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Abstract
We consider two Hamiltonians that are close to each other, H1 ≈ H2, and analyze the
time decay of the corresponding Loschmidt echoM(t) := |〈ψ0, eit H2e−it H1ψ0〉|2 that
expresses the effect of an imperfect time reversal on the initial state ψ0. Our model
Hamiltonians are deformed Wigner matrices that do not share a common eigenbasis.
The main tools are new two-resolvent laws for such H1 and H2.

Keywords Quantum dynamics · Loschmidt echo · Matrix Dyson equation

Mathematics Subject Classification 60B20 · 82C10

1 Introduction

Recent quantum technological advances put quantum mechanical time reversal pro-
cedures in the focus of both experimental [25, 32, 37, 38, 40, 42] and theoretical [16,
17, 30, 31, 33, 43–45] research (see also the review [29] for a concise overview).
The basic physical setup consists of an initial (normalized) quantum state ψ0 and two
self-adjoint Hamiltonians close to each other, H1 ≈ H2, each governing the evolution
of the system during a time span t . First, the initial stateψ0 evolves under the Hamilto-
nian H1 from time zero to t , resulting in the state ψt = exp (−iH1t)ψ0. Then, during
a second evolution between t and 2t , one applies the Hamiltonian H2 backward in
time, equivalently the Hamiltonian −H2 in forward time, aiming to recover the initial
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state ψ0. A schematic summary of this process is given by

ψ0
t−−−−→
H1

ψt
t−−−−→−H2

ψ ′
0 . (1.1)

Note that if H2 = H1, the restoration of ψ0 would be perfect, ψ ′
0 = ψ0 for any time

t . However, in realistic setup the second Hamiltonian is never a perfect copy of the
first one: the nonzero difference between H1 and H2 regularly leads to an imperfect
recovery ψ ′

0 of ψ0 and the discrepancy also depends on time.
This imperfection in the time reversal is captured in the scalar overlap function [28,

45, 49] (sometimes also called fidelity amplitude [27, 28, 50])

S(t) = S
(E0)
H1,H2

(t) := 〈
ψ0, e

iH2te−iH1tψ0
〉

(1.2)

where it is assumed that the initial state is supported1 around its energy 〈ψ0, H1ψ0〉 ≈
〈ψ0, H2ψ0〉 ≈ E0. The central object of our paper is the absolute value square of the
overlap function

M(t) = M
(E0)
H1,H2

(t) :=
∣∣∣S(E0)

H1,H2
(t)

∣∣∣
2

. (1.3)

This was coined the fidelity, e.g., by Gorin et al. [28], or the Loschmidt echo by Peres
[41] and Jalabert–Pastawski in [34] owing to its connection to the classical Loschmidt’s
paradox of time reversibility [6, 39].

In addition to (1.2)–(1.3), we will also consider an averaged overlap function and
an averaged Loschmidt echo, defined as

S(t) = S
(E0,η0)

H1,H2
(t) := Av

[
S

(E)
H1,H2

(t)
]

and M(t) = M
(E0,η0)

H1,H2
(t) :=

∣∣∣S
(E0,η0)

H1,H2
(t)

∣∣∣
2
,

(1.4)
respectively. In (1.4), by Av[...], we denoted an averaging over initial states with
energies E in a small energy window of size η0 around E0 (see (2.5) below for a
precise implementation of this concept).

The Loschmidt echo is a basic object in the study of complex quantum system
and has attracted considerable attention in different areas of research, e.g., quantum
chaos [30, 31, 33, 34, 41, 45], quantum information theory [24, 26], and statistical
mechanics [16, 17, 43, 44]. The Loschmidt echo, as a measurable physical quantity, is
observed and predicted to follow a quite universal behavior as a function of time (cf. the
discussion of ourmain results around (1.6)–(1.7) below). On a high level (see [29]), the
reason for the robust universal features is that the subsequent forward and backward
evolutions act as a “filter" for irrelevant details. The typical behavior of the Loschmidt
echo can be structured in three consecutive phases (see Fig. 1, cf. also [29, Figure 4]):
After an initial short-time parabolic decay, M(t) ≈ 1 − γ t2, the Loschmidt echo
exhibits an intermediate-time asymptotic exponential decay2, M(t) ≈ e−�t . Finally,

1 This means that when writing ψ0 = ∑
n c

(i)
n φ

(i)
n in the eigenbasis {φ(i)

n }n of Hi , only coefficients c(i)n
corresponding to an eigenvalue close to E0 are non-vanishing.
2 In the very extreme case, when the difference H1 − H2 is small compared to the local eigenvalue spacing

one observes Gaussian instead of exponential decay, M(t) ≈ e−γ t2 (see, e.g., [29, Section 2.3.1])
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Fig. 1 Illustrated is the typical behavior of the Loschmidt echo in its three consecutive phases: Short-time
parabolic decay, intermediate-time asymptotic decay, and long-time saturation. In both of our main results
(1.6)–(1.7), the decay parameters γ and � generally satisfy γ ∼ � ∼ N−1Tr(H1 − H2)

2; cf. (1.8)

at times t beyond the so-called saturation time ts ∼ (log N )/�, where N is the
(effective) Hilbert space dimension, it saturates at a value inversely proportional to N ,
i.e.,M(t) ∼ 1/N . We restrict our study to the first two regimes. For the explanation of
technical issues related to the third regime, we refer to the discussion below Theorem
2.4.

There are several ways to determine the behavior of the Loschmidt echo in a given
system (see the review [29]): One standard option is to employ semi-classical approxi-
mations [34, 49, 52], another one is numerical evaluation [19, 47, 48]. Here, following
E. Wigner’s original vision of describing chaotic quantum systems by large random
matrices [51] and the Bohigas–Giannoni–Schmit (BGS) conjecture [5] (see also fur-
ther extensive physics literature [7, 8, 15, 17, 18, 27, 35]), we model (part of) the
Hamiltonian(s) H1, H2 by Wigner random matrices with independent entries. In this
setup, we can give a mathematically rigorous and quite precise analysis of certain
features of the Loschmidt echo; some of them have been predicted in the physics
literature.

Before defining the precise model, we first discuss where the name echo for M(t)
comes from. Fix any time t > 0 and consider the two-step process (1.1). For s ∈ [0, 2t]
denote the state at the intermediate time s byψs , namely,ψs = e−isH1ψ0 for s ∈ [0, t]
and ψs = ei(t−s)H2e−it H1ψ0 for s ∈ [t, 2t]. Comparing this notation to (1.1) we see
that ψ2t = ψ ′

0. Denote further the (squared) overlap of ψ0 and ψs by

Pt (s) := |〈ψ0, ψs〉|2. (1.5)

This quantity depends also on ψ0 and H1, H2, but we suppress this dependence in
notations for simplicity. We call Pt (s), s ∈ [0, 2t], the Loschmidt echo process.
Clearly,Pt (0) = 1 andPt (2t) = M(t). Later in Corollary 2.5 we show thatPt (t) 	
Pt (2t) under suitable assumptions, wherePt is an averaged version ofPt defined in
(2.9a)-(2.9b). This result means that typically the original complete overlapPt (0) = 1
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Fig. 2 [Echo feature] Schematic behavior of the overlapPt (s) from (1.5) for s ∈ [0, 2t]. At the midpoint,
s = t , typically Pt (t) 	 Pt (2t), which indicates a partial recovery between time t and 2t of the original
complete overlap at time s = 0

is partially recovered at the final moment of time 2t , though at the intermediate time
t it is much smaller than Pt (2t) (see Fig. 2).

As our main result, we rigorously prove the decay of the Loschmidt echo for two
different physical settings (called Scenario I and Scenario II), which we now describe
somewhat informally (see Sect. 2 for more precise statements containing all the tech-
nical details).

For our first result (Scenario I, Theorem 2.4), we consider two deformed N × N
Wigner matrices Hj = Dj +W , j = 1, 2, with bounded deterministic Dj , satisfying
D1 ≈ D2, and W a (common) random Wigner matrix. This setup corresponds to an
arbitrary deterministic system modeled by the Hamiltonian D1 and the time reversed
Hamiltonian D2 nearby,which are both subject to an overallmean-field noise described
by the same Wigner matrix W throughout the whole echo process. In this setting, for
an energy E0 in the bulk of the density of states of both H1 and H2, we consider the
averaged Loschmidt echo (1.4). Our result in Theorem 2.4 then shows (i) short-time
parabolic decay and (ii) intermediate-time asymptotic decay of the form

M(t) ≈
{
1 − γ t2 for t 	 1

e−�t for 1 	 t � �−2.
(1.6)

Both decay parameters satisfy γ ∼ �2 and � ∼ �2, where � := 〈(D1 − D2)
2〉1/2,

and depend on E0 and the density of states at E0. Here, we introduced the notation
〈A〉 := 1

N Tr A for any N × N matrix A. We point out that the quadratic relation
� ∼ �2 is in perfect agreement with Fermi’s golden rule.

For our second main result (Scenario II, Theorem 2.10), we consider a physically
different situation: Now the two Hamiltonians3 are H1 = D and H2 = D + λW
with the same deterministic D, a standard Wigner matrix W and a small parameter

3 Within Theorem 2.10, the Hamiltonians H1 = D and H2 = D + λW will be denoted by H0 and Hλ,
respectively.
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|λ| 	 1. The normalization is chosen such that E〈W 2〉 = 1. Hence, the imperfection
along the backward evolution is modeled by a small Wigner matrix λW indicating
an additive noise (see, e.g., [16, Eq. (31)] or [17, Eq. (1)]). For a normalized initial
state ψ0 ∈ CN supported in the bulk of the density of states of both H1 and H2 with
energy 〈ψ0, H1ψ0〉 ≈ 〈ψ0, H2ψ0〉 ≈ E0, we now consider the usual Loschmidt echo
(1.3) without averaging. Similarly to (1.6), our result in Theorem 2.10 then shows (i)
short-time parabolic decay and (ii) intermediate-time asymptotic decay of the form

M(t) ≈
{
1 − γ t2 for t 	 1

e−�t for 1 	 t � λ−2.
(1.7)

Here the decay parameters satisfy γ = λ2 and � = 2πρ0(E0)λ
2, where ρ0 is the

(limiting, as N → ∞) density of states of D. Finally, we note that since E〈W 2〉 = 1,
in both of our scenarios (1.6)–(1.7) the decay parameters γ and � satisfy the general
relation

γ ∼ � ∼ E〈(H1 − H2)
2〉 . (1.8)

As corollaries to our main results (1.6)–(1.7) in Theorems 2.4 and 2.10, we also
consider the scrambled Loschmidt echo [16, 36, 44] Msc

δ (t) and its averaged analog
M

sc
δ (t). They are defined from

Ssc
δ (t) := 〈

ψ0, e
iH2te−iδV e−iH1tψ0

〉
(1.9)

and its averaged analog S
sc
δ (t) as

Msc
δ (t) := ∣∣Ssc

δ (t)
∣∣2 and M

sc
δ (t) := ∣∣S

sc
δ (t)

∣∣2,

exactly as in (1.3)–(1.4), respectively. In (1.9), H1 and H2 are the two Hamiltonians
either from Scenario I or Scenario II. The idea behind the quantity in (1.9) is that,
between the forward and backward evolution, there is a (short) scrambling time δ,
in which the system is uncontrolled and governed by another self-adjoint scrambling
Hamiltonian V [16]. Similarly to (1.1), a schematic summary of this process is given
by

ψ0
t−−−−→
H1

ψt
δ−−−→
V

ψ ′
t

t−−−−→−H2
ψ ′
0 . (1.10)

In Corollaries 2.6 and 2.11 (of Theorems 2.4 and 2.10, respectively), we model the
scrambling Hamiltonian by another Wigner matrix, V := W̃ , that is independent of
W ; see [16]. As a result, we find that

M
sc
δ (t) ≈ (ϕ(δ))2 M(t) and Msc

δ (t) ≈ (ϕ(δ))2 M(t) (1.11)

in the setting of Scenario I and Scenario II, respectively, where we denoted ϕ(δ) :=
J1(2δ)/δ and J1 is the first order Bessel function of the first kind. Note that in (1.11)
we see the effects of the scrambling Hamiltonian V and the imperfect time reversal of
H1 and H2 to completely decouple (cf. [16, Eq. (35)]).
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We point out that Scenario II, discussed around (1.7), and the corollaries described
in (1.11) are primarily given to provide a more comprehensive view of Loschmidt
echoes modeled with Wigner matrices. Technically, these are obtained by simple
modifications of earlier results and techniques [10, 22] (see the proof in Sect. 7 for
details). The mathematically novel principal part of this work therefore consists of
Theorem 2.4 analyzing Scenario I.

The proof of Theorem 2.4 relies on a new two-resolvent global law, i.e., a concen-
tration estimate for products of resolvents Gi (zi ) := (Hi − zi )−1 for zi ∈ C\R as the
dimension N of the matrix becomes large. By functional calculus, this can then be
used for computing more complicated functions of Hi , like the exponential, and thus
connecting to the time evolutions above. A typical global law computes, e.g.,

〈ψ0,G2(z2)G1(z1)ψ0〉 (1.12)

to leading order in N with error terms vanishing like N−1/2+ε with very high proba-
bility. The main novelty of this paper is a precise estimate on the deterministic leading
term to (1.12). While it is well known that Gi (zi ) ≈ Mi (zi ), where the deterministic
matrix Mi (zi ) is the solution of the Matrix Dyson equation (2.1), it does not hold
that G2(z2)G1(z1) ≈ M2(z2)M1(z1) owing to correlations between G1 and G2. The
correct approximation is

G2(z2)G1(z1) ≈ M2(z2)M1(z1)

1 − 〈M1(z1)M2(z2)〉 . (1.13)

To control (1.13), we hence need to estimate the denominator of (1.13), which is well
known in case of H1 = H2, i.e., D1 = D2 [9, 13, 22]. Here, however, the analysis
of (1.13) is much more intricate, since for general D1, D2 the deterministic approxi-
mations M1(z1), M2(z2) do not commute. In our main Proposition 4.2, we optimally
track the dependence of (1.13) on the difference D1 − D2 of the two deformations
and on z1 − z2.

