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1. Introduction

Averaging multiplicative functions over integer sequences has a long history in number 
theory. Nair [7] studied the average over the values of an irreducible integer polynomial 
and this was later greatly generalised by Nair–Tenenbaum [8] and Henriot [4], who 
brought into focus certain key uniformity issues. When it comes to polynomials in two 
variables it was later extended to binary forms by La Bretèche–Browning [1] and to 
principal ideals by Browning–Sofos [2].

Wolke [11] had worked on averages of a multiplicative function f ⩾ 0 over the values 
of an increasing integer sequence, i.e.

∑
a∈N∩[1,T ]

f(ca),

under the assumption that the sequence is ‘equi-distributed’ along arithmetic progres
sions. With an eye to certain applications to arithmetic statistics and Diophantine 
equations we aim to study sums that are more general and under weaker assumptions on 
equidistribution. Omitting certain details for now, we shall work with sums of the form

∑
a∈A

f(ca)χ(a),

where A is any countable set, χ : A → [0,∞) is any function of finite support, ca is an 
integer sequence, and f is a non-negative arithmetic function with certain multiplicative 
properties. We will give upper bounds in Theorem 1.9 and matching lower bounds in 
Theorem 1.13.

1.1. The upper bound

We introduce the necessary notation for the statement of the upper bound.
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Definition 1.1 (Density functions). Fix κ, λ1, λ2, B,K > 0. We dfine D(κ, λ1, λ2, B,K)
as the set of multiplicative functions h : N → R⩾0 having the properties

• for all B < w < z we have

∏
p prime
w⩽p<z

(1 − h(p))−1 ⩽
(

log z
logw

)κ(
1 + K

logw

)
, (1.1)

• for every prime p > B and integers e ⩾ 1 we have

h(pe) ⩽ B

p 
, (1.2)

• for every prime p and e ⩾ 1 we have

h(pe) ⩽ p−eλ1+λ2 . (1.3)

In order to state a result that is sufficiently general but easy to use we use the following 
set-up from [3, §2.2]. Let A be an ifinite set and for each T ⩾ 1 let χT : A → [0,∞) be 
any function for which

{a ∈ A : χT (a) > 0} is finite for every T ⩾ 1. (1.4)

We also assume that

lim
T→+∞

∑
a∈A

χT (a) = +∞. (1.5)

Assume that we are given a sequence of strictly positive integers (ca)a∈A indexed by A
and denoted by

C := {ca : a ∈ A}.

We will be interested in estimating sums of the form∑
a∈A

χT (a)f(ca), (1.6)

where f is an arithmetic function with the following properties:

Definition 1.2 (A class of functions). Fix A ⩾ 1, ε > 0, C > 0. The set M(A, ε, C) of 
functions f : N → [0,∞) is dfined by the property that for all coprime m,n one has

f(mn) ⩽ f(m) min{AΩ(n), Cnε}.
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Example 1.3. If cn is a sequence of positive integers then∑
1⩽n⩽T

f(cn)

is of type (1.6) by taking A = N and χT (n) = 1[1,T ](n).

Example 1.4. If D ⊂ Rn is bounded and Q(x1, . . . , xn) an integer polynomial then∑
x∈Zn∩TD
Q(x) �=0

f(|Q(x)|)

is of type (1.6) by taking A = {x ∈ Zn : Q(x) �= 0} and χT (x) = 1TD(x).

Example 1.5. If Q1, Q2 are integer polynomials in n variables then∑
x∈(Z∩[−T,T ])n

Q1(x)=0,Q2(x) �=0

f(|Q2(x)|)

is of type (1.6) when χT (x) = 1[0,T ](max |xi|), A = {x ∈ Zn : Q1(x) = 0, Q2(x) �= 0}.

We will need the following notion of ‘regular’ distribution of the values of the integer 
sequence ca in arithmetic progressions. For a non-zero integer d and any T ⩾ 1, let

Cd(T ) =
∑
a∈A

ca≡0(mod d)

χT (a).

Definition 1.6 (Equidistributed sequences). We say that C is equidistributed if there exist 
positive real numbers θ, ξ, κ, λ1, λ2, B,K with max{θ, ξ} < 1, a function M : R⩾1 → R⩾1
and a function hT ∈ D(κ, λ1, λ2, B,K) such that

Cd(T ) = hT (d)M(T )
{

1 + O

( ∏
B<p⩽M(T )

p∤d

(1 − hT (p))2
)}

+ O(M(T )1−ξ) (1.7)

for every T ⩾ 1 and every d ⩽ M(T )θ, where the implied constants are independent of 
d and T .

It is worth emphasizing that in this definition the constants θ, ξ, κ, λ1, λ2, B,K are 
all assumed to be independent of T . For example, the bound hT (pe) = O(1/p) in (1.2)
holds with an implied constant that is independent of e, p as well as T .

From now on we shall often abuse notation by writing M for M(T ).
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Remark 1.7. The function M(T ) can be chosen freely in any way that makes

∑
a∈A

χT (a) = M(T )
{

1 + O

( ∏
B<p⩽M(T )

(1 − hT (p))2
)}

+ O(M(T )1−ξ)

hold. It particular, it is necessary that it satifies

lim
T→∞

1 
M(T )

∑
a∈A

χT (a) = 1.

One could simply take M(T ) :=
∑

a∈A χT (a), however, in certain applications it is 
helpful to have the freedom to choose instead a smooth approximation to 

∑
a∈A χT (a)

as a function of T .

Example 1.8. In the setting of Example 1.3 dfine cn = n. Then

Cd(T ) = �{1 ⩽ n ⩽ T : d | n} = T

d 
+ O(1),

thus, one can choose hT (d) = 1/d, M(T ) = T and ξ = 9/10. It is important to note 
that the choice of M(T ) and ξ is not unique: one may, for example, alternatively take 
M(T ) = T + T 0.4 and ξ = 1/2.

We are now ready to state the main upper bound of this paper.

Theorem 1.9 (The upper bound). Let A be an ifinite set and for each T ⩾ 1 de
fine χT : A → [0,∞) to be any function such that both (1.4) and (1.5) hold. Take 
a sequence of strictly positive integers C = (ca)a∈A. Assume that C is equidistributed 
with respect to some positive constants θ, ξ, κ, λ1, λ2, B,K and functions M(T ) and 
hT ∈ D(κ, λ1, λ2, B,K) as in Definition 1.6. Fix any A > 1 and assume that f is a 
function such that for every ε > 0 there exists C > 0 for which f ∈ M(A, ε, C), which is 
introduced in Definition 1.2. Assume that there exists α > 0 and B̃ > 0 such that for all 
T ⩾ 1 one has

sup{ca : a ∈ A, χT (a) > 0} ⩽ B̃Mα, (1.8)

where M = M(T ) is as in Definition 1.6. Then for all T ⩾ 1 we have∑
a∈A

χT (a)f(ca) � M
∏

B<p⩽M

(1 − hT (p))
∑
a⩽M

f(a)hT (a),

where the implied constant is allowed to depend on α,A,B, B̃, θ, ξ,K, κ, λi, the function 
f and the implied constants in (1.7), but is independent of T and M .
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Remark 1.10 (Wolke’s density function assumption). Note that [11, Assumption (A2)] 
states that there exist positive constants C1, C2 such that for all e ⩾ 1 and primes p
one has hT (pe) ⩽ C1e

C2p−e. We replace this with (1.3) which is a lighter assumption 
for large e. This is of high significance in applications where ca is the sequence of values 
obtained by a multivariable polynomial, as in this case hT (pe) is the density of zeros 
modulo pe and one cannot hope for a bound with λ1 ⩾ 1.

Remark 1.11 (Wolke’s level of distribution assumption). Let us comment that [11, As
sumption (A4)] implies that

C1(T ) − hT (1)M � M

(logM)D1

holds for every positive fixed constant D1, i.e. it demands an arbitrary logarithmic saving. 
Our assumption in Definition 1.6 is lighter in the sense that it essentially only requires 
this for a fixed power of logM . To see this, note that when d = 1, Definition 1.6 states 
that

C1(T ) − hT (1)M � M
∏

B<p⩽M

(1 − hT (p))2 + M1−ξ.

In typical applications this is of size M/(logM)κ, where κ is as in (1.1).

Remark 1.12 (Wolke’s growth assumption). Let us note that Wolke assumes that the 
function f is multiplicative, which is relaxed in our work by demanding that it is sub
multiplicative as in Definition 1.2. Furthermore, [11, Assumption (F1)] states that f(pe)
is only allowed to grow polynomially in e for a fixed prime p, whereas, Definition 1.2
relaxes this by assuming that f(pe) is allowed to grow subexponentially in e.

1.2. The lower bound

We shall see that if f is not too close to 0, then matching lower bounds hold. This 
is a generalization of the work of Wolke [11, Satz 2], where the main difference lies in 
the fact that the density functions in Definition 1.1 are now allowed to grow with larger 
freedom. Furthermore, Wolke’s condition that f(pm) ⩾ Cm

0 for some strictly positive 
real constant C0 is replaced by the more general condition (1.9).

