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Abstract

Rotations constitute one of the fundamental symmetries in physics,
characterized by their intricate group structure and infinite dimen-
sional representations. In contrast to classical rotations, quantum
mechanics unveils the SO(3) symmetry group structure, manifest-
ing in phenomena without classical counterparts, from angular mo-
mentum quantization to non-trivial addition of angular momenta.
While most studies of topological physics have focused on two-band
systems, the SO(3) symmetry group of quantum rotors offers an
inherently more complex platform with unprecedented possibili-
ties for exploring topological phenomena. Despite their ubiquity in
nature– from molecules to nanorotors– their potential for hosting
topological phases has remained largely unexamined.

In this thesis, wemainly focus on periodically driven linearmolecules
as a prototype for studying topological phenomena in quantum ro-
tors. Recent technological advances in coherent control of molecules,
particularly through precisely shaped laser pulses, have made it pos-
sible to investigate linear rotors in the context of topology. While
planar rotors have received some attention in recent years, three-
dimensional rotors–particularly linear molecules–harbor substan-
tially richer topological phenomena due to their non-abelian nature
and their additional angular degrees of freedom. We demonstrate
that these systems can host novel edge states and topological features
fundamentally impossible in planar systems.

We begin by establishing a theoretical bridge between periodically
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kicked rotors and "crystalline" lattices in angular momentum space.
Using non-interacting linear molecules as our primary example,
we show how quantum interference and revival patterns lead to
the possibility to simulate band models with arbitrary number of
bands N . While our framework applies to various quantum rotors,
including nanorotors and kicked Bose-Einstein condensates, linear
molecules provide an ideal experimental platform due to their above-
mentioned precise controllability.

The core of this work examines adiabatic dynamics of 3D quantum
rotors, establishing a geometric framework based on the Euler class
to characterize its non-abelian topology. The non-Hermitian nature
of the system enables novel braiding behaviors and topological tran-
sitions impossible in static systems, leading to an anomalous Dirac
string phase with edge states in each gap, even though the Berry
phases are all zero. These features can be directly observed through
molecular alignment and rotational level populations.

These findings establish quantum rotors as an alternative platform
for studying multi-band topological physics, while suggesting prac-
tical implementations for quantum computation where topological
protection could offer natural resilience against decoherence. The
rich structure of three-dimensional rotation groups, combined with
the tunability of topological features through driving parameters,
makes this platform particularly valuable for exploring fundamental
physics and developing quantum technologies.

viii



Acknowledgements

Looking back on this academic journey, I am grateful for the con-
stellation of people who helped shape these years into something
truly remarkable. First and foremost, I want to express my deepest
gratitude to Misha Lemeshko, whose trust enabled me to establish,
together with him, an entirely new research direction. His support
proved invaluable during the challenges of the pandemic, particu-
larly aftermy recovery froma severe case of COVID-19. Even through
these difficult times, his continued belief in my work and generous
support made it possible for me to develop new theoretical models
and share them at conferences and schools across Europe and the
United States. His mentorship struck that perfect balance between
guidance and independence, allowing our pioneering research to
flourish while keeping me on track.

I want to express my sincere appreciation to my committee mem-
bers who guided this thesis to completion. I want to thank Denitsa
Baykusheva andOlga Smirnova – I amparticularly inspired byOlga’s
work on chirality with molecules, and I’m thankful for her warm
hospitality during my visit to the Max Born Institute in Berlin. My
appreciation extends to Maksym Serbyn, who provided valuable
guidance during my rotation period, and to Ilya Averbukh – both of-
fered insightful perspectives during my qualifying exam that helped
establish my research direction.

During the early stages of my PhD, I was fortunate to work with two
exceptional mentors who profoundly influenced my scientific devel-

ix



opment: Areg Ghazaryan played an important role in the first part
of my PhD journey, guiding me through the intricacies of topological
physics with patience. His critical feedback and deep physical intu-
ition were instrumental in developing our project into a successful
publication. Equally formative was my collaboration with Alexios
Michailidis during my first rotation with Maksym Serbyn. Through
our work together I learned a lot about the numerical treatment of
many-body quantum physics and tensor networks.

At the Chicago March Meeting, I was very fortunate to meet Nur
Ünal, Robert-Jan Slager, and Adrien Bouhon, leading to an important
collaboration during the second half of my PhD. They taught me
the intricacies of multi-gap topology and helped me understand the
deeper mathematical structure behind non-abelian braiding and the
Euler class.

Over my years at ISTA, our research groupwas filled with wonderful
colleagues who came and went at different times: Enderalp, Li,
Artem, Giacomo, Igor, Katja, Wojciech, Mishka, Alberto, Georgios,
Ragheed, Florian, Mateja, Jinglun, Baptiste, Palina, andGulnaz: They
made the workplace feel welcoming and intellectually stimulating.
Together with Alberto, I organized regular arthouse movie nights at
my apartment, wherewe’ve explored cinema from Fellini’s classics to
Park Chan-wook’s contemporary masterpieces, often accompanied
by great dinners. These evenings of film, cuisine, and discussion have
added a wonderful personal dimension to our academic interactions.

I am grateful to Hossein Sadeghour for the opportunity to present
my recent work at ITAMP, which led to a fantastic collaboration with
Ceren Dag, Vasilis Rokaj, and Orianna Diessel during my stay in
Cambridge. I want to thank Matthew Fishman for his welcome at
the Flatiron Institute and for sharing his valuable insights into ten-
sor networks. My special thanks go to Tilman Enss and Andreas
Buchleitner, who have supported me since my Master’s and Bach-
elor’s studies respectively, and for their continued interest in my

x



work, hosting me in Heidelberg and Freiburg to present my recent
research.

My travels revealed a dimension very different from the academic
centers and megacities I saw in the US earlier – the vast expanses of
the Southwest and the national parks, with its iconic Grand Canyon.
I became completely captivated by these boundless landscapes. I’m
particularly thankful to Rishabh for sharing this 1000-kilometer jour-
ney around the Grand Canyon with me after the APS meeting.

For their meticulous proofreading, I thank Fabian, Fred, Andreas,
Joey, Philippe, Georgios, and Florian.

Working alongside Andrea and later Sofia as student representatives
in the Graduate School Association (2022-2024) was one of the most
rewarding experiences of my PhD. Their extraordinary dedication
and tireless commitment transformed our student community after
the pandemic. Together, we established initiatives that went far
beyond what we initially imagined – from organizing "Wine and
Whine" events to scientific trips to Budapest. I was particularly
delighted when we discovered what would become our PhD retreat
venue in a Slovak castle, which created a unique atmosphere for
scientific discussions within historic surroundings. I hope it will
continue to serve future generations of PhD students as a place for
both academic exchange and community building. Furthermore, I
want to acknowledge the Vienna Quantum Center (VCQ) and their
student representatives for creating a vibrant scientific community
through talks, retreats, summer schools, and christmas parties.

My scientific journey began when I participated in ’Jugend forscht’,
Germany’s premier youth science competition, which opened my
first window to the vast world of research. Now, years later, teaching
at the Deutsche Schülerakademie and Quantenakademie in Jülich
feels like coming full circle. I want to express my heartfelt thanks
to Kathi, Lisa and Dane, from whom I learned so much about the
art of teaching, and to the dedicated organizers of both academies

xi



who create these transformative experiences for young students. I’m
honored to have these opportunities to give back – to support and
encourage young minds in their journey of independent scientific
thinking, just as others once supported me.

I’m deeply indebted to additional friends who provided balance
and joy - Manas, Lukas, and Tobias for chess and board game nights;
Gökhan, Sasha, Raimel, Yunet, Deniz, Ayub, Andrea, Liliann, Daniel,
David, Adrian and Sarath – your friendship has been invaluable.

To my parents, who carved out a path of freedom different from
their own, your sacrifices and support made this journey possible.
Your life’s work became the foundation of my choices.

And to my partner Joey – for illuminating this scientific journey
with your unique perspective on human experience. Your talent
for introspection and psychological insight guided me through aca-
demic ivory tower labyrinths. During the isolation of the pandemic,
through paper rejections and thesis writing, you created moments
where physics merged with artistic expression, where scientific set-
backs gaves rise to musical inspirations, and where your grasp of
human complexity lent clarity to my own personal academic chal-
lenges.

xii



About the Author

After studies in physics at the Universities of Freiburg (BSc) and
Heidelberg (MSc), he worked on tipping elements at the Potsdam In-
stitute for Climate Impact Research (PIK) and developed predictive
analytics for renewable energies at a startup in Berlin. His path then
led him to join ISTA in 2019 to pursue research in quantum physics.

His research focuses on molecular quantum physics and driven topo-
logical phenomena. His doctoral work began with investigating
non-equilibrium many-body states with Maksym Serbyn, before
working on periodically driven molecules as a novel platform for
topological physics. He presented his research at various venues,
including APS March Meetings in Chicago (2022) and Las Vegas
(2023), the JuliaCon at MIT (2023) and gave invited talks at Har-
vard University, Heidelberg University, Max Born Institute Berlin,
and Max Planck Institute for Complex Systems Dresden. During
a research stay at ITAMP (Harvard) in late 2023, he investigated
topological edge states in cavity systems.

Alongside his research, he taught at the Deutsche SchülerAkademie
(DSA), covering topics from the philosophy of science fiction to the
historical foundations of quantum mechanics. As president of the
Graduate School Association (2022-2024), he organized PhD retreats,
coordinated student-faculty panels, and led a scientific exchange to
Budapest. When not exploring quantum phenomena, he enjoys
philosophical discussions and brings people together for music jam
sessions.

xiii



List of Collaborators and Publications

This thesis builds upon several research projects I conducted under
the supervision of Mikhail Lemeshko. While the results presented
here stem from published work, I independently created all figures
and wrote the main text.

During my first rotation project with Maksym Serbyn, I studied
the failure of the eigenstate thermalization hypothesis in chaotic and
non-integrable models with symmetries. Our investigation revealed
zero-modes with area-law scaling in their von-Neumann entropy [1].
In my main doctoral project, working with Mikhail Lemeshko and
Areg Ghazaryan, I investigated periodically-driven molecules. The
discovery of topological charges in this system constitute the central
theme of this thesis and were published in [2, 3].

A referee’s observation regarding the sudden approximation led to
a new research direction, resulting in [4]. This work provides the
foundation for Chapter 2. For my final project, I collaborated with F.
Nur Ünal, Adrien Bouhon, and Robert-Jan Slager at Cambridge Uni-
versity to study non-abelian charges and their braiding process. This
work, presented in [5] (under review), forms the core of Chapter 5.

During the course of my PhD, we produced the following works:

[1] Volker Karle, Maksym Serbyn, and Alexios A. Michailidis.
“Area-Law Entangled Eigenstates from Nullspaces of Lo-
cal Hamiltonians”. In: Physical Review Letters 127 (2021),
p. 060602. doi: 10.1103/PhysRevLett.127.060602.

xiv

https://doi.org/10.1103/PhysRevLett.127.060602


[2] VolkerKarle, AregGhazaryan, andMikhail Lemeshko. “Topo-
logical charges of periodically kicked molecules”. In: Phys-
ical Review Letters 130.10 (2023), p. 103202. doi: 10.1103/
PhysRevLett.130.103202.

[3] VolkerKarle andMikhail Lemeshko. “Die faszinierendeTopolo-
gie rotierender Quanten: Rotierende Moleküle in starken
Feldern”. In: Physik in unserer Zeit 55.1 (2024), pp. 28–33. doi:
10.1002/piuz.202301690.

[4] Volker Karle and Mikhail Lemeshko. “Modeling laser pulses
as δ kicks: Reevaluating the impulsive limit in molecular rota-
tional dynamics”. In: Physical Review A 109 (2024), p. 023101.
doi: 10.1103/PhysRevA.109.023101.

[5] Volker Karle, Mikhail Lemeshko, Adrien Bouhon, Robert-Jan
Slager, and F. Nur Ünal.Anomalous multi-gap topological phases
in periodically driven quantum rotors. 2024. arXiv: 2408.16848.

xv

https://doi.org/10.1103/PhysRevLett.130.103202
https://doi.org/10.1103/PhysRevLett.130.103202
https://doi.org/10.1002/piuz.202301690
https://doi.org/10.1103/PhysRevA.109.023101
https://arxiv.org/abs/2408.16848




Table of Contents

Abstract vii

Acknowledgements ix

About the Author xiii

List of Collaborators and Publications xiv

Table of Contents xvii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Topological physics . . . . . . . . . . . . . . . . . . 8
1.3 Non-equilibrium Floquet physics . . . . . . . . . . 13
1.4 Organization of the thesis . . . . . . . . . . . . . . 16

2 Rotating molecules with ultrashort pulses 19
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Laser induced rotation of molecules . . . . . . . . 21
2.3 The sudden approximation . . . . . . . . . . . . . . 29
2.4 Exact time-evolution of rotational wavepackets . . 45
2.5 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Lattices of angular momentum 53
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Floquet theory . . . . . . . . . . . . . . . . . . . . . 55

xvii



3.3 Quantum resonance of rotors . . . . . . . . . . . . 62
3.4 Dynamical localization . . . . . . . . . . . . . . . . 81
3.5 Periodically driven 3D rotors . . . . . . . . . . . . . 86
3.6 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . 99

4 Geometric phases of driven rotors 101
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2 Geometric phases . . . . . . . . . . . . . . . . . . . 103
4.3 Dirac cones and topological charges . . . . . . . . 116
4.4 Experimental signatures of Dirac cones . . . . . . . 122
4.5 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . 127

5 Non-abelian topological phases 129
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . 129
5.2 Non-Orientability and Dirac-strings . . . . . . . . 132
5.3 The triple-kicked rotor . . . . . . . . . . . . . . . . 140
5.4 Anomalous Dirac-String phase . . . . . . . . . . . 146
5.5 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . 148

6 Conclusion 149
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . 149
6.2 Future directions . . . . . . . . . . . . . . . . . . . 151

Bibliography 153

Appendix 185
Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Periodicity proofs . . . . . . . . . . . . . . . . . . . . . . 186

List of Figures 191

xviii



CHAPTER 1
Introduction

It has long been an axiom of mine that the little things are
infinitely the most important.

– Arthur Conan Doyle, A Case of Identity

1.1 Motivation
Amidst the enormous variety of physical phenomena, few concepts
appear as deceptively simple, yet prove as profoundly deep as the
notion of rotations. Indeed, the Hamiltonian that governs quantum
rotations – while arising from one of the most elementary non-trivial
Lie groups, SO(3) – unveils mathematical structures of astonishing
intricacy.

In this thesis, we shall embark on an odyssey through the quantum
mechanics of rotation. We will uncover synergies between molecular
and chemical physics, condensed matter theory, and the abstract
mathematics of geometry and topology – all emerging from the
infinite-dimensional representations of SO(3) and the delicate inter-
play between continuous and discrete symmetries that shape our
cosmos. Our analysis reveals that the study of molecular rotations
leads to an understanding that discloses new complexities born from
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1. Introduction

the interplay between the mathematical formalism, the peculiarities
of the quantum mechanical treatment, and the physical properties
of molecules.

Our experimental advances in controlling quantum systems have
largely focused on transitions of two-level systems [6]. When we
attempt to reduce complex phenomena such as molecular rotations
to such two level systems, we essentially restrict ourselves in ex-
ploring a minuscule corner of available Hilbert spaces. The full
structure of SO(3) quantum rotations offers a vastly more opulent
playground. While the classical theory of angular momentum has
been known for centuries, its quantum control applications remain
largely unexplored.

We begin with a historical perspective on quantum rotations, fol-
lowed by recent developments that motivate our research objectives
and guide the structure of this thesis.

1.1.1 A short history of rotations
The study of rotational motion has its roots in ancient astronomy.
Babylonian astronomerswere among the first to systematically record
celestial events, noting the periodic nature of celestial motions. Their
meticulous observations of the Moon, including deviations from uni-
form circular motion, laid the early groundwork for understanding
rotational dynamics [7]. The Babylonians excelled at identifying
patterns in the heavens and recognized that celestial bodies did not
always follow simple circular paths. This realization prompted them
to develop early geometrical models to explain these behaviors1.

1As Aaboe highlights [7], "Thus the astronomical tradition in the West is linked to Baby-
lonian astronomy. Mathematical astronomy was, however, not only the principal carrier and
generator of certain mathematical techniques, but it became the model for the new exact sciences
which learned from it their principal goal: to give a mathematical description of a particular class
of natural phenomena capable of yielding numerical predictions that can be tested against observa-
tions." Furthermore, Aaboe underlines the Babylonian contributions to the foundations of
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1.1. Motivation

Although Ptolemy’s geocentric model of the solar system with its
rotating spheres was incorrect, it required a basic understanding
of how angular velocity relates to radius2. Later, in the medieval
period, Islamic scholars like Ibn al-Shatir improved upon the Ptole-
maic system3, hence indirectly contributing to the theory of rotations.
European scholars, such as Jean Buridan, challenged the classical
Aristotelian physics, which, at its core, was unable to explain rota-
tions [11]. These scholars introduced concepts that would later lead
to the understanding of inertia and momentum. However, under-
standing the moment of inertia without a framework of differential
calculus proved to be a formidable challenge.

It was only in the 17th century that Newton and Leibniz provided
the mathematical foundation to describe continuously rotating bod-
ies with changing angular momenta and dynamic torques through
differential calculus. Although they attempted to write down the
equations for angularmomentum, they did not achievewhat reached
its pinnacle through the work of Euler in 1765 [12]. He derived the

scientific thought, suggesting that their qualitative models of celestial motion inspired
later advancements in astronomy. Although their methods did not achieve the precision
of later astronomical models, the qualitative insights they provided were instrumental in
shaping subsequent theories. Therein, it is also noted that the idea of representing celestial
motions through geometric constructs might have paved the way for future scholars, such
as Hipparchus and Ptolemy.

2The Ptolemaic system (developed in 150 ce) used an intricate arrangement of def-
erents (large circles) and epicycles (smaller circles) to explain planetary motion. While
mathematically powerful, its use of an equant point–which allowed for non-uniform
circular motion–faced objections from Islamic astronomers and later from Copernicus.
For philosophical rather than astronomical reasons, Copernicus rejected the equant and
instead added more circles to his heliocentric model to achieve the same result [8].

3Ibn al-Shatir was an Arab astronomer, mathematician, and engineer who lived from
1304 to 1375 in Damascus, Syria. He served as a muwaqqit (timekeeper) at the Umayyad
Mosque, where he was responsible for regulating the astronomically defined times of
prayer [9]. Ibn al-Shatir made significant contributions to astronomical instrumentation
and planetary theory. Most notably, he developed a geocentric model of planetary motion
thatwasmathematically identical to Copernicus’ later heliocentricmodel, raising questions
about the possible transmission of his ideas to Europe [10].
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1. Introduction

rotation of rigid bodies, which in modern notation reads

L̇ = L×Ω (1.1)

with the angular momentum vectorL and the angular velocity vector
Ω with components Jk/Ik, where Ik are the principal moments of
inertia4. These seemingly simple equations give rise to remarkably
diverse physical phenomena, ranging from the regular precession
of a spinning top to the chaotic motion of asymmetric rotors, where
the ratio of moments of inertia dictates the system behavior [13].
Moreover, the non-linear nature of these equations leads to fascinat-
ing phenomena such as the tennis racket instability, where rotation
around the intermediate axis becomes unstable [14–16]. This insta-
bility manifests dramatically in the Dzhanibekov effect5, where objects
flip when rotating around their intermediate axis.

The scientific revolution of quantum mechanics transformed not just
our understanding of nature, but the very language we use to de-
scribe it. Planck’s quantum hypothesis in 1900 [18] marked only the be-
ginning of this transformation – themathematical framework needed
to capture quantum phenomena remained elusive for decades [19].
Heisenberg’s breakthrough on the island of Helgoland in 1925 [20],
followed by Born and Jordan [21], provided the first rigorous math-
ematical framework through the so-called matrix mechanics. Von
Neumann’s work in 1927 [22] finally revealed self-adjoined opera-
tors as the natural language of quantum phenomena, ensuring two
crucial properties: the reality of eigenvalues and the conservation of
probability [19].6

4This will be explained in much more detail in Section 2.2.
5The Dzhanibekov effect, discovered by astronaut Vladimir Dzhanibekov during his

1985 mission aboard the Salyut Orbital Station, demonstrates how the tennis racket insta-
bility manifests in free-floating objects. When rotating around their intermediate principal
axis of inertia, objects undergo periodic flips without any external forces, a behavior fully
explained by Euler’s equations. This effect also offers exciting potential applications in
inertial navigation, where altering the distribution of spacecraft components can effectively
manipulate moments of inertia [17].

6The philosophical implications of quantummechanics have generated intense debate
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1.1. Motivation

The machinery of angular momentum operators developed by Pauli,
Dirac, Uhlenbeck, Goudsmit, and others became the basis of our
understanding of atomic structure, from elementary spin to molec-
ular rotations to collective electronic excitations in materials7. This
quantummechanical perspective unveiled a myriad of new phenom-
ena, where the quantization of angular momentum and the inherent
symmetries of the system dictate its behavior [25, 26].

Today, it has become clear that the Hamiltonian of quantum rotors
spans a remarkable range of physical systems. They show up in
driven Bose-Einstein condensates, manifest in rotating molecules,
and appear in systems as diverse as nanorotors or the rotational
behavior of non-spherical nuclei [27–32]. Perhaps even more in-
triguing is their manifestation as quasiparticles – rotational states of
excitons, polaritons, the newly-discovered Angulons, or Laughlin
quasi-holes [33–37]. Each incarnation offers a new window into
fundamental physics, revealing the connections between seemingly
disparate phenomena through the unifying concept of angular mo-
mentum.

since the 1920s. While the ’Copenhagen interpretation’ emerged as dominant after the 1927
Como and Solvay conferences, where Bohr presented his concept of complementarity,
its precise meaning remains contested. As Camilleri demonstrates [23], the interpreta-
tion spans diverse philosophical perspectives, from logical positivism to neo-Kantianism.
Even among its principal architects, there was significant disagreement: von Neumann,
Dirac, and Wigner either ignored or explicitly criticized Bohr’s notion of complementarity.
The term ’Copenhagen interpretation’ thus represents not a unified philosophical frame-
work, but rather a collection of related viewpoints addressing the fundamental nature
of measurement, reality, and human knowledge in quantum mechanics. This philosoph-
ical tension between mathematical formalism and physical interpretation continues to
generate discussion today [23].

7For a historical account of quantum mechanics and the spin in particular, see Wein-
berg [24], p.5. Notably, Weinberg emphasizes how attempts to resolve the relativistic spin
corrections led Schrödinger to his wave equation.
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1. Introduction

1.1.2 Modern developments in rotational physics
In recent years, a series of experiments have transformed our under-
standing of molecular structure and quantum rotations through the
use of high-intensity pulsed laser sources [38–42]. These tools have
revolutionized our ability to control and image molecular rotational
dynamics, enabling us to achieve molecular alignment in both one
and three dimensions with control over angular distributions [27,
43]. Quantum state tomography of rotational wavefunctions, once
considered cumbersome, has become possible through techniques
such as Coulomb explosion imaging and time-resolved x-ray diffrac-
tion [44, 45].

What makes this development fascinating is how it connects seem-
ingly disparate areas of physics. A linear molecule subjected to a
train of identical linearly polarized pulses exhibits behavior similar to
Anderson localization, a phenomenon first discovered in condensed
matter physics [46–48]. This is not merely an analogy; it is a physical
correspondence that reveals fundamental aspects about quantum
mechanics itself. The angular momentum lattice becomes a synthetic
dimension, where localization occurs in angular momentum space
rather than real space, yet still follows the same universal princi-
ples. This parallel illustrates how the lattice-like structure of pulse
trains can serve as a powerful tool for simulating condensed matter
systems [47, 49].

For quantum information science, quantum rotors provide a third
fundamental quantum state space, different from the widely studied
qudits and harmonic oscillators [50]. Recent experimental advances
in ion systems [51, 52], superconducting circuits [53, 54] and ultra-
cold molecules [55, 56] have made quantum rotor control increas-
ingly feasible. The SO(3) structure inherent to three-dimensional
rotors offers both naturally protected quantum gates through non-
abelian geometric phases and high-dimensional quantum encoding
in their infinite-dimensional Hilbert space [50, 57, 58]. Moreover,
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1.1. Motivation

polyatomic molecules extend these possibilities by accessing higher
symmetry groups. These non-abelian geometric phases that come
together with these groups enable novel schemes for topological
quantum error correction.

Perhaps the most remarkable aspect of molecular rotors is their abil-
ity to exhibit quantum phenomena at room temperature [27]. This
is not just experimentally convenient; it represents a fundamental
advantage for quantum simulation. The physics we observe in these
driven systems is diverse, encompassing Anderson Walls, Bloch
oscillations, topological edge states, and angular momentum trans-
port [59, 60]. Surprisingly, band theory, a cornerstone of solid-state
physics, describes these quantum rotors with unexpected effective-
ness [61]. This effectiveness hints at deeper principles we are only
beginning to understand. The periodic structure in angular momen-
tum space, induced by periodic driving, creates a synthetic crystal
structure where, as we will see, topology and geometry interplay in
novel ways.

Central to our approach is the manipulation of molecular rotation
using ultrashort, high-intensity laser pulses via off-resonant Raman
transitions. Previous studies of periodically driven three-dimensional
molecular rotors focused on quantum resonances [62], dynami-
cal localization [59, 60, 63–66], and zero-angular momentum edge
states [67, 68]. Moreover, recent advances in imaging molecular ro-
tational dynamics [38, 39, 41] and controlling their angular degrees
of freedom open new possibilities to probe kicked rotor physics.
Now, the time has come to redirect our focus in atomic and molec-
ular physics toward a paradigm that has already revolutionized
condensed matter physics.
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1. Introduction

1.2 Topological physics
The emergence of topological physics in the last decades has funda-
mentally transformed our understanding of quantum matter [69–
71]. While the field gained wide recognition with the Nobel Prize in
Physics awarded to Thouless, Haldane, and Kosterlitz in 2016 [72],
its foundations were established through various seemingly unre-
lated discoveries throughout the 20th century. The central insight –
that geometric and topological properties of wavefunctions funda-
mentally shape their characteristics – has revolutionized materials
research (see Fig. 1.1). This paradigm came into existence from pre-
cise experimental observations of the quantum Hall effect by von
Klitzing in 1980 [73], where the Hall conductance of a material sub-
jected to strong magnetic fields exhibited exact quantization in units
of e2/h.8

The theory of topological physics evolved as follows: Thouless demon-
strated that the quantized Hall conductance corresponds to a topo-
logical invariant – the first Chern number of the electronic Bloch
states [77]. Haldane later established that topological phases can
exist without external magnetic fields, first in antiferromagnetic
chains [78] and subsequently in two-dimensional electronic sys-
tems [79]. These seminal works established topological phases as a
fundamental phenomenon in quantum systems [70].

The ubiquity of topological phenomena in material science natu-
rally raises the question of their universality across different areas of
physics, and science in general. Indeed, the underlyingmathematical
structures have a long historical tradition. Classical manifestations
of so-called geometric phases appeared as early as 1851 in Foucault’s

8The precision of his measurements was so remarkable that when first presented,
many physicists expressed skepticism as the quantization exceeded their best resistance
standards at the time by many orders of magnitude [74]. Von Klitzing received the Nobel
Prize in 1985, just five years after his discovery – an unusually rapid recognition that
shows the importance of the discovery. Today, the quantum Hall resistance serves as a
resistance standard, with h/e2 known as the von Klitzing constant (RK).
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Figure 1.1: Illustration of topology. A ball, a ring and a pretzel represent distinct
topological classes, characterized by their genus - the number of holes in the sur-
face (0, 1, and 2, respectively). These objects cannot be continuously deformed
into one another while preserving their topology, just as electronic states in topo-
logical insulators remain robust against continuous perturbations. This geometric
intuition underlies modern condensed matter physics, where topological protec-
tion guarantees the stability of edge states and quantum phenomena even in the
presence of disorder [72, 75, 76].

pendulum [80], where parallel transport on a curved manifold re-
sults in observable precession9. Also in chemical physics, the concept
of geometric phases–without calling it by that name–was discovered
as early as 1958 by Robert A. Sack and other quantum chemists inves-
tigating molecules with vibrations and rotations [82]. In their model,
the wavefunction is treated in the Born-Oppenheimer approxima-
tion, where the nuclear coordinates vary slowly and give rise to an
effective potential for the electronic wavefunction. As we will lay out
in more detail later, the symmetries of the effective Hamiltonian can
give rise to degeneracies in the energy landscape. Crucially, it was
noted that “encircling” these degeneracies leads to a sign change
of the wavefunction, giving rise to measurable differences in, for
example, chemical reactions. This led to the creation of the field of
conical intersections in 1963, as the phenomenon was understood by
Gerhard Herzberg and Longuet-Higgins [83].

9The phase shift per rotation is given by α = −2π sin(λ) at latitude λ, providing a
direct measurement of Earth’s rotation [81].
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At that time not connected, this phenomenon was also found in the
Ehrenberg-Siday-Aharonov-Bohm effect10. It occurs when electrons
acquire a geometric phase when encircling a magnetic flux, even
though their wavefunction is negligible within the magnetic field
directly [84]. This demonstrates that electromagnetic potentials can
influence quantum particles through their topological nature alone.

Meanwhile, in high-energy physics and statistical physics, the con-
cept was reinvented in terms of quantum field theoretical language
as the Wegner-Wilson loop11. This provided a gauge-invariant mea-
sure when studying gauge theories [87]. This geometric perspective
culminated in the Berry phase12, in which Berry recognized the uni-
versal nature of this geometric phase while studying the adiabatic
evolution of quantum states [88]. Finally, in 1989, Joshua Zak recog-
nized the importance of the Berry phase in solids and reintroduced
it as the Zak phase [89].

Interestingly, it turns out that the perspective of the Wegner-Wilson
loop is very general, andmany of the problems can be cast back to the
problem of a charged particle in a gauge field [87]. While physicists

10The Aharonov-Bohm effect has a fascinating history of multiple discoveries. While
commonly attributed to Aharonov and Bohm’s 1959 paper, it was first predicted by
Ehrenberg and Siday in 1949. The effect remained largely unknown until its rediscovery,
prompting Weisskopf’s famous observation [84]: "The first reaction to this work is that it
is wrong; the second is that it is obvious."

11The termWegner-Wilson loop reflects a convergence of discoveries in different contexts
of theoretical physics. Kenneth Wilson introduced these loops in 1974 as part of his
work on quantum chromodynamics (QCD) [85], for which he was awarded the 1982
Nobel Prize. He used them to formulate gauge theories on a discrete lattice, providing a
non-perturbative approach to QCD. Independently, Franz Wegner from Heidelberg had
developed similar ideas in 1971 while studying lattice gauge theories in the context of
statistical mechanics, particularly in relation to duality transformations [86]. Wegner’s
formulation, which preceded Wilson’s work and had an equally if not more important
impact on the topological physics community, focused on the discrete version of these
loops on a lattice.

