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A R T I C L E I N F O A B S T R A C T 

Communicated by Götz Pfander The identfication of the parameters of a neural network from finite samples of input-output 
pairs is often referred to as the teacher-student model, and this model has represented a popular 
framework for understanding training and generalization. Even if the problem is NP-complete in 
the worst case, a rapidly growing literature -- after adding suitable distributional assumptions -- has 
established finite sample identfication of two-layer networks with a number of neurons 𝑚=(𝐷), 
𝐷 being the input dimension. For the range 𝐷 < 𝑚 < 𝐷2 the problem becomes harder, and truly 
little is known for networks parametrized by biases as well. This paper fills the gap by providing 
efficient algorithms and rigorous theoretical guarantees of finite sample identfication for such 
wider shallow networks with biases. Our approach is based on a two-step pipeline: first, we recover 
the direction of the weights, by exploiting second order information; next, we identify the signs 
by suitable algebraic evaluations, and we recover the biases by empirical risk minimization via 
gradient descent. Numerical results demonstrate the effectiveness of our approach.

1. Introduction

Training a neural network is an NP-complete [28,8] and non-convex optimization problem which exhibits spurious and discon

nected local minima [5,42,58]. However, highly over-parameterized networks are routinely trained to zero loss and generalize well 
over unseen data [60]. In an effort to understand these puzzling phenomena, a line of work has focused on the implicit bias of gradi

ent descent methods [3,4,6,35,36,48,56]. Another popular framework for understanding training and generalization is the so-called 
teacher-student model [10,50,43,31,16,17,44,45,61,24,23,21,22,27,32,33,62]. Here, the training data of a so-called student network

are assumed to be realizable by an unknown teacher network, which interpolates them. This model is justfied by the wide literature -- 
both classical and more recent -- on memorization capacity [14,41,25,34,11,59,53,9], which shows that generic data can be realized 
by over-parametrized networks. Furthermore, it has also been proved that, in certain settings, small generalization errors necessarily 
require identfication of the parameters [33]. This leads to the fundamental question of understanding whether efficient algorithms 
exist that ensure the identfication of the teacher parameters and consequently the perfect generalization beyond training data. Exist

ing results mostly focus on the identfication of the weights of shallow (i.e., two-layer) networks with a number of neurons 𝑚 scaling 
linearly in the input dimension 𝐷 (see the related work discussed below). There is also evidence of the average-case hardness of 
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the regime 𝐷3∕2 < 𝑚 < 𝐷2, as weight identfication can be reduced to tensor decomposition [33]. Instead, the role of biases is often 
neglected in the literature, although it is well-known that classical universal approximation results, which are the strength of the 
teacher-student model, do not hold without biases. In fact, as a simple observation, for odd and continuous activations, networks 
with no biases can only represent functions that are 0 in 0. This distortion at 0 implies failure of any local 𝐿𝑝 approximation by 
continuity. Furthermore, one cannot simply remove the biases by including them in the weights through dimension augmentation 
and 1-padding, since this would destroy the incoherence of weights needed for their stable identfication.

Main contributions In this paper, we give theoretical guarantees on the recovery of both weights and biases from finite samples in the 
challenging regime 𝐷 < 𝑚 < 𝐷2, under mild assumptions on the smoothness of the activation function, incoherence of the weights, 
and boundedness of the biases. Specifically, the teacher network is given by

𝑓 ∶ℝ𝐷 →ℝ, 𝑓 (𝑥) ∶=
𝑚 ∑

𝑗=1 
𝑔(⟨𝑤𝑗,𝑥⟩+ 𝜏𝑗 ), (1)

where 𝑤1,… ,𝑤𝑚 are unit-norm weights and 𝜏1,… , 𝜏𝑚 are bounded biases. We propose a two-step parameter recovery pipeline that 
decouples the learning of the weights from the recovery of the remaining network parameters. In the first step, we use second order 
information to recover the weights 𝑤1,… ,𝑤𝑚 up to signs. The method (cf. Section 3) comes with provable guarantees of recovery 
up to 𝑚 log2(𝑚) = 𝑂(𝐷2) weights, provided that (i) the weights are sufficiently incoherent, and (ii) second order derivatives of 𝑓
carry enough information. Our approach is based on the observation that ∇2𝑓 (𝑥) =

∑𝑚
𝑗=1 𝑔

(2)(⟨𝑤𝑗,𝑥⟩+ 𝜏𝑗 )𝑤𝑗 ⊗𝑤𝑗 ∈ = span{𝑤1 ⊗

𝑤1,… ,𝑤𝑚 ⊗𝑤𝑚} and, hence, multiple samples of independent Hessians allow to compute an approximating subspace ̂ ≈ . The 
construction of such a subspace is based exclusively on second order information and differs from earlier proposals as by [27], who 
advocated for the more computationally expensive use of higher order tensor decompositions. The identfication of the weights is 
then performed by projected gradient ascent, the so-called subspace power method [20,30,29], seeking for solutions of

max 
𝑢∈𝕊𝐷−1

‖‖‖𝑃̂ (𝑢⊗ 𝑢)‖‖‖2𝐹 ≈ max 
𝑢∈𝕊𝐷−1

‖‖𝑃 (𝑢⊗ 𝑢)‖‖2𝐹 . (2)

In the second step (cf. Section 4), we show how to identify the signs by suitable algebraic evaluations and the biases by empirical 
risk minimization via gradient descent. Here, we suitably initialize the algorithm and provide convergence guarantees to the ground

truth biases. The convergence proof is based on a linearization argument inspired by the neural tangent kernel (NTK) approach. Our 
theoretical findings are summarized in the following informal statement.

Theorem 1.1 (Informal). Let 𝑓 be the shallow network (1) with 𝐷 inputs and 𝑚 neurons such that 𝑚 log2𝑚 =𝑂(𝐷2). Then, for sufficiently 
large 𝐷, there exists a constructive algorithm recovering all weights and shifts of the network with high probability from 𝑂(𝐷𝑚2 log2𝑚)
network queries.

A few comments on the complexity are in order. For 𝑚 =(𝐷), the proposed pipeline has guaranteed polynomial complexity in 
𝐷,𝑚. For 𝐷 <𝑚 < 𝐷2, while the pipeline is still guaranteed to converge globally, our findings clarify precisely how the hardness of 
the problem consists in distinguishing local maximizers of (2). This fine geometrical description is novel, and it could pave the way 
towards a more rfined understanding of the hardness of the network identfication problem. Furthermore, our numerical experiments 
(cf. Section 5) consistently show that the network recovery remains surprisingly successful with an experimentally experienced low 
complexity up to the information-theoretic upper bound 𝑚 ≈𝐷2∕2.1

Related work As a neural network is fully determined by a finite number of parameters, it is not at all expected to generically require 
an ifinite amount of training samples as in earlier works [49,1,19,54]. This has motivated the rapidly growing literature on the 
teacher-student model. A popular setup is to minimize the population risk by assuming Gaussian weights: a two-layer ReLU network 
with a single neuron is considered by [50], a single convolutional filter by [16,10], multiple convolutional filters by [17], and 
residual networks by [31]. Gradient descent methods have also been widely studied: [44] considers a single ReLU unit; [45] show 
global convergence for shallow networks with quadratic activations and local convergence for more general activations; gradient 
descent is combined with an initialization based on tensor decomposition by [62,61,24]. A local convergence analysis for student 
networks containing at least as many neurons as the teacher is provided by [63]. Let us highlight that these results neglect the role of 
biases, and the convergence guarantees are either local or, when global, require a number of neurons 𝑚 =(𝐷). Inspired by papers 
dating back to the 1990s [12,40,13], the works [43,23,22,27,32,33,62] have explored the connection between differentiation of 
shallow networks and symmetric tensor decompositions. In particular, [27] exploit the third order derivative tensor of the network, 
whose rank-1 components are made of the weights 𝑤1,… ,𝑤𝑚. Such a tensor is assumed to fufill stringent properties (learnability) 
that would allow for stable algorithmic tensor decomposition and, hence, weight identfication. While this preprint contains seminal 
ideas, it does not give a rigorous justfication of the aforementioned stringent properties, nor it provides numerical results showing 

1 This information-theoretic upper bound holds for all methods employing order-2 tensors. In fact, for 𝑚 ≈ 𝐷(𝐷 − 1)∕2, span{𝑤1 ⊗ 𝑤1,… ,𝑤𝑚 ⊗ 𝑤𝑚} coincides 
with the space of all symmetric matrices. In particular, in this regime the landscape of the objective function in (2) becomes flatter and flatter, making it impossible 
to distinguish approximations to 𝑤𝑗 ⊗𝑤𝑗 from any other rank-1 matrix competitor.
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the success of the proposed tensor decomposition approach. In fact, there is substantial evidence of a computational barrier to solve 
tensor decomposition in the regime 𝐷3∕2 <𝑚 <𝐷2 [33]. In contrast, [23] follow the simpler strategy of the evaluation of the Hessian 
matrix of the network at different points, yielding a more favorable learnability condition (see (M3) below), which can be rigorously 
justfied. Moreover, the results by [23] ensure the provable recovery of weights for 𝑚 ≤𝐷 by a robust matrix optimization promoting 
minimum rank selection. Once the weights have been identfied, the computation of biases has been considered by direct estimation 
[23], or by Fourier methods [27]. To conclude, existing results do not offer rigorous guarantees for the regime 𝐷 <𝑚<𝐷2.

Technical tools and innovations Weight identification: We follow the simple seminal strategy by [23], which exploits the information 
coming from the Hessians. However, while [23] require the weights to be linearly independent (hence, 𝑚 ≤𝐷), we tackle the chal

lenging case 𝑚 >𝐷. Furthermore, for the identfication of the weights we use (2), namely a robust non-linear program over vectors, 
which is significantly less computationally expensive than the minimum rank selection by [23]. Our analysis further improves upon 
[20] by allowing to go beyond a linear scaling between 𝑚 and 𝐷 and it pushes up to 𝑚 = 𝑂(𝐷2) by taking advantage of the new 
insights provided by [29] on the subspace power method.

Shift identification: Differently from [23,27], we set up an empirical risk minimization problem, and we solve it via gradient 
descent. Our proof of convergence is based on certain kernel matrices, which are reminiscent of those appearing in NTK theory [26]. 
The NTK perspective has been used to prove global convergence of gradient descent for shallow [18,39,47,57,34,46] and deep neural 
networks [2,15,64,65,38,37,9]. The technical innovations of our paper with respect to this line of work are as follows. First, we 
exchange the role between input variable 𝑥 and weights: we consider the Jacobian of the network with respect to its input 𝑥, and 
not to its parameters. This allows us to keep fixed the size of the network and to analyze the NTK spectrum for large input samples. 
Second, we extend the NTK theory to handle networks with biases. Finally, as the accuracy of the linearization argument depends on 
the errors accumulated in the weight identfication step, we carry out a delicate perturbation analysis.

Notation Given two vectors 𝑢 and 𝑣, let 𝑢 ⊗ 𝑣 be their Kronecker product and 𝑢 ⊙ 𝑣 their element-wise product. Given a vector 𝑢, 
let ‖𝑢‖2 be its 𝓁2 norm and diag(𝑣) the diagonal matrix with 𝑣 on diagonal. Given a matrix 𝐴, let ‖𝐴‖ be its operator norm, ‖𝐴‖𝐹

its Frobenius norm, and ‖𝐴‖𝐹→𝐹 = sup‖𝑋‖𝐹=1 ‖𝐴𝑋‖𝐹 . Let Sym(ℝ𝑑×𝑑 ) be the space of symmetric matrices in ℝ𝑑×𝑑 , 𝑛(ℝ) the space 
of functions in ℝ with 𝑛 continuous derivatives, Uni(𝕊𝐷−1) the uniform distribution on the 𝐷-dimensional sphere 𝕊𝐷−1, and Id𝑝 the 
identity matrix in ℝ𝑝×𝑝. Given a function 𝑔, let 𝑔(𝑛) be its 𝑛-th derivative. Given a vector 𝑣 and a permutation 𝜋, let 𝑣𝜋 be the vector 
obtained by permuting the entries of 𝑣 according to 𝜋.

2. Network model and main result

We consider the parameter recovery of a shallow neural network 𝑓 of the form (1). We assume the weights to be drawn uniformly 
from the sphere, i.e., 𝑤1,… ,𝑤𝑚 ∼i.i.d. Uni(𝕊𝐷−1), and the shifts to be contained in a given interval, i.e., 𝜏1,… , 𝜏𝑚 ∈ [−𝜏∞,+𝜏∞]. We 
make the following assumptions on the activation 𝑔 and on the Hessians of 𝑓 .

(M1) 𝑔 ∈ 3(ℝ) and

𝜅 ∶= max 
𝑛∈[3]

‖‖‖𝑔(𝑛)‖‖‖∞ <∞. (3)

Furthermore, 𝑔(2) is strictly monotonic on (−𝜏∞,+𝜏∞), 𝑔(1) is strictly positive or negative on (−𝜏∞,+𝜏∞) and there exists 
𝑠 ∈ {−1,+1} such that for all 𝜏 ∈ [−𝜏∞,+𝜏∞] we have

𝑠 = sgn
⎛⎜⎜⎝∫ℝ 

𝑔(1)(𝑡+ 𝜏) exp(−𝑡2∕2)𝑑𝑡
⎞⎟⎟⎠ .

(M2) 𝑔(1) is not a polynomial of degree 3 or less and ∫ℝ 𝑔(𝑡)2 exp(−𝑡2∕2)𝑑𝑡 <∞.

(M3) The Hessians of 𝑓 have sufficient information for weight recovery, i.e.,

𝜆𝑚

(
𝔼𝑋∼ (0,Id)[vec(∇2𝑓 (𝑋))⊗2]

) ≥ 𝛼 > 0. (4)

The size of the interval [−𝜏∞,+𝜏∞] does not depend on 𝑚 or 𝐷, but only on 𝑔 via (M1). This is satified by common activations, e.g., 
𝑔(𝑥) = tanh(𝑥) for 𝜏∞ ≈ 0.6 and the sigmoid 𝑔(𝑥) = 1∕(1 + exp(−𝑥)) for 𝜏∞ ≈ 1.5. Condition (M3) is common in the related literature 
[23,21,20], and it guarantees that combining Hessians of 𝑓 at sufficiently many generic inputs provides enough information to 
recover all individual weights. A way to show that (4) holds is as follows. First, note that ∇2𝑓 (𝑥) =

∑𝑚
𝑘=1 𝑔

(2)(𝑤⊤
𝑘
𝑥 + 𝜏𝑘)𝑤𝑘 ⊗𝑤𝑘 ∈

span{𝑤1⊗𝑤1,… ,𝑤𝑚⊗𝑤𝑚}. Hence, by exploiting the incoherence of 𝑤1,… ,𝑤𝑚 ∼Uni(𝕊𝐷−1), one can relate the smallest eigenvalue 
in (4) to that of the matrix with entries (𝔼𝑋∼ (0,Id)[𝑔(2)(⟨𝑤𝑘,𝑋⟩+ 𝜏𝑘)𝑔(2)(⟨𝑤𝓁 ,𝑋⟩+ 𝜏𝓁)])𝑘,𝓁 . This last quantity is then bounded using 
the tools developed in Section 4.2. This argument can be made rigorous, thus ensuring that (M3) holds with 𝛼 > 0 independent of 𝐷
and 𝑚. We also assume the ability to evaluate the network 𝑓 and to approximate its derivatives.

(G1) We can query the teacher network 𝑓 and the activation 𝑔 at any point without noise, and the number of neurons 𝑚 is known.
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Algorithm 1: Network reconstruction.

Input: Teacher neural network 𝑓 dfined in (1) with 𝑚 neurons, numerical differentiation method Δ𝑛[⋅] with accuracy 𝜖, number of Hessian locations 𝑁ℎ

and gradient descent samples 𝑁train, number of steps for rfinement via gradient descent 𝑁GD.

1 Compute weights 𝑊 = [𝑤̂1|… |𝑤̂𝑚] by PCA of Hessians followed by iterations of the subspace power method (SPM) from [30] discussed in Section 3;

2 Find signs 𝑠̂ and initial shifts 𝜏 ∈ℝ𝑚 by linearization through higher order differentiation along approximated weight vectors (cf. Algorithm 3 in the 
supplementary materials, and discussion in Section 4.1);

3 Set 𝑊 ←𝑊 diag(𝑠̂) and construct a student network 𝑓 as in (7) with parameters 𝑊 ,𝜏 ;

4 Draw samples 𝑥1,… , 𝑥𝑁train
∼ (0, Id𝐷) and rfine the shifts of 𝑓 by minimizing 𝐽 (𝜏) (cf. (8)) via gradient descent for 𝑁GD steps (cf. Section 4.2). Denote by 

𝜏[𝑁GD ] the final iterate.

Output: Weights 𝑊 and final shifts 𝜏[𝑁GD ] of 𝑓 .

(G2) We assume access to a numerical differentiation method, denoted by Δ𝑛[⋅], computing the derivatives for 𝑛 = 1,2,3 up to an 
accuracy 𝜖 > 0, such that‖‖‖∇𝑛𝑔(𝑤⊤𝑥) − Δ𝑛[𝑔(𝑤⊤𝑥)]‖‖‖𝐹

≤ 𝐶Δ ‖‖𝑤⊗𝑛‖‖𝐹 𝜖,

where 𝐶Δ is a universal constant only depending on the activation via 𝜅, see (3). Furthermore, for any 𝑏, 𝑡0 ∈ℝ the derivatives 
of 𝑡↦ 𝑔(𝑏 𝑡) can be approximated as||||| 𝑑𝑛

𝑑𝑡𝑛
𝑔(𝑏 ⋅ 𝑡)

||||𝑡=𝑡0

− Δ𝑛[𝑔(𝑏⋅)](𝑡0)
||||| ≤ 𝐶Δ𝑏

𝑛+2𝜖. (5)

We also assume that the numerical differentiation method is linear, i.e.,

Δ𝑛[𝑎 ⋅ 𝑔 + ℎ] = 𝑎 ⋅Δ𝑛[𝑔] + Δ𝑛[ℎ], (6)

for any functions 𝑔,ℎ and scalar 𝑎 ∈ℝ. Finally, the numerical differentiation algorithm requires a number of queries equal to 
the dimension of the approximated derivative, i.e., (1) for partial derivatives and (𝐷𝑛) for 𝑛-th order derivative tensors. 
Note that all these properties are fufilled by a standard central finite difference scheme.

Our proposed algorithm for the recovery of the parameters of the planted model (1) is based on a two-step procedure. In the first 
step, we learn the weight vectors (up to a sign) from the space spanned by Hessian approximations of 𝑓 (cf. Section 3). Recovering 
the weights provides access to vectors 𝑤̂𝑘, which satisfy 𝑠𝑘𝑤̂𝑘 ≈𝑤𝑘 for some signs 𝑠1,… , 𝑠𝑚 ∈ {−1,1}. In the second step, we identify 
the signs 𝑠 = (𝑠1,… , 𝑠𝑚) and shifts 𝜏 = (𝜏1,… , 𝜏𝑚) (cf. Section 4). We begin by finding 𝑠 and an initialization of the shifts 𝜏 ≈ 𝜏 by 
a linearization through higher order (numerical) differentiation along the previously computed weight approximations. The shift 
approximation 𝜏 is then rfined by empirical risk minimization. More precisely, we consider the parametrization

𝑓 (𝑥, 𝜏) ∶=
𝑚 ∑

𝑘=1
𝑔(𝑠𝑘⟨𝑤̂𝑘, 𝑥⟩+ 𝜏𝑘), (7)

which is fit against the planted model 𝑓 (𝑥) dfined in (1) by minimizing the least squares objective

𝐽 (𝜏) = 1 
2𝑁train

𝑁train∑
𝑖=1 

(
𝑓 (𝑥𝑖) − 𝑓 (𝑥𝑖, 𝜏)

)2
(8)

via gradient descent, where 𝑥1,… , 𝑥𝑁train
∼i.i.d.  (0, Id𝐷). Provided that the activation function satifies (M1)-(M2), we show that 

gradient descent is guaranteed to converge locally to the ground truth shifts up to an error depending only on the accuracy of the 
initial weight estimates 𝑤̂𝑘 ≈ ±𝑤𝑘. The combination of these two steps leads to Algorithm 1 and to our main result, stated below. Its 
proof is deferred to Appendix D, and it follows as a combination of Theorem 3.3, Proposition 4.2, and Theorem 4.3 (discussed in the 
rest of the paper).

Theorem 2.1 (Main result on network reconstruction). Consider the teacher network 𝑓 dfined in (1), where 𝑤1,… ,𝑤𝑚 ∼ Uni(𝕊𝐷−1)
and 𝜏1,… , 𝜏𝑚 ∈ [−𝜏∞, 𝜏∞]. Assume 𝑔 satifies (M1)-(M2) and 𝑓 satifies the learnability condition (M3) for some 𝛼 > 0. Assume we run 
Algorithm 1 with 𝑁ℎ > 𝑡(𝑚 + 𝑚2 log(𝑚)∕𝐷) for some 𝑡 ≥ 1 and 𝑁train > 𝑚

√
𝐷. Then, there exists 𝐷0 ∈ ℕ and a constant 𝐶 > 0 only 

depending on 𝑔 and 𝜏∞ such that the following holds with probability at least 1−𝑚−1 − 2𝐷2 exp (−min{𝛼,1}𝑡∕𝐶) −𝐶𝑚2 exp(−
√

𝐷∕𝐶): If 
𝑚 ≥𝐷 ≥𝐷0, 𝐶𝑚 log2𝑚 ≤𝐷2, and the numerical differentiation accuracy 𝜖 satifies

𝜖 ≤ 𝐷1∕2 min{1, 𝛼1∕2}
𝐶𝑚9∕2 log(𝑚)3∕2

, (9)

then Algorithm 1 returns weights and shifts (𝑊 = [𝑤̂1|… |𝑤̂𝑚], 𝜏[𝑁𝐺𝐷]) that fufill

max 
𝑘∈[𝑚]

‖𝑤̂𝜋(𝑘) −𝑤𝑘‖2 ≤ 𝐶(𝑚∕𝛼)1∕4𝜖1∕2, (10)
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‖𝜏[𝑁𝐺𝐷]
𝜋 − 𝜏‖2 ≤ 𝐶

(
𝑚7∕4𝐷1∕4𝜖1∕2

𝛼1∕4𝑁
1∕2
train

+ 𝜉𝑁𝐺𝐷

𝑚1∕2 + Δ𝑊 ,1

)
, (11)

for some permutation 𝜋 and some constant 𝜉 ∈ [0,1) where

Δ𝑊 ,1 ∶=
𝑚1∕2 log(𝑚)3∕4

𝐷1∕4 (12)

⋅
⎛⎜⎜⎝‖𝑊 −𝑊 ‖𝐹 +

Δ1∕2
𝑊 ,𝑂

𝐷1∕2 +
‖‖‖‖‖

𝑚 ∑
𝑘=1

(𝑤𝑘 − 𝑤̂𝑘)
‖‖‖‖‖2

⎞⎟⎟⎠ ,
Δ𝑊 ,𝑂 ∶=

𝑚 ∑
𝑘≠𝑘′

||⟨𝑤𝑘 − 𝑤̂𝑘,𝑤𝑘′ − 𝑤̂𝑘′⟩|| . (13)

By choosing an appropriate numerical accuracy 𝜖, (9) is satified and the error on the weights in (10) can be made arbitrarily 
small. The error on the shifts in (11) depends on three terms. The first term scales with 

√
𝜖∕𝑁train, hence it is controlled by taking a 

large number of training samples. The second term vanishes exponentially with the number of gradient steps 𝑁𝐺𝐷 . Thus, for large 
enough 𝑁train and 𝑁𝐺𝐷 , the dominant factor is Δ𝑊 ,1. This last term decreases with the weight approximation error, i.e., if 𝑊 =𝑊 , 
then Δ𝑊 ,1 = 0. In fact, Δ𝑊 ,1 scales with 𝜖1∕2, hence it can be reduced by improving the numerical accuracy.

It is natural to compare the residual error term Δ𝑊 ,1 after gradient descent with the error on the shifts before gradient descent, i.e., 
at initialization as given by Proposition 4.2 (cf. (21)). If we assume randomness on the weight errors (with variance matching the 
upper bound in (10)), i.e., 𝑤̂𝜋(𝑘) −𝑤𝑘 ∼𝑖.𝑖.𝑑.  (0, (𝑚∕𝛼)(1∕2)𝜖∕𝐷 ⋅ Id𝐷) then, up to poly-logarithmic factors, Δ𝑊 ,1 scales as

𝜖1∕2

𝛼1∕4

(
𝑚5∕4

𝐷1∕4 + 𝑚7∕4

𝐷

)
. (14)

This last quantity is provably smaller than the error (21) at initialization, see the discussion after Proposition 4.2. In the worst case, 
when all weight errors are aligned, Δ𝑊 ,1 is dominated by ‖‖∑𝑚

𝑘=1(𝑤𝑘 − 𝑤̂𝑘)‖‖2 =(𝑚5∕4𝛼−1∕4𝜖1∕2), which would not lead to a provable 
improvement over (21). However, in Section 5, we numerically observe that this type of error accumulation does not occur: the term ‖‖∑𝑚

𝑘=1(𝑤𝑘 − 𝑤̂𝑘)‖‖2 is negligible and Δ𝑊 ,1 is significantly smaller than (21), see Fig. 2 and the related discussion.

3. Identfication of the weights

Definition 3.1 (RIP). Let 𝑊 ∈ ℝ𝐷×𝑚, 1 ≤ 𝑝 ≤ 𝑚 be an integer, and 𝛿 ∈ (0,1). We say that 𝑊 is (𝑝, 𝛿)-RIP if every 𝐷 × 𝑝 submatrix 
𝑊𝑝 of 𝑊 satifies ‖𝑊 ⊤

𝑝 𝑊𝑝 − Id𝑝 ‖ ≤ 𝛿.

Definition 3.2 (Properties of isotropic random weights). Let 𝑊 ∶= [𝑤1|… |𝑤𝑚] and (𝐺𝑛)𝑘𝓁 ∶= ⟨𝑤𝑘,𝑤𝓁⟩𝑛. We dfine the following 
incoherence properties:

(A1) There exists 𝑐1 > 0, depending only on 𝛿, such that 𝑊 is (⌈𝑐1𝐷∕ log(𝑚)⌉, 𝛿)-RIP.