Theorem 1.13 (The lower bound). Keep the notation and assumptions of Theorem 1.9. 
Assume, in addition, that f : N → [0,∞) is a multiplicative function for which

for each L ⩾ 1 one has inf{f(m) : Ω(m) ⩽ L} > 0 (1.9)

and that the error term in Definition 1.6 satifies
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Cd(T ) = hT (d)M(T )

⎧⎪⎪⎨⎪⎪⎩1 + oT→∞

⎛⎜⎜⎝ ∏
B<p⩽M(T )

p∤d

(1 − hT (p))2

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭+ O(M(T )1−ξ)

whenever d ⩽ M(T )θ. Then for all T ⩾ 1 we have∑
a∈A

χT (a)f(ca) � M(T )
∏

p⩽M(T )

(1 − hT (p))
∑

a⩽M(T )

f(a)hT (a),

where the implied constants are independent of T .

We finish the introduction by giving a concrete corollary:

Corollary 1.14. Let Q ∈ Z[x1, . . . , xn] be irreducible and let τ denote the divisor function. 
Then for all T ⩾ 2 we have

Tn log T �
∑

x∈Zn,|xi|⩽T
Q(x) �=0

τ(|Q(x)|) � Tn log T,

where the implied constants depend on Q and n.

To prove this, we take A and χT as in Example 1.4. Letting

h(d) = d−n�{x ∈ (Z/dZ)n : Q(x) = 0},M(T ) = (2T )n

and splitting in progressions modulo d we can easily verify (1.7) for some sufficiently 
small positive θ and ξ. Then Theorem 1.9 gives

T−n
∑

x∈Zn,|xi|⩽T
Q(x) �=0

τ(|Q(x)|) �
∏

1�p⩽T

(1 − h(p))
∑

a⩽(2T )n
τ(a)h(a)

�
∏

1�p⩽(2T )n
(1 − h(p))

⎛⎝1 + 2h(p) +
∑
t⩾2 

(t + 1)h(pt)

⎞⎠ .

Furthermore, h(pt) � p−t/ deg(Q) by [6, Lemma 4.10], hence, the sum over all sufficiently 
large t is O(p−2). Since Q is irreducible one can prove that h(pt) ⩽ h(p2) � p−2 for all 
t ⩾ 2, hence, the product is

�
∏

1�p⩽(2T )n
(1 − h(p))(1 + 2h(p) + O(p−2)) �

∏
1�p⩽(2T )n

(1 + h(p)).

Finally, by Chebotarev’s density theorem for schemes [9, §9] this is � log T . The lower 
bound of Corollary 1.14 can be proved similarly by Theorem 1.13.
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Notation. For a non-zero integer m dfine

Ω(m) :=
∑
p|m 

vp(m),

where vp is the standard p-adic valuation. Dfine P+(m) and P−(m) respectively to be 
the largest and the smallest prime factor of a positive integer m and let P+(1) = 1 and 
P−(1) = +∞. For a real number x we reserve the notation [x] for the largest integer not 
exceeding x. Throughout the paper we use the standard convention that empty products 
are set equal to 1. Throughout the paper we shall also make use of the convention that 
when iterated logarithm functions log t, log log t, etc., are used, the real variable t is 
assumed to be sufficiently large to make the iterated logarithm well-defined.

Acknowledgements. Part of the work in §§2-3 was completed while ES and CP were at 
Leiden University in 2016. The work in the remaining sections started during the research 
stay of SC, PK and CP during the workshop Problèmes de densité en Arithmétique at 
CIRM Luminy in 2023. We would like to thank the organisers Samuele Anni, Peter 
Stevenhagen and Jan Vonk. PK gratefully acknowledges the support of Dr. Max Rössler, 
the Walter Haefner Foundation and the ETH Zürich Foundation. Part of the work of 
SC was supported by the National Science Foundation under Grant No. DMS-1928930, 
while the author was in residence at the MSRI in Spring 2023.

The following constants and functions are recurring throughout the paper:

Symbols First appearance

F : N → [0,∞) Lemma 2.1
c0, c1, c2 Lemma 2.1
C,C ′ Lemma 2.3
G : N → [0,∞) Lemma 2.4
κ, λ1, λ2, B,K Definition 1.1
h : N → [0,∞) Definition 1.1
A, T, χT Equations (1.4)-(1.5)
Cd(T ),M,M(T ) Definition 1.6
θ, ξ Definition 1.6
A,M(A, ε, C) Definition 1.2
α, B̃ Equation (1.8)
η1, η2 Equation (3.1)
Z Equation (3.2)
ba, ca, da Equations (3.3)-(3.5)
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2. Preliminary lemmas

The present section consists of a series of preparatory lemmas that will later be used 
to prove Theorem 1.9. The lemmas that do not rely on sieve theory are structured as 
follows:

Lem. 2.1 Lem. 2.2

Lem. 2.3

Lem. 2.4

Lem. 2.5

Lem. 2.6 Lem. 2.7

Case (i)

Case (ii)Case (iii)

Case (iv)

Th. 3.8

while the following lemmas are independent and rely on sieve theory:

Lem. 2.8

Lem. 2.10

Case (i)

Lem. 2.9 Case (iv)



10 S. Chan et al. / Journal of Number Theory 273 (2025) 1--36 

The work of [10, Lemma 1] gives an upper bound on the density of integers all of 
whose prime factors are relatively small. We shall need a variation of this result where 
the integers are weighted by a multiplicative function. In the applications it will be 
important that the bound is of the form O(xo(1)z−c) for some positive constant c.

Lemma 2.1. Fix any positive real numbers c0, c1, c2 and assume that F : N → [0,∞) is 
a multiplicative function such that

F (pe) ⩽ min
{
c0
p 
,
pc1

pec2

}
(2.1)

for all primes p and e ⩾ 1. Dfine

c := min
{
c2
2 
,

1 
1 + [2c1/c2]

}
and c′ := c + 2(c0 + c)

c 
.

Then for all x, z ⩾ 2 we have

∑
n∈N∩(z,x]

p|n⇒p⩽(log x)(log log x)

F (n) � z−c exp
(

c′ log x 
(log log x)1/2

)
,

where the implied constant is absolute.

Proof. Let c4 be a positive constant that will be optimised later. Then the sum over n
is

⩽ 1 
zc4

∑
n⩽x

p|n⇒p⩽y

F (n)nc4 ,

where y = (log x)(log log x). By Rankin’s trick we get the following bound for any δ > 0:

⩽ xδ

zc4

∑
n∈N

p|n⇒p⩽y

F (n)n
c4

nδ
= xδ

zc4

∏
p⩽y

⎛⎝1 +
∑
e⩾1 

F (pe)pe(c4−δ)

⎞⎠ .

For an auxiliary positive integer e0 we shall control the contribution of the range e ⩽ e0
and e > e0 using the bounds F (pe) ⩽ c0/p and F (pe) ⩽ pc1−ec2 respectively. Assume 
that c4 ⩾ δ so that the contribution of the former range contributes

⩽ 1 +
e0∑
e=1 

c0
p 
pec4

peδ
⩽ 1 + c0e0p

e0(c4−δ)−1.

Now assume that c4e0 ⩽ 1 so that the bound becomes
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⩽ 1 + c0
c4

p−δe0 ⩽ 1 + c0
c4

p−δ ⩽ 1 + c0
c4

1 
pδ − 1 .

The remaining range contributes

⩽ pc1
∑

e⩾1+e0

pe(c4−δ−c2).

Making the additional assumption that c4 ⩽ 1
2c2 we can bound this by

⩽ pc1
∑

e⩾1+e0

p−e(δ+c2/2) ⩽ pc1

pe0(δ+c2/2)

∞ ∑
j=1 

1 
pj(δ+c2/2)

⩽ pc1

pe0c2/2
1 

pδ − 1 .

Further assuming that 2c1 ⩽ e0c2 shows that this is ⩽ 1 
pδ−1 . Putting the bounds together 

leads to

1 +
∑
e⩾1 

F (pe)pe(c4−δ) ⩽ 1 + c0 + c4
c4

1 
pδ − 1 ,

subject to the conditions

δ ⩽ c4, c4e0 ⩽ 1, c4 ⩽ c2
2 
,
2c1
c2

⩽ e0.

Putting e0 = 1 + [2c1/c2] shows that these conditions are met for any δ ∈ (0, c4) where

c4 := min
{
c2
2 
,

1 
1 + [2c1/c2]

}
= c.

Hence, the overall bound becomes

xδ

zc4

∏
p⩽y

(
1 + c0 + c4

c4

1 
pδ − 1

)
⩽ xδ

zc4

∏
p⩽y

(
1 + 1 

pδ − 1

) c0+c4
c4

⩽ z−c4 exp
(
δ(log x) + c0 + c4

c4
T

)
,

where

T :=
∑
p⩽y

1 
pδ − 1 ⩽ 1

δ

∑
p⩽y

1 
log p ⩽ 1

δ

2y
(log y)2 ,

owing to the inequality et−1 ⩾ t with t = δ log p and the prime number theorem. Putting 
δ = (log log x)−1/2 we see that when y = (log x)(log log x) one gets the bound

z−c4 exp
(

log x 
(log log x)1/2

+ (c0 + c4)
c4

(log log x)1/2 2(log x)(log log x)
(log log x)2

)
,
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which is sufficient. �
Lemma 2.2. Keep the setting of Lemma 2.1 and fix any β0 > 0. For all T ⩾ 2 with 
log T > 4β0/c2, for all A > 1, c ∈ N, and for any β > 0 with

β ⩽ min
{
c2
2 
,

β0

log T

}
,

the product

∏
p⩽T
p∤c

(
1 +

∑
i⩾1
j⩾0

min{C ′p(i+j)c2/2, Ai+j}F (pi+j)(pβi − pβ(i−1))
( 1[p > c0] 

(1 − F (p)) + 1[p ⩽ c0]
))

is O(eνβ logT ), where ν is a positive constant that depends at most on β0, ci and A. 
Furthermore, the implied constant depends at most on A,C ′, c0, c1 and c2.

