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1. Introduction

Averaging multiplicative functions over integer sequences has a long history in number
theory. Nair [7] studied the average over the values of an irreducible integer polynomial
and this was later greatly generalised by Nair-Tenenbaum [8] and Henriot [4], who
brought into focus certain key uniformity issues. When it comes to polynomials in two
variables it was later extended to binary forms by La Bretéche-Browning [1] and to
principal ideals by Browning—Sofos [2].

Wolke [11] had worked on averages of a multiplicative function f > 0 over the values
of an increasing integer sequence, i.e.

> flea),

aeNN[1,T]

under the assumption that the sequence is ‘equi-distributed’ along arithmetic progres-
sions. With an eye to certain applications to arithmetic statistics and Diophantine
equations we aim to study sums that are more general and under weaker assumptions on
equidistribution. Omitting certain details for now, we shall work with sums of the form

S flea)xla),

acA

where A is any countable set, x : A — [0,00) is any function of finite support, ¢, is an
integer sequence, and f is a non-negative arithmetic function with certain multiplicative
properties. We will give upper bounds in Theorem 1.9 and matching lower bounds in
Theorem 1.13.

1.1. The upper bound

We introduce the necessary notation for the statement of the upper bound.
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Definition 1.1 (Density functions). Fix k, A1, A2, B, K > 0. We define D(x, A1, Ay, B, K)
as the set of multiplicative functions h : N — R>( having the properties

e for all B < w < z we have

[T a-nen < (222 (14 5. (1)

p prime
wLp<z

o for every prime p > B and integers ¢ > 1 we have

B
h(p°® —, 1.2)
)< (
o for every prime p and e > 1 we have
h(p®) < p~Me, (1.3)

In order to state a result that is sufficiently general but easy to use we use the following
set-up from [3, §2.2]. Let A be an infinite set and for each T > 1 let x7 : A — [0, 00) be
any function for which

{a € A: xr(a) >0} is finite for every T > 1. (1.4)

We also assume that

Jm S () = oo 15)
acA

Assume that we are given a sequence of strictly positive integers (cq)qaec4 indexed by A
and denoted by

C:={c,:a€ A}

We will be interested in estimating sums of the form

S xr(@)f(ca), (1.6)

acA

where f is an arithmetic function with the following properties:

Definition 1.2 (A class of functions). Fix A > 1,¢ > 0,C > 0. The set M(A,¢,C) of
functions f : N — [0, 00) is defined by the property that for all coprime m,n one has

f(mn) < f(m)min{ A% Cn<}.
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Example 1.3. If ¢, is a sequence of positive integers then

1<n<T
is of type (1.6) by taking A = N and xr(n) = 1j; 77(n).

Example 1.4. If D C R"™ is bounded and Q(x1,...,z,) an integer polynomial then

S e

xEZ™"NTD
Q(x)#0

is of type (1.6) by taking A= {x € Z" : Q(x) # 0} and x7(x) = 17p(x).

Example 1.5. If @)1, Q- are integer polynomials in n variables then

S Q)

xe(ZN[=T,T))"
Q1(x)=0,Q2(x)#0

is of type (1.6) when x7(x) = L 7)(max|z;]), A = {x € Z" : Q1(x) = 0, Q2(x) # 0}.

We will need the following notion of ‘regular’ distribution of the values of the integer
sequence ¢, in arithmetic progressions. For a non-zero integer d and any 17" > 1, let

Cy(T) = E xr(a).
acA
cq=0(mod d)

Definition 1.6 (Equidistributed sequences). We say that € is equidistributed if there exist

positive real numbers 6, £, k, A1, Ao, B, K with max{0,£} < 1, a function M : R5; — R>;
and a function hp € D(k, A1, A2, B, K) such that

Ca(T) = hT(d)M(T){l + O( I a- hT(P))2> } +OM(T)' %)  (1.7)
B<pp§£l\4(T)

for every T > 1 and every d < M(T)?, where the implied constants are independent of
dand T.

It is worth emphasizing that in this definition the constants 0, &, k, A1, A2, B, K are
all assumed to be independent of T'. For example, the bound hp(p®) = O(1/p) in (1.2)
holds with an implied constant that is independent of e, p as well as T'.

From now on we shall often abuse notation by writing M for M (T).
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Remark 1.7. The function M (T) can be chosen freely in any way that makes

ZXT(G):M(T){1+O< II (1—hT(p))2>}+O(M(T)1_5)

acA B<p<M(T)

hold. It particular, it is necessary that it satisfies

li
R T PR

aE.A
One could simply take M(T) := ., xr(a), however, in certain applications it is
helpful to have the freedom to choose instead a smooth approximation to »_ . , xr(a)
as a function of T.

Example 1.8. In the setting of Example 1.3 define ¢,, = n. Then
T
Cd(T):ﬁ{lgngT:cHn}:E—i—O(l),

thus, one can choose hp(d) = 1/d, M(T) = T and £ = 9/10. It is important to note
that the choice of M (T) and ¢ is not unique: one may, for example, alternatively take
M(T)=T+T% and £ =1/2.

We are now ready to state the main upper bound of this paper.

Theorem 1.9 (The upper bound). Let A be an infinite set and for each T > 1 de-
fine x7 : A — [0,00) to be any function such that both (1.4) and (1.5) hold. Take
a sequence of strictly positive integers € = (cq)aca. Assume that € is equidistributed
with respect to some positive constants 0,&, k, A1, A2, B, K and functions M(T) and
hr € D(k, 1,2, B, K) as in Definition 1.6. Fiz any A > 1 and assume that f is a
function such that for every e > 0 there exists C > 0 for which f € M(A, e, C), which is
introduced in Definition 1.2. Assume that there exists a > 0 and B > 0 such that for all
T > 1 one has

sup{cq : a € A, xr(a) > 0} < BM?, (1.8)

where M = M(T) is as in Definition 1.6. Then for all T > 1 we have

S xr@fe) <M T 0-he) Y f@)h(a).

acA B<p<M a<M

where the implied constant is allowed to depend on o, A, B, E, 0.¢, K, Kk, \;, the function
f and the implied constants in (1.7), but is independent of T and M.
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Remark 1.10 (Wolke’s density function assumption). Note that [11, Assumption (Ag)]
states that there exist positive constants C7,Cs such that for all e > 1 and primes p
one has hr(p®) < C1e“2p~¢. We replace this with (1.3) which is a lighter assumption
for large e. This is of high significance in applications where ¢, is the sequence of values
obtained by a multivariable polynomial, as in this case hr(p®) is the density of zeros
modulo p¢ and one cannot hope for a bound with A\; > 1.

Remark 1.11 (Wolke’s level of distribution assumption). Let us comment that [11, As-
sumption (A4)] implies that

Ci(T) —hr(I)M €« ——=

1(T) = hr(1)M < (log M)
holds for every positive fixed constant D1, i.e. it demands an arbitrary logarithmic saving.
Our assumption in Definition 1.6 is lighter in the sense that it essentially only requires
this for a fixed power of log M. To see this, note that when d = 1, Definition 1.6 states
that

Ci(T) —hr(WM <M ] (1= hr(p)*+ M5
B<p<M

In typical applications this is of size M/(log M), where k is as in (1.1).