12The history of this concept, again, reflects the circuitous nature of scientific discov-
ery. Shivaramakrishnan Pancharatnam first identified this phase in 1956. Decades later,
Michael Berry independently rediscovered the same phenomenon in 1984.

10



1.2. Topological physics

are not necessarily acquainted with differential geometry, they very
often have an intuitive understanding of Maxwell’s equations, which
can give rise to surprisingly intuitive pictures of basic aspects of
algebraic topology. As an example, Gauss’s law states that a surface
integral of the electric field around a sphere is proportional to the
number of charges inside. However, this result can be understood
also from the aforementioneddeep connection between topology and
geometry, which has been generalized in mathematics and worked
out through a series of very interesting developments over the last
centuries [70].

In particular, the mathematical foundations underlying geometric
phases emerged from profound developments in differential geom-
etry and topology [87]. Central to this development is the mathe-
matics of fiber bundles and connections, which provides an elegant
structure for understanding geometric phases in quantum systems.
A fiber bundle represents a concept where a space manifests locally
as a product of two simpler spaces while potentially exhibiting global
twisting [76]. The Möbius strip serves as the canonical example 13,
beautifully illustrating these concepts: its base space consists of the
central circle, while the fiber is represented by the perpendicular
line at each point. As one traverses the base circle, the fiber under-
goes a twist, completing a 180-degree rotation upon returning to the
starting point. Within this framework, a connection provides a mathe-
matical prescription for comparing points along different fibers. This
abstraction finds profound applications in physics: the fibers encode
phase information, while the base space–obtained by abstracting
away the phase–corresponds to the physical ray space [90].

These geometric insights were further developed by Chern’s theory
of characteristic classes in 1946 [91], which provided essential tools
for classifying the topology of complex vector bundles – the natural

13We will go into more detail when discussing topology, see Fig. 4.1 for an example of
Möbius strip.
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setting for quantum states14. The subsequent Atiyah-Singer index
theorem in 1963 established the fundamental relationship between
analytical and topological invariants of manifolds [94], providing the
mathematical foundation for bulk-boundary correspondence in topolog-
ical phases [71]. This mathematical framework catalyzed numerous
breakthrough discoveries, beginning with the quantum spin Hall ef-
fect predicted through topological band theory. These developments
ultimately led to the theoretical prediction and experimental obser-
vation of three-dimensional topological insulators, Weyl semimetals,
and topological superconductors [95–97].

The implications of these results extend far beyond condensedmatter
systems. The bulk-boundary correspondence guarantees the existence
of topologically protected boundary modes. This fundamental prin-
ciple shows up across a physical systems, from electronic states in
quantummaterials to photonic edge modes in electromagnetic struc-
tures [71]. The universality of these phenomena establishes topology
as a unifying framework in quantum physics, with profound conse-
quences for atomic and molecular systems.

The discovery of topological phases of matter exemplifies the con-
nection between abstract mathematical concepts and fundamental
physical phenomena. While the initial classification of topological
insulators relied on static systems, subsequent research revealed that
driving the systems out of equilibrium introduces novel possibilities
for controlling topological properties. These driven systems can ex-
hibit phases of matter with no static analogue, leading to an entirely
new direction in quantum engineering [98].

14Chern’s breakthrough in 1944-1945 provided the first intrinsic way to understand
topological invariants in complex geometry [92]. His key insight was that curvature forms
could be used to construct global topological invariants (now called Chern classes) that
are quantized and independent of local geometric details. This mathematical framework
proved fundamental for understanding quantum Hall effects, topological insulators, and
gauge theories. The resulting Chern classes cn appear naturally in physics as quantum
numbers characterizing topological phases, while the relatedChern-Simons forms describe
three-dimensional topological field theories [93].
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1.3. Non-equilibrium Floquet physics

To analyze such periodically driven quantum systems, we resort to
Floquet theory, a framework originally formulated in the late 19th
century for classical differential equations, which can provide the
mathematical foundation for this analysis. In the following chapter,
we examine how this classicalmathematical theory has become a sub-
stantial cornerstone for understanding periodically driven quantum
matter far from equilibrium.

1.3 Non-equilibrium Floquet physics
In 1883, Gaston Floquet published his seminal work on linear dif-
ferential equations with periodic coefficients, establishing what we
now recognize as the Floquet theorem [99]. He demonstrated that
solutions to periodic differential equations can be characterized by
higher harmonics of the period, analogous to Fourier coefficients for
waves and periodic signals15.

The developments of Floquet theory unified several important prob-
lems in classical physics. Both the Mathieu equation, describing
vibrating elliptical membranes, and Hill’s equation [100], emerg-
ing from the analysis of the Moon’s orbit, represent special cases
of the Floquet equation16. The theory proved useful for analyzing
mechanical systems, especially in understanding parametric reso-
nance and stability conditions, and periodic phenomena in circuits
and vibrations [103].

For quantum physicists, the Floquet theorem looks familiar, as it
is based on a translation invariance similar to the Bloch theorem17.

15The technical details are presented in Section 3.2 of Chapter 3.
16While Émile Léonard Mathieu (1868) and George William Hill (1877) developed

their formalism independently from Floquet, both equations can be cast into Floquet
form [101, 102].

17Felix Bloch developed this theorem during his doctoral work as Werner Heisenberg’s
first graduate student [104]. Curiously, many papers incorrectly cite Bohm’s 1949 paper
on superconductivity [105]– a misattribution that seems to have propagated through the
literature.
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The theory was generalized to the Floquet-Bloch theorem18 in the
1950s [107, 108]. The 1970s and 1980s witnessed the application of
the Floquet theorem in solid-state physics, for example for magnetic
resonance experiments. Researchers recognized that the response
properties of electrons in solids, driven periodically by electromag-
netic radiation, could be described using the Floquet formalism [109].
This period also saw significant developments in computational tech-
niques for solving Floquet problems, notably through the work of
Peter Hänggi and colleagues [110, 111].

During the late 1970s the field of quantum chaos emerged19 and while
classical driven systems can exhibit deterministic chaos [113], the
quantum behavior of such systems revealed unexpected features. In
1979, Casati and colleagues discovered dynamical localization in peri-
odically kicked quantum rotors [46], demonstrating that quantum
interference effects can suppress classical chaos. Fishman later pro-
vided a theoretical framework through Floquet theory by connecting
dynamical localization to Anderson localization20 in disordered sys-
tems [114]. The quantum kicked rotor became a central model for
quantum chaos studies, as its simple structure permits direct analy-
sis through Floquet theory while capturing fundamental aspects of
the quantum-classical correspondence [115]. These advances in Flo-
quet engineering naturally lead us to consider an exciting frontier:
the manipulation of synthetic dimensions through periodic driv-

18While Jon Shirley’s 1965 paper [106] is often credited as the first application of
Floquet theory in quantum mechanics, this work appeared more than a decade after
Herman Haken and Léon Brillouin’s contributions. However, Shirley’s work proved more
influential in the field.

19The notion of chaos in quantum mechanics requires careful analysis. The linearity
of the Schrödinger equation prevents quantum systems from exhibiting the exponential
sensitivity to initial conditions characteristic of classical chaos. This fundamental distinc-
tion led Berry to introduce the term “quantum chaology” [112] for studying quantum
systems whose classical counterparts display chaos.

20As we will show in Section 3.4, the quasi-energy spectrum of the kicked rotor maps
onto the energy spectrum of an Anderson model, which implies that temporal disorder in
driven systems corresponds to spatial disorder [60].
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1.3. Non-equilibrium Floquet physics

ing, where time-dependent protocols create and control additional
effective spatial dimensions.

1.3.1 Synthetic dimensions in time
As we are arguing in this thesis, periodically-driven molecular sys-
tems offer a particularly promising area for exploring topological
physics due to their rich and highly controllable Hilbert space [27,
116]. While our focus here primarily concerns rotational degrees
of freedom, other quantum numbers such as vibrational or elec-
tronic modes present equally compelling avenues for investigation.
As mentioned earlier, unlike the translational motion of electrons
in crystalline lattices, rotations of molecular rigid rotors are gov-
erned by the non-abelian SO(3) group. Although free rotations trace
trivial paths on this manifold [117, 118], we will demonstrate that
precisely designed laser pulses can guide molecules along topologi-
cally non-trivial trajectories, enabling the observation of non-trivial
Berry-phases and related phenomena. Historically, the connection
between molecular physics and topology has centered on conical
intersections of potential energy surfaces [83, 119], including light-
induced variants [120, 121]. Our work extends this approach by
establishing a direct bridge between symmetry-protected topolog-
ical phases in condensed matter physics and periodically driven
molecular systems.

The continuous modulation of kick strengths introduces an effective
synthetic dimension in time, a concept that proved fundamental
in realizing topological phase transitions [75, 95]. This temporal
synthetic dimension manifests in a different way than spatial dimen-
sions, yet maintains the essential geometric properties necessary
for topological classification. The ability to engineer such synthetic
dimensions opened novel possibilities for quantum state manipula-
tion and control. Our research reveals that this temporal dimension
serves a dual purpose: beyond enabling topological transitions, it
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provides a mechanism for quantum state preparation through the
geometric properties of Floquet states. While this approach shares
conceptual similarities with established protocols, it goes way be-
yond conventional static equilibrium frameworks. The power of
Floquet theory in this context lies in its capacity to provide an ex-
act treatment of the driving, effectively summing all orders in the
driving strength rather than relying on perturbative expansions.

Previous investigations of double-kicked planar rotors have revealed
rich topological phase diagrams, including spectra reminiscent of the
celebrated Hofstadter butterfly and associated Chern numbers [61,
122, 123]. We extend these ideas to rotating molecules in terms of
the 3D rotor. These discoveries could have implications for chemical
reactions and molecular control [124, 125]. We demonstrate the
engineering of an effective topological semimetal with topological
edge states, and suggest pathways toward realizing more complex
topological phases. The exceptional degree of control available in
molecular systems, combined with their inherent multi-band nature,
opens new possibilities for exploring non-abelian topological phases
and non-equilibrium quench dynamics that depend on the topol-
ogy of the system. These topics form the core of this thesis, whose
organization we now outline.

1.4 Organization of the thesis
The thesis is structured as follows:

Chapter 2 explores how ultrashort and strong laser pulses can ad-
dress the rotational degrees of freedom of molecules, developing
a novel platform for quantum simulation. This platform leverages
the high degree of control and flexibility afforded by laser pulses
to create a versatile testbed for studying multi-band lattice models
and localization phenomena. We show that the so-called sudden
approximation greatly simplifies the calculation of the full Floquet
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operator, which is necessary for subsequent chapters. We justify this
approximation, delineating the circumstances under which it holds
and its implications for the accuracy and validity of the simulations.

Chapter 3 demonstrates howperiodically driven angularmomentum
states can serve as a synthetic dimension, forming a lattice of angular
momentum. We analyze this for 2D and 3D rigid rotors, showcas-
ing the universality of the approach. We elucidate the emergence
of quantum resonances and the contrasting regime of dynamical
localization. We discuss the limitations for real molecules, such as
centrifugal distortion, and their impact on the observed phenom-
ena. Notably, the restriction of angular momentum to l > 0 in 3D
leads to the appearance of edge states, which we later show to be of
topological origin.

Chapter 4 explores the role of topology, providing an introduction
to topological aspects in physics. We demonstrate how band degen-
eracies of periodically driven rotors can lead to symmetry-protected
topological charges. These charges manifest as topologically pro-
tected edge states, observed for a wide range of model parameters,
underscoring the robustness and universality of the topological phe-
nomena. We conclude by outlining an experimental protocol to
measure these states, discussing potential challenges and strategies
to overcome them.

Chapter 5 investigates novel multi-band topologies in periodically
driven quantum rotors, focusing on systems with three or more
bands. We demonstrate how symmetry-protected band degenera-
cies acquire non-abelian characteristics, leading to braiding phe-
nomena impossible in single-gap systems. The chapter establishes
how PT symmetry generates real Hamiltonians whose band sin-
gularities carry non-abelian frame charges. We analyze the Euler
class and its role in characterizing topologically protected nodes,
revealing how periodic driving enables the manipulation of these
non-abelian charges through controlled band crossings. The emer-
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gence of an anomalous Dirac string phase, unique to Floquet systems,
demonstrates the rich interplay between multi-gap topology and
non-equilibrium dynamics. We conclude by showing how these
phenomena manifest in experimentally observable zero-angular-
momentum edge states, providing clear signatures of the underlying
topological structure.

Throughout the thesis, we try to maintain a clear progression of
ideas, with each chapter building upon the concepts introduced in
the previous ones. By the end, readers will hopefully understand
how the interplay between ultrafast laser pulses, angularmomentum,
and topology can lead to the emergence of new quantum phases and
phenomena in molecular systems.
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CHAPTER 2
Rotating molecules with ultrashort

pulses

Science is an essentially anarchic enterprise.
– Paul Feyerabend

2.1 Overview
In the preceding chapter, we introduced the idea of using molecules
as a novel platform for exploring non-equilibrium topological phe-
nomena. While previous studies have examined topological aspects
of two-dimensional rotors, our research takes a significant leap for-
ward by focusing on three-dimensional molecular rotation. This idea
closely aligns with recent experimental advancements as outlined in
Section 1.1.2, which have demonstrated the feasibility of controlling
three-dimensional molecular rotations [27, 126], providing the basis
for our theoretical explorations. This chapter will examine the practi-
cal aspects of molecular physics that form the backbone of our work,
before transitioning to the more mathematically involved topological
physics in subsequent chapters.
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2. Rotating molecules with ultrashort pulses

We will demonstrate how molecules can serve as versatile platforms
for quantum simulation, starting with the fundamental case: a three-
dimensional linear molecule subjected to off-resonant, linearly po-
larized laser pulses1. In Section 2.2, we will explore the rotational
degrees of freedom in molecules and methods to manipulate them
using strong fields. While the primary focus of this thesis is on
the total angular momentum of linear molecules, one could also
consider the potential of more complex rotors, such as symmetric
tops or even asymmetric tops. These systems possess the additional
quantum numberK, potentially expanding the usable Hilbert space.
Furthermore, by incorporating the laser polarization as an additional
degree of freedom, one can utilize the full rotational sphere SO(3) as
the synthetic manifold. As we will demonstrate in subsequent sec-
tions, the linear rotor alone provides sufficient complexity to observe
fascinating topological physics. Nevertheless, we will outline how
harnessing these additional degrees of freedom presents significant
potential for expanding our synthetic dimensions.

To arrive at the one-dimensional kicked rotor model, we must as-
sume that the pulse train consists of infinitely short pulses, known
as the impulsive limit (or "sudden approximation"), effectively es-
tablishing a lattice in time. This approximation has been widely
used to accurately describe the interaction between molecules and
short, far-off-resonant laser pulses. It posits that the timescale of
the laser-molecule interaction is significantly shorter than the in-
ternal rotational period of the molecule, effectively "freezing" the
rotational motion during the interaction. This simplified model of
laser-molecule interaction is incorporated into various theoretical
frameworks predicting the rotational dynamics of molecules driven
by short laser pulses.

To assess the validity of this approximation, we have developed an
effective theory for ultrashort laser pulses, which represents a novel

1This chapter follows closely our work [4], Copyright © 2024 American Physical
Society.
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contribution to the field. In Section 2.3, we will undertake a com-
prehensive analysis of the full time-evolution operator and solve the
time-dependent Schrödinger equation at the operator level. Our in-
vestigation will show that there is a critical angular momentum, lmax,
which marks the point at which the impulsive limit ceases to be valid.
This finding underscores that the applicability of the sudden approx-
imation is not solely dependent on pulse duration, but also on pulse
intensity, as the latter determines the extent of angular momentum
state population. Wewill examine this for both ultrashort multi-cycle
(Gaussian) pulses and the less frequently studied half-cycle pulses,
each giving rise to distinct effective potentials. Subsequently, we will
critically assess the constraints of the impulsive limit and introduce a
novel approach that involves rescaling the effective matrix elements.
This method aims to provide a more refined and accurate portrayal
of rotational laser-molecule interactions. Afterwards, we will in-
vestigate the time-evolution to gain a more nuanced understanding
of the dynamics at play during strong laser-molecule interactions.
Surprisingly, we uncover curious behaviors of the wavefunction that
have not been observed before, either in theory or experiments. It
remains unclear whether these behaviors have a deeper significance
or are merely intriguing phenomena. They may potentially have
applications in non-equilibrium quench dynamics with molecules.

2.2 Laser induced rotation of molecules
Let us recapitulate what is the most generic expression for a (3D2)
asymmetric topmoleculewithin a circular/elliptically polarized light.
Within the Born-Oppenheimer approximation [127] we can neglect
the vibrational and electronic degrees of freedom, which can be
considered as fast fluctuations on top of the rotation of the molecule

2The arguments of the 2D rotor are analogous to this discussion and will not be
given here; we will look into them more closely in the next chapter when discussing the
periodically driven rotor.
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Figure 2.1: Euler angles of the rotating
molecule. The two coordinate systems are
shown in black (laboratory frame) and green
(body-fixed molecular frame). The rotation is
described by three angles: ϕ ∈ [0, 2π) repre-
sents rotations around the laboratory Z-axis,
χ ∈ [0, 2π) describes rotations around the molec-
ular c-axis, and θ ∈ [0, π) defines the angle
between the Z- and c-axes.

as long as the rotational energy is much smaller than the former. The
coupling between vibration and rotation can be taken into account
ad-hoc, as long as the vibrational level does not change during the
considered time window. This is also why it is important to use
off-resonant laser pulses. They do not leverage transitions between
different vibronic levels. Hence, for our purposes and the kind of
molecules we consider here it is sufficient to model the molecules as
rigid rotors3.

We describe the quantum mechanical rotation of a molecule us-
ing two coordinate frames: the laboratory frame (X, Y, Z) and the
molecule-fixed frame (a, b, c) (see Fig. 2.1). The body-fixed axes are
assigned according to the principal moments of inertia Ia ≤ Ib ≤ Ic
(see Table 2.1 for the rotational classification of molecules). The
rotational motion is governed by the Hamiltonian

H = AL2
a +BL2

b + CL2
c, (2.1)

where Li are the components of the angular momentum operator in
the body-fixed frame and A = 1/(2Ia), B = 1/(2Ib), and C = 1/(2Ic)
are the rotational constants [19].

3Non-rigidity may play a role when considering very strong electric field strengths, in
particular for linear molecules [128]. In that case one has to include the deformation terms
in the Hamiltonian. We will discuss the effects of centrifugal distortion in Section 3.5.2.
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The orientation of the molecule is specified by three Euler angles
(ϕ, θ, χ). These angles define successive rotations: first by ϕ around
the space-fixed Z axis, then by θ around the new Y axis (defining the
angle between the space-fixed Z and body-fixed c axes), and finally
by χ around the body-fixed c axis [128]. The quantum mechanical
rotation operator R(ϕ, θ, χ) implements these rotations in sequence

R(ϕ, θ, χ) = e−iϕL̂Ze−iθL̂ye−iχL̂c. (2.2)

The rotationalwavefunctions are expressed throughWignerD-matrices

Dl
mk(ϕ, θ, χ) = ⟨lm|R(ϕ, θ, χ)|lk⟩ = e−imϕdlmk(θ)e

−ikχ, (2.3)

where dlmk(θ) = ⟨lm|e−iθL̂y |lk⟩ represents Wigner’s d-matrix element,
with quantum numbers l ∈ N0 and |m|, |k| ≤ l. A pure rotational
state is hence fully characterized by these complete set of basis states

⟨θ, ϕ, χ|lmk⟩ =
√︃

2l + 1

8π2
Dl∗
mk(ϕ, θ, χ) (2.4)

with the normalization∫︂
Dl′∗
m′k′(Ω)D

l
mk(Ω)dΩ =

8π2

2l + 1
δmm′δkk′δll′,∑︂

k

Dl′∗
mk(Ω)D

l′

m′k(Ω) =
∑︂
k

Dl′∗
km(Ω)D

l′

km′(Ω) = δmm′.
(2.5)

With these definitions of the relative angles, the angular momentum
operators become

L̂Z = −i ∂
∂ϕ
, L̂c = −i ∂

∂χ
. (2.6)

Angular momentum operators satisfy [L̂i, L̂j] = iϵijkL̂k and the
Casimir operator L̂2

=
∑︁

i L̂
2

i with the eigenvalues

L̂
2|lmk⟩ = l(l + 1)|lmk⟩,
L̂c|lmk⟩ = k|lmk⟩,
L̂Z |lmk⟩ = m|lmk⟩.

(2.7)
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The rotational energies of the symmetric tops become

Erot =
l(l + 1)

2Ia
+ k2

(︃
1

2Ic
− 1

2Ia

)︃
. (2.8)

For the linear and spherical top the k-dependent term vanishes.
The asymmetric top gives rise to eigenstates with a superposition
of different k (either even or odd, depending on the parity of the
asymmetric top eigenstate [43]) and is generally not integrable.

Class Moments of inertia Examples
Spherical top Ic = Ib = Ic CH4, P4, CCl4
Linear top Ic = Ib ≫ Ia ≈ 0 O2, CO, H2C2
Prolate symmetric top Ic = Ib > Ia CH3I, CHCl3
Oblate symmetric top Ic > Ib = Ia C6H6, C4H4, NH3
Asymmetric top Ic > Ib > Ia NO2, HO2, H2O2, C14H10

Table 2.1: Moments of inertia for molecular rotation.

2.2.1 Molecule-laser interaction
Next, we examine the interaction with a laser. A non-resonant laser4
leaves a molecule in its vibronic state and excites only rotational
eigenstates via Raman-type transitions5. We choose the laser coor-
dinates as the lab coordinates with the Z−axis as the direction of
propagation. The potential energy of a polar rotor in an electromag-
netic field is given by

V (t) = −µ · E(t) (2.9)

with (total) dipole moment µ and laser field amplitude E(t). This
electric field, which leads to an induced dipole moment6 through a

4We consider a laser with frequency ωl ≫ ωv, ωe, where ωv are the molecular vibra-
tional and ωe electronic frequencies of the molecule [129].

5This subsection is rephrasing the argument in [129].
6Higher orders such as quadrupole moments etc. can be included using higher

polarizability tensors such as the hyperpolarizability tensor β(ω) [27]. However, since the
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temporary Stark shift of the relevant energy levels and a hybridiza-
tion of the energy levels, can be modeled by the effective polariz-
ability α(ω) of the molecule7. In the long wavelength regime of
interest the dynamical polarizability has converged to its dc limit
α(ω) → α [129]. The total dipole moment then takes the form

µi = (µ0)i +
1

2

∑︂
j

αij Ej(t) +O[E2(t)], (2.10)

with the permanent dipole moment of the molecule µ0 and the
polarizability tensor αij. For now, let us drop the permanent dipole
moment; then, we can express the interaction potential between the
laser and the molecule as following [43]

V = −1

2

3∑︂
i,j=1

Ei(t)αlab
ij Ej(t) = −1

2
tr[αlabF (t)] (2.11)

with electric field with electric field tensor Fij(t) = Ei(t)Ej(t). In
molecular coordinates, we can assume that the polarizability tensor
is diagonal in the principal axes of the molecule αmol

ij = αiiδij and it
is therefore a spherical tensor of rank 2. The non-zero components
in the molecular frame read

αmol
00 = 1

3(αxx + αyy + αzz) ≡ ᾱ, (2.12)

αmol
20 =

√︂
3
2(αzz − ᾱ), (2.13)

αmol
2,±2 = αmol

2,2 = 2
2(αxx − αyy). (2.14)

Henceforth, the rotation of the tensor from the lab frame to the
molecular frame reads

αlab
lm =

∑︂
k

Dl
mk(ϕ, θ, χ)α

mol
lk =

∑︂
k

Dl
mk(Ω)α

mol
lk (2.15)

size of a molecule is small compared to the wavelength of the electric field, they can be
neglected as a first approximation.

7See Chapter 8 of [130] for a derivation.
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2. Rotating molecules with ultrashort pulses

with components (we abbreviate Dl
mk ≡ Dl

mk(ϕ, θ, χ))

αlab
00 = ᾱ (2.16)
αlab
20 = D2

00α
mol
20 + (D2

02 +D2
0,−2)α

mol
22 (2.17)

αlab
2±1 = D2

±10α
mol
20 +D2

±12α
mol
22 (2.18)

αlab
2±2 = D2

±20α
mol
20 + (D2

±22 +D2
±2,−2)α

mol
22 . (2.19)

Likewise, the dyadic field tensor Fij(t) is a rank 2 spherical tensor
and can be written as

F00(t) =
1

2
|E(t)|2, (2.20)

F20(t) =
√︂

3
2(E

2
z (t)− 1

3|E(t)|
2), (2.21)

F2±1(t) = ∓(Ex(t)Ez(t)± iEy(t)Ez(t)) (2.22)
F2,±2(t) =

1
2(E

2
x(t)− E2

y (t)± 2iEx(t)Ey(t)). (2.23)

The potential (2.11) then becomes

V = −1
2

∑︂
lm

αlab
lmFlm(t) = −1

2(α
lab
00 F00(t) + αlab

20 F20(t)

+ F21(t)α
lab
21 + F2,−1(t)α

lab
2,−1 + αlab

22 F22(t) + αlab
2,−2F2,−2(t))

= −1
2(

1
2ᾱ|E(t)|

2 + (D2
00α

mol
20 + (D2

02 +D2
0,−2)α

mol
22 )

√︂
3
2(E

2
z (t)− 1

3 |E(t)|
2)

− (Ex(t)Ez(t) + iEy(t)Ez(t))(D2
10α

mol
20 +D2

12α
mol
22 )

+ (Ex(t)Ez(t)− iEy(t)Ez(t))(D2
−10α

mol
20 +D2

−12α
mol
22 )

+ (D2
20α

mol
20 + (D2

22 +D2
2,−2)α

mol
22 )12(E

2
x(t)− E2

y (t) + 2iEx(t)Ey(t))
+ (D2

−20α
mol
20 + (D2

−22 +D2
−2,−2)α

mol
22 )12(E

2
x(t)− E2

y (t)− 2iEx(t)Ey(t)))
= −1

2

(︁
1
2ᾱ|E(t)|

2 + αmol
20 B20(t) + αmol

22 B22(t)
)︁

(2.24)
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2.2. Laser induced rotation of molecules

with coefficients

B20(t) = D2
00

√︂
3
2(E

2
z (t)− 1

3 |E(t)|
2) + Ex(t)Ez(t)(D2

−10 −D2
10)

− iEy(t)Ez(t)(D2
10 +D2

−10) +
1
2(D

2
20 +D2

−20)(E2
x(t)− E2

y (t))

+ iEx(t)Ey(t)(D2
2,0 −D2

−2,0),

B22(t) = (D2
02 +D2

0,−2))
√︂

3
2(E

2
z (t)− 1

3 |E(t)|
2) + Ex(t)Ez(t)(D2

−1,2 −D2
1,2)

− iEy(t)Ez(t)(D2
12 +D2

−1,2)

+ (E2
x(t)− E2

y (t)) · (D2
22 +D2

2,−2 +D2
−2,2 +D2

−2,−2)

+ 2iEx(t)Ey(t) · (D2
22 +D2

2,−2 −D2
−2,2 −D2

−2,−2).
(2.25)

When assuming some laser frequency ω ≫ τ−1
B with the rotation time

of the molecule τB = ℏπ
B , we can integrate out the time-dependency

of the laser8 and all the mixed terms Ex(t)Ey(t), Ex(t)Ez(t), . . . etc.
vanish. For symmetric tops αxx = αyy and hence αmol

22 = 0. In that
case, let us consider only B20(t). It turns out that the force which is
applied on the molecule depends on the effective field direction of
the laser pulse, which is different for circular and linearly polarized
light. For linear polarized light, the axis should be ⟨E⟩t ∝ eZ , since
the angle θmeasures exactly the angle between the space-fixedZ and
body-fixed c axes (a linearly polarized pulse whose polarization axis
is aligned with the principal axis of the molecule does not exert any
force) and the D2

±20 terms vanish. For circular polarized light with
X-Y plane as the polarization plane, the effective direction is again
the Z-axis. In that case, Ez(t) = 0, ⟨Ex⟩ = ⟨Ey(t)⟩ and again the D2

±2,0

terms vanish; both cases lead to an effective potential V ∝ cos2(θ). A
non-exhaustive representation of the laser with the x,z-axis defined
as the polarization plane and y-axis as the propagation axis is given
by [43]

E(t) = E0(t)[ϵx cos(ωt)ex + ϵz sin(ωt)ez], (2.26)
8For a pulse with λ = 800nm the cycle time is few femtoseconds, while the rotational

time scale is in the picosecond regime [128].
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2. Rotating molecules with ultrashort pulses

with the electric field envelope E0(t), the polarization eccentricities
ϵx, ϵz and the unit vectors ex, ez. Note that the eccentricities satisfy
ϵ2x + ϵ2z = 1. For ϵz = 0 (or ϵx = 0) we recover a linearly polarized
field, for ϵx = ϵz a circular polarized field, and for 0 ≤ ϵx < ϵz an
elliptically polarized field. As mentioned earlier, after integration
only few elements are non-zero. For the above parametrization, only
the following three spherical components of the field tensor are non-
zero (we also omit the F0,0 term which introduces a constant shift in
all energies) [43]

F2,0(t) =
2√
6
(2− 3ϵ2x)E2

0 (t), F2,±2(t) = ϵ2xE2
0 (t). (2.27)

The matrix element of the Hind(t) in (2.31) becomes [43]

⟨lkm|Hind|l′k′m′⟩ = −1

2

√︃
2l + 1

2l′ + 1

(︂
αmol
20 C l′k′

lk2,0 + αmol
2,2

(︂
C l′k′

lk2,2 + C l′k′

lk2,−2

)︂)︂
×
(︂
F2,0(t)C

l′m′

lm2,0 + F2,2(t)
(︂
C l′m′

lm2,−2 + C l′m′

lm2,2

)︂)︂
,

(2.28)
where C lm

l1m1l2m2
= ⟨l1m1l2m2|lm⟩ are the usual Clebsch-Gordan coef-

ficients. The interaction with a linearly polarized laser field depends
only on the angle θ, the angle between the polarization vector of the
field (defining the z-axis) and themolecular axis, which corresponds
to the case ϵx = 0, i. e. only F2,0(t) is non-zero. If we further consider
the case of a linear molecule, the only non-zero component in the
polarizability is

αlin.
2,0 =

√︂
2
3(αcc − αbb) ≡

√︂
2
3(α∥ − α⊥) ≡

√︂
2
3∆α, (2.29)

while (2.31) becomes

⟨lkm|H lin.,lin.
ind |l′k′m′⟩ = −1

6 ·∆α · E2
0 (t)

√︃
2l + 1

2l′ + 1
C l′k′

lk2,0C
l′m′

lm2,0. (2.30)

Since for angular momentum addition we require m = m1 + m2

it follows that these elements are zero unless m = m′ and k = k′.
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2.3. The sudden approximation

Hence, for a linear molecule with linearly-polarized lasers pulses
the molecule-laser interaction becomes

Ĥ(t) = −1
4E

2(t)∆α cos2(θ̂) (2.31)

with electric field envelope E(t), where we drop the underscore
zero from now. This concludes the derivation of the laser-molecule
interaction. In the next section we will take a closer look at pulses
that are much shorter in duration than the typical rotational time of
the molecule.