(A2) There exists 𝑐2 > 0, independent of 𝑚,𝐷, so that max𝑖≠𝑗⟨𝑤𝑖,𝑤𝑗⟩2 ≤ 𝑐2 log(𝑚)∕𝐷.

(A3) There exists 𝑐3 > 0, independent of 𝑚,𝐷, so that ‖‖‖𝐺−1
𝑛

‖‖‖ ≤ 𝑐3, for all 𝑛 ≥ 2.

If the number of weights 𝑚 is 𝑜(𝐷2), weights drawn from the uniform spherical distribution fufill (A1)-(A3) with high probability. 
This follows from a result due to [29] (cf. Proposition A.1 in Appendix A). We are going to use the properties of Definition 3.2

throughout our analysis.

The weight recovery consists of two steps. First, we leverage the fact that approximated Hessians of the network expose the weights 
according to

Δ2𝑓 (𝑥) ≈ ∇2𝑓 (𝑥) =
𝑚 ∑

𝑘=1
𝑔(2)(⟨𝑤𝑘,𝑥⟩+ 𝜏𝑘)𝑤𝑘 ⊗𝑤𝑘,

such that independent sampling of Hessian locations eventually spans (approximately) the space

̂ ≈ ∶= span
{
𝑤1 ⊗𝑤1,… ,𝑤𝑚 ⊗𝑤𝑚

}
, (15)

with ̂ , ⊂ Sym(ℝ𝐷×𝐷). This holds w.h.p. for Hessian locations 𝑥1,… , 𝑥𝑁ℎ
drawn as standard Gaussians as a consequence of 

(M3), provided 𝑁ℎ is sufficiently large. The resulting approximation error ‖‖‖𝑃 − 𝑃̂
‖‖‖𝐹→𝐹

can be controlled by the accuracy of 

the numerical differentiation 𝜖, see Lemma A.2 in the supplementary materials. To compute the approximation ̂ ≈  , one can 
certainly use finite difference schemes as specfied in (G2) below, which require actively querying specific points; however, we 
can also use other passive methods, which do not require querying the network in specific points, but rather in points given by a 
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distribution 𝑝. We refer in particular to the use of weak differentiation and noisy network samples (e.g., with centered and bounded 
noise) as in formula (4.9) at page 646 of [23]. As in Theorem 4.2 of [23], this formula allows via Algorithm 2 to compute linear 
combinations of tensors of weights and, w.h.p. and at any accuracy, an approximation of the orthogonal projection onto the subspace 
 = span(𝑤1 ⊗ 𝑤1,… ,𝑤𝑚 ⊗ 𝑤𝑚) with a sample complexity 𝑂(𝑚2𝑄), where 𝑄 depends on the distribution of the samples (which 
may in turn depend on the dimension). For instance, one can choose a Gaussian distribution 𝑝 of the input samples, as it is standard in 
theoretical machine learning. Hence, the proposed use of noiseless active queries is by no means a restriction, but rather the simplest 
choice for the purpose of this paper. We refer to [23] for more details on passive sampling.

Next, the weights are uniquely identfied (up to a sign) as the 2𝑚 local maximizers of the program (2), which belong to a certain 
level set {𝑢 ∈ 𝕊𝐷−1| ‖‖‖𝑃̂ (𝑢⊗ 𝑢)‖‖‖2𝐹 ≥ 𝛽} of the underlying objective. This follows as a special case from the theory within [30,20,29]. 
More specifically, [30] study the problem in the unperturbed case, [20] extend the subspace power method to the perturbed objective 
but their analysis is limited to 𝑚 < 2𝐷, and finally [29] go for 2-tensor decompositions up to 𝑚 = 𝑜(𝐷2) for the perturbed objective. 
Then, the local maximizers of (2) are computed via a projected gradient ascent algorithm that iterates

𝑢𝑗+1 = 𝑃𝕊𝐷−1 (𝑢𝑗 + 2𝛾𝑃̂ ((𝑢𝑗 )⊗2)𝑢𝑗 ), (16)

where 𝛾 is the step-size and 𝑃𝕊𝐷−1∕𝑃̂ denote the projections on 𝕊𝐷−1∕̂ . The iteration (16) starts from a random initialization 
𝑢0 ∈ 𝕊𝐷−1, and it was introduced by [30] as a subspace power method (SPM). By iterating (16) until convergence repeatedly from 
independent starting points, one can collect all 𝑚 local maximizers of (2) and thereby learn (approximately) all weights up to sign. 
Assuming the retrieval of every local maximizer is equally likely, the average number of repetitions needed to recover all local 
maximizers follows from the analysis of the coupon collection problem and grows like Θ(𝑚 log𝑚) (see also [23]). The theorem below 
provides a bound on the uniform approximation error for the weights. Its proof, as well as the description of Algorithm 2 summarizing 
the overall procedure of weight identfication, is deferred to Appendix A.

Theorem 3.3 (Weight recovery). Consider the teacher network 𝑓 dfined in (1), where 𝑤1,… ,𝑤𝑚 ∼ Uni(𝕊𝐷−1) and 𝜏1,… , 𝜏𝑚 ∈ [−𝜏∞, 𝜏∞]. 
Assume 𝑔 satifies (M1)-(M2) and 𝑓 satifies the learnability condition (M3) for some 𝛼 > 0. Then, there exists 𝐷0 ∈ ℕ and a constant 
𝐶 > 0 depending only on 𝑔, 𝜏∞, such that, for all 𝐷 ≥ 𝐷0 and 𝐶𝑚 log2𝑚 ≤ 𝐷2, the following holds with probability at least 1 − 𝑚−1 −
𝐷2 exp (−min{𝛼,1}𝑡∕𝐶) − 𝐶 exp(−

√
𝑚∕𝐶): (i) The weights 𝑤1,… ,𝑤𝑚 fufill (A1)-(A3), and (ii) if we run Algorithm 2 with numerical 

differentiation accuracy 𝜖 ≤
√

𝛼

𝐶
√

𝑚
and using 𝑁ℎ > 𝑡(𝑚+𝑚2 log(𝑚)∕𝐷) Hessian locations for some 𝑡≥ 1, we obtain a set of 𝑚 approximated 

weights  ⊂ 𝕊𝐷−1 such that, for all 𝑘∈ [𝑚], there exists 𝑤̂𝑘 ∈ and a sign 𝑠∈ {−1,+1} for which

‖‖𝑤𝑘 − 𝑠𝑤̂𝑘
‖‖2 ≤ 𝐶(𝑚∕𝛼)1∕4𝜖1∕2. (17)

4. Identfication of the signs and shifts

By leveraging the fact that differentiation exposes the weights of the network as components of the tensor ∇𝑛𝑓 (𝑥) =∑𝑚
𝑘=1 𝑔

(𝑛)(𝑥⊤𝑤𝑘 + 𝜏𝑘)𝑤
⊗𝑛
𝑘

for 𝑛 = 2, Theorem 3.3 gives that 𝑤̂𝑘 ≈ 𝑠𝑘𝑤𝑘 for some signs 𝑠𝑘 ∈ {−1,+1}. In this section, we show 
how to recover the remaining parameters (shifts and signs) for a given set of ground truth weights {𝑤1 ,… ,𝑤𝑚} ⊂ 𝕊𝐷−1 which are 
sufficiently incoherent and approximated by  = {𝑤̂1,… , 𝑤̂𝑚} ⊂ 𝕊𝐷−1 up to a sign. This recovery can be broken down into two 
steps. First, we find the correct signs and good initial shifts (cf. Section 4.1); once the parameters are known, a student network can 
be initialized from these starting values. Second, the shifts of the student network are rfined by empirical risk minimization via 
gradient descent (cf. Section 4.2).

Remark 4.1. As prefaced in the Theorem 2.1, the recovery of the weights is only possible up to permutations due to the structure of 
the shallow neural network. Hence, the set of approximated weights lacks any information on what weight approximation belongs 
to which hidden neuron. One can imagine that we implicitly dfine the permutation in Theorem 2.1 after recovering the weights by 
arranging the approximations in  (cf. Theorem 3.3) in a certain order. Given this order, we then proceed to recover the shifts and 
signs for a network whose arrangement of hidden neurons matches the inverse of this permutation. To simplify the notation in the 
following, we assume that this permutation is given by the identity.

4.1. Parameter initialization

Our initialization strategy is centered around the recovery of the quantities 2 = (2,1,… ,2,𝑚) and 3 = (3,1,… ,3,𝑚), where

𝑛,𝑘 ∶= 𝑠𝑛
𝑘
𝑔(𝑛)(𝜏𝑘), for 𝑘 ∈ [𝑚], 𝑛 ∈ {2,3}. (18)

If 𝑔 satifies (M1), then 𝑔(3) does not change sign on the interval (−𝜏∞, 𝜏∞) due to the monotonicity of 𝑔(2). Hence, we can infer 
the sign 𝑠𝑘 from 3,𝑘. Furthermore, as 𝑔(2) is monotone on [−𝜏∞, 𝜏∞], it admits an inverse, which allows for the recovery of 𝜏𝑘 from 
2,𝑘. To learn 2,3, we rely on numerical approximations of the quantities ⟨∇𝑛𝑓 (𝑥), 𝑤̂⊗𝑛

𝑘
⟩, namely, the directional derivatives of the 

network 𝑓 along the approximated weights. We consider the following linear system representation of the directional derivatives. 
Computing the derivative for 𝑥 = 0 reveals
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⟨∇𝑛𝑓 (0), 𝑤̂⊗𝑛
𝓁 ⟩ = 𝑚 ∑

𝑘=1
𝑠𝑛
𝑘
𝑔(𝑛)(𝜏𝑘)⟨𝑠𝑘𝑤𝑘, 𝑤̂𝓁⟩𝑛.

Denote by 𝐺̃𝑛 ∈ℝ𝑚×𝑚 the matrix with entries (𝐺̃𝑛)𝓁,𝑘 = ⟨𝑤̂𝓁 , 𝑠𝑘𝑤𝑘⟩𝑛. Then, we have

𝐺̃𝑛 ⋅ 𝑛 =
⎡⎢⎢⎣
⟨∇𝑛𝑓 (0), 𝑤̂⊗𝑛

1 ⟩
⋮⟨∇𝑛𝑓 (0), 𝑤̂⊗𝑛

𝑚 ⟩
⎤⎥⎥⎦ ∶= 𝑇𝑛. (19)

In (19), 𝑇𝑛 is a vector containing all directional derivatives of 𝑓 evaluated at 0 along the recovered weights 𝑤̂1,… , 𝑤̂𝑚. These 
directional derivatives can be approximated from only (𝑛) evaluations of the network by numerical differentiation (cf. (G2)), 
which allows us to compute 𝑇̃𝑛 ≈ 𝑇𝑛. Provided the weight approximations are sufficiently accurate and incoherent in the sense of 
Definition 3.2, the matrix 𝐺̃𝑛 is invertible and can be estimated by (𝐺𝑛)𝓁,𝑘 ∶= ⟨𝑤̂𝓁 , 𝑤̂𝑘⟩𝑛. This follows from Theorem 3.3, which 
implies that 𝑠𝑘𝑤𝑘 is close to 𝑠2

𝑘
𝑤𝑘 = 𝑤𝑘. Therefore, we obtain 𝑛 ≈ 𝐺̃−1

𝑛 𝑇̃𝑛 ≈ 𝐺−1
𝑛 𝑇̃𝑛. This strategy is summarized in Algorithm 3

detailed in Appendix B, and the robustness analysis of Proposition 4.2 makes all the approximations rigorous. This procedure could 
be carried out for any order of directional derivatives, allowing us to benfit from the higher incoherence of ⟨𝑤⊗𝑛

𝑘
,𝑤⊗𝑛

𝓁 ⟩ = ⟨𝑤𝑘,𝑤𝓁⟩𝑛. 
However, for the sake of simplicity and to be more aligned with our network model, we combine only the second and third order 
directional derivatives.

Proposition 4.2 (Parameter initialization). Consider the teacher network 𝑓 dfined in (1), where the weights {𝑤𝑘 ∈ 𝕊𝐷−1, 𝑘 ∈ [𝑚]} satisfy 
(A2)-(A3) with constants 𝑐2, 𝑐3 and the activation 𝑔 satifies (M1). Then, there exist constants 𝐶 > 0 only depending on 𝑔, 𝑐2, 𝑐3, 𝜏∞ and 
𝐷0 ∈ℕ, such that, for 𝑚≥𝐷 ≥𝐷0,𝑚 log2𝑚 ≤𝐷2, the following holds. Given 𝑤̂1,… , 𝑤̂𝑚 ∈ 𝕊𝐷−1 such that

𝛿max ∶= max 
𝑘∈[𝑚]

min 
𝑠∈{−1,1}

‖‖𝑤𝑘 − 𝑠𝑤̂𝑘
‖‖2 (20)

≤ 𝐷1∕2

𝐶𝑚
√
log𝑚

,

Algorithm 3 returns a set of shifts 𝜏 such that

‖𝜏 − 𝜏‖2 ≤ 𝐶
√

𝑚𝜖 +𝐶𝑚3∕2
(
log𝑚
𝐷

)3∕4
𝛿max, (21)

where 𝜖 > 0 is the accuracy of the numerical differentiation method. Furthermore, once the RHS of (21) is smaller than 1 and 𝜖 ≤ (𝐶𝑚)−1, 
the signs returned by Algorithm 3 are identical to the ground truth signs.

The proof is postponed to Appendix B. By Theorem 3.3, we have that 𝛿max scales as (𝑚∕𝛼)1∕4𝜖1∕2. Thus, by taking a suitably small 
𝜖, (20) is satified and, after omitting poly-logarithmic factors, the dominant term in (21) scales as

𝜖1∕2

𝛼1∕4
𝑚7∕4

𝐷3∕4 . (22)

By comparing (14) and (22) and recalling that 𝑚 scales at least linearly in 𝐷, it is clear that gradient descent improves upon its 
initialization, under a random model for the weight errors. This improvement is also evident if we evaluate Δ𝑊 ,1 on the actual

weights errors coming from the proposed algorithmic pipeline (cf. Fig. 2).

4.2. Local convergence of gradient descent

So far, we have obtained weight approximations 𝑊 ≈𝑊 and shift approximations 𝜏 ≈ 𝜏 of the shallow teacher network 𝑓 dfined 
in (1). These parameters (𝑊 ,𝜏) allow us to dfine the neural network 𝑓 in (7) and, depending on the accuracy of the previous steps, we 
would expect already a strong similarity between realizations of 𝑓 and 𝑓 . In this section, we explore to what degree the approximation 
𝑓 can further be improved by tuning the shifts 𝜏 in a teacher-student setting. Assume 𝑥1,… , 𝑥𝑁train

generic inputs and access to 𝑁train

input-output pairs (𝑥𝑖, 𝑦𝑖)𝑖∈[𝑁train] = (𝑥𝑖, 𝑓 (𝑥𝑖))𝑖∈[𝑁train] of the network 𝑓 . Based on the initial network cofiguration of 𝑓 , we seek to 
learn the shifts 𝜏 attributed to 𝑓 by minimizing the least-squares objective (8) via the gradient descent scheme

𝜏(𝑛+1) = 𝜏(𝑛) − 𝛾∇𝐽 (𝜏(𝑛)). (23)

Here, 𝛾 > 0 represent the step-size of the gradient updates. For the case 𝑊 =𝑊 , we show that w.h.p. the gradient descent iteration 
(23) produces a sequence (𝜏(𝑛))𝑛∈ℕ that converges linearly to 𝜏 provided that ‖𝜏(0) − 𝜏‖2 = (𝑚−1∕2). In the perturbed case where 
𝑊 ≈ 𝑊 , we provide an analysis that estimates the error of the shifts w.r.t. (i) the Frobenius error ‖𝑊 −𝑊 ‖𝐹 , (ii) the alignment 
between the individual weight errors Δ𝑊 ,𝑂 (cf. (13)), and (iii) ‖∑𝑚

𝑘=1𝑤𝑘 − 𝑤̂𝑘‖2. More precisely, for sufficiently many training 
samples 𝑁train, the gradient descent iteration will settle within distance Δ𝑊 ,1 of the optimal solution.
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Theorem 4.3 (Local convergence). Consider the teacher network 𝑓 dfined in (1), with shifts 𝜏1,… , 𝜏𝑚 ∈ [−𝜏∞,+𝜏∞] and weights 
𝑤1,… ,𝑤𝑚 ∼ Uni(𝕊𝐷−1) that are incoherent according to Definition 3.2. Assume 𝑔 satifies (M1)-(M2), and consider the least-squares 
objective 𝐽 in (8) constructed with 𝑁train ≥ 𝑚 network evaluations 𝑦1,… , 𝑦𝑁train

of 𝑓 , where 𝑦𝑖 = 𝑓 (𝑋𝑖) and 𝑋1,… ,𝑋𝑁train
∼ (0, Id𝐷). 

Let 𝑓 be parameterized by 𝑊 and 𝜏, as in (7). Then, there exists a constant 𝐶 > 0 depending only on 𝑔, 𝜏∞ and 𝐷0 > 0 such that the following 
holds with probability at least 1 −𝑚 exp(−𝑁train∕𝐶𝑚) − 2𝑚2 exp (−𝑡∕𝐶) for 𝑡 > 0: Assume 𝐶𝑚 log2𝑚 ≤𝐷2,𝑚 ≥𝐷 ≥𝐷0 and

‖𝜏 − 𝜏‖2 + Δ𝑊 ≤ 1 
𝐶
√

𝑚
, (24)

where Δ𝑊 = Δ𝑊 ,1 +
(

𝑚3𝛿2max𝑡

𝑁train

)1∕2
and Δ𝑊 ,1 is given by (12). Then, there exists a 𝜉 ∈ [0,1), such that the gradient descent iteration (23)

with sufficiently small step-size 𝛾 > 0 started from 𝜏(0) = 𝜏 satifies

‖𝜏(𝑛) − 𝜏‖2 ≤ 2𝜉𝑛‖𝜏(0) − 𝜏‖2 +𝐶(1 − 𝜉𝑛)Δ𝑊 . (25)

Note that (24) can always be satified within our framework as all factors depend on 𝜖 which can be chosen freely. The proof 
of Theorem is in Appendix C. The idea is to express 𝐽 as a quadratic form 𝐽 (𝜏) = (𝜏 − 𝜏)⊤𝐴(𝜏)(𝜏 − 𝜏), where 𝐴(𝜏) denotes the 
Jacobian obtained by taking derivatives w.r.t. the input features. Then, we linearize around the true solution by replacing 𝐴(𝜏) with 
𝐴(𝜏). Analyzing the idealized objective (𝜏 − 𝜏)⊤𝐴(𝜏)(𝜏 − 𝜏) requires to guarantee the well-posedness of 𝐴(𝜏), which we prove by 
using techniques from the NTK literature adapted to our setting (Appendix C.1). The error due to the replacement of 𝐴(𝜏) with 𝐴(𝜏)
depends on the error in the weight approximation, and we control it via a delicate argument exploiting Hermite expansions and the 
incoherence of the weights (Appendix C.2). The decay rate of (25) is largely determined by the factor 𝜉 ∈ [0,1) which is derived in 
Lemma C.10.

5. Numerical results

We corroborate our theoretical results by testing the pipeline of Algorithm 1, in order to identify parameters of shallow networks 
of the type 𝑓 (𝑥) =

∑𝑚
𝑘=1 tanh(𝑤

⊤
𝑘
𝑥 + 𝜏𝑘). As assumed in the theory, the weights are given by 𝑤1,… ,𝑤𝑚 ∼i.i.d. Uni(𝕊𝐷−1), the shifts 

are sampled according to 𝜏1,… , 𝜏𝑚 ∼i.i.d. Uni(−0.5,0.5) and the activation satifies (M1)-(M2). The number of neurons 𝑚 depends 
on the input dimension 𝐷 according to the rule 𝑚 = ⌈ 2

5𝐷
𝛽⌉, where the exponent 1∕2 ≤ 𝛽 ≤ 2 is referred to as the order of neurons. 

The accuracy is evaluated via the following metrics: (i) the uniform error (of the approximating network), computed as 𝐸∞ =
𝑚−1 max𝑖 |𝑓 (𝑥𝑖) − 𝑓 (𝑥𝑖)| on a set of 106 unseen Gaussian inputs, (ii) the worst weight approximation, i.e., max𝑘∈[𝑚] ‖𝑤𝑘 − 𝑤̂𝑘‖2, and 
(iii) the error of the shift approximation, i.e., 𝑚−1∕2‖𝜏 − 𝜏‖2. The scaling 𝑚−1 of 𝐸∞ normalizes for the fact that the range of 𝑓 (𝑥)
grows with 𝑚 according to our network model (1). All experiments were performed using one NVIDIA Tesla® P100 16GB/GPU in an 
NVIDIA DGX-1.

Baseline As a baseline for our pipeline, we first try to identify the network parameters in a standard teacher-student setup. The 
teacher network is fit by empirical risk minimization via SGD applied to a student network of identical architecture. Using 8 minutes 
of training time with Tensoflow and the hardware as stated above (𝑁train = 5

2𝑚 ⋅𝐷2 teacher evaluations, mini-batch size of 64 and 
learning rate 0.005), we obtain the uniform error depicted in the top row on the left in Fig. 1. These results are averaged over four 
repetitions. The experiment shows that SGD manages to identify the network parameters and achieve a low uniform error as long 
as the number of neurons 𝑚 is small, in particular much smaller than a quadratic scaling such as 𝑚 = ⌈ 2

5𝐷
2⌉. Furthermore, the 

results worsen for growing dimension 𝐷 despite higher incoherence of the network weights, possibly due to the fixed training time 
and learning rate. In an attempt to improve these results, we additionally run SGD for 50 minutes and several different learning 
rates, fixing the case 𝐷 = 50. The results, shown in the top row on the right in Fig. 1, indicate an improvement of SGD for certain 
hyperparameter combinations, yet we were not able to find a suitable tuning for 𝐷 = 50,𝑚 = 1000. For this experiment, we choose 
𝜏1,… , 𝜏𝑚 ∼i.i.d.  (0,0.05), thus the ground-truth shifts are closer to the initialization (set at 0) than if they are uniform in [−0.5,0.5], 
which should facilitate the task of the SGD algorithm.

Recovery pipeline We now discuss the results of our recovery pipeline in Algorithm 1 to identify shallow networks with tanh activation. 
For the weight recovery, we use 𝑁ℎ = ⌈log(𝐷)𝑚⌉ Hessian approximations, which are computed via central finite differences with 
step-size 𝜖FD = 0.01 and are anchored at evaluations 𝑥1,… , 𝑥𝑁ℎ

∼i.i.d.  (0, Id𝐷). Then, we run 𝑅 = 5𝑚 log(𝑚) SPM iterations (16) in 
parallel for 103 steps with step-size 𝛾 = 2. The initial shifts computed by the parameter initialization are finalized via (stochastic) 
gradient descent as described in Section 4. We use 𝑁train = 𝑚 ⋅𝐷2 samples, learning rate 𝛾 = 10−3 and batch size 64. The training 
input points are drawn from a standard Gaussian distribution. The rfinement of the shifts (by gradient descent) is timed out after 
180 seconds, or once we reach a training error below 10−8.

The results of our pipeline in the bottom row of Fig. 1 demonstrate successful recovery of all weights and shifts consistently 
over 10 repetitions, and for all combinations of 𝑚,𝐷. For 𝛽 = 2 (or 𝑚 = ⌈ 2

5𝐷
2⌉) the performance of the weight recovery is worse 

for small 𝐷. The causes of this effect may be two-fold: the weights do not yet behave statistically as in the average case scenario 
for larger 𝐷; and the gap between 𝑚 = 2

5𝐷
2 and the theoretical limit for weight recovery, 𝑚 = 𝐷(𝐷 − 1)∕2, decreases in 𝐷. The 

signs were also recovered successfully. Moreover, we emphasize that the time spent for the weight recovery (which includes the time 
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Fig. 1. Performance of parameter identfication of shallow networks with tanh activations, 𝑚 neurons and input size 𝐷 via SGD for shifts 𝜏𝑘 ∼ (0,0.05) (top row), 
our pipeline for shifts 𝜏𝑘 ∼Uni(−0.5,0.5) (bottom row).

Fig. 2. Comparison between the guaranteed accuracy of the shift initialization (red), the term Δ𝑊 ,1 (dashed red) and the sum of residual errors ‖∑𝑚

𝑘=1 𝑤𝑘 − 𝑤̂𝑘‖2
(blue) for weights approximated by our pipeline and 𝐷 = 50.

necessary to approximate all Hessian matrices by numerical differentiation) is in the order of seconds, reaching a maximum of 112𝑠
for 𝐷 = 50, 𝛽 = 2. The overall runtime of the pipeline is below 5 minutes over all individual runs.

Improvement of the shifts by GD In Fig. 2, we compare the error bound (21) on the initial shifts with Δ𝑊 ,1 (cf. (12)), where for 
simplicity the constants 𝐶 are taken to be 1 in both statements. The results are averaged over 10 realizations. The plot shows that 
(i) the sum of the residuals ‖∑𝑚

𝑘=1𝑤𝑘 − 𝑤̂𝑘‖2 in blue has only a negligible contribution to Δ𝑊 ,1, and hence (ii) by settling within 
distance Δ𝑊 ,1 of the true shifts, GD will improve over the initialization.

6. Concluding remarks

In this paper, we provide the first algorithm with provable guarantees for the finite sample identfication of shallow networks with 
biases, where the number of neurons 𝑚 is roughly (𝐷2). By doing so, we improve upon previous work, which provides guarantees 
limited to narrow networks (e.g., 𝑚 =(𝐷)) or neglects the role of biases. We stress here that our results, beside being rigorous, are 
also fully numerically reproducible, to show the efficiency of the pipeline. Let us mention that [21,20] have provided partial results 
on finite sample identfication of deep networks, yet without rigorous handling of biases. Thus, giving complete guarantees for the 
case of deep networks, which keep into full consideration also the important role of biases, is an interesting future direction that can 
build upon the results of the present paper.
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Appendix A. Proofs: weight recovery

Algorithm 2 summarizes the first step of the reconstruction pipeline which is the weight recovery. For more details on the exact 
procedure we refer to Section 3. This section is concerned with the proof of Theorem 3.3, which provides a uniform bound on the 
approximation error associated with the weight recovery. Additionally, we characterize the incoherence of the resulting approximated 
weights in terms of the numerical accuracy. A large part of the proofs in this section will operate under the assumptions that vectors, 
which are drawn uniformly from a high-dimensional sphere, are well separated. To make this more concrete, we rely on a result due 
to [29] which allows the application of the deterministic incoherence properties (A1)-(A3) stated in Definition 3.2 to the ground truth 
weights 𝑤1,… ,𝑤𝑚 ∈ 𝕊𝐷−1 which are modeled by a uniform spherical distribution according to our network model (cf. Section 2).