Remark 1.12 (Wolke’s growth assumption). Let us note that Wolke assumes that the
function f is multiplicative, which is relaxed in our work by demanding that it is sub-
multiplicative as in Definition 1.2. Furthermore, [11, Assumption (F1)] states that f(p®)
is only allowed to grow polynomially in e for a fixed prime p, whereas, Definition 1.2
relaxes this by assuming that f(p©) is allowed to grow subexponentially in e.

1.2. The lower bound

We shall see that if f is not too close to 0, then matching lower bounds hold. This
is a generalization of the work of Wolke [11, Satz 2], where the main difference lies in
the fact that the density functions in Definition 1.1 are now allowed to grow with larger
freedom. Furthermore, Wolke’s condition that f(p™) > CF* for some strictly positive
real constant Cy is replaced by the more general condition (1.9).

Theorem 1.13 (The lower bound). Keep the notation and assumptions of Theorem 1.9.
Assume, in addition, that f : N — [0,00) is a multiplicative function for which

for each L > 1 one has inf{f(m): Q(m) < L} >0 (1.9)

and that the error term in Definition 1.0 satisfies
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Ca(T) = h(d)M(T) § 1+ 0700 [T G-hree)?|p+o@u(T))
BEpM(T)

whenever d < M(T)?. Then for all T > 1 we have

S xr(@)fea) > M@ [ -hrp) > fl@hr(a

acA p<M(T) a<M(T)

where the implied constants are independent of T'.
We finish the introduction by giving a concrete corollary:

Corollary 1.14. Let Q € Z[x1,. .., z,] be irreducible and let T denote the divisor function.
Then for all T > 2 we have

T"logT < Z 7(|Q(x)]) < T" log T,
xEL" |z |<T
Q(x)#0

where the implied constants depend on Q and n.
To prove this, we take A and xr as in Example 1.4. Letting
h(d) =d ™ "${x € (Z/dZ)" : Q(x) =0}, M(T) = (2T)"

and splitting in progressions modulo d we can easily verify (1.7) for some sufficiently
small positive 8 and &. Then Theorem 1.9 gives

Y e < T a-hm) Y r(a)h(a)

x€Z™ x| KT 1<p<T ag(2T)"
Q(x)#0

< JI @=n)|1+20p) + (t+ D

1<p<(2T)n t>2

Furthermore, h(p') < p~*/ 9¢8(Q) by [6, Lemma 4.10], hence, the sum over all sufficiently
large t is O(p~2). Since Q is irreducible one can prove that h(p') < h(p?) < p~2 for all
t > 2, hence, the product is

< [l a-repa+2m+0e?)< [[ @+hp).

1«p<(2T)™ 1<p<L(2T)

Finally, by Chebotarev’s density theorem for schemes [9, §9] this is < logT. The lower
bound of Corollary 1.14 can be proved similarly by Theorem 1.13.



8 S. Chan et al. / Journal of Number Theory 273 (2025) 1-36

Notation. For a non-zero integer m define
m) = Y vym),
plm

where v, is the standard p-adic valuation. Define P*(m) and P~ (m) respectively to be
the largest and the smallest prime factor of a positive integer m and let P™(1) = 1 and
P~ (1) = +c0. For a real number x we reserve the notation [z] for the largest integer not
exceeding x. Throughout the paper we use the standard convention that empty products
are set equal to 1. Throughout the paper we shall also make use of the convention that
when iterated logarithm functions logt,loglogt, etc., are used, the real variable t is
assumed to be sufficiently large to make the iterated logarithm well-defined.

Acknowledgements. Part of the work in §§2-3 was completed while ES and CP were at
Leiden University in 2016. The work in the remaining sections started during the research
stay of SC, PK and CP during the workshop Problémes de densité en Arithmétique at
CIRM Luminy in 2023. We would like to thank the organisers Samuele Anni, Peter
Stevenhagen and Jan Vonk. PK gratefully acknowledges the support of Dr. Max Réssler,
the Walter Haefner Foundation and the ETH Ziirich Foundation. Part of the work of
SC was supported by the National Science Foundation under Grant No. DMS-1928930,
while the author was in residence at the MSRI in Spring 2023.

The following constants and functions are recurring throughout the paper:

Symbols First appearance
F:N —[0,00) Lemma 2.1
Cp, C1, C2 Lemma 2.1
c,c’ Lemma, 2.3

G:N — [0,00) Lemma 2.4
K, A1, A0, B, K Definition 1.1
h:N —[0,00) Definition 1.1

AT, xr Equations (1.4)-(1.5)
Cy(T),M,M(T) Definition 1.6
0,¢ Definition 1.6
A, M(A, e, C) Definition 1.2
a, B Equation (1.8)
71572 Equation (3.1)
Z Equation (3.2)

ba, Ca,da Equations (3.3)-(3.5)
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2. Preliminary lemmas

The present section consists of a series of preparatory lemmas that will later be used
to prove Theorem 1.9. The lemmas that do not rely on sieve theory are structured as

.

while the following lemmas are independent and rely on sieve theory:

follows:
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The work of [10, Lemma 1] gives an upper bound on the density of integers all of
whose prime factors are relatively small. We shall need a variation of this result where
the integers are weighted by a multiplicative function. In the applications it will be
important that the bound is of the form O(z°™")2¢) for some positive constant c.

Lemma 2.1. Fix any positive real numbers cg,c1,co and assume that F': N — [0, 00) is
a multiplicative function such that

C

F(p®) < min {—0 P } (2.1)

p’ pee:

for all primes p and e > 1. Define

. [e 1 , c+2(co+c)
c:=min —, ——— % and ¢ = ————=.
2714 [2¢1/¢9) c

Then for all x,z > 2 we have

e ' logx
I (0]
neNN(z,xz]

pln=p<(log z)(loglog x)

where the implied constant is absolute.

Proof. Let ¢4 be a positive constant that will be optimised later. Then the sum over n
is

<= 3 Fame,

A
n<

pln=p<y

where y = (log x)(loglog z). By Rankin’s trick we get the following bound for any ¢ > 0:

x° net 20 (c4—5)
_ e\, e(cg—
S 2o Z F(“)F*zj 1+ZF(P)P
neN p<y e>1
pIn=p<y

For an auxiliary positive integer ey we shall control the contribution of the range e < eg
and e > eg using the bounds F(p¢) < ¢o/p and F(p¢) < p~¢2 respectively. Assume
that ¢4 > 0 so that the contribution of the former range contributes

eo
C

e

e*lpp

€Cyq s 1
— < 1_’_0060])60(64* )— .