2.3 The sudden approximation

2.3.1 Overview
The following section is based on a recent paper of ours [4]. For off-
resonant ultrashort laser pulses (usually with infrared frequencies
far detuned from any transitions, as mentioned earlier), the rota-
tionalmotion is generally considered to be slow compared to the laser
modes, leading to the “frozen” rotational motion assumption during
the laser–molecule interaction [116, 131–137]. This justifies the im-
pulsive limit, which adapts a semi-classical approach by neglecting
the accumulation of quantum phases during the pulse duration. One
has to take into account however, that for linear quantum rotors, the
energy splittings grow linearly with the angular momentum l,

El+1 − El ∝ 2l + 3, (2.32)

which causes the corresponding change of the relevant timescales.
Therefore the applicability of the sudden approximation does not
solely rely on the duration of the laser pulse, but also on its inten-
sity which determines how many l-states are populated during the
laser excitation. For example, for a molecule with a rotational period
τrot(l), for the impulsive limit to be valid, only states with l satisfying
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2. Rotating molecules with ultrashort pulses

τrot(l) ≫ τL should be occupied, where τL represents the pulse dura-
tion of the laser. Additionally, the specific shape of the laser pulse is
an important factor to consider. It is not immediately evident which
values of τrot(l) are large enough or how different laser shapes affect
this relationship. Despite the widespread adoption of the impulsive
limit as a theoretical framework to describe molecular rotational
response to a laser pulse, a comprehensive analysis of the specific
states for which this approximation is valid remains unexplored.
Here, we develop an effective theory for ultrashort laser pulses by
analyzing the full time evolution of linear rotors during and after
an off-resonant, linearly polarized laser pulse illumination. A lot of
work has been done during the last decades employing the impul-
sive limit for very short pulses, providing analytic expressions in the
τL → 0 limit with applications to molecular alignment and orienta-
tion [131–133, 138–140], controllingmolecular vibrational states [141,
142], as well as studying the dynamics of atoms [143], semiconduc-
tor nanostructures [144], and low-dimensional electronic systems
driven by pulses [145]. Our approach goes beyond these efforts by
illustrating how deviations occur from the sudden approximation,
providing some understanding of the specific conditions that cause
these deviations. Our approach can be extended to more complex
molecules with higher order polarizability terms and other laser
polarization schemes. While the sudden limit for multi-cycle pulses
is well-established [63, 65, 146], we also investigate the effects of half-
cycle pulses, which can generate unipolar fields [147–150]. Using
a theoretical method accounting for the full time-evolution oper-
ator, we demonstrate that the validity of the sudden limit can be
understood in terms of a critical angular momentum threshold lcrit.
We propose a new method involving rescaling of matrix elements,
resulting in an effective theory that accounts for deviations from the
standard impulsive limit when encountering extended pulse dura-
tions. Our findings hold significant implications for experimentalists
working with ultrashort lasers and theorists who employ the sudden
limit within their models.
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2.3. The sudden approximation

Here we focus on time-dependence of the full time-evolution oper-
ator instead of time-evolving a single initial state with respect to a
given laser envelope, as commonly used to describe the dynamics of
rotational wavepackets. The advantage is that we do not only learn
about the time-evolution of a particular initial state, but also of all
possible superpositions. Following (2.31), the interaction of a linear
molecule with H0 = BL̂

2 with an ultrashort, off-resonant linearly
polarized laser pulse takes the form

Ĥ(t) = Ĥ0 − µ0E(t) cos(θ̂)− 1
4E

2(t)∆α cos2(θ̂) (2.33)

with angle between field polarization and molecular axis θ ∈ [0, π],
the electric field in the Z-direction E(t) and the difference between
parallel and perpendicular polarizability ∆α. Molecular rotation
sets the timescale of the Hamiltonian, thereby justifying the repre-
sentation of time in units of the rotational revival time τB = πℏ/B,
denoted as t̃ = t/τB. In an effort to render the Hamiltonian dimen-
sionless, we can conveniently incorporate the ℏ−1 prefactor of the
time evolution into the coupling constants, resulting in the following
expression9

H̃(t̃) = πL̂
2 − E(t̃)/Eµ cos(θ̂)− E2(t̃)/E2

∆α cos
2(θ̂). (2.34)

This includes the constants

Eµ =
B

πµ
, E∆α =

√︃
4B

π∆α
, (2.35)

which depend on the particular molecule under study. Moving
forward, we will omit the tilde on t and H , keeping in mind that all
expressions are now unitless.

In order to study the validity of the sudden approximation, we nu-
merically integrated the differential equation of the time-evolution

9Note that we do not employ the common units of H/B, since we are interested in
expressing time in units of τB , which leads to an additional factor of π in front of L̂2.

31



2. Rotating molecules with ultrashort pulses

operator Û full(t),
i∂tÛ full(t) = Ĥ(t)Û full(t) (2.36)

for a reasonable cutoff l < lmax and various parameters10. As men-
tioned earlier, each angular momentum eigenstate |l,m⟩ oscillates
with the frequency

ωrot(l) = π · l(l + 1)/τB (2.37)

corresponding to the rotational periods

τrot(l) = τB/(l(l + 1)) (2.38)

which provides a natural cutoff scale; the approximation can only
succeed for states with ⟨l|ψ⟩ ≈ 0 for l with τL > τrot(l). The eigen-
states l with τL > τrot(l) oscillate with a frequency equal or higher
than the pulse duration and a separation of timescales is not possible.
The matrix elements for the potentials are

⟨l′m′| cos(θ)|lm⟩ = −δmm′C l′m
lm10C

l0
l′010 (2.39)

⟨l′m′| cos2(θ)|lm⟩ = +δmm′

(︂
2
3C

l′m
lm20C

l0
l′020 +

1
3δll′
)︂
. (2.40)

Henceforth, our analysis will concentrate exclusively on linearly
polarized laser fields that drive molecules at low temperatures for
which different m-sectors are independent11 and we can assume
m = 0. Following the definitions for the sudden limit in Eqs. (2.50)

10For each calculation we increase the cutoff scale until the results we are interested in
are converged. This typically depends on the timescale (since high l correspond to high
frequency) and the field strength (which determines how many l states are occupied).

11It is important to note that when m = 0, molecular rotations occur within the
plane of the electric field. This characteristic simplifies the rationale for comparing the
field’s duration to the rotational period, given the changing relative angle as the molecule
rotates. Conversely, for situations where |m| ≈ l and l is significantly large, the molecular
orientation tends to be nearly orthogonal to the electric field. In such cases, the angle
between the molecule’s axis and the field’s polarization remains relatively unchanged
throughout its rotational phase. Thus, in such extreme scenarios, there’s potential for
deviations from the findings presented in our analysis.
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2.3. The sudden approximation

and (2.59), the effective potential of the full time evolution can be
calculated as

V̂ eff(t) = −i log[e+iĤ0(t−t0)Û full(t) e
+iĤ0t0] (2.41)

where one has to use the correct branch cut of the logarithm12. For
times t≫ t0 it converges to a constant, time-independent potential
V̂ eff ≡ V̂ eff(t = ∞). This is the potential an instantaneous laser pulse
at t0 exerts upon the molecule, after the full time evolution. We want
to know if the effective matrix elements resemble the ones given
in (2.39) and (2.40). For perfect agreement the off-diagonal matrix
elements

v
(s)
l = ⟨l ± s|V̂ eff |l⟩ with s ∈ {1, 2} (2.42)

should resemble Ps · ⟨l ± s| coss(θ̂)|l⟩ where Ps depends on the field
E(t). In that case, we canfind the strength byPs = v

(s)
l /⟨l±s| coss(θ̂)|l⟩

which should be the same for all l. However, in a realistic case the
matrix elements deviate from that obtained in the sudden limit. This
implies that the kick strength coefficients

p
(s)
l ≡ v

(s)
l /⟨l ± s| coss(θ̂)|l⟩ (2.43)

depend on l. Inmany cases, we are only interested in the convergence
up to some experimentally relevant lav. We define the average of
a matrix element Al as Ā ≡ 1

lav+1

∑︁lav
l=0Al and estimate the strength

Ps,eff and its error by

Ps,eff ≡ p(s), δPs,eff ≡
√︂

(p(s))2 − p(s)
2
. (2.44)

Clearly, if the sudden approximationwas exactwewould find δPs,eff =
0. For the case, where the sudden approximation is applicable, this
value should be sufficiently small. However, for small kick strengths,

12For values of the effective kick strength smaller than P ≈ π the logarithm is straight-
forward to calculate. For larger values one has to resort an algorithm that guarantees a
smooth transition of the operator eigenvalues in order to choose the correct branch cut.
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2. Rotating molecules with ultrashort pulses

this error becomes small as well, therefore, it is necessary to consider
the relative error

rs ≡ δPs,eff/Ps,eff . (2.45)
Only the size of rs poses a sufficient criterion whether the sudden
limit approximation is valid or not. Until now we have assumed
that we are looking at the impulsive limit in the form of Eqs. (2.50)
and (2.59). However, there is a more generic possibility of

Û sudd,generic = e−iĤ0(t−t0)e+iV̂ effe−iĤ0t0 (2.46)

with V̂ eff as defined in Eq. (2.41). In that case, since V̂ eff is derived
from the full Schrödinger equation, Û sudd,generic = Û full. However,
in many cases one is interested in situations where V̂ eff assumes
a simpler form or when we can suitably approximate the effective
potential. In particular, aswewill see later, the numerically estimated
effective potentials will often have the same off-diagonal structure
as the generating potentials V̂ (t). Therefore, it is possible to use
rescaled matrix-elements v(s)l that originate from finite time pulses
or pulses that are not Gaussian, such as half-cycle pulse. A rescaled
potential will have the form v

(s)
l → v

(s)
l f

(s)
l with some function f (s)l

that depends on the laser shape. We introduce the usual interaction
picture of a Hermitian operator Â by

ÂI(t) = e+iĤ0tÂe−iĤ0t (2.47)

and the time-evolution operator (with t0 = 0)withUI(t) = e+iĤ0tÛ(t).
The Schrödinger equation then reads

i∂tÛ I(t) = V̂ I(t)Û I(t). (2.48)

In the following we resort to numerical integration of (2.48) and
use (2.41) to calculate the effective potential directly. The scaling
functions exhibit a continuous behavior over a wide regime and offer
a more streamlined approach compared to managing the entire po-
tential. Admittedly, while obtaining these functions requires solving
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2.3. The sudden approximation

the Schrödinger equation, one can envisage scenarios where explor-
ing a comprehensive parameter set is of interest. In such situations,
interpolating coefficients of the scaling function across a grid might
be more efficient than interpolating the entire potential. Thus, while
this method doesn’t entirely replace the simplicity of the conven-
tional sudden approximation, it provides an alternative strategy to
navigate the intricacies associated with finite-width pulses.

2.3.2 Gaussian pulses
In the far-field limit13 the electric field of the laser pulse has to inte-
grate to zero [151, 153, 154]∫︂ ∞

−∞
E(t)dt = 0. (2.49)

For a laser pulse with many cycles one often assumes that only the
part with E(t)2 is relevant, since the linear term averages out. In
that case, one can assume a purely positive Gaussian envelope14
for the laser field amplitude with kick strength P2, peak position
t0 and width σt. In the sudden approximation, the time-evolution
propagator (for t≫ t0) takes the simple form

Û sudd,gaussian = e−iĤ0(t−t0)/ℏe+iP2 cos
2(θ̂)e−iĤ0t0/ℏ. (2.50)

Note that the kick strength is dimensionless. In first order of the
Magnus expansion we find

P2 = −∆α

4ℏ

∫︂ ∞

−∞
E2(t)dt (2.51)

which leads straightforwardly to

f
(2)
l = p

(2)
l /P2 (2.52)

13In the broader context, and not strictly in the far-field limit, this condition may not
always hold true, as demonstrated, e.g., by [151, 152].

14Typically, for fast optical oscillations the slow envelope approximation is used.
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with the error factor
δl = 1− f

(2)
l (2.53)

that gives a good indication how much rescaling is necessary. Let us
now analyze the impact of pulses with a defined width that signifi-
cantly exceeds the duration of a single optical cycle. By leveraging the
slow-envelope approximation, we bypass the complexities of each
cycle, focusing primarily on the Gaussian envelope. Consequently,
our representation of multi-cycle pulses is based on the Gaussian
functions,

E2(t)/E2
∆α = e−(t−t0)2/2σ2

t /(σt
√
2π) (2.54)

with the squared field strength E2(t), µ0 = 0, and P2 = 1, which we
will denote Gaussian pulses in what follows. Hence, the pulse width
of the laser can be directly inferred from τL ≈ σt, depending on the
definition of τL. Figure 2.2 provides an illustration of the results cal-
culated for a range of σt. As one would intuitively expect we observe
that as the ratio σt/τB becomes increasingly small, the results aligns
more closely with the sudden limit. However, with an increase in
the value of σt, the effective potential begins to display noticeable
deviations from the sudden limit. This divergence is prominently
displayed in the off-diagonal matrix elements. A detailed look at
these matrix elements reveals a significant decrease for larger values
of l. This contrasts with the matrix elements of the pure sudden
pulse, which remains constant. One of the primary features of the
perfect delta kick is its ability to transfer angular momentum even for
states with high l values. However, this feature is absent in the case
of pulses of finite width. Here, the transfer of angular momentum
may cease altogether for large l. This can occur when the rotational
periods τrot(l), are comparable or smaller than the laser pulse dura-
tion τL. We assume that such parity leads to destructive interference,
inhibiting the laser’s capacity to transfer energy to the molecule co-
herently. The phenomenon is more clearly depicted in Figure 2.3,
where the scaling factor, fl, and its error, δl ≡ 1− fl, are showcased
for different values of σt. When the values of fl or δl are equal to 1 or
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2.3. The sudden approximation

Figure 2.2: Results for
a Gaussian pulse. The
full time evolution was
integrated numerically
and V̂ eff was calculated
using Eq. (2.41). In
(a) the field strength
squared after the peak,
in (b) the diagonal ma-
trix element and in (c)
the second off-diagonal
matrix element. Other
matrix elements are
close to zero. We ob-
serve that the diagonal
matrix elements (b)
coincide perfectly with
the sudden limit (red
dashed line), but the
second off-diagonal ma-
trix elements (c) show
large deviations. For
increasing σt, the devi-
ations set in for lower
l. It becomes clear that
there only for l < lcrit
with some lcrit(P, σt)
the sudden limit with
Veff = P cos2(θ̂) is a
valid approximation.
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0 respectively, it indicates an agreement with a delta kick. However,
if δl diverges from 0, it signals a deviation from a delta kick. As per
our findings, the sudden limit holds true until a certain critical value,
lcrit ∝ σ−1

t . Once this point is surpassed, the sudden limit no longer
applies, leading to decay in matrix elements and rapid growth in
deviations. However, the relative error in Figure 2.4 shows that the
approximation is insensitive to P2. Henceforth, the time-evolution of
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Figure 2.3: Sudden approximation for Gaussian pulses. (a) The scaling factor fl,
Eq. (2.52), for different pulse widths σt as indicated by the color; (b) the deviation
δl, Eq. (3.3), for a Gaussian pulse with P2 = 1. In the region with fl ≈ 1 or
low error δl (black) the sudden limit is a good approximation, i. e. for l ≪ lcrit.
Approximately above the dashed white line (i. e. the non-black region) with
σt ∝ l−1, there are large deviations from a delta cos2(θ) potential, see Fig. 2.2 for
examples.

Figure 2.4: Relative error r2.
Following (2.44), this figure
demonstrates that the goodness
of the approximation is inde-
pendent of P2, i. e. the integral
of the pulse: it is only sensitive
to the width σt.
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a wavepacket that is driven by a Gaussian-shaped pulse can be cap-
tured by the sudden approximation when the wavepacket has only
occupations for l < lcrit(σt). In that case, the sudden approximation
is valid and it is not necessary to integrate the Schrödinger equation
fully. Another possibility is to rescale the effective potential to

⟨l′m′|V̂ rescaled|lm⟩ = δmm′

(︂
f
(2)
l

2
3C

l′m
lm20C

l0
l′020 +

1
3δll′
)︂

(2.55)

with the rescaling function fl. Thiswaywe can capture the deviations
that arise due to the non-zero pulse width. However, this rescaling is
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2.3. The sudden approximation

not possible in all cases, as we will demonstrate in Section 2.4. These
findings are expected to be useful in understanding the behavior
of half-cycle pulses, which we will be exploring in our subsequent
analysis.

2.3.3 Few-cycle pulses
Although it is possible to replace pulses with kicks, for few- and
half-cycle pulses one has to take into account the full spatial depen-
dence of the laser field. Here, we analyze the half-cycle pulse as an
exemplary and experimentally important case, but this analysis can
be extended straightforwardly to few-cycle pulses. We consider the
following parametrization from Ref. [154]:

E(t) =

⎧⎪⎨⎪⎩
0 (t ≤ 0)

E1 cos2(ωL(t− tp)/2) sin(ωL(t− tp)) (0 ≤ t < tp)

E2
(︁
1− e−(t−tp)/τ1

)︁
e−(t−tp)/τ2 (t ≥ tp),

(2.56)

with electric field amplitudes E1, E2 > 0, the laser frequency ωL, the
pulse duration of the first part of the laser pulse tp = π/ωL (in the
following referred to as positive pulse duration), the switch-on and
switch-off times τ1, τ2. The ratio

ξ ≡ E2/E1 (2.57)

determines the width of the first peak relatively to the negative tail.
The pulse defined by Eq. (2.56) satisfies the condition (2.49) and
is shown in Fig. 2.5 for various values of ξ (note the logarithmic
time-axis). The condition that the electric field is smooth at t = tp
further leads to τ1 = E2

ωLE1 = ξ/ωL and Eq. (2.49) leads to

τ2 = (2ω2
Lτ1)

−1 +
√︁
(2ωLτ1)−2 + (ωL)−2

= (2ωLξ)
−1 +

√︁
(2ξ)−2 + (ωL)−2,

(2.58)
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2. Rotating molecules with ultrashort pulses

see Ref. [154]. The decay time is determined by τ2. The sudden limit
for this potential follows as

Û sudd,half−cycle = e−iĤ0(t−t0)/ℏe+iP1 cos(θ̂)e−iĤ0t0/ℏ (2.59)

with estimated peak position t0 and kick strength P1. Observe that
t0 does not have to match with tp, as the pulse’s peak (i. e. the pulse
position) occurs for t0 < tp. Furthermore, the duration tp might
not align with the laser duration τL based on the value of ξ, since it
would disregard the negative tail of the pulse. Still P1 is frequently
approximated in the literature as [134]

P1 ≈
µ0
ℏ

∫︂ tp

−∞
E(t)dt, (2.60)

i. e. by the integral over the positive part of the field amplitude.
This is a good approximation when the half-cycle pulse looks similar
to a Gaussian pulse, which we demonstrate below. Approximately,
the integral over the positive peak scales as P1 ∝ E1 · tp (the nega-
tive tail compensates for exactly this value). For half-cycle pulses a
simple expression for the rescaling function as for Gaussian pulses

10−1 100 101

t/tp

−0.5

0.0

0.5

1.0

E(
t)
/
E 1

ξ = 0.1

ξ = 0.2

ξ = 0.5

ξ = 1.0

Figure 2.5: Parametrization of a half-cycle pulse. Following (2.56) in units of
the pulse position tp. E1 determines the pulse maximum, E2 the minimum and
the ratio ξ = E2/E1 the decay time (see the text). The laser pulse duration τL
includes the negative tail up to some degree depending on the field strength. In
the Gaussian approximation, the pulse width is approximately given by τL ≈ tp.
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2.3. The sudden approximation
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Figure 2.6: Behavior of a finite-width half-cycle pulse. Following (2.56), for
different positive pulse durations tp = π/ωL, where tp also controls the peak width
and hence also the strength P1. (a) The field strength E(t)/Eµ for E1/Eµ = 30 and
E2/Eµ = 0.03. (b) The first off-diagonal matrix element of the effective potential
defined in Eq. (2.41). Note that we divide by ⟨0|Veff |1⟩ to bring the potentials on
top of each other since each potential corresponds to a different P1. Similar to
the multicycle pulses of Fig. 2.2 we observe that for small tp the matrix elements
coincide perfectly with the sudden limit (red dashed line).

as in (2.52) is not possible, since one has to infer additionally the
effective strength P1. In this section, we shift our focus to half-cycle
pulses. For simplicity we focus only on the dominant term, the per-
manent dipole term with finite µ0 > 0. For many linear molecules
this is a good approximation since the specific constants (2.35) sat-
isfy Eµ ≪ E∆α. As previously mentioned, in the case of half-cycle
pulses, there is a positive peak followed by a potentially long nega-
tive tail. While it is possible to fine-tune the sudden pulse position
t0, we choose for simplicity t0 ≡ tp from now on and note that fine-
tuning this parameter only leads to minor improvements (which
could be important in specific situations which are are not consid-
ering here). The ⟨l| cos(θ̂)|l′⟩ matrix element is only non-zero for
l = l′ ± 1. In many cases, this is also true for V̂ eff . Specifically, in
the limit where the ratio ξ → 0 from (2.57), which we will refer to
as the Gaussian limit, the behavior converges to the Gaussian pulse
discussed earlier, since the depth of the negative tail is minimal and
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2. Rotating molecules with ultrashort pulses

Figure 2.7: Outcomes for
half-cycle pulses in the
Gaussian limit. (a) The
deviation error, denoted as
δl = |1 − p

(2)
l /p

(2)
l=0|, for a half-

cycle pulse where ξ = 10−3

(corresponding to the Gaus-
sian limit) and lmax = 250.
Similar to the Gaussian pulse
(refer to Fig. 2.3), a power-
law dependence on the crit-
ical pulse width is observed
(indicated by the dashed
white line, estimated visu-
ally). (b) The effective kick
strength, P1,eff evaluated up
to lav = 50, as a function of
field strength E1/Eµ for three
distinct tp. (c) Confirms the
anticipated linear relation-
ship, P1,eff ∝ tp · E1, with
d2P1,eff

dE1dtp ≈ 0.287.
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it requires an infinite amount of time to satisfy Equation (2.49). In
Fig. 2.6, we illustrate the shape of the potential for very small values
of ξ. As expected, the effective potential matrix elements diverge
from the cos(θ) potential for increasing tp, exhibiting similar behavior
to that of Gaussian pulses (cf. Fig. 2.3). For half-cycle pulses, the
positive pulse duration tp plays a role analogous to the width σt for
Gaussian pulses. In Fig. 2.7 we find that the critical positive pulse
width scales as tp,crit/τB ∝ l−1, which is similar to the critical pulse
width for Gaussian pulses in Fig. 2.3. The primary difference arises
from the fact that tp = π/ωL (only for half-cycle pulses) with the
laser frequency ωL, corresponding to exactly half a cycle, while the
variable σt of the Gaussian pulses corresponds to the width of one
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2.3. The sudden approximation

Figure 2.8: Results for
half-cycle pulses for the
oscillating limit. With
ξ = E2/E1 = 1with the
same parameters as in Fig. 2.7,
i. e. δl = |1 − p

(2)
l /p

(2)
l=0|with

lmax = 500. Again, a power-law
dependence on the critical
pulse width is observed (indi-
cated by the dashed white line,
estimated visually). However,
unlike for Gaussian pulses
the break-down of the sudden
limit occurs for smaller lcrit. In
(b) the effective kick strength,
P1,eff evaluated up to lav = 50,
as a function of field strength
E1/Eµ for three distinct tp. In
(c) we demonstrate that the
slopes of (b) are related to
tp by ∂P1,eff/∂(E1/Eµ) ∝ t2p as
long as tp is not large enough
(note that deviations for
tp ∼ 10−2τB). This is a new
result and originates from the
non-Gaussian pulse shape,
which does not allow for
the simple estimation of P1,
Eq. (2.60).
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standard deviation, or approximately 68% of the nominal pulse area.
We note that in theGaussian limit, we do not observe a dependency of
the relative error on the kick strength P1,eff . However, when leaving
the Gaussian limit, i. e. when ξ is not small, it plays an important
role how the potential deviates from the impulsive limit. Now we
look at the opposite limit ξ = 1, which we denote the oscillating
limit, since the negative tail can not be integrated out, like we did
effectively for the Gaussian limit. Also in that limit we find that it is
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2. Rotating molecules with ultrashort pulses

possible to approximate the full time-evolution with the impulsive
limit, see Fig. 2.8. The main difference is that for a given tp, the sud-
den approximation breaks down for smaller l, which implies that
one has to choose smaller widths tp/τB than in the Gaussian limit
to achieve the same accuracy. Further, it is important to note that
unlike the Gaussian case the diagonal elements are not vanishing
completely. While we confirm the relationship P1,eff ∝ E1/Eµ, the
dependency on tp is more complicated than in the ξ → 0 case and
we find ∂P1,eff/∂(E1/Eµ) ∝ t2p, displaying a strong deviation from the
generally accepted result (2.60). Finally, we turn our focus to the

Figure 2.9: Behavior for an
arbitrary value of ξ. With
E1/Eµ = 103. In (a) and (b) the
relationship between angular
momentum l and ξ for two
positive pulse widths tp that
incorporate a large cutoff at
lmax = 500. In (c) the depen-
dency of the relative error r1,
as defined in equation (2.45),
on both tp and ξ (where we
averaged up to an value of
lav = 20). As ξ approaches
either extreme of 1 or 0 for
small tp, we recover the be-
havior δl → 0 from previous
figures. However, within these
extremes, the error scaling
is heavily influenced by the
positive pulse width tp. This
makes sense as the specific
timescale exerts a significant
impact on how the rotational
modes interact with the field.
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case involving arbitrary ξ. Our compiled results are presented in
Fig. 2.9. This consolidates our previous analyses for the two limiting
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2.4. Exact time-evolution of rotational wavepackets

scenarios: ξ → 0 and ξ = 1. Additionally, it provides an understand-
ing of how the Gaussian and oscillating limits respectively cease
to hold for mid-range values of ξ, where the error δl grows large
already for small l. Evidently, in the scenario of ξ → 1, a small tp/τB
ratio is necessary to maintain the sudden approximation, as has been
demonstrated in Fig. 2.8. Contrarily, we discover that in the opposing
extreme where ξ ≈ 0, a larger tp proves beneficial, at least for the
relative error. We observe that when ξ approaches 1, the condition
of tp → 0 becomes critical. Interestingly, an increase in tp values not
only allows, but also appears to encourage, higher ξ values when
transitioning from the ξ ≈ 0 limit. We have visually approximated
this relationship as ξcrit ∝ (tp/τB)

3/2, although the actual dependence
can be more complex. Nevertheless, it’s noteworthy that increasing
the ratio tp/τB permits the use of a greater ξ value for fixed E1.

2.4 Exact time-evolution of rotational
wavepackets

We executed a series of numerical simulations, aiming to examine
the dynamics of an OCS molecule’s wave-packet under illumination
of different half-cycle pulses. In Figs. 2.10, 2.11, 2.12, and 2.13, we
present the results using τB ≈ 80 ps, ∆α ≈ 4.67 Å3, and µ ≈ 0.66
Debye [155]. By using rescaled units (2.34), we obtain the specific
field constants Eµ ≈ 6 kV/cm and E∆α ≈ 1 MV/cm. Since Eµ ≪ E∆α,
we neglect the influence of the ∆α term in what follows. In a study
by Fleischer et al. [156], they reported the use of half-cycle pulses
with an average field strength of approximately 22 kV/cm up to 1
MV/cm when applied to OCS molecules, which is the regime we
are examining here. Note that as can be inferred from Fig. 2.7, the
relative field strength E/E∆α should be on the order of 100− 1000 in
order to see a visible effect on the molecule. The time-dependent
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Figure 2.10: Numerical simulation of wave-packet time-evolution for an OCS
molecule. The parameters characterizing the molecule [155] are τB ≈ 80 ps,
∆α ≈ 4.67 Å3, and µ ≈ 0.66 Debye. Field constants specific to OCS, Eq. (2.35), are
used. (a) The field profile of the half-cycle laser pulse in the Gaussian regime,
E1 = 6000, ξ = 10−3, resulting in a peak intensity Emax ≈ 23 MV/cm. The inset
show the long-time behavior of the pulse. (b) The absolute value of thewavepacket
components for a wavepacket initializedwith l = 4. (c) The convergedwavepacket
long after the pulse. (d) The effective matrix elements from the full time-evolution
and the sudden approximation for P1,eff ≈ 2.28, as determined by Eq. (2.44). The
relative error for this potential, calculated using Eq. (2.45), is a modest r1 ≈ 2%,
indicating that the sudden approximation is effective in this context.

wave-packet evolution of a molecule (withm = 0) is controlled by

∂tCl(t) = −i
∑︂
l′=0

⟨l′|V̂ I(t)|l⟩Cl′(t), (2.61)
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Figure 2.11: Similar parameters as in Fig. 2.10. (b) Shows that the negative tail
now lowers the occupations at high l values and (c) demonstrates the deviation
from the sudden approximation. (d) The effective matrix elements for P1,eff ≈ 1.07,
calculated by Eq. (2.44) for matrix elements up to lav = 10. The substantial relative
error of r1 ≈ 43% indicates the inadequacy of the sudden approximation in this
case.

with the potential in the interaction picture defined in (2.47), and
the solution for the wavefunction

⟨l|ψ(t)⟩ = Cl(t)e
−iπl(l+1)t (2.62)

in units of rotational time τB. In Fig. 2.10, the molecule is exposed
to a half-cycle pulse in the Gaussian regime, with ξ = 10−3, whose
profile is shown in Fig. 2.10(a). The pulse has awidth tp, significantly
shorter than the molecule’s rotational period. The wavepacket in the
initial condition is in a pure l = 4 angular momentum state15, i. e.

15We did not choose l = 0 as not to be influenced by the open boundary, which could
lead to other effects not mentioned here.
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Figure 2.12: Same as in Fig. 2.10, but with a significantly extended pulse duration
of tp = 1 ps. (d) The effective matrix elements for P1,eff ≈ 1.2 as calculated
by Eq. (2.44) for matrix elements up to lav = 10. High relative error of 41%
underscores the poor agreementwith the sudden approximation. This discrepancy
is attributed to oscillations in the effective potential induced by the pulse width,
which is comparable to the rotational periods τrot(l) of some non-zero angular
momentum states.