Proposition A.1 (cf. Proposition 13 in [29]). Let 𝑤1,… ,𝑤𝑚 be drawn independently from Uni(𝕊𝐷−1). If 𝑚 = 𝑜(𝐷2), then, for any arbitrary 
constant 𝛿 ∈ (0,1), there exist constants 𝐶 > 0 and 𝐷0 ∈ℕ depending only on 𝛿 such that for all 𝐷 ≥𝐷0, and with probability at least

1 −𝑚−1 − 2exp(−𝐶𝛿2𝐷) −𝐶

(
𝑒 ⋅𝐷√

𝑚

)−𝐶
√

𝑚

(26)

conditions (A1) - (A3) hold with constants 𝑐2, 𝑐3 < 𝐶 .

Algorithm 2: Weight recovery.

Input: Shallow neural network 𝑓 , number of neurons 𝑚, number of Hessian locations 𝑁ℎ, stepsize 𝛾 > 0, 𝛽 threshold for rejection of spurious local 
maximizers

1 Draw independent samples 𝑥1,… , 𝑥𝑁 ∼ (0, Id).
2 Construct the matrix

𝑀 ∶=
[
vec(Δ2𝑓 (𝑥1)) … vec(Δ2𝑓 (𝑥𝑁 ))

]
∈ℝ𝐷2×𝑁ℎ .

3 Denote by ̂ the orthogonal projection onto the 𝑚-th left singular subspace of 𝑀 .

4 Dfine 𝑃̂ as the orth. proj. in matrix space corresponding to ̂
5 Set  ← ∅
6 while | | <𝑚 do

7 Sample 𝑢0 ∼ Unif(𝕊𝐷−1)
8 Iterate projected gradient ascent

𝑢← 𝑃𝕊𝐷−1 (𝑢+ 2𝛾𝑃̂ ((𝑢)⊗2)𝑢)

until convergence, and denote the vector of the final iteration by 𝑢̂.

9 if ‖‖𝑃̂ (𝑢̂⊗2)‖‖2𝐹 > 𝛽 then

10 if 𝑢̂ ∉ and −𝑢̂∉ then

11  ← ∪ {𝑢̂}
12 end

13 end

14 end

Output: 

Proof sketch of Theorem 3.3 The proof of Theorem 3.3 relies on two individual auxiliary statements. First, a subspace approximation 
bound covered in Lemma A.2, that controls the error ‖‖‖𝑃 − 𝑃̂

‖‖‖𝐹→𝐹
. Recall that ̂ is constructed to approximate the matrix space

 = span{𝑤1 ⊗𝑤1,…𝑤𝑚 ⊗𝑤𝑚} ⊂ Sym(ℝ𝐷×𝐷)

from which individual weights can be identfied as the rank-1 spanning elements. It is noteworthy that the proof of Lemma A.2 as 
well as Algorithm 2 makes use of the following convention: We associated every matrix subspace with a classical vector space induced 
by vectorization. The vectorization of a matrix is denoted by the operator vec(⋅) whose output applied to a matrix 𝑋 ∈ ℝ𝑎×𝑏 is the 
vector in ℝ𝑎⋅𝑏 containing the columns of 𝑋 stacked on top of other, i.e.

vec
⎛⎜⎜⎝
⎡⎢⎢⎣𝑥1 … 𝑥𝑏

⎤⎥⎥⎦
⎞⎟⎟⎠ =

⎛⎜⎜⎝
𝑥1
⋮
𝑥𝑏

⎞⎟⎟⎠ .
This allows us to associate a space like  ⊂ Sym(ℝ𝐷×𝐷) with the space

span{vec(𝑤1 ⊗𝑤1),… ,vec(𝑤𝑚 ⊗𝑤𝑚)} ⊂ℝ𝐷2
.

Lemma A.2. Consider the teacher network 𝑓 dfined in (1). Assume the activation 𝑔 satifies (M1)-(M2) and 𝑓 satifies the learnability 
condition (M3) for some 𝛼 > 0. Furthermore assume that the network weights 𝑤1,… ,𝑤𝑚 ∈ 𝕊𝐷−1 fufill (A2) of Definition 3.2 with constant 
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𝑐2. Let 𝑃 be the orthogonal approximation onto  = span{𝑤1 ⊗𝑤1,…𝑤𝑚 ⊗𝑤𝑚} and let 𝑃̂ be constructed as described in Algorithm 2. 

Then there exists a constant 𝐶 > 0 depending only on 𝑔 and 𝑐2, such that for numerical diff. accuracy 𝜖 <

√
𝛼

𝐶
√

𝑚
and 𝑁ℎ > 𝑡(𝑚+𝑚2 log(𝑚)∕𝐷)

for some 𝑡 ≥ 1 we have‖‖‖𝑃 − 𝑃̂
‖‖‖𝐹→𝐹

≤ 𝐶
√

𝑚∕𝛼 ⋅ 𝜖, (27)

with probability at least 1 −𝐷2 exp
(
− 𝑡𝛼

𝐶

)
.

Proof. Consider 𝑋1,… ,𝑋𝑁ℎ
independent copies of a standard Gaussian, i.e. 𝑋𝑖 ∼ (0, Id𝐷). Denote by  ∈ℝ𝐷2×𝐷2

the orthogonal 
projection matrix onto span

{
vec(𝑤𝑘 ⊗𝑤𝑘) | 𝑘 = 1,… ,𝑚

}
and by 𝑀 the matrix with columns given by the exact vectorized Hessians 

at the inputs 𝑋1,… ,𝑋𝑁ℎ
, i.e.

𝑀 ∶=
[
vec(∇2𝑓 (𝑋1)) … vec(∇2𝑓 (𝑋𝑁ℎ

))
]
∈ℝ𝐷2×𝑁ℎ . (28)

We associate the matrix subspaces  and ̂ with their corresponding 𝐷2-dimensional vector subspaces described by the orthogonal 
projection matrices  ,̂ , respectively. Note that‖‖‖𝑃 − 𝑃̂

‖‖‖𝐹→𝐹
= sup ‖𝑈‖𝐹=1

‖‖‖𝑃 (𝑈 ) − 𝑃̂ (𝑈 )‖‖‖𝐹
= ‖‖‖ −̂

‖‖‖
with ‖ ⋅ ‖ describing the ordinary spectral normal in ℝ𝐷2

. Hence, to prove the result, we can rely on the well-known Wedin bound, 
see for instance [23,21,20,29], giving

‖‖‖𝑃 − 𝑃̂
‖‖‖𝐹→𝐹

= ‖‖‖ −̂
‖‖‖ ≤ ‖𝑀 −𝑀‖𝐹

𝜎𝑚(𝑀) 
, (29)

for as long as 𝜎𝑚(𝑀) > 0. We continue to provide separate bounds for the numerator and denominator of (29). For the numerator we 
obtain

‖𝑀 −𝑀‖𝐹 ≤√
𝑁ℎ max 

𝑖∈[𝑁ℎ]
‖‖‖∇2𝑓 (𝑋𝑖) − Δ2𝑓 (𝑋𝑖)

‖‖‖𝐹

≤√
𝑁ℎ𝑚 max 

𝑖∈[𝑁ℎ]
𝑘∈[𝑚]

‖‖‖∇2𝑔(𝑤⊤
𝑘
𝑋𝑖 + 𝜏𝑘) − Δ2𝑔(𝑤⊤

𝑘
𝑋𝑖 + 𝜏𝑘)

‖‖‖𝐹

≤ max 
𝑘∈[𝑚]

𝐶Δ
√

𝑁ℎ𝑚
‖‖𝑤𝑘 ⊗𝑤𝑘

‖‖𝐹 𝜖 = 𝐶Δ
√

𝑁ℎ𝑚𝜖,

where we used the linearity of Δ2,∇2 in the second step and our assumptions on the numerical differentiation method (G2) in the 
last line which gives rise to the constant 𝐶Δ that only depends on 𝑔. For the denominator in (29) we use Weyl’s inequality [55] which 
leads to the lower bound

𝜎𝑚(𝑀) ≥ 𝜎𝑚(𝑀) − ‖𝑀 −𝑀‖ ≥ 𝜎𝑚(𝑀) − ‖𝑀 −𝑀‖𝐹 ≥ 𝜎𝑚(𝑀) −𝐶Δ
√

𝑁ℎ𝑚𝜖. (30)

Lastly, we need to control 𝜎𝑚(𝑀) by a concentration argument in combination with the learnability Assumption (M3) of Section 2. 
We first express 𝜎𝑚(𝑀) as sum of independent matrices:

𝜎𝑚(𝑀)2 = 𝜎𝑚(𝑀𝑀⊤) = 𝜎𝑚

(
𝑁ℎ∑
𝑖=1 

vec(∇2𝑓 (𝑋𝑖))⊗ vec(∇2𝑓 (𝑋𝑖))

)
. (31)

Denote 𝐴𝑖 = vec(∇2𝑓 (𝑋𝑖))⊗ vec(∇2𝑓 (𝑋𝑖)). By (M3) we know that

𝜎𝑚

(
𝑁ℎ∑
𝑖=1 

𝔼𝐴𝑖

)
=𝑁ℎ𝛼 > 0.

We will make use of the matrix Chernoff (see [51] Corollary 5.2 and the following remark) which states that

ℙ

(
𝜎𝑚

(
𝑁ℎ∑
𝑖=1 

𝐴𝑖

)
≤ (1 − 𝑠)𝜎𝑚

(
𝑁ℎ∑
𝑖=1 

𝔼𝐴𝑖

))
≤𝐷2 exp

(
−(1 − 𝑠)2𝜎𝑚

(
𝑁ℎ∑
𝑖=1 

𝔼𝐴𝑖

)
∕2𝐾

)
(32)

for 𝑠 ∈ [0,1] and 𝐾 =max𝑖∈[𝑁ℎ]
‖‖𝐴𝑖

‖‖2. The norm of 𝐴𝑖 can be bound uniformly over all 𝑥 ∈ℝ𝐷 by

‖‖‖vec(∇2𝑓 (𝑋𝑖))⊗ vec(∇2𝑓 (𝑋𝑖))
‖‖‖2 ≤ sup 

𝑥∈ℝ𝐷

‖‖‖vec(∇2𝑓 (𝑥))‖‖‖22 = sup 
𝑥∈ℝ𝐷

‖‖‖∇2𝑓 (𝑥)‖‖‖2𝐹
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= sup 
𝑥∈ℝ𝐷

‖‖‖‖‖
𝑚 ∑

𝑘=1
𝑔(2)(𝑤⊤

𝑘
𝑥+ 𝜏𝑘)𝑤𝑘 ⊗𝑤𝑘

‖‖‖‖‖
2

𝐹

= sup 
𝑥∈ℝ𝐷

𝑚 ∑
𝑘,𝓁=1

𝑔(2)(𝑤⊤
𝑘
𝑥+ 𝜏𝑘)𝑔(2)(𝑤⊤

𝓁𝑥+ 𝜏𝓁)⟨𝑤𝑘,𝑤𝓁⟩2
≤ 𝜅2

𝑚 ∑
𝑘,𝓁=1

⟨𝑤𝑘,𝑤𝓁⟩2 ≤ 𝜅2(𝑚+ 𝑐2𝑚(𝑚− 1) log𝑚∕𝐷).

The last inequality follows by the incoherence Assumption (A2) from the initial statement. Combining this with (32) for 𝑠 = 1∕2
together with the bound on the spectrum of the expectation yields

ℙ

(
𝜎𝑚

(
𝑁ℎ∑
𝑖=1 

𝐴𝑖

)
≥ 1

2
𝑁ℎ𝛼

)
≥ 1 −𝐷2 exp

(
−

𝑁ℎ𝐷𝛼

8𝜅2(𝐷𝑚+ 𝑐2𝑚
2 log𝑚)

)
. (33)

Conditioning on this event, and assuming 𝜖 <
√

𝛼∕8𝐶2
Δ𝑚 the initial subspace bound now holds as

‖‖‖𝑃 − 𝑃̂
‖‖‖𝐹→𝐹

≤
‖‖‖𝑀 −𝑀

‖‖‖2
𝜎𝑚(𝑀) 

≤ 𝐶Δ
√

𝑁ℎ𝑚𝜖√
1
2𝑁ℎ𝛼 −𝐶Δ

√
𝑁ℎ𝑚𝜖

=
𝐶Δ

√
𝑚 ⋅ 𝜖√

𝛼

2 −𝐶Δ
√

𝑚 ⋅ 𝜖
(34)

≤
√
2𝐶Δ

√
𝑚 ⋅ 𝜖√

𝛼
(35)

with said probability. The final result follows by applying the bound on 𝜖 onto the denominator. More precisely, we need that 𝐶 > 2𝐶Δ
to fufill (34) and 𝐶 > 8𝜅2 max{1, 𝑐2} which implies

1 −𝐷2 exp
(
−

𝑁ℎ𝐷𝛼

8𝜅2(𝐷𝑚+ 𝑐2𝑚
2 log𝑚)

)
≤ 1 −𝐷2 exp (−𝑡𝛼∕𝐶) ,

due to our assumption that 𝑁ℎ > 𝑡(𝑚+𝑚2 log(𝑚)∕𝐷). □

The second part of Algorithm 2 performs projected gradient ascent to find the local maximizers of

𝑢↦ ‖‖‖𝑃̂ (𝑢⊗ 𝑢)‖‖‖2𝐹 , 𝑢 ∈ 𝕊𝐷−1. (36)

The landscape for this functional, for 𝑚 = 𝑜(𝐷2), has been recently analyzed (in particular the properties of its local maximizers) by 
[29] for the general problem of symmetric tensor decomposition. We now provide one of their main statements adopted to the matrix 
scenario.

Theorem A.3 (cf. Theorem 16 in [29]). Let 𝑚,𝐷 ∈ℕ such that 𝑚 log2(𝑚) ≤𝐷2. Assume 𝑤1,… ,𝑤𝑚 satisfy (A1) - (A3) of Definition 3.2 for 
some 𝛿, 𝑐1, 𝑐2, 𝑐3 > 0. Then there exists 𝛿0, depending only on 𝑐2, 𝑐3 and 𝐷0,Δ0,𝐶 which depend additionally on 𝑐1, such that if 𝛿 < 𝛿0,𝐷 >𝐷0
and ‖‖‖𝑃 − 𝑃̂

‖‖‖𝐹→𝐹
≤Δ0, the program (36) has exactly 2𝑚 second-order critical points in the superlevel set{

𝑥 ∈ 𝕊𝐷−1|||| ‖‖‖𝑃̂ (𝑥⊗ 𝑥)‖‖‖2𝐹 ≥ 𝐶𝑚 log2(𝑚)∕𝐷2 + 5‖‖‖𝑃 − 𝑃̂
‖‖‖𝐹→𝐹

}
. (37)

Each of these critical points is a strict local maximizer for argmax𝑢∈𝕊𝐷−1
‖‖‖𝑃̂ (𝑢⊗ 𝑢)‖‖‖2𝐹 . Furthermore, for each such point 𝑥∗, there exists a 

unique 𝑘 ∈ [𝑚] such that

min 
𝑠∈{−1,1}

‖‖𝑥∗ − 𝑠𝑤𝑘
‖‖2 ≤√‖‖‖𝑃 − 𝑃̂

‖‖‖𝐹→𝐹
. (38)

This establishes that the local maximizers of (36) that belong to the superlevel set (37) will be close to one of the weights 𝑤1,… ,𝑤𝑚

up to sign. The projected gradient ascent iteration in Algorithm 2 converges monotonically to one of the constrained stationary points 
of (36) as shown by [30]. We are now ready to prove the main result on the weight recovery which relies on the lemma above, 
Proposition A.1, and the machinery developed by [29] represented by Theorem A.3.

Proof of Theorem 3.3. The weights 𝑤1,… ,𝑤𝑚 of 𝑓 are drawn uniformly from the unit sphere. By Proposition A.1, and for any 
𝛿0 ∈ (0,1), there exists 𝐷1 ∈ ℕ,𝐶1 > 0 depending only on 𝛿0 such that for all 𝐷 ≥𝐷1 this set of weights fufills conditions (A1)-(A3)

of Definition 3.2 with constants 𝑐2, 𝑐3 < 𝐶1 and with probability at least



Applied and Computational Harmonic Analysis 77 (2025) 101749

13

M. Fornasier, T. Klock, M. Mondelli et al. 

1 −𝑚−1 − 2exp(−𝐶1𝛿
2
0𝐷) −𝐶1

(
𝑒 ⋅𝐷√

𝑚

)−𝐶1
√

𝑚

.

We condition on this event and denote it by 𝐸1 for the remaining part of the proof. Now, due to the incoherence of the weights and 
according to our initial assumption which includes 𝑁ℎ > 𝑡(𝑚 +𝑚2 log(𝑚)∕𝐷), the conditions of Lemma A.2 are met which provides 
an error bound for the subspace which is constructed in the first part of Algorithm 2, such that‖‖‖𝑃 − 𝑃̂

‖‖‖𝐹→𝐹
≤ 𝐶2

√
𝑚∕𝛼 ⋅ 𝜖, (39)

with probability at least 1 − 𝐷2 exp
(
−𝑡𝛼∕𝐶2

)
for a constant 𝐶2 only depending on 𝑔. Denote the event that this subspace bound 

holds by 𝐸2 and assume it occurs, which only depends on the number of Hessians 𝑁ℎ in relationship to 𝐷,𝑚. Note that 𝛿0 can be 
freely chosen in (0,1). By Theorem A.3 there exist constants 𝐷2,Δ0,𝐶3, such that for 𝐷 ≥ 𝐷2 and ‖‖‖𝑃 − 𝑃̂

‖‖‖𝐹→𝐹
≤ Δ0, the local 

maximizers of the program argmax𝑢∈𝕊𝐷−1
‖‖‖𝑃̂ (𝑢⊗ 𝑢)‖‖‖2𝐹 fufill

min 
𝑠∈{−1,1}

‖‖𝑥∗ − 𝑠𝑤𝑘
‖‖2 ≤√‖‖‖𝑃 − 𝑃̂

‖‖‖𝐹→𝐹
≤
√

𝐶2
√

𝑚∕𝛼 ⋅ 𝜖, (40)

as long as they belong to the level set{
𝑥 ∈ 𝕊𝐷−1|||| ‖‖‖𝑃̂ (𝑥⊗ 𝑥)‖‖‖2𝐹 ≥ 𝐶3𝑚 log2(𝑚)∕𝐷2 + 5𝐶2

√
𝑚∕𝛼 ⋅ 𝜖

}
.

By iterating projected gradient ascent until convergence, every vector 𝑢̂ will be one of the these local maximizers. Also note that by 
construction all vectors returned by Algorithm 2 must have unit norm, hence  ⊂ 𝕊𝐷−1. We need to make sure that level set is not 
empty, which is guaranteed for 𝐶3𝑚 log2(𝑚)∕𝐷2 ≤ 1

4 and 𝜖 ≤ 𝛼1∕2

20𝐶2
√

𝑚
which leads to the threshold

𝐶3𝑚 log2(𝑚)∕𝐷2 + 5𝐶2
√

𝑚∕𝛼 ⋅ 𝜖 ≤ 1
4
+ 1

4
= 1

2
. (41)

Therefore, only considering local maximizers that fufill ‖‖‖𝑃̂ (𝑥⊗ 𝑥)‖‖‖2𝐹 ≥ 1∕2 will guarantee that all local maximizers are of the kind 
which satifies (40). Before we conclude, there are still some points that need to be addressed. To achieve the bound (40) we had 
to assume that ‖‖‖𝑃 − 𝑃̂

‖‖‖𝐹→𝐹
≤ Δ0. This is true due to (39) given the accuracy satifies 𝜖 ≤ Δ0𝛼

1∕2

𝐶3𝑚1∕2 which is clearly realizable by 
our initial assumptions on 𝜖, since Δ0 is independent of 𝑚,𝐷. Hence, by further unifying also the constants 𝐶1,𝐶2,𝐶3,𝐷1,𝐷2, we 
showed that there exist constants 𝐶 > 0,𝐷0 ∈ℕ such that for 𝐷 ≥𝐷0 and 𝐶𝑚 log2𝑚 ≤𝐷2 all vectors 𝑢 ∈ returned by Algorithm 2
ran with num. accuracy 𝜖 ≤

√
𝛼

𝐶
√

𝑚
will fufill the uniform error bound,

min 
𝑠∈{−1,1}

‖‖𝑥∗ − 𝑠𝑤̄𝑘
‖‖2 ≤ 𝐶(𝑚∕𝛼)1∕4𝜖1∕2, (42)

and this result holds with the combined probability

1 −𝐷2 exp (−𝑡𝛼∕𝐶) −𝑚−1 − 2exp(−𝐷∕𝐶) −𝐶

(
𝑒 ⋅𝐷√

𝑚

)−
√

𝑚∕𝐶

. □ (43)

The following short result does show a useful property of the spectrum of higher order Grammians which will prove useful for the 
upcoming part about parameter initialization.

Lemma A.4 (Higher order Hadamard products). In the setting of Definition 3.2 we have 𝜆min(𝐺2+𝑛) ≥ 𝜆min(𝐺2) and thus in particular ‖‖‖𝐺−1
2+𝑛

‖‖‖2 ≤ 𝑐3 for all 𝑛 ∈ℕ≥0 as well.

Proof. For each 𝑛 ∈ ℕ the matrix 𝐺𝑛 is a Grammian of the tensors {𝑤⊗𝑛
1 ,… ,𝑤⊗𝑛

𝑚 } and as such it is a positive semidefinite matrix. 
Since 𝜆min(𝐴⊙𝐵) ≥min𝑖 𝑎𝑖𝑖𝜆min(𝐵) for any pair of positive semidefinite matrices 𝐴,𝐵, see Theorem 3 in [7], we thus have

𝜆min(𝐺2+𝑛) = 𝜆min(𝐺2 ⊙𝐺𝑛) ≥ 𝜆min(𝐺2)min
𝑖 ⟨𝑤𝑖,𝑤𝑖⟩𝑛 = 𝜆min(𝐺2). □

Let us conclude this section with an important auxiliary result. As said before we generally operate in a setting where the ground 
truth weights are sufficiently incoherent and fufill (A1)-(A3) of Definition 3.2. It is clear that these properties translate to accurate 
approximations of the ground truth weights. The following result makes this explicit alongside with a few other minor technical 
results which will be used throughout the remaining proofs.
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Lemma A.5 (Incoherence of approximated Weights). Assume the ground truth weights {𝑤𝑘 ∈ 𝕊𝐷−1|𝑘 ∈ [𝑚]} fufill (A1)-(A3) of Defini

tion 3.2 with constants 𝑐2, 𝑐3 and that 𝐷 ≤ 𝑚. Then there exists a constant 𝐶 > 0 only depending on 𝑐2, 𝑐3 such that for approximations 
{𝑤̂𝑘 ∈ 𝕊𝐷−1|𝑘 ∈ [𝑚]} which satisfy the error bound

max 
𝑘∈[𝑚]

min 
𝑠∈{−1,1}

‖‖𝑠𝑤̂𝑘 −𝑤𝑘
‖‖2 = 𝛿max ≤ 1 

𝐶

𝐷1∕2

𝑚
√
log𝑚

(44)

condition (A2)-(A3) of Definition 3.2 holds with constants 2𝑐2,2𝑐3. Furthermore, denote 𝐺̃𝑛 ∈ ℝ𝑚×𝑚 the matrix with entries 𝐺̃𝑛,𝓁𝑘 =⟨𝑤̂𝓁 , 𝑠𝑘𝑤𝑘⟩𝑛, where 𝑠𝑘 are the ground truth signs. Then there exists 𝐷0 such that for 𝑚≥𝐷 ≥𝐷0, 𝑛 = 2,3 the following holds true:

(i) For all 𝑘 ≠ 𝓁 we have ⟨𝑤̂𝑘, 𝑠𝓁𝑤𝓁⟩2 ≤ 2𝑐2 log(𝑚)∕𝐷
(ii) 𝐺̃𝑛 is invertible and ‖𝐺̃−1

𝑛 ‖ ≤ 3𝑐2
(iii) Denote by 𝐺̃𝑛 ∈ℝ𝑚×𝑚 the matrix with entries 𝐺̃𝑛,𝓁𝑘 = ⟨𝑤̂𝓁 , 𝑠𝑘𝑤𝑘⟩𝑛, then

‖‖‖𝐺̃𝑛 −𝐺𝑛
‖‖‖ ≤ 𝐶𝑚

(
log𝑚
𝐷

)(2𝑛−1)∕4
𝛿max. (45)

Proof. W.l.o.g. we can assume that 𝐶 is chosen such that

max 
𝑘∈[𝑚]

min 
𝑠∈{−1,1}

‖‖𝑠𝑤̂𝑘 −𝑤𝑘
‖‖2 = 𝛿max ≤min

{
1
8

(
𝑐2 log𝑚

𝐷

)1∕2
,

𝐷1∕2

8𝑐3𝑚
√
2𝑐2 log𝑚

}
(46)

holds. We start by showing (A2) for the approximated weights. Pick any 𝑘,𝓁 ∈ [𝑚], 𝑘 ≠ 𝓁. A first observation is that we can disregard 
the sign that appears in (44) since ⟨𝑤̂𝑘, 𝑤̂𝓁⟩2 = ⟨−𝑤̂𝑘, 𝑤̂𝓁⟩2. So w.l.o.g. assume that both signs are correct and therefore ‖‖𝑤̂𝑘 −𝑤𝑘

‖‖2 ≤
𝛿max and ‖‖𝑤̂𝓁 −𝑤𝓁

‖‖2 ≤ 𝛿max. Then

⟨𝑤̂𝑘, 𝑤̂𝓁⟩2 ≤ (||⟨𝑤𝑘,𝑤𝓁⟩||+ ||⟨𝑤̂𝑘 −𝑤𝑘,𝑤𝓁⟩||+ ||⟨𝑤𝑘, 𝑤̂𝓁 −𝑤𝓁⟩||+ ||⟨𝑤̂𝑘 −𝑤𝑘, 𝑤̂𝓁 −𝑤𝓁⟩||)2 (47)

≤ (||⟨𝑤𝑘,𝑤𝓁⟩||+ 2𝛿max + 𝛿2max
)2 ≤ ||⟨𝑤𝑘,𝑤𝓁⟩||2 + 6𝛿max ||⟨𝑤𝑘,𝑤𝓁⟩||+ 9𝛿2max

≤ 𝑐2 log𝑚
𝐷

+ 6
(

𝑐2 log𝑚
𝐷

)1∕2
𝛿max + 9𝛿2max

≤ 𝑐2 log𝑚
𝐷

+ 48 + 9
64 

𝑐2 log𝑚
𝐷

≤ 2𝑐2 log𝑚
𝐷

,

which proves that (A2) is fufilled by the approximated weights for a constant 2𝑐2. Moving on to (A3), we need to bound the minimal 
eigenvalue of 𝐺𝑛 = (𝑊 ⊤𝑊 )⊙𝑛 from below. Assuming 𝐺2 is invertible, we know by Lemma A.4 that

‖𝐺−1
𝑛 ‖ ≤ ‖𝐺−1

2 ‖ for all 𝑛 ≥ 2.