Notations

For positive quantities f , g we write f � g (or f = O(g)) and f ∼ g if f ≤ Cg
or cg ≤ f ≤ Cg, respectively, for some constants c,C > 0 which only depend on
the constants appearing in the moment condition (see Assumption 2.1), the bound on
M in Assumption 2.2, the constants from Assumption 2.8, or the bulk parameter κ

from (2.3). In informal explanations, we frequently use the notation f 	 g, which
indicates that f is "much smaller" than g. Moreover, we shall also write w ≈ z to
indicate the closeness of w, z ∈ C with a not precisely specified error.

For any natural number n, we set [n] := {1, 2, . . . , n}. Matrix entries are indexed
by lowercase Roman letters a, b, c, ... from the beginning of the alphabet. We denote
vectors by bold-faced lowercase Roman letters x, y ∈ CN , or lower case Greek letters
ψ, φ ∈ CN , for some N ∈ N. Vector and matrix norms, ‖x‖ and ‖A‖, indicate the
usual Euclidean norm and the corresponding induced matrix norm. For any N × N
matrix A we use the notation 〈A〉 := N−1TrA for its normalized trace and denote

123



Loschmidt echo for deformed Wigner matrices Page 7 of 42    14 

the spectrum of A by σ(A). Moreover, for vectors x, y ∈ CN we denote their scalar
product by 〈x, y〉 := ∑

i x i yi . The support of a function f is denoted by supp( f ).
Finally, we use the concept of “with very high probability” (w.v.h.p.) meaning that

for any fixed C > 0, the probability of an N -dependent event is bigger than 1− N−C

for N ≥ N0(C). We also introduce the notion of stochastic domination (see, e.g.,
[20]): given two families of non-negative random variables

X =
(
X (N )(u) : N ∈ N, u ∈ U (N )

)
and Y =

(
Y (N )(u) : N ∈ N, u ∈ U (N )

)

indexed by N (and possibly some parameter u in some parameter spaceU (N )), we say
that X is stochastically dominated by Y , if for all ξ,C > 0 we have

sup
u∈U (N )

P
[
X (N )(u) > N ξY (N )(u)

]
≤ N−C (1.14)

for large enough N ≥ N0(ξ,C). In this case we use the notation X ≺ Y or X =
O≺(Y ).

2 Main results

The key players of our paper are deformed Wigner matrices, i.e., matrices of the form
H = D + W , where D = D∗ ∈ CN×N is a bounded deterministic matrix (called
deformation), ‖D‖ ≤ L for some N -independent L > 0 and W = W ∗ ∈ CN×N is
a real symmetric or complex Hermitian Wigner matrices. This means, its entries are

independently distributed random variables according to the laws4 wi j
d= N−1/2χod

for i < j and w j j
d= N−1/2χd. For the single entry distributions χod and χd we

assume the following.

Assumption 2.1 (Wigner matrix) We assume that χd is a centered real random vari-
able, and χod is a real or complex random variable with Eχod = 0 and E|χod|2 = 1.
Furthermore,we assume the existence of highermoments, namelyE|χd|p+E|χod|p ≤
Cp for all p ∈ N, where Cp are positive constants.

It is well known [2, 21] that the resolvent of H , denoted by G(z) := (H − z)−1 for
z ∈ C\R, becomes approximately deterministic in the large N limit. Its deterministic
approximation (as a matrix) is given by M(z), the unique solution of theMatrix Dyson
equation (MDE)

− 1

M(z)
= z − D+〈M(z)〉 for z ∈ C \R under the constraint �z �M(z) > 0 ,

(2.1)

4 A careful examination of our proof reveals that the entries ofW need not be distributed identically. Indeed,
only the matching of the second moments is necessary, but higher moments can differ.
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where �M(z) := [M(z) − M(z)∗]/2i and positivity is understood as a matrix. The
corresponding (N -dependent) self-consistent density of states (scDos) is defined as

ρ(e) := 1

π
lim
η↓0〈�M(e + iη)〉 . (2.2)

This is a compactly supported Hölder-1/3 continuous function on R which is in
fact real-analytic on the set {ρ > 0},5. The positive harmonic extension of ρ is
denoted by ρ(z) := π−1|〈�M(z)〉| for z ∈ C\R. We point out that not only
the tracial quantity 〈�M(e + iη)〉 has an extension to the real axis, but the whole
matrix M(e) := limη↓0 M(e + iη) is well defined (see Lemma B.1 (b) of the arXiv:
2301.03549 version of [14]). Moreover, for any small κ > 0 (independent of N ) we
define the κ-bulk of the scDos (2.2) as

Bκ(ρ) = {x ∈ R : ρ(x) ≥ κ} . (2.3)

It is afinite unionof disjoint compact intervals, cf. LemmaB.2 in the arXiv: 2301.03549
version of [14]. Note that, for �z ∈ Bκ it holds that ‖M(z)‖ � 1, as easily follows by
taking the imaginary part of (2.1).

Now, the resolvent G is close to M from (2.1) in the following averaged and
isotropic sense:

|〈(G(z) − M(z))B〉| ≺ 1

N |�z| , |〈x , (G(z) − M(z)) y〉| ≺ 1√
N |�z| , (2.4)

uniformly in deterministic vectors ‖x‖+‖ y‖ � 1 and deterministicmatrices ‖B‖ � 1.
These estimates are called local laws when |�z| 	 1 and global laws when |�z| � 1.
To be precise about their validity, we recall that while (2.4) holds for �z ∈ Bκ and
dist(�z, supp(ρ)) � 1 for arbitrary bounded self-adjoint deformations D = D∗ (see
[21, Theorem 2.1]), the complementary regime requires the additional Assumption
2.2 on D stated below (see [4, Theorem 2.6] and [23, Theorem 2.8]). A sufficient
condition for Assumption 2.2 is discussed in Remark 2.3; see also [3].

In the remainder of this section, we formulate our main results on the two different
Loschmidt echo scenarios described in Sect. 1.

2.1 Scenario I: Two deformations of aWigner matrix

For the first echo scenario, we consider two deformedWignermatrices, Hj = Dj+W ,
j ∈ [2], and denote their resolvents and corresponding deterministic approximation

5 In [1–3], the scDos has been thoroughly analyzed in increasing generality of the ensemble. It is supported
on finitely many finite intervals and, roughly speaking, there are three different regimes for the behavior or
ρ: In the bulk ρ is strictly positive; at the edge, ρ vanishes like a square root at the edges of every supporting
interval which are well separated; at the cusp, where two intervals of support (almost) meet, ρ behaves
(almost) as a cubic root. Correspondingly, ρ is locally real analytic, Hölder-1/2, or Hölder-1/3 continuous,
respectively. Near the singularities, it has an approximately universal shape (see (A.3a)–(A.3d) in the proof
of Lemma A.1).
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(2.1) byG j and Mj , respectively. A natural definition of the averaged Loschmidt echo
is

M(t) = M
(E0,η0)

H1,H2
(t) :=

∣∣∣∣∣

〈
eit H1�G1(E0 + iη0)e−it H2

〉

〈�M1(E0 + iη0)〉

∣∣∣∣∣

2

, (2.5)

since �G/〈�M〉 in (2.5) effectively localizes around E0 and averages in a window of
size η0 > 0 assumed to be independent of N . In Remark 2.7 below we comment on
the averaging implemented by (2.5). Note that in order to match (1.2)-(1.3) from the
introduction we need to replace t by −t in (2.5). However, this replacement does not
change the quantity (2.5) since

∣∣∣
〈
eit H1�G1(E0 + iη0)e

−it H2
〉∣∣∣ =

∣∣∣
〈
eit H2�G1(E0 + iη0)e

−it H1
〉∣∣∣ =

∣∣∣
〈
e−it H1�G1(E0 + iη0)e

it H2
〉∣∣∣ ,

where in the last step we used that eit H1 and �G1(E0 + iη0) commute. Using this
observation, we will work with (2.5) in the rest of the paper. The same comment
applies also to the other versions of the averaged Loschmidt echo defined in Sect. 2.1,
namely to (2.9a), (2.9b) and (2.12).

We will henceforth assume that the deformations D1, D2 are such that the corre-
sponding solutions M1, M2 to (2.1) are bounded.

Assumption 2.2 (Boundedness of M) Let D be an N × N Hermitian matrix and M
the solution to (2.1). We assume that there exists an N -independent positive constant
L such that supz∈C\R‖M(z)‖ < L .

Assumption 2.2 is the basis for the shape theory of the scDos, which we briefly
described in Footnote 5. We now give a sufficient condition on D for Assumption 2.2
to hold. It basically requires that its ordered eigenvalue sequence has to be piecewise
Hölder-1/2 continuous as a function of the label.

Remark 2.3 (Sufficient condition for Assumption 2.2) Denote the eigenvalues of any
self-adjoint deformation D by {d j }Nj=1 labeled in increasing order, d j ≤ dk for j <

k. Fix a (large) positive constant L > 0. The set ML of admissible self-adjoint
deformations D is defined as follows: we say that D ∈ ML if ‖D‖ ≤ L and there
exists an N -independent partition {Is}ms=1 of [0, 1] in at most L segments such that
for any s ∈ [1,m] and any j, k ∈ [1, N ] with j/N , k/N ∈ Is we have |d j − dk | ≤
L| j/N − k/N |1/2. Since the operator S = 〈·〉 is flat, condition D ∈ ML implies that
D satisfies Assumption 2.2 for some L ′ < ∞ by means of [3, Lemma 9.3].

We can now formulate our first main result.

Theorem 2.4 (Averaged Loschmidt echo with two deformations) Let W be a Wigner
matrix satisfying Assumption 2.1, and D1, D2 ∈ CN×N be bounded, traceless6

Hermitian matrices, i.e., ‖Dj‖ ≤ L for some L > 0 and 〈D1〉 = 〈D2〉 = 0,
additionally satisfying Assumption 2.2. Fix η0 ≤ 1 and let E0 be an energy in the
bulk of the scDos of H1 and H2, i.e., assume that there exist δ, κ > 0 such that

6 If D1 or D2 had a nonzero trace, it could be absorbed by a simple (scalar) energy shift.
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[E0 − δ, E0 + δ] ⊂ Bκ(ρ1) ∩ Bκ(ρ2). We also assume that parameters η0, κ and δ

are N-independent.
Consider the deformed Wigner matrices Hj := Dj + W for j ∈ [2] and the

corresponding averaged (at energy E0 in a window of size η0 > 0) Loschmidt echo
M(t) for times t ≥ 0 defined in (2.5). Then, we have the following:

(i) [Short-time parabolic decay] As t → 0, it holds that

M(t) = 1 − γ t2 + O(〈D2〉t3) + O≺((Nη0)
−1) (2.6)

where the decay parameter is given by γ := 〈(D − 〈PD〉)2 P〉, where we abbre-
viated D := D2 − D1 and P := �M1(E0 + iη0)/〈�M1(E0 + iη0)〉. It satisfies
γ ∼ �2 := 〈D2〉 and the implicit constant in ∼ depends only on κ and L.
The implicit constants in the error terms in (2.6) depend only on L, δ, κ and the
Cp’s from Assumption 2.1.

(ii) [Intermediate-time asymptotic decay] Take a (large) positive K and consider times
1 ≤ t ≤ K/�2. Then, there exists a positive constant c such that whenever � < c
and η0 < �/| log�| it holds that

M(t) = e−�t + O (E) + O≺
(
C(t, η0)/N

)
, (2.7)

where the rate � (explicitly given in (4.27)) satisfies � ∼ �2 with the implicit
constant depending only on κ and L. Moreover, we denoted

E = E(t,�, η0) := 1 + log t

t
+ �| log�| + η0| log�|

�
(2.8)

and C(t) > 0 is a positive constant depending only on t.
The implicit constants in the error terms in (2.7) depend only on L, δ, κ, K and
the Cp’s from Assumption 2.1.

Note that Theorem 2.4 addresses only times t which do not depend on N . Reaching
times of order log N , i.e., accessing the saturation time would require a different proof
strategy. Since t ≤ K/�2, we find that the leading term e−�t in (2.7) remains of order
one throughout the whole time regime. The error term E is small compared to this
leading term if t � 1, � 	 1, and η0 	 �/| log�|; hence, these relations define the
regime of the parameters where our theorem is meaningful.

The following corollary to Theorem 2.4 reveals the key property of the Loschmidt
echo, the partial recovery of the initial overlap, as discussed in the introduction; see
Fig. 2.

Corollary 2.5 (Averaged Loschmidt echo process) Assume the set-up and the condi-
tions of Theorem 2.4. For time t > 0 define the averaged Loschmidt echo process
Pt (s), s ∈ [0, 2t], as follows:

Pt (s) :=
∣∣∣∣∣

〈
eisH1�G1(E0 + iη0)

〉

〈�M1(E0 + iη0)〉

∣∣∣∣∣

2

, s ∈ [0, t], (2.9a)
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Pt (s) :=
∣∣∣∣∣

〈
eit H1�G1(E0 + iη0)e−i(s−t)H2

〉

〈�M1(E0 + iη0)〉

∣∣∣∣∣

2

, s ∈ (t, 2t]. (2.9b)

Let lim∗ be the simultaneous limit in �, η0, t such that �, η0 → 0 and t → ∞ under
constraints �2 	 η0 	 �/| log�| and 1/η0 	 t � 1/�2. Here a 	 b means that
a/b → 0 in this limit. Then, almost surely we have

lim∗ lim sup
N→∞

Pt (t)

Pt (2t)
= lim∗ lim sup

N→∞
Pt (t)

e−�t
= 0, (2.10)

where � is the same as in Theorem 2.4.