Now assume that cseqg < 1 so that the bound becomes
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The remaining range contributes
§ pe(C476762)'
e=1l+eq

02 we can bound this by

Making the additional assumption that ¢4 <
pr 1

peocz/Z p5 -1 :

—e(d+ca/2)
Z p YIS peol 5+62/2)Z 5+02/2)

e=l4egp
—5— - Putting the bounds together

Further assuming that 2¢; < egcs shows that this is <

leads to
co+cqg 1

ca—0
1+ZF( prle) <14 ——— s -1
el

subject to the conditions
C2 201

0 <cqyeqe0 < 1,¢4 < 5 o < €.
2

Putting eg = 1 + [2¢1/c2] shows that these conditions are met for any § € (0, ¢4) where

&) 1
c4 = min —_— = C.
4 2 1+ [261/02]

Hence, the overall bound becomes

5 5 coteq

1 1 °4
5 (1+C°:C4 5_1> <= (1+ 5_1>
Py 4P P<Y p
co+c
<z % exp (5(log x) + MT) ,
4

2y

where
1
5 Z logp 5 (logy)2’

T .=

owing to the inequality e! —1 > t with t = §log p and the prime number theorem. Putting
6 = (loglog z)~/? we see that when y = (logz)(loglog x) one gets the bound
log z)(loglog x)
(loglog )2 ’

(CO+C4) )1/22(

1
08T (loglog x:

oo (aog log 2)1/2
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which is sufficient. O

Lemma 2.2. Keep the setting of Lemma 2.1 and fix any Bg > 0. For all T > 2 with
logT > 4By /ca, for all A > 1,c € N, and for any 8 > 0 with

. c2 o
< il

the product

. S L L . . ]l[p > Co]
| I § : 1p(i+i)ez /2 fit] i+7) (B _ ,Bi—1) <
et (1 + = mln{c p 7A }F(p )(p p )((1 — F(p)) + ]l[p X CO]))
phe 70

is O(e?P18T) where v is a positive constant that depends at most on By, ¢; and A.
Furthermore, the implied constant depends at most on A,C’, cq,c1 and cs.

Proof. Define pg to be the least prime satisfying 24 < pSQ/ . We will bound the sum over
1,7 for every individual prime p > py and in the end we shall piece the bounds together
for all primes p < T

Step (1). We start with the contribution of large 4, in which case the bound F(p°®) <
per—ee2 and the crude estimate p?% — pfli—1) < pf will suffice. Define

=1 0],

C2

The contribution of 7 > 47 is
< DAY A E() < pt ST AP S (A < 2 3 (AplP e
> 720 1211 j=0 >

because Ap~° < 1/2, a fact that follows from p > po. Now we use the assumptions
B < co/2 and 24 < p82/4 < p©/4 to see that ApF—c2) < Ap=c2/2 1/2. Hence,

2p01 Z(Ap(ﬂ—cz))i < 4p01 (Ap(B—C2))il < 4pcl—ilcg/4 < p2+01—’i102/4.

i>iy

This is < p~2 because our choice for i; makes sure that 5 + ¢; < i1¢o/4. We have thus
shown that for all p > pg one has

Z Ai+jF(pi+j)(pBi _pﬁ(i—l)) < p—3'
i>ir
720

Step (2). Let us now bound the contribution of the i, j that satisfy

1<i<i; and 1+7 =1
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We have

’L‘lfl ’Ll 1

Z Z Ai+jF(pi+j)(p /3(% 1) ) < p& ZAZ —wz(p ﬂ(z 1)) Z (Ap_CQ)j.
i=1 j>iq—i i=1 G>i1—i

Using the inequality Ap~“2 < 1/2 to bound the sum over j results in the inequality

i1—1 i1—1
< 2p° Z Aip—icQ (pm' _pﬁ(i—l))(Ap—cQ)il—i = 2p°t Ailp—chl Z (pfh' _ pﬁ(i—l)),
i=1 i=1

which is at most 2p°t (Ap(#~¢2))1 that has been previously shown to be at most < 1/p.
We have thus proved that for all p > pg one has

Z ARt (pPt — pPi=Dy < p=3.
1<i<iy
Jjzi1—1
Step (3). It remains to study the contribution of cases with i 4+ j < i;. For these we use
the assumption F'(p€) < ¢o/p that leads to the bound

Co L ] . Co ) . . .
<= > AT - pfiTh) < - > AyE” —pPh) YT (24).
i>1,j>0 1<i<iy 0<j<ir—i

1+j<ii

Now since A > 1 we have 24 > 2. For all m > 1 we have

+(24) + (24)* + ... + (24)™ !

This gives the bound

co(24)h X o co(24)h ;
_ o S (- ) < oA o 1y,

The assumption SlogT < Sy shows that iy log T < So(1+ 4(50—'201)), hence, for primes
< T we infer Bi;logp < BO( 4(5+Cl)) On the other hand, the function (—1 + e')/t
is bounded in the interval 0 <t < Bo(1 + 4(‘)Jrcl)) thus,

P’ — 1 = exp((logp)Bi1) — 1 < Bi(logp)Bin,

for a positive constant 3, that depends on 3y and ¢y, co. Thus, the contribution of cases
with ¢ + 5 <4y is
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< Co(QA)il

0% - 1) < {aa(24) 15} 5L,

In conclusion, we saw that for all primes p € (pg, T] one has

N AHF(p) PP - pPO0) < 2978 4 {eo(24)1 81 B} 2L
‘ p
i>1
Jj=0
Step (4). Using the last inequality with the bound 1+ x, < exp(x,), valid for all z, € R,
shows that, once restricted in the range p > max{po, ¢o}, the product in the lemma is

con( X 1-FE) (270 + {eolz4)pipin} L)),
max{po,co } <p<T p

pte

Ignoring the condition p { ¢ will produce a larger bound. Using the inequality F'(p) < ¢o/p
we obtain

; . _1logp
<exp (@A) BB Y (1-Fp) 2R,
max{po,co}<p<T p
where the implied constant depends at most on c¢y. Using the inequality F(p) < co/p

and the estimate »_ . (logp)/p < logy leads to

3 (1_10%3))1) < ¥ loip (1 + 0., (?)) < 0,,(1) +1og T,

max{po,co}<p<T max{po,co}<p<T

where the implied constant is absolute. The previous bound becomes

<¢p €XP (co(QA)“ﬁl,Bil log T).

Recall that 8 depends on Sy and c1, co. Since ¢ is a function of ¢; and ¢y we can thus
write the bound as <, exp(vBlogT) for some v = v (S, co, ¢1, c2, A). To conclude the
proof of the lemma we must deal with the contribution of the primes p < max{py,co}.
Note that for every prime p the corresponding factor in the product of the lemma is

<1 <— 1) i Ipliti)e2/2 ) Aii) p(pitd)pPe,
Tyt ;Nmm{Cp FE(P™)p
i>0

Using the bound for F' in the assumptions of Lemma 2.1 and the bound 8 < fy/logT
we see that the sum over i, j is at most

Clper 3 ploea/2HB0/ 106 T)i G pjea/2,

i>1 §>0
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Our assumption 48p/ca < logT ensures that By/logT < c¢3/4, hence, we obtain the
bound

Clpc1 pricz/4 prjcz/Q < Clpcl 2271'02/42273'02/2 _ OCQ(C/;DCI).
i>1 j=0 i21 320

Taking the product of this quantity over all primes p < max{po,co} gives an implied
constant that depends on pog,cg,c1,c2 and C’. Since py = po(A4,c2) we see that the
implied constant also depends on A. 0O

Lemma 2.3. Fiz any positive constants C,C"’, e and assume that we are given a function
G : N — [0,00) such that for all coprime positive integers a,b one has

G(ab) < G(a) min{C*®) C"b<}.

Then for all coprime positive integers a,b we have G(ab) < G(a)H (b), where H is the
multiplicative function defined as H(p®) = min{C*®, C'p°} for all e > 1 and primes p.

Proof. We will prove this with induction on w(b). When w(b) = 0 then b = 1, hence,
the statement clearly holds. Assume that & > 0 and that the statement holds for all
b € N with w(b) = k. Now let n,n’ be coprime and assume that w(n) = k + 1. We shall
show that G(n'n) < G(n/)H(n). Writing n = p{* - p*pp 4" where each oy is strictly
positive and the p; are distinct primes, we let a = n/p{* ---pp* and b = pZﬁl so that

G(n'n) = G(ab) < G(a)H(pzﬁl)

by assumption. Now a can be written as n’ multiplied by an integer that is coprime to
n' and with exactly k distinct prime factors, thus, our inductive hypothesis shows that

k
Gla) < GO) [[HO).