Thus, it is sufficient to show that (A3) holds for the approximated weights for 𝑛 = 2. Denote 𝐺2 = (𝑊 ⊤𝑊 )⊙2. Clearly 𝐺2,𝐺2 are 
symmetric, and since (A3) holds for the ground truth weights we know that the minimal eigenvalue of 𝐺2 can be bounded by a 
constant ||𝜎𝑚(𝐺2)|| ≥ 𝑐−13 . Hence, by Weyl’s inequality we have|||𝜎𝑚(𝐺2)

||| ≥ 𝑐−13 − ‖‖‖𝐺2 −𝐺2
‖‖‖ . (48)

Our goal is to find an upper bound the spectral norm on the right hand side. Note that the diagonal of both matrices is identical due 
to the fact that all columns of 𝑊 and 𝑊 have unit norm, so we focus on the off diagonal exclusively. Via Gershgorin’s circle theorem 
we attain

‖‖‖𝐺𝑛 −𝐺𝑛
‖‖‖ ≤ max 

𝑘∈[𝑚]

𝑚 ∑
𝓁=1
𝓁≠𝑘

|||⟨𝑤̂𝑘, 𝑤̂𝓁⟩2 − ⟨𝑤𝑘,𝑤𝓁⟩2|||
= max 

𝑘∈[𝑚]

𝑚 ∑
𝓁=1
𝓁≠𝑘

|||⟨𝑠𝑘𝑤̂𝑘, 𝑠𝓁𝑤̂𝓁⟩2 − ⟨𝑤𝑘,𝑤𝓁⟩2|||
≤ max 

𝑘∈[𝑚]

𝑚 ∑
𝓁=1
𝓁≠𝑘

||⟨𝑠𝑘𝑤̂𝑘, 𝑠𝓁𝑤̂𝓁⟩+ ⟨𝑤𝑘,𝑤𝓁⟩|| ||⟨𝑠𝑘𝑤̂𝑘, 𝑠𝓁𝑤̂𝓁⟩− ⟨𝑤𝑘,𝑤𝓁⟩||
≤ 2

(
2𝑐2 log𝑚

𝐷

)1∕2
max 
𝑘∈[𝑚]

𝑚 ∑
𝓁=1
𝓁≠𝑘

||⟨𝑠𝑘𝑤̂𝑘 −𝑤𝑘, 𝑠𝓁𝑤̂𝓁⟩+ ⟨𝑤𝑘, 𝑠𝓁𝑤̂𝓁 −𝑤𝓁⟩||
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≤ 4
(
2𝑐2 log𝑚

𝐷

)1∕2
𝑚 ⋅ 𝛿max ≤ 1 

2𝑐3
,

where we used the fact that (A2) holds for the ground truth weights and approximated weights in the penultimate inequality followed 
by the uniform bound in (44) at the end. We conclude with Weyl’s inequality which yields|||𝜎𝑚(𝐺−1

2 )||| ≤ |||𝜎1(𝐺2)
|||−1 ≤ 2𝑐3. (49)

Hence, the approximated weights fufill (A3) with constant 2𝑐3 for 𝑛 = 2 which extends to 𝑛 ≥ 2 by Lemma A.4. Let us now prove 
(𝑖) − (𝑖𝑖𝑖). The first statement follows directly from our proof of (A2) for the approximated weights, since for any 𝑘 ≠ 𝓁 we have

⟨𝑤̂𝑘, 𝑠𝓁𝑤𝓁⟩2 ≤ (||⟨𝑤𝓁 ,𝑤𝑘⟩||+ ||⟨𝑤̂𝓁 −𝑤𝓁 ,𝑤𝑘⟩||)2 ≤ (||⟨𝑤𝓁 ,𝑤𝑘⟩||+ 𝛿max
)2 ≤ 2𝑐2 log𝑚

𝐷
,

which follows by the chain of inequalities started in (47). To show (𝑖𝑖𝑖) we first split the difference 𝐺̃𝑛 −𝐺𝑛 =𝐷𝑛 +𝑂𝑛 into a diagonal 
part 𝐷𝑛 and an off-diagonal part 𝑂𝑛. We have ‖𝐺̃𝑛 − 𝐺𝑛‖ ≤ ‖𝐷𝑛‖ + ‖𝑂𝑛‖, and start by controlling ‖𝑂𝑛‖ via Gershgorin’s circle 
theorem:

‖𝑂𝑛‖ ≤ max 
𝓁∈[𝑚]

𝑚 ∑
𝑘=1
𝑘≠𝓁

||⟨𝑤̂𝑘, 𝑤̂𝓁⟩𝑛 − ⟨𝑤̂𝑘, 𝑠𝓁𝑤𝓁⟩𝑛||
≤ max 

𝓁∈[𝑚]

𝑚 ∑
𝑘=1
𝑘≠𝓁

||⟨𝑤̂𝑘, 𝑤̂𝓁⟩− ⟨𝑤̂𝑘, 𝑠𝓁𝑤𝓁⟩|| |||||
𝑛 ∑

𝑖=1 
⟨𝑤̂𝑘, 𝑤̂𝓁⟩𝑛−𝑖⟨𝑤̂𝑘, 𝑠𝓁𝑤𝓁⟩𝑖−1|||||

≤ 𝑛

(
2𝑐2 log𝑚

𝐷

)(𝑛−1)∕2
max 
𝓁∈[𝑚]

𝑚 ∑
𝑘=1
𝑘≠𝓁

||⟨𝑤̂𝑘, 𝑤̂𝓁 − 𝑠𝓁𝑤𝓁⟩|| .
From here we can slightly improve over Cauchy-Schwarz, and instead use that

𝑚 ∑
𝑘=1
𝑘≠𝓁

||⟨𝑤̂𝑘, 𝑤̂𝓁 − 𝑠𝓁𝑤𝓁⟩|| ≤√
𝑚− 1

√√√√√√ 𝑚 ∑
𝑘=1
𝑘≠𝓁

⟨𝑤̂𝑘, 𝑤̂𝓁 − 𝑠𝓁𝑤𝓁⟩2 ≤√
𝑚
‖‖‖𝑊 ‖‖‖𝛿max.

Using ‖𝑊 ‖ = ‖𝑊 ⊤𝑊 ‖1∕2 ≤(
1 +𝑚

(
2𝑐2 log𝑚

𝐷

)1∕2
)1∕2

we arrive at the following bound for the off-diagonal terms:

‖𝑂𝑛‖ ≤ 𝑛

(
2𝑐2 log𝑚

𝐷

)(𝑛−1)∕2√
𝑚

(
1 +𝑚

(
2𝑐2 log𝑚

𝐷

)1∕2
)1∕2

𝛿max

≤ 𝐶𝑛𝑚

(
log𝑚
𝐷

)(𝑛−1)∕2( log𝑚
𝐷

)1∕4
𝛿max ≤ 𝐶𝑛𝑚

(
log𝑚
𝐷

)(2𝑛−1)∕4
𝛿max,

where 𝐶 > 0 is an absolute constant only depending on 𝑐2 and 𝑚 ≥𝐷 was used in the second inequality. For the diagonal part we 
receive

‖𝐷𝑛‖ = max 
𝓁∈[𝑚]

||1 − ||⟨𝑤̂𝓁 ,𝑤𝓁⟩||𝑛||
=
||||1 − min 

𝓁∈[𝑚]
||⟨𝑤̂𝓁 ,𝑤𝓁⟩||𝑛||||

=
||||||1 −

||||||1 −
max𝓁∈[𝑚] ‖𝑤̂𝓁 −𝑤𝓁‖22

2 

||||||
𝑛||||||

≤ |||1 − (1 − 𝛿2max∕2)
𝑛||| ,

where the equalities are using the fact that 𝑤̂𝓁 ,𝑤𝓁 are of unit norm for all 𝓁 ∈ [𝑚]. Hence, we attain overall

‖‖‖𝐺̃𝑛 −𝐺𝑛
‖‖‖ ≤ |||1 − (1 − 𝛿2max∕2)

𝑛|||+𝐶𝑛𝑚

(
log𝑚
𝐷

)(2𝑛−1)∕4
𝛿max.

For 𝑛 = 2,3 and some constant 𝐶1 > 0 depending only on 𝑐2 this can be further simplfied using the bound on 𝛿max as

‖‖‖𝐺̃𝑛 −𝐺𝑛
‖‖‖ ≤ 𝛿2max +𝐶𝑛𝑚

(
log𝑚
𝐷

)(2𝑛−1)∕4
𝛿max
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Algorithm 3: Parameter Initialization.

Input: Approximated weights 𝑊 , numerical differentiation schema Δ𝑛[⋅] with accuracy 𝜖 > 0, interval on which 𝑔(2) is monotonic [−𝜏∞,+𝜏∞]
1 Set 𝐺2 ← (𝑊 ⊤𝑊 )⊙2 , 𝐺3 ← (𝑊 ⊤𝑊 )⊙3

2 for 𝑘 = 1,… ,𝑚 do

3 Compute directional derivative approximations 𝑇̃2,𝑘 =Δ2[𝑓 (⋅𝑤̂𝑘)](0), 𝑇̃3,𝑘 =Δ3[𝑓 (⋅𝑤̂𝑘)](0)
4 end

5 Set ̃2 ←𝐺−1
2 𝑇̃2 , ̃3 ←𝐺−1

3 𝑇̃3

6 for 𝑘 = 1,… ,𝑚 do

7

𝜏𝑘 ←

{
(𝑔(2))−1(̃2,𝑘), if (𝑔(2))−1 is defined for ̃2,𝑘,

argmin𝑡∈[−𝜏∞ ,𝜏∞]
||𝑔(2)(𝑡) − ̃2,𝑘

|| else,
(50)

𝑠̃𝑘 ← sign
(̃3,𝑘 ⋅ 𝑔

(3)(0)
)
, (51)

8 end

Output: 𝜏, 𝑠̃

≤ 𝐶1𝑚

(
log𝑚
𝐷

)(2𝑛−1)∕4
𝛿max,

which cofirms (𝑖𝑖𝑖). To prove (𝑖𝑖) we need to show that ‖‖‖𝐺̃𝑛 −𝐺𝑛
‖‖‖ ≤ 𝑐4∕2 from which the rest follows as before by Weyl’s inequality. 

We can reuse (𝑖𝑖𝑖) in combination with (44) obtaining

‖‖‖𝐺̃𝑛 −𝐺𝑛
‖‖‖ ≤ 𝐶1𝑚

(
log𝑚
𝐷

)(2𝑛−1)∕4
𝛿max ≤ 𝐶2

(
log𝑚
𝐷

)1∕4
,

for some constant 𝐶2. Hence (𝑖𝑖) is true for 𝐷 ≥𝐷0 sufficiently large. □

Appendix B. Proofs: parameter initialization

In this section we prove Proposition 4.2, which assesses the quality of shifts computed by Algorithm 3. These initial shifts will 
later be used as an initialization for gradient descent (cf. Appendix C).

Proof sketch of Proposition 4.2 As discussed in Section 4.1, goal of Algorithm 3 is to recover the vectors

2 = 𝑔(2)(𝜏), and 3 = 𝑠 ⊙ 𝑔(3)(𝜏).

This recovery is only possible up to approximations ̃2, ̃3 due to perturbations accumulated in the weight recovery and errors caused 
by the numerical approximation of derivatives. The proof begins with an auxiliary statement, namely Lemma B.1, that develops 
an upper bound on ‖𝑛 − ̃𝑛‖2 (𝑛 = 2,3) assuming that the weight recovery achieved a certain level of accuracy. The proof of 
Proposition 4.2 will then utilize the properties of the activation function ((M1)-(M2)) to show that the shifts 𝜏 can be approximated 
by using the components of ̃2 ≈ 𝑔(2)(𝜏), whereas the signs of the original weights are revealed by ̃3 ≈ 𝑠 ⊙ 𝑔(3)(𝜏).

Lemma B.1. Denote by ̃𝑛 the coefficient vectors computed by Algorithm 3 for an input network 𝑓 with ground truth weights {𝑤𝑘 ∈ 𝕊𝐷−1|𝑘 ∈
[𝑚]} which fufill (A2)-(A3) of Definition 3.2 with constants 𝑐2, 𝑐3 and activation 𝑔 that fufills (M1). Then, there exist constants 𝐶 > 0 only 
depending on 𝑔, 𝑐2, 𝑐3 and 𝐷0 ∈ ℕ, such that for 𝑚 ≥𝐷 ≥𝐷0,𝑚 log2𝑚 ≤𝐷2, 𝑛 = 2,3 and provided approximations {𝑤̂𝑘 ∈ 𝕊𝐷−1|𝑘 ∈ [𝑚]}
to the ground truth weights such that

max 
𝑘∈[𝑚]

min 
𝑠∈{−1,1}

‖‖𝑠𝑤̂𝑘 −𝑤𝑘
‖‖2 = 𝛿max ≤ 1 

𝐶

𝐷1∕2

𝑚
√
log𝑚

, (52)

we have

‖‖‖̃𝑛 − 𝑠𝑛 ⊙ 𝑔(𝑛)(𝜏)‖‖‖2 ≤ 𝐶
√

𝑚𝜖 +𝐶𝑚3∕2
(
log𝑚
𝐷

)(2𝑛−1)∕4
𝛿max, (53)

where 𝑠 is the vector storing the true signs that are implied by (52).

Proof of Lemma B.1. Denote as in Algorithm 3 𝑇̃𝑛,𝑘 =Δ𝑛[𝑓 (⋅𝑤̂𝑘)](0) and 𝑇𝑛,𝑘 = ⟨∇𝑛𝑓 (0), 𝑤̂⊗𝑛
𝑘

⟩. By their definition and the linearity 
of ∇𝑛,Δ𝑛 we have

‖‖𝑇𝑛 − 𝑇̃𝑛
‖‖∞ = sup 

𝑘∈[𝑚]

|||⟨∇𝑛𝑓 (0), 𝑤̂⊗𝑛
𝑘

⟩−Δ𝑛[𝑓 (𝑤̂𝑘⋅)](0)
||| (54)

≤ sup 
𝑘∈[𝑚]

𝑚 ∑
𝓁=1

|||| 𝜕𝑛

𝜕𝑡𝑛
𝑔(⟨𝑤̂𝑘,𝑤𝓁⟩𝑡+ 𝜏𝓁)

||||𝑡=0 − Δ𝑛[𝑔(⟨𝑤̂𝑘,𝑤𝓁⟩ ⋅+𝜏𝓁)](0)
|||| (55)
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≤ 𝐶Δ𝜖 sup 
𝑘∈[𝑚]

𝑚 ∑
𝓁=1

||⟨𝑤̂𝑘,𝑤𝓁⟩||𝑛+2 ≤ 𝐶Δ𝜖
⎛⎜⎜⎝1 +𝑚

(
2𝑐2 log𝑚

𝐷

) 𝑛+2
2 ⎞⎟⎟⎠ , (56)

where we used the second point of (G2) in the last line followed by the incoherence of the approximated weights (A2) established in 
Lemma A.5. Making use of 𝐷2 ≥𝑚 log2𝑚, this simplfies to

‖‖𝑇𝑛 − 𝑇̃𝑛
‖‖∞ ≤ 𝐶1 ⋅ 𝜖,

with constant 𝐶1 = (1+4𝑐22)𝐶Δ for 𝑛 = 2,3. Coming back to our initial objective, we can express 𝑠𝑛⊙𝑔(𝑛)(𝜏) as the product 𝑠𝑛⊙𝑔(𝑛)(𝜏) =
𝑇𝑛𝐺̃𝑛 where 𝐺̃𝑛 describes the matrix with entries given by (𝐺̃𝑛)𝑘𝓁 = ⟨𝑤̂𝑘, 𝑠𝓁𝑤𝓁⟩𝑛. Note that Algorithm 3 constructs ̃𝑛 =𝐺−1

𝑛 𝑇̃𝑛, where 
(𝐺𝑛)𝑘𝓁 = ⟨𝑤̂𝑘, 𝑤̂𝓁⟩𝑛. We can reduce our main statement (53) into separate bounds‖‖‖̃𝑛 − 𝑠𝑛 ⊙ 𝑔(𝑛)(𝜏)‖‖‖2 = ‖‖‖𝐺−1

𝑛 𝑇̃𝑛 − 𝐺̃−1
𝑛 𝑇𝑛

‖‖‖2 (57)

≤ ‖‖‖𝐺−1
𝑛 (𝑇𝑛 − 𝑇̃𝑛)

‖‖‖2 + ‖‖‖(𝐺−1
𝑛 − 𝐺̃−1

𝑛 )𝑇𝑛
‖‖‖2 (58)

≤√
𝑚
‖‖‖𝐺−1

𝑛
‖‖‖‖‖𝑇𝑛 − 𝑇̃𝑛

‖‖∞ + ‖‖‖(𝐺−1
𝑛 − 𝐺̃−1

𝑛 )𝑇𝑛
‖‖‖2 (59)

≤ 𝐶1
√

𝑚 ⋅ 𝜖 + ‖‖‖(𝐺−1
𝑛 − 𝐺̃−1

𝑛 )𝑇𝑛
‖‖‖2 . (60)

To bound ‖‖‖(𝐺−1
𝑛 − 𝐺̃−1

𝑛 )𝑇𝑛
‖‖‖2, we first decompose according to

‖‖‖(𝐺−1
𝑛 − 𝐺̃−1

𝑛 )𝑇𝑛
‖‖‖2 = ‖‖‖𝐺−1

𝑛 (𝐺𝑛 − 𝐺̃𝑛)𝐺̃−1
𝑛 𝑇𝑛

‖‖‖2 = ‖‖‖𝐺−1
𝑛 (𝐺𝑛 − 𝐺̃𝑛)(𝑠𝑛 ⊙ 𝑔(𝑛)(𝜏))‖‖‖2 . (61)

By invoking Definition (A3) again, we continue with‖‖‖𝐺−1
𝑛 (𝐺𝑛 − 𝐺̃𝑛)(𝑠𝑛 ⊙ 𝑔(𝑛)(𝜏))‖‖‖2 ≤ 2𝑐3

‖‖‖𝐺𝑛 − 𝐺̃𝑛
‖‖‖‖‖‖𝑠𝑛 ⊙ 𝑔(𝑛)(𝜏)‖‖‖2 ≤ 2𝑐3𝜅

√
𝑚
‖‖‖𝐺𝑛 − 𝐺̃𝑛

‖‖‖ , (62)

where we used ‖‖‖𝑔(𝑛)‖‖‖∞ ≤ 𝜅. The statement then follows by using inequality (𝑖𝑖𝑖) of Lemma A.5 onto ‖‖‖𝐺𝑛 − 𝐺̃𝑛
‖‖‖ and unifying the 

involved constants. □

We are now ready to prove the main result for the parameter initialization.

Proof of Proposition 4.2. First note that due the assumptions made, we can freely apply the results of Lemma A.5 and Lemma B.1. 
As a consequence the approximated weights considered in the statement of Proposition 4.2 fufill (A2)-(A3) of Definition 3.2 with 
constants derived from the ground truth weights as described in Lemma A.5. We continue with the remark that (M1) guarantees the 
existence of the inverse function 𝑔(2)−1 on [−𝜏∞, 𝜏∞] and here we can disregard the signs such that

𝑔(2)
−1(𝑠2 ⊙ 𝑔(2)(𝜏)) = 𝑔(2)

−1 (1⊙ 𝑔(2)(𝜏)
)
= 𝜏. (63)

While 𝑠2 ⊙ 𝑔(2)(𝜏) is not directly available, ̃2 serves as an approximation ̃2 ≈ 𝑠2 ⊙ 𝑔(2)(𝜏). Fix any 𝑘 ∈ [𝑚], and assume that

̃2,𝑘 ∈
[

min 
𝑡∈[−𝜏∞ ,+𝜏∞]

𝑔(2)(𝑡), max 
𝑡∈[−𝜏∞ ,+𝜏∞]

𝑔(2)(𝑡)
]
, (64)

then by the mean value theorem

𝜏𝑘 = 𝑔(2)
−1(̃2,𝑘) = 𝑔(2)

−1 (
𝑔(2)(𝜏𝑘) + ̃2,𝑘 − 𝑔(2)(𝜏𝑘)

)
= 𝑔(2)

−1 (
𝑔(2)(𝜏𝑘)

)
+
(̃2,𝑘 − 𝑔(2)(𝜏𝑘)

)
(𝑔(2)−1)′(𝜉𝑘)

= 𝜏𝑘 +
(̃2,𝑘 − 𝑔(2)(𝜏𝑘)

) 1 

𝑔(3)
(
𝑔(2)

−1(𝜉𝑘)
) ,

for some 𝜉𝑘 ∈
[
min𝑡∈[−𝜏∞ ,+𝜏∞] 𝑔

(2)(𝑡),max𝑡∈[−𝜏∞ ,+𝜏∞] 𝑔
(2)(𝑡)

]
. Since 𝑔(2) is strictly monotonic on [−𝜏∞, 𝜏∞] and differentiable, we have

𝜃 ∶= max 
𝑡∈[−𝜏∞ ,𝜏∞]

|||𝑔(3)(𝑡)||| > 0.

Hence, we can bound 
||||| 1 
𝑔(3)

(
𝑔(2)−1(𝜉𝑘)

) ||||| ≤ 𝜃−1 from the outgoing Assumption (M1). Applying Lemma B.1 to bound ‖‖‖𝑔(2)(𝜏) − ̃2‖‖‖2
therefore yields

‖𝜏 − 𝜏‖2 ≤ 𝜃−1

(
𝐶
√

𝑚𝜖 +𝐶𝑚3∕2
(
log𝑚
𝐷

)3∕4
𝛿max

)
. (65)
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Now, assume there is a 𝑘 ∈ [𝑚] such that ̃2,𝑘 does not satisfy (64). By the monotonicity we also know that the maximal and minimal 
value of 𝑔(2) are found exactly on ±𝜏∞. If ̃2,𝑘 does not lie in the image of 𝑔(2) on [−𝜏∞,+𝜏∞] it has to exceed one of those. We can 
assume w.l.o.g. that ̃2,𝑘 >max𝑡∈[−𝜏∞ ,+𝜏∞] 𝑔

(2)(𝑡) = 𝑔(2)(𝜏∞). Then,|||𝑔(2)(𝜏∞) − 𝑔(2)(𝜏𝑘)
||| < |||̃2,𝑘 − 𝑔(2)(𝜏𝑘)

||| ,
which shows that 𝑔(2)(𝜏∞) is simply a better estimate of 𝑔(2)(𝜏𝑘) than ̃2,𝑘, and 𝑔(2)−1 is also dfined for 𝑔(2)(𝜏∞). Hence, the same 
error bound as above holds for all 𝑘 ∈ [𝑚]. The expression in (51) yields the correct sign if sign(̃3,𝑘) = sign(𝑠(3)

𝑘
) ⋅ sign(𝑔(3)(𝜏𝑘)) =

sign(𝑠𝑘) ⋅ sign(𝑔(3)(𝜏𝑘)). This is the case if|||𝑠(3)𝑘
⋅ 𝑔(3)(𝜏𝑘)

||| > |||𝑠(3)𝑘
⋅ 𝑔(3)(𝜏𝑘) − ̃3,𝑘||| . (66)

By our outgoing assumption |||𝑠(3)𝑘
⋅ 𝑔(3)(𝜏𝑘)

||| ≥ 𝜃 and together with Lemma B.1 applied to the RHS of the inequality above, we get that 
the signs are correct as long as

𝜃 >

(
𝐶
√

𝑚𝜖 +𝐶𝑚3∕2
(
log𝑚
𝐷

)5∕4
𝛿max

)
. (67)

Assume now that the RHS of (21) is smaller than 1 and 𝜖 ≤ (𝐶𝑚)−1, this implies in particular

𝐶𝑚3∕2
(
log𝑚
𝐷

)3∕4
𝛿max < 1.