Proof of Corollary 2.5 Firstly take the limit N → ∞ in the denominator Pt (2t) =
M(t) of (2.10). Recall the definition of E from (2.8). By means of Theorem 2.4 we
have

lim inf
N→∞ Pt (2t) = lim inf

N→∞
(
e−�t + O (E(t,�, η0))

) = lim inf
N→∞

(
e−�t (1 + o(1))

) ∼ 1

in the limit lim∗. Here, we used that � ∼ �2 and t � �−2, so e−�t ∼ 1. Thus, in
order to verify (2.10) it is sufficient to show that

lim∗ lim sup
N→∞

Pt (t) = 0.

From the average single resolvent global law for H1, see (2.4) or [21, Theorem 2.1],
we get that

lim
N→∞

∣∣∣∣∣

〈
eit H1�G1(E0 + iη0)

〉
−
∫

R
eit x

η0

(x − E0)2 + η20
ρ1(x)dx

∣∣∣∣∣
= 0.

Recall that E0 ∈ Bκ(ρ1). Thus 〈�M(E0 + iη0)〉 ∼ 1 for η0 → 0 and

lim sup
N→∞

Pt (t) � lim sup
N→∞

∣∣∣∣∣

∫

R
eit x

η0

(x − E0)2 + η20
ρ1(x)dx

∣∣∣∣∣

2

�
(

1

η0t

)2

. (2.11)

In the last inequality, we employed integration by parts. Additionally we used that
ρ1(x) is a bounded function of x which is guaranteed by Assumption 2.2 and that
ρ1(x) has bounded derivative for |x − E0| ≤ δ (see also Footnote 5), where δ was
fixed in Theorem 2.4. Both of these bounds (on ρ1(x) and dρ1(x)/dx) are uniform in
N . In the limit lim∗ we have η0t → ∞, so (2.11) finishes the proof of Corollary 2.5.

��
As mentioned in the introduction, we also have the following corollary to Theorem

2.4.
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Corollary 2.6 (Scrambled averaged Loschmidt echo with two deformations) Assume
the conditions of Theorem 2.4 and consider (as a variant of (2.5)) the scrambled
averaged Loschmidt echo

M
sc
δ (t) :=

∣∣∣∣∣∣

〈
e−iδW̃ eit H1�G1(E0 + iη0)e−it H2

〉

〈�M1(E0 + iη0)〉

∣∣∣∣∣∣

2

, (2.12)

where W̃ is a Wigner matrix satisfying Assumption 2.1, independent of W and 0 ≤
δ ≤ N 2/3−ε for some fixed ε > 0. Moreover, let ϕ be the Fourier transform of the
semi-circular density of states ρsc(x) := (2π)−1

√[4 − x2]+, which is explicitly given
as

ϕ(δ) := ρ̂sc(δ) =
∫

R
e−iδxρsc(x)dx = J1(2δ)

δ
(2.13)

where J1 is the first-order Bessel function of the first kind.
Then, instead of (2.6)–(2.7), we have that

M
sc
δ (t) = (ϕ(δ))2

[
1−γ t2+O(〈D2〉t3)+O≺((Nη0)

−1)
]+O≺

(
δ/(Nη0)

)
as t → 0

and

M
sc
δ (t) = (ϕ(δ))2

[
e−�t+O (E)+O≺

(
C(t)/N

)]+O≺
(
δ/(Nη0)

)
for 1 ≤ t ≤ K/�2

in the short and intermediate time regimes, respectively.

Proof of Corollary 2.6 Denote A := eit H1�G1(E0+iη0)e−it H2 and observe that ‖A‖ ≤
1/η0. Then, by residue calculus with the contour Cδ := {z ∈ C : dist(z, [−2, 2]) =
δ−1} and a single resolvent law7 as in (2.4), using only the randomness of W̃ , we find

〈e−iδW̃ A〉 = 1

2π i

∮

Cδ

e−iδz〈A(W − z)−1〉dz

= 〈A〉
2π i

∮

Cδ

e−iδzmsc(z)dz + O≺(δ/(Nη0))

= 〈A〉
∫

R
e−iδxρsc(x)dx + O≺(δ/

√
N ) = 〈A〉ϕ(δ) + O≺(δ/(Nη0)) .

The rest of the proof follows from Theorem 2.4. ��
We close this section by commenting on the effect of the small averaging of the

Loschmidt echo over several energy states implemented in (2.5). This is a necessary
technical step for our proof in Scenario I that relies on a two-resolvent global law. Note
that averaging will not be necessary for Scenario II since it uses only single resolvent
global law. This is because randomness is present only in the second Hamiltonian,
while the first is modeled by a deterministic matrix.

7 To be precise, when δ < 1, we use the slightly improved average global law |〈A(W−z)−1〉−m(z)〈A〉| ≺
δ2‖A‖/N (see, e.g., [21, Theorem 2.1]).
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Remark 2.7 (Averaging of the Loschmidt echo) We provide two independent non-
rigorous arguments for the averaged Loschmidt echo M and the original Loschmidt
echo M being close to each other.

(1) First, bymeans of the Eigenstate ThermalizationHypothesis (ETH) for a deformed
Wigner matrix H = D + W , see [13, Theorem 2.7], and a single resolvent local
law (2.4), it holds that

〈u j , Au j 〉 ≈ 〈�M(E0 + iη0)A〉
〈�M(E0 + iη0)〉 ≈ 〈�G(E0 + iη0)A〉

〈�M(E0 + iη0)〉 . (2.14)

Here, A is an arbitrary deterministic matrix, u j is a (normalized) eigenvector of
H with eigenvalue ≈ E0, and η0 a small regularization. In this sense, the pure
state |u j 〉 〈u j | is weakly close to �G/〈�M〉 (i.e., if tested against a deterministic
A), which heuristically supports the implementation of the averaged Loschmidt
echo in (2.5). However, the rigorous ETH statements do not allow to choose A
depending on the underlying randomness like A = e−it H2eit H1 .

(2) Another supporting argument uses the fact that the averaged overlap function

S
(E,η0)

(t) (in particular its phase) is approximately constant as long as E varies
in a range |E − E0| � η0. Hence, it is irrelevant if one (a) first averages and
then takes absolute value square, or (b) does it the other way around. The fact that

S
(E,η0)

(t) is slowly varying in E follows by a simple computation using that (i)

S
(E0,η0)

(t) ≈ IE0,η0(t)/〈�M1(E0 + iη0)〉 (see (4.1) and (4.7)), (ii) IE0,η0 is given
by eits0〈�M1(E0 + iη0)〉 (see (4.26)), (iii) the exponent s0 is Lipschitz continuous
on scale � (see the last relation of (4.16)), and (iv) we have t � �−2 and η0 	 �

by assumption.

Both, the ETH argument (2.14) and the fact that S
(E,η0)

(t) is approximately con-
stant as long as |E − E0| � η0, independently indicate that the averaged Loschmidt
echoM and the non-averaged Loschmidt echoM should practically agree with each
other. However, neither of them constitutes a rigorous proof, since (1) the observable
A in (2.14) cannot be chosen to depend on the randomness, and (2) we cannot exclude
that for some initial fixed energy state ψ0,S in (1.2) behaves very differently from its
typical value computed by local averaging.

2.2 Scenario II: Perturbation by aWigner matrix

For the second echo scenario, we consider a single deformed Wigner matrix Hλ =
H0 + λW and the Loschmidt echo

M(t) = M
(E0,�)
Hλ,H0

(t) :=
∣∣∣〈ψ0, e

it Hλe−it H0ψ0〉
∣∣∣
2

(2.15)

for somenormalized initial stateψ0 ∈ CN with energy E0 = 〈ψ0, H0ψ0〉 and localized
in an interval of size� around E0 (see Assumption 2.9 below for a precise statement).
The localization parameter � plays the same role as η0 in Sect. 2.1, but here we work
with a sharp cutoff in the energy.
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The unperturbed Hamiltonian H0 is assumed to satisfy the following.

Assumption 2.8 (H0 and its limiting density of states) The Hamiltonian H0 is deter-
ministic, self-adjoint H0 = H∗

0 , and uniformly bounded, ‖H0‖ ≤ CH0 for some
CH0 > 0. We denote the resolvent of H0 at any spectral parameter z ∈ C \ R by
M0(z) := (H0 − z)−1. Moreover, we assume the following:

(i) There exists a compactly supported measurable function ρ0 : R → [0,+∞) with∫
R ρ0(x)dx = 1 and two positive sequences ε0(N ) and η0(N ), both converging to
zero as N → ∞, such that, uniformly in z ∈ C\R with η := |�z| ≥ η0 ≡ η0(N ),
we have

〈M0(z)〉 = m0(z) + O(ε0) with ε0 ≡ ε0(N ) . (2.16)

Here,

m0(z) :=
∫

R

ρ0(x)

x − z
dx (2.17)

is the Stieltjes transform of ρ0. We refer to ρ0 as the limiting density of states, and
to supp(ρ0) as the limiting spectrum of H0.

(ii) For small positive constants κ, c > 0, we define the set of admissible energies
σ

(κ,c)
adm in the limiting spectrum of H0 by8

σ
(κ,c)
adm :=

{
x ∈ supp(ρ0) : inf|y−x |≤κ

ρ0(y) > c, ‖ρ0‖C1,1([x−κ,x+κ]) ≤ 1/c

}
.

(2.18)
We assume that for some positive N -independent κ, c > 0, σ (κ,c)

adm is not empty.

Assuming that the set of admissible energies in (2.18) is non-empty guarantees the
limiting spectrum supp(ρ0) has a part, where the limiting density of states behaves
regularly, i.e., it is sufficiently smooth and strictly positive (in the bulk).

Assumption 2.9 (Locality of the initial state) Given Assumption 2.8, we first pick a
reference energy

E0 ∈ σ
(κ0,c0)
adm for some κ0, c0 > 0, (2.19)

and further introduce Iδ := [E0 − δ, E0 + δ] for any 0 < δ < κ0. Moreover, take an
N -independent energy width � ∈ (0, κ0/2) and let �� := 1I�(H0) be the spectral
projection of H0 onto the interval I�. Then, we assume that the initial state ψ0 ∈ CN

is normalized, ‖ψ0‖ = 1, has energy E0 = 〈ψ0, H0ψ0〉, and satisfies ��ψ0 = ψ0,
i.e., ψ0 is localized in I�.

Theorem 2.10 (Loschmidt echo with a single deformation) Consider the Loschmidt
echo (2.15) for times t ≥ 0 and assume that its constituents satisfy Assumptions 2.1
and 2.8–2.9. Then, we have the following:

8 Here,C1,1(J ) denotes the set of continuously differentiable functionswith a Lipschitz-continuous deriva-

tive on an interval J , equipped with the norm ‖ f ‖C1,1(J ) := ‖ f ‖C1(J ) + sup
x,y∈J :x �=y

| f ′(x)− f ′(y)|
|x−y| .
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(i) [Short-time parabolic decay] As t → 0 it holds that

M(t) = 1 − λ2t2 + O(λ2t3) + O≺
(
1/

√
N
)
. (2.20)

The implicit constants in the error terms in (2.20) only depend on CH0 and the
Cp’s from Assumption 2.1.

(ii) [Intermediate-time asymptotic decay] For all times t ≥ 0, it holds that

M(t) = e−2πρ0(E0)λ
2t + O(E) + O≺

(
C(t, λ)/

√
N
)
, (2.21)

where for any fixed T > 0 the error term E , explicitly given in (7.8), satisfies

lim
�→0

lim
t→∞,λ→0

λ2t≤T

lim
N→∞ E = 0

and the constant C(t, λ) > 0 depends only on its arguments. The implicit constants
in the error terms in (2.21) depend only on CH0 from Assumption 2.8, κ0, c0 from
Assumption 2.9, and the Cp’s from Assumption 2.1.

In the small time regime, t → 0, (2.20) is surely more precise than (2.21), but the
latter is more relevant to describe the exponential decay for times of order t ∼ λ−2.

The proof of Corollary 2.11 is completely analogous to the proof of Corollary 2.6
(only using an isotropic law instead of an averaged law) and so omitted.

Corollary 2.11 (Scrambled Loschmidt echo with a single deformation) Assume the
conditions of Theorem 2.10 and consider (as a variant of (2.15)) the scrambled
Loschmidt echo

Msc
δ (t) :=

∣∣∣
〈
ψ0, e

it Hλe−iδW̃ e−it H0ψ0

〉∣∣∣
2

, (2.22)

where W̃ is a Wigner matrix satisfying Assumption 2.1, independent of W and 0 ≤
δ ≤ N 2/3−ε for some fixed ε > 0. Moreover, let ϕ be given by (2.13).

Then, instead of (2.20)–(2.21), we have that

Msc
δ (t) = (ϕ(δ))2

[
1 − λ2t2 + O(λ2t3) + O≺

(
1/

√
N
)] + O≺

(
δ/

√
N
)

as t → 0

and

Msc
δ (t) = (ϕ(δ))2

[
e−2πρ0(E0)λ

2t + O(E) + O≺
(
C(t, λ)/

√
N
)] + O≺

(
δ/

√
N
)

for λ2t ≤ T ,

respectively.

