J(Z).

V. FROM TAP EQUATIONS TO AN EFFICIENT
ITERATIVE ALGORITHM

Now that the information-theoretic analysis has been
performed through the replica method, we switch towards
algorithmic aspects and focus on how to efficiently match the
performance predicted by our theory, based on the Thouless-
Anderson-Palmer formalism [43,75,76].
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A. TAP iterations

We can now state our second main result (Algorithm
above), which is of an algorithmic nature. This comes in the
form of a Bayes-optimal preprocessing function to be applied
to the data matrix, and an efficient iterative algorithm exploit-
ing it, in order to reach a solution of the TAP equations.

We draw attention to the time indexing in the algo-
rithm (70). The update rule is inspired by that of a usual AMP
algorithm, and as supported by our numerical experiments,
it proves to be effective to match the results predicted by
the replica analysis. Despite its similarity, with an evident
candidate Onsager reaction term y'm’~! (70) cannot be re-
ally regarded as an AMP algorithm per se, since we have
no theoretical guarantee that the components of the iterates
J(Y)m' 4+ y'm’~! have empirical Gaussian statistics.

B. Numerical experiments

We refer the reader to [77] for the code related to this
section.

To verify the match between our replica theory and al-
gorithm, we choose four concrete examples for the noise
potential. (i) A quartic potential V(x) = yx*/4 with y =
16/27. Its eigenvalue distribution is given by

1
pz(x) = 2—<2a2y + yx* ) 4a? — 12, (71)
T

where a = 3/4. (ii) A sestic potential V (x) = £x°/6 with & =
27/80. Its eigenvalue distribution is given by

0z7(x) = %(6&45 +2a%Ex? + ExMV4a2 — X2, (T2)

where a = /2/3. In both cases, the constants are chosen
in order to enforce unit variance for the spectral densities.
These two cases are (among) those studied in the previous
paper [51], the sestic potential being the highest degree of
a polynomial that the techniques in the reference allowed
to study. With the present contribution we can now analyze
arbitrary potentials, even nonpolynomial ones such as (iii)
eigenvalues following the Marchenko—Pastur distribution,

I VO —0&—2)

2mo? ax

where A+ = o%(1 + /a)? and o = 0.2. The associated po-
tential is given by V(x) = [(1 — 1/a)logx + x/a]/o>. Fi-
nally, we consider (iv) eigenvalues following a standard
normal distribution truncated between [—5, 5]. Its potential
has probably no analytical expression, so we numerically cal-
culated its derivative through [78]

pz(x) = (73)

V/(x) =2PV. / pZ(di) , (74)

X —

where P.V. denotes the Cauchy principal value. Thus, we
are able to calculate J(Z) and its R-transform. In all cases,
the noise is properly normalized such that E(D — ED)? = 1,
which is also how we determine o2 in (73). We consider
four choices for the prior Px: (i) a standard Gaussian prior
N(0,1), (ii) a Rademacher prior 18_; + 16, (iii) a two-
point prior €28/ + (1 — )8y with € = 0.125, and (iv) a

sparse Rademacher prior (1 — €2)8y + %(8,1/€ + 8_1,¢) with
e =+023.

The algorithm uses a PCA initialization [48,49] that can be
obtained efficiently via the power method. For the normally
distributed eigenvalues and two-point prior signals; however,
we manually choose an initialization having positive correla-
tion 4/0.5 with the ground truth for numerical stability. In all
experiments, we use N = 2000 and show the results averaged
over 10 trials and the corresponding standard deviation. In
some cases, about 20% of the trials do not converge to the
right fixed point, which we exclude when gathering statistics.
Moreover, we fix the Onsager coefficient to its fixed point
value predicted by the replica theory for numerical stability.
We use a damping 7 = 0.9 in all experiments.

Figures 1 and 2 show that in all successful cases, our al-
gorithm approaches the Bayes-optimal performance predicted
by our replica-based theory. We therefore conjecture that the
fixed-point performance of our algorithm matches that of the
minimum mean-square error estimator, when no statistical-to-
computational gap is present.

In Fig. 1, we also report the performance corresponding to
the spectral PCA initialization alone, as predicted by [10]. As
noticed in [51] for low degree polynomial potentials, PCA re-
mains Bayes optimal when the prior of the signal is Gaussian
(or more generically rotationally invariant), regardless of the
noise eigenvalue distribution.

We further note that, as can be seen from Fig. 1, a
Rademacher prior leads to better numerical stability, owing
to a more attractive fixed point for the dynamics. In fact, the
Rademacher prior—being more informative—constrains the
signal estimate more strongly than a Gaussian prior.