We can estimate the right hand side of (67) from above by

𝐶
√

𝑚𝜖 +𝐶𝑚3∕2
(
log𝑚
𝐷

)5∕4
𝛿max ≤ 1 

𝑚1∕2 +
(
log𝑚
𝐷

)2∕4
,

which clearly is smaller than any constant for 𝐷 large enough, and therefore the signs will be correct for 𝐷0 chosen accordingly since 
(66) is fufilled. □

Appendix C. Proof of Theorem 4.3

Let us shortly recall the setting of Theorem 4.3. We consider the identfication of the parameters 𝑊 ,𝜏 attributed to a shallow 
neural network 𝑓 (⋅,𝑊 , 𝜏) which falls into the class of networks described in Section 2. By means of Algorithms 2-3, we can find weight 
approximations 𝑊 ≈𝑊 and shift approximations 𝜏 ≈ 𝜏 of 𝑓 . The parameters (𝑊 ,𝜏) give rise to a neural network 𝑓 (⋅,𝑊 , 𝜏) which 
is architecturally identical to 𝑓 , and, depending on the accuracy of the previous algorithmic steps, we would already expect some 
agreement in terms of 𝑓 ≈ 𝑓 . Given network evaluations 𝑦1 = 𝑓 (𝑥1),… , 𝑦𝑁train

= 𝑓 (𝑥𝑁train
) of 𝑓 , we consider further improvement of 

the approximated shifts 𝜏 by empirical risk minimization of the objective

𝐽 (𝜏) = 1 
2𝑁train

𝑁train∑
𝑖=1 

(
𝑓 (𝑥𝑖, 𝜏) − 𝑦𝑖

)2
, (68)

via gradient descent given by

𝜏(𝑛+1) = 𝜏(𝑛) − 𝛾∇𝐽 (𝜏(𝑛)). (69)

In Theorem 4.3, we prove a local convergence result with the guarantee that, for sufficiently large 𝑁train, ‖𝜏(𝑛) − 𝜏‖2 is roughly

‖𝜏(𝑛) − 𝜏‖2 ≲
𝑚1∕2 log(𝑚)3∕4

𝐷1∕4

⎛⎜⎜⎝‖𝑊 −𝑊 ‖𝐹 +
Δ1∕2

𝑊 ,𝑂

𝐷1∕2 +
‖‖‖‖‖

𝑚 ∑
𝑘=1

𝑤𝑘 − 𝑤̂𝑘

‖‖‖‖‖2
⎞⎟⎟⎠ ,

where

Δ𝑊 ,𝑂 =
𝑚 ∑

𝑘≠𝑘′

||⟨𝑤̂𝑘 −𝑤𝑘, 𝑤̂𝑘′ −𝑤𝑘′⟩|| .
Proof sketch For the proof, we rely on an idealized loss given by a quadratic functional in 𝜏 :

𝐽∗(𝜏) = (𝜏 − 𝜏)⊤𝐴(𝜏 − 𝜏), (70)

with

𝐴 ∶= 1 
2𝑁train

𝑁train∑
𝑖=1 

∇𝑓 (𝑥𝑖, 𝜏)∇𝑓 (𝑥𝑖, 𝜏)⊤. (71)
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The proof can then be broken down into two steps. First, in Lemma C.4, it is shown that 𝐽∗ is strictly convex by estimating a lower 
bound on the minimal eigenvalue 𝜆𝑚(𝐴) of 𝐴. The proof relies on techniques from the NTK literature to first control the spectrum of 
𝔼𝑋1 ,…,𝑋𝑁train

∼ (0,Id𝐷)[𝐴] by leveraging (M2) and the incoherence of 𝑤̂1,… , 𝑤̂𝑚. In particular, Lemma C.4 implies that minimizing 
𝐽∗ via the gradient descent iteration given by

𝜏(𝑛+1)∗ = 𝜏(𝑛)∗ − 𝛾∇𝐽∗(𝜏(𝑛)∗ ) = 𝜏(𝑛)∗ − 𝛾𝐴(𝜏(𝑛)∗ − 𝜏) (72)

with step-sizes 𝛾 ≤ 1∕‖𝐴‖ does necessarily converge to the global minimum attained at 𝜏∗ = 𝜏 . As a second step, we control the 
perturbation between the iterations 𝜏(𝑛), 𝜏(𝑛)∗ , when starting them from an identical vector 𝜏(0) = 𝜏

(0)
∗ . In particular, in Lemma C.10 it 

is shown that the difference ‖𝜏(𝑛) − 𝜏
(𝑛)
∗ ‖2 adheres to

‖𝜏(𝑛) − 𝜏(𝑛)∗ ‖2 ≤ 𝜉𝑛‖𝜏(0) − 𝜏‖2 + (1 − 𝜉𝑛)Δ𝑊 ,

provided 𝜏(0) is sufficiently close to the optimal solution 𝜏 , and where Δ𝑊 is an error term which satifies Δ𝑊 → 0 as ‖𝑊 −𝑊 ‖𝐹 → 0
and 𝜉 ∈ [0,1). By the triangle inequality, we then bound the distance of the original gradient descent iteration (69) to 𝜏 via

‖𝜏(𝑛) − 𝜏‖2 ≤ ‖𝜏(𝑛) − 𝜏(𝑛)∗ ‖2 + ‖𝜏(𝑛)∗ − 𝜏‖2
≤ 𝜉𝑛‖𝜏(0) − 𝜏‖2 + (1 − 𝜉𝑛)Δ𝑊 + (1 − 𝛾𝜆𝑚(𝐴))𝑛‖𝜏(0)∗ − 𝜏‖2 →Δ𝑊 ,

for 𝑛→∞. Hence, we establish that the iteration 𝜏(𝑛) settles in an area around the optimal shifts 𝜏 that is determined by the initial 
and irreparable error present in the weight approximation 𝑊 of 𝑊 .

Organisation of this section Subsection C.1 is dedicated to analyze the matrix 𝐴 in (71) in expectation (over 𝑥𝑖 ’s) and proves the well

posedness. Subsection C.2 analyzes the perturbation between gradient descent on the idealized objective 𝐽∗ and the true objective 𝐽 . 
Subsection C.3 concludes the proof by combining the well-posedness and the perturbation analysis.

C.1. Well-posedness of the idealized objective in expectation

We begin this section with a short primer on Hermitian expansions, a technical tool which is commonly used in the NTK literature. 
Afterwards, we prove the well-posedness of 𝐴 in (71) in expectation. 

C.1.1. A primer on Hermitian expansions

The Hermitian polynomials form an orthonormal basis of the 𝐿2 space, weighted by the Gaussian kernel 𝑤𝐺 , which we denote as 
𝐿2(ℝ,𝑤𝐺). The 𝑟-th Hermitian polynomial is dfined as

ℎ𝑟(𝑦) ∶=
1 √
𝑟!
(−1)𝑟 exp

(𝑦2

2 

)
𝑑𝑟

𝑑𝑦𝑟
exp

(−𝑦2

2 

)
.

Any function ℎ ∈𝐿2(ℝ,𝑤𝐺) can be expanded as ℎ≡∑
𝑟 𝜇𝑟(ℎ)ℎ𝑟 with Hermitian coefficients 𝜇𝑟(ℎ) as

𝜇𝑟(ℎ) ∶= ∫ ℎ(𝑦)ℎ𝑟(𝑦)𝑤𝐺(𝑦)𝑑𝑦.

As per Assumption (M1) the first three derivatives of 𝑔 are bounded, hence max𝑘∈[3] ‖𝑔(𝑘)𝜏 ‖∞ <∞ for any 𝜏 ∈ℝ. It is easy to check 
that this implies that these functions lie within 𝐿2(ℝ,𝑤𝐺).

Lemma C.1. Assume ℎ is bounded, then ℎ∈𝐿2(ℝ,𝜔𝐺) and∑
𝑟≥0 

𝜇𝑟(ℎ)2 ≤
√
2𝜋‖ℎ‖2∞

Proof.

∫
ℝ 

ℎ(𝑡)2 exp(−𝑡2∕2)𝑑𝑡 ≤√
2𝜋‖ℎ‖2∞ <∞.

The second statement follows from the fact that 𝐿2(ℝ,𝜔𝐺) is a Hilbert space and the hermite polynomials form an orthonormal 
system within that space. □

We further assume in (M2) that 𝑔(1) is not a polynomial of degree three or less, implying that also 𝑔(1)𝜏 is not a polynomial of degree 
three or less. Since ℎ0, ℎ1, ℎ2, ℎ3 form a basis for the space of a˙ine functions, this implies 𝑔(1)𝜏 ∉ Span(ℎ0, ℎ1, ℎ2, ℎ3). In particular, 
𝜇𝑟(𝑔

(1)
𝜏 ) ≠ 0 for some 𝑟 ≥ 4 and any 𝜏 ∈ℝ. In the following, we denote

𝜔 ∶= min 
𝜏∈[−𝜏∞ ,𝜏∞]

∑
𝑟≥4 

𝜇𝑟(𝑔(1)(⋅+ 𝜏))2 > 0,
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which depends only on the activation function 𝑔(1) and the shift bound 𝜏∞. Lastly, a useful property of Hermitian expansions and the 
Hermitian basis is the following identity.

Lemma C.2 (cf. Lemma D.2 in [38]). For two unit norm vectors 𝑥, 𝑦∈ℝ𝐷 and every 𝑘,𝓁 ≥ 0 we have

𝔼𝑋∼ (0,Id𝐷)
[
ℎ𝑘(𝑣⊤𝑋)ℎ𝓁(𝑢⊤𝑋)

]
= 𝛿𝑘𝓁⟨𝑢, 𝑣⟩𝑘,

where 𝛿𝑘𝓁 = 1 if 𝑘 = 𝓁 and 0 otherwise.

C.1.2. Well-posedness in expectation

The central object of study in this section is the matrix

𝐸 ∶= 𝔼𝑋1 ,…,𝑋𝑁train
∼ (0,Id𝐷)[𝐴]. (73)

We prove its well-posedness in Lemma C.4. The proof relies on the observation that 𝐸 is actually equal to a sum of positive semidefinite 
Grammian matrices as shown in Lemma C.3.

Lemma C.3. Assume that (M1) holds, and let 𝐸 be dfined as in (73). Then, we have

𝐸 = 1
2

∞ ∑
𝑟=0 

𝑇𝑟𝑇
⊤
𝑟 , where 𝑇𝑟 ∶=

⎡⎢⎢⎣
𝜇𝑟(𝑔

(1)
𝜏1
) vec(𝑤̂⊗𝑟

1 )
⋮

𝜇𝑟(𝑔
(1)
𝜏𝑚
) vec(𝑤̂⊗𝑟

𝑚 )

⎤⎥⎥⎦ ∈ℝ𝑚×𝐷𝑟
.

In particular, we have 𝐸 ≽ 1
2
∑

𝑟∈ 𝑇𝑟𝑇
⊤
𝑟 for any subset ⊆ℕ≥1, where 𝐴≽𝐵 means 𝐴−𝐵 is positive semidefinite.

Proof. The matrix 𝐴 can be written as

𝐴𝑘𝓁 = 1 
2𝑁train

𝑁train∑
𝑖=1 

𝑔(1)(𝑤̂⊤
𝑘
𝑋𝑖 + 𝜏𝑘)𝑔(1)(𝑤̂⊤

𝓁𝑋𝑖 + 𝜏𝓁)

and the corresponding expectation reads

𝐸𝑘𝓁 = 1
2
𝔼𝑋∼ (0,Id𝐷)

[
𝑔(1)𝜏𝑘

(𝑤̂⊤
𝑘
𝑋)𝑔(1)𝜏𝓁

(𝑤̂⊤
𝓁𝑋)

]
.

Now, note that 𝑔(1)𝜏 = 𝑔(1)(⋅+ 𝜏) ∈𝐿2(ℝ,𝑤𝐻 ) for any 𝜏 ∈ℝ by (M1) and Lemma C.1. Hence, 𝑔(1)𝜏 has a Hermitian expansion and we 
can write

𝐸𝑘𝓁 = 1
2
𝔼𝑋∼ (0,Id𝐷)

[( ∞ ∑
𝑟=0 

𝜇𝑟(𝑔(1)𝜏𝑘
)ℎ𝑟(𝑤̂⊤

𝑘
𝑋)

)( ∞ ∑
𝑟=0 

𝜇𝑟(𝑔(1)𝜏𝓁
)ℎ𝑟(𝑤̂⊤

𝓁𝑋)

)]
.

Using now Lemma C.2 to express expectations of scalar products of Hermite polynomials, we obtain

𝐸𝑘𝓁 = 1
2

∞ ∑
𝑟=0 

𝜇𝑟(𝑔(1)𝜏𝑘
)𝜇𝑟(𝑔(1)𝜏𝓁

)⟨𝑤̂𝑘, 𝑤̂𝓁⟩𝑟,
which can equivalently be written as 12

∑∞
𝑟=0 𝑇𝑟𝑇

⊤
𝑟 . The second part of the statement follows from the fact that each individual matrix 

𝑇𝑟𝑇
⊤
𝑟 is a positive semidefinite Grammian matrix. □

Lemma C.4. Let 𝐸 be dfined as in (73) and assume that the approximated weights satisfy ‖𝑤̂𝑘‖2 = 1 and (A2) for some universal constant 
𝑐2. Furthermore, assume the activation function adheres to (M2). Then, we have

𝜆𝑚(𝐸) ≥ 𝜔−𝐶(𝑚− 1)
(
log𝑚
𝐷

)2
, (74)

where 𝜔 and 𝐶 are constants depending only on 𝑔 and 𝜏∞. Specifically, we have

𝜔 = 1
2

min 
𝜏∈[−𝜏∞,𝜏∞]

∑
𝑟≥4 

(
𝜇𝑟(𝑔(1)(⋅+ 𝜏))

)2
,

𝐶 = 1
2
𝑐22 max 

𝜏,𝜏∈[−𝜏∞ ,𝜏∞]

∑
𝑟≥4 

|||𝜇𝑟(𝑔(1)𝜏 )𝜇𝑟(𝑔
(1)
𝜏
)||| .
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Proof of Lemma C.4. To simplify the notation, we introduce the shorthand 𝜇𝑟,𝑘 ∶= 𝜇𝑟(𝑔
(1)
𝜏𝑘
). By Lemma C.3 we have 𝐸 ≽

1
2
∑

𝑟≥4 𝑇𝑟𝑇
⊤
𝑟 , so we concentrate on the expression on the right hand side. As ‖‖𝑤̂𝑘

‖‖2 = 1 for all 𝑘 ∈ [𝑚], we first note that we 
can rewrite 12

∑
𝑟≥4 𝑇𝑟𝑇

⊤
𝑟 as 12

∑
𝑟≥4 𝑇𝑟𝑇

⊤
𝑟 =𝐷4 +𝑂4, where the matrix 𝐷4 is given by

𝐷4 ∶=
1
2
Diag

(∑
𝑟≥4 

𝜇2
𝑟,1,… ,

∑
𝑟≥4 

𝜇2
𝑟,𝑚

)
and the remainder 𝑂4 equals 12

∑
𝑟∈4 𝑇𝑟𝑇

⊤
𝑟 with its diagonal set to 0. To show (74), we compute a lower eigenvalue bound for 𝐷4

and an upper eigenvalue bound for 𝑂4 independently, and then complete the argument with Weyl’s eigenvalue perturbation bound 
[55]. The smallest eigenvalue of 𝐷4 can be read from the diagonal and is given by

𝜆min(𝐷4) =
1
2
min 
𝑘∈[𝑚]

∑
𝑟≥4 

𝜇2
𝑟,𝑘

≥ 𝜔 > 0.

For the spectral norm of 𝑂4 we use 𝐿1∕𝐿∞-Cauchy-Schwarz inequalities and ‖‖𝑤̂𝑘
‖‖2 = 1 for all 𝑘 ∈ [𝑚]. Specifically, for any unit 

norm vector 𝑢 we have

𝑢⊤𝑂4𝑢 =
1
2

𝑚 ∑
𝑘=1

∑
𝓁≠𝑘

𝑢𝑘𝑢𝓁
∑
𝑟≥4 

𝜇𝑟,𝑘𝜇𝑟,𝓁⟨𝑤̂𝑘, 𝑤̂𝓁⟩𝑟
≤ 1

2

𝑚 ∑
𝑘=1

∑
𝓁≠𝑘

||𝑢𝑘|| ||𝑢𝓁||∑
𝑟≥4 

||𝜇𝑟,𝑘𝜇𝑟,𝓁
|| ||⟨𝑤̂𝑘, 𝑤̂𝓁⟩||𝑟 .

By dragging out the maximum of the sums over Hermitian coefficients, we further bound

𝑢⊤𝑂4𝑢 ≤
(1
2

max 
𝜏,𝜏∈[−𝜏∞ ,𝜏∞]

∑
𝑟≥4 

|||𝜇𝑟(𝑔(1)𝜏 )𝜇𝑟(𝑔
(1)
𝜏
)||| ) 𝑚 ∑

𝑘=1

∑
𝓁≠𝑘

||𝑢𝑘|| ||𝑢𝓁|| ||⟨𝑤̂𝑘, 𝑤̂𝓁⟩||4 .
The trailing factor is, for all unit norm 𝑢, bounded by the spectral norm of the matrix

(𝑂4)𝑖𝑗 ∶=

{
0, if 𝑖 = 𝑗,|||⟨𝑤̂𝑖, 𝑤̂𝑗⟩|||4 , else .

(75)

Therefore we have 𝑢⊤𝑂4𝑢 ≤ 𝐶𝑔,𝜏∞
‖𝑂4‖ for all unit norm 𝑢, and with the constant 𝐶𝑔,𝜏∞

given as

𝐶𝑔,𝜏∞
= 1

2
max 

𝜏,𝜏∈[−𝜏∞ ,𝜏∞]

∑
𝑟≥4 

|||𝜇𝑟(𝑔(1)𝜏 )𝜇𝑟(𝑔
(1)
𝜏
)||| ,

and only dependent on 𝑔 and the shift bound 𝜏∞. By Gershgorin’s circle theorem we further have

‖𝑂4‖ ≤ max 
𝑘∈[𝑚]

𝑚 ∑
𝓁≠𝑘

|(𝑂4)𝑘𝓁| ≤ (𝑚− 1)
(

𝑐2 log𝑚
𝐷

)2
,

where we used the fact that 𝑤̂1,… , 𝑤̂𝑚 satisfy (A2). □

C.2. Controlling the perturbation from the idealized GD iteration

This section is concerned with the divergence between the two gradient descent iterations in (69) and (72). We start with a number 
of auxiliary results that control certain series involving the Hermite coefficients of the activation and its derivatives. These technical 
statements are needed to control the perturbation in the GD iteration that is caused by the weight approximation. The bounds enable 
Lemma C.9 which provides an upper bound for the difference between the gradients ∇𝐽 (𝜏),∇𝐽∗(𝜏), dfined in (68), (70), respectively, 
w.r.t. the accuracy of the estimated weights and shift initializations.

C.2.1. Controlling perturbation from weights

The first part of this section is concerned with estimating a series that contains elements

𝑆𝑟,𝓁 ∶=
𝑚 ∑

𝑘=1
𝜇𝑟(𝑔𝜏𝑘 )𝜇𝑟(𝑔

(1)
𝜏𝓁
)
(⟨𝑤̂𝑘, 𝑤̂𝓁⟩𝑟 − ⟨𝑤𝑘, 𝑤̂𝓁⟩𝑟) , (76)

where 𝜇𝑟(𝑔𝜏𝑘 ), 𝜇𝑟(𝑔
(1)
𝜏𝓁
) correspond to the 𝑘-th and 𝓁-th Hermite coefficient of the function 𝑔𝜏𝑘 (⋅) = 𝑔(⋅ + 𝜏𝑘), 𝑔′𝜏𝓁 (⋅) = 𝑔(1)(⋅ + 𝜏𝓁), 

respectively. These coefficients are assumed to be uniformly bounded for all 𝑟 ≥ 0 which is a consequence of (M2) and Lemma C.1. 
The following results pave the way for perturbation bound w.r.t. estimated weights and we use the following shorthands to keep the 
expressions more compact:
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Δ𝑊 ,𝐹 = ‖𝑊 −𝑊 ‖𝐹 , (77)

Δ𝑊 ,𝑂 =
𝑚 ∑

𝑘≠𝑘′

||⟨𝑤̂𝑘 −𝑤𝑘, 𝑤̂𝑘′ −𝑤𝑘′⟩|| . (78)

Lemma C.5. Consider weights and approximated weights (𝑤𝑘)𝑘∈[𝑚], (𝑤̂𝑘)𝑘∈[𝑚] of unit norm as before that both fufill (A2) and (i) in 
Lemma A.5, as well shifts (𝜏𝑘)𝑘∈[𝑚], (𝜏𝑘)𝑘∈[𝑚] within [−𝜏∞, 𝜏∞] for some 𝜏∞ <∞. Let 𝑆𝑟,𝓁 be dfined as in (76) and assume that 𝑔 fufills 
the Assumption (M1)-(M2). Then, there exists a constant 𝐶 > 0 such that, for 𝑚≥𝐷,

𝑚 ∑
𝓁=1

𝑆2
𝑟,𝓁 ≤ 𝐶𝑟2 max 

𝑘,𝓁∈[𝑚]
𝜇𝑟(𝑔

(1)
𝜏𝓁
)2𝜇𝑟(𝑔𝜏𝑘 )

2

(
1 +𝑚

(
log𝑚
𝐷

)𝑟∕2
)

⋅

[
Δ2

𝑊 ,𝐹
+
(
log𝑚
𝐷

)(𝑟−1)∕2
Δ𝑊 ,𝑂

]
.

Furthermore, for any fixed 𝑅≥ 2 we have

𝑅 ∑
𝑟=2 

2𝑟
𝑚 ∑

𝓁=1
𝑆2

𝑟,𝓁 ≤ 𝐶𝑚 log𝑚
𝐷

(
Δ2

𝑊 ,𝐹
+
(
log𝑚
𝐷

)1∕2
Δ𝑊 ,𝑂

)
,

where the constant 𝐶 > 0 additionally depends on 𝑅.

Proof of Lemma C.5. Throughout this proof we use the convention that, for any vector, we have 𝑣⊗0 = 1, 1⊗ 1 = 1 and 𝑣 ⊗ 1 =
1⊗𝑣 = 𝑣, which will be relevant for the case 𝑟 = 1. We start with a chain of equalities that uses elementary properties of the Frobenius 
inner product:

𝑚 ∑
𝓁=1

𝑆2
𝑟,𝓁 =

𝑚 ∑
𝓁=1

[
𝑚 ∑

𝑘=1
𝜇𝑟(𝑔𝜏𝑘 )𝜇𝑟(𝑔

(1)
𝜏𝓁
)
(⟨𝑤̂𝑘, 𝑤̂𝓁⟩𝑟 − ⟨𝑤𝑘, 𝑤̂𝓁⟩𝑟)]2

=
𝑚 ∑

𝓁=1

[
𝑚 ∑

𝑘=1
𝜇𝑟(𝑔𝜏𝑘 )𝜇𝑟(𝑔

(1)
𝜏𝓁
)⟨𝑤̂𝑘 −𝑤𝑘, 𝑤̂𝓁⟩( 𝑟 ∑

𝑖=1 
⟨𝑤̂𝑘, 𝑤̂𝓁⟩𝑟−𝑖⟨𝑤𝑘, 𝑤̂𝓁⟩𝑖−1)]2

=
𝑚 ∑

𝓁=1

[
𝑚 ∑

𝑘=1
𝜇𝑟(𝑔𝜏𝑘 )𝜇𝑟(𝑔

(1)
𝜏𝓁
)⟨𝑤̂𝑘 −𝑤𝑘, 𝑤̂𝓁⟩⟨ 𝑟 ∑

𝑖=1 
𝑤̂

⊗(𝑟−𝑖)
𝑘

⊗𝑤
⊗(𝑖−1)
𝑘

, 𝑤̂⊗𝑟−1
𝓁

⟩]2

=
𝑚 ∑

𝓁=1

[
𝑚 ∑

𝑘=1
𝜇𝑟(𝑔𝜏𝑘 )𝜇𝑟(𝑔

(1)
𝜏𝓁
)

⟨
(𝑤̂𝑘 −𝑤𝑘)⊗

𝑟 ∑
𝑖=1 

(
𝑤̂

⊗(𝑟−𝑖)
𝑘

⊗𝑤
⊗(𝑖−1)
𝑘

)
, 𝑤̂⊗𝑟

𝓁

⟩]2

=
𝑚 ∑

𝓁=1

[
𝜇𝑟(𝑔

(1)
𝜏𝓁
)

⟨
𝑚 ∑

𝑘=1
𝜇𝑟(𝑔𝜏𝑘 )(𝑤̂𝑘 −𝑤𝑘)⊗

𝑟 ∑
𝑖=1 

(
𝑤̂

⊗(𝑟−𝑖)
𝑘

⊗𝑤
⊗(𝑖−1)
𝑘

)
, 𝑤̂⊗𝑟

𝓁

⟩]2

=
𝑚 ∑

𝓁=1
𝜇𝑟(𝑔

(1)
𝜏𝓁
)2

⟨
𝑚 ∑

𝑘=1
𝜇𝑟(𝑔𝜏𝑘 )(𝑤̂𝑘 −𝑤𝑘)⊗

𝑟 ∑
𝑖=1 

(
𝑤̂

⊗(𝑟−𝑖)
𝑘

⊗𝑤
⊗(𝑖−1)
𝑘

)
, 𝑤̂⊗𝑟

𝓁

⟩2

.

At this stage, we separate the coefficients depending on 𝓁 such that

𝑚 ∑
𝓁=1

[
𝑚 ∑

𝑘=1
𝜇𝑟(𝑔𝜏𝑘 )𝜇𝑟(𝑔

(1)
𝜏𝓁
)
(⟨𝑤̂𝑘, 𝑤̂𝓁⟩𝑟 − ⟨𝑤𝑘, 𝑤̂𝓁⟩𝑟)]2

≤ max 
𝓁∈[𝑚]

𝜇𝑟(𝑔
(1)
𝜏𝓁
)2

𝑚 ∑
𝓁=1

⟨
𝑚 ∑

𝑘=1
𝜇𝑟(𝑔𝜏𝑘 )(𝑤̂𝑘 −𝑤𝑘)⊗

𝑟 ∑
𝑖=1 

(
𝑤̂

⊗(𝑟−𝑖)
𝑘

⊗𝑤
⊗(𝑖−1)
𝑘

)
, 𝑤̂⊗𝑟

𝓁

⟩2

.

Now, note that the set of tensors (𝑤̂⊗𝑟
𝓁 )𝓁∈[𝑚] forms a frame whose upper frame constant is bounded by the upper spectrum of the 

Grammian (𝐺𝑟)𝑖𝑗 = ⟨𝑤̂𝑖, 𝑤̂𝑗⟩𝑟, see also Lemma E.2. Due to Lemma E.3 which relies on Gershgorin’s circle theorem we know there 
exists an absolute constant 𝐶 > 0 such that for 𝐷 sufficiently large the operator norm of 𝐺𝑟 obeys

‖𝐺𝑟‖ ≤ 𝐶

(
1 +𝑚

(
log𝑚
𝐷

)𝑟∕2
)
.