The rest of the paper is devoted to proving Theorems 2.4 and 2.10. The proof of
Theorem 2.4 is conducted in Sects. 3–4. In Sect. 7, we prove Theorem 2.10. The proof
of several technical results from Sect. 4 is deferred to Sects. 5 and 6, and Appendix A.
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3 Short-time parabolic decay in Scenario I: Proof of Theorem 2.4 (i)

In the following, we abbreviate P̃ = �G1(E0 + iη0)/〈�M1(E0 + iη0)〉, such that
M(t) can be written as

M(t) =
∣∣∣
〈
eit H1 P̃e−it H2

〉∣∣∣
2 =

∣∣∣
〈
P̃eit H1e−it H2

〉∣∣∣
2

. (3.1)

Next, we trivially Taylor expand eit H1 and e−it H2 to second order, leaving us with

eit H1e−it H2 = 1 + it(H1 − H2) − t2

2

(
(H1 − H2)

2 − [H1, H2]
) + O(t3) . (3.2)

Plugging this in (3.1), we find

M(t) =
〈
P̃
(
1 − t2

2 ((H1 − H2)
2 − [H1, H2])

)〉2

+ t2〈P̃(H1 − H2)〉2 + O(t3) + O≺((Nη0)
−1)

=1 − 〈
(D − 〈PD〉)2 P 〉 t2 + O(t3) + O≺((Nη0)

−1) .

(3.3)

Here, we additionally used that 〈P̃[H1, H2]〉 = 0 since P̃ is a function of H1, D =
H2 − H1, and a single resolvent law in the form 〈P̃ A〉 = 〈PA〉 + O≺((Nη0)

−1)

for any A with ‖A‖ � 1. The fact that the decay parameter γ = 〈(D − 〈PD〉)2 P〉
satisfies γ ∼ �2 is a simple consequence of the flatness of the stability operator for a
deformed Wigner matrix (see, e.g., [3, Proposition 3.5]).

In order to conclude (2.6), it remains to show that the error term O(t3) in (3.3)
is actually improvable to O(〈D2〉t3). To see this, we (formally)9 employ the Baker–
Campbell–Hausdorff (BCH) formula, to write the exponentials as

eit H1e−it H2 = eK with

K = it(H1 − H2) + t2

2
[H1, H2] + it3

12

([H1, [H1, H2]] − [H2, [H1, H2]]
)

− t4

24
[H2, [H1, [H1, H2]]] + ...

(3.4)

and note that every summand in the expression for K in (3.4) can be written as a linear
combination of nested commutators of D with H ≡ H1 with one D always being in
the innermost commutator. Hence, to conclude the desired, we need to show that (i)
all the terms in eK containing only a single D vanish, when evaluated in 〈P̃ ...〉, and
(ii) all the terms in eK containing at least two D’s lead to an additional 〈D2〉-factor in
the error term.

9 In order to guarantee convergence of the BCH expansion (3.4), we need the time t to be small enough
such that |t |(‖H1‖ + ‖H2‖) < log 2 [46], which can be achieved in an open interval around zero, since
‖Di‖ � 1 and ‖W‖ ≤ 2 + ε with very high probability.
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For (i), note that the only way to have just a single D in a nested commutator
is precisely adnH (D) with adH (D) := [H , D]. Evaluated in 〈P̃...〉, this vanishes,
〈P̃adnH (D)〉 = 0, since [P̃, H ] = 0 and hence

〈P̃adnH (D)〉 =
n∑

k=0

(
n

k

)
(−1)k〈P̃ Hn−k DHk〉 = 〈P̃ HnD〉

n∑

k=0

(
n

k

)
(−1)k = 0 .

(3.5)
For (ii), we take a product, say, T , of H ’s and at least two D’s, resulting from resolving
(a product of) nested commutators, and estimate

∣∣〈P̃T 〉∣∣ � 〈P̃ D2〉 = 〈PD2〉 + O≺
(
(Nη0)

−1) � 〈D2〉 + O≺
(
(Nη0)

−1) . (3.6)

In the first step, we estimated all H ’s and all but two D’s in T by their operator norm,
additionally using that P̃ ≥ 0 and [H , P̃] = 0. In the second step, we employed the
single resolvent law (2.4), while in the last step we used ‖P‖ � 1.

We have hence shown that all the terms of eK in (3.4) carrying at least a third power
of t , can in fact be bounded with an additional 〈D2〉-factor compared to (3.3). This
concludes the proof. ��

4 Asymptotic decay in Scenario I: Proof of Theorem 2.4 (ii)

The principal goal of this section is to prove (2.7) in Theorem 2.4 (ii), i.e., study the
behavior of M(t) defined in (2.5) for times 1 ≤ t � �−2. In order to do so, we
compute the random quantity

〈
eit H1�G1(E0 + iη0)e−it H2

〉
by residue calculus as

〈
eit H1�G1(E0 + iη0)e

−it H2
〉

=
(

1

2π i

)2∮

γ1

∮

γ2

eit(z1−z2) η0

(z1 − E0)2 + η20
〈G1(z1)G2(z2)〉 dz1dz2

+ 1

4π

∮

γ2

eit(E0+iη0−z2) 〈G1(E0 + iη0)G2(z2)〉 dz2.

(4.1)

Here, the contours γ1, γ2 are chosen to be two semicircles as indicated in Fig. 3. More
precisely, we take a (large) constant R > 0 such that suppρ1 and suppρ2 are contained
in [−(R − 1), R − 1]. The distance of the flat pieces from the real axis are denoted
by η1 := min{1/t, η0/2} and 0 < η2 � 1/t . The latter will explicitly be chosen later
in Sect. 4.3, where we conclude the proof of Theorem 2.4 (ii). We decompose both
contours into their flat in semicircular parts, γ j = γ

(1)
j +̇γ

(2)
j , j ∈ [2], and parametrize

them as follows:

γ
(1)
1 : z1 = E1 − iη1 with E1 ∈ [−2R, 2R] , γ

(2)
1 : z1 = 2Reiϕ − iη1 with ϕ ∈ [0, π ] (4.2)

γ
(1)
2 : z2 = E2 + iη2 with E2 ∈ [−R, R] , γ

(2)
2 : z2 = Reiϕ + iη2 with ϕ ∈ [0, π ] (4.3)
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Fig. 3 Sketch of the contours γ1 (dashed) and γ2 (full) from (4.2)–(4.3). The union of the spectra of H1
and H2 is indicated in blue

Finally, we point out that, in order to (4.1) being valid, γ1 is chosen in such a way
that it encircles E0 + iη0, but not E0 − iη0.

The following argument leading toward the proof of Theorem 2.4 (ii) is split in
three parts. First, in Sect. 4.1, we approximate the random contour integrals (4.1) by
their deterministic counterparts by using an appropriate two resolvent global law for
two different deformations (Proposition 4.1). Afterward, in Sect. 4.2, we collect some
preliminary stability bounds (Proposition 4.2) and information on the shift, which is
the key parameter in our analysis of the Loschmidt echo; see Lemmas 4.4–4.6. Finally,
in Sect. 4.3, we summarize the evaluation of the deterministic contour integrals from
Sect. 4.1 in five Lemmas 4.7–4.11. Combining these with estimates on the shift from
Sect. 4.2, we conclude the proof of Theorem 2.4 (ii) at the end of Sect. 4.3.

4.1 Step (i): Global lawwith two deformations

The following two resolvent global law will be used to approximate (4.1) by its deter-
ministic counterpart.

Proposition 4.1 (Average two resolvent global law) Let D1, D2 ∈ CN×N be a
bounded Hermitian matrices, i.e., ‖Dj‖ ≤ L for some L > 0, and W a Wigner
matrix satisfying Assumption 2.1. Moreover, let z1, z2 ∈ C be spectral parame-
ters satisfying κ := mini∈[2] dist(zi , [−(L + 2), L + 2]) ≥ δ > 0 and denote
G j (z j ) := (Dj + W − z j )−1 for j ∈ [2]. Then, it holds that

|〈G1(z1)G2(z2)〉 − 〈M(z1, z2)〉| ≺ C(δ)

N
, (4.4)
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where C(δ) > 0 is a constant depending10 only on its argument (apart from L and
the constants from Assumption 2.1). In (4.4), we abbreviated

M(z1, z2) = M12(z1, z2) := M1(z1)M2(z2)

1 − 〈M1(z1)M2(z2)〉 (4.5)

and Mj = Mj (z j ), for j ∈ [2], is the unique solution to the Matrix Dyson equation
(MDE)

− 1

Mj
= z j − Dj + 〈Mj 〉 with �Mj (z j )�z j > 0 for z j ∈ C \ R . (4.6)

Proof Using that ‖Dj + W‖ ≤ L + 2 + ε, j ∈ [2] with very high probability and
the stability bound |1 − 〈M1(z1)M2(z2)〉|−1 � 1 for κ := mini∈[2] dist(zi , [−(L +
2), L + 2]) � 1 from Proposition 4.2 below,11 the proof works in the same way as
[22, Proposition 3.1], [12, Appendix B], [14, Section 5.2], or [13, Section 6.2]. We
omit the details for brevity. ��

Hence, by means of Proposition 4.1, we find that the random contour integral (4.1)
can be approximated by the deterministic quantity

IE0,η0(t) :=
(

1

2π i

)2 ∮

γ1

∮

γ2

eit(z1−z2) η0

(z1 − E0)2 + η20
〈M(z1, z2)〉 dz1dz2

+ 1

4π

∮

γ2

eit(E0+iη0−z2) 〈M(E0 + iη0, z2)〉 dz2.
(4.7)

up to an error of sizeO≺
(
C(η1)C(η2)/N

)
, where we additionally used that the lengths

of the contours are bounded, �(γ j ) � 1 for j ∈ [2].

4.2 Step (ii): Preliminary bounds on the stability operator and the shift

As usual in random matrix theory, local/global laws are governed by a stability oper-
ator, which, in our case is given by

B12(z1, z2)[·] := 1 − M1〈·〉M2 with Mj ≡ Mj (z j ) . (4.8)

One can easily see that B12(z1, z2) has a highly degenerate eigenvalue one, and its
only non-trivial eigenvalue is given by 1−〈M1M2〉with corresponding eigen“vector"
M1M2.

The following proposition, whose proof is given in Sect. 5, states an upper bound
on the inverse of this non-trivial eigenvalue. A simplified form this stability bound

10 By carefully tracking δ throughout the proof, one can see that the dependence is inverse polynomially,
C(δ) � δ−n for some n ∈ N. This will, however, be completely irrelevant for our purposes.
11 In view of (4.10), note that the supports supp(ρ1), supp(ρ2) of the scDos of H1 and H2 are contained
in [−(L + 2), (L + 2)].
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already appeared in [11, Lemma 5.2] for the very special case that D1 = αD2 for
some α ∈ R.

Proposition 4.2 (Stability bound) Fix a (large) L > 0. Uniformly in z1, z2 ∈ C \ R
and traceless Hermitian D1, D2 with |z j | ≤ L, ‖Dj‖ ≤ L, j = 1, 2, it holds that

∣∣∣∣
1

1 − 〈M1M2〉
∣∣∣∣ � 1

�2 + (�z1 − �z2)2 + (�〈M1〉 + �〈M2〉)2 +
∣∣∣ �z1〈�M1〉

∣∣∣ +
∣∣∣ �z2〈�M2〉

∣∣∣
∨ 1 , (4.9)

where we denoted �2 := 〈(D1 − D2)
2〉.

In the current Sect. 4, more precisely, the proof of Proposition 4.1 above, only the
special case

|1 − 〈M1M2〉|−1 � 1 for max
j∈[2] dist(z j , supp(ρ j )) � 1 (4.10)

of Proposition 4.2 is relevant. However, for later reference, we also point out that, in
particular, |1−〈M1M2〉|−1 � |z1 − z2|−2 and that the lhs. of (4.9) is bounded by one,
whenever z1, z2 are in the same half-plane and ρ1(z1) + ρ2(z2) � 1 (e.g., if one of
them is in the bulk, �z j ∈ Bκ(ρ j )).

In addition to these bounds, Proposition 4.2 also plays an important role in the
analysis of the shift s(z1, z2) of the spectral parameters z1, z2 in the (generalized)
M-resolvent identity

〈M12〉 = 〈M1M2〉
1 − 〈M1M2〉 = 〈M1〉 − 〈M2〉

z1 − z2 − s(z1, z2)
, (4.11)

which can easily be obtained by subtracting MDEs (4.6) for M2 and M1 from each
other. In (4.11), the shift is defined as follows.

Definition 4.3 (The shift) Let D1, D2 be Hermitian traceless matrices and let Mj (z j )
for j ∈ [2] be the solution of the MDE (4.6). Then, we define the shift (depending on
D1, D2 and z1, z2 ∈ C\R) as

s(z1, z2) := 〈M1(z1)(D1 − D2)M2(z2)〉
〈M1(z1)M2(z2)〉 , (4.12)

whenever the denominator does not vanish.

As already mentioned above, the shift s is the key parameter in our analysis of
the Loschmidt echo. We now collect several estimates on s in Lemmas 4.4–4.6. The
proofs, which are based on the stability bound in Proposition 4.2, are given in Sect. 5.

Lemma 4.4 (Properties of s(z1, z2))Fix a (small) κ > 0 and a (large) L > 0. Consider
spectral parameters z1, z2 ∈ C\R such that �z1�z2 < 0 and |z j | ≤ L, ‖Dj‖ ≤ L,
for j ∈ [2]. Assume that at least one of these parameters is such that the (positive)

123



Loschmidt echo for deformed Wigner matrices Page 21 of 42    14 

harmonic extension of the scDos is positive, i.e., ρ1(z1) + ρ2(z2) ≥ κ . Then, there
exists a positive constant c which depends only on κ, L such that for any Hermitian
traceless D1, D2 with � := 〈(D1 − D2)

2〉1/2 ≤ c we have the following:

(1) The denominator of the shift (4.12) is of order one, |〈M1(z1)M2(z2)〉| ∼ 1. In
particular,

|s(z1, z2)| � �. (4.13)

(2) If ρ j (z j ) ≥ κ/2, then
|∂z j s(z1, z2)| � �. (4.14)

Here all implicit constants depend only on κ and L.