Next, we test our TAP algorithm on a popular
dataset in bioinformatics—the International HapMap Project
(Hapmap3) [54], which comprises 142186 single nucleotide
polymorphisms (SNPs) for 1397 individuals. In our exper-
iments, we randomly select 3000 SNPs and compute the
corresponding covariance matrix twice. We calculate the dif-
ference of the two sample covariance matrices as the noise
matrix. Then, we extract eight principal components that cor-
respond to outlying eigenvalues. We also center and scale the
matrix such that the eigenvalues have zero mean and unit
variance. We then plant a spike constructed from a random
vector with Rademacher law.

We compare with the approach of the concurrent paper [79]
that focuses on the same setting and develops a new class
of AMP algorithms, together with a rigorous state evolution
result for them. A fixed point of that AMP is shown to match
the replica predictions of [51] and, in fact, we verify that such
a fixed point matches the replica predictions we make in the
present paper as well (see the Appendix). Therefore, the algo-
rithm of [79], just as the one we propose here, is conjectured
to be Bayes optimal when no statistical-to-computational gap
is present.

In Fig. 3, we report the performance of the optimal degree-
D lifted OAMP algorithm [79] with PCA initialization, as
well as that of our TAP algorithm with PCA initialization
or sufficiently informative initialization (correlation J/0.9).
The optimal degree-D lifted OAMP algorithm is a suboptimal
algorithm proposed in [79] for real data because it only relies
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1.01 — Rad replica 1.0 — Radreplica
—— Gauss replica —— Gauss replica
0.8 1 ---= PCA 0.8 ---- PCA
¢ RadTAP ¢ RadTAP
w 0.6 1 Gauss TAP w 0.6 Gauss TAP
= =
0.4 0.4 1
0.2 1 0.2 1
0.0 1 0.0 1
1 2 3 4 1 2 3 4
SNR SNR
1.2 1 -
— Rad replica 1.0
1.0 1 —— Gauss replica
---= PCA 0.81
0.81 ¢ RadTAP
v 0.6 1 Gauss TAP g 0.6
0.4 1 0.44 —— Radreplica |
—— Gauss replica
0.2 021 ¢ RadTAP
¢  GaussTAP
0.0 1 0.0 1
1.5 2.0 2.5 3.0 1.0 15 2.0 2.5 3.0
SNR SNR

FIG. 1. The performance of the TAP iterations (dots) matches well the replica prediction for the minimum mean-square error (solid lines),
for various distributions of noise eigenvalues (in different plots) and for two signal priors (Gaussian in red and Rademacher in blue). Error bars
correspond to the standard deviation over 10 trials. (Top left) Quartic potential. (Top right) Sestic potential. (Bottom left) Marchenko—Pastur
distribution of eigenvalues. (Bottom right) Truncated normal distribution of eigenvalues. The green-dashed lines (which overlap perfectly the
red solid lines) denote the theoretical performance of spectral PCA as predicted by [10]. We do not include the performance of spectral PCA
for the normal distribution of eigenvalues due to numerical instabilities.

on moments of the noise eigenvalues. Here, the MSE is that using the empirical eigenvalue distribution of the noise matrix.
of the signal X*, instead of the spike X*X*T, because the Specifically, we first calculate the eigenvalues of the data ma-
state evolution of OAMP is for the MSE of the signal. The  trix, and interpolate the histogram to obtain its spectrum p.
corresponding MMSE predicted by the theory is thus 1 — m,. From the spectrum, we can calculate V' through the Hilbert
To implement TAP, we calculate the preprocessing function transform (74). The preprocessing function J can then be

—— quartic replica
1.25 1 . 1.01
—— MP replica
1.00 1 ¢ quartic TAP 0.8
¢ MPTAP
0.6 1
0.75 1
0.4 . .
0.50 1 — quartic replica
0.24 —— MPreplica
0.251 0.0 ¢  quartic TAP
0.00- ' ¢ MPTAP
0.3 0.4 0.5 06 0.7 0.8 05 10 15 20 25 30

FIG. 2. The performance of the TAP iterations (dots) matches well the replica prediction for the minimum mean-square error (solid lines),
for two sparse priors (in different plots) and two distributions of noise eigenvalues (quartic potential in red and Marchenko—Pastur distribution
in blue). Error bars correspond to the standard deviation over 10 trials. (Left) two-point prior. (Right) sparse Rademacher prior.
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1071
I \~\
107 L}
g ---- MMSE
¢  TAP informative init.
10734 TAP PCA init. )
¢ OAMP,D=2
¢ OAMP,D=4
1074 1+ : : : |
2.0 2.2 2.4 2.6 2.8