⟨l|ψ⟩ = δl,4. During the pulse illumination, the pulse performs akin
to a Gaussian pulse, with both lower and higher angular momentum
states being occupied. Notably, the angular momentum states stay
well below the critical value, which can be read off from Fig 2.7 (a)
with tp/τB ≈ 1.25 · 10−3. Post-illumination, a decrease in the occupa-
tion probability for state l = 4 is evident, possibly due to destructive
interference. We use the sudden approximation, defined by (2.44),
to estimate the effective kick strength of an instantaneous delta pulse.
This approximation mirrors the final state of the wavepacket with
high precision, demonstrating a fidelity of 97%, and it accurately
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Figure 2.13: Same as in Fig. 2.10, but under oscillating conditions, ξ = 1. (b)
highlights how the sharp the negative slope of the pulse counteracts the positive
peak, leading to an almost complete negation of previously occupied angular
momentum states. Despite this behavior, the agreement with the sudden approxi-
mation is very high, as seen in (c) with the long-time result of the wavepacket.
(d) The effective matrix elements for P1,eff ≈ 0.2, as calculated by Eq. (2.44) for
matrix elements up to l = 5with a relative error of 3%.

predicts the dip in the l = 4 state. The sudden approximation’s
agreement with the full time-evolution is further confirmed by the
effective matrix elements (2.41), see Fig. 2.10(d). The small relative
error (2.45) of r1 ≈ 2% underscores the appropriateness of the sud-
den approximation in this context. Figures 2.11, 2.12, and 2.13 were
created similarly to Fig. 2.10, albeit with varied pulse parameters
and widths. In Fig. 2.11, the pulse is set in the intermediate regime
ξ = 0.1. The sudden approximation proves challenging to apply
in this scenario, as evident in the evolution of the representative
wavepacket. The matrix elements of the effective potential begin to

49



2. Rotating molecules with ultrashort pulses

diverge for large l, failing to plateau like in the case of the sudden
approximation. Consequently, finding the correct kick strength that
could reproduce the full time-evolution results is problematic. There-
fore, we advise against using the sudden approximation in such a
scenario due to the significant deviations. In Fig. 2.12, we adjust the
pulse width to a longer duration (tp = 1 ps), while staying within
the same intermediate regime (ξ = 0.1). This modification leads
to noticeable oscillations (see Fig. 2.12(d)) in the matrix elements
of the effective potential, resulting from the compatibility of the
pulse width with the rotational periods of certain angular momen-
tum states. Evidently, in this regime, the laser’s timescale overlaps
with the molecule’s rotational oscillations, causing interference. This
interference hinders the application of the sudden approximation,
corroborated by a poor agreement between the wavefunctions of the
sudden approximation and the full time evolution (as low as 20%).
An intriguing observation is the absence of a depopulation in high
angular momentum states, likely attributable to the longer duration
of the negative peak. In the final scenario, as illustrated in Fig. 2.13,
we look into the oscillating limit by setting ξ = 1. We observe that the
pulse’s negative slope almost negates the positive peak, leading to a
markedly reduced effective kick strength. Nevertheless, the agree-
ment with the sudden approximation in this regime is remarkably
high, presenting a fidelity of 98%, reinforcing our previous analysis
of Fig. 2.8.

2.4.1 Validity of the sudden approximation
In summary, our analysis of the full time-evolution operator, solved
at the operator level, establishes clear criteria for the validity of
the impulsive limit. Both Gaussian and half-cycle pulses can be
accurately approximated by delta kicks when three conditions are
met: the angular momentum remains below lcrit, the pulse width
(σt or tp) is much shorter than the rotational period τB, and for half-
cycle pulses, the shape parameter ξ approaches either the Gaussian
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(ξ → 0) or oscillating (ξ = 1) limit.

These findings provide practical guidelines for experimental imple-
mentations, defining parameter regimes where delta kicks can be
reliably realized. Within these constraints, the matrix elements of
finite-width pulses become indistinguishable from those of delta
pulses in the long-time limit. Outside this regime, however, signifi-
cant deviations emerge due to non-negligible evolution during the
pulse width.

Our approach, based on the effective potential (2.41), complements
existing methods such as the Magnus expansion [157] and the tech-
niques developed in Ref. [145]. While these earlier works focus on
expanding the time-evolution operator in terms of τL, our method
provides novel insights into rotational states and off-diagonal matrix
elements specific to molecule-laser interactions. By quantifying de-
viations from the sudden approximation, we explicitly demonstrate
how increasing pulse widths and laser strengths lead to behavior
beyond the first-order Magnus expansion. This analysis not only de-
fines the boundaries of the impulsive limit but also characterizes the
nature of deviations beyond these boundaries. Future work could
extend these investigations to more complex pulse shapes, including
few-cycle pulses, and explore quantum numbers beyond angular
momentum l.

2.5 Outlook
This concludes our analysis of single-pulse interactions. The fol-
lowing chapter extends our discussion to pulse trains, where the
sudden approximation developed and justified herewill significantly
simplify the time-translation operator, enabling the study of more
sophisticated driving protocols.
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CHAPTER 3
Lattices of angular momentum

Attention is the rarest and purest form of generosity.
– Simone Weil

3.1 Overview
In their seminal 1979 paper, Casati et al. [46] discovered an extraor-
dinary manifestation of quantum interference: the localization of
angular momentum distributions in driven quantum rotors. This
phenomenon, while mathematically analogous to Anderson’s theory
of electron localization in disordered solids, occurs in the space of
angular momentum rather than physical position space. Although
the theory in its pure form is simple, it has sparked extensive re-
search in Quantum chaos, from quantum billiards and kicked tops
to quantum graphs [115]. The universality of this effect has since
been demonstrated across an impressive range of quantum systems–
from atoms in microwave fields [158, 159] to highly excited Rydberg
states [160]. Perhaps most intriguingly, when rigid linear molecules
are subjected to linearly polarized electromagnetic radiation [66],
they exhibit similar localization behavior [63, 65], despite their inher-
ently three-dimensional nature. As we established in Section 2.2.1,
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3. Lattices of angular momentum

the cylindrical symmetry of this interaction preserves the magnetic
quantum numbers (m,K), effectively projecting the dynamics onto
a planar rotor in the polar angle θ.

The hallmark of localization is the exponential decay of wavefunc-
tions [48]:

ψ(r) ∝ exp(−|l − l0|/ξ) (3.1)

where ξ is the localization length. The dynamical localization phe-
nomenon represents a striking breakdown of quantum-classical cor-
respondence: while the classical kicked rotor exhibits chaotic be-
havior with unbounded energy growth, its quantum counterpart
remains confined in angular momentum space. While dynamical lo-
calization occurs for a wide range of parameters, at so-called quantum
resonances a different phenomenon emerges that depends intimately
on the ratio between the driving period and the rotational revival
time [161–163]. These resonances, far from being mere curiosities,
reveal deep connections between the fractional revivals of the rotor
and quantum transport.

Our theoretical framework beginswith an introduction to the Floquet
theory of the kicked rotor in Section 3.2, yielding an effective strobo-
scopic Hamiltonianwhose structurewe examine in Section 3.2.1. The
rich interplay between fractional revivals and quantum resonances,
detailed in Section 3.3, illuminates how the underlying time-lattice
geometry gives rise to fundamental quasi-momentum symmetries,
explored in Section 3.3.3. At perfect quantum resonance, addressed
in Section 3.3.4, the system shows the exactly solvable case of un-
bounded growth–in stark contrast to the anti-resonant case examined
in Section 3.3.5, where the dynamics freeze entirely. The exploration
of higher resonances in Section 3.3.6 reveals a hierarchy of increas-
ingly complex dynamical behaviors.

The extension to the 3D rotor, presented in Section 3.5, introduces
remarkable new physics while preserving essential insights from the
planar case. The convergence of matrix elements involving Clebsch-
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3.2. Floquet theory

Gordon coefficients, proven in Section 3.5.1, allows us to bridge the
apparent complexity gap between 2D and 3D rotors. The emergence
of the Anderson wall–a critical angular momentum beyond which
quantum resonances dissolve–is analyzed in Section 3.5.2, while
Section 3.5.4 reveals how the characteristic l(l + 1) spectrum of 3D
rotors gives rise unique revival patterns absent in planar systems.

Through careful examination of the interplay between dynamical
localization and quantum resonances, we uncover how the delicate
balance between strong pulses and quantum interference produces
a rich phase space of dynamical behavior. This foundation proves
essential for our subsequent exploration of topological phenomena
in quantum rotors in the next Chapter. Let us now begin with the
fundamental framework of Floquet theory.

3.2 Floquet theory
Finding solutions to the Schrödinger equationwith a time-dependent
potential often presents greater challenges than those encountered
with static potentials. When energy is not conserved, energy eigen-
states do not exist either. In this work, we focus on a special case
where the potential is Hermitian1 at any given moment–ensuring
real energies–but varies over time. Furthermore, we consider poten-
tials that are periodic in time, such as a train of laser pulses. This
periodicity allows us to employ methods from condensed matter
physics, including the Bloch theorem and related concepts.

In the time domain, this framework is encompassed by the Floquet
theorem, or more broadly, Floquet theory. We can express such a
Hamiltonian as Ĥ(t) = Ĥ0 + V̂ (t), where V̂ (t + T ) = V̂ (t). Con-
sequently, the Hamiltonian commutes with the one-period time
translation operator, [Ĥ(t), Û(t+ T, t)] = 0, allowing for simultane-

1This implies that we neglect couplings to a bath or other dissipative processes.
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3. Lattices of angular momentum

ous diagonalization2 with ÛT (t) ≡ Û(t+ T, t). The periodicity in T
also guarantees that the time-translation operator is periodic in both
arguments Û(t′ + T, t) = Û(t′, t) for t′ ≥ t and Û(t′, t + T ) = Û(t′, t)

for t′ ≥ t+ T . Given that Û is unitary, its eigenvalues lie on the unit
circle

Û(t+ T, t) |ψj(t)⟩ = e−iϵjT |ψj(t)⟩ = |ψj(t+ T )⟩ (3.2)

with j ∈ {1, . . . , N} and the dimension 3 of theHilbert space dim[H] =
N . The eigenstates |ψj(t)⟩ are also known as Floquet states. These
states form a complete basis for the Hilbert space and are periodic
in time with period T . The corresponding eigenvalues e−iϵjT define
the quasienergies ϵj, which play a role analogous to energy in time-
independent systems. It is important to note that the quasienergies
are only defined modulo Ω = 2π/T , reflecting the discrete time
translation symmetry of the system. Importantly, this introduces the
possibility of having the so-called π-gap, an energy gap that arises
due to the periodic nature of quasienergies. Hence, in Floquet sys-
tems, states that differ by ϵj ↦→ ϵj + π/T become equivalent in the
folded spectrum, so that an avoided crossing or band splitting about
π/T can form a gap. This phenomenon is unique to periodically
driven systems, since it relies exactly on this periodicity [164].

Let us define the 2π-remainder norm for two numbers x, y ∈ R with

|x− y|2π = min
n∈Z

|x− y + 2πn| (3.3)

2Let us recall briefly the argument behind simultaneous diagonalization. Let us
assumeH is invariant with respect to a symmetry operatorA (which according toWigner’s
theorem [19], has to be either unitary or anti unitary), then

AHA† = H ⇔ [H,A] = 0, H|ψ⟩ = E|ψ⟩ ⇒ AH|ψ⟩ = EA|ψ⟩ ⇔ HA|ψ⟩ = EA|ψ⟩.

The last argument shows that A|ψ⟩ is also an eigenfunction of the hamiltonian with the
same eigenvalue. More important: We can always find simultaneous eigenfunctions if
[H,A] = 0, but they do not necessarily have the same eigenvalues.

3Let us assume for now a finite Hilbert space. However, the discussion carries over to
the infinite case with minor subtleties.
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3.2. Floquet theory

which gives the minimal distance on the circle between radiants x, y.
Hence, we can define the gap between two quasi-energies by the
difference ∆ϵ · T = |ϵiT − ϵjT |2π.

This property leads to a quasienergy Brillouin zone (similar to the
concept in solid-state physics). The Floquet states can be expressed
in the form

|ψj(t)⟩ = e−iϵjt|uj(t)⟩ (3.4)

where |uj(t)⟩ are time-periodic states satisfying

|uj(t+ T )⟩ = e−iϵj(t+T )|ψ(t+ T )⟩ = e−iϵjt|ψ(t)⟩ = |uj(t)⟩. (3.5)

These modes encapsulate the micromotion of the systemwithin each
driving period. In the context of our study on kicked rotors and
molecular systems, Floquet theory provides a powerful framework
for understanding how the periodic application of laser pulses can
manipulate and control quantum states.

The Floquet states form an orthonormal basis, characterized by
⟨ψi(t)|ψj(t)⟩ = δij. This property enables us to express the general
solution of the Schrödinger equation as a linear combination of these
special solutions

|ϕ(t)⟩ =
∑︂
j

cj(t)|ψj(t)⟩, (3.6)

with coefficients cj determined by initial conditions

cj = ⟨ψj(t0)|ϕ(t0)⟩. (3.7)

Expressing time as t = t0 + nT , where n ∈ N0, we can rewrite the
solution

|ϕ(t)⟩ =
∑︂
j

cje
−iϵj(t−t0)|ψj(t0)⟩. (3.8)

Note that |uj(t)⟩ = |uj(t0)⟩, implying that the full dynamics is cap-
tured by the phase factors e−iϵj(t−t0). This allows us to express the
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3. Lattices of angular momentum

time evolution operator as

U(t, t0) =
∑︂
j

e−iϵj(t−t0)|ψj(t0)⟩⟨ψj(t0)|. (3.9)

To illustrate, consider a time-independent Hamiltonian with station-
ary solutions Ĥ|ψj⟩ = Ej|ψj⟩. In this case

Û(t+ T, t)|ψj(t)⟩ = e−iEj T |ψj(t)⟩. (3.10)

Clearly, all |ψj(t)⟩ are Floquet states with quasienergies ϵj = Ej, for
any T ∈ R. The energies are proportional to quasienergies modulo
2π. Returning to the time-dependent scenario, we substitute the
Floquet ansatz into the Schrödinger equation:[︂

i∂t − Ĥ(t)
]︂∑︂

j

cj|ψj(t)⟩ = 0. (3.11)

The linear independence of Floquet states allows us to separate this
into N equations. For each j we find[︂

i∂t − Ĥ(t)
]︂
e−iϵjt|uj(t)⟩ = 0 (3.12)

⇔
[︂
Ĥ(t)− i∂t

]︂
|uj(t)⟩ = ϵj|uj(t)⟩ (3.13)

Given the periodicity of |uj(t)⟩ and H(t), we can expand them into
Fourier series

|uj(t)⟩ =
∑︂
k

|uj(k)⟩eikΩt, |uj(k)⟩ =
1

T

∫︂ T

0

e−iΩkt|uj(t)⟩dt, (3.14)

Ĥ(t) =
∑︂
k

Ĥ(k)eikΩt, Ĥ(k) =
1

T

∫︂ T

0

e−iΩktĤ(t)dt, (3.15)

where Ω = 2π
T . Substituting these expansions yields∑︂

k,q

(︂
Ĥ(q)eiqΩt − kΩ

)︂
eikΩt|uj(k)⟩ =

∑︂
k

ϵie
ikΩt|uj(k)⟩. (3.16)
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Multiplying by e−iΩk′t, k′ ∈ Z, and integrating over 1
T

∫︁ T
0 dt, we obtain∑︂

k,q

(︂
Ĥ(q)δq+k−k′ − (kΩ + ϵi)δk,k′

)︂
|uj(k)⟩ = 0 (3.17)

⇔
∑︂
k

(︂
Ĥ(k′ − k)− kΩδk,k′

)︂
|uj(k′)⟩ = ϵj|uj(k′)⟩ (3.18)

⇔
∑︂
k

Ĥ
F

k,k′|uj(k′)⟩ = ϵj|uj(k)⟩. (3.19)

Here, ĤF

k,k′ is the Floquet Hamiltonian. The final equation resem-
bles an eigenvalue equation for Floquet states with eigenvalue ϵj.
However, quasienergies are constrained to [0,Ω], with solutions
ϵk = ϵ± kΩ corresponding to the same Floquet state up to a phase
eikΩ. Let us consider a simple periodic driving with frequency Ω

Ĥ(t) = Ĥ0 + V̂ ·
(︁
eiΩt + e−iΩt

)︁
. (3.20)

Then the Floquet Hamiltonian becomes

Ĥ
F
(k, k′) = Ĥ0 − kΩδk,k′ + V̂ · (δk,k′+1 + δk,k′−1) . (3.21)

The Floquet Hamiltonian can thus be written as an infinite tridiago-
nal block matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · · V̂

Ĥ0 + 3Ω V̂

V̂ Ĥ0 + 2Ω V̂

V̂ Ĥ0 + 1Ω V̂

V̂ Ĥ0 V̂

V̂ Ĥ0 − 1Ω V̂

V̂ Ĥ0 − 2Ω V̂

V̂ Ĥ0 − 3Ω V̂

V̂ · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
In the following sections, we will focus on strongly-driven rotors
that can be evaluated exactly, without the need to consider the full
Floquet Hamiltonian. This approach allows us to directly exam-
ine the quasienergies and Floquet states, often without relying on
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3. Lattices of angular momentum

the frequency expansion. Specifically, since we are dealing with ex-
tremely strong but ultrashort kicks, far exceeding the weakly-driven
regime, a high-frequency expansion would be inadequate, as a Dirac
delta-shaped pulse has spectral components across all frequencies.
Therefore, we need to directly compute the time-translation operator
in order to understand the behavior of the system completely.

3.2.1 Stroboscopic Hamiltonian
While a driven Hamiltonian is not time-independent, we can find
an effective time-independent Hamiltonian, following the same idea
as in (2.40) when evaluating the effective potential for a pulse with
finite duration. The effective, i. e. stroboscopic Hamiltonian4 is de-
fined by

ÛT ≡ exp[−iĤeffT ] (3.22)
in dimensionless units with an hermitian operator Ĥeff , which is
not necessarily unique, which we will demonstrate in the following.
Starting from the one-period time-translation operator UT at t = t0
with eigenvalues λj = e−ϵjT , We can construct one solution straight-
forwardly from the Floquet states (with a matching t = t0) in (3.2).
The ambiguity of the effective Hamiltonian arises from the ordering
of the eigenstates, since quasi-energies can be degenerate, and the
periodicity of the quasi-energies. Let us denote the subspace of the
j−quasi-energy byMj, then

Ĥeff =
∑︂
j

ϵjPj (3.23)

with the projector Pj =
∑︁

n∈Mj
|ψn⟩⟨ψn|. Clearly, the effective Hamil-

tonian shares the eigenstates with the one-period time-translation
operator

Ĥeff |ψn⟩ = ϵj|ψn⟩ ∀n ∈ Mj (3.24)
4Stroboscopic refers here to the analysis of the system only at integer multiples of the

period T , as in a stroboscopic camera.
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and the quasi-energies as the phases of the eigenvalues5. Formally,
we can define the logarithm by (3.23) and write

Ĥeff = i log[ÛT ]/T (3.26)

while keeping in mind that this mapping is not unique.

3.2.2 Time-slide symmetry
Intuitively it is evident that the asymptotic behavior of a periodic
system remains invariant under shifts in the initial time t0, a property
reflected in the invariance of quasienergies for the one-period time-
translation operator. Consider an arbitrary partition Û = Û 1Û 2. The
time-slide symmetry implies that the shifted operator Ŵ = Û 2Û 1

has identical eigenvalues. Expressing Û 1 = e−iÂ1 and Û 2 = e−iÂ2 in
terms ofHermitian operatorsA1 andA2, we can relate these operators
through a similarity transform

Û 1 = eiÂ2Ŵe−iÂ2 ⇔ Ŵ = e−iÂ1Û 1e
iÂ1. (3.27)

This transformation demonstrates the spectral equivalence of Û and
Ŵ . While their eigenvalues coincide, the eigenstates differ by a
rotation6.

5We can construct infinitely other other effective Hamiltonians that have the same
time-translation operator. Let us look at the exponential map

ÛT =
∑︂
j

e−iϵ̃jTPj , (3.25)

then we realize that any choice of ϵj̃ = ϵj + 2πq/T, q ∈ Z leads to the same ÛT . This can
even lead to the curious case that a pair of non-degenerate eigenvalues of the effective
Hamiltonian are effectively degenerate, because their distance is a multiple of 2π/T .
Typically, we are interested in effective Hamiltonians that are smooth with respect to some
external parameter, which constraints the choice of Energies of the effective Hamiltonian.

6To prove this, let V̂ U diagonalize Û such that Û V̂ U = V̂ U Λ̂, where Λ̂ is diagonal.
Similarly, let V̂ W diagonalize Ŵ . Applying (3.27), we obtain

Ŵe−iÂ2 V̂ U = e−iA2̂ V̂ U Λ̂ ⇔ V̂ U = e−iÂ1 V̂ WΓ (3.28)
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3. Lattices of angular momentum

3.3 Quantum resonance of rotors
Let us nowapply this theory to quantum rotors. Wewill first examine
2D rotors and subsequently extend these results to 3D rotors in
Section 3.5. The 2D rotors can be derived as a limit of a 3D rotor
when l → ∞. In this scenario, the z-directional angular momentum
takes any valuem ∈ Z and is quantized through the relation L̂z|m⟩ =
m|m⟩, where L̂z = −i ∂∂ϕ , and the eigenfunctions are given by ⟨m|ϕ⟩ =
1√
2π
e−imϕ with ϕ ∈ [0, π) (note that this leads by definition to anti-

periodic boundary conditions for any wavepacket). The kicked rotor,
expressed in dimensionless units, is given by

HKR(t) = L̂
2

z + P cos(ϕ̂)
∞∑︂
n=0

δ(t− nT ) (3.29)

where P is the kicking strength and T is the duration between
kicks. Following the discussion in Chapter 2, the one-period time-
translation operator is simplified to

ÛT = exp[−iT L̂2

z] exp[−iP cos(ϕ̂)]. (3.30)

Note that even though angle ϕ is continuous, its compactness (which
is reflected in the quantized momenta) guarantees the discretization
of the eigenstates of Û . The matrix element of the potential is7

⟨m|e−iP cos(ϕ̂)|m′⟩ = 1

2π

∫︂ 2π

0

e−i(P cos(ϕ)+ϕ(m−m′)) dϕ

= (−i)m′−mJm′−m(P )

(3.31)

with the Bessel function Jn(x). Since the matrix elements only de-
pend on the differencem−m′, the one-period time-translation oper-
ator inherits the periodicity of the free rotation.
where Γ = diag[e−iΦ] accounts for the U(1) gauge freedom of each eigenstate, with Φ
being a vector of freely chosen phases.

7Using the expression [165] eiP cos(ϕ) =
∑︁∞

n=−∞(−i)nJn(P )einϕ. Additionally,
eiP sin(ϕ) =

∑︁∞
n=−∞ Jn(P )e

inϕ is also true, which we will use later.
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3.3. Quantum resonance of rotors

3.3.1 Fractional revivals and quantum resonances
Before looking into a complete pulse train, it is worthwhile to exam-
ine the revival structure of a 2D rotor following a single kick. This
approach can provide some insights into the nature of rotational
quantum resonances which will become important later. The re-
vival pattern of a freely evolving wavepacket, described by |ψ(t)⟩ =∑︁

n e
−itm2⟨m|ψ(0)⟩, can be interpreted as an extended version of

the Talbot effect 8. In this context, the rotational time of the rotor
(τrot = 2π in our units) assumes the role of the Talbot time, during
which periodic wavefronts experience regular revivals.

Rotational revivals manifest as fractional revivals, characterized by
periodic sharpening and spreading of the wave packet’s angular
distribution. These phenomena bear resemblance to optical focusing
effects, particularly the so-called catastrophes such as rainbows and
glories. The concepts underlying these revivals are fundamental to
applications in molecular alignment. While the topics of rotational
revivals and quantum carpets have been extensively explored in the
literature [167–170], we present here a novel perspective on quantum
resonances.

The complexity of rotational revivals extends beyond the standard
Talbot effect, as the overlap with the initial state (i. e. , the autocorre-
lation function) dependents crucially on the initial state occupations

A(t) = |⟨ψ(t)|ψ(0)⟩|2 =

⃓⃓⃓⃓
⃓

∞∑︂
m=−∞

|⟨m|ψ(0)⟩|2e−itm2

⃓⃓⃓⃓
⃓
2

(3.32)

whereψ(0) for a single kick is given by (3.31) and the autocorrelation
8The Talbot effect, first observed by Henry Fox Talbot in 1836, is a near-field diffraction

phenomenon where a periodic structure (such as a diffraction grating) creates repeated
self-images at regular distances. When monochromatic light passes through a periodic
grating, the wave field replicates the original pattern at integer multiples of a characteristic
distance called the Talbot length (zT = 2a2/λ, where a is the grating period and λ is the
wavelength), see [166] for a review.
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3. Lattices of angular momentum

function A(t). In Fig. 3.1 we show the results for a gaussian state

⟨m|ψ0⟩ = N−1(β)e−βm
2 (3.33)

with a normalization N (β)9 such that |⟨ψ|ψ⟩|2 = 1 and a parameter
β > 0 which controls the width of the distribution. For β → 0, the
gaussian state has a orientation signal ⟨cos(ϕ̂)⟩ of one10. We observe
that at the revival times t = 2πn, n ∈ N the wavepacket is revived
exactly; this phenomenon is commonly known as grand revival [171].
Further, we find that at half-revival times t = 2πn−π the overlapwith
the initial wavepacket goes to zero. Strikingly, this is a state that has
negative orientation, which allows for a semi-classical interpretation
of the angular momentum wavefunction.

Fig. 3.2 illustrates the autocorrelation function A(t) as a function of
time for various kicking strengths P for an initial state ϕ0 = δm,0.
As P increases, a larger number ofm states become occupied, each
oscillating with frequency ωrot(m) = 2πm2, as in (2.37). Over time
t, these different modes dephase, leading to a decrease in A(t) due
to destructive interference. This explains the inverse relationship
between P and overall overlap for a given t.

However, fractional revivals occur when these modes constructively
interfere. For large P , this is most pronounced at t = π/2, where all
evenmmodes interfere constructively. At t = π, a phase inversion
occurs. This is because the even nodes are becoming orthogonal to
the initial wave packet. Additional revivals are observed at multiples

9 The normalization factor can be evaluated straight-forwardly by N 2(β) =∑︁
m e

−βm2
= Θ3(0, e

−β) with the Jacobi-Theta function Θ3(z, q).
10We can evaluate the orientation signal at t = 0 exactly by

⟨ψ0| cos(ϕ̂)|ψ0⟩ = N−2(β)

∞∑︂
m=−∞

(︂
e−β(m+1)2 + e−β(m−1)2

)︂
e−βm

2
= N−2(β)

∞∑︂
m=−∞

e−β(m+1)2−βm2

= eβ/2Θ2(0, e
−2β)/Θ3(0, e

−2β)
(3.34)

which for β → 0 goes to 1 and for β → ∞ goes to zero.
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Figure 3.1: Revivals
of the 2D rotor in a
gaussian state. (a)
Orientation signal
for a gaussian state
ψ(t = 0) ∝ e−βm

2 with
β = 10−2. (b) Auto-
correlation function
A(t) of the same state.
As expected, there is a
grand revival at t = 2π
and minor revivals at
fractions of the revival
time (see main text). At
t = π, we find the anti-
revival, which can be
interpreted when look-
ing at the alignment,
which flips to ≈ −1.
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of π/3, π/4, and consequently π/12, related to the commensurability
of individual mode frequencies. The complexity of the revivals
becomes clear in Fig. 3.2(b), which shows a non-linear pattern of
minima and maxima in the autocorrelation function, interconnected
by branches of a fractal revival tree. As P increases, leading to the
occupation of more modes, we observe an increasing number of
autocorrelation minima branchings. Remarkably, even at strong
kicking strengths (P ≈ 10), significant revivals persist, such as
resonances that appear to be t = 15π

16 and t = 23π
24 , but this is difficult

to examine. Quantitative analysis of these revivals would make it
necessary to consider all kinds of fractal interference effects and
the analysis of the full non-linear revival manifold, going beyond
simple commensurability arguments. This phenomenon, involving
numerous participating modes, appears paradoxical from a classical
perspective. While we cannot exhaustively explore all details here, it
is evident that even the simple summation of oscillating terms e−im2t
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Figure 3.2: Fractional revival pattern for the 2D rotor following a single kick.
(a) Autocorrelation function A(t) = |⟨ψ(t)|ψ(0)⟩|2 between the evolved and initial
wavepackets for various kicking strengths P . The plot is restricted to 0 ≤ t ≤ π
due to symmetry around t = π. (b) Heatmap visualization of A(t) as a function
of both time t and kicking strength P . Despite the complex revival structure,
two consistent features are observed across all P values: a pronounced revival at
t = π/2 and a characteristic low overlap at t = π (for P ≫ 0).
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generates a complex pattern.

Let us now consider a series of kicks in the quantum resonance regime,
defined by T = 2π/N with N ∈ N. In this regime, the free rotation
operator is given by

⟨m|e−2πL̂
2

z |m′⟩ = δmm′e−2πm2/N . (3.35)

This operator is periodic with period N 11. The interplay between
the previously discussed Floquet theorem and the complex revival
pattern we have observed in Fig. 3.2 gives rise to a new symmetry in
m-space. This symmetry allows us to reformulate the time-evolution
operator in terms of a new variable k, which we shall refer to as the
quasi-momentum.

Intriguingly, this symmetry bears a resemblance to crystal symmetry,
but manifests in the time domain and, consequently, in m-space.
This results in a regular lattice structure in time, governed by the
quantum resonance examined earlier. This temporal lattice structure
facilitates the definition of a Fourier transform.

3.3.2 Floquet fourier transform
Any operator with the aforementioned periodicity is translation
invariant in angular momentum space with period N , i.e.,

⟨m|Â|m′⟩ = ⟨m+N |Â|m′ +N⟩ (3.36)

for allm,m′ ∈ Z. Let us parametrize eachm′,m bym = n ·N+σ and
m′ = n′·N+σ′withn, n′ ∈ Z and spinor variables12 σ, σ′ ∈ {0, 1, . . . , N − 1}.

11If N is divisible by 4, an additional symmetry emerges, reducing the effective period
to Neff = N/2. However, we will primarily focus on cases where N is not divisible by
4. The period of N is proven in the Appendix 6.2. More generally, we could choose
T = 2πM̃/Ñ with Ñ , M̃ ∈ N. By dividing Ñ , M̃ by their greatest common divisor,
we obtain T = 2πM/N , resulting in a period N equal to the least common multiple
N = LCM(Ñ , M̃).

12Analogous to condensed matter physics where the dimension N of the unit cell
defines the pseudospin of the particle.
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Then,

Amm′ = Aσσ′(n, n′) = Aσσ′(n− n′) = Aσσ′(∆n). (3.37)

Evidently, Â only depends on the off-diagonal index ∆n, due to the
periodicity. This enables us to define a Fourier transform F that
maps from angular momentum space to quasi-momentum k-space
with k ∈ [0, 2π) and reads

Aσσ′(k) =
∞∑︂

∆n=−∞

e−i∆n·kAσσ′(∆n),

Aσσ′(∆n) =
1

2π

∫︂ 2π

0

ei∆n·kAσσ′(k) dk

(3.38)

which is equivalent to the notion that the N -periodic operator Â
conserves quasi-momentum k. Note that for N = 1, the quasi-
momentum trivially becomes the angle ϕ, which makes sense be-
cause the m-quantum number is the Fourier transform of the an-
gle. In that case, F [eiP cos(ϕ̂)] = eiP cos(k). However, for a unit cell
larger than one, the situation becomes more intricate. For a state
f(m) = ⟨m|f⟩ ∈ C, the Fourier transform is defined by

fσ(k) =
∞∑︂

∆n=−∞

e−in·kf(σ +Nn),

f(σ +Nn) =
1

2π

∫︂ 2π

0

fσ(k)e
+in·k dk.