As a consequence, we get
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max 
𝓁∈[𝑚]

𝜇𝑟(𝑔
(1)
𝜏𝓁
)2

𝑚 ∑
𝓁=1

⟨
𝑚 ∑

𝑘=1
𝜇𝑟(𝑔𝜏𝑘 )(𝑤̂𝑘 −𝑤𝑘)⊗

𝑟 ∑
𝑖=1 

(
𝑤̂

⊗(𝑟−𝑖)
𝑘

⊗𝑤
⊗(𝑖−1)
𝑘

)
, 𝑤̂⊗𝑟

𝓁

⟩2

≤ max 
𝓁∈[𝑚]

𝜇𝑟(𝑔
(1)
𝜏𝓁
)2‖𝐺𝑟‖‖‖‖‖‖

𝑚 ∑
𝑘=1

𝜇𝑟(𝑔𝜏𝑘 )(𝑤̂𝑘 −𝑤𝑘)⊗
𝑟 ∑

𝑖=1 

(
𝑤̂

⊗(𝑟−𝑖)
𝑘

⊗𝑤
⊗(𝑖−1)
𝑘

)‖‖‖‖‖
2

𝐹

≤𝐶 max 
𝓁∈[𝑚]

𝜇𝑟(𝑔
(1)
𝜏𝓁
)2
(
1 +𝑚

(
log𝑚
𝐷

)𝑟∕2
)‖‖‖‖‖

𝑚 ∑
𝑘=1

𝜇𝑟(𝑔𝜏𝑘 )(𝑤̂𝑘 −𝑤𝑘)⊗
𝑟 ∑

𝑖=1 

(
𝑤̂

⊗(𝑟−𝑖)
𝑘

⊗𝑤
⊗(𝑖−1)
𝑘

)‖‖‖‖‖
2

𝐹

. (79)

Denote now Δ𝑘,𝑟 ∶= 𝜇𝑟(𝑔𝜏𝑘 )(𝑤̂𝑘 −𝑤𝑘) and 𝑇𝑘,𝑟 ∶=
∑𝑟

𝑖=1

(
𝑤̂

⊗(𝑟−𝑖)
𝑘

⊗𝑤
⊗(𝑖−1)
𝑘

)
, then

‖‖‖‖‖
𝑚 ∑

𝑘=1
𝜇𝑟(𝑔𝜏𝑘 )(𝑤̂𝑘 −𝑤𝑘)⊗

𝑟 ∑
𝑖=1 

(
𝑤̂

⊗(𝑟−𝑖)
𝑘

⊗𝑤
⊗(𝑖−1)
𝑘

)‖‖‖‖‖
2

𝐹

=
𝑚 ∑

𝑘,𝑘′=1
⟨Δ𝑘,𝑟 ⊗ 𝑇𝑘,𝑟,Δ𝑘′ ,𝑟 ⊗ 𝑇𝑘′ ,𝑟⟩ = 𝑚 ∑

𝑘,𝑘′=1
⟨Δ𝑘,𝑟,Δ𝑘′ ,𝑟⟩⟨𝑇𝑘,𝑟, 𝑇𝑘′ ,𝑟⟩

=
𝑚 ∑

𝑘=1
‖Δ𝑘,𝑟‖22‖𝑇𝑘,𝑟‖2𝐹 +

𝑚 ∑
𝑘≠𝑘′

⟨Δ𝑘,𝑟,Δ𝑘′ ,𝑟⟩⟨𝑇𝑘,𝑟, 𝑇𝑘′ ,𝑟⟩. (80)

Using ‖𝑤𝑘‖2 = ‖𝑤̂𝑘‖2 = 1 we get

‖𝑇𝑘,𝑟‖𝐹 ≤
𝑟 ∑

𝑖=1 
‖𝑤̂⊗(𝑟−𝑖)

𝑘
⊗𝑤

⊗(𝑖−1)
𝑘

‖𝐹 ≤
𝑟 ∑

𝑖=1 
‖𝑤̂𝑘‖𝑟−𝑖

2 ‖𝑤𝑘‖𝑖−1
2 = 𝑟,

such that the left part of (80) can be estimated by

𝑚 ∑
𝑘=1

‖Δ𝑘,𝑟‖22‖𝑇𝑘,𝑟‖2𝐹 ≤ 𝑟2 max 
𝑘∈[𝑚]

𝜇𝑟(𝑔𝜏𝑘 )
2

𝑚 ∑
𝑘=1

‖𝑤̂𝑘 −𝑤𝑘‖22
= 𝑟2 max 

𝑘∈[𝑚]
𝜇𝑟(𝑔𝜏𝑘 )

2‖𝑊 −𝑊 ‖2
𝐹
.

(81)

To bound the right part of (80) first note that, for 𝑘 ≠ 𝑘′,

⟨𝑇𝑘,𝑟, 𝑇𝑘′ ,𝑟⟩ = 𝑟 ∑
𝑖,𝑖′=1

⟨
𝑤̂

⊗(𝑟−𝑖)
𝑘

⊗𝑤
⊗(𝑖−1)
𝑘

, 𝑤̂
⊗(𝑟−𝑖′)
𝑘′

⊗𝑤
⊗(𝑖′−1)
𝑘′

⟩
≤ 𝐶

𝑟 ∑
𝑖,𝑖′=1

(
log𝑚
𝐷

)(𝑟−1)∕2
= 𝐶𝑟2

(
log𝑚
𝐷

)(𝑟−1)∕2
,

for some absolute constant 𝐶 , which follows from the pairwise incoherence (A2) as well as point (𝑖) of Lemma A.5. Therefore, the 
right part of (80) is bounded by

𝑚 ∑
𝑘≠𝑘′

⟨Δ𝑘,𝑟,Δ𝑘′ ,𝑟⟩⟨𝑇𝑘,𝑟, 𝑇𝑘′ ,𝑟⟩ ≤ 𝐶𝑟2
(
log𝑚
𝐷

)(𝑟−1)∕2 𝑚 ∑
𝑘≠𝑘′

||⟨Δ𝑘,𝑟,Δ𝑘′ ,𝑟⟩||
≤ 𝐶𝑟2

(
log𝑚
𝐷

)(𝑟−1)∕2
max 
𝑘∈[𝑚]

𝜇𝑟(𝑔𝜏𝑘 )
2

𝑚 ∑
𝑘≠𝑘′

|||⟨𝑤̂𝑘 −𝑤𝑘, 𝑤̂𝑘′ −𝑤′
𝑘
⟩||| .

(82)

Plugging (81) and (82) into (80) yields‖‖‖‖‖
𝑚 ∑

𝑘=1
𝜇𝑟(𝑔𝜏𝑘 )(𝑤̂𝑘 −𝑤𝑘)⊗

𝑟 ∑
𝑖=1 

(
𝑤̂

⊗(𝑟−𝑖)
𝑘

⊗𝑤
⊗(𝑖−1)
𝑘

)‖‖‖‖‖
2

𝐹

(83)

≤𝐶𝑟2 max 
𝑘∈[𝑚]

𝜇𝑟(𝑔𝜏𝑘 )
2

[‖𝑊 −𝑊 ‖2
𝐹
+
(
log𝑚
𝐷

)(𝑟−1)∕2 𝑚 ∑
𝑘≠𝑘′

|||⟨𝑤̂𝑘 −𝑤𝑘, 𝑤̂𝑘′ −𝑤′
𝑘
⟩|||
]
. (84)

Combining this with (79) yields the desired first statement

𝑚 ∑
𝓁=1

𝑆2
𝑟,𝓁 ≤ 𝐶𝑟2 max 

𝑘,𝓁∈[𝑚]
𝜇𝑟(𝑔

(1)
𝜏𝓁
)2𝜇𝑟(𝑔𝜏𝑘 )

2

(
1 +𝑚

(
log𝑚
𝐷

)𝑟∕2
)

⋅

[
Δ2

𝑊 ,𝐹
+
(
log𝑚
𝐷

)(𝑟−1)∕2
Δ𝑊 ,𝑂

]
.
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For the second statement, note that max𝑘∈[𝑚] 𝜇𝑟(𝑔𝜏𝑘 )
2 is bounded due to (M2) and max𝓁∈[𝑚] 𝜇𝑟(𝑔

(1)
𝜏𝓁
)2 is bounded according to 

Lemma C.1. Hence it follows that

𝑅 ∑
𝑟=2 

2𝑟
𝑚 ∑

𝓁=1
𝑆2

𝑟,𝓁 ≤
𝑅 ∑
𝑟=2 

2𝑟𝐶𝑟2

(
1 +𝑚

(
log𝑚
𝐷

)𝑟∕2
)[

Δ2
𝑊 ,𝐹

+
(
log𝑚
𝐷

)(𝑟−1)∕2
Δ𝑊 ,𝑂

]

≤
(
1 +𝑚

(
log𝑚
𝐷

))(
Δ2

𝑊 ,𝐹
+
(
log𝑚
𝐷

)1∕2
Δ𝑊 ,𝑂

)
𝑅 ∑
𝑟=1 

2𝑟𝐶𝑟2.

The second statement follows from the upper bound above by adjusting the constant 𝐶 due to 
∑𝑅

𝑟=1 2
𝑟𝐶𝑟2 <∞ for fixed 𝑅 and using 

(𝑚 log𝑚)∕𝐷 > 1. □

Lemma C.6. Consider weights and approximated weights (𝑤𝑘)𝑘∈[𝑚], (𝑤̂𝑘)𝑘∈[𝑚] of unit norm as before that both fufill (A2) and (i) in 
Lemma A.5, as well shifts (𝜏𝑘)𝑘∈[𝑚], (𝜏𝑘)𝑘∈[𝑚] within [−𝜏∞, 𝜏∞] for some 𝜏∞ <∞. Let 𝑆𝑟,𝓁 be dfined as in (76) and assume that 𝑔 fufills 
the Assumption (M1)-(M2). Then, there exists a constant 𝐶 > 0 such that for 𝑚≥𝐷

𝑚 ∑
𝓁=1

𝑆2
1,𝓁 ≤ 𝐶𝑚

(
log𝑚
𝐷

)1∕2 ‖‖‖‖‖
𝑚 ∑

𝑘=1
𝑤𝑘 − 𝑤̂𝑘

‖‖‖‖‖
2

2

.

Proof. According to the proof of Lemma C.5, in particular (79), we can bound

𝑚 ∑
𝓁=1

𝑆2
1,𝓁 ≤ 𝐶𝑚

(
log𝑚
𝐷

)1∕2 ‖‖‖‖‖
𝑚 ∑

𝑘=1
𝜇1(𝑔𝜏𝑘 )(𝑤𝑘 − 𝑤̂𝑘)

‖‖‖‖‖
2

2

,

for some constant 𝐶 > 0. Since 𝜇1(𝑔𝜏𝑘 ) is bounded for all 𝑘 ∈ [𝑚], what remains is to show that the Hermite coefficients do not change 
signs. Note that the first Hermite polynomial is given by ℎ1(𝑢) = 𝑢. According to the definition of the Hermite coefficients we have

𝜇1(𝑔𝜏𝑘 ) = ∫
ℝ 

𝑢𝑔(𝑢+ 𝜏𝑘)𝑒−𝑢2∕2𝑑𝑢 =
[
−𝑔(𝑢+ 𝜏𝑘)𝑒−𝑢2∕2

]∞
−∞

+ ∫
ℝ 

𝑔(1)(𝑢+ 𝜏𝑘)𝑒−𝑢2∕2𝑑𝑢

= ∫
ℝ 

𝑔(1)(𝑢+ 𝜏𝑘)𝑒−𝑢2∕2𝑑𝑢.

Now note that 𝑔(1)(𝑢+ 𝜏𝑘) will always have the same sign since 𝑔(2) is monotonic due to (M1). Therefore 𝜇1(𝑔𝜏1 ),… , 𝜇1(𝑔𝜏𝑚 ) must all 
be either positive or negative, from which the proof follows directly. □

Lemma C.7. Assume that 𝑔 fufills the Assumption (M1)-(M2) and that the shifts (𝜏𝑘)𝑘∈[𝑚], (𝜏𝑘)𝑘∈[𝑚] are within [−𝜏∞, 𝜏∞]. Then, for 𝑅 ≥ 4, 
we have∑

𝑟≥𝑅

𝑟| max 
𝑘,𝓁∈[𝑚]

𝜇𝑟(𝑔𝜏𝑘 )𝜇𝑟(𝑔
(1)
𝜏𝓁
)| <∞. (85)

Proof. By applying Lemma E.1 (whose condition is met due to (M1)-(M2)), we immediately get that, for all 𝑟 ≥𝑅,

𝜇𝑟(𝑔𝜏𝑘 )𝜇𝑟(𝑔
(1)
𝜏𝓁
) =

(
3!
(

𝑟 
𝑟− 3

))−1∕2
𝜇𝑟−3(𝑔(3)𝜏𝑘

) ⋅
(
2!
(

𝑟 
𝑟− 2

))−1∕2
𝜇𝑟−2(𝑔

(3)
𝜏𝓁
)

=
(
(𝑟− 2)(𝑟− 1)2𝑟2

)−1∕2
𝜇𝑟−3(𝑔(3)𝜏𝑘

)𝜇𝑟−2(𝑔
(3)
𝜏𝓁
).

Plugging this into (85) yields∑
𝑟≥𝑅

𝑟| max 
𝑘,𝓁∈[𝑚]

𝜇𝑟(𝑔𝜏𝑘 )𝜇𝑟(𝑔
(1)
𝜏𝓁
)| ≤ ∑

𝑟≥𝑅

1 √
𝑟− 2(𝑟− 1)

max 
𝑘,𝓁∈[𝑚]

𝜇𝑟−3(𝑔(3)𝜏𝑘
)𝜇𝑟−2(𝑔

(3)
𝜏𝓁
)

≤ ∑
𝑟≥𝑅−3

max 
𝑘∈[𝑚]

1 
𝑟3∕2

𝜇𝑟(𝑔(3)𝜏𝑘
)2 +

∑
𝑟≥𝑅−2

max 
𝓁∈[𝑚]

1 
𝑟3∕2

𝜇𝑟(𝑔
(3)
𝜏𝓁
)2,

where the second line follows by applying Cauchy-Schwarz. Using Assumption (M1), according to Lemma C.1, then gives 
max𝜏∈[−𝜏∞,𝜏∞] 𝜇𝑟(𝑔

(3)
𝜏 )2 ≤ 𝐶 for all 𝑟 ≥ 0 and some constant 𝐶 > 0. Therefore we can conclude with∑

𝑟≥𝑅

𝑟| max 
𝑘,𝓁∈[𝑚]

𝜇𝑟(𝑔𝜏𝑘 )𝜇𝑟(𝑔
(1)
𝜏𝓁
)| ≤ 2𝐶

∑
𝑟≥1 

1 
𝑟3∕2

≤ 6𝐶 <∞. □
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Lemma C.8. Consider weights and approximated weights (𝑤𝑘)𝑘∈[𝑚], (𝑤̂𝑘)𝑘∈[𝑚] of unit norm as before that both fufill (A2) and (i) in 
Lemma A.5, as well as shifts (𝜏𝑘)𝑘∈[𝑚], (𝜏𝑘)𝑘∈[𝑚] within [−𝜏∞, 𝜏∞] for some 𝜏∞ <∞. Let 𝑆𝑟,𝓁 be dfined as in (76), and assume that 𝑔 fufills 
the Assumption (M1). Then, there exists a constant 𝐶 > 0 such that for 𝑅≥ 9 we have

𝑚 ∑
𝓁=1

(∑
𝑟≥𝑅

𝑆𝑟,𝓁

)2

≤ 𝐶
√

𝑚Δ2
𝑊 ,𝐹

.

Proof. We start by applying the Cauchy product to the squared series

𝑚 ∑
𝓁=1

(∑
𝑟≥𝑅

𝑆𝑟,𝓁

)2

=
𝑚 ∑

𝓁=1

(∑
𝑟≥0 

𝑟 ∑
𝑠=0 

𝑆𝑟+𝑅−𝑠,𝓁𝑆𝑠+𝑅,𝓁

)

=
∑
𝑟≥0 

𝑟 ∑
𝑠=0 

𝑚 ∑
𝓁=1

𝑆𝑟+𝑅−𝑠,𝓁𝑆𝑠+𝑅,𝓁

≤√
𝑚
∑
𝑟≥0 

𝑟 ∑
𝑠=0 

(
𝑚 ∑

𝓁=1
𝑆2

𝑟+𝑅−𝑠,𝓁𝑆
2
𝑠+𝑅,𝓁

)1∕2

.

The inner sum is now controlled by a sequence of inequalities similar to Lemma C.5. Again we denote Δ𝑘,𝑟 ∶= 𝜇𝑟(𝑔𝜏𝑘 )(𝑤̂𝑘 −𝑤𝑘) and 

𝑇𝑘,𝑟 ∶=
∑𝑟

𝑖=1

(
𝑤̂

⊗(𝑟−𝑖)
𝑘

⊗𝑤
⊗(𝑖−1)
𝑘

)
, then by applying the same chain of inequality as in the beginning of the proof of Lemma C.5 we 

receive

𝑚 ∑
𝓁=1

𝑆2
𝑟+𝑅−𝑠,𝓁𝑆

2
𝑠+𝑅,𝓁 =

𝑚 ∑
𝓁=1

𝜇𝑟+𝑅−𝑠(𝑔
(1)
𝜏𝓁
)2𝜇𝑠+𝑅(𝑔

(1)
𝜏𝓁
)2

⋅

⟨
𝑚 ∑

𝑘=1
Δ𝑘,𝑟+𝑅−𝑠 ⊗ 𝑇𝑘,𝑟+𝑅−𝑠, 𝑤̂

⊗𝑟+𝑅−𝑠
𝓁

⟩2⟨ 𝑚 ∑
𝑘=1

Δ𝑘,𝑠+𝑅 ⊗ 𝑇𝑘,𝑠+𝑅, 𝑤̂
⊗𝑠+𝑅
𝓁

⟩2

=
𝑚 ∑

𝓁=1
𝜇𝑟+𝑅−𝑠(𝑔

(1)
𝜏𝓁
)2𝜇𝑠+𝑅(𝑔

(1)
𝜏𝓁
)2

⋅

⟨(
𝑚 ∑

𝑘=1
Δ𝑘,𝑟+𝑅−𝑠 ⊗ 𝑇𝑘,𝑟+𝑅−𝑠

)
⊗

(
𝑚 ∑

𝑘=1
Δ𝑘,𝑠+𝑅 ⊗ 𝑇𝑘,𝑠+𝑅

)
, 𝑤̂⊗𝑟+2𝑅

𝓁

⟩2

.

As before we now invoke the frame like condition described in Lemma E.2 to attain a bound depending on the upper spectrum of the 
Grammian (𝐺𝑟+2𝑅)𝑖𝑗 = ⟨𝑤̂𝑖, 𝑤̂𝑗⟩𝑟+2𝑅. More precisely, by using the shorthand

𝜇′
𝑟,𝑠 ∶= max 

𝓁∈[𝑚]
𝜇𝑟+𝑅−𝑠(𝑔

(1)
𝜏𝓁
)2𝜇𝑠+𝑅(𝑔

(1)
𝜏𝓁
)2, (86)

we then have

𝑚 ∑
𝓁=1

𝑆2
𝑟+𝑅−𝑠,𝓁𝑆

2
𝑠+𝑅,𝓁 ≤ 𝜇′

𝑟,𝑠‖𝐺𝑟+2𝑅‖‖‖‖‖‖‖
(

𝑚 ∑
𝑘=1

Δ𝑘,𝑟+𝑅−𝑠 ⊗ 𝑇𝑘,𝑟+𝑅−𝑠

)
⊗

(
𝑚 ∑

𝑘=1
Δ𝑘,𝑠+𝑅 ⊗ 𝑇𝑘,𝑠+𝑅

)‖‖‖‖‖‖
2

𝐹

(87)

≤ 𝜇′
𝑟,𝑠‖𝐺𝑟+2𝑅‖‖‖‖‖‖

𝑚 ∑
𝑘=1

Δ𝑘,𝑟+𝑅−𝑠 ⊗ 𝑇𝑘,𝑟+𝑅−𝑠

‖‖‖‖‖
2

𝐹

‖‖‖‖‖
𝑚 ∑

𝑘=1
Δ𝑘,𝑠+𝑅 ⊗ 𝑇𝑘,𝑠+𝑅

‖‖‖‖‖
2

𝐹

. (88)

The two Frobenius norms can now be estimated as in Lemma C.5, more precisely (84), where we also use the shorthands Δ𝑊 ,𝐹 ,Δ𝑊 ,𝑂

dfined in (77) - (78) as well as

𝜇𝑟,𝑠 ∶= max 
𝑘∈[𝑚]

𝜇𝑟+𝑅−𝑠(𝑔𝜏𝑘 )
2 max 
𝑘∈[𝑚]

𝜇𝑠+𝑅(𝑔𝜏𝑘 )
2.

This gives for some absolute constant 𝐶 > 0

𝜇′
𝑟,𝑠‖𝐺𝑟+2𝑅‖‖‖‖‖‖

𝑚 ∑
𝑘=1

Δ𝑘,𝑟+𝑅−𝑠 ⊗ 𝑇𝑘,𝑟+𝑅−𝑠

‖‖‖‖‖
2

𝐹

‖‖‖‖‖
𝑚 ∑

𝑘=1
Δ𝑘,𝑠+𝑅 ⊗ 𝑇𝑘,𝑠+𝑅

‖‖‖‖‖
2

𝐹

≤ 𝐶𝜇′
𝑟,𝑠𝜇𝑟,𝑠‖𝐺𝑟+2𝑅‖(𝑟+𝑅− 𝑠)2(𝑠+𝑅)2

⋅

(
Δ2

𝑊 ,𝐹
+
(
log𝑚
𝐷

)(𝑟+𝑅−𝑠−1)∕2
Δ𝑊 ,𝑂

)(
Δ2

𝑊 ,𝐹
+
(
log𝑚
𝐷

)(𝑠+𝑅−1)∕2
Δ𝑊 ,𝑂

)
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≤ 𝐶𝜇′
𝑟,𝑠𝜇𝑟,𝑠‖𝐺𝑟+2𝑅‖(𝑟+𝑅− 𝑠)2(𝑠+𝑅)2

(
Δ2

𝑊 ,𝐹
+
(
log𝑚
𝐷

)(𝑅−1)∕2
Δ𝑊 ,𝑂

)2

.

Next we identify the dominant factors and simplify. Due to Lemma E.3 we have for some constant 𝐶 > 0 that

‖𝐺𝑟+2𝑅‖ ≤ 𝐶

(
1 +𝑚

(
log𝑚
𝐷

)(𝑟+2𝑅)∕2
)

≤ 𝐶

(
1 +𝑚

(
log𝑚
𝐷

)9
)

,

where the last stop follows since 𝑅 ≥ 9 and due to 𝑚(log𝑚)2 ≤𝐷2 this can be further simplfied to ‖𝐺𝑟+2𝑅‖ ≤ 𝐶 . Similarly, we have(
log𝑚
𝐷

)(𝑅−1)∕2
Δ𝑊 ,𝑂 =

(
log𝑚
𝐷

)(𝑅−1)∕2 𝑚 ∑
𝑘≠𝑘′

|||⟨𝑤̂𝑘 −𝑤𝑘, 𝑤̂𝑘′ −𝑤′
𝑘
⟩|||

≤
(
log𝑚
𝐷

)4
𝑚2𝛿2max ≤ 𝛿2max ≤Δ2

𝑊 ,𝐹

and therefore we get

‖𝐺𝑟+2𝑅‖(Δ2
𝑊 ,𝐹

+
(
log𝑚
𝐷

)(𝑅−1)∕2
Δ𝑊 ,𝑂

)2

≤ 𝐶Δ4
𝑊 ,𝐹

for some absolute constant 𝐶 > 0. Plugging these into (88) results in
𝑚 ∑

𝓁=1
𝑆2

𝑟+𝑅−𝑠,𝓁𝑆
2
𝑠+𝑅,𝓁 ≤ 𝐶𝜇′

𝑟,𝑠𝜇𝑟,𝑠(𝑟+𝑅− 𝑠)2(𝑠+𝑅)2Δ4
𝑊 ,𝐹

.

Hence, we have

𝑚 ∑
𝓁=1

(∑
𝑟≥𝑅

𝑆𝑟,𝓁

)2

≤√
𝑚
∑
𝑟≥0 

𝑟 ∑
𝑠=0 

(
𝑚 ∑

𝓁=1
𝑆2

𝑟+𝑅−𝑠,𝓁𝑆
2
𝑠+𝑅,𝓁

)1∕2

≤ 𝐶Δ2
𝑊 ,𝐹

√
𝑚
∑
𝑟≥0 

𝑟 ∑
𝑠=0 

√|𝜇′
𝑟,𝑠𝜇𝑟,𝑠|(𝑟+𝑅− 𝑠)(𝑠+𝑅)

≤ 𝐶Δ2
𝑊 ,𝐹

√
𝑚

(∑
𝑟≥𝑅

𝑟|max
𝑘,𝓁

𝜇𝑟(𝑔𝜏𝑘 )𝜇𝑟(𝑔
(1)
𝜏𝓁
)|)2

.

The result then follows by applying Lemma C.7 onto the series in the last line followed by a unfication of the constants. □

Now, we are finally able to formalize the key lemma of this section. Recall that

Δ𝑊 ,𝐹 ∶= ‖𝑊 −𝑊 ‖𝐹

Δ𝑊 ,𝑂 ∶=
𝑚 ∑

𝑘≠𝑘′

||⟨𝑤̂𝑘 −𝑤𝑘, 𝑤̂𝑘′ −𝑤𝑘′⟩|| ,
Δ𝑊 ,𝑆 ∶=

‖‖‖‖‖
𝑚 ∑

𝑘=1
𝑤𝑘 − 𝑤̂𝑘

‖‖‖‖‖2 .
Lemma C.9. Consider a shallow neural network 𝑓 with unit norm weights described by 𝑊 , shifts 𝜏1,… , 𝜏𝑚 ∈ [−𝜏∞, 𝜏∞] stored in 𝜏 and 
an activation function 𝑔 that adheres to (M1) with 𝐷 ≤ 𝑚. Furthermore, consider 𝐽,𝐽∗ given by (68), (70) constructed with 𝑁train ≥ 𝑚

network evaluations 𝑦1,… , 𝑦𝑁train
of 𝑓 where 𝑦𝑖 = 𝑓 (𝑋𝑖) and 𝑋1,… ,𝑋𝑁 ∼ (0, Id𝐷). Denote by 𝑓 an approximation to 𝑓 constructed 

from parameters 𝑊 = [𝑤̂1|… |𝑤̂𝑚], 𝜏 as described above with ‖𝑤̂𝑘‖ = 1 for all 𝑘 ∈ [𝑚]. Then, there exists an absolute constant 𝐶 > 0 and 
𝐷0 such that, for dimension 𝐷 ≥𝐷0, the difference between the gradients of 𝐽 and of the idealized objective 𝐽∗ obeys

‖‖∇𝐽 (𝜏) − ∇𝐽∗(𝜏)‖‖2 ≤ 2𝜅2√𝑚‖𝜏 − 𝜏‖22 +𝐶Δ𝑊 ,1 +

(
𝑚3𝛿2max𝑡

𝑁train

)1∕2

(89)

for 𝑡 > 0 with probability at least 1 − 2𝑚2 exp
(
− 𝑡 

𝐶𝜅4

)
and where

Δ𝑊 ,1 ≤ 𝑚1∕2 log(𝑚)3∕4

𝐷1∕4

⎡⎢⎢⎣‖𝑊 −𝑊 ‖𝐹 +
Δ1∕2

𝑊 ,𝑂

𝐷1∕2 +
‖‖‖‖‖

𝑚 ∑
𝑘=1

𝑤𝑘 − 𝑤̂𝑘

‖‖‖‖‖2
⎤⎥⎥⎦ .
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Proof of Lemma C.9. Recall that

𝐽 (𝜏) = 1 
2𝑁train

𝑁train∑
𝑖=1 

(
𝑓 (𝑋𝑖, 𝜏) − 𝑓 (𝑋𝑖, 𝜏)

)2
.