We now introduce an auxiliary function f , which exactly detects the influence of
the shift on the real part of a spectral parameter.

Lemma 4.5 (Definition of f and s0) Fix a (small) κ > 0 and a (large) L > 0. Consider
0 < η1, η2 < L and a spectral parameter z2 = E2 + iη2 such that ρ2(z2) ≥ κ , and
satisfying |z2| ≤ L. Let D1, D2 be Hermitian traceless matrices with ‖Dj‖ ≤ L,
j ∈ [2]. Assume that � := 〈(D1 − D2)

2〉1/2 ≤ c, where c is the constant from Lemma
4.4.

Then, there exists a unique energy renormalization f η1,η2(E2) = f (E2) ∈ R with
| f (E2)| ≤ L such that

� ( f (E2) − E2 − s( f (E2) − iη1, E2 + iη2))) = 0.

Moreover, denoting the renormalized (one point) shift by

s
η1,η2
0 (E2) := s( f (E2) − iη1, E2 + iη2), (4.15)

the functions f η1,η2(E2) and s
η1,η2
0 (E2) are differentiable in η1, η2 and for E2 ∈

Bκ(ρ2) in the bulk, and the derivatives satisfy

|∂E2 f
η1,η2 (E2) − 1| � �,

∣∣∣∂η j f
η1,η2 (E2)

∣∣∣ � �, j ∈ [2], and |∂E2s
η1,η2
0 (E2)| � �.

(4.16)

Whenever it does not lead to confusion our ambiguities, we will omit the super-
scripts η1, η2 of f η1,η2 and s

η1,η2
0 . Next, we show that the imaginary part of the

renormalized shift is in fact much smaller than indicated by the upper bounds of order
� in (4.13)–(4.14) and (4.16).

Lemma 4.6 (Behavior of �s0) Fix a (small) κ > 0 and a (large) L > 0. Let E ∈
Bκ(ρ2) be in the bulk of ρ2. Then, there exist positive constants c1, c2 > 0 such that
for any Hermitian traceless D1, D2 with ‖Dj‖ ≤ L, j = 1, 2, � < c1 and for any
0 < η j ≤ c2�, for j ∈ [2], it holds that

�sη1,η2
0 (E) ∼ �2. (4.17)

Here, c1, c2 and the implicit constants in (4.17) depend only on κ and L.
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In the following section, armed with the preliminary bounds from Proposition 4.2
and Lemmas 4.4–4.6, we carry out the evaluation of the contour integrals in (4.7).

4.3 Step (iii): Contour integration of the deterministic approximation

Throughout this section, let [a, b] be an interval with length of order one satisfying
dist(E0, [a, b]c) � 1 and dist([a, b], (supp(ρ1)∩supp(ρ2))c) � 1. That is, the energy
E0 from Theorem 2.4 is order one away from the boundary of [a, b] and [a, b] is
simultaneously in the bulk of ρ1 and ρ2. The existence of such an interval is always
guaranteed.

As alreadymentioned above, we now dissect the evaluation of (4.7) in several parts.
As the first step, we show that the second line of (4.7) is in fact negligible. The proofs
of Lemma 4.7 and all the other Lemmas 4.8–4.11 are given in Sect. 6.

Lemma 4.7 (The second line is negligible)Under the assumptions of Theorem 2.4 (ii)
it holds that

I (2)E0
:= 1

4π

∮

γ2

eit(E0+iη0−z2) 〈M(E0 + iη0, z2)〉 dz2 = O
(
1

t

)
.

For the remaining first line of (4.7), we then find that the main contribution of the
γ2 integral comes from the interval [a, b] + iη2, i.e., we can cut away the tails.

Lemma 4.8 (Cutting tails) Under the assumptions of Theorem 2.4 (ii) it holds that

I (1)E0
:=

(
1

2π i

)2 ∮

γ1

∮

γ2

eit(z1−z2)
η0

(z1 − E0)2 + η20

〈M(z1, z2)〉dz1dz2

=
(

1

2π i

)2 ∮

γ1

∫ b

a
eit(z1−E2−iη2)

η0

(z1 − E0)2 + η20

〈M(z1, E2 + iη2)〉dz1dE2

+ O
(
1

t
+ η0

�

)
.

The following lemma formally implements inside the integral from Lemma 4.8 the
approximation

〈M(z1, E2 + iη2)〉 = 〈M1(z1)〉 − 〈M2(E2 + iη2)〉
z1 − (E2 + iη2) − s(z1, E2 + iη2)

≈ 〈M1(z1)〉 − 〈M2(E2 + iη2)〉
z1 − (E2 + iη2) − s

η1,η2
0 (E2)

,

which is valid in the main contributing regime E1 ≈ E2. This is our first replacement
s(z1, E2 + iη2) → s

η1,η2
0 (E2).

Lemma 4.9 (First replacement) Denote d := minE2∈[a,b] |η1 + η2 + �sη1,η2
0 (E2)|.

Then, under the assumptions of Theorem 2.4 (ii), it holds that

(
1

2π i

)2 ∮

γ1

dz1

∫ b

a
dE2 e

it(z1−E2−iη2) η0

(z1 − E0)2 + η20

〈M(z1, E2 + iη2)〉

=
(

1

2π i

)2 ∮

γ1

dz1

∫ b

a
dE2 e

it(z1−E2−iη2) η0

(z1 − E0)2 + η20

· 〈M1(z1)〉 − 〈M2(E2 + iη2)〉
z1 − (E2 + iη2) − s

η1,η2
0 (E2)

+ O (η0 + �| log�| + �| log d|) .

(4.18)
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Next, plugging in the Stieltjes representation 〈M1(z1)〉 = ∫
R ρ1(x)(x − z1)−1dx ,

the γ1 integral in Lemma 4.9 can be explicitly computed using residue calculus. The
“unwanted" residue contributions arising in this way can be estimated using the oscil-
latory factor and integration by parts (see the proof of Lemma 4.10 in Sect. 6).

Lemma 4.10 (Residue computation after the first replacement) Denote
a := minE2∈[a,b] |η0 − η2 − �sη1,η2

0 (E2)| and suppose that

η1 + η2 + �s0(E2) > 0, ∀E2 ∈ [a, b] . (4.19)

Then, again under the assumptions of Theorem 2.4 (ii), it holds that

(
1

2π i

)2 ∮

γ1

dz1

∫ b

a
dE2e

it(z1−E2−iη2)
η0

(z1 − E0)2 + η20

· 〈M1(z1)〉 − 〈M2(E2 + iη2)〉
z1 − (E2 + iη2) − s

η1,η2
0 (E2)

= − 1

2π i

∫

R
dx

∫ b

a
dE2e

it(x−E2−iη2) η0

(x − E0)2 + η20

· ρ1(x)

x − (E2 + iη2) − s
η1,η2
0 (E2)

+ O
(

| log a|
t

+ � + t−1

ta
+ η0| log a| + η0(� + t−1)

a

)

.

(4.20)

In the following lemma, we (i) complete the integral
∫ b
a to a full contour integral∮

γ2
, i.e., put back the tails that were cut away in Lemma 4.8, and (ii) implement the

second replacement

s
η1,η2
0 (E2) → s0 := s

η1,η2
0

((
f η1,η2

)−1
(E0)

)
(4.21)

inside the integral fromLemma4.10.This replacement leads to a small error comparing
to the leading term since sη1,η2

0 (E2) ≈ s0 in the relevant regime E2 ≈ E0.

Lemma 4.11 (Second replacement) Let b := minE2∈[a,b] |η2 +�sη1,η2
0 (E2)| and s0 as

in (4.21). Then, again under the assumptions of Theorem 2.4 (ii), it holds that

− 1

2π i

∫

R
dx

∫ b

a
dE2 e

it(x−E2−iη2) η0

(x − E0)2 + η20
· ρ1(x)

x − (E2 + iη2 + s
η1,η2
0 (E2))

= − 1

2π i

∫

R
dx

∮

γ2

dz2e
it(x−z2) η0

(x − E0)2 + η20
· ρ1(x)

x − (z2 + s0)

+ O
(

η0 + b

b
�| log(η0 + b)| + η0| log b| + 1

t

)
.

(4.22)

Armed with Lemmas 4.7–4.11, we can finally give the proof of Theorem 2.4 (ii).
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Proof of Theorem 2.4 (ii) Combining Lemmas 4.7 - 4.11 we find that

IE0,η0(t) = − 1

2π i

∫

R

∮

γ2

eit(x−z2) η0

(x − E0)2 + η20
· ρ1(x)dx

x − (z2 + s0)
dz2 + O(Ê(t)

)
,

(4.23)

where we collected all the error terms in

Ê(t) := η0

�
+ �| log�| + �| log d| + | log a|

t
+ � + t−1

ta
+ η0| log a|

+ η0(� + t−1)

a
+ η0 + b

b
�| log(η0 + b)| + η0| log b| .

We shall now estimate Ê(t) in different time regimes. First note that Lemmas 4.4
and 4.6 imply the existence of positive constants {c j }4j=1 such that

|s(z1, z2)| ≤ c1�, for all |z1| ≤ 2R, E2 ∈ [a, b], η2 ∈ [0, 1], and

c2�
2 ≤ �sη1,η2

0 (E2) ≤ c3�
2, for all E2 ∈ [a, b], η j ∈ [0, c4�], j = 1, 2.

(4.24)

First regime: For 1 ≤ t ≤ 4Kc3/(c4�) we take η2 := 8Kc1c3/(c4t). Then, for any
E2 ∈ [a, b] it holds that

η2 + �s0(E2) ≥ 8Kc1c3/(c1t) − c1� ≥ 4Kc1c3/(c1t) > 0.

In particular, the parameters a, b, and d from Lemmas 4.10, 4.11, and 4.9, respectively,
are all of order 1/t and Ê(t) is bounded as

Ê(t) � 1 + log t

t
+ η0

�
+ �| log�| + � log t, for 1 ≤ t ≤ 4Kc3

c4
· 1

�
. (4.25)

Second regime: For 4Kc3/(c4�) ≤ t ≤ 2Kc3/η0, we take η2 := 4Kc3
t . In this regime,

η2 ≤ c4�, so the positivity of η2 + �s0(E2) follows from (4.24). We also have that
η2 ≥ 2η0 and again a ∼ b ∼ d ∼ 1/t . Therefore, (4.25) holds in the whole regime
1 ≤ t ≤ 2Kc3/η0.

Third regime: It remains to study the regime 2Kc3/η0 ≤ t ≤ K/�2. If η0 ≤ 2c3�2,

it is in fact empty; hence, we may assume η0 ≥ 2c3�2. In this case, we take η2 :=
min{η0/4, c4�, 1/t} and find that a ∼ η0, b � �2, d � �2. Moreover, the error term
Ê(t) is bounded as

Ê(t) � 1 + log t

t
+ �| log�| + η0| log�|

�
, for 2Kc3/η0 ≤ t ≤ K/�2.
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After having chosen η2 in all time regimes explicitly, we can perform z2-integration
in (4.23). Note that in all time regimes η2 was chosen in such a way that η2+�s0 > 0,
which guarantees that γ2 encircles the point x − s0 for x ∈ supp(ρ1). So, (4.23)
evaluates to

IE0,η0(t) = eits0
∫

R

η0

(x − E0)2 + η20
ρ1(x)dx + O(Ê(t)

)

= eits0�〈M1(E0 + iη0)〉 + O(Ê(t)
)
.

(4.26)

After dividing by �〈M1(E0 + iη0)〉 and taking the absolute value square, it is left to
notice that, setting

� := 2�s0,00

((
f 0,0

)−1
(E0)

)
, (4.27)

it holds that

�s0 = �sη1,η2
0

((
f η1,η2

)−1
(E0)

)
= �/2 + O(�(η1 + η2)) = �/2 + O(�/t).

Here, we used (4.16) from Lemma 4.5 and (4.14) from Lemma 4.4 together with the
bound η j � 1/t , j = 1, 2. By Lemma 4.6, we finally see that the implicit constants
in � ∼ �2 only depend on κ and L . This finishes the proof of Theorem 2.4 (ii). ��

5 Stability operator and shift: Proofs for Sect. 4.2

5.1 Bound on the stability operator: Proof of Proposition 4.2

Throughout the proof, we will use the shorthand notations E j := �z j , η j := |�z j |,
ρ j := 1

π

∣∣〈�Mj (z j )〉
∣∣ and ω j := z j + 〈Mj (z j )〉, for j ∈ [2].

We will conclude Proposition 4.2 from the following lemma.