Combining the two inequalities gives G(n'n) < G(n') [[;¢; 1 H(py") = G(n')H(n). O

Lemma 2.4. Keep the setting of Lemma 2.1, fiz any C > 1 and C' > 0 and assume that
G :N — [0,00) is a function that satisfies

G(ab) < G(a) min{C®®) C'be=2/?} (2.2)

for all coprime positive integers a,b. Fixz any positive real number By. For any Y,V > 2
and w > 0 satisfying

w < min{%log\ll,ﬁo}
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we have

Y. FG@ [Ja-rFE)™

a>T co<p
Pt (a)<¥ pla
log T -1
<exp(—wies) Y Fm)Gm) [T0-Fe) ™
& neEN co<p
Pt(n)<¥ pln

where the implied constant depends at most on C,C’, By and c;.

Proof. Define 8 := w/log ¥. The sum is at most

AN
> FlaG@ [Ja-ren~ (5) -
P+(a)<¥ co<p
pla
Now define the multiplicative function g : N — R via the Dirichet convolution

m’ =" 4s(d), meN.

deN
dlm

Writing n = a/d we obtain

TN gpd) D Fnd)G(nd) [T (1—Fp) ™"
deN neN co<p
Pt (d)<¥ PT(n)<¥ plnd

Now factor n = ngny, where ged(ny,d) = 1 and ng is only divisible by primes dividing
d. Then the sum over d and n becomes

Z Vp(d) Z F(non1d)G(nonid) H (1—-F(p)~ "

deN neN?, P+(n0n1)<‘1’ Co<p
PH(d)<w plno=p|d plnonid
ged(ny,d)=1

Our assumptions on G together with Lemma 2.3 ensure that G(noni1d) < G(n1)H (nod),
where H is the multiplicative function given by H(p®) = min{C®¢,C'p°®2/?} for e > 1
and primes p. Together with the multiplicativity of F' we obtain the bound

T Fm)G) [T -FE)™

n1 €N co<p
Pt (n)<¥ plna
X Z F(nod)H (nod)ys(d) H (1-F(p)~ "
no,deN,PT(d)<¥ co<p
plno=pld pld

ged(d,nq)=1
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It is easy to see that ¥g(p™) = pPm —pPm=1) for all m > 1 and primes p. We can use this
to write the sum over ng, d as an Euler product. The Euler product is of the type covered
by Lemma 2.2 as can be seen by taking A = C,c = ny and T' = U. The assumption of
the present lemma on the size of w implies that the assumption of Lemma 2.2 on the
size of 5. Thus, the sum over a in the lemma is

eu,Blog\I/ .
<« Y Fmem [T -Fe)
neN co<p
Pt (n)<¥ pln

where v = v(fy, co, c1, c2, C) is positive and the implied constant depends at most on C'
and ¢;. Using the fact that w < f§p, we can write

euBlog\Il — V" — 050(1).
Finally, we have Y=# = exp(—wlog Y/log¥). O
Lemma 2.5. Keep the setting of Lemma 2.4 and define for any V > 1 the function

H(V):= Y F)Gm) [[0-Fp)"
P+n(i1)\]<v Cglflp

For V=1 and ¢ > 0 with V<¢2/2 > 2C and V¢ > ¢y we have

H(VE)

eVl

H(V) K

)

where v1 = v1(C, ¢y, c1,c2) is positive and the implied constant depends at most on C,
C’ and c;.

Proof. For a prime p > V¢ we have p°/2 > 2C due to the assumption V¢2/2 > 2C.
Now let jg := 1+ [4/ca + 2¢1/c2] so that joca = 4+ 2¢1. Then —jgea/2 < —c; — 2, which
can be combined with p©2/2 > 2C' to show that

(Cp=e2)o < pmloea/2 L pmim?,

By (2.1) and the fact that C' > 1 we see that

S CIFp) < jonO%O-FPCI 3 (Cpme) < ol
j=1

J=1+jo

c . . C 2
Zpi2(Cp ) < GoC 2 4
p p P

which is at most vy /p, where v is a positive constant that depends at most on C' and
¢;. We infer that
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11 1+im < ] (1+1i1£f/p)<< 1T <1+;)V1<<;1,

pe(Ve,V) Jj=1 pe(Ve,V)

with an implied constant that depends at most on C and ¢;.

We can now use (2.3) to bound H(V'). Each positive integer n can be written uniquely
as n = ngny, where P (ng) < V¢ and P~ (ny) > V<. We have G(non1) < G(ng)C%™)
by equation (2.2) and together with the multiplicativity of F' we obtain

HV)< Y Flno)Gno) [[A-Fe)™ Y C*WF@m) [T 0-F@)™"

no€eN co<p n1€EN co<p
Pt (ng)<Ve© plno P~ (n)>Ve pln1
Pt (n1)<V

The assumption V¢ > ¢y shows that every prime p > V¢ satisfies p > ¢, hence, the sum
over ni equals

II (t+0-F@) ') ¢F@)
Ve<p<V j=1

Alluding to (2.3) and noting that the sum over ng equals H(V¢) concludes the proof. O

Lemma 2.6. Let F' be as in Lemma 2.1 and G be as in Lemma 2./4. Fix any positive real
number By. For sufficiently large T,V > 2 and for all w > 0 satisfying

w < mln{ log ¥, 50}

we have
S PG [[(-Fe) ™ < exp (-l 3 Fé@ JL0-re)”
log\Il ’
a>Y co<p co<p
Pt (a)<¥ pla pla

where the implied constant depends at most on C, By and c;.

Proof. Taking ¥ = T¢ and y = w = 1 in Lemma 2.4 shows that

_ -1 H(Y)
; F(a)G(a)CLIp(l FON™ < comye
Pt(a)<Ye pla

where the implied constant depends at most on C, C’ and ¢;. Taking a sufficiently small
€ = ¢g in terms of C and ¢; makes the right-hand side be < H(Y¢)/2. Furthermore, by
the definition of H we have
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HOX) < Y F@G [[a-Fe)™+ > F@G [Ja-Fe)™,

a<Y co<p a>T co<p
P*(a)<Te0 pla Pt(a)<Te0 pla
thus,
_ H(Te)
T0) < - !
H(Y0) <Y F(a)G(a) [[ (1 - F(p)) 5
a<Y co<p
pla
Hence,

Thus, by Lemma 2.5 we infer that

H(V) < ) « > F(a)G(a) [J(1-F(p) ™
a¥ co<p
pla

We conclude the proof by injecting this estimate into Lemma 2.4. 0O

Lemma 2.7. Let F be as in Lemma 2.1 and G be as in Lemma 2.4. Fix any positive

constant v and assume that for every prime p we are given a constant c(p) in the interval
[0,v/p]. Then for allT > 1 we have

> F(a)G(a) [J(1+ep) <27 Y F(a)Gla

a<T pla a<T
where v =1+ 2(1 + ¢1)/ca)coCH20+e)/e2 - 0r(202/2 — 1)~1,

Proof. Extending multiplicatively the function ¢ to positive square-free integers we get
[0+ )=
pla