Proof. Dfine p0 to be the least prime satisfying 2A ⩽ p
c2/4
0 . We will bound the sum over 

i, j for every individual prime p ⩾ p0 and in the end we shall piece the bounds together 
for all primes p ⩽ T . 
Step (1). We start with the contribution of large i, in which case the bound F (pe) ⩽
pc1−ec2 and the crude estimate pβi − pβ(i−1) ⩽ pβi will suffice. Dfine

i1 := 1 +
[
4(5 + c1)

c2

]
.

The contribution of i ⩾ i1 is

⩽
∑
i⩾i1

Aipβi
∑
j⩾0 

AjF (pi+j) ⩽ pc1
∑
i⩾i1

Aip(β−c2)i
∑
j⩾0 

(Ap−c2)j ⩽ 2pc1
∑
i⩾i1

(Ap(β−c2))i

because Ap−c2 ⩽ 1/2, a fact that follows from p ⩾ p0. Now we use the assumptions 
β ⩽ c2/2 and 2A ⩽ p

c2/4
0 ⩽ pc2/4 to see that Ap(β−c2) ⩽ Ap−c2/2 ⩽ 1/2. Hence,

2pc1
∑
i⩾i1

(Ap(β−c2))i ⩽ 4pc1(Ap(β−c2))i1 ⩽ 4pc1−i1c2/4 ⩽ p2+c1−i1c2/4.

This is ⩽ p−3 because our choice for i1 makes sure that 5 + c1 ⩽ i1c2/4. We have thus 
shown that for all p ⩾ p0 one has∑

i⩾i1
j⩾0

Ai+jF (pi+j)(pβi − pβ(i−1)) ⩽ p−3.

Step (2). Let us now bound the contribution of the i, j that satisfy

1 ⩽ i < i1 and i + j ⩾ i1.
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We have

i1−1∑
i=1 

∑
j⩾i1−i

Ai+jF (pi+j)(pβi − pβ(i−1)) ⩽ pc1
i1−1∑
i=1 

Aip−ic2(pβi − pβ(i−1))
∑

j⩾i1−i

(Ap−c2)j .

Using the inequality Ap−c2 ⩽ 1/2 to bound the sum over j results in the inequality

⩽ 2pc1
i1−1∑
i=1 

Aip−ic2(pβi − pβ(i−1))(Ap−c2)i1−i = 2pc1Ai1p−c2i1

i1−1∑
i=1 

(pβi − pβ(i−1)),

which is at most 2pc1(Ap(β−c2))i1 that has been previously shown to be at most ⩽ 1/p3.
We have thus proved that for all p ⩾ p0 one has∑

1⩽i<i1
j⩾i1−i

Ai+jF (pi+j)(pβi − pβ(i−1)) ⩽ p−3.

Step (3). It remains to study the contribution of cases with i + j < i1. For these we use 
the assumption F (pe) ⩽ c0/p that leads to the bound

⩽ c0
p 

∑
i⩾1,j⩾0
i+j<i1

Ai+j(pβi − pβ(i−1)) ⩽ c0
p 

∑
1⩽i<i1

(2A)i(pβi − pβ(i−1))
∑

0⩽j<i1−i

(2A)j .

Now since A > 1 we have 2A > 2. For all m ⩾ 1 we have

1 + (2A) + (2A)2 + . . . + (2A)m−1 ⩽ (2A)m

2A− 1 ⩽ (2A)m.

This gives the bound

⩽ c0
p 

∑
1⩽i<i1

(2A)i(pβi − pβ(i−1))(2A)i1−i

= c0(2A)i1
p 

∑
1⩽i<i1

(pβi − pβ(i−1)) ⩽ c0(2A)i1
p 

(pβi1 − 1).

The assumption β log T ⩽ β0 shows that βi1 log T ⩽ β0(1+ 4(5+c1)
c2

), hence, for primes 
p ⩽ T we infer βi1 log p ⩽ β0(1 + 4(5+c1)

c2
). On the other hand, the function (−1 + et)/t

is bounded in the interval 0 ⩽ t ⩽ β0(1 + 4(5+c1)
c2

), thus,

pβi1 − 1 = exp((log p)βi1) − 1 ⩽ β1(log p)βi1,

for a positive constant β1 that depends on β0 and c1, c2. Thus, the contribution of cases 
with i + j < i1 is
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⩽ c0(2A)i1
p 

(pβi1 − 1) ⩽
{
c0(2A)i1β1βi1

} log p
p 

.

In conclusion, we saw that for all primes p ∈ (p0, T ] one has

∑
i⩾1
j⩾0

Ai+jF (pi+j)(pβi − pβ(i−1)) ⩽ 2p−3 +
{
c0(2A)i1β1βi1

} log p
p 

.

Step (4). Using the last inequality with the bound 1+xp ⩽ exp(xp), valid for all xp ∈ R, 
shows that, once restricted in the range p > max{p0, c0}, the product in the lemma is

⩽ exp
( ∑

max{p0,c0}<p⩽T
p∤c

(1 − F (p))−1
(
2p−3 +

{
c0(2A)i1β1βi1

} log p
p 

))
.

Ignoring the condition p ∤ c will produce a larger bound. Using the inequality F (p) ⩽ c0/p

we obtain

� exp
(
c0(2A)i1β1βi1

∑
max{p0,c0}<p⩽T

(1 − F (p))−1 log p
p 

)
,

where the implied constant depends at most on c0. Using the inequality F (p) ⩽ c0/p

and the estimate 
∑

p⩽y(log p)/p � log y leads to

∑
max{p0,c0}<p⩽T

log p 
(1 − F (p))p ⩽

∑
max{p0,c0}<p⩽T

log p
p 

(
1 + Oc0

(
c0
p 

))
� Oc0(1) + log T,

where the implied constant is absolute. The previous bound becomes

�c0 exp
(
c0(2A)i1β1βi1 log T

)
.

Recall that β1 depends on β0 and c1, c2. Since i1 is a function of c1 and c2 we can thus 
write the bound as �c0 exp(νβ log T ) for some ν = ν(β0, c0, c1, c2, A). To conclude the 
proof of the lemma we must deal with the contribution of the primes p ⩽ max{p0, c0}. 
Note that for every prime p the corresponding factor in the product of the lemma is

⩽ 1 +
( 1 

1 − F (p) + 1
)∑

i⩾1
j⩾0

min{C ′p(i+j)c2/2, Ai+j}F (pi+j)pβi.

Using the bound for F in the assumptions of Lemma 2.1 and the bound β ⩽ β0/ log T
we see that the sum over i, j is at most

C ′pc1
∑
i⩾1 

p(−c2/2+β0/ logT )i
∑
j⩾0 

p−jc2/2.
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Our assumption 4β0/c2 < log T ensures that β0/ log T < c2/4, hence, we obtain the 
bound

C ′pc1
∑
i⩾1 

p−ic2/4
∑
j⩾0 

p−jc2/2 ⩽ C ′pc1
∑
i⩾1 

2−ic2/4
∑
j⩾0 

2−jc2/2 = Oc2(C ′pc1).

Taking the product of this quantity over all primes p ⩽ max{p0, c0} gives an implied 
constant that depends on p0, c0, c1, c2 and C ′. Since p0 = p0(A, c2) we see that the 
implied constant also depends on A. �
Lemma 2.3. Fix any positive constants C,C ′, ε and assume that we are given a function 
G : N → [0,∞) such that for all coprime positive integers a, b one has

G(ab) ⩽ G(a) min{CΩ(b), C ′bε}.

Then for all coprime positive integers a, b we have G(ab) ⩽ G(a)H(b), where H is the 
multiplicative function dfined as H(pe) = min{Ce, C ′pεe} for all e ⩾ 1 and primes p.

Proof. We will prove this with induction on ω(b). When ω(b) = 0 then b = 1, hence, 
the statement clearly holds. Assume that k ⩾ 0 and that the statement holds for all 
b ∈ N with ω(b) = k. Now let n, n′ be coprime and assume that ω(n) = k + 1. We shall 
show that G(n′n) ⩽ G(n′)H(n). Writing n = pα1

1 · · · pαk

k p
αk+1
k+1 where each αi is strictly 

positive and the pi are distinct primes, we let a = n′pα1
1 · · · pαk

k and b = p
αk+1
k+1 so that

G(n′n) = G(ab) ⩽ G(a)H(pαk+1
k+1 )

by assumption. Now a can be written as n′ multiplied by an integer that is coprime to 
n′ and with exactly k distinct prime factors, thus, our inductive hypothesis shows that

G(a) ⩽ G(n′)
k∏

i=1
H(pαi

i ).

Combining the two inequalities gives G(n′n) ⩽ G(n′)
∏

i⩽k+1 H(pαi
i ) = G(n′)H(n). �

Lemma 2.4. Keep the setting of Lemma 2.1, fix any C > 1 and C ′ > 0 and assume that 
G : N → [0,∞) is a function that satifies

G(ab) ⩽ G(a) min{CΩ(b), C ′bc2/2} (2.2)

for all coprime positive integers a, b. Fix any positive real number β0. For any Υ,Ψ ⩾ 2
and � > 0 satisfying

� ⩽ min
{c2

2 
log Ψ, β0

}
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we have ∑
a>Υ

P+(a)<Ψ

F (a)G(a)
∏
c0<p
p|a

(1 − F (p))−1

� exp
(
−�

log Υ
log Ψ

) ∑
n∈N

P+(n)<Ψ

F (n)G(n)
∏
c0<p
p|n

(1 − F (p))−1,

where the implied constant depends at most on C,C ′, β0 and ci.