Lemma 5.1 Under the assumptions of Proposition 4.2 and using the notations from
above, we have that:

|1 − 〈M1M2〉|−1 � (η1/ρ1 + η1/ρ2)
−1 ∨ 1. (5.1)

|1 − 〈M1M2〉|−1 � (�2 + |ω1 − ω2|2)−1. (5.2)

|1 − 〈M1M2〉|−1 � |z1 − z2|−2 (5.3)

Combining (5.1)–(5.3) with the simple observation |ω1−ω2| ≥ |〈�M1〉+〈�M2〉|,
we conclude (4.9), i.e., the proof of Proposition 4.2. ��
Proof of Lemma 5.1 For (5.1), it is sufficient to check that for some c ∈ (0, 1) we have
|〈M1M2〉| ≤ (1 − c(η1/ρ1 + η2/ρ2)) ∨ (1− c). This follows from a simple Cauchy–
Schwarz inequality |〈M1M2〉| ≤ 〈|M1|2〉1/2〈|M2|2〉1/2 together with the estimate

〈|Mj |2〉1/2 =
( 〈�Mj 〉

�z j + 〈�Mj 〉

)1/2

�
(

ρ j

η j + ρ j

)1/2

≤
(

1 − 1

2
· η j

ρ j

)

∨ (1 − c) , j ∈ [2]
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where the first step follows by taking the imaginary part of the MDE (4.6).
For (5.2), we note that it is sufficient to show

�〈M1M2〉 ≤ 1 − c
(〈

(D1 − D2)
2
〉
+ |ω1 − ω̄2|2

)
for some c > 0 . (5.4)

The idea for proving (5.4) is to translate it to a question for the spectral measures of
D1 and D2.

In order to do so, for j ∈ [2], denote the eigenvalues and eigenvectors of Dj

by {λ( j)
k }Nk=1 and {u( j)

k }Nk=1, respectively, and the normalized spectral measure by

μ j := N−1∑N
k=1 δ

λ
( j)
k
. By the MDE (4.6), we immediately see that ω j solves the

equation ω j − z j = mμ j (ω j ), where mμ(z) := ∫
R dμ(x)(x − z)−1 is the Stieltjes

transform of the probability measure μ. By taking the imaginary part and estimating
|�ω j | > |�ω j − �z j | we hence find

∫
dμ j (x)

|x − ω j |2 < 1 . (5.5)

Using the above notations, we further see that Mj can be written as Mj =
∑N

k=1(λ
( j)
k − ω j )

−1|u( j)
k 〉〈u( j)

k | and thus

〈M1M2〉 = 1

N2

N∑

a,b=1

1

λ
(1)
a − ω1

· 1

λ
(2)
b − ω2

f
(
λ
(1)
a , λ

(2)
b

)
, with f

(
λ
(1)
a , λ

(2)
b

) := N
∣∣〈u(1)

a , u(2)
b

〉∣∣2 .

Extending f (x, y) to R2 by zero, we immediately see the following properties of f :

(1) f (x, y) ≥ 0 for all x, y ∈ R.
(2)

∫
f (x, y)dμ2(y) = 1suppμ1(x) and

∫
f (x, y)dμ1(x) = 1suppμ2(y).

(3) OnR2, dν(x, y) := f (x, y)dμ1(x)dμ2(y) is a probabilitymeasurewithmarginals
μ1 and μ2.

In this way, the desired inequality (5.4) can equivalently be rewritten as

�
∫∫

1

x − ω1
· 1

y − ω2
dν(x, y) ≤ 1 − c

(∫∫
(x − y)2dν(x, y) + |ω1 − ω̄2|2

)
.

(5.6)
In this form, using (5.5), we begin by estimating the lhs. of (5.6) as

�
∫∫

1

x − ω1
· 1

y − ω2
dν(x, y) < 1 − 1

2

∫∫ ∣∣∣∣
1

x − ω1
− 1

y − ω̄2

∣∣∣∣

2

dν(x, y),
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Thus, in order to arrive at (5.6), it suffices to bound

∫∫ ∣∣∣∣
1

x − ω1
− 1

y − ω̄2

∣∣∣∣

2

dν(x, y) �
∫∫

|(x − y) − (ω1 − ω̄2)|2 dν(x, y)

=
∫∫

(x − y)2dν(x, y) − 2�(ω1 − ω̄2)

∫∫
(x − y)dν(x, y) + |ω1 − ω̄2|2

=
∫∫

(x − y)2dν(x, y) + |ω1 − ω̄2|2.

where in the first step we employed |x − ω1| � ‖D1‖ + |ω1| � 1 (and analogously
for |y− ω̄2|), while in the last step we used that fact that D1 and D2 are traceless. This
finishes the proof of (5.2).

Finally, for (5.3), we use (5.2) and (4.11) to get that

|z1 − z2|2 = |〈M2(D1 − D2)M1〉 + (1 − 〈M1M2〉)(z1 − z2 + 〈M1〉 − 〈M2〉)|2
� |〈M1(D1 − D2)M2〉|2 + |1 − 〈M1M2〉|
�
〈
(D1 − D2)

2
〉
+ |1 − 〈M1M2〉| � |1 − 〈M1M2〉| .

��

5.2 Properties of the shift: Proof of Lemmas 4.4–4.6

We finally prove the properties of the shift from Lemmas 4.4–4.6.

Proof of Lemma 4.4 The proof is split in two parts in the statement of the lemma.

Part (1): Given |〈M1M2〉| ∼ 1, note that the bound (4.13) immediately follows since,
if, say, z1 is such that ρ1(z1) ≥ κ/2, then ‖M1‖ � 1 and 〈|M2|2〉1/2 ≤ 1. Both of these
estimates easily follow by taking the imaginary part of the respective MDEs (4.6).

It is hence left to prove |〈M1M2〉| ∼ 1. The upper bound |〈M1M2〉| ≤ 1 is a
consequence of the Cauchy–Schwarz inequality and 〈|Mj |2〉1/2 ≤ 1. In order to
prove the lower bound, we may assume w.l.o.g. that |〈M1M2〉| ≤ 1/2, in which case
|1 − 〈M1M2〉| ∼ 1. Now, the numerator in the rhs. of the M-resolvent identity (4.11)
is of order one, since 1 � |〈M1〉 − 〈M2〉| � |〈�M1〉| + |〈�M2〉| � 1. Thus, by (4.11)
again, we find that |(z1 − z2)〈M1M2〉 − 〈M1(D1 − D2)M2〉| ∼ 1, so, in particular,

1 � |(z1 − z2)〈M1M2〉 − 〈M1(D1 − D2)M2〉| � |〈M1M2〉| + �.

Therefore, for some constant c > 0 which depends only on L and κ we have

|〈M1M2〉| ≥ c − � � 1,

i.e., we get the desired lower bound for |〈M1M2〉|.
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Part (2): Assume w.l.o.g. that ρ1(z1) ≥ κ/2. The derivative ∂z1s(z1, z2) can be com-
puted explicitly as

∂z1s(z1, z2) = 〈M2
1 (D1 − D2)M2〉〈M1M2〉 − 〈M1(D1 − D2)M2〉〈M2

1M2〉
〈M1M2〉2(1 − 〈M2

1 〉)
and we note that, by analogous reasoning as in part (1), the numerator is bounded from
above by �. Since |〈M1M2〉| ∼ 1, from part (1), it holds that

|∂z1s(z1, z2)| � �

|1 − 〈M2
1 〉| � �,

where in the last step we used the bound |1 − 〈M2
1 〉| � ρ1(z1)2 with the aid of

Proposition 4.2. ��
Proof of Lemma 4.5 The argument is split in two parts: First, we prove existence and
uniqueness of the energy renormalization function f . Second, we estimate the partial
derivatives (4.16) of f and the renormalized (one point) shift s0.

Part (1): Existence and uniqueness of f . First, from Lemma 4.5, we have that, for z1
with |z1| ≤ L and �z1 < 0, it holds that |s(z1, z2)| ≤ C� for some C > 0. For fixed
z2 = E2 + iη2, we introduce the auxiliary (differentiable) function

h(E1) := E1 − E2 − �s(E1 − iη1, E2 + iη2) ,

which has the property that h(E1) < 0 for E1 < E2 − C�, and h(E2) > 0 for
E1 > E2 + C�. Hence, h(E1) = 0 has a solution in I := [E2 − C�, E2 + C�].
To see uniqueness, we differentiate h and find that h′(E1) ≥ 1 − c� for E1 ∈ I
and some c > 0 by means of (4.14) from Lemma 4.4. Thus, h has a unique zero
on I (and hence in (−L, L)) which we denote by f (E2) = f η1,η2(E2)—the desired
energy renormalization function. Differentiability of f easily follows from the implicit
function theorem.

Part (2): Bounds on derivatives. Differentiating the identity h( f η1,η2(E2)) = 0 in E2,
we find that

∂E2 f
η1,η2(E2) = 1 + �∂2s( f (E2) − iη1, E2 + iη2)

1 − �∂1s( f (E2) − iη1, E2 + iη2))
= 1 + O(�),

by means of (4.14) from Lemma 4.4. Here, ∂ js denotes the partial derivative of s
w.r.t. its j th argument. Similarly,

∂η1 f
η1,η2(E2) = − � [i∂1s]

1 − � [∂1s]
, ∂η2 f

η1,η2(E2) = � [i∂1s]

1 − � [∂2s]
,

where s has arguments f (E2) − iη1 and E2 + iη2. This concludes the bound∣∣∂η j f
η1,η2(E2)

∣∣ � � for j = 1, 2. The bound on |∂E2s0(E2)| is obtained in a similar
fashion and thus left to the reader. ��
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Proof of Lemma 4.6 The proof is divided in two parts: In the first part, we prove (4.17)
for η1 = η2 = +0. In the second part of the argument, we treat the general case as a
perturbation thereof.

Part (1): Proof on the real line. Applying the M-resolvent identity (4.11) for z1 :=
f (E) − i0 and z2 := E + i0 and using Proposition 4.2, we find that

∣∣∣∣
〈M1(z1)〉 − 〈M2(z2)〉
f (E) − E − s0(E)

∣∣∣∣ � 1

�2 .

Since the numerator on the lhs. is of order one and the real part of the denominator
vanishes by definition of f (E), we deduce that

�2 � |� [ f (E) − E − s0(E)]| = |�s0(E)| ,

i.e., we have a lower bound on themodulus of �s0(E). To turn this into a lower bound
on �s0(E) itself, we need to show that it is positive.

This will be done via a proof by contraction: Suppose that �s0(E) < 0. By (4.11)
for z1 := f (E) − i0, z2 := E + i0 we get

〈M1M2〉
1 − 〈M1M2〉 = 〈M1〉 − 〈M2〉

−i�s0(E)
. (5.7)

Since � [〈M1〉 − 〈M2〉] = −c for some c > 0 and |� [〈M1〉 − 〈M2〉] | � �, we
obtain, using our assumption �s0(E) < 0,

〈M1〉 − 〈M2〉 = |〈M1〉 − 〈M2〉|e−
iπ
2 +iO(�) and

〈M1〉 − 〈M2〉
−i�s0(E)

=
∣∣∣∣
〈M1〉 − 〈M2〉

−i�s0(E)

∣∣∣∣ e
iπ+iO(�) ,

where here and in the following O(�) is real-valued. In a similar way, we find that
〈M1M2〉 = 1+O(�)+ iO(�) and 〈M1M2〉 = |〈M1M2〉|eiO(�). Hence, (5.7) implies

1 − 〈M1M2〉 =
∣∣∣∣

−i�s0(E)

〈M1〉 − 〈M2〉 〈M1M2〉
∣∣∣∣ e

iπ+O(�) ,

i.e., in particular, � [1 − 〈M1M2〉] < 0. On the other hand, it holds that
� [1 − 〈M1M2〉] ≥ 1 − |〈M1M2〉| ≥ 0, so we arrived at a contradiction and thus
�s0(E) > 0 and �s0(E) � �2.

For part (1), we are now left to prove |�s0(E)| � �2, which is done via a pertur-
bative argument in Appendix A. This concludes part (1), i.e., �s0,00 (E) ∼ �2.

Part (2): Extension away from the real line. By (4.16) and the fundamental theorem
of calculus, we have

∣∣∣�sη1,η2
0 (E) − �s0,00 (E)

∣∣∣ ≤
∣∣∣∣∣∣

η1∫

0

∂ζ1s
ζ1,η2
0 (E)dζ1

∣∣∣∣∣∣
+
∣∣∣∣∣∣

η2∫

0

∂ζ2s
0,ζ2
0 (E)dζ2

∣∣∣∣∣∣
� �(η1+η2) .
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Hence, if 0 < η j ≤ c2� for some c2 > 0 small enough, we obtain �sη1,η2
0 (E) ∼

�s0,00 (E) ∼ �2. ��

6 Contour integration: Proof of technical lemmas from Sect. 4.3

The goal of this section is to give the proofs of the technical lemmas from Sect. 4.3,
for which we recall the construction of the contours γ1, γ2 from Sect. 4, in particular
(4.2)–(4.3) and Fig. 1, and the definition of the [a, b] interval from the beginning of
Sect. 4.3.

In all of the estimates below, we will frequently use the following simple tools:

• To gain 1/t-factors from the oscillatory eit(z1−z2), we integrate by parts.
• When pulling absolute values inside an integral, we bound |eit(z1−z2)| � 1 (recall

|�z j | � 1/t).
• The convolution of two Cauchy kernels yields another Cauchy kernel: For η j > 0
and E j ∈ R, j ∈ [2] it holds that

∫

R

η1

(x − E1)2 + η21

η2

(x − E2)2 + η22
dx � η1 + η2

(E1 − E2)2 + (η1 + η2)2
. (6.1)

We now turn to the proofs of the lemmas from Sect. 4.3.

6.1 The second line of (4.23) is negligible: Proof of Lemma 4.7

We discuss the contributions from the flat and semicircular part of γ2 separately (recall
(4.3)).