This turns the sum in the lemma into

S F@)G() Y w(d?e(d) = 3 u(d)?e(d)F(bd)G(bd).

a<T dla bd<T

By assumption there exists C’ such that G(ab) < G(a)min{C?®) C'b%2/2}. By
Lemma 2.3 with € = ¢2/2 we see that G(n'n) < G(n')H (n) for all coprime n,n’, where H
is the multiplicative function given by H(p¢) = min{C®, C'p°>/?} for e > 1 and primes
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p. We factor b = bgby, where by is coprime to d and each prime divisor of by divides d.
Thus,

F(bd)G(bd) = F(bob1d)G(bob1d) < F(bod)F (b1)H (bod)G(b1),
hence, the sum is

<D FO)GO) Y pld)e(d)F(bod) H(bod).
b <T bod<T/b:1
plbo=pld
ged(by,d)=1
We will show that the inner double sum over by and d converges, and we will also upper
bound the value that it attains. Dropping the condition bod < T/b; we can write it as

[[,(1+&p), where

=Y. u@)e@)FE)HP™) = cp) Y FETHE™)
B,6€ZN[0,00) B>0
(8,0)2(0.0)
B>0=6>0

and the product is taken over all primes p { by. Let B be the least integer satisfying
2(1+ ¢1) < (B + 1)cy. To estimate the contribution of 8 < B we use ¢(p) < v/p to get

Y(B+1)coCHH5

> mF@TYHE™) < S FpITOM < FEE

0<B<B 0<B<B

To bound the contribution of the remaining terms we use F(p©) < p°*~°“2 to get

So )PP HET) < CapTite 3T pm ez,
B=1+B B=1+B

This is at most

—1+Cl

5 /2 —1
~(5+2)c2/2 37 9= (p+De2/2 C'y(22/2 = 1)

/
C'vp p et (Br2e/2

820

The exponent of p in the right-hand side is strictly larger than 2 owing to our definition
of B. We have thus shown that for all primes p one has 0 < &, < B'p~2, where

B :=y(B+ 1)ceC' 8 + C'y (22 — 1)~
By the definition of B we have 2(1 4 ¢;) > Beg, hence, B’ < D', where
D' i= (14 2(1 + 1) fea)eoCHAFe) e 0 (222 — 1),

hence, [T, (1 +&,) <IL,(L+p7>") <T[,A+p )" <¢@)” <27 O
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Lemma 2.8. Fiz a positive constant oy and let g : N — [0, 00) be a multiplicative function
for which g(p) < a1/p for all primes p. Then for all a € N as, a3 > 0 and x > 2 we

have
> pm)*gm) J[ (-g9@)<C 11 (1—g(p)),
meN,ged(m,a)=1 a1 <p<x3 ar <p<Lamin{ozost
plm=p€(a1,2°2) ptam pta
where

Ci=1laz<as] ] (A—-g@)?+12>as] [[ Q-9

T2 <pLT3 T3 <pLr*2
pfa pfa

and the implied constant depends on ay but is independent of a, o, a3 and x.

Proof. Let P be the product of all primes in (aq,2%?) that do not divide a. Using that
g is multiplicative and g > 0 we see that the sum over m is

Yogm) [T a—9w)?= [ @-9@)®> gm) J[ Q-g)?

m|P a1 <p<z3 a1 <p<z3 m|P a;<p<Lz3
ptam pla plm
g{p
- I a-ewr TT o) T1 (14220
ap<p<z*3 ayp <p<z*? o <p<z™*? g\p
pta pfa,p>z*3 pta,p<z™3

The assumption g(p) < a1/p implies that g(p) < 1 whenever p > «;, thus, we can use
the approximations

1+e=(1—e " (1+0(e)), <1+( ‘

175)2> =(1-¢)7 (14 0(e))

with € = g(p) respectively in the second and third product. This will produce

< I a-9w)* [ -gb)'<c I1 (1-g(p))

a1 <p<Lx3 a1 <p<x? a; <p<g™intaz,az}
pla pla pta

with implied constants that depend at most on as. This is because [ (1 + O(g(p)?))
converges absolutely due to the assumption g(p) = O(1/p). O

Let us recall a special case of [5, Lemma 6.3] here:

Lemma 2.9 (Fundamental lemma of Sieve Theory). Let k > 0,y > 1. There exist se-
quences of real numbers (\E) depending only on rk and y with the following properties:
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=1, (2.4)
NEI<1 ifl<m<y (2.5)
ME=0 ifm>y, (2.6)

and for any integer n > 1,

S AL <0< AL (2.7)

Moreover, for any multiplicative function f(m) with 0 < f(p) < 1 and satisfying

[T o-so0" < (Z2) (1+ s ) (2.)

wp<z

for all 2 <w < z <y we have

10
3 NLf(m) = <1+o <eo <1+ lofgz) )) T[T - 1)) (2.9)

m|P(z) p<z

where P(z) is the product of all primes p < z and 0 = logy/logz > 1, the implied
constant depending only on k.

Lemma 2.10. Let g : N — [0, 1) be as in Lemma 2.8 and assume that there exist constants
o, a3 such that

IT a9 < (fg:;)m (H loosw>

wLp<z

for all 2 < w < z. Fiz any constants &1,& € (0,1), A1, Ay > 0 and assume that we are
given a finite set of non-zero integers S = {s1,...,sn} and a set of non-negative real
numbers z, a1, ...,an such that for all d < ' one has

Z an, = g(d)x(1+ €1) + €a,
1<n<N
d|sp

where €; are real numbers that satisfy

ler] < Ay I I (1 —g(p))2 and |ea] < Aozt 82,
ap<pLx
d

Fiz any constants & € (0,&1) and & > 0, let T' = max{1/&4,1/(& — &3),1/&} and
assume that logxz > 4dagl.
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Then, for all b € N satisfying b < 2% we have

> an < Co (F‘“Jrg(b) [T g+ ml—fQ/Q),

1<nEN,b|sy, psz
p<z4 and ptb=pfs, ptb

where Cy is a positive constant that is independent of b, x and &4.
Proof. Let v = min{(& — &3)/2,&2/4,&4}. We employ Lemma 2.9 with
k=g, K = ag,y = a™MaT8 () = g(p)i[p > a1 & ptb],z =27,

where a is as in Lemma 2.8. To verify (2.8) we note that for all oy < w’ < 2’ one has

1 1 1 log 2/ \** as
M= o< 10 <(i22) (1)
w' <p<z’ 1= f(p) w’<g{9<z’ 1 _g(p) w' <p<z’ 1 _g(p) Ing Ing
ptb

Define P to be the product of all primes p € (aq,z| that do not divide b. Then the
cardinality in the lemma is bounded by

Z an, = ZanZu(m)< ZanZ)\;:Z)\IL Zan,

1<n<N,b|sn, 1<n<N m|sp 1<n<N m|sp m|P 1<n<N
ged(sn,P)=1 blsn m|P b|sn m|P bm|sy,

where we used (2.4) and (2.7) in the inequality. By (2.5) the only m that contribute
must satisfy bm < by < bx® ~ < 2¢1. This allows us to use the assumption, thus,