(3.39)
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3.3. Quantum resonance of rotors

Similarly, the Fourier transforms of the cosine and cosine squared
operators are given by

(cos(ϕ̂))(k) =
1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 . . . e−ik

1 0 1
1 0

...
. . .

...
1

1 0 1
e+ik . . . 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⏞ ⏟⏟ ⏞

N×N Matrix

(3.40)

and

(cos2(ϕ̂))(k) =
1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1/2 . . . e−ik/2 0
0 1 0 1/2 . . . e−ik/2
1/2 0 1 0 1/2

1/2 0 1 0
...

. . .
...

1 0 1/2
e+ik/2 0 1 0

0 e+ik/2 . . . 1/2 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⏞ ⏟⏟ ⏞

N×N Matrix

.

(3.41)
These expressions allow us to calculate the Fourier transform of the
time-translation operator at arbitrary N and hence determine the
exact time-evolution at all times.

3.3.3 Quasi-momentum Symmetries
Also for this system we have a time-slide symmetry as explained in
Section 3.2.2. This implies that the position of the kick does not alter
the model, as it represents merely a gauge freedom. Let’s examine
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3. Lattices of angular momentum

this symmetry in the case of a quantum resonance, i. e.

U(β) = e−2πiL̂
2

z(1−β)/Ne−iV̂ e−2πiL̂
2

zβ/N ∼ U = e−2πiL̂
2

z/Ne−iV̂ (3.42)
where the symbol ∼ indicates that the two operators share the same
spectrum, albeit with a rotated set of eigenstates for any 0 ≤ β ≤ 1.
However, as noted earlier, a finite β results in a distinctN -periodicity.
Let us express β = a

b where a, b ∈ N and a < b. For incommen-
surable a and b · N , the periodicity of the operator becomes b · N
(conversely, for commensurable a and N · b, it will be the least com-
mon multiple). The equivalence of the spectra consequently leads
to bN bands replacing N bands, compensating for the larger unit
cell. This phenomenon is well-known in solid-state physics as "band
folding".
In addition to that, we find a time-reversal symmetry present for all
models with one kick in the Floquet operator (where we use that
our kicking potentials are real Hermitian V ∗ = V = V T). More
specifically, a second kick with different strength13 would break the
time-reversal invariance. For Hamiltonians and hence also for our
effective Hamiltonian, time-reversal symmetry is defined as [71]

T̂ Ĥ = Ĥ
∗T̂ ⇔ T Hk = H∗

−kT (3.43)
with an anti-unitary operator14 T and conjugation ∗. Note that in
the momentum space basis, we have to invert the momentum under
time-reversal15. How the time-reflection operator acts on a time-
translation operator is evident from its definition, but we can derive
it16 to be sure from (3.26),

T̂ (ilog[ÛT ]/T )
!
= T̂ (ilog[ÛT ]/T )

∗ T̂ ⇔ T̂ Û = Û
†T̂ . (3.44)

13For example, U2-kick = e−2πiL̂
2
z/Ne−iV̂ 1e−2πiL̂

2
z/Ne−iV̂ 2 with V̂ 1 ̸= V̂ 2.

14According toWigner’s theorem symmetries in quantummechanics are either unitary
or anti-unitary [19]. Here, we can represent T by a unitary matrix UT and the conjugation
operator K such that T = UT K.

15Which, mathematically, follows straightforwardly from the definition of momentum
space in (3.38), but can also be understood intuitively.

16We use (−log[Û ]) = log[Û
−1

] = log[Û
†
].
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3.3. Quantum resonance of rotors

When the pulse is at the center, i. e. β = 1/2, the time-reversal invari-
ance takes the simple form of unity times conjugation T ∝ IK. Then,
T̂ Û = U ∗T = U †T̂ . For the one-kick rotor models, we can show this
explicitely by using (4.15) and calculating U ∗(β = 1/2)U(β = 1/2) = I.
Clearly, for any time-reversal operators in this gauge Ũ 1, . . . , Ũn, the
product Ũ 1 . . . Ũn−1ŨnŨn−1 . . . Ũ 1 also has time-reversal symmetry17.
Hence, to construct T for arbitrary gauges β, we only need to bring U
(or H , respectively) back to the β = 1/2 gauge. This is accomplished
by the gauge transformation U(β) with

U(β) = e−2πiL̂
2

z(2β−1)/(2N) with U †(β)U(β)U(β) = U(1/2). (3.45)

The (anti-unitary) time-reflection operator then takes the form T (β) =
U(β)KU †(β)with conjugationK. The time-translation operator then
fulfills T (β)U(β) = U †(β)T (β).
The rotational phases, ζm = e−2πim2/N , give rise to a inversion symmetry
for odd N . When we choose18 the inversion center of the first unit
cell to nc = (N + 1)/2 ∈ N and for a 0 ≤ j < nc we have ζnc+j = ζnc−j
and hence the matrix representation in m−space of the inversion
becomes

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. .
.

. . . 0 1
1 0

... . .
. ...

0 1
1 0 . . .

. .
.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⏞ ⏟⏟ ⏞

infinite matrix

(3.46)

17Additionally, there are more ways to construct time-reversal invariant operators. For
instance, for an even number of arbitrary unitary operators the product U = U1, . . . Un
will have the U † = U∗ property by imposing U †

i = U∗
n−i+1.

18In the definition of the Fourier transform (3.38) there is an unmentioned freedom
at whichm to define the unit-cell. Here, we choose it in a way that the inversion center is
in the center of the unit-cell.
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3. Lattices of angular momentum

with P†P = P2 = I. Since it’s a spatial symmetry and does not
involve conjugation, it acts similarly on the time-translation operator
PU = UP . In k-space we find

P =

⎛⎜⎜⎜⎜⎜⎝
. . . 0 1

1 0
... . .

. ...
0 1
1 0 . . .

⎞⎟⎟⎟⎟⎟⎠
⏞ ⏟⏟ ⏞

N×N Matrix

(3.47)

including a k−inversion k → −k. For effective Hamiltonian we find
PHk = H−kP and similarly for the time-translation PUk = U−kP .
Note that since this operator obeys both time-reversal and inver-
sion symmetry, we can always gauge it to a real form19. This holds
true even when an auxiliary parameter is introduced, acting as a
synthetic dimension that does not disrupt the existing symmetries.
Importantly, the system’s PT symmetry remains intact along an adi-
abatic path P (α), where α ∈ R, irrespective of any changes to these
synthetic dimensions (this will become important in Chapter 4).

3.3.4 Fully resonant case N = 1

As mentioned earlier, for N = 1, the free rotation is trivial with
e−2πim2

= 1. The one-period time-translation operator then reduces
to the kick (3.31). After n kicks, a wave packet evolves as

U(t0 + nT, t0) = e−iP ϕ̂ . . . e−iP ϕ̂⏞ ⏟⏟ ⏞
n

= e−inP ϕ̂ (3.48)

19Let us define the eigenstates and eigenvalues of P by PV = Vdiag[λ], then, in
the time-reversal symmetric frame (β = 1/2) the operator W = diag[

√
λ]V† defines a

transformation that gauges the Hamiltonian to be real, i. e. Hk ↦→ H̃k = WHkW† ∈ RN×N ,
since H̃k = H̃

∗
k ⇔ H̃ ∈ RN×N , which follows from H̃k = H̃

∗
−k and inversion invariance.

72



3.3. Quantum resonance of rotors

20 40 60 80
n

−100

−50

0

50

100

m

(a)

|ψ|2

10−7
10−4
10−1

|m| = P · n

0.00 0.01 0.02

|⟨m|ψn=80⟩|2

(b)

Figure 3.3: Dynamics of a quantum rotor at full resonance (N=1) with P=1. (a)
Logarithmic color plot of |⟨m|ψ(nT )⟩|2, depicting the ballistic spread of a wave
packet initially localized at m = 0. (b) Probability distribution |⟨m|ψ(nT )⟩|2 at
t = 80T , showing the squared Bessel function |Jm(nP )|2 (cf. (3.48)).

with rescaled matrix elements from the kick (3.31). For an initial
state with ⟨m|ψ0⟩ = δm,0, we can evaluate the kinetic energy exactly20

⟨Ĥ0⟩t = ⟨ψ(t)|L̂2

z|ψ(t)⟩t=nT = (Pt)2/2 (3.49)

which demonstrates a ballistic growth in energy (see Fig. 3.3). Like-
wise, one can straightforwardly show21 that the wave front of the

20To evaluate the identity, let us first look at

∂

∂ϕ
eix sin(ϕ) = ix cos(ϕ)eix sin(ϕ)

!
=

∂

∂ϕ

∞∑︂
m=−∞

Jm(x)e
imϕ = i

∞∑︂
m=−∞

mJm(x)e
imϕ.

Then, let us take the modulo square and integrate over
∫︁ 2π
0 dϕ,

πx2
!
=

∫︂ 2π

0
dϕ
∑︂
mm′

J∗
m(x)Jm′(x)m2ei(m−m′)ϕ = 2π

∑︂
m

m2|Jm(x)|2

which leads to the desired expression.
21First we show that the Bessel function Jm(x) reaches its global minimum with

respect to m at m ≈ x. To this end, we can use the stationary phase approximation.
Another integral representation is given by [165] Jm(x) = 1

π

∫︁ π
0 cos(γ(u))du with the

phase γ(u) = mu − x sin(u). The stationary points occur where the derivative is zero,
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3. Lattices of angular momentum

wavepacket spreads likemmax ≈ Pt, which suggests a linear spread
in angular momentum space. For other initial conditions than a pure
state, the wave fronts and the energy growth will deviate from these
exact results due to interference effects, but we still expect asymp-
totically a linear behavior in wave front spreading and a quadratic
growth in energy.

3.3.5 Staggering case N = 2

This is a unique and somewhat unusual case compared to other
resonances, as after two kicks, any initial wavefunction is precisely
mapped back onto itself. This is noteworthy because it holds true for
any kicking strength P or any initial state. This can be demonstrated
straightforwardly using identities of the Bessel function22, but there is
another argument that will be useful later, which is more illustrative
and simpler. Specifically, we can perform the Fourier transform to
gain insights into the spin model that naturally emerges from this
mapping. For N = 2, the cosine in (3.40) becomes

F [P cos(ϕ̂)](k) =

(︃
0 1 + e−ik

1 + eik 0

)︃
= (1 + cos(k))σx + sin(k)σy

(3.50)
γ′(u) = m− x cos(u) = 0 i. e. cos(u) = m

x . Solutions exist when |m| ≤ x. The maximum
contribution to Jm(x) occurs when u = 0, leading tom = x. The maximum of the wave
packet (with ψ0 = δ0,m) with |⟨m|ψ(t = nT )⟩|2 = |Jm(nP )|2 then occurs, likewise, at
m = Pn.

22Consider an initial wave function |ψ0⟩. The free rotation simply introduces a phase
factor (−1)m, while the kick results in the matrix elements (3.31). After two kicks, we
have

⟨m|ψ⟩ = (−1)m
∞∑︂

m1=−∞
(−i)m1−mJm1−m(P )(−1)m1

∞∑︂
m2=−∞

(−i)m2−m1Jm2−m1Jm2−m1(P )⟨m2|ψ0⟩

=

∞∑︂
m2=−∞

(−i)m2−m⟨m2|ψ0⟩
∞∑︂

m1=−∞
(−1)m1+mJm1−m(P )Jm2−m1(P ) = ⟨m|ψ0⟩.

where in the last step we shifted the sum m1 → m1 + m and utilized the identities
J−m(P ) = (−1)nJm and

∑︁∞
m=−∞ Jm(P )Jm+q(P ) = Jq(0) = δq,0.
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Figure 3.4: Dynamics of a quantum rotor at half resonance (N=2) with P=10.
(a) Time evolution of the probability density |ψ(t)|2 for an initially localized state
⟨m|ψ(0)⟩ = δm,0. (b) Temporal evolution of |ψ(m, t)|2 for an initially Gaussian state
⟨m|ψ(0)⟩ ∝ e−β|m|2 with β = 10−2. (c-d) Kinetic energy dynamics corresponding
to (a-b). As demonstrated in the main text, the system exhibits perfect revival
after two kicks, returning to its initial state with no net change. For a Gaussian
state we do not see any change in population.

with the pauli matrices σi. They can be easily exponentiated using a
variant of the Euler-Rodrigues’ rotation formula [15]

e−idk·σ = I cos(ξ) + i(n · σ) sin(ξ) (3.51)

where dk = (P (1 + cos(k)), P sin(k), 0) ≡ ξn with n2 = 1. The free
rotation simply becomes F [δmm′e−πm

2

] = σz, and thus the one-period
translation operator takes the form

Û(k) = σz cos(ξ) + iσz(n · σ) sin(ξ) (3.52)
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3. Lattices of angular momentum

which clearly squares to one Û 2
(k) = I. Hence, after two kicks, the

initial wavepacket is recovered.

3.3.6 Higher order quantum resonances
Let us now examine the case of the triadic resonance N = 3. In
Fig. 3.5 we show the quasi-energy spectrum and time evolution. We
observe that the spectrum branches from a single band at P = 0
into three bands with increasing width as P increases, consistent
with the expected periodicity. Notably, at P ≈ 4, there is a band
touching, which will be investigated at a later stage. Similar to the
N = 1 resonance case, we observe unobstructed ballistic growth
for most initial eigenstates. While we derived an exact expression
for the energy growth in the N = 1 case (see (3.49)), obtaining
such expressions for the general case proves to be significantly more
challenging. We can express the effective Hamiltonian inmomentum
space as

Hk = dk(P ) · λ (3.53)
where λi ∈ {λ1, . . . , λ8, I} are the Gell-Mann matrices belonging to
the Lie algebra of SU(3), including the unity as the ninth matrix
(see [76, 172]), and dk(P ) ∈ R8+1 is the so-called winding vector,
similar to the 2-band case in (3.51). This formulation allows us to use
the properties of SU(3) to understand the symmetries and structure
of our system. Using (3.3) we can define the bandgap of the n-th
band by of the model by

δn = min
k∈[0,2π]

|ϵn(k)− ϵn+1(k)|2π (3.54)

and the minimal band gap by minn δn.

As outlined in Section 3.3.3, this Hamiltonian obeys the symme-
tries T Hk = H∗

−kT and PHk = H−kP , which constrain the vector
dk. For resonances with N > 3, we can generalize this approach
using the SU(N) generalized Gell-Mann matrices. When we look
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Figure 3.5: Quasi-energy spectrum at the triadic resonance N = 3. (a) Quasi-
energy spectrum as a function of kicking strength P from exact diagonalization
(see (3.29)). The spectrum exhibits branching from a single band at P = 0 into
three bands with increasing width as P increases. (b) Quasi-energy spectrum
as a function of quasi-momentum k at P = 3 (indicated in (a) by the dashed
vertical line), demonstrating the inversion symmetry around k → −k. (c)-(d)
Time-evolution of the probability density |ψ(t)|2 for the same states as in Fig. 3.4.

at higher quantum resonances N > 3, Fig. 3.6 demonstrates that
these resonances also exhibit a linear spread of the wavefunction.
However, determining the precise slope of the wavepacket spread for
arbitrary N is challenging, since unlike the cases before, there is no
known expression for the maxima of the wavefunction. As empha-
sized in Fig. 3.6, the spread in angular momentum is generally less
pronounced the higher the quantum resonance N is. This is a phe-
nomenon already outlined in [49], which provides a semi-empirical
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3. Lattices of angular momentum

equation with
⟨Ĥ0⟩t ≈ Dt2 exp[−2N/D] (3.55)

where D = P 2

T is a semi-classical diffusion constant23, noting that
this equation is only valid for q ≪ D. Upon examining different
resonances, it becomes apparent that the order of resonance alone
is a poor indicator of the growth of energy. To elucidate this be-
havior further, let us examine Fig. 3.7, which shows the growth of
energy for more general resonances q = M

N with two coprimesM,N
(see footnote 11). As it turns out, some of them coincide and have
identical spread (for example q = 1/5 and q = 3/5), while others
vary immensely in their spread (for example q = 1/5 and q = 2/5).
Further, there is a dependence on the kicking strength P as well. We
can estimate the average growth of kinetic energy using the spinor
representation (3.38) of the t − th power of the time-translation
operator (3.30)

(Uσσ(k))
t =

(︄
N∑︂
s=1

ψs,σ(k)e
−ϵs(k)ψ∗

s,σ(k)

)︄t

=
N∑︂
s=1

ψs,σ(k)e
−tϵs(k)ψ∗

s,σ(k)

(3.56)
with the eigenstates ψs,σ(k) of Uσσ′(k). Then, usingm = Nn+ σ, the
kinetic energy for a state ϕ(t) takes the form

Ekin(t) = ⟨ϕ(t)|L̂2

z|ϕ(t)⟩ = ⟨ϕ0|(U †)tL̂
2

zU
t|ϕ0⟩

=
∑︂

mm′m′′

ϕ0,mϕ0,m′′(U †
mm′)tm2(U t

m′m′′)t

=
∑︂
σσ′σ′′

nn′n′′

ϕ0,σ(n)ϕ0,σ′′(n′′)(U †
σσ′(n′ − n))t(Nn′ + σ)2(U t

σ′σ′′)t

(3.57)
Now, we choose24 ϕ∗σ = δσ,0δn,0 as the initial state and can remove

23In the classical kicked rotor [49], the averagemomentum changes with ⟨H0⟩t ≈ Dt/2.
24The calculation can possibly also be done with a generic initial state, but it will

become very cumbersome.
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3.3. Quantum resonance of rotors

Figure 3.6: Time-evolution for higher quantum resonances. (a-d) The plots show
the linear spread of the wavefunction for various resonance orders N . The color
scale shows the probability density |ψ(t)|2 as a function of momentumm and time
t. The linear nature of the spread is evident across all resonances, although the
specific rate of spread varies by orders of magnitude (note the different ranges of
the axis). There is a general trend where higher resonances correspond to slower
spread. For a more detailed analysis of the energy accumulation see Fig. 3.6.

four of the sums. Factorization in eigenstates becomes

=
1

4π

∑︂
σ,n,ss′

(Nn+ σ)2
∫︂ 2π

0

dk

∫︂ 2π

0

dk′e−i(n(k
′−k)+t(s−s′))

· ψ∗
s,0(k)ψs,σ(k)ψs′,σ(k

′)ψ∗
s′,0(k

′).

(3.58)

Remarkably, we can derive an identity for
∑︁∞

n=−∞(Nn+σ)2e−in(k
′−k),
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Figure 3.7: Growth of kinetic energy for higher quantum resonances. The
plots show the quadratic growth of energy (P = 1) for various resonance orders
q = M/N with Floquet operator U = e−2πiL̂

2
zM/Ne−i cos(θ̂). First, we confirm that

all resonances lead asymptotically, after an initial irregular phase, to quadratic
growth t2 as visible from the slope of the curves. Second, we confirm that overall,
for increasing resonances N , the growth rates drop exponentially (with notable
exceptions, such as q = 1/8).

see25), and remove the infinite sum. With defining

χsσ(k) = e−itϵs(k)ψs,σ(k)ψ
∗
s,0(k) (3.59)

25After expansion, there are three terms can be written as

N2
∞∑︂

n=−∞
n2e−in∆k⏞ ⏟⏟ ⏞

−2π
∑︁∞

n=−∞ δ′′(∆k−2πn)

+2Nσ

∞∑︂
n=−∞

ne−in∆k⏞ ⏟⏟ ⏞
−2πi

∑︁∞
n=−∞ δ′(∆k−2πn)

+σ2
∞∑︂

n=−∞
e−in∆k⏞ ⏟⏟ ⏞

2π
∑︁∞

n=−∞ δ(∆k−2πn)

Clearly, in the infinite sums only n = 0 contribute, since ∆k ∈ [0, 2π). The delta functions
then facilitate the integration over k′ and by noting that ∂∆kψ(k) = ∂kψ(k) we arrive
at (3.60).
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3.4. Dynamical localization

we find

Ekin(t) =
1

2

∑︂
σ,ss′

∫︂ 2π

0

dk χ∗
sσ(k)

(︁
σ2χs′σ(k)− 2iNσ∂kχs′σ(k)−N 2∂2kχs′σ(k)

)︁
.

(3.60)
The expression inside the integral constitutes something like a trans-
port tensor that needs to be integrated over k. Since σ, s, s′ all run only
from 1 to N , this is something one can evaluate straightforwardly.

3.4 Dynamical localization
What happens when we deviate from perfect resonance conditions?
Consider the case where T = 2πq with some non-rational num-
ber q, for example, q = π−1. A fascinating phenomenon emerges,
known as dynamical localization, where the wavefunction becomes
localized in angular momentum space [46]. To develop physical
intuition, consider a driven oscillator analogy: When kicks occur
at intervals incommensurate with the oscillator’s natural frequency,
they effectively appear as random perturbations rather than coher-
ent driving. Instead of resonant energy absorption, we observe
destructive interference effects that inhibit energy growth, creating
behavior reminiscent of dissipative processes, though the underlying
mechanism is purely quantum mechanical. Figure 3.8 illustrates the
time evolution of a rotor in the dynamical localization regime. The
system initially exhibits a brief growth phase before settling into a
quasi-steady state with bounded random fluctuations. This state
persists indefinitely, as demonstrated in panels (b) and (d), with
the wavefunction displaying exponential localization. The origin of
this phenomenon lies in Anderson localization physics. The driving
period’s incommensurability with the rotational period effectively
introduces quasi-random disorder into the system, causing local-
ization in momentum space analogous to Anderson localization
in real space lattices. The degree of localization depends critically
on the "incommensurability" of q. Figure 3.9 demonstrates this for
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Figure 3.8: Time-evolution demonstrating dynamical localization. All panels
show results for P = 1 and T = 1. The left panels show the short-term evolution
over n = 50 kicks and the right panels the long time-evolution over n = 10000
kicks. In (d) we show the exponentially localized wavepacket at t = 104. The
system exhibits strong localization with the kinetic energy fluctuating chaotically
about a mean value. Notably, this localized behavior persists even over long time
scales, contrasting sharply with the ballistic spreading observed in resonant cases.

q = 0.3331, which lies near the rational value q = 1/3. While the
system exhibits strong localization, it displays significant kinetic
energy fluctuations. These fluctuations, though appearing regular,
are fundamentally chaotic and non-repeating. Notably, the energy
variations arise primarily from wavefunction phase changes while
the probability density remains relatively stable.

For delta-kick potentials V̂ , we can establish an exact mapping to a
tight-binding model [173]. Given a Floquet operator U = e−iH0Te−iV̂
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Figure 3.9: Time-evolution near quantum resonance. Here we look at q = 0.3331,
near the 1/3 quantum resonance. (a) Time evolution of probability density |ψ(t)|2
and (b) time-evolution of the phase arg[ψ]|ψ| within a selected time window.
(c) Full time evolution of kinetic energy, demonstrating large-scale fluctuations,
and (d) selected time window. Despite the nearly constant probability density
distribution, the system exhibits dramatic kinetic energy fluctuations up to 80% of
the mean value, driven by quantum phase interference effects.

with Floquet mode U |ψ⟩ = e−iϵ|ψ⟩, we obtain26:∑︂
m′

(Wmm′ − δmm′Qm′(ϵ))ψ̃m′ = 0 (3.61)

26First, we use the fact that we can rewrite e−iV̂ = 1+iW
1−iW with an hermitian operator

W = − tan[V̂ /2]. Then, U |ψ⟩ = e−iϵ|ψ⟩ turns into

(1 + e−i(ϵ−H0T ))|ψ⟩+ iW (1− e−iϵ−H0)|ψ⟩ = 0.

Finally, we replace |ψ⟩ by ψ̃ = 1 − (e−i(ϵ−H0T ))|ψ⟩ and use the identity 1−e−i(ϵ−H0T )

1+e−i(ϵ−H0T ) =

i tan[(ϵ−H0T )/2] to arrive at (3.61).
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Figure 3.10: On-site potentials for the tight-binding map. Following the defini-
tion of on-site potential in (3.61), (a-b) shows cases at quantum resonance, where
we understand that the on-site potentials are perfectly periodic, confirming what
we already know from the discussion about the periodicity in (3.35). (c-d) is
in the dynamical localization regime, but close to the resonance q = 1/3, as in
Fig. 3.9. (e-f) is far away from any resonance and does not show any periodicity.
In contrast, it shows large fluctuations.
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3.4. Dynamical localization

whereWmm′ = −⟨m| tan[V̂ /2]|m′⟩, Q = tan((ϵ−H0T )/2), and ψ̃n =
⟨m|1−(e−i(ϵ−H0T ))|ψ⟩. While this equation is not directly solvable due
to the dependence on ϵ, it provides valuable insights. For moderate
coupling,Wmn represents regular nearest-neighbor hopping, with
system behavior largely determined by the on-site potential Qm.
Compared to our previous expressions of the dynamics, for example
the stroboscopic Hamiltonian, this formulation separates the regular
hopping potential V̂ from the rotational phases e−iH0T appearing as
on-site terms.

To understand this tight-binding model, we can look at a related
model that looks very similar: The Lloyd model offers exact solution
of the localization length27

ψn+1 + vnψn + ψn−1 = Eψn (3.62)

with probability distribution

p(vn) =
1√
2π

w2

v2n + w2
, vn > 0. (3.63)

This model exhibits exponential localization for any non-zero disor-
der strength w, with localization length ξloc

ξ−1
loc = arcosh

[︃
1

4

(︂√︁
(2 + E)2 + w2 +

√︁
(2− E)2 + w2

)︂]︃
(3.64)

For E = 0, a Taylor expansion of the localization length yields

ξ−1
loc = arcosh(2) +

w2

16
+

w4

1024
+O(w6) (3.65)

which leads to the characteristic scaling ξloc ∝ 1/w2 for small disor-
der. The divergence of the localization length as w → 0 signals the
localization-delocalization transition at zero disorder, marking the
boundary between localized and extended states.

27Following [49] closely.
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3. Lattices of angular momentum

For our quantum rotor, while not truly random, the terms Qm =
tan(ϵ−m2T )/2) become sufficiently disordered for incommensurate
T to induce localization. This disorder-induced localization differs
fundamentally from the topological edge states we will encounter
in the 3D rotors of the next Section, where boundaries give rise to
distinct edge modes of topological origin.

3.5 Periodically driven 3D rotors
In Chapter 2, we extensively discussed the interaction of molecules
with off-resonant multi- and few-cycle pulses. The sudden approxi-
mation, which we elaborated there, will serve as the basic ingredient
for the periodically driven molecule. From now let us assume that
we are working in the regime where the sudden approximation is
applicable and refer the reader to our previous discussion when
questions of validity arise.

Within the sudden approximation, the full Hamiltonian of a linear
molecule plus interaction with a train of linearly polarized laser
pulses takes the following form of a time-independent Hamiltonian
H0 and a periodic potential

HKR(t) = BL̂
2
+
(︂
P1 cos(θ̂) + P2 cos

2(θ̂)
)︂ ∞∑︂
n=0

δ(t− nT )

= H0 + V̂
∞∑︂
n=0

δ(t− nT ).

(3.66)

with the effective pulse strengths P1, P2 defined in (2.60) and (2.51)
and the duration between the pulses T . The terms arising due to
finite P1 we will call orientation pulse (analogous to the orientation
signal ⟨cos(θ̂)⟩) and P2 we shall call the alignment pulse (analogous
to the alignment signal ⟨cos2(θ̂)⟩). For other cases such as the sym-
metric top or elliptical polarization, the effective strength Pi becomes
tensor dependent on the different spherical sectors.
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3.5. Periodically driven 3D rotors

The two-dimensional rotor with L̂2

z might seem fundamentally dif-
ferent from the full three-dimensional case governed by L̂

2. Indeed,
instead of the simple basis functions e−imϕ we need to consider the
more involved spherical harmonics of (2.4), which, at first glance,
introduce significant complications. However, as we will see in the
following, we can simplify the problem considerably. When we
consider linearly polarized pulses (see Section 2.2 for the complete
reference system), the matrix elements ⟨l′m′|V̂ |lm⟩ exhibit a remark-
able property: they are proportional to δmm′ and converge rapidly
to constant values for l, l′ ≫ 0. This convergence enables us to ex-
tend our Fourier transform techniques and momentum-dependent
Floquet states to the three-dimensional rotor, given that we choose
the kicking interval to be at a quantum resonance T = 2π/(B ·N).
Instead of a phase factor ∝ m2, the phases turn into

ζl = e−2πil(l+1)/N (3.67)

which, nevertheless, possess a period N 28. However, a fundamental
distinction arises: unlike the two-dimensional case where m ∈ Z
spans all integers, three-dimensional angular momentum is confined
to l > 0, creating a half-infinite lattice with a boundary at l = 0. This
boundary prevents direct application of Fourier methods to states
with significant weight near l = 0, which will be important for a
specific class of edge modes that are of topological origin. While few
in number, these boundary-localized states profoundly influence
the molecular dynamics under periodic driving. When including
additional terms of a real molecule, such as centrifugal distortion,
this will lead to an effective maximum lmax of the lattice, framed
Anderson Wall. We will discuss this phenomenon in Sec. 3.5.2. From
now on, when we work with real-space diagonalization, we shall for
practical reasons always assume a finite lattice 0 ≤ l ≤ lmax with the
possibility of edge states at both boundaries. For bulk states, however,

28As in the 2D rotor, there are special cases; for N = 2 + 4n, n ∈ N0, the period is N/2
instead of N due to an accidental symmetry. We prove this in the appendix 6.2.
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3. Lattices of angular momentum

the infinite lattice approximation remains remarkably accurate, as
we shall demonstrate in the following.