By chain rule we compute the gradient of 𝐽 w.r.t. 𝜏 as

∇𝐽 (𝜏) = 1 
𝑁train

𝑁train∑
𝑖=1 

(
𝑓 (𝑋𝑖, 𝜏) − 𝑓 (𝑋𝑖, 𝜏)

)
∇𝑓 (𝑋𝑖, 𝜏).

Adding 0 = (𝑓 (𝑋𝑖, 𝜏) − 𝑓 (𝑋𝑖, 𝜏))∇𝑓 (𝑋𝑖, 𝜏) to 𝐽 (𝜏) and applying the triangle inequality to ∇𝐽 − ∇𝐽∗ allows us to separate the error 
caused by the weight approximation‖‖‖∇𝐽 (𝜏) − ∇𝐽∗(𝜏)

‖‖‖2
≤‖‖‖ 1 

𝑁train

(𝑁train∑
𝑖=1 

(𝑓 (𝑋𝑖, 𝜏) − 𝑓 (𝑋𝑖, 𝜏))∇𝑓 (𝑋𝑖, 𝜏) − ∇𝑓 (𝑋𝑖, 𝜏)∇𝑓 (𝑋𝑖, 𝜏)⊤(𝜏 − 𝜏)
)‖‖‖2 (90)

+ ‖‖‖ 1 
𝑁train

𝑁train∑
𝑖=1 

(
𝑓 (𝑋𝑖, 𝜏) − 𝑓 (𝑋𝑖, 𝜏)

)
∇𝑓 (𝑋𝑖, 𝜏)

‖‖‖2. (91)

To bound the first term in (90) denote ℎ(𝜆) = (1 − 𝜆)𝜏 + 𝜆𝜏 , then we have

𝑓 (𝑋𝑖, 𝜏) − 𝑓 (𝑋𝑖, 𝜏) =
𝑚 ∑

𝑘=1
𝑔(𝑤̂⊤

𝑘
𝑋𝑖 + 𝜏𝑘) − 𝑔(𝑤̂⊤

𝑘
𝑋𝑖 + 𝜏𝑘)

=
𝑚 ∑

𝑘=1
𝑔(𝑤̂⊤

𝑘
𝑋𝑖 + ℎ(1)𝑘) − 𝑔(𝑤̂⊤

𝑘
𝑋𝑖 + ℎ(0)𝑘)

=
𝑚 ∑

𝑘=1

ℎ(1)𝑘

∫
ℎ(0)𝑘

𝑔(1)(𝑤̂⊤
𝑘
𝑋𝑖 + 𝑢)𝑑𝑢

=
𝑚 ∑

𝑘=1

1 

∫
0 

𝑔(1)(𝑤̂⊤
𝑘
𝑋𝑖 + ℎ(𝜆)𝑘)ℎ′(𝜆)𝑘𝑑𝜆

=
𝑚 ∑

𝑘=1

1 

∫
0 

𝑔(1)(𝑤̂⊤
𝑘
𝑋𝑖 + ℎ(𝜆)𝑘)𝑑𝜆(𝜏𝑘 − 𝜏𝑘).

Therefore, we can bound (90) as follows:

‖‖‖ 1 
𝑁train

(𝑁train∑
𝑖=1 

(𝑓 (𝑋𝑖, 𝜏) − 𝑓 (𝑋𝑖, 𝜏))∇𝑓 (𝑋𝑖, 𝜏) − ∇𝑓 (𝑋𝑖, 𝜏)∇𝑓 (𝑋𝑖, 𝜏)⊤(𝜏 − 𝜏)
)‖‖‖2

≤‖‖‖ 1 
𝑁train

(𝑁train∑
𝑖=1 

∇𝑓 (𝑋𝑖, 𝜏)
( 1 

∫
0 

∇𝑓 (𝑋𝑖,ℎ(𝜆))𝑑𝜆
)⊤

−∇𝑓 (𝑋𝑖, 𝜏)∇𝑓 (𝑋𝑖, 𝜏)⊤
)‖‖‖‖(𝜏 − 𝜏)‖2 .

Let us fix 𝜏, 𝜏 for now and write the last line in terms of matrices 𝐹 ,𝐹 ,𝐹 ∗ ∈ℝ𝑁train×𝑚, where the 𝑖-th row of these matrices is given 
by ∇𝑓 (𝑋𝑖, 𝜏),∇𝑓 (𝑋𝑖, 𝜏) and ∫ 1

0 ∇𝑓 (𝑋𝑖,ℎ(𝜆))𝑑𝜆, respectively. We obtain

‖‖‖ 1 
𝑁train

(𝑁train∑
𝑖=1 

∇𝑓 (𝑋𝑖, 𝜏)
( 1 

∫
0 

∇𝑓 (𝑋𝑖,ℎ(𝜆))𝑑𝜆
)⊤

−∇𝑓 (𝑋𝑖, 𝜏)∇𝑓 (𝑋𝑖, 𝜏)⊤
)‖‖‖‖(𝜏 − 𝜏)‖2

≤ 1 
𝑁train

‖𝐹⊤𝐹 ∗ − 𝐹⊤𝐹‖ ‖𝜏 − 𝜏‖2
≤ 1 
𝑁train

(‖𝐹 − 𝐹‖‖𝐹 ∗‖+ ‖𝐹‖‖𝐹 − 𝐹 ∗‖)‖𝜏 − 𝜏‖2 . (92)

A simultaneous upper bound for ‖𝐹 − 𝐹‖ and ‖𝐹 − 𝐹 ∗‖ can be established with elementary matrix arithmetic and the Lipschitz 
continuity of 𝑔(1):
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‖𝐹 − 𝐹‖ ≤ ‖𝐹 − 𝐹‖𝐹 =
[𝑁train∑

𝑖=1 

𝑚 ∑
𝑘=1

(𝑔(1)(⟨𝑤̂𝑘,𝑋𝑖⟩+ 𝜏𝑘) − 𝑔(1)(⟨𝑤̂𝑘,𝑋𝑖⟩+ 𝜏𝑘))2
] 1
2

≤ ‖‖‖𝑔(2)‖‖‖∞ [𝑁train∑
𝑖=1 

𝑚 ∑
𝑘=1

(
𝜏𝑘 − 𝜏𝑘

)2] 1
2 = 𝜅

√
𝑁train ‖𝜏 − 𝜏‖2 ,

the same bound follows for ‖𝐹 − 𝐹 ∗‖. A crude bound for ‖𝐹‖ is given by

‖𝐹‖ ≤√
𝑁train𝑚max

𝑖𝑘 
||𝐹𝑖𝑘

|| ≤√
𝑁train𝑚

‖‖‖𝑔(1)‖‖‖∞ ≤ 𝜅
√

𝑁train𝑚,

the same bound follows for ‖𝐹 ∗‖. Hence, we can continue from (92) with

1 
𝑁train

(‖𝐹 − 𝐹‖‖𝐹 ∗‖+ ‖𝐹‖‖𝐹 − 𝐹 ∗‖)‖𝜏 − 𝜏‖2 ≤ 2𝜅2√𝑚‖𝜏 − 𝜏‖22.
The error (91) caused by the difference between 𝑊 and the original weights 𝑊 has the form

‖‖‖ 1 
𝑁train

𝑁train∑
𝑖=1 

(
𝑓 (𝑋𝑖, 𝜏) − 𝑓 (𝑋𝑖, 𝜏)

)
∇𝑓 (𝑋𝑖, 𝜏)

‖‖‖2
=‖‖‖ 1 

𝑁train

𝑁train∑
𝑖=1 

( 𝑚 ∑
𝑘=1

𝑔(𝑋⊤
𝑖 𝑤̂𝑘 + 𝜏𝑘) − 𝑔(𝑋⊤

𝑖 𝑤𝑘 + 𝜏𝑘)
)
∇𝑓 (𝑋𝑖, 𝜏)

‖‖‖2.
Let us dfine

Δ2
𝑊

∶= ‖‖‖ 1 
𝑁train

𝑁train∑
𝑖=1 

( 𝑚 ∑
𝑘=1

𝑔(𝑋⊤
𝑖 𝑤̂𝑘 + 𝜏𝑘) − 𝑔(𝑋⊤

𝑖 𝑤𝑘 + 𝜏𝑘)
)
∇𝑓 (𝑋𝑖, 𝜏)

‖‖‖22
=

𝑚 ∑
𝓁=1

[
1 

𝑁train

𝑁train∑
𝑖=1 

( 𝑚 ∑
𝑘=1

𝑔(𝑋⊤
𝑖 𝑤̂𝑘 + 𝜏𝑘) − 𝑔(𝑋⊤

𝑖 𝑤𝑘 + 𝜏𝑘)
)
𝑔(1)(⟨𝑋𝑖, 𝑤̂𝓁⟩+ 𝜏𝓁)

]2

To keep the expressions more compact, we dfine 𝑍𝑖𝑘𝓁 ∶= 𝜑𝑘,𝓁(𝑋𝑖) and

𝜑𝑘,𝓁(𝑥) ∶=
(
𝑔(𝑥⊤𝑤̂𝑘 + 𝜏𝑘) − 𝑔(𝑥⊤𝑤𝑘 + 𝜏𝑘)

)
𝑔(1)(𝑥⊤𝑤̂𝓁 + 𝜏𝓁).

Let us also dfine

Δ2
𝑊 ,1 ∶=

𝑚 ∑
𝓁=1

[
1 

𝑁train

𝑁train∑
𝑖=1 

𝑚 ∑
𝑘=1

𝔼[𝑍𝑖𝑘𝓁]

]2

,

Δ2
𝑊 ,2 ∶=

𝑚 ∑
𝓁=1

[
1 

𝑁train

𝑁train∑
𝑖=1 

𝑚 ∑
𝑘=1

(𝑍𝑖𝑘𝓁 − 𝔼[𝑍𝑖𝑘𝓁])

]2

.

Then,

Δ2
𝑊

=
𝑚 ∑

𝓁=1

[
1 

𝑁train

𝑁train∑
𝑖=1 

𝑚 ∑
𝑘=1

𝑍𝑖𝑘𝓁

]2

≤ 2Δ2
𝑊 ,1 + 2Δ2

𝑊 ,2. (93)

In what follows we will control Δ2
𝑊 ,1,Δ

2
𝑊 ,2 by using Hermite expansions and a concentration argument, respectively.

We begin with Δ2
𝑊 ,2: The first step is to establish that 𝑍𝑖𝑘𝓁 − 𝔼[𝑍𝑖𝑘𝓁] is subgaussian and to compute its subgaussian norm. We 

remark that all expectations for the remainder of this proof are w.r.t. the inputs 𝑋1,… ,𝑋𝑁train
∼ (0, Id𝐷). First note that by the 

mean value theorem there exists values 𝜉𝑖,𝑘 such that

𝑍𝑖𝑘𝓁 = ⟨𝑤̂𝑘 −𝑤𝑘,𝑋𝑖⟩𝑔(1)(𝑥⊤𝑤̂𝓁 + 𝜏𝓁)𝑔(1)(𝜉𝑖,𝑘),

where 𝑔(1) is a bounded function according to (M1). We can combine this with the well known property of the sub-Gaussian norm 
which states that ‖𝑍𝑖𝑘𝓁 − 𝔼[𝑍𝑖𝑘𝓁]‖𝜓2

≤ 𝐶‖𝑍𝑖𝑘𝓁‖𝜓2
for some absolute constant 𝐶 > 0. This leads to

‖𝑍𝑖𝑘𝓁 − 𝔼[𝑍𝑖𝑘𝓁]‖𝜓2
≤ 𝐶‖𝑍𝑖𝑘𝓁‖𝜓2

≤ 𝐶𝜅2‖⟨𝑤̂𝑘 −𝑤𝑘,𝑋𝑖⟩‖𝜓2
≤ 𝐶𝜅2𝛿max

for all 𝑖 ∈ [𝑁train], 𝑘,𝓁 ∈ [𝑚] and some absolute constant 𝐶 > 0. As a consequence we can apply the general Hoeffding inequality (cf. 
Theorem 2.6.2 in [52]) which yields the estimate

Δ2
𝑊 ,2 =

1 
𝑁2

train

𝑚 ∑
𝓁=1

(
𝑚 ∑

𝑘=1

𝑁train∑
𝑖=1 

𝑍𝑖𝑘𝓁 − 𝔼[𝑍𝑖𝑘𝓁]

)2
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≤ 1 
𝑁2

train

𝑚 ∑
𝓁=1

(
𝑚 ∑

𝑘=1

||||||
𝑁train∑
𝑖=1 

𝑍𝑖𝑘𝓁 − 𝔼[𝑍𝑖𝑘𝓁]
||||||
)2

≤ 1 
𝑁2

train

𝑚 ∑
𝓁=1

𝑚2𝑡2 = 𝑚3𝑡2

𝑁2
train

,

which holds using a union bound with probability at least

1 −
⎛⎜⎜⎝

𝑚 ∑
𝑘,𝓁=1

2 exp
⎛⎜⎜⎝− 𝑐𝑡2∑𝑁train

𝑖=1 ‖𝑍𝑖𝑘𝓁 − 𝔼[𝑍𝑖𝑘𝓁]‖2𝜓2

⎞⎟⎟⎠
⎞⎟⎟⎠ ≥ 1 − 2𝑚2 exp

(
− 𝑡2

𝐶𝑁train𝛿
2
max𝜅

4

)
,

for all 𝑡 ≥ 0, where 𝑐,𝐶 > 0 are absolute constants. This implies that there exists an absolute constant 𝐶 > 0 such that for all 𝑡 ≥ 0

ℙ

(
Δ2

𝑊 ,2 ≤
𝑚3𝛿2max𝑡

𝑁train

)
≥ 1 − 2𝑚2 exp

(
− 𝑡 
𝐶𝜅4

)
. (94)

What remains is to control the means contained in Δ2
𝑊 ,1. Using the shorthand 𝑔𝜏 (⋅) = 𝑔(⋅+ 𝜏) and the Hermite expansion we get

𝔼[𝑍𝑖𝑘𝓁] = 𝔼
[
(𝑔𝜏𝑘 (𝑤̂

⊤
𝑘
𝑋𝑖) − 𝑔𝜏𝑘 (𝑤

⊤
𝑘
𝑋𝑖))𝑔

(1)
𝜏𝓁
(𝑤̂⊤

𝓁𝑋𝑖)
]

= 𝔼

[(∑
𝑟≥0 

𝜇𝑟(𝑔𝜏𝑘 )(ℎ𝑟(𝑤̂⊤
𝑘
𝑋𝑖) − ℎ𝑟(𝑤⊤

𝑘
𝑋𝑖))

)∑
𝑡≥0 

𝜇𝑡(𝑔
(1)
𝜏𝓁
)ℎ𝑡(𝑤̂⊤

𝓁𝑋𝑖)

]
=
∑
𝑟≥0 

𝜇𝑟(𝑔𝜏𝑘 )𝜇𝑟(𝑔
(1)
𝜏𝓁
)
(⟨𝑤̂𝑘, 𝑤̂𝓁⟩𝑟 − ⟨𝑤𝑘, 𝑤̂𝓁⟩𝑟) ,

where the last two steps rely on the same properties of the Hermite expansion already used in the previous section. The summand 
corresponding to 𝑟 = 0 in the last line above vanishes, thus we have

Δ2
𝑊 ,1 =

𝑚 ∑
𝓁=1

[
𝑚 ∑

𝑘=1

∑
𝑟≥1 

𝜇𝑟(𝑔𝜏𝑘 )𝜇𝑟(𝑔
(1)
𝜏𝓁
)
(⟨𝑤̂𝑘, 𝑤̂𝓁⟩𝑟 − ⟨𝑤𝑘, 𝑤̂𝓁⟩𝑟)]2

.

Denote now

𝑆𝑟,𝓁 ∶=
𝑚 ∑

𝑘=1
𝜇𝑟(𝑔𝜏𝑘 )𝜇𝑟(𝑔

(1)
𝜏𝓁
)
(⟨𝑤̂𝑘, 𝑤̂𝓁⟩𝑟 − ⟨𝑤𝑘, 𝑤̂𝓁⟩𝑟) ,

then, for any 𝑅 ≥ 2, we have

Δ2
𝑊 ,1 =

𝑚 ∑
𝓁=1

(∑
𝑟≥1 

𝑆𝑟,𝓁

)2

≤ 2
𝑚 ∑

𝓁=1
𝑆2
1,𝓁 +

𝑅−1∑
𝑟=2 

2𝑟
𝑚 ∑

𝓁=1
𝑆2

𝑟,𝓁 + 2𝑅
𝑚 ∑

𝓁=1

(∑
𝑟≥𝑅

𝑆𝑟,𝓁

)2

. (95)

Choose now 𝑅 = 9 and plug in the result from Lemma C.5, Lemma C.6 and Lemma C.8 which yields for an appropriate constant 𝐶 > 0
the bound

Δ2
𝑊 ,1 ≤ 𝐶𝑚

(
log𝑚
𝐷

)1∕2 ‖‖‖‖‖
𝑚 ∑

𝑘=1
𝑤𝑘 − 𝑤̂𝑘

‖‖‖‖‖
2

2

+
𝐶𝑚 log𝑚

𝐷

(
Δ2

𝑊 ,𝐹
+
(
log𝑚
𝐷

)1∕2
Δ𝑊 ,𝑂

)
(96)

+𝐶
√

𝑚Δ2
𝑊 ,𝐹

. (97)

Reordering the terms and taking the square root we receive

Δ𝑊 ,1 ≤ 𝐶

(
𝑚1∕4 +𝑚1∕2

(
log𝑚
𝐷

)1∕2
)
Δ𝑊 ,𝐹 +𝐶𝑚1∕2

(
log𝑚
𝐷

)3∕4
Δ1∕2

𝑊 ,𝑂

+𝐶𝑚1∕2
(
log𝑚
𝐷

)1∕4 ‖‖‖‖‖
𝑚 ∑

𝑘=1
𝑤𝑘 − 𝑤̂𝑘

‖‖‖‖‖2
≤ 𝐶 log(𝑚)3∕4

[(
𝑚1∕4 + 𝑚1∕2

𝐷1∕2

)
Δ𝑊 ,𝐹 + 𝑚1∕2

𝐷3∕4 Δ
1∕2
𝑊 ,𝑂

+ 𝑚1∕2

𝐷1∕4

‖‖‖‖‖
𝑚 ∑

𝑘=1
𝑤𝑘 − 𝑤̂𝑘

‖‖‖‖‖2
]
.

Lastly, we can use

𝑚1∕4 + 𝑚1∕2

𝐷1∕2 ≤𝑚1∕4 + 𝑚1∕2

𝐷1∕4 ≤ 2𝑚1∕2

𝐷1∕4

since 𝑚 ≥𝐷 followed by Δ𝑊 ≤ 𝐶(Δ𝑊 ,1 + Δ𝑊 ,2) to conclude the proof. Note that we can simply separate the constant that appears 
in the definition of Δ𝑊 ,1 to appear outside of Δ𝑊 ,1, such that we arrive at the formulation appearing in the original statement. □
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The previous result shows that the gradients associated with our two objective functions 𝐽,𝐽∗ fufill

‖‖∇𝐽 (𝜏) − ∇𝐽∗(𝜏)‖‖2 ≤ 𝜅2√𝑚‖𝜏 − 𝜏‖22 + Δ𝑊 ,

according to Lemma C.9, where Δ𝑊 depends on the accuracy of the weight approximation. Next, we leverage this to establish 
sufficient conditions on the accuracy Δ𝑊 and our initial shift estimate under which both gradient descent iterations will remain close 
to each other over any number of GD steps. The upcoming proof requires that one of the two gradient descent iterations does converge, 
which in combination with Lemma C.9 allows to control the other iteration locally. It was already established in Lemma C.4 that 𝐴
is positive definite in expectation. This suggests that 𝐽∗(𝜏) = (𝜏 − 𝜏)⊤𝐴(𝜏 − 𝜏) is strictly convex, provided enough samples 𝑁train are 
used to concentrate 𝐴 around its expectation 𝐸. In particular, strict convexity directly implies that 𝜏(𝑛)∗ converges to the true biases 
𝜏 . We will show this as part of the proof of Theorem 4.3, but for the sake of simplicity we will assume positive definiteness of 𝐴 in 
the next statement.

Lemma C.10. Denote by 𝜏(𝑛), 𝜏(𝑛)∗ the gradient descent iterations given by (69) and (72), respectively. Assume that the objective functions 
𝐽,𝐽∗ dfined above fufill

‖∇𝐽 (𝜏) − ∇𝐽∗(𝜏)‖2 ≤𝐿‖𝜏 − 𝜏‖22 + Δ𝑊 , (98)

for some 𝐿,Δ𝑊 ≥ 0 and any 𝜏 ∈ℝ𝑚. Furthermore, assume that the matrix 𝐴 in (71) fufills 𝜆min ∶= 𝜆min(𝐴) > 0. If Δ𝑊 ≤ 𝜆2min
16𝐿 and both 

gradient descent iterations are started with the same step size 𝛾 ≤ ‖𝐴‖−1 and from the same initialization 𝜏(0) = 𝜏
(0)
∗ , adhering to the bound

‖𝜏(0) − 𝜏‖2 ≤ 𝜆min

4
√
2𝐿

, (99)

then the distance between both iterations at gradient step 𝑛∈ℕ satifies

‖𝜏(𝑛) − 𝜏(𝑛)∗ ‖2 ≤ 𝜉𝑛‖𝜏(0) − 𝜏‖2 + 2Δ𝑊

𝜆min
(1 − 𝜉𝑛) ,

for 𝜉 = 1 − 𝛾𝜆min
2 ∈ [0,1).

Proof of Lemma C.10. Plugging in the gradient descent iteration with a simple expansion yields‖‖‖𝜏(𝑛+1) − 𝜏(𝑛+1)∗
‖‖‖2

=‖‖‖𝜏(𝑛) − 𝜏(𝑛)∗ − 𝛾
(
∇𝐽 (𝜏(𝑛)) − ∇𝐽∗(𝜏(𝑛)∗ )

)‖‖‖2
=‖‖‖𝜏(𝑛) − 𝜏(𝑛)∗ − 𝛾

(
∇𝐽 (𝜏(𝑛)) − ∇𝐽∗(𝜏(𝑛))

)
− 𝛾

(
∇𝐽∗(𝜏(𝑛)) − ∇𝐽∗(𝜏(𝑛)∗ )

)‖‖‖2
=
‖‖‖‖( Id𝑚−𝛾𝐴

)
(𝜏(𝑛) − 𝜏(𝑛)∗ ) − 𝛾

(
∇𝐽 (𝜏(𝑛)) − ∇𝐽∗(𝜏(𝑛))

)‖‖‖‖2
≤‖‖‖‖( Id𝑚−𝛾𝐴

)
(𝜏(𝑛) − 𝜏(𝑛)∗ )

‖‖‖‖2 + 𝛾
‖‖‖∇𝐽 (𝜏(𝑛)) − ∇𝐽∗(𝜏(𝑛))

‖‖‖2 ,
where we used the definition of the iterations in the first line followed by a simple expansion and the triangle inequality in the last 
line. The left term of the last line can be bounded with the spectral norm of Id𝑚−𝛾𝐴 and the right term according to our initial 
assumption (98):

‖𝜏(𝑛+1) − 𝜏(𝑛+1)∗ ‖2 ≤ ‖ Id𝑚−𝛾𝐴‖ ‖𝜏(𝑛) − 𝜏(𝑛)∗ ‖2 + 𝛾𝐿‖𝜏(𝑛) − 𝜏‖22 + 𝛾Δ𝑊

≤ (1 − 𝛾𝜆min)‖𝜏(𝑛) − 𝜏(𝑛)∗ ‖2 + 𝛾𝐿‖𝜏(𝑛) − 𝜏‖22 + 𝛾Δ𝑊 ,

where the second inequality follows from the bound on the minimal eigenvalue of 𝐴. Expanding the right term of the last line with 
𝜏
(𝑛)
∗ yields

‖𝜏(𝑛+1) − 𝜏(𝑛+1)∗ ‖2
≤(1 − 𝛾𝜆min)‖𝜏(𝑛) − 𝜏(𝑛)∗ ‖2 + 𝛾𝐿‖𝜏(𝑛) − 𝜏(𝑛)∗ + 𝜏(𝑛)∗ − 𝜏‖22 + 𝛾Δ𝑊

≤(1 − 𝛾𝜆min)‖𝜏(𝑛) − 𝜏(𝑛)∗ ‖2 + 2𝛾𝐿‖𝜏(𝑛) − 𝜏(𝑛)∗ ‖22 + 2𝛾𝐿‖𝜏(𝑛)∗ − 𝜏‖22 + 𝛾Δ𝑊 . (100)

We can now use the fact that the gradient descent iteration (72) in combination with the convexity of the idealized objective 𝐽∗
(𝜆min(𝐴) > 0) allows for the recursive bound

‖𝜏(𝑛)∗ − 𝜏‖2 = ‖𝜏(𝑛−1)∗ − 𝛾∇𝐽∗(𝜏(𝑛−1)∗ ) − 𝜏‖2 = ‖𝜏(𝑛−1)∗ − 𝛾𝐴(𝜏(𝑛−1)∗ − 𝜏) − 𝜏‖2
= ‖(Id𝑚−𝛾𝐴)(𝜏(𝑛−1)∗ − 𝜏)‖2 ≤ ‖ Id𝑚−𝛾𝐴‖‖𝜏(𝑛−1)∗ − 𝜏‖2
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≤ ‖ Id𝑚−𝛾𝐴‖𝑛‖𝜏(0)∗ − 𝜏‖2 ≤ (1 − 𝛾𝜆min)𝑛𝛿0,

where we have denoted by 𝛿0 = ‖𝜏(0) − 𝜏‖ the initial error. Plugging this into (100) results in

‖𝜏(𝑛+1)−𝜏(𝑛+1)∗ ‖2
≤(1 − 𝛾𝜆min)‖𝜏(𝑛) − 𝜏(𝑛)∗ ‖2 + 2𝛾𝐿‖𝜏(𝑛) − 𝜏(𝑛)∗ ‖22 + 2𝛾𝐿(1 − 𝛾𝜆min)2𝑛𝛿20 + 𝛾Δ𝑊 . (101)

Dfine Δ𝑛 ∶= max𝑘≤𝑛 ‖𝜏(𝑘) − 𝜏
(𝑘)
∗ ‖2. We first show by induction that Δ𝑛 ≤ 𝜆min∕4𝐿 provided that 𝛿0 and Δ𝑊 are sufficiently small. For 

step 𝑛 = 0, we have ‖𝜏(0) − 𝜏
(0)
∗ ‖2 = 0, so the statement is clearly true. Assume now it holds for 𝑛 and we have to show the induction 

step. In other words we have to show ‖𝜏(𝑛+1) − 𝜏
(𝑛+1)
∗ ‖2 ≤ 𝜆min∕4𝐿, so the same bound would hold for Δ𝑛+1. We continue from (101), 

and get

‖𝜏(𝑛+1) − 𝜏(𝑛+1)∗ ‖2 ≤ (1 − 𝛾𝜆min + 2𝛾𝐿Δ𝑛)‖𝜏(𝑛) − 𝜏(𝑛)∗ ‖2 + 2𝛾𝐿(1 − 𝛾𝜆min)2𝑛𝛿20 + 𝛾Δ𝑊 .