ZA; Z an:xg ZAmg +63+647

m|P 1<n<N m|P
bm|sy,
where we used (2.5) and the coprimality of b and m, and the ¢; are real numbers that
satisfy

leal < Aoya' ™€, Jea] < Ayzg(h) Y g(m) [ (1-g)*

m|P a1 <p<KT
ptbm

Our choice of y makes sure that ya'~¢ < 2'7%2/2 which is acceptable. Note that & < 1
hence v < 1. Thus, when applying Lemma 2.8 with as = v, a3 = 1 one sees that the
factor C appearing in the lemma is at most 1. This leads to the bound

< As(wg)| D Naglm)| + 22 1 age) [T (1-9),

m|P ap<p<a”
b
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for some positive real number A3 that is independent of b,z and &;. Note that g(m) =
f(m) for all m | P, thus, by (2.9) we obtain

N xgm)| =D absm)| <h [T a=f@) =200 J] Q-9

m|P m|P a1 <p<z oy <p<z”
ptb

for some positive real number Ay that is independent of b,z and £;. We have so far
obtained the bound

As(agd) I (=g +a'er2)

a1 <p<z”
b

for some positive real number Ay that is independent of b, z and &4. It remains to upper-
bound the product over p. For this, we write

II a-gen< ] -9 [ A-9)™

ay<p<z” oy <p<T 7 <p<Lz
ptb ptb

and use our assumptions to upper-bound it by

< I a-gw) (llggx) (1+ o )<A6v” [T -9,

logz
a1 <pszT 108 a1 <p<zT
ptb pib

whenever logz > as/y and where Ag is a positive real number that is independent
of b,z and &. To conclude the proof note that 1/ < 4", hence, v~ < (4I')*2 and
logz > a3/ due to logz > 4T'asz. O

Lemma 2.11. Fix any positive cg, c1, co, assume that F' is as in Lemma 2.1 and that there
exists c3 = 0 such that for all primes p and integers e > 2 we have F(p®) < c3/p*. Fiz
any C,C’" > 0 and assume that G : N — [0,00) is a multiplicative function such that for
all integers a one has G(a) < min{C*®) (C"q%/?},

Then for all x > 1 we have

Y Fm)Gm)<exp| > F(p)Glp) |,

n<x co<p<xT
P~ (n)>co

where the implied constant depends at most on ¢; and C,C".

Proof. We define a multiplicative function H’ such that when p is prime and e > 2 one
has H'(p®) = min{C*¢, C’ ch/z} while H'(p) = G(p). We claim that G(a) < H'(a) for

k

all @ > 1. Write a = p" - - - pp* where p; are distinct primes and «; > 1 for all i so that
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Gla) = G((J]pipe*) = G([ T pi)Gw*) < G T e H' (073").
i<k i<k i<k

Similarly,

G([ I =G I] pioreis) < G pi)H (0pth)

i<k i<k—1 i<k

Continuing likewise until all factors p;"* are exhausted we get G(a) < [[;¢, H'(pj") =
H'(a).
Hence, G(b) < H'(b) for all b and therefore the sum in the lemma is at most

>, FmHm< [ |1+ Fo)H ()

nx n<x e>1
P~ (n)>co P~ (n)>co

<exp| > F@)H(p°)
co<p<z,e=1

due to the inequality 1+ z < e® valid for all z € R. Let & be a positive integer that will
be specified later. The contribution of e > & is at most

pe! Zp*€C2H/(p€) < Clpcl precz/Z < O/p617662/2(1 . 2762/2)71 < pclfecz/z.
e>¢ e>¢

Taking € to be the least positive integer satisfying 2(c; + 2)/ca < € yields the bound
< p~2. The contribution of the terms in the interval [2, €] is

< S FeH )< Y. Fcr< S Y o< =

2<e< € 2<e< @ Py c<e

Thus, the overall bound becomes

exp > FEOH'(pY) | <exp| Y. Fp)H'(p) |exp | > 001/p%) ],

co<p<z,e>1 co<p<a co<p<z

which is sufficient because H'(p) = G(p). O
3. The upper bound
3.1. Start of the proof

Let us define the constants

N e M (3.1)
Ty 20272 T A0+ 3 +r)2) '
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Define
Z = MM, (3.2)

For a € A we factorise ¢, = p* - - - p¢ with primes p; < --- < p, and exponents e; > 1.
Let d, be the unique integer of the form d, := p{* - -- pi* satisfying

Py epy < Z <pitepip (3.3)

and let b, := p;i7" -+ pgr. By construction we have

P*(ds) < P~ (ba), (3.4)
ng(daa ba) =1, (3.5)
do < Z. (3.6)

The following cases will be considered:

(i) P7(ba) = 2™
i) P~(by) < Z" and d, < Z'/2,
(iii) P~ (by) < (log Z)loglog Z and Z'/? < d, < Z,
(iv) (log Z)loglog Z < P~ (b,) < Z" and Z'/? < d, < Z.

3.2. Case (i)

The plan in this case is to show that b, has few prime divisors so that ¢, has few prime
divisors in a large interval. The density of a with the latter property will be bounded by
the Brun sieve.

For the a € A in the present case we have

Moemm2be) — 7m22(ba) p—(ba)ﬂ(ba) <b, < cyg < BM®

and therefore Q(b,) < % for M > e'/®. By (3.5) we have ged(dg,b,) = 1, thus

leading via Definition 1.2 to

1+log B

f(ca) < f(da)AW

Now let d := dg, so that d < Z and d | ¢,. Furthermore, ¢, is coprime to every prime
in the interval [2, Z"?) that does not divide d. This is because every prime that divides
¢q must necessarily divide d, or b, and in our case all prime divisors of b, are in the
interval [Z"2, 00). In particular, ¢, is coprime to every prime in the interval (B, Z"2) that
is coprime to d. Define
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P = H p.

p€E(B,Z"2)
ptd

We obtain

S @) < AT S f@) Y xala)

a€A <z acAdlca
case (i) ged(P,eq)=1

To deal with the coprimality condition we employ Lemma 2.10 with

S:{CGZGEA,XT(G>>0},{an21<n<N}:{XT(a):U/EA,XT(G)>0}

and r = Mag = haal = B,OéQ = R,Q3 = K?é-l = 9752 = fab = d7£3 = a771754 = an2.
The assumption 5 < & is satisfied due to (3.1). Thus,

> xr(@) < Mhp(d) [ (1—hr(p) + M2,
a€A,d|c, B<p<M
ged(P,eq)=1 ptd
where the implied constant is independent of d, M and T but is allowed to depend on
a,m,n2, K, Kk, A, 0 and €. This gives the overall bound

1+logB
> xr(a)f(ea) < A Yy f(d)§ Mhr(d) [T (1= he(p) + M1 42
acA d<z B<p<M
case (i) pld

Since f(n) < n, we infer that

ST HAM T « Z2M 42« Rem 2 e
A<z

due to (3.1). This leads us to

> xr(@)f(ea) <MY f(dhr(d) [ 1= hrlp)+ M5

acA a<Z B<psM
case (i) ptd

We can now extend the sum over d to all d < M due to (3.1) that guarantees that
Z < M. Combining this together with Lemma 2.7 for F' = hp, G = f and c(p) =
—1+4 (1 = hr(p))~? yields

> xr(@f(ca) <M [ A=he(p) > f(dhr(d)+ M (3.7)

acA B<p<M d<M
case (i)
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3.3. Case (ii)

The main idea is to show that the exponent of P~(b,) in the prime factorisation of
cq is large and then prove that this cannot happen too often.
Let ¢ := P~ (b,). Equation (3.3) and the definition of case (ii) respectively show