Proof. Dfine β := �/ log Ψ. The sum is at most

∑
P+(a)<Ψ

F (a)G(a)
∏
c0<p
p|a

(1 − F (p))−1
( a 

Υ

)β

.

Now dfine the multiplicative function ψβ : N → R via the Dirichet convolution

mβ =
∑
d∈N
d|m

ψβ(d), m ∈ N.

Writing n = a/d we obtain

Υ−β
∑
d∈N

P+(d)<Ψ

ψβ(d)
∑
n∈N

P+(n)<Ψ

F (nd)G(nd)
∏
c0<p
p|nd

(1 − F (p))−1.

Now factor n = n0n1, where gcd(n1, d) = 1 and n0 is only divisible by primes dividing 
d. Then the sum over d and n becomes∑

d∈N
P+(d)<Ψ

ψβ(d)
∑

n∈N2, P+(n0n1)<Ψ
p|n0⇒p|d

gcd(n1,d)=1

F (n0n1d)G(n0n1d)
∏
c0<p

p|n0n1d

(1 − F (p))−1.

Our assumptions on G together with Lemma 2.3 ensure that G(n0n1d) ⩽ G(n1)H(n0d), 
where H is the multiplicative function given by H(pe) = min{Ce, C ′pec2/2} for e ⩾ 1
and primes p. Together with the multiplicativity of F we obtain the bound

Υ−β
∑
n1∈N

P+(n1)<Ψ

F (n1)G(n1)
∏
c0<p
p|n1

(1 − F (p))−1

×
∑

n0,d∈N,P+(d)<Ψ
p|n0⇒p|d

gcd(d,n1)=1

F (n0d)H(n0d)ψβ(d)
∏
c0<p
p|d

(1 − F (p))−1.
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It is easy to see that ψβ(pm) = pβm−pβ(m−1) for all m ⩾ 1 and primes p. We can use this 
to write the sum over n0, d as an Euler product. The Euler product is of the type covered 
by Lemma 2.2 as can be seen by taking A = C, c = n1 and T = Ψ. The assumption of 
the present lemma on the size of � implies that the assumption of Lemma 2.2 on the 
size of β. Thus, the sum over a in the lemma is

� eνβ log Ψ

Υβ

∑
n∈N

P+(n)<Ψ

F (n)G(n)
∏
c0<p
p|n

(1 − F (p))−1,

where ν = ν(β0, c0, c1, c2, C) is positive and the implied constant depends at most on C
and ci. Using the fact that � ⩽ β0, we can write

eνβ log Ψ = eν� = Oβ0(1).

Finally, we have Υ−β = exp(−� log Υ/ log Ψ). �
Lemma 2.5. Keep the setting of Lemma 2.4 and dfine for any V ⩾ 1 the function

H(V ) :=
∑
n∈N

P+(n)<V

F (n)G(n)
∏
c0<p
p|n

(1 − F (p))−1.

For V ⩾ 1 and ε > 0 with V εc2/2 > 2C and V ε > c0 we have

H(V ) � H(V ε)
εν1

,

where ν1 = ν1(C, c0, c1, c2) is positive and the implied constant depends at most on C, 
C ′ and ci.

Proof. For a prime p > V ε we have pc2/2 > 2C due to the assumption V εc2/2 > 2C. 
Now let j0 := 1 + [4/c2 + 2c1/c2] so that j0c2 ⩾ 4 + 2c1. Then −j0c2/2 ⩽ −c1 − 2, which 
can be combined with pc2/2 > 2C to show that

(Cp−c2)j0 ⩽ p−j0c2/2 ⩽ p−c1−2.

By (2.1) and the fact that C > 1 we see that

∞ ∑
j=1 

CjF (pj) ⩽ j0C
j0
c0
p 

+pc1
∞ ∑

j=1+j0

(Cp−c2)j ⩽ j0C
j0
c0
p 

+pc12(Cp−c2)j0 ⩽ j0C
j0
c0
p 

+ 2 
p2 ,

which is at most ν1/p, where ν1 is a positive constant that depends at most on C and 
ci. We infer that
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∏
p∈(V ε,V )

⎛⎝1 +
∞ ∑
j=1 

CjF (pj) 
1 − F (p)

⎞⎠ ⩽
∏

p∈(V ε,V )

(
1 + ν1/p 

1 − c0/p

)
�

∏
p∈(V ε,V )

(
1 + 1 

p

)ν1

� 1 
εν1

,

(2.3)
with an implied constant that depends at most on C and ci.

We can now use (2.3) to bound H(V ). Each positive integer n can be written uniquely 
as n = n0n1, where P+(n0) ⩽ V ε and P−(n1) > V ε. We have G(n0n1) ⩽ G(n0)CΩ(n1)

by equation (2.2) and together with the multiplicativity of F we obtain

H(V ) ⩽
∑
n0∈N

P+(n0)⩽V ε

F (n0)G(n0)
∏
c0<p
p|n0

(1−F (p))−1
∑
n1∈N

P−(n1)>V ε

P+(n1)<V

CΩ(n1)F (n1)
∏
c0<p
p|n1

(1−F (p))−1.

The assumption V ε > c0 shows that every prime p > V ε satifies p > c0, hence, the sum 
over n1 equals

∏
V ε<p<V

⎛⎝1 + (1 − F (p))−1
∞ ∑
j=1 

CjF (pj)

⎞⎠ .

Alluding to (2.3) and noting that the sum over n0 equals H(V ε) concludes the proof. �
Lemma 2.6. Let F be as in Lemma 2.1 and G be as in Lemma 2.4. Fix any positive real 
number β0. For sufficiently large Υ,Ψ ⩾ 2 and for all � > 0 satisfying

� ⩽ min
{c2

2 
log Ψ, β0

}
we have

∑
a>Υ

P+(a)<Ψ

F (a)G(a)
∏
c0<p
p|a

(1 − F (p))−1 � exp
(
−�

log Υ
log Ψ

)∑
a⩽Ψ

F (a)G(a)
∏
c0<p
p|a

(1 − F (p))−1,

where the implied constant depends at most on C, β0 and ci.

Proof. Taking Ψ = Υε and β0 = � = 1 in Lemma 2.4 shows that

∑
a>Υ

P+(a)<Υε

F (a)G(a)
∏
c0<p
p|a

(1 − F (p))−1 � H(Υε) 
exp(1/ε) ,

where the implied constant depends at most on C, C ′ and ci. Taking a sufficiently small 
ε = ε0 in terms of C and ci makes the right-hand side be ⩽ H(Υε0)/2. Furthermore, by 
the definition of H we have
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H(Υε0) ⩽
∑
a⩽Υ

P+(a)<Υε0

F (a)G(a)
∏
c0<p
p|a

(1 − F (p))−1 +
∑
a>Υ

P+(a)<Υε0

F (a)G(a)
∏
c0<p
p|a

(1 − F (p))−1,

thus,

H(Υε0) ⩽
∑
a⩽Υ

F (a)G(a)
∏
c0<p
p|a

(1 − F (p))−1 + H(Υε0)
2 

.

Hence,

H(Υε0) ⩽ 2
∑
a⩽Υ

F (a)G(a)
∏
c0<p
p|a

(1 − F (p))−1.

Thus, by Lemma 2.5 we infer that

H(Ψ) � H(Ψε0)
εν1
0

�
∑
a⩽Ψ

F (a)G(a)
∏
c0<p
p|a

(1 − F (p))−1.

We conclude the proof by injecting this estimate into Lemma 2.4. �
Lemma 2.7. Let F be as in Lemma 2.1 and G be as in Lemma 2.4. Fix any positive 
constant γ and assume that for every prime p we are given a constant c(p) in the interval 
[0, γ/p]. Then for all T ⩾ 1 we have∑

a⩽T

F (a)G(a)
∏
p|a 

(1 + c(p)) ⩽ 2γγ
′ ∑
a⩽T

F (a)G(a),

where γ′ = 1 + 2(1 + c1)/c2)c0C1+2(1+c1)/c2 + C ′(2c2/2 − 1)−1.

Proof. Extending multiplicatively the function c to positive square-free integers we get∏
p|a

(1 + c(p)) =
∑
d|a

μ(d)2c(d).

This turns the sum in the lemma into∑
a⩽T

F (a)G(a)
∑
d|a

μ(d)2c(d) =
∑
bd⩽T

μ(d)2c(d)F (bd)G(bd).

By assumption there exists C ′ such that G(ab) ⩽ G(a) min{CΩ(b), C ′bc2/2}. By 
Lemma 2.3 with ε = c2/2 we see that G(n′n) ⩽ G(n′)H(n) for all coprime n, n′, where H
is the multiplicative function given by H(pe) = min{Ce, C ′pec2/2} for e ⩾ 1 and primes 



20 S. Chan et al. / Journal of Number Theory 273 (2025) 1--36 

p. We factor b = b0b1, where b1 is coprime to d and each prime divisor of b0 divides d. 
Thus,

F (bd)G(bd) = F (b0b1d)G(b0b1d) ⩽ F (b0d)F (b1)H(b0d)G(b1),

hence, the sum is

⩽
∑
b1⩽T

F (b1)G(b1)
∑

b0d⩽T/b1
p|b0⇒p|d

gcd(b1,d)=1

μ(d)2c(d)F (b0d)H(b0d).