First, the smallness of the integral over γ (2)
2 (the semicircular part) is granted by the

factor et�z2 (note that�z2 ∈ [−R+η2, η2]) and the estimate |〈M(E0+ iη0, z2)〉| � 1,
which follows from (4.9). More precisely, we have that

∣∣∣∣∣

∮

γ
(2)
2

eit(E0+iη0−z2) 〈M(E0 + iη0, z2)〉 dz2
∣∣∣∣∣
� R

∫ 2π

π

et R sin θdθ � 1

t
. (6.2)

Next, we bound the integral over γ
(1)
2 —the flat part. As a first step, integration by

parts yields

∣∣∣∣∣

∫

γ
(1)
2

eit(E0+iη0−z2) 〈M(E0 + iη0, z2)〉 dz2
∣∣∣∣∣

� 1

t
+
∣∣∣∣
1

it

∫ R

−R
e−it E2∂E2 〈M(E0 + iη0, E2 + iη2)〉 dE2

∣∣∣∣ .
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The derivative can be explicitly computed as

∂z2〈M(z1, z2)〉 = 〈M1M2
2 〉

(1 − 〈M2
2 〉)(1 − 〈M1M2〉)2

. (6.3)

Since E0 is in the bulk of ρ1 and z0 := E0 + iη0 and z2 are in the same half-plane we
infer |1 − 〈M1M2〉| � 1 and thus

∣∣∣∣∣

∮

γ
(1)
2

eit(E0+iη0−z2) 〈M(E0 + iη0, z2)〉 dz2
∣∣∣∣∣
� 1

t
+1

t

∫ R

−R

∣∣∣∣
1

1 − 〈M2(E2 + iη2)2〉
∣∣∣∣ dE2.

In order to conclude the proof of Lemma 4.7, we finally use that the one-body stability
operator |1 − 〈M2(E2 + iη2)2〉|−1 is locally integrable, see Lemma A.1 in Appendix
A. ��

6.2 Cutting tails in the first line of (4.23): Proof of Lemma 4.8

For cutting the tails, we focus on the more critical regime, where both parameters
are on the horizontal part of the contours, z j ∈ γ

(1)
j for j ∈ [2] (recall (4.2)–(4.3)).

Indeed, if this is not the case, a simple computation using Proposition 4.2 and arguing
similarly to (6.2) yields (1+ η0/�)/t � 1/t as an upper bound for the corresponding
integrals.

In the critical regime z j ∈ γ
(1)
j for j ∈ [2] we carry out only the case E2 =

�z2 ∈ [b, R]; for E2 ∈ [−R, a] the argument is identical. Let δ := (b − E0)/2
and split the region of the E1 = �z1-integration into the two parts, [b − δ, 2R] and
[−2R, b − δ]. In the first regime, using |E1 − E0| � 1 and, from Proposition 4.2,
|〈M(E1 − iη1, E2 + iη2)〉| �

(
(E1 − E2)

2 + �2
)−1, we find that

∫ 2R

b−δ

∫ R

b

∣∣∣∣∣
η0

(E1 − iη1 − E0)2 + η20
〈M(E1 − iη1, E2 + iη2)〉

∣∣∣∣∣
dE1dE2 � η0

�
.

For E1 ∈ [−2R, b − δ], by Proposition 4.2 again, we have |〈M(z1, z2)〉| � 1, since
|E1 − E2| ∼ 1. Using this and integration by parts in E2, similarly to the proof of
Lemma 4.7, in combination with (6.3) and Lemma A.1, we find that

∣∣∣∣∣

∫ b−δ

−2R

∫ R

b
eit(z1−E2−iη2) η0

(E1 − iη1 − E0)2 + η20

〈M(E1 − iη1, E2 + iη2)〉dE1dE2
∣∣∣∣∣
� 1

t
.

This finishes the proof of Lemma 4.8. ��

6.3 First replacement: Proof of Lemma 4.9

Let δ > 0 be such that [a − δ, b + δ] is in the bulk of ρ1. We now compare the two
integrals on the lhs. and rhs. of (4.18) by taking their difference. Using integration by
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parts, the contribution from (z1, z2) ∈ γ
(2)
1 × [a, b] is bounded by η0/t . Analogously

to the proof of Lemma 4.8, we also find that the contribution from ([−R, R]\[a −
δ, b + δ]) × [a, b] is bounded by η0, since in this regime |〈M(z1, I , z2)〉| � 1 and
|z1 − z2 − s

η1,η2
0 (E2)|−1 � 1. From now on and until the end of Sect. 6.5 we use the

shorthand notation s0(E2) := s
η1,η2
0 (E2).

We are hence left to estimate the contribution from the region [a−δ, b+δ]×[a, b].
Using that |s(z1, z2) − s0(E2)| � �|E1 − � f (z2)| by means of Lemma 4.4, we find
that this can be bounded by

E :=
∫ b+δ

a−δ

∫ b

a

η0

(E1 − E0)2 + η20

· �|E1 − � f (z2)|
|z1 − z2 − s(z1, z2)| · |z1 − z2 − s0(E2)|dE1dE2 .

To have better control on E , we now bound the denominators in the second factor
from below. First, using the definition of d from the formulation of Lemma 4.9, we
get

|z1−z2−s0(E2)|2 = (E1−E2−�s0(E2))
2+(η1+η2+�s0(E2))2 � (E1− f (E2))

2+d2 .

(6.4)
Next, using that |z1 − z2 − s(z1, z2)| � �2, as simple consequence of the stability
bound (4.9), we infer

|z1− z2−s(z1, z2)|2 ∼ |z1− z2−s(z1, z2)|2+�4 � (E1− E2−�s(z1, z2))
2+�4 .

(6.5)
Finally, using the definingproperties of the renormalization function f given inLemma
4.5, (4.14) from Lemma 4.4, and the triangle inequality, one easily sees that

|E1 − E2 − �s(z1, z2)| ∼ |E1 − f (E2)|. (6.6)

Hence, combining (6.4) and (6.5)–(6.6) we find that

E �
∫ b+δ

a−δ

∫ b

a

η0

(E1 − E0)2 + η20
· �|E1 − f (E2)|
|E1 − f (E2)|2 + (min{d,�2})2 dE1dE2

�
∫ b+δ

a−δ

η0�(| log�| + | log d|)
(E1 − E)2 + η20

dE1 � �(| log�| + | log d|).

where in the second step we changed the integration variable from E2 to f (E2) and
employed (4.16) from Lemma 4.5. This concludes the proof of Lemma 4.9. ��

6.4 Residue computation after the first replacement: Proof of Lemma 4.10

Using the integral representation 〈M1(z1)〉 = ∫
R ρ1(x)(x − z1)−1dx and carrying

out the residue computation (note that (4.19) ensures z2 + s0(E2) is encircled by the
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contour γ1), we find the lhs. of (4.20) to equal

− 1

2π i

∫ b

a
dE2

∫

R
eit(x−E2−iη2) η0

(x − E0)2 + η20
· ρ1(x)dx

x − (E2 + iη2 + s0(E2))
+E1+E2 ,

where we introduced the shorthand notations

E1 := − 1

4π

∫ b

a
eit(E0+iη0−E2−iη2) 〈M1(E0 + iη0)〉 − 〈M2(E2 + iη2)〉

E0 + iη0 − (E2 + iη2 + s0(E2))
dE2,

E2 := 1

2π i

∫ b

a
eits0(E2)

η0 (〈M1(E0 + iη0)〉 − 〈M2(E2 + iη2)〉)
(E2 + iη2 + s0(E2) − E0)2 + η20

dE2 .

Moreover, we shall abbreviate z0 := E0 + iη0, z2 := E2 + iη2. Then, to estimate E1,
we employ integration by parts and find that since

∣∣∂E2〈M2(z2)〉
∣∣ � 1 as ρ2(z2) � 1,

using (4.16) from Lemma 4.5, and recalling the definition of a from the formulation
of Lemma 4.10,

∣∣∣∣∂E2

〈M1(z0)〉 − 〈M2(z2)〉
z0 − (z2 + s0(E2))

∣∣∣∣ � 1

|E0 − f (E2)| + a
+ |〈M1(z0)〉 − 〈M2(z2)〉|

|E0 − f (E2)|2 + a2
.

Applying the M-resolvent identity (4.11) to z0 and z2 we infer, by application of the
stability bound from Proposition 4.2 together with (4.13) and η2 � 1/t , η0 � �, that
|〈M1(z0)〉 − 〈M2(z2)〉| � |E0 − f (E2)| + � + 1/t , and hence

|E1| � 1

t
+ 1

t

∫ b

a

(
1

|E0 − f (E2)| + a
+ |E0 − f (E2)| + � + t−1

|E0 − f (E2)|2 + a2

)
dE2

� | log a|
t

+ � + t−1

ta
.

Similarly, E2 admits the bound |E2| � η0| log a| + η0a
−1(� + t−1). This finishes the

proof of Lemma 4.10. ��

6.5 Second replacement: Proof of Lemma 4.11

The argument is split in twoparts. First,we estimate the error of the second replacement
within the interval [a, b]. Then, we put back the tails to complete the full contour
integral.

For the first part, using |s0(E2)−s0| � �| f (E2)−E0| as a consequence of (4.16),
we find the error to be bounded by (a constant times) E1 + E2, where

E1 :=
∫

R
dx

∫ b

a

η0

(x − E0)2 + η20
· �| f (E2) − E0|
|x − (z2 + s0(E2))|2 dE2 (6.7)

andE2 is the same integral asE1, butwith s0(E2)being replacedby s0.Next, convolving
Cauchy kernels (6.1) in the x-variable and using (4.16) together with the definition of
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b we arrive at

E1 � η0 + b

b

∫ b

a

�| f (E2) − E0|
( f (E2) − E0)2 + (η0 + b)2

dE2 � η0 + b

b
�| log(η0 + b)| .

For E2, the argument is similar: We simply replace f (E2)− E0 in the denominator by
E0 − E2 −�s0 and estimate |E0 − f (E2)| � |E0 − E2 −�s0| in the numerator. This
shows that the error for the first bound is bounded by (η0 + b)b−1�| log(η0 + b)|.

In the second part, we estimate the tails on the rhs. of (4.22). In the regime when
z2 ∈ γ

(2)
2 we find the bound 1/t , similarly to (6.2). If instead z2 ∈ γ

(1)
2 \ ([a, b]+ iη2),

say, E2 = �z2 ∈ [b, R] for concreteness, we have that |E0 − E2 − �s0| ∼ 1, so the
singularities in x on the rhs. of (4.22) are separated from each other. Now, pick δ ∼ 1
such that [E0 − δ, E0 + δ] ⊂ [a, b] and |x − E2 − �s0| ∼ 1 for any E2 ∈ [b, R],
x ∈ [E0 − δ, E0 + δ]. Then, for |x − E0| ≥ δ, it holds that

∣∣∣∣∣

∫

|x−E0|≥δ
dx

∫ R

b
eit(x−E2−iη2)

η0

(x − E0)2 + η20

· ρ1(x)dx

x − (E2 + iη2 + s0)
dE2

∣∣∣∣∣
� η0| log b| ,

where, in order to get b, we employed Lemma 4.6 and (4.16). Finally, for |x−E0| ≤ δ,
we employ integration by parts in E2 and use |x− E2−�s0| ∼ 1 for any E2 ∈ [b, R],
x ∈ [E0 − δ, E0 + δ] to get

∣∣∣∣∣

∫ E0+δ

E0−δ

dxeit(x−iη2) η0 ρ1(x)

(x − E0)2 + η20

∫ R

b
e−it E2

dE2

x − (E2 + iη2 + s0)

∣∣∣∣∣
� 1

t
.

This finishes the justification of the replacement (4.22) and thus the proof of Lemma
4.11. ��

7 Second echo protocol: Proof of Theorem 2.10

The argument for part (i) is very similar to that for the proof of Theorem 2.4 (i).
The only two differences are the following: First, the formerly algebraic cancellations
〈P̃[H1, H2]〉 = 0 below (3.3) and (3.5) are replaced by the estimate |〈ψ,Wφ〉| ≺
‖ψ‖ ‖φ‖N−1/2 for deterministic φ,ψ ∈ CN . This follows by residue calculus and
using an isotropic global law for the Wigner matrix W together with the fact that the
first moment of the semicircular density vanishes,

∫
R xρsc(x)dx = 0, by symmetry.
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More precisely, using ‖W‖ ≤ 2 + ε with very high probability,

|〈ψ,Wφ〉| =
∣∣∣∣
1

2π i

∮

|z|=3
z〈ψ, (W − z)−1φ〉dz

∣∣∣∣

� ‖ψ‖ ‖φ‖
∣∣∣∣
1

2π i

∮

|z|=3
zmsc(z)dz

∣∣∣∣ + ‖ψ‖ ‖φ‖O≺(N−1/2)

� ‖ψ‖ ‖φ‖
∣∣∣∣

∫

R
xρsc(x)dx

∣∣∣∣ + ‖ψ‖ ‖φ‖O≺(N−1/2) ≺ ‖ψ‖ ‖φ‖N−1/2

(7.1)

where, to go to the last line, we used the Stieltjes representation msc(z) =∫
R(x − z)−1ρsc(x)dx and simple residue calculus. Second, in the analog of (3.6)
it suffices to estimate all the λW simply by operator norm, recalling ‖W‖ ≤ 2 + ε

with very high probability. The rest of the argument goes along the same lines as in
the proof of Theorem 2.4 (i) with straightforward modifications.

Part (ii) may be derived from [22, Theorem 2.4], but here we give a direct proof
relying just on the argument given in [22, Section 3.2.1]. First, by means of the single
resolvent global law, we have that

〈ψ0, e
it Hλe−it H0ψ0〉 = 1

2π i

∮

γ

eit z〈ψ0,Gλ(z)e
−it H0ψ0〉dz

= 1

2π i

∮

γ

eit z〈ψ0, Mλ(z)e
−it H0ψ0〉dz + O≺

(
C(t, λ)/

√
N
)

(7.2)

for some constant C(t, λ) > 0 depending only on time t and coupling λ. Next, we
approximate 〈Mλ(z)〉 ≈ m0(E0), leading to

Mλ(z) ≈ 1

H0 − z − λ2m0(E0)
. (7.3)

Plugging the approximation (7.3) into (7.2), we find

1

2π i

∮

γ

eit z
〈
ψ0,

(
H0 − z − λ2m0(E0)

)−1e−it H0ψ0
〉
dz = e−im0(E0)λ

2t (7.4)

from simple residue calculus for λ > 0 small enough, using that |m0(E0)| � 1 (as
follows from ρ0 being C1,1 around E0; recall (2.18)) and γ encircles the spectrum
of H0. We have thus extracted the main term in (7.2), and it remains to estimate the
errors resulting from the replacements in (7.3).