SNR

FIG. 3. Comparison between the TAP algorithm and the optimal
degree-D lifted OAMP algorithm [79] on noise matrices derived
from the Hapmap3 dataset and Rademacher signals. Solid lines cor-
respond to the state evolution of the optimal degree-D lifted OAMP
algorithm and the dashed black line is the replica prediction for the
MMSE.

obtained numerically from V' according to (18). Finally, to
calculate the R-transform of J, we solve

1

B im) T

g (75)

via bisection to obtain ¢ (g), and then we have R(g) = ¢(g) —
é. The plot shows that our TAP algorithm with sufficiently
informative intialization performs closely to the replica
prediction of the optimal MSE, while our TAP algorithm with
PCA initialization performs similarly to the optimal degree-4
lifted OAMP algorithm. It is left as future work to overcome
the gap between practical algorithms and replica predictions.

Finally, the equivalence between the models with struc-
tured and Gaussian noises (see Sec. IIIC) does not only
hold at the level of static (thermodynamic) properties. Indeed,
Fig. 4 numerically verifies that the gap between the TAP

1.0 ===-=- MMSE
—— quartic

0.8 —}— Gaussian
W 0.6
=

0.4 1

0.2 1

0 20 40 60 80 100
SNR

FIG. 4. Comparison between the TAP iterations for the quartic
noise model (with A = 2) and its information-theoretic equivalent
Gaussian surrogate model. The error bars represent the standard
deviation computed over 10 trials. The dashed black line represents
the MMSE predicted by the replica theory.

iterations run for the Gaussian model and those run for the
rotational invariant model is small.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper we have studied the information-theoretic
limits of a spiked model through spin-glass techniques. Dif-
ferent from the previous literature, we no longer consider the
quenched noise matrix Z as made of independent elements,
but we introduce arbitrary correlations among them as long as
the global law of the matrix remains rotational invariant. The
replica and adaTAP approaches prove to be effective, when
properly combined with the correct random matrix theory
objects. Specifically, the use of the Cauchy integral transform
makes the resolvent of the noise matrix appear naturally. This
step is crucial as the resolvent encodes all the relevant com-
binatorics of the random matrix ensemble, and in particular
it allows us to define all at once the correct functional order
parameters that were missed in the previous paper [51], which
was indeed limited to polynomial type of matrix potentials.

Our replica predictions for the information-theoretic limits
are matched both by the Orthogonal Approximate Message
Passing (OAMP) algorithm of [79] and by our proposed
update schedule for the TAP equations. This leads us to con-
jecture the Bayes optimality of both methods. The resolution
of this conjecture—as well as a rigorous state evolution anal-
ysis for the TAP approach—are exciting avenues for future
research.
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APPENDIX: EQUIVALENCE BETWEEN THE REPLICA
SADDLE POINT EQUATIONS AND THE STATE
EVOLUTION IN [79]

In [79], the state evolution reads (without time indices)
1

- dmmse(w)

-1 (= 5m05)) Elmre, @
©= Plem)+0 Plemy+o ]

where D ~ pz as in the main text and

(x) :=(1 — TAH(x))? + 7222 p3(x).

1, (A1)

(A3)

Here, H(x) denotes the Hilbert transform of pz(x)
and dmmse(w) represents the divergence-free minimum
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mean-squared error (DMMSE) of a Gaussian channel with
prior Py and signal-to-noise ratio v/w/(1 — @). The DMMSE
is related to the MMSE of the same channel through

1 1 w

= — (A4)
dmmse(w) mmse(w) 1—w
for w < 1 ([[79], Lemma 2]).
Denote
w
m:= 1 — mmse(w), m:=——, (AS)
l—w
from which we have the first replica equation of (21)
m = EX (x). (A6)
From (A1) we have
0= ! ! (A7)
Cl-m l-w
From (A2) we have
1 1-—
ED[ } - © (A8)
oD)+ 6 1401 —w)
leading to
1
Ep|l ———|[=1—m, A9
D[¢<D> + 9] (A

or equivalently

0 — ﬁ =R_gz)(1 —m). (A10)
Using (A7), we obtain
M= —Ri_gpz)y(1 —m). (A1l)
The relation between ¢(-) and J(-) is given by
1 — ¢(x) = 2 H(x) — A [m>H? (x) + p7(x)]
=AV'(x) — ,\ZEDM (A12)

- D ’
where the last equality is owing to 2r H(x) = V'(x), see (74)

and [[79], Lemma 10]. Notice that the right-hand side
of (A12) is exactly J(x), and thus we recover

= —Ryz) (1 —m), (A13)

which is the second replica saddle-point equation in (21).
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