We will show that the inner double sum over b0 and d converges, and we will also upper 
bound the value that it attains. Dropping the condition b0d ⩽ T/b1 we can write it as ∏

p(1 + Ep), where

Ep =
∑

β,δ∈Z∩[0,∞)
(β,δ) �=(0,0)
β>0⇒δ>0

μ(pδ)2c(pδ)F (pβ+δ)H(pβ+δ) = c(p)
∑
β⩾0

F (pβ+1)H(pβ+1)

and the product is taken over all primes p ∤ b1. Let B be the least integer satisfying 
2(1 + c1) ⩽ (B + 1)c2. To estimate the contribution of β ⩽ B we use c(p) ⩽ γ/p to get

∑
0⩽β⩽B

c(p)F (pβ+1)H(pβ+1) ⩽ γ

p 

∑
0⩽β⩽B

F (pβ+1)Cβ+1 ⩽ γ(B + 1)c0C1+B

p2 .

To bound the contribution of the remaining terms we use F (pe) ⩽ pc1−ec2 to get∑
β⩾1+B

c(p)F (pβ+1)H(pβ+1) ⩽ C ′γp−1+c1
∑

β⩾1+B
p−(β+1)c2/2.

This is at most

C ′γp−1+c1p−(B+2)c2/2
∑
β⩾0

2−(β+1)c2/2 = C ′γ(2c2/2 − 1)−1

p1−c1+(B+2)c2/2
.

The exponent of p in the right-hand side is strictly larger than 2 owing to our definition 
of B. We have thus shown that for all primes p one has 0 ⩽ Ep ⩽ B′p−2, where

B′ := γ(B + 1)c0C1+B + C ′γ(2c2/2 − 1)−1.

By the definition of B we have 2(1 + c1) > Bc2, hence, B′ ⩽ D′, where

D′ := γ(1 + 2(1 + c1)/c2)c0C1+2(1+c1)/c2 + γC ′(2c2/2 − 1)−1,

hence, 
∏

p(1 + Ep) ⩽
∏

p(1 + p−2D′) ⩽
∏

p(1 + p−2)D′ ⩽ ζ(2)D′ ⩽ 2D′ . �
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Lemma 2.8. Fix a positive constant α1 and let g : N → [0,∞) be a multiplicative function 
for which g(p) ⩽ α1/p for all primes p. Then for all a ∈ N, α2, α3 > 0 and x ⩾ 2 we 
have ∑

m∈N,gcd(m,a)=1
p|m⇒p∈(α1,x

α2 )

μ(m)2g(m)
∏

α1<p⩽xα3

p∤am

(1 − g(p))2 � C
∏

α1<p⩽xmin{α2,α3}

p∤a

(1 − g(p)),

where

C := 1[α2 ⩽ α3]
∏

xα2<p⩽xα3

p∤a

(1 − g(p))2 + 1[α2 > α3]
∏

xα3<p⩽xα2

p∤a

(1 − g(p))−1

and the implied constant depends on α1 but is independent of a, α2, α3 and x.

Proof. Let P be the product of all primes in (α1, x
α2) that do not divide a. Using that 

g is multiplicative and g ⩾ 0 we see that the sum over m is∑
m|P

g(m)
∏

α1<p⩽xα3

p∤am

(1 − g(p))2 =
∏

α1<p⩽xα3

p∤a

(1 − g(p))2
∑
m|P

g(m)
∏

α1<p⩽xα3

p|m

(1 − g(p))−2

=
∏

α1<p⩽xα3

p∤a

(1 − g(p))2
∏

α1<p⩽xα2

p∤a,p>xα3

(1 + g(p))
∏

α1<p⩽xα2

p∤a,p⩽xα3

(
1 + g(p) 

(1 − g(p))2

)
.

The assumption g(p) ⩽ α1/p implies that g(p) < 1 whenever p > α1, thus, we can use 
the approximations

1 + ε = (1 − ε)−1(1 + O(ε2)), 
(

1 + ε 
(1 − ε)2

)
= (1 − ε)−1(1 + O(ε2))

with ε = g(p) respectively in the second and third product. This will produce

�
∏

α1<p⩽xα3

p∤a

(1 − g(p))2
∏

α1<p⩽xα2

p∤a

(1 − g(p))−1 � C
∏

α1<p⩽xmin{α2,α3}

p∤a

(1 − g(p))

with implied constants that depend at most on α1. This is because 
∏

p(1 + O(g(p)2))
converges absolutely due to the assumption g(p) = O(1/p). �

Let us recall a special case of [5, Lemma 6.3] here:

Lemma 2.9 (Fundamental lemma of Sieve Theory). Let κ > 0, y > 1. There exist se
quences of real numbers (λ±

m) depending only on κ and y with the following properties:
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λ±
1 = 1, (2.4)

|λ±
m| ⩽ 1 if 1 < m < y (2.5)

λ±
m = 0 if m ⩾ y, (2.6)

and for any integer n > 1, ∑
m|n 

λ−
m ⩽ 0 ⩽

∑
m|n 

λ+
m. (2.7)

Moreover, for any multiplicative function f(m) with 0 ⩽ f(p) < 1 and satisfying

∏
w⩽p<z

(1 − f(p))−1 ⩽
(

log z
logw

)κ(
1 + K

logw

)
(2.8)

for all 2 ⩽ w < z ⩽ y we have

∑
m|P (z)

λ±
mf(m) =

(
1 + O

(
e−σ

(
1 + K

log z

)10
))∏

p⩽z

(1 − f(p)), (2.9)

where P (z) is the product of all primes p ⩽ z and σ = log y/ log z ⩾ 1, the implied 
constant depending only on κ.

Lemma 2.10. Let g : N → [0, 1) be as in Lemma 2.8 and assume that there exist constants 
α2, α3 such that

∏
w⩽p<z

(1 − g(p))−1 ⩽
(

log z
logw

)α2 (
1 + α3

logw

)

for all 2 ⩽ w < z. Fix any constants ξ1, ξ2 ∈ (0, 1), Λ1,Λ2 > 0 and assume that we are 
given a finite set of non-zero integers S = {s1, . . . , sN} and a set of non-negative real 
numbers x, a1, . . . , aN such that for all d ⩽ xξ1 one has∑

1⩽n⩽N
d|sn

an = g(d)x(1 + ε1) + ε2,

where εi are real numbers that satisfy

|ε1| ⩽ Λ1
∏

α1<p⩽x
p∤d

(1 − g(p))2 and |ε2| ⩽ Λ2x
1−ξ2 .

Fix any constants ξ3 ∈ (0, ξ1) and ξ4 > 0, let Γ = max{1/ξ4, 1/(ξ1 − ξ3), 1/ξ2} and 
assume that log x > 4α3Γ.
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Then, for all b ∈ N satisfying b ⩽ xξ3 we have∑
1⩽n⩽N,b|sn

p⩽xξ4 and p∤b⇒p∤sn

an ⩽ C0

(
Γα2xg(b)

∏
p⩽x
p∤b

(1 − g(p)) + x1−ξ2/2
)
,

where C0 is a positive constant that is independent of b, x and ξ4.

Proof. Let γ = min{(ξ1 − ξ3)/2, ξ2/4, ξ4}. We employ Lemma 2.9 with

κ = α2,K = α3, y = xmin{ξ1−ξ3,ξ2/2}, f(p) = g(p)1[p > α1 & p ∤ b], z = xγ ,

where α1 is as in Lemma 2.8. To verify (2.8) we note that for all α1 < w′ < z′ one has

∏
w′⩽p<z′

1 
1 − f(p) =

∏
w′⩽p<z′

p∤b

1 
1 − g(p) ⩽

∏
w′⩽p<z′

1 
1 − g(p) ⩽

(
log z′

logw′

)α2 (
1 + α3

logw′

)
.

Dfine P to be the product of all primes p ∈ (α1, z] that do not divide b. Then the 
cardinality in the lemma is bounded by∑

1⩽n⩽N,b|sn
gcd(sn,P)=1

an =
∑

1⩽n⩽N
b|sn

an
∑
m|sn
m|P

μ(m) ⩽
∑

1⩽n⩽N
b|sn

an
∑
m|sn
m|P

λ+
m =

∑
m|P

λ+
m

∑
1⩽n⩽N
bm|sn

an,

where we used (2.4) and (2.7) in the inequality. By (2.5) the only m that contribute 
must satisfy bm ⩽ by ⩽ bxξ1−ξ3 ⩽ xξ1 . This allows us to use the assumption, thus,∑

m|P
λ+
m

∑
1⩽n⩽N
bm|sn

an = xg(b)
∑
m|P

λ+
mg(m) + ε3 + ε4,

where we used (2.5) and the coprimality of b and m, and the εi are real numbers that 
satisfy

|ε3| ⩽ Λ2yx
1−ξ2 , |ε4| ⩽ Λ1xg(b)

∑
m|P

g(m)
∏

α1<p⩽x
p∤bm

(1 − g(p))2.