Denoting the spectral decomposition of H0 by H0 = ∑
j μ j |u j 〉 〈u j | and using

Assumption 2.9, we have that

1

2π i

∮

γ

eit z〈ψ0, Mλ(z)e
−it H0ψ0〉dz =

∑

μ j∈I�
〈ψ0, u j 〉〈u j , ψt 〉ϑ̃( j) , (7.5)
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where we denoted ψt := e−it H0ψ0 and

ϑ̃( j) := 1

2π i

∮

γ

eit z

μ j − z − λ2〈Mλ(z)〉dz . (7.6)

The key to approximating (7.5) is the following lemma, the proof of which is
identical to that of [22, Lemma 3.3] and so omitted.

Lemma 7.1 (cf. Lemma 3.3 in [22]) Under the above assumptions and notations, for
every j ∈ [N ] such that μ j ∈ I�, denote

ϑ( j) := (2π i)−1
∮

γ

eit z(μ j − z − λ2m0(E0))
−1dz.

Then, it holds that
sup

μ j∈I�

∣∣ϑ̃( j) − ϑ( j)
∣∣ � E (7.7)

for sufficiently small λ > 0 and N large enough (dependent on λ, cf. [22, LemmaA.1]).
Here, recalling (2.16) for the definition of ε0 = ε0(N ), we denoted

E = E(λ, t,�, N ) := λ2t � + λ (1 + λ2t) + λ

�

(
1 + λ

�

)
+ λ2t ε0 . (7.8)

Therefore, by means of Lemma 7.1, employing a Hölder inequality in (7.5), and
using (7.4), we find that

1

2π i

∮

γ

eit z〈ψ0, Mλ(z)e
−it H0ψ0〉dz = e−im0(E0)λ

2t + O(E) . (7.9)

Combiningwith (7.2) and taking the absolute value square of (7.9), we arrive at (2.21).
This concludes the proof of Theorem 2.10. ��

Appendix A Additional proofs

A.1 Upper bound on the renormalized shift: Perturbation argument for Lemma
4.6

The goal of this section is to prove the upper bound |�s0,00 (E)| � �2, as claimed at
the end of part (1) of the proof of Lemma 4.6 in Sect. 5.

This is done via a perturbative calculation, which we carry out in a slightly more
general setting: Consider two spectral parameters z1 = E1 − i0, z2 = E2 + i0, such
that E j is in the bulk of ρ j , j ∈ [2]. Introducing the averaged and relative coordinates

D := (D1 + D2)/2, z := (E1 + E2)/2+ i0, � := (D2 − D1)/2− (E2 − E1)/2 ,
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we find that D1 − z1 = D − z − � and D2 − z2 = D − z + �. Let M be the solution
of the MDE with the averaged coordinates, i.e.,

− 1

M
= z − D + 〈M〉.

Using the identity MM∗ = �M/〈�M〉, it is easy to compute by Taylor expansion

M2M1 = 1

〈�M〉
(

�M + 2i� [�M�M] + 2i�
[ 〈�M2〉
1 − 〈M2〉�M · M

]
+ O(|�|2)

)
,

(A.1)
where O(|�|2) indicates terms containing at least two �’s. Plugging (A.1) in the
definition of the shift (4.12), we find that

s(z1, z2) + (z2 − z1) = −2
〈��M〉 + 2i〈�� [�M�M]〉 + 2i

〈
��

[
〈�M2〉
1−〈M2〉 �M · M

]〉
+ O(〈|�|3〉)

〈�M〉 + 2i〈� [�M�M]〉 + 2i
〈
�
[ 〈�M2〉
1−〈M2〉 �M · M

]〉
+ O(〈|�|2〉)

.

which implies

〈�M〉2
2

[s(z1, z2) + (z2 − z1)]

= −〈��M〉〈�M〉 − 2i〈�M〉
〈(

� − 〈��M〉
〈�M〉

)
�M��M

〉

− 2i〈�M〉
〈(

� − 〈��M〉
〈�M〉

)
�
[ 〈�M2〉
1 − 〈M2〉�M · M

]〉
+ O(〈|�|3〉).

Using �[z2 − z1] = 0 and �[〈��M〉〈�M〉] = 0, the imaginary part is given by

〈�M〉
4

�s(z1, z2) = −
〈(

� − 〈��M〉
〈�M〉

)
�M

(

��M + �
[

〈�M2〉
1 − 〈M2〉 M

])〉

+ O(〈|�|3〉)

and hence

|�s(z1, z2)| = 4

〈�M〉

∣∣∣∣∣

〈(
� − 〈��M〉

〈�M〉
)

�M
(

��M + �
[

〈�M2〉
1 − 〈M2〉 M

])〉

+ O(〈|�|3〉)
∣∣∣∣∣

� 〈|�|2〉 ,

since ‖�‖ � 1. Specializing to the setting of Lemma 4.6 this result means that

|�s0,00 (E)| � �2 + | f (E) − E |2 � �2 ,

where in the last step we used (4.13) and Lemma 4.5. This concludes the proof of the
upper bound in part (1) of Lemma 4.6.
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A.2 The one-body stability operator is locally integrable

In Sect. 6, we frequently use that the one-body stability operator is locally integrable.
This is the statement of the following lemma.

Lemma A.1 (Integral of one-body stability operator) Fix a (large) positive constant
L. Uniformly in η ∈ [0, 1] and in D satisfying Assumption 2.2 with constant L we
have ∫ L

−L

dE

|1 − 〈M2(E + iη)〉| � 1. (A.2)

Proof With the notation (2.2), we use the classification of local minima of ρ from [3,
Theorem 7.1]. This result addresses the case of a diagonal deformation, while D in
the formulation of Lemma A.1 does not need to be diagonal. Since the deterministic
approximation M(z) to the resolvent (H − z)−1 of a random matrix H depends only
on the first two joint moments of entries of H , we have that M(z) in (A.2) coincides
with the deterministic approximation to (WGUE + D − z)−1, where WGUE is a GUE
matrix. LetU be a unitary diagonalizing D, i.e.,U∗DU = D0, where D0 is diagonal.
Invariance of GUE under unitary conjugations gives that M̃(z) := U∗M(z)U is a
deterministic approximation to (WGUE + D0 − z)−1, so M̃(z) solves the MDE

−M̃−1(z) = z − D0 + 〈M̃(z)〉, �z�M̃(z) > 0 for z ∈ C \ R .

We remark that M̃ satisfies the assumptions of [3, Theorem 7.1], since S = 〈·〉 is flat
and by means of Assumption 2.2.

Thus, [3, Theorem 7.1] applied to M̃ together with the observation 〈M̃〉 = 〈M〉
gives that there exist positive constants ρ∗ > 0 and δ∗ > 0 dependent only on L such
that for any local minimum τ0 of ρ with ρ(τ0) < ρ∗ one of the following possibilities
holds:

ρ(τ0 + ω) ∼ min{�−1/6ω1/2, ω1/3} , ω ∈ [0, δ∗] , (left edge) (A.3a)

ρ(τ0 + ω) ∼ min{�−1/6|ω|1/2, |ω|1/3}, ω ∈ [−δ∗, 0] , (right edge) (A.3b)

ρ(τ0 + ω) ∼ |ω|1/3, ω ∈ [−δ∗, δ∗] , (cusp) (A.3c)

ρ(τ0 + ω) ∼ ρ̃ + min{ρ̃−5ω2, |ω|1/3}, ω ∈ [−δ∗, δ∗] , (internal minimum)
(A.3d)

where ρ̃ ∼ ρ(τ0) in (A.3d). In (A.3a), � := 1 if τ0 is an extreme left edge of suppρ
and � is the length of the gap between the intervals of support which ends at point
τ0 otherwise (see also [3, Lemma 7.16]),12 for the right edge (A.3b) � is defined
similarly.

12 To be consistent with [3] we use � to denote the size of the gap inside of the proof of Lemma A.1. This
should not lead to any confusion with the rest of the paper, where � is used for the Hilbert-Schmidt norm
of D1 − D2.
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As a first preparatory step for (A.2), we give a lower bound for |1−〈M2(E + iη)〉|
in terms of ρ(E). In fact, we will show that uniformly in E ∈ [−L, L] it holds that

|1 − 〈M2(E + iη)〉| � ρ2(E) . (A.4)

By Lemma 5.1 the LHS of (A.4) has a lower bound of order ρ2(E+iη)+η/ρ(E+iη).
Recall from [3, Proposition 2.4] thatρ is 1/3-Hölder regular, i.e., there exists a constant
C0 depending only on L such that |ρ(z1) − ρ(z2)| ≤ C0|z1 − z2|1/3 uniformly in
z1, z2 ∈ C with �z1�z2 > 0 and |z j | ≤ 2 L , j = 1, 2. If η ≤ ρ(E)3/(2C0)

3, then
ρ(E + iη) ∼ ρ(E), i.e., (A.4) holds. In the complementary case, η > ρ(E)3/(2C0)

3,
we have ρ(E + iη) < ρ(E) and hence η/ρ(E + iη) � ρ2(E), i.e., (A.4) again holds.

Now, armed with (A.4), we are ready to prove (A.2). We split the region of inte-
gration into several regimes according to the classification of local minima of ρ. For
each local minimum τ0 with ρ(τ0) < ρ∗ the integration over τ0 + [−δ∗, δ∗] ∩ D will
be considered separately. Here, D = R for cusps and internal minima, D = [0,+∞)

for left edges and (−∞, 0] for right edges. The set D is chosen in such a way that
τ0 +[−δ∗, δ∗]∩D covers the part, where ρ is positive and small. The complementary
regimes, the bulk regime (where ρ ≥ ρ∗) and the gap regime (where ρ = 0), are
treated separately.

Bulk regime: It holds that ρ(E) ≥ ρ∗, hence desired bound on the lhs. of (A.2) in the
bulk regime immediately follows from (A.4).
Gap regime: Let τ1 < τ0 be two edges of suppρ such that ρ(E) = 0 for any E ∈
[τ1, τ0]; the cases when either τ1 is an extreme right edge or τ0 is an extreme left
edge are treated similarly. Since ∂zM = M2(1 − 〈M2〉)−1, we have |1 − 〈M2〉|−1 ≤
1 + |〈M ′〉|. Together with (A.3a) and (A.3b), this gives that

|1 − 〈M2(E + iη)〉| �
(
(min{|E − τ1|, |E − τ0|})2 + η2

)1/3
,

so the integral of |1 − 〈M2(E + iη)〉|−1 over E ∈ [τ1, τ0] is uniformly bounded in
η ∈ [0, 1].
Internal minimum with ρ(τ0) < ρ∗: Using (A.4) along with (A.3d), we find that

∫ δ∗

−δ∗

dω

|1 − 〈M2(τ0 + ω + iη)〉| �
∫ δ∗

−δ∗

dω

ρ2(τ0 + ω)
�
∫ ρ̃3

0

dω

ρ̃2 +
∫ δ∗

ρ̃3

dω

ω2/3 � 1 .

Cusp regime: This works in the exact same way as the internal minimum, using (A.3c)
instead of (A.3d).
Edge regime: Let τ0 be a left edge of ρ, for the right edge the argument is the same.

First, [3, Corollary 5.3] gives that |1 − 〈M2(z)〉| � ρ(z)(|σ(z)| + ρ(z)), where σ(z)
is a 1/3-Hölder regular function in {z ∈ C : �z > 0} (by [3, Lemma 5.5]) and
|σ(τ0)| ∼ �1/3 (by [3, Theorem 7.7, Lemma 7.16]). Therefore, there exists a (small)
positive constant c ∼ 1 such that for all z with �z ∈ [τ0, τ0 + c�] and �z ∈ [0, c�]
it holds that |σ(z)| ∼ �1/3. It is easy to see that the integral of the one-body stability
operator over [τ0 + c�, τ0 + δ∗] has an upper bound of order one by means of (A.4)
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and (A.3a). In the complementary regime [τ0, τ0 + c�] we distinguish between two
cases (i) η ∈ [0, c�] and (ii) η > c�. In the first case, note that, by the integral
representation ρ(E + iη) = ∫

R dxρ(x)η/((x − E)2 + η2) and (A.3a), it holds that
ρ(E + iη) � ρ(E) for E ∈ [τ0, τ0 + c�]. Thus,

∫ c�

0

dω

|1 − 〈M2(τ0 + ω + iη)〉| � �1/3
∫ c�

0

dω

ω1/2(�1/2 + ω1/2)
� 1.

In the second case, η > c�, we use (A.4) and the bound |1 − 〈M2(z)〉| � |�z| to get
∫ c�

0

dω

|1 − 〈M2(τ0 + ω + iη)〉| �
∫ c�

0

dω

ρ2(τ0 + ω) + �
∼ �1/3

∫ c�

0

dω

ω + �4/3 � 1 ,

which concludes the proof for the regular edge.
A careful examination of the proof shows that all implicit constants in the inequalities
above depend only on L . ��
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21. Erdős, L., Krüger, T., Schröder, D.: Randommatrices with slow correlation decay. ForumMath. Sigma

7, E8 (2019)
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