3.5.1 Convergence of matrix elements of the 3D rotor
The asymptotic expressions take the simple form29

⟨l′m′| cos(θ)|lm⟩ = −δmm′C l′m
lm10C

l0
l′010

l, l′ ≫ 0−−−−→ δmm′ (δl,l′+1 + δl,l′−1) /2
(3.71)

and

⟨l′m′| cos2(θ)|lm⟩ = δmm′

(︂
2
3C

l′m
lm20C

l0
l′020 +

1
3δll′
)︂

l, l′ ≫ 0−−−−→ δmm′ (δl,l′ + (δl,l′+2 + δl,l′−2)/2) /2.
(3.72)

For m = 0, these coefficients show particularly rapid convergence,
as demonstrated in Fig. 3.11. Thus, the behavior of the 3D rotor is

29To prove this asymptotic, one can use the Edmonds asymptotic formula for 3j-
symbols [174] (︃

l1 l2 l3
m1 m2 m3

)︃
for l2, l3 ≫ l1−−−−−−−−→ (−1)l3+m3

dl1m1,l3−l2(α)√
l2 + l3 + 1

(3.68)

with cos(α) = m2−m3
l2+l3+1 , the Wigner function dlm,m′(α) and 3j-symbols which are related to

the Clebsch-Gordan coefficients [175]

⟨j1m1 j2m2|J M⟩ = (−1)−j1+j2−M
√
2J + 1

(︃
j1 j2 J
m1 m2 −M

)︃
. (3.69)

For (3.71) this leads to

C l
′m
lm10C

l0
l′010 = (−1)−m

√︁
(2l′ + 1)(2l + 1)

(︃
1 l′ l
0 m m

)︃(︃
1 l l′

0 0 0

)︃
for l, l′ ≫ 0−−−−−−−→ (−1)l+l

′
d10,l−l′(π/2)d

1
0,l′−l(π/2)

(3.70)

where we used that α = π/2 for both terms. Since the Clebsch-Gordan coefficients allow
only l− l′ = ±1 and d10,±1(π/2)d

1
0,∓1(π/2) = 1/2 this leads to the desired relation. For (3.72)

this derivation proceeds analogously, with the difference that d20,±2(π/2)d
2
0,∓2(π/2) = 3/8

and d20,±2(π/2)d
2
0,∓2(π/2) = 3/8 and d20,0(π/2)d20,0(π/2) = 1/4, which in total leads to the desired

result.
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Figure 3.11: Convergence of the off-diagonal Matrix elements. Here we demon-
strate that the products of Clebsch-Gordon coefficients that define the relevant
transition matrix elements of a laser kick convergence fast for l ≫ 0 for different
m quantum number. (a) for cos(θ̂) potential, (b) cos2(θ̂) potential.

Figure 3.12: One-period
time-translation operator
for a 3D rotor. Here we show
the matrix elements for the
time-translation operator
with U = e−i2πL̂

2
/3e−iV̂ and

V̂ = P1 cos(θ̂) + P2 cos(θ̂) at
P1 = 1, P2 = 2,m = 0. We ob-
serve that there is a periodicity
of N = 3, as we expected, and
the deviations around l = 0 are
very small and barely visible.
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well-approximated by assuming constant values for these matrix
elements. Even more remarkably, we recover the periodicity from
(3.36) that ensures the validity of the Fourier analysis.

Fig. 3.12 illustrates the matrix elements of the time-translation op-
erator for the three-dimensional rotor under a kick described by
U = e−2πiL̂

2
/3e−iV̂ . Two crucial features emerge from this analysis:

First, we observe the expected periodicity of N = 3, with devia-
tions near l = 0 being remarkably small and barely visible. Sec-
ond, the rapid convergence of matrix elements, anticipated by (3.71)
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3. Lattices of angular momentum

and (3.72), is clearly manifest. The matrix structure revealed in
Fig. 3.12 suggests that despite the apparent complexity of three-
dimensional rotation, the essential physics can be captured by a
relatively simple effective model.

Building on our previous analysis, let us now examine the quasi-
energies and Floquet states of a periodically driven 3D rotor with
N = 3 andm = 0. Fig. 3.13 shows the results of exact diagonalization,
using parameters similar to those that generated the matrix elements
in Fig. 3.12. A comparison between real-space andmomentum-space
diagonalization shows close to perfect agreement for the bulk spec-
trum and the corresponding Floquet states. Crucially, the real-space
method reveals edge states at both boundaries that are inherently
absent in the Fourier analysis, as the latter assumes an infinite system.
These edge states exhibit exponential decay in angular momentum
space.

3.5.2 Anderson wall
While an ideal 3D rotor exhibits the energy spectrumErot = Bl(l+1),
allowing for driving at quantum resonances, any deviation from a
perfect rigid rotor modifies this relation. A prominent example is
the centrifugal distortion in non-rigid rotors, which introduces an
additional term30

∆E = D(l(l + 1))2 (3.73)
where D is the centrifugal distortion constant. As evident from
Table 3.1, D is typically much smaller than the rotational constant
B, making this correction negligible for small l [171]. However,
its significance grows with increasing l, eventually destroying the
N -periodicity of the system. This occurs because the system now
exhibits two typically incommensurate timescales, making the reso-
nance condition impossible to satisfy (unless B were an exact multi-
ple of D, which is highly improbable).

30For a detailed derivation, see Sec. 1.1.1 in [171].
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Figure 3.13: Exact diagonalization of the N=3 band model for the driven 3D
rotor. (a) Comparison between real-space (dotted) and Fourier-space (solid line)
diagonalization at P1 = 1, P2 = 2. While the bulk spectra show nearly perfect
agreement, the real-space calculation reveals additional edge states (red crosses)
absent in the Fourier analysis. (b) Spectrum in Fourier space as a function of
quasi-momentum k. (c) Representative bulk state wavefunction from real-space
diagonalization. (d) Edge state wavefunction showing exponential localization in
angular momentum space.

This phenomenon, first identified in [176] and termed the Anderson
wall, implies that the resonance condition holds only approximately
up to some critical momentum lmax. Defining the ratio g = D/B, we
can approximate this critical angular momentum as31

lcrit = r/ 3
√
g (3.74)

where r is a constant determined by the acceptable magnitude of
31This approximation follows from analyzing the zeros of the tangent function in the

tight-binding Hamiltonian derivation from Section 3.4, see [176].
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deviation. To quantify r, we define a unit-cell matrix norm deviation

∆U(l) =
1

N 2

N∑︂
σ,σ′=1

|Ul+σ,l+σ′ − Ul+σ,l′+σ′|2 . (3.75)

Setting a threshold of∆U(l) > 0.1 yields r ≈ 0.36, which agrees well
with numerical time-evolution simulations of wavepackets which
show a change of behavior at that angular momentum (see Fig. 3.14).
The results confirm the inverse cubic scaling predicted by Eq. (3.74).
The physical manifestation of this effect is striking: without cen-

Molecule trev (ps) g · 106 Estimated lcrit
H2 0.281 794 ∼4
N2 8.383 2.90 ∼25
Cl2 68.57 0.765 ∼39
ICl 146.4 0.354 ∼51
CO2 42.74 0.343 ∼51
Br2 203.5 0.255 ∼57
OCS 82.22 0.214 ∼60
I2 447.0 0.107 ∼77

Table 3.1: Effects of centrifugal distortion. Revival times (trev = πℏ/B), ratio
of centrifugal distortion to rotational constants (g = D/B), and estimated lcrit ≈
r/ 3
√
g values for various linear molecules, see (3.74). Values of molecules taken

from [176].

trifugal distortion, we expect ballistic spreading of the wavefunction.
With distortion, this ballistic spread persists only up to lcrit, beyond
which localization occurs. This effectively creates a finite-size system
bounded by l = 0 and l = lcrit, with wavepacket reflections occurring
at both boundaries. For practical purposes, we can set lmax = lcrit and
restrict our analysis to l < lcrit, as the regime beyond this threshold
is only accessible through specific driving protocols, such as high-
intensity pulses. Now, having a finite lattice will also lead to a partial
failure of the quasi-momentum description. Let us look at this in
more detail.
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Figure 3.14: Analysis of centrifugal distortion effects in a 3D rotor. Results
shown for P1 = P2 = 1. (a) Critical angular momentum evaluated using the
criterion ∆U(l) > 10−1 (Eq. (3.75)) with r = 0.36. (b) Matrix norm deviations for
various g values. (c) Representative matrix for g = 10−6. (d) Exact time-evolution
of a wavepacket initially in the rotational ground state at g = 10−6.

3.5.3 Limitations of the quasi-momentum description

While not visible in the spectrum, the boundaries at l = 0 and l = lmax

lead to deviations in the eigenstates of the Hamiltonian. The fun-
damental sampling theorem, as established by Shannon and Nyquist
[177], becomes particularly relevant when transforming finite real-
space lattice configurations to momentum space and vice versa. For
example, the phenomenon of aliasing manifests when attempting to
represent high-momentum components of wavefunctions, particu-
larly near the Brillouin zone boundaries, leading to spurious folding
of bands [178].
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Another aspect is spectral leakage [179], which is an issue for all kinds
of discrete Fourier transforms and becomes particularly relevant
when dealing with localized states. Namely, when the spatial extent
of a wavefunction does not perfectly match the periodic boundary
conditions, energy contributions can "leak" across multiple k-points.
This is why it is important to fine-adjust the Fourier transform pa-
rameters (in particular the center in (3.39), which corresponds to
the point where we define n = 0). Here, the choice of window func-
tions could be another way to approach this issue. However, while
windows like Hamming or Blackman can reduce spectral leakage,
they simultaneouslymodify the real-space structure of the wavefunc-
tions [179]. For tight-binding calculations, this introduces artificial
spatial correlations that must be carefully accounted for in any phys-
ical observable calculations. In this work, we do not use window
functions, and instead outline the problems with finite size effects.
Edge effects become particularly relevant when studying systems
when we investigate the topological edge states.

Then, a challenge is phase unwrapping, which emerges when calcu-
lating Berry phases or analyzing topological properties of bands.
The discrete sampling in momentum space can lead to ambiguities
in determining the continuous evolution of wavefunctions across
the Brillouin zone, particularly near band degeneracies or touch-
ing points [180]. This is particularly important for k ≈ 0, which
corresponds to the infinite wavelength limit and can thus not be re-
solved in a finite lattice. This will become important in Section 4.4.1,
where we use quasi-momentum Floquet states in order to analyze
the real-time evolution of a rotating molecule.

3.5.4 Quantum revival pattern for symmetric tops
The quantum dynamics of the 3D rotor exhibits markedly different
behavior from its 2D counterpart, primarily due to the distinct phase
accumulation described in (3.67) and the restriction to non-negative
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Figure 3.15: Revivals
of the 3D rotor in a
gaussian state. (a)
Orientation signal
for a gaussian state
ψ(t = 0) ∝ e−βl(l+1)2

with β = 10−2. (b) Au-
tocorrelation function
A(t) of the same state.
Unlike the 2D rotor,
there is a grand revival
already at t = πτB. At
t = πτB/2, we find
the anti-revival with
zero overlap of the
wavepacket with its
initial state.
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angular momentum quantum numbers (l ≥ 0). These fundamental
differences manifest most clearly in the revival structure, which we
previously examined for the 2D case in Fig. 3.2. While the 2D rotor
exhibits a revival time of trev = 2π, the revival time of a symmetric
top is halved to trev = πτB = π/B. This characteristic behavior
is demonstrated in Fig. 3.15, where we analyze the evolution of a
Gaussian initial state. The revival dynamics can be categorized into
three distinct scenarios, each corresponding to different types of
kicks. Fig. 3.16 illustrates the case of a pure orientation kick (P2 = 0),
revealing a simpler revival structure compared to the 2D rotor. The
most striking feature is the appearance of a complete anti-revival
at t = πτB/2, where the wavepacket shows zero overlap with its
initial state. This phenomenon, absent in the 2D case, arises from
the additional symmetries of the 3D rotation group. For alignment
kicks, shown in Fig. 3.17, we observe a more complex revival pattern.
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Figure 3.16: Fractional revival pattern for the 3D rotor following a single orien-
tation kick. (a) As in Fig. 3.2, the autocorrelation function A(t) = |⟨ψ(t)|ψ(0)⟩|2.
The plot is restricted to 0 ≤ t/τB ≤ π/2 due to symmetry around t = π/2. (b)
Heatmap visualization of A(t). There are no consistent revivals except at t = πτB ,
but characteristic low overlap at t = π/2 (for P ≫ 0).
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Figure 3.17: Fractional revival pattern for the 3D rotor following a single
alignment kick. Similar as in Fig. 3.16. (a) Autocorrelation function A(t) =
|⟨ψ(t)|ψ(0)⟩|2 and (b) Heatmap visualization the same function for various times t
and kicking strengths P . As in for the orientation kick, there is a consistently small
autocorrelation function at t = τBπ/2, indicating the anti-resonance. In between,
there is a complex revival structure that depends on both kicking strength and
time t.
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Figure 3.18: Fractional revival pattern for the 3D rotor following a single generic
kick. Here we consider a kick with both P = P1 = P2. (a) Autocorrelation
function A(t) = |⟨ψ(t)|ψ(0)⟩|2 and its (b) Heatmap visualization as a function of
both time t and kicking strength P . We observe consistently low overlap for a wide
range of parameters, with many branchings. Unlike the other two cases before, the
combination of both an alignment and orientation kick leads to a suppressed phase
coherence. Even more suprisiung it is that after t = πτB there will be perfectly
revival.
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While maintaining the anti-resonance at t = πτB/2, the intermediate
revival structure exhibits rich dynamics that strongly depend on
the kick strength P1. The branching patterns visible in the heatmap
reveal the interplay between the pulse and the rotational degrees of
freedom unique to the 3D rotor. Perhaps most intriguingly, Fig. 3.18
presents the case of simultaneous orientation and alignment kicks
(P = P1 = P2). This configuration leads to a surprising suppression
of phase coherence across a wide parameter range, manifesting as
consistently low overlap values. The complex branching structure in
the heatmap suggests a highly non-trivial interplay between the dif-
ferent angular momentum states. Remarkably, despite this apparent
chaos, clearly the system still achieves perfect revival at t = πτB.

3.6 Outlook
With these findings, we conclude our analysis of driven quantum
rotors. We established how quantum resonances emerge from the
interplay between driving period and rotational revival time–a cru-
cial foundation for what follows. The rich structure of dynamical
regimes we uncovered, from perfect transport to complete freez-
ing, reveals striking parallels with condensed matter physics, but
now manifesting in angular momentum space rather than position
space. As we will see in the next chapter, these dynamics, combined
with the symmetries of our Floquet states and their band structure,
provide the essential building blocks for understanding topological
phenomena in driven quantum rotors.
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CHAPTER 4
Geometric phases of driven rotors

In science we like to emphasize the novelty and originality
of our ideas. This is harmless enough, provided it does not
blind us to the fact that concepts rarely arise out of nowhere.
There is always a historical context, in which isolated precursors
of the idea have already appeared. What we call "discovery"
sometimes looks, in retrospect, more like emergence into the air
from subterranean intellectual currents.

– Michael Berry

4.1 Overview
As demonstrated in the previous Chapter, periodic driving can shape
the time-evolution of quantum rotors. Section 3.3.6 revealed that
quantum resonances enable the engineering of band models with an
arbitrary number of bands N 1. These quantum resonances generate
one-dimensional stroboscopic Hamiltonians of the form

Hk(P ) = dk(P ) · Γ
1While higher-order resonances require considerably longer time evolution to resolve

the characteristics of the band model (see Fig. 3.7), N ≫ 2 remains within experimental
reach.
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4. Geometric phases of driven rotors

with the generalized Gell-Mann matrices Γi of the su(N) algebra,
the pseudo-momentum k from Section 3.3.2, and dk ∈ RN2−1. This
formulation provides some insight into the dynamics of a rotor af-
ter consecutive pulses. By modulating the kicking parameters with
each pulse, we can engineer higher-dimensional lattices in synthetic
dimensions. Beyond its intrinsic interest for quantum simulation of
lattice models and probing quench dynamics of non-trivial states,
this approach offers a method for adiabatic preparation, manipula-
tion, and probing of angular momentum states.

Returning to Section 1.2, we argued that topological properties
emerge from the geometry of the wavefunctions rather than specific
material details. Given the flexibility in engineering lattice models
within our framework, we now investigate whether these models
can exhibit non-trivial topological properties analogous to those of
topological insulators in real materials. Section 4.2 establishes how
topological physics emerges from fundamental matrix properties,
which is developed through several steps: Section 4.2.1 examines
the fundamental origin of geometric phases. Section 4.2.3 explores
how symmetries generate topologically protected gapless phases,
whose classification extends beyond that of gapped phases. Sec-
tion 4.2.4 presents the bulk-boundary correspondence, linking topo-
logical invariants to non-trivial boundary eigenstates. Section 4.2.5
addresses topological physics in non-hermitian systems, crucial for
our strongly-driven, non-energy-conserving system, extending be-
yond conventional hermitian matter classification.

Building on these foundations, Section 4.3 examines periodically
driven rotors. The previously identified symmetries generate topo-
logical charges manifesting as Dirac cones. These cones influence
the quantum dynamics of the rotor through Landau-Zener transi-
tions and, notably, give rise to topologically protected edge states, as
predicted by the bulk-boundary correspondence. Section 4.2.4 traces
their emergence and establishes their connection to topological in-
variants. Section 4.4 explores the translation of topological invariants
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4.2. Geometric phases

into measurable observables, focusing particularly on orientation
and alignment signals.

4.2 Geometric phases
The elegance of geometric phases unfolds from a surprisingly simple
origin - as Berry showed, even a simple 2x2 matrix contains all the
essential physics [82]. Consider the Hamiltonian2

H =

(︃
E0 +∆ v

v E0 −∆

)︃
, (4.1)

where E0,∆, v ∈ R. The eigenvalues of H are E± = E0 ± r with r =√
v2 +∆2. A degeneracy occurs at v = ∆ = 0, forming a nodal point 3

in the (v,∆, E0) parameter space (Fig. 4.1 (a)). The normalized
eigenvectors take the form

|ψ±⟩ =
1√︁

2r(r ±∆)

(︃
∆± r
v

)︃
(4.2)

with a U(1) gauge freedom |ψ±⟩ → eiϕ|ψ±⟩ that underlies the subse-
quent phenomena. Consider a circular path of the eigenstate |ψ+⟩
encircling the degeneracy point. Using polar coordinates, we express
v = r sin k and ∆ = r cos k, transforming the eigenstates to4

|ψ+⟩ =
1√︁

1 + cos(k)

(︃
1 + cos k
sin k

)︃
= sign[cos(k/2)]

(︃
cos(k/2)
sin(k/2)

)︃
.

(4.3)
This parametrization is discontinuous at k = π where |ψ+⟩ → −|ψ+⟩.
While multiplying by sign[cos(k/2)] yields a smooth parametrization,

2This choice of coordinate system (E0, v,∆) exemplifies the general case for matrices
with symmetries. Adding complex phases on the off-diagonal let us reach the space of all
hermitian matrices, but breaks the necessary symmetry, as will be shown later.

3With nodal point we refer from now to a degeneracy of the eigenvalues. Conversely, a
nodal line is a 1-dimensional subspacewhere (at least) a pair of eigenvalues are degenerate.

4Using the identities 1 + cos(k) = 2 cos2(k/2) and sin(k) = 2 sin(k/2) cos(k/2).
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Figure 4.1: Degeneracy and Möbius strip. (a) Linear degeneracy of the energies
from (4.1) (b) Möbius strip as an example of a non-orientable surface.

thewavefunction becomes periodic only over k ∈ [0, 4π]. Remarkably,
no gauge choice enables smooth behavior within k ∈ [0, 2π]. Upon
completing one circuit, the wavefunction inevitably undergoes a
sign inversion: |ψ+(0)⟩ = −|ψ+(2π)⟩. This sign inversion reveals that
|ψ+⟩ cannot be defined as a continuous, single-valued function over
the circle S1 in the parameter space (v,∆) without encountering
a discontinuity. The nodal line (v,∆, E0) = (0, 0, E0) represents a
singularity where eigenvalues become degenerate and eigenstates
are arbitrary. This topological structure parallels the Möbius strip
(Fig. 4.1), where traversing the base space once results in a twist5.

5In differential geometric terms, ψ+(k) forms a section of a fiber bundle over S1. This
line bundle, where each fiber contains the eigenstate at a point on S1, is nontrivial due
to the impossibility of globally defining ψ+ without discontinuity. The nontrivial line
bundle over S1 is characterized by its first Stiefel-Whitney class [172].
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4.2. Geometric phases

4.2.1 Berry Phase
A deep connection exists between the inability to define a smooth
wavefunction on k ∈ [0, 2π] and the phases acquired during adiabatic
evolution [76]. To explore this connection, consider a Hamiltonian
H(x) dependent on parameters x. For slowly varying parameters,
the instantaneous eigenstates |ψ(x)⟩ and energies E(x) evolve adia-
batically according to

|Ψ(t)⟩ = eiα(t)|ψ(x(t))⟩, (4.4)

where α(t) represents the acquired phase. The time-dependent
Schrödinger equation i∂t|Ψ(t)⟩ = H(x(t))|Ψ(t)⟩ must be satisfied.
Hence, substituting the adiabatic wavefunction and applying the
chain rule yields

∂tα(t) = Aj(x)
∂xj

∂t
− E(x(t)) (4.5)

where Aj(x) denotes the Berry connection [121]

Aj(x) = i⟨ψ(x)|∇|ψ(x)⟩. (4.6)

For sufficiently slow adiabatic evolution along a closed path, the
dynamical phases integrate to zero, leaving only the geometric phase,
known (among other names, see Section 1.2) as the Berry phase

γ =

∮︂
Aj(x(t))

∂xj(t)

∂t
dt ≡

∮︂
Aj(x)dx

j. (4.7)

Note that this is actually the proper definition of a line integral, and
it exhibits the fundamental properties that are known from classical
mechanics [15]. In particular, the parametrization independence
reflects that only the pathmatters, not the rate of traversal. Evenmore
so, the gradient theorem implies that a non-zero geometric phase
indicates a non-conservative force field. By the fundamental theorem
of vector calculus, every differentiable vector field decomposes into
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4. Geometric phases of driven rotors

irrotational and solenoidal components. In three dimensions6, the
Helmholtz decomposition gives

F(x) = −∇ϕ(x) +∇× A(x) (4.8)

with scalar potential ϕ(x), a vector potential A(x) and the field
strength F(x). The Berry connection thus represents the solenoidal
component7. Returning to (4.1), we can resolve the smoothness prob-
lem in (4.2) by choosing the gauge |ψ+⟩ = eik/2(cos(k/2), sin(k/2))T .
This smooth interpolation allows calculation of the Berry phase

γ± =
1

2π

∫︂ 2π

0

A±(k)dk = ±1

2
(4.9)

where A±(k) = i⟨ψ±(k)|∂kψ±(k)⟩. The degeneracy at r = 0 quan-
tizes this phase8. This concept generalizes to arbitrary state spaces
and parameter dimensions. The profound insight lies in extract-
ing topological properties from integration of local quantities [76].
This connection between geometry and topology is far from trivial
and will be explored in more detail in the next Section. Here, the
quantization emerges from symmetry – specifically, the Hamiltonian
degeneracy in the ∆− v plane for all E0 – which prevents smooth
deformation between loops encircling and avoiding the singularity.
Thus, the geometric phase is protected by symmetry.

But what is the geometric interpretation for the topology of a 2x2
Hamiltonian (4.1) and how canwe understand this in amore general

6This generalizes to complex vector fields in arbitrary dimensions through the Hodge
decomposition for differential forms on Riemannian manifolds, where any differential
form uniquely decomposes into exact, co-exact, and harmonic components [172].

7In differential geometry, vector fields correspond to differential 1-forms. Conservative
fields correspond to exact 1-forms dϕ, while irrotational fields correspond to closed 1-forms
ω where dω = 0. The property d2 = 0 ensures every exact form is closed, hence every
conservative field is irrotational. For simply connected domains, every closed 1-form is
exact [172].

8The gauge factor eik/2 proves crucial; without it, the connection would be flat. The
central singularity transforms the topology from that of a flat space, previously evident
only through the sign function.
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framework? The answer lies in examining the space that eigenval-
ues and eigenvectors of matrices form. Consider a diagonalizable
square matrix H(x) ∈ CN×N that depends on parameters x. Clearly,
the eigenspaces are determined by the zeros of the characteristic
polynomial fH(λ)

fH(λ,x) = det (H(x)− Iλ) (4.10)

with eigenvalue λ. The eigenvalues define the level setsM = f−1(0)9,
forming a manifold with potentially non-trivial topology. While
the matrix structure is linear, the manifold can exhibit rich non-
linear features, including curvature and holes. We can characterize
the tangent space of this manifoldM through the implicit function
theorem10

∂λ(x)

∂xj
= −

[︃
∂fA(λ,x)

∂λ

]︃−1
∂fA(λ,x)

∂xj
. (4.11)

This formulation will prove invaluable when we employ it as a
method of continuation for nodal lines. From a broader perspective,
this framework provides a universal approach to understanding
topological phase transitions through eigenvalue degeneracies.

Following our discussion in Section 1.2, we can draw a parallel with
electrodynamics. Let us look the two-level system as a spin, express-
ing the Hamiltonian (up to the constant E0) as

H = ∆σz + v · σx = B · σ (4.12)

where we identify an effective magnetic field B = (v, 0,∆). This
Hamiltonian anti-commutes with σy, namely σyHσy = −H11, a

9Note that here we really mean f(λ,x) = 0, hence the solution of inverse f−1 at 0.
10This holds for some x with fA(λ,x) = 0, provided ∂fA

∂xj
̸= 0. In this case, small

neighborhoods around x lead to well-defined flows. Special care must be taken at saddle
points and other critical points [181].

11We note that any two Pauli matrices could be chosen, leading to a chiral symmetry of
the third matrix. Indeed, we can rotate in that space and select a quantization plane where
the geometric phase counts the number of windings around the singularity. This holds
even for complex coefficients d, but departing from the plane breaks the quantization,
allowing γ to take any real value [71]
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property known as chiral symmetry. This symmetry ensures a
Z/2−valued winding number (the geometric phase) in odd dimen-
sions [71]. The introduction of a σy term would break this chiral
symmetry, enabling the adiabatic transformation of a loop encircling
the singularity into one that does not, thus lifting the quantization
condition. However, from electrodynamics we know of a different
topological invariant which holds even for systems without symme-
tries: the charge.

4.2.2 Magnetic monopoles
There are many ways to introduce Chern numbers. Here, we con-
sider an analogy to classical electrodynamics, where we encounter
the U(1) gauge symmetry from before. This symmetry manifests
through the four-potential Aµ, a covariant object that unifies the
scalar potential ϕ and the vector potential A. The physical electro-
magnetic fields emerge from the electromagnetic field tensor [87]

Fµν(x) = ∂µAν(x)− ∂νAµ(x), (4.13)

a covariant tensor defined in arbitrary dimensions12 for x ∈ Rd+1.
The form of this tensor arises from two fundamental principles:
gauge invariance and Lorentz invariance. Under gauge transforma-
tions, the potential transforms as

Aµ(x) → Aµ(x) + ∂µχ(x), (4.15)

with an arbitrary scalar function χ(x) . The anti-symmetric structure
of Fµν ensures invariance under these transformations, as the partial

12In 3+1 dimensions, the spatial components F = ∇× A in the absence of a source
field ϕ correspond exactly to the magnetic field. Explicitly, the tensor takes the form:

Fµν =

⎛⎜⎜⎝
0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

⎞⎟⎟⎠
µν

. (4.14)
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derivatives in (4.15) cancel in (4.13). Additionally, the tensor must
transform appropriately under spacetime rotations13. In Maxwell’s
equations, the covariant form reads

∂µFµν = jν, (4.16)

where jν represents the 4-current. The anti-symmetry of Fµν leads
to Gauss’s law for charge conservation

∂νj
ν = ∂ν∂µFµν = 0. (4.17)

This conservation lawmanifests in the total electrical chargeQwithin
a volume V

2πQ =

∫︂
V
j0(x)d3x =

∫︂
∂V

F0,i(x)dSi =

∫︂
∂V

E · dS, (4.18)

where the second expression follows from Stokes’ theorem applied
to the boundary ∂V with the surface element dSµν [87]. The last
term represents the special case for d = 3. This identity appears
in mathematics as the first Chern number [71, 172], a topological
invariant characterizing compact complex manifolds in even dimen-
sions [76]. The quantization of charge emerges naturally from requir-
ing single-valued fields Fµν , leading to integer-valued topological
invariants [87]. This topological protection explains both charge
conservation and quantization, independent of specific dynamics.

Maxwell’s equations also contain the Bianchi identity

∂λFµν + ∂µFνλ + ∂νFλµ = 0, (4.19)
13This is a direction which we will not explore further, but lead to similarly interesting

consequences, see [87]. The Lorentz invariance is guaranteed by the correct choice of

contraction rules Aµ = ηµνAµ with the Minkowski metric ηµν =

⎧⎪⎨⎪⎩
−1 if µ = ν = 0,

1 if µ = ν > 0

0 if µ ̸= ν.
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which prohibits magnetic monopoles. The magnetic flux through a
ball S demonstrates this [76]

ΦS =

∫︂
S

ϵµνλFνλdSµ =

∫︂
S

B · dS = 0, (4.20)

where the last expression represents the special case for d = 3.
The vanishing flux holds in all dimensions as a direct consequence
of (4.19). However, it is important to note that classical electrody-
namics is less general than the effective gauge fields constructed
previously, such as the Berry connection in (4.6), allowing both elec-
tric and magnetic monopoles. Consider the degeneracy at d(x) = 0
of a band Hamiltonian

H = d(x) · σ. (4.21)

As we will show now, this degeneracy acts as a monopole of an
effective magnetic field B. The Berry-curvature, analogous to (4.13),
takes the form

Fij(x) = ∂iAj(x)− ∂jAi(x). (4.22)
For a sphere of radius r in parameter space, the surface element
reads dS = err

2 sin(θ)dθdϕ = erdS. The Chern number becomes

2πC =

∫︂
S

ϵijkF
ij(x)dSi =

∫︂
S

B(θ, ϕ)dθdϕ (4.23)

where (compare to (4.8), where this term appeared already)

B(θ, ϕ) ≡ ∂θAϕ(θ, ϕ)− ∂ϕAθ(θ, ϕ) = (∇×A(θ, ϕ))r . (4.24)

For the two-band model (4.21), the Berry-curvature of the states (±)
takes the form [182]

∇×A±(x) = ± d(x)

|d(x)|
1

2d(x)2
. (4.25)

Using (4.23), with a r = 1 sphere parametrization d(x) = er(θ, ϕ),
we find

C± = ±1, (4.26)
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confirming the monopole character. This result generalizes to arbi-
trary parametrizations, where the degeneracy acts as amonopole [71].
We realize that arbitrary integer Chern numbers C ∈ Z arise from
multiple wrappings around the monopole, and with opposite wrap-
pings we find monopole-antimonopole pairs in parameter space.

4.2.3 Topological invariants for gapless phases
The mathematical framework we have seen here connects directly
to topology: the classification of spaces through loops defines the
first homotopy group π1, also known as the fundamental group [172].
When we consider higher-dimensional wrappings, such as spheres
or n-th hyperspherical integrals, we obtain the second or the nth-
homotopy groups πn14.

The classification of non-interacting Hamiltonians through homo-
topies rests on a key principle: when we modify the Hamiltonian
adiabatically while preserving its fundamental symmetries, certain
topological invariants change only when the gap closes15. We call
Hamiltonians that allow smooth transformations between each other
without gap closure homeomorphic16 to each other [76].