Our choice of y makes sure that yx1−ξ2 ⩽ x1−ξ2/2, which is acceptable. Note that ξ2 < 1
hence γ < 1. Thus, when applying Lemma 2.8 with α2 = γ, α3 = 1 one sees that the 
factor C appearing in the lemma is at most 1. This leads to the bound

⩽ Λ3

(
xg(b)

∣∣∑
m|P

λ+
mg(m)

∣∣+ x1−ξ2/2 + xg(b)
∏

α1<p⩽xγ

p∤b

(1 − g(p)
)
,



24 S. Chan et al. / Journal of Number Theory 273 (2025) 1--36 

for some positive real number Λ3 that is independent of b, x and ξ4. Note that g(m) =
f(m) for all m | P, thus, by (2.9) we obtain∣∣∑

m|P
λ+
mg(m)

∣∣ =
∣∣∑
m|P

λ+
mf(m)

∣∣ ⩽ Λ4
∏

α1<p⩽z

(1 − f(p)) = Λ4
∏

α1<p⩽xγ

p∤b

(1 − g(p)),

for some positive real number Λ4 that is independent of b, x and ξ4. We have so far 
obtained the bound

Λ5

(
xg(b)

∏
α1<p⩽xγ

p∤b

(1 − g(p)) + x1−ξ2/2
)

for some positive real number Λ5 that is independent of b, x and ξ4. It remains to upper
bound the product over p. For this, we write∏

α1<p⩽xγ

p∤b

(1 − g(p)) ⩽
∏

α1<p⩽x
p∤b

(1 − g(p))
∏

xγ<p⩽x

(1 − g(p))−1

and use our assumptions to upper-bound it by

⩽
∏

α1<p⩽x
p∤b

(1 − g(p))
(

log x 
log xγ

)α2 (
1 + α3

γ log x

)
⩽ Λ6γ

−α2
∏

α1<p⩽x
p∤b

(1 − g(p)),

whenever log x > α3/γ and where Λ6 is a positive real number that is independent 
of b, x and ξ4. To conclude the proof note that 1/γ ⩽ 4Γ, hence, γ−α2 ⩽ (4Γ)α2 and 
log x > α3/γ due to log x > 4Γα3. �
Lemma 2.11. Fix any positive c0, c1, c2, assume that F is as in Lemma 2.1 and that there 
exists c3 ⩾ 0 such that for all primes p and integers e ⩾ 2 we have F (pe) ⩽ c3/p

2. Fix 
any C,C ′ > 0 and assume that G : N → [0,∞) is a multiplicative function such that for 
all integers a one has G(a) ⩽ min{CΩ(a), C ′ac2/2}.

Then for all x ⩾ 1 we have

∑
n⩽x

P−(n)>c0

F (n)G(n) � exp

⎛⎝ ∑
c0<p⩽x

F (p)G(p)

⎞⎠ ,

where the implied constant depends at most on ci and C,C ′.

Proof. We dfine a multiplicative function H ′ such that when p is prime and e ⩾ 2 one 
has H ′(pe) = min{Ce, C ′pc2e/2} while H ′(p) = G(p). We claim that G(a) ⩽ H ′(a) for 
all a ⩾ 1. Write a = pα1

1 · · · pαk

k where pi are distinct primes and αi ⩾ 1 for all i so that
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G(a) = G((
∏
i<k

pαi
i )pαk

k ) = G(
∏
i<k

pαi
i )G(pαk

k ) ⩽ G(
∏
i<k

pαi
i )H ′(pαk

k ).

Similarly,

G(
∏
i<k

pαi
i ) = G((

∏
i<k−1

pαi
i )pαk−1

k−1 ) ⩽ G(
∏
i<k

pαi
i )H ′(pαk−1

k−1 ).

Continuing likewise until all factors pαi
i are exhausted we get G(a) ⩽

∏
i⩽k H

′(pαi
i ) =

H ′(a).
Hence, G(b) ⩽ H ′(b) for all b and therefore the sum in the lemma is at most

∑
n⩽x

P−(n)>c0

F (n)H ′(n) ⩽
∏
n⩽x

P−(n)>c0

⎛⎝1 +
∑
e⩾1 

F (pe)H ′(pe)

⎞⎠

⩽ exp

⎛⎝ ∑
c0<p⩽x,e⩾1

F (pe)H ′(pe)

⎞⎠
due to the inequality 1 + z ⩽ ez valid for all z ∈ R. Let E be a positive integer that will 
be specfied later. The contribution of e > E is at most

pc1
∑
e>E

p−ec2H ′(pe) ⩽ C ′pc1
∑
e>E

p−ec2/2 ⩽ C ′pc1−Ec2/2(1 − 2−c2/2)−1 � pc1−Ec2/2.

Taking E to be the least positive integer satisfying 2(c1 + 2)/c2 ⩽ E yields the bound 
� p−2. The contribution of the terms in the interval [2,E] is

⩽
∑

2⩽e⩽E

F (pe)H ′(pe) ⩽
∑

2⩽e⩽E

F (pe)Ce ⩽ c3
p2

∑
2⩽e⩽E

Ce � 1 
p2 .

Thus, the overall bound becomes

exp

⎛⎝ ∑
c0<p⩽x,e⩾1

F (pe)H ′(pe)

⎞⎠ ⩽ exp

⎛⎝ ∑
c0<p⩽x

F (p)H ′(p)

⎞⎠ exp

⎛⎝ ∑
c0<p⩽x

O(1/p2)

⎞⎠ ,

which is sufficient because H ′(p) = G(p). �
3. The upper bound

3.1. Start of the proof

Let us dfine the constants

η1 := 1 
α

min
{

ξ

20 ,
θ

2 ,
1
2

}
, η2 := min

{
λ1

4(1 + λ1 + λ2)
,
1
2

}
. (3.1)
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Dfine

Z := Mαη1 . (3.2)

For a ∈ A we factorise ca = pe11 · · · perr with primes p1 < · · · < pr and exponents ei ⩾ 1. 
Let da be the unique integer of the form da := pe11 · · · peii satisfying

pe11 · · · peii ⩽ Z < pe11 · · · peii p
ei+1
i+1 (3.3)

and let ba := p
ei+1
i+1 · · · perr . By construction we have

P+(da) < P−(ba), (3.4)

gcd(da, ba) = 1, (3.5)

da ⩽ Z. (3.6)

The following cases will be considered:

(i) P−(ba) ⩾ Zη2 ,
(ii) P−(ba) < Zη2 and da ⩽ Z1/2,
(iii) P−(ba) ⩽ (logZ) log logZ and Z1/2 < da ⩽ Z,
(iv) (logZ) log logZ < P−(ba) < Zη2 and Z1/2 < da ⩽ Z.

3.2. Case (i)

The plan in this case is to show that ba has few prime divisors so that ca has few prime 
divisors in a large interval. The density of a with the latter property will be bounded by 
the Brun sieve.

For the a ∈ A in the present case we have

Mαη1η2Ω(ba) = Zη2Ω(ba) ⩽ P−(ba)Ω(ba) ⩽ ba ⩽ ca ⩽ B̃Mα

and therefore Ω(ba) ⩽ 1+log B̃
η1η2

for M > e1/α. By (3.5) we have gcd(da, ba) = 1, thus 
leading via Definition 1.2 to

f(ca) ⩽ f(da)A
1+log B̃
η1η2 .

Now let d := da, so that d ⩽ Z and d | ca. Furthermore, ca is coprime to every prime 
in the interval [2, Zη2) that does not divide d. This is because every prime that divides 
ca must necessarily divide da or ba and in our case all prime divisors of ba are in the 
interval [Zη2 ,∞). In particular, ca is coprime to every prime in the interval (B,Zη2) that 
is coprime to d. Dfine
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P :=
∏

p∈(B,Zη2 )
p∤d

p.

We obtain ∑
a∈A

case (i)

χT (a)f(ca) ⩽ A
1+log B̃
η1η2

∑
d⩽Z

f(d)
∑

a∈A,d|ca
gcd(P,ca)=1

χT (a).

To deal with the coprimality condition we employ Lemma 2.10 with

S = {ca : a ∈ A, χT (a) > 0}, {an : 1 ⩽ n ⩽ N} = {χT (a) : a ∈ A, χT (a) > 0}

and x = M, g = h, α1 = B,α2 = κ, α3 = K, ξ1 = θ, ξ2 = ξ, b = d, ξ3 = αη1, ξ4 = αη1η2. 
The assumption ξ3 < ξ1 is satified due to (3.1). Thus,∑

a∈A,d|ca
gcd(P,ca)=1

χT (a) � MhT (d)
∏

B<p⩽M
p∤d

(1 − hT (p)) + M1−ξ/2,

where the implied constant is independent of d,M and T but is allowed to depend on 
α, η1, η2,K, κ, λi, θ and ξ. This gives the overall bound

∑
a∈A

case (i)

χT (a)f(ca) � A
1+log B̃
η1η2

∑
d⩽Z

f(d)

⎧⎪⎪⎨⎪⎪⎩MhT (d)
∏

B<p⩽M
p∤d

(1 − hT (p)) + M1−ξ/2

⎫⎪⎪⎬⎪⎪⎭ .

Since f(n) � n, we infer that∑
d⩽Z

f(d)M1−ξ/2 � Z2M1−ξ/2 � M2αη1+1−ξ/2 ⩽ M1−ξ/3

due to (3.1). This leads us to∑
a∈A

case (i)

χT (a)f(ca) � M
∑
d⩽Z

f(d)hT (d)
∏

B<p⩽M
p∤d

(1 − hT (p)) + M1−ξ/3.

We can now extend the sum over d to all d ⩽ M due to (3.1) that guarantees that 
Z ⩽ M . Combining this together with Lemma 2.7 for F = hT , G = f and c(p) =
−1 + (1 − hT (p))−1 yields∑

a∈A
case (i)

χT (a)f(ca) � M
∏

B<p⩽M

(1 − hT (p))
∑
d⩽M

f(d)hT (d) + M1−ξ/3. (3.7)
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3.3. Case (ii)

The main idea is to show that the exponent of P−(ba) in the prime factorisation of 
ca is large and then prove that this cannot happen too often.