Z < doq"®) d, < 2",

thus, ¢¥(be) > Z1/2_ For a prime p, we take m, to be the smallest positive integer such
that p™» > Z'/2 and we take n, to be the largest positive integer such that p™» < M?.
We set f, = min(m,, n,). Then we always have

Moml/Z

g (3.8)

plv > L ppmin{an /2.0y _
p

Also observe that g’e | ¢, (by ¢f¢ | ¢™ and ¢™ | ¢,) and ¢f« < MP. Thus, we have
shown that there exists a prime ¢ < Z" (due to the definition of case (ii)) that has the
properties ¢4 | ¢4, ¢fe < MY and (3.8). Hence, by Definition 1.6 we obtain

Yooxr@< Y CurM< > (hr(gf) MM < MS+2 M,

acA prime g<Z"2 prime g<Z"2
case (ii)
where S =37 _ 7, hr(ge). By (1.3) and (3.8) the sum & is at most

Z q_fq>\1+>\2 g M—)\lanl/Z Z q>\1+)\2 g M_)‘lanl/2Z772(1+>\1+A2).
q<Zn2 q<Zn2

This equals M ~7, where

pi=Aam /2 —amnz(l+ A+ A2) = ani (A1 /2 —n2(1+ A+ A2))

is strictly positive owing to (3.1). Fix any § > 0. By Definition 1.2 we have f(c,) < e/
for all a € A, where C is positive and depends on « and §. Thus, (1.8) shows that for
all a € A one has f(c,) < CM?. We have therefore proved that for every § > 0 one has

Z xr(a)f(ca) < C (Ml—p+5 + Zn2M1—5+5)

acA
casg (ii) (39)

= C (M'7PH0 4 pmEtoramny « OppIHIP
where (1 = min{an(A1/2 —n2(1+ A1 + A2)), & — amnz} is positive due to (3.1)

and the fact that 7o < 1. Furthermore, the implied constant depends at most on
a,B, 6, K, k,\;,0 and &.
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3.4. Case (iii)

The key idea in this case is to show that d, is divisible only by very small primes and
then show that this does not happen too often. We have

> xr(a) < > > xr(a) = > Ca(T).

ac A Z12<d<z acA z'?<d<z
case (iii) Pt (d)<(log Z) log log Z ¥I¢a Pt (d)<(log Z) loglog Z

Equation (3.1) makes sure that d < Z < MY, thus, we can employ the estimate in
Definition 1.6. It yields the upper bound

< > (M=% + hp(d)M) < ZM'*™S + M > hr(d).
ZV2<d<z ZV2<d<z
Pt (d)<(log Z) loglog Z Pt (d)<(log Z) loglog Z

To bound the sum over d we employ Lemma 2.1 with
F=hr,co=B,c1 = N\o,c0 =M,z =Z, 2= Z"2.
It shows that the sum over d is
<« Z=¢/2pe) — pp-ome/2+o(l) < pr—ame/4

where

¢ :=min {ﬁ 71 }
o 271+ 20/ M] )
The overall bound becomes
< ZM'YE 4 pproome/d = ppl=Etem g prl-eme/d o ppi=pa
where
B2 := min{¢ — any, anc/4}

is strictly positive by (3.1). Bringing everything together we conclude that for every
0 > 0 one has

Z xr(a)f(ca) < MTO—Pz2, (3.10)
acA

case (iii)
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3.5. Case (iv)

The main idea is to use the fact that c,/d, has no small prime divisors and then apply
the Brun sieve to see that this can happen with low probability, even when one counts
with the additional weight A$(¢a/da),

Recalling (3.5) and Definition 1.2 we see that

Flca) = fldaba) < f(dg) A%,

Thus, letting d = d,, we infer that

§ : xr(a)f(ca) < § : f(d)§ :*XT(a)AQ(C”/d), (3.11)
acA ZV/2<d<Z acA
case (iv) dlca

where 3" is subject to the further conditions
ged(d, e, /d) =1 and (log Z)loglog Z < P~ (cq/d) < Z™.

It would be easier to estimate the sum over a in the right-hand side of (3.11) if the
summand A%(¢e/4) was a constant. With this in mind we freeze the value of P~ (c,/d)
as follows: let

so that ZY/(+Y) < P~(c,/d) < Z'/* and s € NN [1, 5], where

o log Z < log Z
0 log{(log Z)(loglog Z)} | ~ loglog Z

for Z large enough. By (1.8) we have for a with x7(a) # 0 that

_ (Zl/(s+1))Q(0a/d) < P_(Ca/d)ﬂ(ca/d) < Ca/d< co < BM®

Q(ca/d)
1SR

M

thus, for M > e we obtain

1 logB 1 logB
Q(ca/d) < (s +1) <_+ o8 ) < 2s <_+ o8 ) — 75,
Uit any m amn

where 7 = 7(a, B, 1) is a positive constant. Hence the right-hand side of (3.11) is

D D () > xr(a).

1<s<s0 ZMV2<d<z a€A,d|cq,ged(d,cq/d)=1
PH(d)<zl/ ZYV D <P (e /d)<ZY ¢
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The sum over a is at most

Z XT(a)v

a€A,d|c,
p<ZY/ D and ptd=plca

which will be bounded by employing Lemma 2.10 with

S={cs:ae€Axr(a)>0}{a,:1<n< N} ={xr(a):a€ A xr(a) >0},

ar
s+ 1’

0
g = hT,Oél = Baa2 = R,03 = K,CC = Maé-l = 0762 26763 = 5754 = b= da
where hr, B,k,K,0,M and ¢ are as in Definition 1.6. The assumption b < 2 of
Lemma 2.10 is satisfied due to (3.1). The further assumption logx > 4asl' is satisfied
for all large enough M compared to K, a, 11,60, £ due to the inequality

14+s 21
I'= —_— = 1 <1 <1
max{ o 797€}<<am1797§ +s + So +

log Z log M
T <Kam T
loglog Z loglog M

We obtain the upper bound

<<max{ﬂ,31}MhT<d> [T (= hrp) + M2
a0 ¢ Blven
ptd
< s"Mhr(d) [ (1—hro(p)+ M2,
B<psM
ptd

where the implied constants are independent of s,d and M. Thus, the right-hand side
of (3.11) is

<M > AT N f(dhr(d) [ A=hr@)+MTE2 YT AN f(d).
1<s<s0 ZV2<d<z B<p<M 1<s<s0 <z
Pt(d)y<z/* ptd

We have >, , f(d) < Z?% = M?*m by Definition 1.2. Thus,

M17§/2 Z ATS Z f(d) < M17§/2+2om180ATso < M17§/3

1<s<s0 d<Z
due to (3.1) and the inequality sg < (log Z)/(loglog Z) which implies that
SOATSU < AQTSU _ ZO(l/loglogZ) — Mo(l).

Thus, the right-hand side of (3.11) is
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<M > AT > fldhr(d) [ (1= hr(p) + MR
1<s<s0 Z1/2<d<Z B<p<M
PH(d)y<z/s pid

By (3.1) we have an; < 1, so that d < Z < M. Then the product over p is

< I a=nee)= 11 @ =he) [TQ ko)™

B<p<M B<p<M B<p
ptd pld

and we get the bound

<M [ Q=br@)) > A7 3 f(dhe(d) [T =hr(p) ™" + M7
B<p<M 1<s<s0 Z1/2<d<Z B<p
P+(d)<Zl/s pld

We now bound the sum over d by alluding to Lemma 2.6 with

T:Z1/27\IJZZI/57F:hT7G:facO:B701:)\27c2:>\13w:60702‘4)

w/2

where w is defined via 4A™ = /<. This means that w depends on a,A,E, and 7.