Using the induction hypothesis Δ𝑛 ≤ 𝜆min∕4𝐿, this simplfies to

‖𝜏(𝑛+1) − 𝜏(𝑛+1)∗ ‖2 ≤ (
1 − 𝛾𝜆min∕2

)‖(𝜏(𝑛) − 𝜏(𝑛)∗ )‖2 + 2𝛾𝐿(1 − 𝛾𝜆min)2𝑛𝛿20 + 𝛾Δ𝑊 .

To keep the computation more compact, we will denote

𝜉 ∶= 1 −
𝛾𝜆min

2 
.

Now we can repeat the same computations for ‖𝜏(𝑘) − 𝜏
(𝑘)
∗ ‖2, 𝑘 ≤ 𝑛 as well. This leads to

‖𝜏(𝑛+1) − 𝜏(𝑛+1)∗ ‖2 ≤ 2𝛾𝐿𝛿20

𝑛 ∑
𝑘=0

𝜉𝑘(1 − 𝛾𝜆min)2(𝑛−𝑘) + 𝛾Δ𝑊

𝑛 ∑
𝑘=0

𝜉𝑘,

where we used ‖‖‖𝜏(0) − 𝜏
(0)
∗

‖‖‖2 = 0. Both sums are uniformly bounded in 𝑛, as can be seen by

‖𝜏(𝑛+1) − 𝜏(𝑛+1)∗ ‖2 ≤ 2𝛾𝐿𝛿20
𝜉𝑛+1 − (1 − 𝛾𝜆min)2(𝑛+1)

𝜉 − (1 − 𝛾𝜆min)2
+ 𝛾Δ𝑊

1 − 𝜉𝑛+1

1 − 𝜉
(102)

≤ 2𝛾𝐿𝛿20
𝜉𝑛+1 − (1 − 𝛾𝜆min)2(𝑛+1)

3
2 𝛾𝜆min − 𝛾2𝜆2min

+
2Δ𝑊

𝜆min

≤ 2𝐿𝛿20
𝜉𝑛+1

3
2𝜆min − 𝛾𝜆2min

+
2Δ𝑊

𝜆min
≤ 4𝐿𝛿20

𝜉𝑛+1

𝜆min
+

2Δ𝑊

𝜆min
.

Now we have 4𝐿𝛿20𝜉
𝑛+1𝜆−1min ≤ 4𝐿𝛿20𝜆

−1
min. Furthermore, 4𝐿𝛿20𝜆

−1
min ≤ 𝜆min

8𝐿 as long as

𝛿20 ≤
𝜆2min
32𝐿2 ,

which holds according to our initial assumption (99). Similarly, as Δ𝑊 ≤ 𝜆2min
16𝐿 by assumption, we get 2Δ𝑊

𝜆min
≤ 𝜆min

8𝐿 This means we now 
have

Δ𝑛+1 ≤ 𝜆min
8𝐿 

+
𝜆min
8𝐿 

≤ 𝜆min
4𝐿 

,

which concludes the proof of the induction establishing that the two iterations remain close to each other so that max𝑘≤𝑛 ‖𝜏(𝑘) −
𝜏
(𝑘)
∗ ‖2 ≤ 𝜆min∕4𝐿 for all 𝑛 ∈ ℕ. To arrive at the final statement we can continue from (102)

‖𝜏(𝑛) − 𝜏(𝑛)∗ ‖2 ≤ 2𝛾𝐿𝛿20
𝜉𝑛 − (1 − 𝛾𝜆min)2𝑛

𝜉 − (1 − 𝛾𝜆min)2
+ 𝛾Δ𝑊

1 − 𝜉𝑛

1 − 𝜉

≤ 4𝐿𝛿20
𝜆min

𝜉𝑛 +
2Δ𝑊

𝜆min
(1 − 𝜉𝑛) . □

C.3. Concluding the proof of Theorem 4.3

Theorem 4.3 tells us how accurate the weight approximation and shift initialization has to be such that the initial shifts can be 

further improved w.h.p. by minimizing the empirical loss 𝐽 (𝜏) = 1 
2𝑁train

∑𝑁train

𝑖=1

(
𝑓 (𝑋𝑖, 𝜏) − 𝑓 (𝑋𝑖, 𝜏)

)2
on a set of generic inputs via 

gradient descent. The proof of Theorem 4.3 follows directly by combining Lemma C.4, Lemma C.9 and Lemma C.10. Based on the 
first result we prove that the idealized gradient descent iteration 𝜏(𝑛)∗ will w.h.p. and linear rate converge to the ground-truth shifts 𝜏
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by establishing the strict convexity of 𝐽∗ . The second set of auxiliary statements (i.e., Lemma C.9-C.10) then shows that the gradient 
descent iteration derived from the empirical risk 𝐽 (𝜏) will stay close to 𝜏(𝑛)∗ if weight approximations 𝑊 and initial shifts 𝜏(0) are 
sufficiently accurate.

Proof of Theorem 4.3. Denote 𝐸 = 𝔼𝑋1 ,…,𝑋𝑁train
∼ (0,Id𝐷)[𝐴] with 𝐴 as in (71), and constructed from inputs 𝑋1,… ,𝑋𝑁train

∼
 (0, Id𝐷). According to Lemma C.4, there exist constants 𝜔,𝐶1 > 0, which only depend on 𝑔 and 𝜏∞, with

𝜆𝑚(𝐸) ≥ 𝜔−𝐶1
(𝑚− 1) log2𝑚

𝐷2 ≥ 𝜔

2 
,

provided (2𝐶1∕𝜔)𝑚 log2𝑚 ≤𝐷2, as assumed in Theorem 4.3. Note now that 𝐴 is a sum of positive semi-definite rank-1 matrices. Thus 
we can apply the Matrix Chernoff bound in Lemma E.4 to get the concentration bound

ℙ
(
𝜆𝑚(𝐴) ≥ 𝜆𝑚(𝐸)

4 

)
≥ 1 −𝑚 ⋅ 0.7

𝑁train𝜆𝑚(𝐸)
𝑅 , (103)

where 𝑅 = sup𝑥∈ℝ𝐷 ‖∇𝑓 (𝜏, 𝑥)‖22 ≤𝑚
‖‖‖𝑔(1)‖‖‖2∞ ≤𝑚𝜅2. From 0.7< exp(−1∕3) now follows that

ℙ
(
𝜆𝑚(𝐴) ≥ 𝜔

8 

) ≥ 1 −𝑚 ⋅ exp
(
−
𝑁train𝜔

6𝑚𝜅2

)
. (104)

For the remainder of the proof we will condition on the event that the bound in (104) holds. 
By the result of Lemma C.9, the difference between the gradients ∇𝐽,∇𝐽∗ satifies

‖‖∇𝐽 (𝜏) − ∇𝐽∗(𝜏)‖‖2 ≤ 2𝜅2√𝑚‖𝜏 − 𝜏‖22 + Δ𝑊 (105)

Δ𝑊 = 𝐶Δ𝑊 ,1 +

(
𝑚3𝛿2max𝑡

𝑁train

)1∕2

, (106)

for a constant 𝐶 > 0 and 𝑡 > 0 with probability at least 1 − 2𝑚2 exp
(
− 𝑡 

𝐶𝜅4

)
where

Δ𝑊 ,1 ≤ 𝑚1∕2 log(𝑚)3∕4

𝐷1∕4

⎡⎢⎢⎣‖𝑊 −𝑊 ‖𝐹 +
Δ1∕2

𝑊 ,𝑂

𝐷1∕2 +
‖‖‖‖‖

𝑚 ∑
𝑘=1

𝑤𝑘 − 𝑤̂𝑘

‖‖‖‖‖2
⎤⎥⎥⎦ .

Assuming the event associated with (105) occurs, we can invoke Lemma C.10 with 𝐿 = 2𝜅2√𝑚 meeting its condition by choosing an 
appropriate constant 𝐶 in (24). Then, for a step-size 𝛾 ≤ 1∕‖𝐴‖, 𝜆min = 𝜆𝑚(𝐴) and 𝜉 = 1 − 𝛾𝜆min∕2, Lemma C.10 yields

‖𝜏(𝑛) − 𝜏(𝑛)∗ ‖2 ≤ 𝜉𝑛‖𝜏(0) − 𝜏‖2 +𝐶 (1 − 𝜉𝑛)Δ𝑊 . (107)

The bound in (107) controls the deviation of the gradient descent iteration (23) from the idealized gradient descent iteration (72). 
What remains to be shown is that the idealized iteration converges to the correct parameter 𝜏 which follows directly by the lower 
bound on the minimal eigenvalue 𝜆min. In fact, we have 𝐽∗(𝜏) = (𝜏 − 𝜏)⊤𝐴(𝜏 − 𝜏) and

‖𝜏(𝑛)∗ − 𝜏‖2 = ‖𝜏(𝑛−1)∗ − 𝛾∇𝐽∗(𝜏(𝑛−1)∗ ) − 𝜏‖2 = ‖(Id𝐷 −𝛾𝐴)(𝜏(𝑛−1)∗ − 𝜏)‖2
≤ ‖ Id𝐷 −𝛾𝐴‖𝑛‖𝜏(0)∗ − 𝜏‖2 ≤ (1 − 𝛾𝜆min)𝑛‖𝜏(0) − 𝜏‖2.

Applying the triangle inequality to (107) therefore yields

‖𝜏(𝑛) − 𝜏‖2 ≤ ‖𝜏(𝑛)∗ − 𝜏‖2 + ‖𝜏(𝑛) − 𝜏(𝑛)∗ ‖2
≤ ((

1 − 𝛾𝜆min
)𝑛 + 𝜉𝑛

)‖𝜏(0) − 𝜏‖2 +𝐶 (1 − 𝜉𝑛)Δ𝑊

≤ 2𝜉𝑛‖𝜏(0) − 𝜏‖2 +𝐶 (1 − 𝜉𝑛)Δ𝑊 .

The main statement follows by a union bound over the events described above and by unifying the involved constants. □

Appendix D. Proof of Theorem 2.1

Proof of Theorem 2.1. According to our assumptions, there exist 𝐶,𝐷0 such that the conditions of Theorem 3.3 are fufilled, and 
therefore we conclude that the ground truth weights obey (A1)-(A3) of Definition 3.2 and that the weight recovery (Algorithm 2) 
returns vectors  such that for all 𝑤̂ ∈ we have

max 
𝑘∈[𝑚]

min 
𝑠∈{−1,+1}

‖‖𝑤̂− 𝑠𝑤𝑘
‖‖2 ≤ 𝐶1(𝑚∕𝛼)1∕4𝜖1∕2, (108)
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with probability at least

1 − 1 
𝑚

−𝐷2 exp
(
−min{𝛼,1}𝑡∕𝐶1

)
−𝐶1 exp(−

√
𝑚∕𝐶1).

Denote the weight approximations obtained in the last step by {𝑤̂1 ,… , 𝑤̂𝑚} ⊂ 𝕊𝐷−1. There exists a permutation 𝜋 of these vectors 
such that 𝑤𝑘 ≈ ±𝑤̂𝜋(𝑘) for all 𝑘 ∈ [𝑚]. To invoke Proposition 4.2, we now need to make sure that

max 
𝑘∈[𝑚]

min 
𝑠∈{−1,+1}

‖‖‖𝑤̂𝜋(𝑘) − 𝑠𝑤𝑘
‖‖‖2 ≤ 1 

𝐶2

𝐷1∕2

𝑚
√
log𝑚

. (109)

By applying the uniform error bound (108) above, we have

𝐶1(𝑚∕𝛼)1∕4𝜖1∕2 ≤ 1 
𝐶2

𝐷1∕2

𝑚
√
log𝑚

⇔ 𝜖 ≤
√

𝛼

𝐶2
1𝐶2

𝐷

𝑚5∕2 log𝑚
,

which is guaranteed by our upper bound (9) on 𝜖 for an appropriate constant. This in turn shows that (109) is met. Hence, by 
Proposition 4.2, Algorithm 3 returns initial shifts 𝜏 such that there exists a 𝛼′ ≤ 𝛼 such that

‖𝜏 − 𝜏‖2 ≤ 𝐶2
√

𝑚𝜖 +𝐶2𝑚
3∕2

(
log𝑚
𝐷

)3∕4
max 
𝑘∈[𝑚]

min 
𝑠∈{−1,+1}

‖‖‖𝑤̂𝜋(𝑘) − 𝑠𝑤𝑘
‖‖‖2

≤ 𝐶2
√

𝑚𝜖 +𝐶2𝑚
3∕2

(
log𝑚
𝐷

)3∕4
𝐶1(𝑚∕𝛼)1∕4𝜖1∕2 ≤ 1 

𝐶𝑚1∕2 ,

where the last line follows from (9) chosen with an appropriate constant 𝐶 > 0. First, note that this implies that the signs learned by 
the parameter initialization will be correct. We denote this set of signs as 𝑠̄1 ,… , 𝑠̄𝑚. Additionally, the last inequality implies that, for 
the given step-size, the condition of Theorem 4.3 (see (24)) w.r.t. the error in the initial shift is met. Another criterion that has to be 
met for Theorem 4.3 is that

𝐶𝑚1∕2 log(𝑚)3∕4

𝐷1∕4

⎛⎜⎜⎝‖𝑊 −𝑊 ‖𝐹 +
Δ1∕2

𝑊 ,𝑂

𝐷1∕2 +
‖‖‖‖‖

𝑚 ∑
𝑘=1

𝑤𝑘 − 𝑤̂𝑘

‖‖‖‖‖2
⎞⎟⎟⎠ ≤ 1 

𝐶
√

𝑚
, (110)

(
𝑚3𝛿2max𝑡

𝑁train

)1∕2

≤ 1 
𝐶
√

𝑚
, (111)

where Δ𝑊 ,𝑂 =
∑𝑚

𝑘≠𝑘′
||⟨𝑤𝑘 − 𝑤̂𝑘,𝑤𝑘′ − 𝑤̂𝑘′⟩||. We begin with the upper term and rely on worst case bounds which express the different 

quantities in terms of the uniform error

𝛿max = max 
𝑘∈[𝑚]

min 
𝑠∈{−1,+1}

‖‖‖𝑤̂𝜋(𝑘) − 𝑠𝑤𝑘
‖‖‖2 ,

such that

‖𝑊 −𝑊 ‖𝐹 ≤𝑚1∕2𝛿max, (112)

Δ1∕2
𝑊 ,𝑂

𝐷1∕2 ≤ 𝑚𝛿max

𝐷1∕2 , (113)

‖‖‖‖‖
𝑚 ∑

𝑘=1
𝑤𝑘 − 𝑤̂𝑘

‖‖‖‖‖2 ≤𝑚𝛿max. (114)

Based on these bounds and after adjusting the constants we can simplify (110) to

𝛿max ≤ 𝐷1∕4

𝐶𝑚2 log(𝑚)3∕4
⇔ 𝜖 ≤ 𝐷1∕2𝛼1∕2

𝐶𝑚9∕2 log(𝑚)3∕2
,

which is covered by our initial assumptions on the accuracy. Note that this implies for (111) by plugging in the bound for 𝛿max that(
𝑚3𝛿2max𝑡

𝑁train

)1∕2

≤
(

𝑡𝐷1∕2

𝑁train𝑚 log(𝑚)3∕2

)1∕2
.

Using 𝑁train ≥𝑚 and 𝑡 =𝐷1∕2 this implies(
𝑚3𝛿2max𝑡

𝑁train

)1∕2

≤ 1 
𝑁

1∕2
train

log(𝑚)3∕4
≤ 1 

𝐶𝑚1∕2 ,
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for 𝐷,𝑚 sufficiently large. Therefore all conditions of Theorem 4.3 are satified. Hence, there exists a constant 𝐶4 such that the 
gradient descent iteration (69) started from initial shifts 𝜏[0] = 𝜏 will produce iterates 𝜏[0],… , 𝜏[𝑁GD] such that

‖‖‖𝜏 − 𝜏[𝑛]𝜋
‖‖‖2 ≤ 𝐶4𝑚

1∕2 log(𝑚)3∕4

𝐷1∕4

⎛⎜⎜⎝‖𝑊 −𝑊 ‖𝐹 +
Δ1∕2

𝑊 ,𝑂

𝐷1∕2 +
‖‖‖‖‖

𝑚 ∑
𝑘=1

𝑤𝑘 − 𝑤̂𝑘

‖‖‖‖‖2
⎞⎟⎟⎠ (115)

+

(
𝑚3𝛿2max𝑡

𝑁train

)1∕2

+𝐶4
1 √
𝑚
𝜉𝑛, (116)

for all 𝑛 ∈ [𝑁GD], some permutation 𝜋 and some constant 𝜉 ∈ [0,1) with probability at least

1 −𝑚 exp(−𝑁train∕𝐶4𝑚) − 2𝑚2 exp
(
−𝐷1∕2∕𝐶4

)
.

After unifying the constants and using the bound on 𝛿max, the statement of Theorem 2.1 follows. □

Appendix E. Auxiliary results

Lemma E.1. Let 𝑔 ∈𝐿2(ℝ,𝑤𝐻 ) be 𝐾 -times continuously differentiable and assume

lim 
𝑡→∞

𝑔(𝑘)(𝑡)ℎ𝑟(𝑡)𝑤𝐻 (𝑡) = lim 
𝑡→−∞

𝑔(𝑘)(𝑡)ℎ𝑟(𝑡)𝑤𝐻 (𝑡) = 0 (117)

for all 0 ≤ 𝑘 ≤𝐾 . For any 𝑟∈ℕ ∪ {0} and 𝑘 ∈ [0,… ,𝐾] we have

𝜇𝑟(𝑔(𝑛)) =

√(
𝑛+ 𝑟

𝑟 

)
𝑛!𝜇𝑟+𝑛(𝑔).

Proof. The Hermite polynomials, weighted by exp(−𝑡2∕2), satisfy the relation

𝑑

𝑑𝑡

(
ℎ𝑟(𝑡) exp

(
− 𝑡2

2 

))
= 𝑑

𝑑𝑡

(√
1 
𝑟!
(−1)𝑟 𝑑𝑟

𝑑𝑡𝑟
exp

(
− 𝑡2

2 

))
=
√

1 
𝑟!
(−1)𝑟 𝑑𝑟+1

𝑑𝑡𝑟+1
exp

(
− 𝑡2

2 

)
= −

√
𝑟+ 1

√
1 

(𝑟+ 1)!
(−1)𝑟+1 𝑑𝑟+1

𝑑𝑡𝑟+1
exp

(
− 𝑡2

2 

)
= −

√
𝑟+ 1ℎ𝑟+1(𝑡) exp

(
− 𝑡2

2 

)
.

Therefore, by applying integration by parts, we obtain

𝜇𝑟(𝑔(𝑛)) = ∫ 𝑔(𝑛)(𝑡)ℎ𝑟(𝑡)𝑤𝐻 (𝑡)𝑑𝑡 =
[
𝑔(𝑛−1)(𝑡)ℎ𝑟(𝑡)𝑤𝐻 (𝑡)

]∞
−∞ − ∫ 𝑔(𝑛−1)(𝑡) 𝑑

𝑑𝑡

(
ℎ𝑟(𝑡)𝑤𝐻 (𝑡)

)
𝑑𝑡

= 0 +
√

𝑟+ 1∫ 𝑔(𝑛−1)(𝑡)ℎ𝑟+1(𝑡)𝑤𝐻 (𝑡)𝑑𝑡 =
√

𝑟+ 1𝜇𝑟+1(𝑔(𝑛−1)),

where the boundary terms vanish due to (117). Applying the same computation 𝑛-times, we obtain

𝜇𝑟(𝑔(𝑛)) =

√√√√ 𝑛 ∏
𝓁=1 

(𝑟+ 𝓁)𝜇𝑟+𝑛(𝑓 ) =
√

(𝑟+ 𝑛)!
𝑟! 

𝜇𝑟+𝑛(𝑔). □

Lemma E.2. Let 𝑤𝑘 ∈ℝ𝐷 for 𝑘 = 1,… ,𝑚, and denote by 𝐺𝑛 ∈ℝ𝑚×𝑚 the Grammian matrix associated with (𝑤⊗𝑛
𝑘

)𝑘∈[𝑚], which is given by 
(𝐺𝑛)𝑖𝑗 = ⟨𝑤𝑖,𝑤𝑗⟩𝑛. Then, for any n-mode tensor 𝑇 ∈ℝ𝐷×⋯×𝐷 , we have

𝑚 ∑
𝑘=1

⟨𝑇 ,𝑤⊗𝑛
𝑘

⟩2 ≤ ‖𝐺𝑛‖‖𝑇 ‖2
𝐹
. (118)

Proof. First note that we can express the Frobenius inner product as an ordinary inner product over ℝ𝐷𝑛
with the help of the vec(⋅)

operator, since ⟨𝑇 ,𝑤⊗𝑛
𝑘

⟩ = ⟨vec(𝑇 ),vec(𝑤⊗𝑛
𝑘

)⟩. Let us denote

𝑊𝑛 ∶=
(
vec(𝑤⊗𝑛

1 )|||… |||vec(𝑤⊗𝑛
𝑚 )

)
∈ℝ𝐷𝑛×𝑚.

Then, the following chain of inequalities holds

𝑚 ∑
𝑘=1

⟨𝑇 ,𝑤⊗𝑛
𝑘

⟩2 = 𝑚 ∑
𝑘=1

⟨vec(𝑇 ),vec(𝑤⊗𝑛
𝑘

)⟩2



Applied and Computational Harmonic Analysis 77 (2025) 101749

35

M. Fornasier, T. Klock, M. Mondelli et al. 

=
𝑚 ∑

𝑘=1
vec(𝑇 )⊤ vec(𝑤⊗𝑛

𝑘
) vec(𝑤⊗𝑛

𝑘
)⊤ vec(𝑇 )

= vec(𝑇 )⊤𝑊𝑛𝑊
⊤
𝑛 vec(𝑇 )

≤ ‖𝑊 ⊤
𝑛 𝑊𝑛‖ ⋅ ‖vec(𝑇 )‖22 = ‖𝑊 ⊤

𝑛 𝑊𝑛‖‖𝑇 ‖2
𝐹
.

Since ‖𝑊 ⊤
𝑛 𝑊𝑛‖ = ‖𝐺𝑛‖, this finishes the proof. □

Lemma E.3. Let 𝑤𝑘 ∈ 𝕊𝐷−1 for 𝑘 = 1,… ,𝑚 be unit vectors, and denote by 𝐺𝑛 ∈ℝ𝑚×𝑚 the Grammian matrix associated with (𝑤⊗𝑛
𝑘

)𝑘∈[𝑚], 
which is given by (𝐺𝑛)𝑖𝑗 = ⟨𝑤𝑖,𝑤𝑗⟩𝑛. Assume that the vectors 𝑤1,… ,𝑤𝑚 fufill (A2) of Definition 3.2, then there exists an absolute constant 
𝐶 > 0 only depending on 𝑐2 in (A2) such that

‖𝐺𝑛‖ ≤ 𝐶

(
1 +𝑚

(
log𝑚
𝐷

)𝑛∕2
)

. (119)

Proof. The result follows directly by Gershgorin circle theorem since the diagonal elements must be 1 and the off-diagonal elements 

are bounded in absolute value by 𝑐2
(
log𝑚
𝐷

)𝑛∕2
. □

Lemma E.4. Let 𝑍 ∈ℝ𝑑 be a random vector and assume ‖𝑍‖22 ≤𝑅 almost surely. For 𝑁 independent copies 𝑍1,… ,𝑍𝑁 of 𝑍 , dfine the 
random matrix

𝐺 ∶=
𝑁∑
𝑖=1 

𝑍𝑖𝑍
⊤
𝑖 .

Then, we have

ℙ
(
𝜆𝑚(𝐺) ≥ 𝜆𝑚(𝔼𝐺)

4 

)
≥ 1 −𝑚0.7

𝜆𝑚(𝔼𝐺)
𝑅 .

Proof. The result follows directly from the standard matrix Chernoff bound. □

Data availability

No data was used for the research described in the article.
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