Let q := P−(ba). Equation (3.3) and the definition of case (ii) respectively show

Z < daq
vq(ba), da ⩽ Z1/2,

thus, qvq(ba) > Z1/2. For a prime p, we take mp to be the smallest positive integer such 
that pmp > Z1/2 and we take np to be the largest positive integer such that pnp ⩽ Mθ. 
We set fp = min(mp, np). Then we always have

pfp >
1 
p
Mmin{αη1/2,θ} = Mαη1/2

p 
. (3.8)

Also observe that qfq | ca (by qfq | qmq and qmq | ca) and qfq ⩽ Mθ. Thus, we have 
shown that there exists a prime q < Zη2 (due to the definition of case (ii)) that has the 
properties qfq | ca, qfq ⩽ Mθ and (3.8). Hence, by Definition 1.6 we obtain∑
a∈A

case (ii)

χT (a) ⩽
∑

prime q<Zη2

Cqfq (T ) �
∑

prime q<Zη2

(hT (qfq )M+M1−ξ) ⩽ MS+Zη2M1−ξ,

where S :=
∑

q<Zη2 hT (qfq ). By (1.3) and (3.8) the sum S is at most

∑
q<Zη2

q−fqλ1+λ2 ⩽ M−λ1αη1/2
∑

q<Zη2

qλ1+λ2 ⩽ M−λ1αη1/2Zη2(1+λ1+λ2).

This equals M−ρ, where

ρ := λ1αη1/2 − αη1η2(1 + λ1 + λ2) = αη1(λ1/2 − η2(1 + λ1 + λ2))

is strictly positive owing to (3.1). Fix any δ > 0. By Definition 1.2 we have f(ca) ⩽ Cc
δ/α
a

for all a ∈ A, where C is positive and depends on α and δ. Thus, (1.8) shows that for 
all a ∈ A one has f(ca) � CM δ. We have therefore proved that for every δ > 0 one has∑

a∈A
case (ii)

χT (a)f(ca) � C
(
M1−ρ+δ + Zη2M1−ξ+δ

)
= C

(
M1−ρ+δ + M1−ξ+δ+αη1η2

)
� CM1+δ−β1 ,

(3.9)

where β1 := min {αη1(λ1/2 − η2(1 + λ1 + λ2)), ξ − αη1η2} is positive due to (3.1)
and the fact that η2 < 1. Furthermore, the implied constant depends at most on 
α, B̃, δ,K, κ, λi, θ and ξ.
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3.4. Case (iii)

The key idea in this case is to show that da is divisible only by very small primes and 
then show that this does not happen too often. We have

∑
a∈A

case (iii)

χT (a) ⩽
∑

Z1/2<d⩽Z
P+(d)⩽(logZ) log logZ

∑
a∈A
d|ca

χT (a) =
∑

Z1/2<d⩽Z
P+(d)⩽(logZ) log logZ

Cd(T ).

Equation (3.1) makes sure that d ⩽ Z ⩽ Mθ, thus, we can employ the estimate in 
Definition 1.6. It yields the upper bound

�
∑

Z1/2<d⩽Z
P+(d)⩽(logZ) log logZ

(M1−ξ + hT (d)M) ⩽ ZM1−ξ + M
∑

Z1/2<d⩽Z
P+(d)⩽(logZ) log logZ

hT (d).

To bound the sum over d we employ Lemma 2.1 with

F = hT , c0 = B, c1 = λ2, c2 = λ1, x = Z, z = Z1/2.

It shows that the sum over d is

� Z−c/2Mo(1) = M−αη1c/2+o(1) ⩽ M−αη1c/4,

where

c := min
{
λ1

2 
,

1 
1 + [2λ2/λ1]

}
.

The overall bound becomes

� ZM1−ξ + M1−αη1c/4 = M1−ξ+αη1 + M1−αη1c/4 � M1−β2 ,

where

β2 := min{ξ − αη1, αη1c/4}

is strictly positive by (3.1). Bringing everything together we conclude that for every 
δ > 0 one has

∑
a∈A

case (iii)

χT (a)f(ca) � M1+δ−β2 . (3.10)
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3.5. Case (iv)

The main idea is to use the fact that ca/da has no small prime divisors and then apply 
the Brun sieve to see that this can happen with low probability, even when one counts 
with the additional weight AΩ(ca/da).

Recalling (3.5) and Definition 1.2 we see that

f(ca) = f(daba) ⩽ f(da)AΩ(ba).

Thus, letting d = da, we infer that∑
a∈A

case (iv)

χT (a)f(ca) �
∑

Z1/2<d⩽Z

f(d)
∑

*

a∈A
d|ca

χT (a)AΩ(ca/d), (3.11)

where 
∑ * is subject to the further conditions

gcd(d, ca/d) = 1 and (logZ) log logZ < P−(ca/d) < Zη2 .

It would be easier to estimate the sum over a in the right-hand side of (3.11) if the 
summand AΩ(ca/d) was a constant. With this in mind we freeze the value of P−(ca/d)
as follows: let

s :=
[

logZ
logP−(ca/d)

]
so that Z1/(s+1) < P−(ca/d) ⩽ Z1/s and s ∈ N ∩ [1, s0], where

s0 :=
[

logZ
log{(logZ)(log logZ)}

]
⩽ logZ

log logZ

for Z large enough. By (1.8) we have for a with χT (a) �= 0 that

Mαη1
Ω(ca/d)

s+1 =
(
Z1/(s+1))Ω(ca/d)

< P−(ca/d)Ω(ca/d) ⩽ ca/d ⩽ ca ⩽ B̃Mα

thus, for M ⩾ e we obtain

Ω(ca/d) ⩽ (s + 1)
(

1 
η1

+ log B̃
αη1

)
⩽ 2s

(
1 
η1

+ log B̃
αη1

)
= τs,

where τ = τ(α, B̃, η1) is a positive constant. Hence the right-hand side of (3.11) is

�
∑

1⩽s⩽s0

Aτs
∑

Z1/2<d⩽Z

P+(d)<Z1/s

f(d)
∑

a∈A,d|ca,gcd(d,ca/d)=1
Z1/(s+1)<P−(ca/d)⩽Z1/s

χT (a).
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The sum over a is at most ∑
a∈A,d|ca

p⩽Z1/(s+1) and p∤d⇒p∤ca

χT (a),

which will be bounded by employing Lemma 2.10 with

S = {ca : a ∈ A, χT (a) > 0}, {an : 1 ⩽ n ⩽ N} = {χT (a) : a ∈ A, χT (a) > 0},

g = hT , α1 = B,α2 = κ, α3 = K,x = M, ξ1 = θ, ξ2 = ξ, ξ3 = θ

2 , ξ4 = αη1

s + 1 , b = d,

where hT , B, κ,K, θ,M and ξ are as in Definition 1.6. The assumption b ⩽ xξ3 of 
Lemma 2.10 is satified due to (3.1). The further assumption log x > 4α3Γ is satified 
for all large enough M compared to K,α, η1, θ, ξ due to the inequality

Γ = max
{

1 + s

αη1
,
2
θ
,
1
ξ

}
�α,η1,θ,ξ 1 + s ⩽ 1 + s0 ⩽ 1 + logZ

log logZ �α,η1

logM
log logM .

We obtain the upper bound

� max
{

1 + s

αη1
,
2
θ
,
1
ξ

}κ

MhT (d)
∏

B<p⩽M
p∤d

(1 − hT (p)) + M1−ξ/2

� sκMhT (d)
∏

B<p⩽M
p∤d

(1 − hT (p)) + M1−ξ/2,

where the implied constants are independent of s, d and M . Thus, the right-hand side 
of (3.11) is

� M
∑

1⩽s⩽s0

Aτssκ
∑

Z1/2<d⩽Z

P+(d)<Z1/s

f(d)hT (d)
∏

B<p⩽M
p∤d

(1−hT (p))+M1−ξ/2
∑

1⩽s⩽s0

Aτs
∑
d⩽Z

f(d).

We have 
∑

d⩽Z f(d) � Z2 = M2αη1 by Definition 1.2. Thus,

M1−ξ/2
∑

1⩽s⩽s0

Aτs
∑
d⩽Z

f(d) � M1−ξ/2+2αη1s0A
τs0 ⩽ M1−ξ/3

due to (3.1) and the inequality s0 ⩽ (logZ)/(log logZ) which implies that

s0A
τs0 � A2τs0 = ZO(1/ log logZ) = Mo(1).

Thus, the right-hand side of (3.11) is
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� M
∑

1⩽s⩽s0

Aτssκ
∑

Z1/2<d⩽Z

P+(d)<Z1/s

f(d)hT (d)
∏

B<p⩽M
p∤d

(1 − hT (p)) + M1−ξ/3.

By (3.1) we have αη1 ⩽ 1, so that d ⩽ Z ⩽ M . Then the product over p is

⩽
∏

B<p⩽M
p∤d

(1 − hT (p)) =
∏

B<p⩽M

(1 − hT (p))
∏
B<p
p|d

(1 − hT (p))−1

and we get the bound

� M
∏

B<p⩽M

(1− hT (p))
∑

1⩽s⩽s0

Aτssκ
∑

Z1/2<d⩽Z

P+(d)<Z1/s

f(d)hT (d)
∏
B<p
p|d

(1− hT (p))−1 +M1−ξ/3.