Hence, the sum over d is

<exp(—ws/2) S f(hr(d) ] Q- hr(p) !

A B<p
pld

We can extend the summation to all d < M since the summand is non-negative and
Z's < Z < M. Thus, the right-hand side of (3.11) is

<M J[ t-he) Y f@he(@) J[—hep)™ Y 25"+ M3,

B<p<M d<M B<p 1<s<s0
pld

where z = ATe~%/2. By the definition of @ we have z = 1/4, hence, the sum over s is
bounded in terms of k. Thus, we have shown that

S xr@fe) <M [ =he@) D fdhr(d) [T = he(p) ™"+ M43,

acA B<p<M d<M B<p
case (iv) p|d

where the implied constant depends at most on «, A, E, B, i, m;,0,& and k. Alluding to
Lemma 2.7 with F' = hp and G = f yields

Z xr(a)f(ca) < M H (1—hr(p Zf d) + M'=¢/3, (3.12)

acA B<p<M d<M
case (iv)
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3.6. Proof of Theorem 1.9

The upper bound claimed in Theorem 1.9 derives from (3.7) and (3.12). Taking é =
B1/2in (3.9) and § = f/2 in (3.10) shows that cases (ii) and (iii) contribute < M*=53,
where 3 is given by

famA /2=l 4+ X+ X)) E—am amA any
min ) ; ; .
2 2 16781 + 2A2/M])

The term M*~¢/3 that is present in (3.7) and (3.12) and the term M=% may be absorbed
in the upper bound from Theorem 1.9, thus concluding the proof.

4. The lower bound

Recall the notation of 6, in Definition 1.6 and let k, K be as in Definition 1.1. We
introduce the constants

. Omin{1/4,¢/(40)}
v = min {L 1+ 9k + (]0g2) + 10<logK

] } , v := minf{v/2,0/2}.

Let 2z := MP". For each ¢ € N we define

Cb — Hp”p(c).

Pz

Note that for a positive integer d satisfying P*(d) < z, one has d = ¢ if and only if d

divides ¢ and the smallest prime divisor of ¢/d strictly exceeds z. Classifying all a € A
b

a

Y u@fed= Y Swu@ic)= X Y @i

acA deN a€cA deN a€A,d|cq
PH(d)<z ¢} =d PH(d)<z p- (ca/d)>z

according to the value of d := ¢’ we thus obtain

Note that if d < MY then P*(d) < d < MY < 2. Thus, since f > 0, we can restrict the
sum over d to get the lower bound

Y w@fe)> Y v(@)f(e).

acA 1<d< M0 a€A,d|c,
P~ (cq/d)>z

Using (1.8) and the inequality m > P~ (m)®("™) leads to

log(ca/d) log ¢, log(BM*®)
Q < < < <L
(€0/4) S {og P (cafd) < Tog P (cafd) < Tog(Mw) <20
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for some Lo = Lo(B, a,v) > 0. Therefore, by assumption (1.9), f(c,/d) > 1, where the
implied constant depends at most on Lg. Since P*(d) < P~ (c,/d) we see that d,c,/d
are coprime, hence, the multiplicativity of f yields

f(ca) = f(d)f(ca/d) >>§,0¢,Uo f(d)

Injecting this into the previous estimate will yield

Z XT Ca >>B a,v Z f(d) Z XT(a)~ (41)

acA 1<ds Mo a€A.d|cq
P~ (ca/d)>z

We will now lower bound the sum over a € A by arguments similar to the ones in the
proof of Lemma 2.10. Using the sequence A, from Lemma 2.9 we obtain

Y @z Y A Y wrla),

a€A,d|c, m|P acA
P~ (ca/d)>z dm|cq

where P is the product of all primes p < z. Recall from Lemma 2.9 that A, is supported
on integers m < y. We define y = M% where ¢ = min{1/4,£/(460)}. Then the only m
that contribute to the sum satisfy

dm < dy:dM‘ge < MU0+9€ < M9/2+96 < MQ’

thus, we can use the assumption on the growth of Cy(T). It yields the estimate

Mhg(d) > Aphr(m)+o | Mhe(d) > he(m) [ (1= hr(p)?

m|P m|P B<p<M
m<y ptdm

+0 M1—521

msy

The last error term is < M'~¢y = M'=¢+<0 Since 0 < £/2, the error term becomes
O(M*'~¢/2), which is acceptable.

By taking out the largest factor of each m | P that is a product of primes that satisfy
p < B or p|d, the sum over m in the error term is

<[[a+nre) I Q+he) > wm)Phom) [ Q- he(p)?

p<B B<pl|d m<y,ged(m,d)=1 B<p<M
plm=B<p<z ptdm

The primes p < B contribute Op(1). Using Lemma 2.8 with ay = B, 2* = 2z = M"Y,
% = M and a = d, and taking advantage of the fact that v < 1, we infer that
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< [[ a+nre) I @-he®)® I Q-he),
B<pl|d M”;}(Z(}<M B<Zf<de

that is at most

< [T a=reon= I @ —he).

B<pld B<p<M

To treat the main term sum 3, » Ay, hr(m) we use [5, Equation (6.40)], which is a more
precise version of (2.8) in the case of A,,. Specifically, [5, Equation (6.40)] states that

> Anhr(m) > (1— K [ - hr(p)).

m|P Pz

where 8 = 1+ 9x and s = (logy)/(log z). In our case one has s = €f/v and a simple
calculation shows that our definition of v ensures that 1 — ef— s K10 > 1/2, thus,

> Aphr(m) > [[0 - hr()

m|P p<z

Injecting our estimates in (4.1) gives

ZXT flea) > M H (1—nhr(p Z F(hp(d) + o(MT) + O(M*~¢/2),

acA p<M© d<Mvo

where

T= [I Q-he@) > f@hr@d) [T @ -hr@p)

B<p<M" 1<d<Mv0 B<p|d

Letting c(p) = (1 — hr(p))~2 — 1 and applying Lemma 2.7 we obtain

So fdhr(d) JT A=hrp)2< D f(dhr(d)

1<d< Mo B<pld 1<d< Mo

This leads to

ZXT flea) > M H (1 —hr(p)) Z f(d)hp(d) + O(M'=4/2),

ac€A p< MY 1<d< M@0

Since hr(p) € [0,1) for p > M? and using that v < 1, the product over p < M" is at
least [],< (1 — hr(p)). It thus remains to prove

> f@hr(d) > D f(d)hr(d)

1<d< Mvo 1<d<M
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Using the fact that f and hp are both multiplicative we can write

Yo f@hrd)= Y fOhr() Y flehr(e)

1<d<M 1<b<M 1<e<M /b
PT(b)<Mv0 P~ (c)>M"0

and it suffices to prove that the sum over ¢ is bounded independently of M. We apply
Lemma 2.11 to get the upper bound

Yo @b <exp | Y f@)hr(p)

1<c<M/b Mvo<p<M
P~ (c)>M"0

Recall that f(p) < A and hr(p) < B/p, so the sum over p is

< Y

Mvo<p<M

1
b 0(1),

thus concluding the proof.
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