Our classification scheme for topological phases has relied funda-
14The sequence of homotopy groups πn(X) of a topological space X forms a funda-

mental algebraic invariant. For n = 1, we consider loops and their deformation classes.
For n = 2, we examine maps from the 2-sphere S2 to X , describing how 2-spheres can
wrap around holes in X . This pattern continues for higher dimensions. These groups
connect through the exact homotopy sequence, which relates the homotopy groups of
fiber bundles, base spaces, and total spaces [76, 172].

15Or one of the gaps, for a multi-band Hamiltonian. The gap closure represents a
critical point where the band structure undergoes a topological phase transition, analogous
to phase transitions in classical systems [71].

16A homeomorphism between topological spaces X and Y is a bijective function
f : X → Y such that both f and its inverse f−1 are continuous. More precisely, for any
open set U ⊂ Y , the preimage f−1(U) is open inX , and for any open set V ⊂ X , the image
f(V ) is open in Y . Two spaces are called homeomorphic if there exists a homeomorphism
between them (taken from [183]).
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mentally on the existence of an energy gap. This raises a conceptual
challenge: how can we extend this theory to systems where the gap
condition is violated by construction, such as semi-metals with band
nodes in their Brillouin zone that persist under parameter variations?
As it turns out, the formalism we introduced extends naturally to
these gapless phases through the concept of topological defects in
momentum space [71]. Here, we must account not only for the sym-
metries and dimension of theHamiltonian but also for the dimension
of the band nodes, which can appear as points, lines, or surfaces
in the Brillouin zone. While this introduces additional complexity,
many principles from the classification of gapped phases remain
applicable, particularly the role of symmetry-protected topological
invariants.

The (anti-)unitary symmetries create specific constraints on the space
available for adiabatic transformations, effectively restricting the pos-
sible deformations of the Hamiltonian. This framework culminates
in the Altland-Zirnbauer (AZ) tenfold classification of topological insula-
tors and superconductors, which systematically catalogs topological
invariants across different dimensions and (anti-)unitary symme-
tries [71]. Beyond the fundamental symmetries of particle-hole,
time-reversal, and chiral symmetry that shape this classification,
crystal symmetries (spatial point-group symmetries) such as inver-
sion can introduce additional constraints, leading to novel states
like higher-order topological insulators [184–186]. These additional
symmetries enrich the classification by introducing new protected
boundary states and topological invariants.

This aspect will become particularly relevant for the periodically
driven quantum rotors we are considering, where we will encounter
topologically protected nodal lines that come from time-reversal and
inversion symmetry. These nodal lines manifest as one-dimensional
singular submanifolds in the spectrum where bands touch. We will
see that the quantum rotor system exhibits remarkably rich topolog-
ical physics, including multiple types of topological invariants and
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protected boundary states.

4.2.4 Bulk-boundary correspondence
The bulk-boundary correspondence represents a fundamental prin-
ciple in topological physics that connects the topology of the bulk
system to the existence of robust boundary modes17. While this
correspondence has remarkable generality across different dimen-
sions and symmetries, its mathematical foundation often requires
sophisticated concepts from differential geometry and K-theory18.
Let us develop a concrete physical picture that captures the essential
ideas while setting aside the mathematical machinery for now.

To illustrate these concepts, let us return to the two-band model
from (4.12),

Hk = r cos(k)σx + r sin(k)σz. (4.27)

When interpreting k as a crystal momentum, the real-space version
describes a variant of the Su-Schrieffer-Heeger model (SSH) [182],
which captures the physics of polyethylene (among other systems).
The specific form of the model is not essential since the topological
properties are universal.

17Here, robustness refers to the stability of these boundarymodes against perturbations
commonly encountered in real materials, such as structural defects, impurities, and many-
body interactions, as long as these perturbations do not destroy the essential symmetries
of the Hamiltonian. This does not mean the states are indestructible – strong perturbations
that break the protecting symmetries can destroy them. For instance, magnetic impurities
can destroy states protected by time-reversal symmetry, and strong electron-electron
interactions can break the non-interacting topological classification [71]

18At its core, K-theory works with vector bundles over topological spaces and their
equivalence classes. The so-called ’K’ groups capture stable equivalence classes of these
bundles – ’stable’ meaning that we can add trivial bands without changing the topological
classification. K-theory unifies different approaches from vector bundles, cohomology
theories, and index theorems. As it turned out, this machinery proves particularly useful
when understanding both strong and weak topological invariants, as well as crystalline
topological phases [187].
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Taking the continuum limit corresponds to focusing on modes with
wavelengths much larger than the lattice constant (i. e. k → 0), we
can substitute k = −i∂x in real-space to obtain for (4.27)

H(x) ≈ −irσz∂x + rσx. (4.28)

This represents a simplified version of the Jackiw-Rebbi model19.
Due to chiral symmetry, we expect the system to have a symmetric
spectrum with extended states at finite energies. By symmetry ar-
guments, any non-propagating bound state ψ(x) must occur at zero
energy. Solving H(x)ψ(x) = 0 using (4.28) yields

∂xψ(x) = σyψ(x) (4.29)

which admits the exact solution20 ψ(x) ∝ e−x(i, 1)T . One can demon-
strate that this state exists only when the path exhibits non-trivial
topology – with an associated topological invariant. Surprisingly,
this result does not hold only for localized modes at open bound-
aries, but extends to all kinds of defects, phase boundaries and lattice
dislocations21.

As we will see in the following, this concept goes beyond Hermitian
matrices. For the periodically driven molecules we study, we can-
not speak of closed systems – energy conservation breaks down as

19The Jackiw-Rebbi model, introduced in quantum field theory [188], describes
fermions interacting with a topological defect. It provides one of the earliest examples
of fractionalization, where excitations carry quantum numbers that are fractions of the
fundamental ones. The model has found applications far beyond its original context,
appearing in condensed matter physics and quantum computation [71].

20We can solve this by noting that the eigenvectors of σy are ϕ± = (±i, 1)T with
eigenvalues ±1. A general solution takes the form ψ(x) = ψ+(x)ϕ+ + ψ−(x)ϕ− with
coefficients ψ±(x). From (4.29) we find ∂xψ±(x) = ∓ψ±(x). Hence, we obtain two
solutions (for each boundary) when applying appropriate boundary conditions. The
physical solution must be normalizable, so we need to take the exponentially decaying
solution.

21This generalization is known as the defect classification of topological phases. Defects
can be viewed as lower-dimensional topological phases embedded in a higher-dimensional
system [71].
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the pulses can add significant energy over time. This necessitates
extending our discussion to non-hermitian topology.

4.2.5 Non-hermitian topology
Research has long focused on topological invariants of hermitian
matrices, specifically on classifications based on gap closings of the
energy bands. In contrast, driven and dissipative systems cannot
generally be described by a single hermitian matrix. The interplay
between gain and loss can lead to new properties. Several frame-
works exist to describe such systems, including Liouvillian super-
operators and the Keldysh formalism for non-equilibrium quantum
fields [189]. In some special cases, we can derive an effective non-
hermitian Hamiltonian to describe the behavior of the system. While
this offers significant simplification compared to the theories men-
tioned before, it introduces complex instead of real eigenvalues λ.
This formalism has been applied successfully to a wide range of
driven-dissipative systems, encompassing classical optical systems
with decay channels, electrical circuits, mechanical systems, and
driven-dissipative quantum materials [190].

While early works by Parachatnam were basically non-hermitian
by construction [88], Hatano Naomichi realized in 1996 that non-
hermitian couplings can lead to similar topological physics as in
the static case, with topological invariants, bulk-boundary corre-
spondence and edge modes [191]. This effect, now known as the
non-hermitian skin effect, demonstrates how topological concepts of
hermitian physics extend to the non-hermitian case. Moreover, new
phenomena emerge, which relate to the so-called exceptional points or
exceptional nodal lines [192]. However, for the description of periodi-
cally driven systems with unitary symmetries, we can concentrate on
a subclass of non-hermitian topology concerning the classification
of Floquet Hamiltonians [164, 193–195]. When we examine the effec-
tive Hamiltonian Heff with UT = e−iHeff , it often suffices to consider

115



4. Geometric phases of driven rotors

static topological invariants of Heff , and the discussion of the last
section remains fully valid. However, there are cases where this
approach proves insufficient, and the periodicity of the quasi-energy
plays an important role; these are called anomalous Floquet phases,
that is, anomalous when compared with the static setup. This occurs
precisely when we examine topology that arises due to band-node
closings of both the usual gap and the π-gap. We will explore this
case in detail in Section 5.4. Another case emerges when we examine
non-abelian gauge groups of periodically driven rotors, which we
will discuss in Chapter 5. In that case, we can create a non-abelian
anomalous phase. Let us first examine the simple case of band nodes
that appear in periodically driven molecules and their influence on
the dynamics of the system.

4.3 Dirac cones and topological charges
Building upon our previous understanding of how eigenvalue degen-
eracies can lead to geometric phases, we now return to periodically
driven molecules with a finite, one-dimensional angular momentum
lattice introduced in Section 3.5, bounded by l = 0 and l = lmax

22.
Certainly, there are also topological invariants for 2D rotors, but
unlike the 3D rotor there are no natural boundaries. We examine the
model defined by (3.66) with N = 3, which exhibits three bands23.
With three bands come three gaps (including the π-gap). Fig. 4.2(a)
shows the phase space of the model in terms of band degeneracies.
The degeneracies form nodal lines arranged in a regular grid-like
pattern. As emphasized earlier in Section 3.3.3, two fundamental
symmetries protect these nodal points: time-reversal symmetry and
inversion symmetry. These symmetries cause the nodal points to
extend into nodal lines and place the model in the class AI [71]. As a

22Here, we present extended and refined results from our paper [2].
23ForN = 1, there exists only one band, forN = 2 the map shows perfect revival, thus

we select N = 3 as the smallest N with non-trivial behavior.
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4.3. Dirac cones and topological charges

consequence, while the Berry curvature vanishes at all momenta, the
band nodes transform into topological charged Dirac cones. These can
only disappear through symmetry breaking or through annihilation
of two Dirac cones with opposite charges. The symmetries define a
conserved topological charge under adiabatic parameter changes. In
Fig. 4.2(b-c), we present the spectrum along a specific path through
parameter space as a function of s ∈ [0, 1]. Each value of s corre-
sponds to one model Uk(P1, P2) with specific kicking strengths24.

Due to the symmetries, gap closings occur either at k = 0, k = π or
at momentum pairs (k,−k). Fig. 4.3 reveals the momentum-space
dependence of the quasi-energies and demonstrates this behavior
for the two paths from Fig. 4.2. In this case, the gap closing of the
first wo bands appears at k = 0, while the closing of the second gap
occurs at k = π. We also examine a path25 crossing a (−k, k) nodal
line in Fig. 4.2. While the nodal lines at P2 = 4nπ/3± 2P1 appear at
k = 0 and k = π, the other nodal lines emerge at momentum pairs
(−k, k), as shown in (c) and (f) of Fig. 4.3.

4.3.1 Engineering synthetic dimensions with
adiabatic paths

Let us now examine how tuning the kicking strengths leads to topo-
logical phase transitions at band touching points, transforming the
system from a regime without topological edge states to one where
edge states emerge. While Fig. 4.2 displays only the minimum of
gaps, all three gaps exhibit closings. We can create a two-dimensional
model by tuning the parameters periodically with α ∈ [0, 2π] such
that

α ↦→ f(α) = (P1, P2), f(0) = f(2π), (4.30)
thereby engineering a momentum space torus – a compact manifold.

24The two paths are parametrized as following: For the two paths, we choose (P1, P2) =
r0(2πs+ π/2, 4π(1± s))/3 with r0 = π/3.

25Here we choose (P1, P2) = r0(2πs/6 + 7π/3, 4π(1− s/6)/3).
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Figure 4.2: Phase diagram for N = 3 of the periodically driven 3D rotor. (a)
The minimal band gap as a function of driving strengths P1 and P2. The phase
diagram reveals a grid of nodal lines where the bandgap δn vanishes. There are
straight lines at k ∈ {0, π} and curved lines forming (−k, k) rings. (b) Path across
the nodal line of the first gap, indicated by the blue line in (a). (c) Path across
the nodal line of the second gap. Edge states (red dashed) emerge when crossing
either nodal line, arising from the topological charge of the effective Dirac cone.

Following our previous discussion, the degeneracy of the bands
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Figure 4.3: Band nodes at k−symmetric points. (a) The band gap of the first path
of Fig. 4.2 (b) the band gap of the second path, (c) band gap of a path going over
a (−k, k) nodal line. All three as a function of the parameter s and momentum
k. (d-f) The corresponding spectra with at their critical values s = scrit and (d)
k = 0, (e) k = π, and (f) with k ≈ ±0.7π.

should lead to a characteristic signature in the wavefunction, mani-
festing as a Berry phase. In Fig. 4.5, we show the results for a circular
path26. By construction, since the nodal lines at k = 0 or k = π are
linear in the P1−P2 plane, every circular path must cross them twice.
Thus, models of this construction always exhibit an even number
of nodal points. This property extends to the curved nodal lines
with (−k, k), as each point (P1, P2) contains at least two nodal points,
ensuring an even total number for any circular path.

As we have already seen in Fig. 3.13 in the last chapter, for a finite
system there are localized eigenstates. However, now we identify
them as a result of the topological phase transition at the two nodal
points. This is an important result, because this shows that they are
connected to the topological charge of the nodal points. Once created
by the first nodal point, these states can only vanish by merging with

26Here we choose (P1, P2) = (0.6 sin(α) + 1.0, 1.8 cos(α) + 2.2).
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k

α

Figure 4.4: Engineering synthetic dimensions. By adiabatically changing the
kicking parameters of the driven model with time t, we can simulate higher-
dimensional models. By choosing circular paths α ∈ [0, 2π] we effectively cre-
ate another momentum dimension, which can lead to the simulation of a two-
dimensional band model. When doing this adiabatically, we expect that the
Floquet eigenstates stay in their band. We will see later how this could be probed
experimentally.

the second nodal point (which, as we will show, carries opposite
charge). The topological edge states behave analogously to field lines
in the space of wave functions between the two degeneracies. In
Chapter 5, wewill demonstrate the possibility of annihilating the two
nodal points in the opposite direction of their creation, generating
topologicalmodes disconnected from the bulk. The two-dimensional
momentum vector becomes

k = (k, α). (4.31)

To calculate the geometric phase around a path encircling the nodal
points, we use (4.31) and (4.9) to obtain

γσ =
1

2π

∮︂
Ajσ(k)dk

j, (4.32)
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Figure 4.5: Nodal lines as topological phase transitions. As in Fig. 4.2 we look at
the results of periodically driven molecule at N = 3. In (a) we show the phase
space for this section, including the circular path whose spectrum is shown in (b).
As before, we understand how the nodal lines give rise to the gap closings and
the corresponding topological edge states. In (c), we show a regular bulk state, as
compared to (d) with a topological edge state, both evaluated at α = π.

with Ajσ(k) = iψ†
σ(k)∂jψσ(k) and the partial derivative with respect

to k. We can evaluate27 the phases for the two nodal points. The red
path evaluates to γ1 = 1/2, and the blue one to γ1 = −1/2 (note that
for the second band, i. e. γ2, we would find the opposite result); as
expected, the total charge sums to zero.

27Herefore, we use the method introduced in [196], which uses the logarithm of the
scalar products to avoid the random phases of numerical diagonalization.
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Figure 4.6: Topological charges
of the Dirac cones. As a
heatmap we show the energy
difference between the first and
the second band of Fig 4.5. Fur-
ther there are the contours taken
in (4.32) for the two nodal
points, i. e. Dirac cones, in or-
der to evaluate their topological
charges.
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4.4 Experimental signatures of Dirac cones
At this point the question arises whether this has any experimental
signatures. Apart from measuring energy or angular momentum
states directly (which are typically difficult to measure) the orienta-
tion signal ⟨cos(θ̂)⟩ and the alignment signal ⟨cos2(θ̂)⟩ can give good
indications what is happening in the system. In the limit where both
of them are translationally invariant, we can evaluate them fully in
momentum space using (3.40) and (3.41) for different Floquet states
ψσ(k, α) with

⟨cos(θ̂)⟩k = ψ†
σ(k, α)(cos(θ̂))k ψσ(k, α) (4.33)

⟨cos2(θ̂)⟩k = ψ†
σ(k, α)(cos

2(θ̂))k ψσ(k, α) (4.34)

where cos(θ̂)k and cos2(θ̂)k are N × N matrices (here: N = 3), re-
spectively. In Fig. 4.7 we show the results for the Floquet states of a
circular path from the last section (Fig. 4.5). We observe that the two
signals are not close to 0 to begin with; we see that the eigenstates
have significant alignment for a wide range of parameters. This
occurs because the eigenstates of these two operators are delocal-
ized in angular momentum space28. Even more so, we see that the
alignment strongly depends on the position of the band nodes. We

28Trivially, both have the angle state | ± θ⟩with θ ∈ [0, 2π] as eigenstates, whose matrix
elements are the spherical harmonics ⟨lm| ± θ, ϕ⟩ = Ylm(±θ, ϕ).
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Figure 4.7: Alignment and orientation signatures of band nodes. As in Fig. 4.5
we look at a circular path α ∈ [0, 2π] of periodically driven molecule at N = 3. In
(a,c,e) we show the orientation signal and in (b,d,f) we show the alignment signal;
each for the three bands σ. We see that the band nodes at α ≈ 1 and α ≈ 4 lead to
a inversion of these signals respectively.

realize that the band node has a clear interpretation in terms of these
signals; it marks exactly the position where a positively oriented
Floquet state of the first band transforms into the negatively oriented
Floquet state of the second band. Note, though, that this description
does not include the edge states, which evade a momentum-space
based description.

4.4.1 Adiabatic time-evolution
Despite the elegance of this band description, we must verify its
applicability to full exact diagonalization. As we mentioned in Sec-

123



4. Geometric phases of driven rotors

tion 3.5.3, workingwith finite lattices presentswell-known challenges
in discrete Fourier transforms. Surprisingly, the band description
of the driven rotor proves more accurate than initially anticipated.
Even when approximating the synthetic α−dimension with just
a few kicks and considering states of small total energy and few
angular momentum components (states potentially achievable in
experiment), the band model and particularly the Dirac cones pro-
vide remarkable insight into the system dynamics. Let us begin
by considering a Floquet state ψσ(k, α) ∈ CN of band σ as initial
state. The time-translation operator conserves momentum since
U(k, α)ψσ(k, α) = e−iϵσ(k,α)ψσ(k, α). This momentum conservation
proves to be an excellent approximation. For a change α → α + δα
in the next kick (at fixed k),

U(α + δα)ψσ(α) =
N∑︂
σ′=1

e−iϵσ′(α+δα)ψσ′(α + δα)⟨ψσ′(α + δα)|ψσ(α)⟩.

(4.35)
For a series of kicks,

ϕ(t) = Ut(αt)Ut−1(αt−1) . . . U1(k, α1)ϕ(t = 0), (4.36)

with a path αt . . . α0. Let us first assume suppressed interband transi-
tions σ → σ′. Then, for an expectation value of a translation-invariant
operator Â, all phases cancel out29 and we find

⟨ϕ(t)|Â|ϕ(t)⟩ = ⟨ψσ(αt)|Â|ψσ(αt)⟩ (4.37)

For an adiabatic path αt, we expect interband transitions to scale
inversely with both the quasi-energy difference and the magnitude
of changes δα = αt − αt−1. However, a pure quasi-momentum
state presents two challenges: it is completely delocalized in angular
momentum with infinite energy (making experimental preparation

29Clearly, the quasi-energy terms e−iϵσ(αt) cancel out. The overlaps are related to
the Berry connection (compare to (4.5)) since limδα→0 (⟨⟨ψσ(α)|ψσ(α+ δα)⟩ − 1) /δα =
⟨ψσ(α)∂α|ψσ(α)⟩ and cancel out as well.
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4.4. Experimental signatures of Dirac cones

difficult) and impossible to achieve in a finite lattice. Therefore, we
turn our attention to states localized in both quasi-momentum and
angular momentum. For a band with small bandwidth, not only
pure states ϕ(0) ∝ ψσ(k, α) follow the band adiabatically, but also
superpositions of eigenstates. States with identical quasi-energy
but different momenta evolve in parallel, maintaining their shape
due to decoupled quasi-momentum sectors. For different energies,
the wavepacket shape evolution follows the bandwidth, determined
by quasi-energy differences across occupations. Since the Fourier
transform of a Gaussian state is also a Gaussian state, we choose a
superposition of eigenstates of some band with an approximately
Gaussian profile30 with width σk, centered around some chosen
momentum k0 ∈ [0, 2π] such that

ϕ(t = 0) ∝ e
− (k−k0)

2

2σ2
k ψσ(k, α0) (4.38)

and evaluate the orientation and alignment signal for this state when
choosing path α(t) that quenches over the Dirac cone established
in Fig. 4.5. We choose a momentum that is close but not identical
to k = π in order to resolve the nodal point structure shown in
Fig. 4.7. The results are shown in Fig. 4.8. Indeed, we can confirm
that the quasi-momentum description works extremely well, even
in this scenario of changing kick parameters α. The state keeps
its shape both in angular momentum and quasi-momentum space
almost perfectly over the series of kicks (note that this would be

30In fact, the method to find such a state is numerically more involved. First, we
generate a Gaussian state according to (4.38). Then, we Fourier transform this state back
to real-space using the second expression in (3.39) at some l0 as reference point for∆n.
However, due to finite size effects, this state is not only occupying the σ−band, so we
construct a projector Pσ using the real-space states of that band and project out the other
bands with Pσ|ϕ⟩. This projection leads to a slight delocalization, hence we regularize this
state with a real-space Gaussian e−(l−l0)2/(2σ2

l ) and repeat the projection - regulation until
the state is converged. This method leads to a perfect occupation in the σ−band, and both
localization in angular momentum and quasi-momentum space, even though the latter is
slightly perturbed by the method. However, numerics show that it works surprisingly
well.
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Figure 4.8: Quench dynamics of a Gaussian state. Here we show the results of
exact diagonalization withNt = 10 kicks for the same parameters as in Fig. 4.5 and
with α(t) = 2t/Nt. The upper panels show |ψ|2 in (a) angular-momentum space
and (b) quasi-momentum space. The wavefunction is approximately localized
in both spaces at t = 0 (see inset figures) and throughout the time-evolution
(note that there is a drift towards l = 0 though in angular momentum space).
In (c) we show the orientation and in (d) the alignment signal. Both show a
drastic change due to the Dirac cone at αcrit ≈ 1. The state is constructed with
k0 = π, σk = 0.45, l0 = 55, σl = 15, see footnote 30 for the technical details of the
state construction. Note that the state construction leads to the intended shift
towards smaller momentum k, even though we started with k0 = π.

different if the wavepacket would come close to the boundary l = 0,
at which the periodicity condition is broken and quasi-momentum
is not conserved. However, what happens is that at the boundary
quasi-momentum is inverted from k → −k). Further, even though
there is no visible change in the wavefunction (apart from a drift
towards lower l, which is insignificant for this analysis. The same
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results can be achieved for a wavepacket towards higher l; after some
fine-tuning one could possibly find a state with no drift at all), there
is a drastic change in the orientation and alignment signal. Note
that both change corresponding to what we expect from the analysis
of the Floquet states in quasi-momentum from Fig. 4.7. Hence, the
results of these expectation values are more closely related to the
relative phases (and hence, the berry connection) than the absolut
occupations, which are predicted not to change considerably.

4.5 Outlook
Aswe conclude this chapter, let us outline its significance for our sub-
sequent exploration of non-abelian topology. Our analysis revealed
how degeneracies in spectrum of even simple matrices give rise to
a rich variety of phenomena, whose classification depends funda-
mentally on the symmetries. For simple cases of the periodically
driven rotors, we showed that the two-band hermitian topological
classification suffices, as the Floquet operator manifests precisely
these simple classes through the stroboscopic Hamiltonian. How-
ever, in the next chapter, we will see how this framework extends
to reveal the non-abelian character of the topological charges. Most
intriguingly, the non-equilibrium nature of our systemwill lead us to
discover an anomalous Dirac-string phase – a phenomenon unique
to driven systems that transcends conventional hermitian topology.
Understanding this phase requires careful analysis of the full Flo-
quet operator, drawing us into the fascinating frontier of multi-band
Floquet topology.
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CHAPTER 5
Non-abelian topological phases

The greatest strategy is doomed if it’s implemented badly.
– Bernhard Riemann

5.1 Overview
The exploration of band degeneracies in the preceding chapter re-
vealed how topological invariants emerge through single-band in-
tegrals of the Berry connection. The Berry phase stands as a fun-
damental quantity underpinning our understanding of topologi-
cal insulators and topological semimetals. While this single-band
framework has driven substantial advances in topological materi-
als [184–186, 197–203], recent developments have highlighted the
rich physics arising frommulti-band interactions and their associated
non-abelian topological characteristics. These phenomena extend
beyond conventional solid-state systems, manifesting in photonic
crystals, mechanical metamaterials, ultracold atoms, and driven
quantum systems [204–207].

The study of multi-band topological phenomena, particularly un-
der constraints imposed by combinations of (anti-)unitary and crys-
talline symmetries, has generated universal classification schemes [199,
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200]. These schemes unveil the intricate relationship between mo-
mentum space constraints and real space properties. Our focus lies
on such symmetry-constrained multi-gap topology, where collective
band behavior reveals phenomena unattainable in single-gap sys-
tems [208–215]. The field has expanded rapidly across diverse physi-
cal platforms: from phononic [216, 217] and electronic systems [209,
218, 219] to magnetic materials [220], metamaterials [221–223], and
out-of-equilibrium phenomena [224–229], including an anomalous
variant requiring periodic driving [226].

Systems with N ≥ 3 bands featuring real Hamiltonians due to PT
symmetry1 present a compelling example. Band singularities in
these systems carry non-abelian frame charges [208, 209, 230], and
their braiding between adjacent band pairs modifies these charges,
leading to topologically protected nodes characterized by the Euler
invariant. Building on our previous discussion of periodically kicked
quantum rotors and their Floquet topological phases, we note that
these driven systems offer distinct advantages over solid-state im-
plementations. Their well-controlled parameters and tunable band
number N provide an ideal platform for exploring novel multi-band
topological phenomena in non-equilibrium settings.

In section 4.3, we demonstrated how periodic driving induces time
evolution in quantum rotors that can host single-gap topological
charges. These charges develop distinctive properties under addi-
tional symmetries. We now examine how maintaining time-reversal
symmetry (T ) in kicked quantum rotors allows topological singu-
larities to acquire non-abelian properties for N ≥ 2 [208, 209, 230].
Systems with PT symmetry reveal a rich structure through the lens
of the Euler class. Multi-band topological physics transcends the con-
ventional Chern classification of topological insulators: The funda-
mental distinction arises from band closings (degeneracies) or nodes,
which exhibit non-commutative behavior. This non-commutativity

1Other combinations of symmetries also generate real hamiltonians, for example C2T
with the n-fold rotational symmetry Cn [210].
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generates exotic braiding phenomena, leading to novel topologi-
cal phases including Euler insulators and anomalous Dirac string
phases in periodically driven systems. The 2π periodicity of the
Floquet spectrum allows gap closings in the π-gap between bands
n = 1 and n = N , generating anomalous Floquet topologies without
equilibrium analogues [204, 205, 226, 231–233].

Our investigation proceeds as follows. We examine the non-abelian
braiding of topological singularities through periodically kicked
quantum rotors. By modulating laser pulse intensity, we demon-
strate howband node non-abelian charges transform throughmutual
circulation during rotor evolution. This manipulation realizes an
anomalous Dirac string phase [226], where topological singularities
in all gaps, including the anomalous π-gap, participate in the braid-
ing process. Zero-angular-momentum edge states serve as definitive
signatures of these multi-gap phases.

The structure of the chapter is as follows: Section 5.2 examines the
phenomenon of orientability in detail, beginning with the Stiefel-
Whitney class in Section 5.2.1. We then introduce non-abelian charges
in Section 5.2.2 and demonstrate the emergence of Dirac strings
across different gaps in Section 5.2.3.

Section 5.3 applies these concepts to periodically driven quantum
rotors through the triple-kicked rotor model. Section 5.3.1 demon-
strates how the Euler class captures the braiding process, generating
non-abelian topological invariants, including the multi-gap Euler
number. These invariants characterize the Dirac string braiding
process and its classification.

Section 5.4 introduces the anomalous Dirac-string phase, a novel
state emerging from the interplay between multi-gap topology and
periodic driving that transcends static system classification schemes.
We conclude in Section 5.5 with a review of our findings and high-
light the distinctive achievements of this work.
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5.2 Non-Orientability and Dirac-strings

5.2.1 The Stiefel-Whitney Class
To understand how these non-abelian properties emerge, we must
first examine the fundamental role of symmetry in our system. The
combination of inversion P and time-reversal symmetry T enables
us to work in a gauge where the effective Hamiltonian becomes real2.
This reality condition extends naturally to the eigenvectors, i. e.

H(k)ψσ(k) = ϵσ(k)ψσ(k), (5.1)

where ψσ(k) ∈ RN . We can express this more compactly through an
orthogonal transformation

H(k) = R(k)diag[ϵ(k)]RT (k), (5.2)

with the orthogonal group R(k) ∈ O(N). The crucial observation is
that when there is only one gap, which is positioned between bands
σ = p and σ = p+1, we can continuously deform the spectrumwhile
preserving the essential topological features [234]. This deforma-
tion process, known as spectral flattening3, relies on the homotopy
equivalence between Hamiltonians with the same gap structure [71].
Specifically, we can define a continuous path of Hamiltonians Ht(k)
for t ∈ [0, 1] such that

Ht(k) = R(k)diag[ft(ϵ1(k)), . . . , ft(ϵN(k))]R
T (k), (5.3)

where ft(x) smoothly interpolates between the original spectrum
(t = 0) and the flattened spectrum (t = 1)

ft(x) = (1− t)x+ t sign(x). (5.4)
2See footnote 19.
3The flattening procedure is well-defined as long as the gap remains open throughout

the deformation. This is guaranteed by the continuity of eigenvalues with respect to
perturbations, a consequence of the implicit function theorem, see (4.11).
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This homotopy preserves the gap, ensuring that no eigenvalue be-
comes degenerate during the deformation. The endpoint of this
deformation is the flattened Hamiltonian Q(k)

Q(k) = R(k)diag[(−1, . . . ,−1⏞ ⏟⏟ ⏞
p

, 1, . . . , 1⏞ ⏟⏟ ⏞
N−p

)]RT (k). (5.5)

After flattening, the Hamiltonian Q(k) exhibits degeneracies of O(p)
symmetry in the lower bands and O(N − p) symmetry in the upper
bands4. The classifying space of such a system is naturally described
by the real Grassmannian [210]

GrRp,N = O(N)/[O(p)×O(N − p)], (5.6)

which parametrizes all possible ways to split an N -dimensional real
vector space into orthogonal subspaces of dimensions p and N − p.