We now bound the sum over d by alluding to Lemma 2.6 with

Υ = Z1/2,Ψ = Z1/s, F = hT , G = f, c0 = B, c1 = λ2, c2 = λ1, � = β0, C = A,

where � is dfined via 4Aτ = e�/2. This means that � depends on α,A, B̃, and η1. 
Hence, the sum over d is

� exp(−�s/2)
∑

d⩽Z1/s

f(d)hT (d)
∏
B<p
p|d

(1 − hT (p))−1.

We can extend the summation to all d ⩽ M since the summand is non-negative and 
Z1/s ⩽ Z ⩽ M . Thus, the right-hand side of (3.11) is

� M
∏

B<p⩽M

(1 − hT (p))
∑
d⩽M

f(d)hT (d)
∏
B<p
p|d

(1 − hT (p))−1
∑

1⩽s⩽s0

zssκ + M1−ξ/3,

where z = Aτe−�/2. By the definition of � we have z = 1/4, hence, the sum over s is 
bounded in terms of κ. Thus, we have shown that∑

a∈A
case (iv)

χT (a)f(ca) � M
∏

B<p⩽M

(1 − hT (p))
∑
d⩽M

f(d)hT (d)
∏
B<p
p|d

(1− hT (p))−1 +M1−ξ/3,

where the implied constant depends at most on α,A, B̃, B, λi, ηi, θ, ξ and κ. Alluding to 
Lemma 2.7 with F = hT and G = f yields∑

a∈A
case (iv)

χT (a)f(ca) � M
∏

B<p⩽M

(1 − hT (p))
∑
d⩽M

f(d)hT (d) + M1−ξ/3. (3.12)
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3.6. Proof of Theorem 1.9

The upper bound claimed in Theorem 1.9 derives from (3.7) and (3.12). Taking δ =
β1/2 in (3.9) and δ = β2/2 in (3.10) shows that cases (ii) and (iii) contribute � M1−β3 , 
where β3 is given by

min
{
αη1(λ1/2 − η2(1 + λ1 + λ2))

2 
,
ξ − αη1

2 
,
αη1λ1

16 
,

αη1

8(1 + [2λ2/λ1])

}
.

The term M1−ξ/3 that is present in (3.7) and (3.12) and the term M1−β3 may be absorbed 
in the upper bound from Theorem 1.9, thus concluding the proof.

4. The lower bound

Recall the notation of θ, ξ in Definition 1.6 and let κ,K be as in Definition 1.1. We 
introduce the constants

v = min
{

1, θmin{1/4, ξ/(4θ)} 
1 + 9κ + (log 2) + 10(logK)

}
, v0 := min{v/2, θ/2}.

Let z := Mv. For each c ∈ N we dfine

c� =
∏
p⩽z

pvp(c).

Note that for a positive integer d satisfying P+(d) ⩽ z, one has d = c� if and only if d
divides c and the smallest prime divisor of c/d strictly exceeds z. Classifying all a ∈ A
according to the value of d := c�a we thus obtain∑

a∈A
χT (a)f(ca) =

∑
d∈N

P+(d)⩽z

∑
a∈A
c�a=d

χT (a)f(ca) =
∑
d∈N

P+(d)⩽z

∑
a∈A,d|ca

P−(ca/d)>z

χT (a)f(ca).

Note that if d ⩽ Mv0 then P+(d) ⩽ d ⩽ Mv0 ⩽ z. Thus, since f ⩾ 0, we can restrict the 
sum over d to get the lower bound∑

a∈A
χT (a)f(ca) ⩾

∑
1⩽d⩽Mv0

∑
a∈A,d|ca

P−(ca/d)>z

χT (a)f(ca).

Using (1.8) and the inequality m ⩾ P−(m)Ω(m) leads to

Ω(ca/d) ⩽
log(ca/d) 

logP−(ca/d)
⩽ log ca

logP−(ca/d)
⩽ log(B̃Mα)

log(Mv0) ⩽ L0
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for some L0 = L0(B̃, α, v0) > 0. Therefore, by assumption (1.9), f(ca/d) � 1, where the 
implied constant depends at most on L0. Since P+(d) < P−(ca/d) we see that d, ca/d
are coprime, hence, the multiplicativity of f yields

f(ca) = f(d)f(ca/d) �B̃,α,v0
f(d).

Injecting this into the previous estimate will yield∑
a∈A

χT (a)f(ca) �B̃,α,v

∑
1⩽d⩽Mv0

f(d)
∑

a∈A,d|ca
P−(ca/d)>z

χT (a). (4.1)

We will now lower bound the sum over a ∈ A by arguments similar to the ones in the 
proof of Lemma 2.10. Using the sequence λ−

m from Lemma 2.9 we obtain∑
a∈A,d|ca

P−(ca/d)>z

χT (a) ⩾
∑
m|P

λ−
m

∑
a∈A
dm|ca

χT (a),

where P is the product of all primes p ⩽ z. Recall from Lemma 2.9 that λ−
m is supported 

on integers m ⩽ y. We dfine y = Mθε where ε = min{1/4, ξ/(4θ)}. Then the only m
that contribute to the sum satisfy

dm ⩽ dy = dMθε ⩽ Mv0+θε ⩽ Mθ/2+θε ⩽ Mθ,

thus, we can use the assumption on the growth of Cd(T ). It yields the estimate

MhT (d)
∑
m|P

λ−
mhT (m) + o

⎛⎜⎜⎝MhT (d)
∑
m|P
m⩽y

hT (m)
∏

B<p⩽M
p∤dm

(1 − hT (p))2

⎞⎟⎟⎠
+ O

⎛⎝M1−ξ
∑
m⩽y

1

⎞⎠ .

The last error term is � M1−ξy = M1−ξ+εθ. Since εθ < ξ/2, the error term becomes 
O(M1−ξ/2), which is acceptable.

By taking out the largest factor of each m | P that is a product of primes that satisfy 
p ⩽ B or p | d, the sum over m in the error term is

⩽
∏
p⩽B

(1 + hT (p))
∏

B<p|d
(1 + hT (p))

∑
m⩽y,gcd(m,d)=1
p|m⇒B<p⩽z

μ(m)2hT (m)
∏

B<p⩽M
p∤dm

(1 − hT (p))2.

The primes p ⩽ B contribute OB(1). Using Lemma 2.8 with α1 = B, xα2 = z = Mv, 
xα3 = M and a = d, and taking advantage of the fact that v ⩽ 1, we infer that
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�
∏

B<p|d
(1 + hT (p))

∏
Mv<p<M

p∤d

(1 − hT (p))2
∏

B<p<Mv

p∤d

(1 − hT (p)),

that is at most

�
∏

B<p|d
(1 − hT (p))−2

∏
B<p<M

(1 − hT (p)).

To treat the main term sum 
∑

m|P λ−
mhT (m) we use [5, Equation (6.40)], which is a more 

precise version of (2.8) in the case of λ−
m. Specifically, [5, Equation (6.40)] states that∑

m|P
λ−
mhT (m) > (1 − eβ−sK10)

∏
p⩽z

(1 − hT (p)),

where β = 1 + 9κ and s = (log y)/(log z). In our case one has s = εθ/v and a simple 
calculation shows that our definition of v ensures that 1 − eβ−sK10 ⩾ 1/2, thus,∑

m|P
λ−
mhT (m) �

∏
p⩽z

(1 − hT (p)).

Injecting our estimates in (4.1) gives∑
a∈A

χT (a)f(ca) � M
∏

p⩽Mv

(1 − hT (p))
∑

d⩽Mv0

f(d)hT (d) + o(MT ) + O(M1−ξ/2),

where

T =
∏

B<p⩽Mv

(1 − hT (p))
∑

1⩽d⩽Mv0

f(d)hT (d)
∏

B<p|d
(1 − hT (p))−2.

Letting c(p) = (1 − hT (p))−2 − 1 and applying Lemma 2.7 we obtain∑
1⩽d⩽Mv0

f(d)hT (d)
∏

B<p|d
(1 − hT (p))−2 �

∑
1⩽d⩽Mv0

f(d)hT (d).

This leads to∑
a∈A

χT (a)f(ca) � M
∏

p⩽Mv

(1 − hT (p))
∑

1⩽d⩽Mv0

f(d)hT (d) + O(M1−ξ/2).

Since hT (p) ∈ [0, 1) for p > Mv and using that v ⩽ 1, the product over p ⩽ Mv is at 
least 

∏
p⩽M (1 − hT (p)). It thus remains to prove

∑
1⩽d⩽Mv0

f(d)hT (d) �
∑

1⩽d⩽M

f(d)hT (d).
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Using the fact that f and hT are both multiplicative we can write∑
1⩽d⩽M

f(d)hT (d) =
∑

1⩽b⩽M
P+(b)⩽Mv0

f(b)hT (b)
∑

1⩽c⩽M/b

P−(c)>Mv0

f(c)hT (c)

and it suffices to prove that the sum over c is bounded independently of M . We apply 
Lemma 2.11 to get the upper bound

∑
1⩽c⩽M/b

P−(c)>Mv0

f(c)hT (c) � exp

⎛⎝ ∑
Mv0<p⩽M

f(p)hT (p)

⎞⎠ .

Recall that f(p) ⩽ A and hT (p) ⩽ B/p, so the sum over p is

�
∑

Mv0<p⩽M

1 
p

= O(1),

thus concluding the proof.
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