While complex vector bundles are characterized by integer-valued
Chern classes cn ∈ Z, real vector bundles exhibit a fundamentally
different topology through the Stiefel-Whitney classes ωn ∈ Z2 [172].
The distinction between Z and Z2 invariants reflects the different
nature of orientability in real and complex spaces5. Additionally, the
Euler class χ ∈ Z, emerges as a fragile topological invariant6, which
we will consider in Section 5.3.1.

The physical meaning of the Stiefel-Whitney class becomes clear
when considering the Berry-phase along non-contractible paths in
the Brillouin zone (for example, in k or α direction). The first Stiefel-
Whitney class manifests as a geometric phase accumulated when
transporting states along such paths. When this class is non-zero,

4These degeneracies arise from the freedom to perform orthogonal transformations
within each eigenspace while preserving the spectral flattening.

5In complex vector bundles, phases can wind continuously, leading to integer classifi-
cations. In real vector bundles, only sign changes are possible, resulting in Z2 classifica-
tions.

6The Euler class is "fragile" because, unlike the Stiefel-Whitney classes, it can be
destroyed by adding trivial bands [210].
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it becomes impossible to define R(k) consistently throughout the
Brillouin zone – attempting to do so results in a sign ambiguity
R(k) → −R(k)upon completing certain closed paths (this is in direct
correspondence to the scenario in Section 4.2). This mathematical
obstruction directly reflects the non-orientability of the vector bundle,
analogous to the twist in a Möbius strip7.

Now, let us consider again the case of non-degenerate Hamiltoni-
ans [230]. Each eigenvector can be multiplied with ±1 (which corre-
sponds to O(1)), hence the space of Hamiltonians is just the coset
space O(N)/O(1)N .

5.2.2 Non-abelian charges
Already for N = 3 the implications of the preceding discussion lead
to non-trivial aspects. The space of Hamiltonians turns into

O(3)/O(1)3 = O(3)/Z3
2 = SO(3)/D2, (5.7)

with the Dihedral group D2
8. The band nodes in this system carry

topological charges that extend beyond the usual Z2 classification.
These charges manifest through the first homotopy group

π1(SO(3)/D2) = Q, (5.8)

where Q is the non-abelian quaternion group [230]

Q = {1,±i,±j,±k,−1}. (5.9)

satisfying
i2 = j2 = k2 = ijk = −1. (5.10)

7Just as one cannot define a continuous normal vector field on a Möbius strip, one
cannot define continuous real wavefunctions globally when the first Stiefel-Whitney class
non-zero ω1 ̸= 0.

8See p.34 in [235].
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5.2. Non-Orientability and Dirac-strings

The quaternions form a non-abelian group, sharing this property
with the more familiar SU(2) group of Pauli matrices. This connec-
tion becomes precise through a one-to-one correspondence

i = −iσ1, j = −iσ2, k = −iσ3. (5.11)

From this mapping or directly from (5.10), we find that any two
different elements a, b ∈ Q anticommute with ab = −ba.

The physical significance of these quaternion charges can be un-
derstood through individual Berry phases. When encircling a band
node, each band σ accumulates a Berry phase γσ ∈ {±1/2}, see (4.32),
that maps directly to a specific element of the quaternion group. We
can see this by looking at the rotation matrix R(k) defined in (5.5),
where the rotation matrix can be written [230] in terms of rotation
matrices Lσ with σ ∈ {x, y, z} such that

R(k) = exp[(k + π)Lσ/2] (5.12)

where the charges i, j,k correspondnow to clockwise rotations around
σ, i. e. the three band indices respectively. While the Berry phase
indicates whether a nodal line is encircled, the quaternionic charge
specifies the eigenframe rotation axis.

This mapping reveals a profound consequence: since band nodes
of different bands correspond to distinct quaternion elements, they
must be non-commutative, just as rotations. Specifically, when two
band nodes of different gaps exchange positions - a process we call
braiding - they can flip their associated Z2 frame charges9. These
braiding rules mirror the familiar non-commutative nature of spin
rotations in quantum mechanics [209]. This non-commutativity has
profound implications for our physical system. When we braid band
nodes carrying quaternion charges, their order matters - braiding
node A around node B produces a different result than braiding B

9We call them frame charges, because they are gauge-dependent, since there is a
higher gauge symmetry than just U(1).
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around A. The anti-commutation relations directly determine how
the frame charges transform under braiding operations [209].

The non-abelian nature of these charges leads to a remarkable phe-
nomenon: Consider a pair of nodes (of the same gap)with (+1), (−1)
frame charge. The sign of one of the node’s frame charge can be
reversed through braidingwith a node hosted in either adjacent gaps
(i. e. the gap directly above or below). Afterwards, the two band
nodes (of the same gap) cannot annihilate each other, since they both
carry the same Z2 frame charge, which reflects the anticommuting
algebra of the quaternion elements [209, 210, 226]. This property
distinguishes our system from conventional topological insulators,
where braiding typically results in Abelian phase factors.

The connection between the geometric phases we studied in Sec-
tion 5.2 and these non-abelian charges becomes clear: the impossibil-
ity of defining a global frame (non-orientability)manifests as discrete
quaternion charges that cannot be continuously deformed into one
another. This discrete nature, combined with the anticommuting
property of quaternions, ensures the robustness of the non-abelian
braiding operations.

However, to make this analogy precise and explain what wemean by
"commutation" of band nodes, we must first introduce the concept
of Dirac strings in the next Section.

5.2.3 Dirac strings of topological charges
In systemswithmagneticmonopoles (and hence topological charges,
see Section 4.2.2), we observe the physical manifestation of Dirac
strings – mathematical objects that have drawn significant attention
since Dirac’s foundational work [236] and which we will explain
in detail below. While these strings remain elusive in fundamen-
tal physics despite intensive searches [237], our system provides a
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5.2. Non-Orientability and Dirac-strings

Figure 5.1: Dirac strings between nodal points. (a) A large contour (blue) en-
circling two band nodes yields zero total Berry phase, while individual contours
(red and green) around each node reveal opposite charges (±1/2). (b) When con-
tinuously shrinking the blue contour, the phase must discontinuously jump from
+1/2 to −1/2 between the nodes through a Dirac string. The band nodes prevent
the contour from being reduced to a point, creating an unavoidable obstruction.
This structure is classified by the first Stiefel-Whitney class ω1, which captures the
impossibility of choosing consistent signs for real wavefunctions across the region.

platform where these theoretical constructs become tangible and
measurable [75].

The existence of these Dirac strings in our system follows from basic
topological arguments. In Section 4.3.1, we established how band
nodes form and relate to topological charges. Consider a pair of band
nodes of the same gap with opposite charges γA = 1/2, γB = −1/2, as
shown in Fig. 5.1. A large contour C encircling both nodes yields
zero total Berry phase

γtotal =
1

2π

∮︂
C
A(k) · dk = 0. (5.13)

When we continuously deform this contour to decrease its radius,
we cannot shrink it to a point - the two band nodes act as obstruc-
tions, each contributing ±1/2 to the Berry phase. This requires a sign
change from +π to −π between the nodes, manifesting as a line of
discontinuity - the Dirac string - connecting the two nodes where the
phase flips sign. While the string’s position depends on gauge choice,
its endpoints remain fixed at the band nodes, making them physi-
cally observable through various experimental techniques. When
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Figure 5.2: Creation of a lone Dirac string. Kicked 3D rotor system as in Fig. 4.6.
Each row shows: quasi-energies for lower two bands (left), wavefunction compo-
nent ψ3 (of first band) at α = π (middle), and as a function of both k, α (right).
Evolution from top to bottom: no nodes/strings (a-c), quadratic node appears (d-
f), splits into two linear nodes (g-i), and after node annihilation at the boundary, a
lone Dirac string remains (j-l). While the Dirac string’s shape is gauge-dependent,
its endpoints are fixed by band nodes when present. In (j-l), the sole existence of
the string (connecting left to right) is protected by the Stiefel-Whitney class ω1.

138



5.2. Non-Orientability and Dirac-strings

band nodes annihilate across the periodic boundary, they create a
particularly interesting state: a persistent Dirac string protected by
the inability to smoothly transform it away. In Fig. 5.2, we examine
this process in our kicked rotor system with N = 310. The system
evolves through several distinct phases: First, we create a quadratic
node, which splits into two linear (Dirac) nodes, and finally these
nodes annihilate across the periodic boundary. This process leaves
behind a Dirac string that remains stable against gauge transforma-
tions and small perturbations. While the band nodes are visible
in the band structure, they also manifest in the wavefunction. To
analyze this, we examine the third component ψ3 of the first band’s
wavefunction11 as a function of momentum. Band nodes emerge
as phase vortices with non-zero contour integrals. In the second
column, we show the wavefunction component ψ3 at α = π, which
visualizes the Dirac string as a discontinuous jump from −1 to +1.
In fact, the non-zero Berry phases around individual nodes can be
understood as a direct consequence of this Dirac string.

The node annihilation at the periodic boundary (α = 0) creates a
persistent Dirac string, ensuring a non-zero Berry phase in the k-
direction across allα (this is sometimes also calledZak-phase, since it’s
around a non-contractible direction of the Brillouin zone). This pro-
vides another interpretation of the bulk-boundary correspondence:
the topological phase with edge states arises from node creation and
annihilation, resulting in a non-trivial first Stiefel-Whitney class ω1.
Thus, we conclude that the process of nodal point annihilation across
periodic boundaries in k-space naturally leads to a non-trivial Berry
phase in the α-direction.

The phenomena we have discussed here – band nodes, their Dirac
10We use (P1, P2) = (0.1 sin(α) + 0.5r, 0.2 cos(α) + (2− r))where r controls the topo-

logical regime: r < 0.85 trivial, r > 1.15 topological, with a gapless phase between.
Parameters: (a-c) r = 0.70, (d-f) r = 0.85, (g-i) r = 1.0,(j-l) r = 1.3.

11We examine ψ3 in a gauge where ψ1 ≥ 0, achieved via ψ̃σ(k) = ψσ(k)sign[ψ1(k)],
ensuring wavefunction smoothness everywhere except at the Dirac string, where this
non-smoothness cannot be removed by any gauge choice.
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strings, and their annihilation – can occur in simple two-band abelian
systems. The concept of Dirac strings, however, proves essential for
understanding the deeper implications of non-abelian band nodes.
With this foundation, we can now analyze how the non-commutative
nature of multi-band systems leading to the braiding of band nodes
that we introduced in Section 5.2.2. The nodal lines shown in the
phase diagram in Fig. 4.2 play a central role in this analysis. Non-
abelian braiding of band nodes requires specific crossings of nodal
lines between different bands. Each nodal line carries both aZ2 frame
charge and a quaternionic charge, with the latter depending on the
exchange order with other nodal lines. The non-commutative nature
emerges when nodal lines of different gaps encircle each other [209,
210, 230], with the specific behavior determined by the encircling
path.

Although this physics might be accessible in the simple kicked rotor
for very high kicking strengths, we now turn to a slightly more
complex model where these effects arise naturally even at small
kicking strength.

5.3 The triple-kicked rotor
Let us construct a system that manifests the non-abelian phenomena
we discussed in the previous section at experimentally accessible
kicking strengths12. We combine three kicked rotors into a single
Floquet operator that preserves both time-reversal and inversion
symmetry13

UTKR(P) = UKR(P1, P2)UKR(P3, P4)UKR(P1, P2). (5.14)

This triple-kicked rotor, parametrized by P = (P1, P2, P3, P4), ex-
tends our previous analysis of Dirac strings and band nodes to a

12This section is based on our recent submitted paper [5].
13See footnote 17.
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Figure 5.3: Triple-kicked rotor (5.14). We use P2 = P3 = 0, which reduces
the protocol to two infrared pulses and one terahertz pulse within each Floquet
period. We vary the pulse strengths stroboscopically on a circular path (see main
text). In (a) we show the Pulse sequence, the inset shows the variation of pulse
strengths over the entire protocol, spanning Nγ = 40 iterations with three pulses
per sequence within each of which α is adjusted as αn = 2πn/Nγ . In (b) and
(c) we show the full time evolution of a driven rotor under this protocol, see
Section 4.4.1 . (b) Starting with typical thermal state (with π/(τBkBT ) = 0.17),
we observe resonant energy absorption (Ekin = ⟨L̂2⟩ ≈ 5 · 103), as expected for a
generic initial state in this system. Conversely, (c) showcases an edge state (with
the same initial energy) that persists throughout the protocol and absorbs little
energy (⟨L̂2⟩ ≈ 50). Significantly, this is an anomalous π−gap topological edge
state, which we will later show is a witness of the anomalous Dirac String phase
and exists even though all Berry phases are zero.

regime where non-abelian effects emerge naturally. As shown in
Fig. 5.3, we can implement this protocol14 using linear molecules
driven by a sequence of infrared and terahertz laser pulses (see
Chapter 2 for the molecular physics details). The time evolution in
Fig. 5.3(b,c) already reveals two distinct behaviors: generic states
show delocalization dynamics, while an edge states of the π−gap

14The pulse strengths vary as (P2, P3) = (1.6+sin(α)/2, 6.0− cos(α)/2)with synthetic
dimension α ∈ [0, 2π].
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Figure 5.4: Nodal lines of the triple-kicked rotor. Gap functions δn between
adjacent bands: (a) δ1, (b) δ2, and (c) δ3 (which corresponds to the π-gap). Panel
(d) shows the minimal gap minn(δn). Colors mark nodal lines of different gaps at
k = π (dashed), k = π (solid) and (k,−k) pairs (dotted).

remains localized even though the Berry phases are zero– a direct
consequence of the system’s topological structure, as we will see
later. The phase diagram in Fig. 5.4 reveals how our previous single-
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Figure 5.5: Dispersing nodal lines of the triple-kicked rotor. Non-abelian braid-
ing in (k, P2, P3) space using parameters from Fig. 5.4. (a) A nodal line in the
second gap (green) winds around a nodal line in the third gap (blue), demon-
strating their non-abelian braiding. (b) Formation of a (k,−k) nodal line pair
encircling a k = 0 nodal line. Additional nodal lines omitted for clarity.

gap nodal lines transform15 in this multi-gap system. These lines
emerge from symmetric points k = 0 and k = π, extending through
parameter space under the control of the kicking strengths. The two-
dimensional projections suggest that nodal lines from different gaps
intersect. However, Fig. 5.5 shows their actual three-dimensional
structure: lines from different gaps pass by each other at distinct
quasi-momenta k. We also observe how a single nodal line at k = 0
generates a pair of (k,−k) nodal lines. Aswewill see in the following,
this three-dimensional arrangement of nodal line crossings enables
non-abelian braiding: when nodal lines of different gaps cross, their
associated topological charges interact non-commutatively, manifest-
ing the quaternionic algebra we derived in Section 5.2.2.

15Here, we have evaluated all nodal lines by numerical homotopy continuation,
see [238].
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5.3.1 Euler class and non-abelian braiding
Let us now introduce the mathematical structure that captures the
topological obstruction against annihilating band nodes16. Consider
two adjacent bands n and n + 1 within a patch D of the Brillouin
zone. The obstruction is quantified by the path Euler class [210]

χD
n,n+1 =

1

2π

(︃∮︂
D

Eu(k) dk ∧ dα−
∮︂
∂D

An,n+1(k) · dk
)︃

∈ Z, (5.15)

which consists of two terms. The first involves the Euler two-form

Eu(k) = ⟨∂kψn|∂αψn+1⟩ − ⟨∂αψn|∂kψn+1⟩, (5.16)

measuring how the wavefunctions ψn(k) and ψn+1(k) twist relative
to each other as we move through the Brillouin zone. The second
term involves the non-abelian Berry connection

An,n+1(k) = ⟨ψn(k)|∇ψn+1(k)⟩, (5.17)

which captures the interband geometric phase accumulated along
the boundary of the patch. When band nodes are created in pairs
from the vacuum, they naturally carry opposite charges, resulting
in a vanishing patch Euler class. However, this can change when
we consider the case when band nodes of adjacent gaps exchange
positions with these nodes, since this exhibits non-abelian behavior.
To demonstrate this, let us examine a sequence of manipulations in
our kicked rotor system17, illustrated in Fig. 5.6.

Startingwith a single pair of band nodes (first column)with opposite
charges, yielding a zero Euler class within the corresponding patch.

16The concepts presented in this section build upon additional mathematical founda-
tions beyond the scope of our current discussion. For a comprehensive understanding,
we recommend consulting the referenced literature.

17The parameter evolution follows f(x, y, β) = (0.7 + 3β
4 (y + 1), (1 + 5β(x+ 1), 0.7 +

3β
2 (y + 1)), 0.4 + 2β(x + 1)) with β = 0.15 (first column), β = 0.21 (second column),
β = 0.3 (third column), though the phenomenon is robust across different parameter
choices.
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Figure 5.6: Non-abelian braiding demonstrated in the triple-kicked rotor. The
columns show three different parameter configurations, with the upper row dis-
playing the paths through parameter space and the corresponding nodal lines
(red and green), while the lower row shows the resulting gap functions of the cor-
responding paths. (a,d) A path crossing the red nodal line, creating an oppositely
charged pair. (b,e) Additional crossing of the green nodal line, creating a second
pair while maintaining trivial Euler classes. (c,f) Path showing the green node
having crossed the Dirac string of the red pair, altering the charge structure, see
main text. Note that fundamentally, the origin of this behavior is the crossing of
the red and green nodal line in phase space.

Then (second column) we create a second pair of nodes, marked
by intersections with the nodal line of the second gap (green line in
Fig. 5.6(b)). At this stage, both patches maintain trivial Euler classes,
as expected for nodes created from vacuum.

The non-abelian nature of the system reveals itself when we move
the green band node through the Dirac string of the red pair (third
column). This braiding operation alters the charge structure: we end
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upwith two equally charged green band nodes. While the total Euler
class remains zero due to the Dirac string contribution, the patch
containing the band nodes of the other gap now carries an Euler
class of one. This transformation demonstrates how frame charges
can be modified through braiding, creating topological obstructions
that prevent node annihilation unless their charges are realigned
through further braiding operations.

5.4 Anomalous Dirac-String phase
TheZ2 Berry phases alone cannot fully capture the rich non-equilibrium
topological phenomena in our system [226, 228]. This limitation
arises from a unique feature of the periodically-kicked quantum ro-
tor: it can support a nodal line in the anomalous π-gap (δ3), a direct
consequence of the 2π-periodicity of quasienergies.

Fig. 5.7 reveals this richness through a phase diagramwhere we track
both nodal lines and Berry phases. Following the marked path from
the trivial phase (gray area), we encounter a sequence of topological
transitions. Remarkably, after crossing nodal lines in each gap, we
arrive at another phasewith vanishing Berry phases. Despite sharing
the same Berry phases, these phases are topologically distinct– one
cannot transform between them without closing gaps [228]. This
novel state, termed the anomalous Dirac string phase [226], emerges
from the system’s non-equilibrium nature and manifests through
nodal lines in all quasienergy gaps. Its topological character becomes
evident in Fig. 5.8(c), where we observe edge states in every gap,
including the anomalous π-gap.

A crucial aspect here is that it’s possible to align pairs of Dirac strings
through smooth gauge transformations, leading to mutual cancel-
lation. The Berry phase γn thus only indicates the parity of Dirac
strings along a path. Each nodal line fixed at k = 0 or k = π marks a
phase boundary where the Berry phases (in k-direction) of the corre-
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sponding bands switch between 0 and π. For instance, a nodal line be-
tween the first and second band at k = π (i. e. with δ1(k = π, P ) = 0),
shown as a red dashed line, triggers such a Berry phase transition in
both bands.

5.5 Outlook
The exploration of non-abelian topology in driven quantum systems
reveals a rich landscape of phenomena that transcend conventional
static classifications. We have seen how the patch Euler class, (5.15),
provides a mathematical framework for real systems that allows us
to understand topological obstructions in band node manipulation,
leading to non-abelian braiding behavior when nodal lines of ad-
jacent gaps exchange positions. This braiding manifests through
the modification of frame charges, creating topological constraints
that prevent arbitrary node annihilation unless specific braiding
operations realign their charges.

Most remarkably, the combination of this non-abelian character with
the periodic nature of the quasi-energies in Floquet systems gives
rise to novel topological phases without static analogues. The anoma-
lous Dirac string phase exemplifies this uniqueness – it harbors edge
states in all gaps despite displaying trivial Berry phases, demonstrat-
ing how traditional band invariants fail to capture the full richness
of driven quantum matter. This phase emerges from the intricate
interplay between periodic quasienergies, multiple band gaps, and
the manipulation of Dirac strings.
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CHAPTER 6
Conclusion

All success cloaks a surrender.
– Simone de Beauvoir

6.1 Summary
As we close this inquiry into driven quantum rotors1, our work
shows how linear molecules under strong periodic pulses become
elegant platforms for probing fundamental physics. Our studies
demonstrate that quantum rotation – typically related to molecular
spectroscopy – gives rise to mathematical structures and topological
phenomena that persist even at room temperature.

This story began with a deceptively simple question: How does a
molecule respond to ultrashort laser pulses? Pursuing this question
led us to reexamine the foundations of laser-molecule interactions,
where we identified subtle quantum interference effects hidden be-
neath the standard sudden approximation. These effects, while
significant in their own right, opened an unexpected direction. By
applying multiple pulses in sequence, we found that molecular rota-

1For structured summary of the chapters, please refer to Section 1.4 of the introduction.

149



6. Conclusion

tions could be transformed into a synthetic crystal – not in physical
space, but in the abstract space of angular momentum.

This crystalline structure in angular momentum exhibited novel
properties beyond our expectations: The intrinsic symmetries of the
system, combined with periodic driving, generated topological prop-
erties previously observed only in few solid-state materials. Dirac
cones emerged naturally in our system, their topological charges
protected by the very symmetries from which they arose. An im-
portant finding occurred when we extended our model to include
three or more bands; then these Dirac cones showed their nature as
non-abelian entities.

The manifestation of non-abelian physics in such a conceptually
accessible system is closely linked to fundamental physics. The same
Dirac strings that continue to elude particle physicists in their search
for magnetic monopoles appear naturally in our driven molecules,
where they can be studied and manipulated through specifically
chosen laser pulses. Through our triple-kicked rotor protocol, we
demonstrated the braiding of these non-abelian charges, uncovering
an anomalous Dirac string phase unique to driven systems – a phase
hosting topological edge modes in every gap despite vanishing Berry
phases.

While these abstract phenomena translate into measurable molecu-
lar alignment signals at room temperature, the implications extend
well beyond molecular physics. Quantum rotors now appear across
diverse physical systems: driven Bose-Einstein condensates, nanoro-
tors, and as quasiparticles – rotational states of excitons, polaritons,
the recently characterized angulons, and Laughlin quasi-holes. Each
manifestation provides insights into fundamental physics, showing
connections between seemingly disparate phenomena.

Our work establishes quantum rotors as versatile platforms for in-
vestigating topological phenomena. The ability to precisely engineer
band structures in experiment offers distinct advantages over con-
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ventional solid-state systems, particularly for exploring non-abelian
multi-band topology. Their experimental accessibility makes them
valuable both for learning about fundamental aspects such as Dirac
strings, but also as potential building blocks in emerging quantum
technologies.

6.2 Future directions
The exploration of periodically-driven quantum rotors suggests sev-
eral research directions, spanning from practical applications in
physical chemistry to fundamental questions in quantum theory.
Here, we outline several directions that follow up on the theoretical
foundations established in this thesis.

At the most immediate level, our understanding of quantum reso-
nances and periodic driving indicates novel approaches to chemical
reaction control. The ability to manipulate molecular rotation with
laser pulses, combined with our understanding of the non-abelian
nature of rotational dynamics, presents new possibilities for control-
ling quantum states of linear molecules and their orientation and
alignment signals [27, 33]. This control, particularly in regard to go-
ing beyond the traditional picture of conical intersections, becomes
instrumental for selective bond manipulation – a critical component
for engineering chemical reactions and synthesis [116].

The connection to many-body physics presents an intriguing direc-
tion, such as rotational impurities in quantum baths – the recently-
discovered angulon quasiparticles [33, 239] – subjected to periodic
driving. Earlier work indicates that bath-impurity coupling leads
to collective quantum states, potentially creating controlled non-
abelian excitations analogous to those in fractional quantumHall sys-
tems [35]. We propose probing and controlling these states through
periodic pulses, potentially leading to topological phase transitions
and novel intermediate regimes. This connection extends to lattices
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of ultracold molecules in optical tweezers [240], where periodic driv-
ing could generate topologically protected many-body states [241].

Beyond atomic and molecular physics, our findings suggest innova-
tive approaches to materials science. Driven rotational impurities in
solid-state systems, when populated into topological states, could
modify material properties in controllable ways. Recent research
indicates that polaronic rotational states enhance photovoltaic effi-
ciency in lead-halide perovskites [242, 243]. Through specific driving
protocols, it may become possible to control these rotational states
and develop new mechanisms for quantum transport. The ability to
influence material properties through topological control of molecu-
lar rotation suggests promising directions for materials design and
optimization.

These directions represent both extensions of our current work and
gateways to novel areas of study. As we hope to have demonstrated,
the driven quantum rotor –whethermanifesting as amolecule, quasi-
particle, or abstract mathematical structure – bridges topology with
quantum dynamics in ways that extend far beyond traditional ap-
proaches. This connection offers unique opportunities to explore
fundamental or applied physics with exceptional control over sys-
tem parameters. As this field evolves, quantum rotors could become
exemplary platforms where theoretical insights converge with ex-
perimental accessibility.
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Appendix

Integrals
We want to calculate the matrix element ⟨l′m′|eiP cos(θ̂)|lm⟩. We ex-
pand in spherical harmonics

=

∫︂ 1

−1

d cos(θ)

∫︂ 2π

0

dϕY ∗
lm(θ, ϕ)Yl′m′(θ, ϕ)eiP cos(θ)

= 2πδmm′NlmNl′m

∫︂ 1

−1

d cos(θ)eiP cos(θ)P ∗
l′ (cos(θ))Pl(cos(θ))

(1)

where we used Ylm(θ, ϕ) = NlmPl(cos(θ))e
imϕ and the associated

Legendre polynomials Pl(cos(θ)). Hence, with x = cos(θ) we are
only left with the integral

I =

∫︂ 1

−1

eiPxPl(x)Pl′(x) dx. (2)

The exponential term eiPx can be expanded in terms of Legendre
polynomials as

eiPx =
∞∑︂
n=0

(2n+ 1)injn(P )Pn(x) (3)

where jn(P ) is the spherical Bessel function of order n. Hence, the
integral becomes

I =
∞∑︂
n=0

(2n+ 1)injn(P )

∫︂ 1

−1

Pn(x)Pl(x)Pl′(x) dx (4)

185



Appendix

We can evaluate the integral of the product of three Legendre poly-
nomials using Gaunt’s formula∫︂ 1

−1

Pn(x)Pl(x)Pl′(x) dx =
2

2s+ 1

(︃
l l′ s
0 0 0

)︃2

(5)

where
(︃
l l′ s
0 0 0

)︃
is the Wigner 3j-symbol, and s = l + l′ + n. Note

that Gaunt’s formula is only valid if the two conditions are satisfied:
First, the triangular condition with |l − l′| ≤ s ≤ l + l′ and second
the parity condition that l + l′ + smust be even. Then, the integral
turns into

I = 2
l+l′∑︂

s=|l−l′|

isjs(P )

(︃
l l′ s
0 0 0

)︃2

. (6)

with these conditions.

Periodicity proofs
In this section we provide the proofs that guarantee the periodicity
of the lattice for arbitrary quantum resonances T = 2πM/N . The
first lemma will deal with the rotational phases of the 2D rotor, and
the second lemma with the rotational phases of the 3D rotor. We
will make use of some nomenclature of algebra [244].

Lemma 1. LetM and N be coprime positive integers. For any integerm,
the smallest positive integer q satisfying

exp

(︃
−2πi

M(m+ q)2

N

)︃
= exp

(︃
−2πi

Mm2

N

)︃
(7)

is exactly

q =

{︄
N/2 if N is divisible by 4,

N otherwise.
(8)
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Proof. The equality in (7) holds if and only if

M
(︁
(m+ q)2 −m2

)︁
N

=
M(2mq + q2)

N
∈ Z. (9)

SinceM and N are coprime,M , the condition simplifies to

2mq + q2 ≡ 0 mod N. (10)

For the equality to hold for all integersm, the coefficient ofmmust
be congruent to zero modulo N

2q ≡ 0 mod N (11)

which implies that N divides 2q. So we need to satisfy both (11)
and (10).

Case 1: N is even.

Let N = 2n for some positive integer n. Now, it turns out we need to
differentiate between the cases ofN divisible by 4 andN not divisible
by 4.

Subcase 1.1: n is even (N is divisible by 4).

Then n = 2k for some integer k, so N = 4k. From (11), N divides 2q,
so

2q ≡ 0 mod 4k =⇒ q ≡ 0 mod 2k.

We can choose q = 2k = N/2. Let us check the constant term in (10)

q2 ≡ 0 mod N =⇒ (2k)2 = 4k2 ≡ 0 mod 4k.

Since 4k2 is divisible by 4k, the condition is satisfied.

Subcase 1.2: n is odd (N ≡ 2 mod 4).

In this case, N = 2nwith n odd. From (11),

2q ≡ 0 mod 2n =⇒ q ≡ 0 mod n.
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Let us set q = n = N/2. The constant term yields

q2 = n2 ≡ n2 mod 2n.

However, since n2 is odd and 2n is even, n2 is not divisible by 2n, so
q2 ̸≡ 0 mod N . The condition is not satisfied with q = N/2. Hence,
we must take q = N , which is the smallest q possible.

Case 2: N is odd.

SinceN is odd and gcd(N, 2) = 1, from (11) it follows thatN divides
q. Therefore, the smallest positive integer q is q = N .

Lemma 2. LetM andN be coprime positive integers. The smallest positive
integer q satisfying

exp

(︃
−2πi

M(l + q)(l + q + 1)

N

)︃
= exp

(︃
−2πi

Ml(l + 1)

N

)︃
(12)

for all integers l is

q =

{︄
N/2 if N ≡ 2 mod 4,

N otherwise.
(13)

Proof. The equality in (12) holds if and only if

M ((l + q)(l + q + 1)− l(l + 1))

N
=
M(2lq + q2 + q)

N
∈ Z. (14)

SinceM and N are coprime, we can simplify the condition to

2lq + q2 + q ≡ 0 mod N. (15)

For the equality to hold for all integers l, the coefficient of l must
satisfy

2q ≡ 0 mod N, (16)

188



Periodicity proofs

which means N divides 2q. Since l can be arbitrary, the constant
term must also satisfy

q2 + q ≡ 0 mod N. (17)

Case 1: N is odd.

Since gcd(N, 2) = 1, from (16) it follows that N divides q, so q = N .
The constant constant becomes

q2 + q = N 2 +N ≡ 0 mod N.

Thus, both conditions are satisfied.

Case 2: N is even.

Let N = 2n for some positive integer n.

Subcase 2.1: n is odd (N ≡ 2 mod 4).

From (16):

2q ≡ 0 mod 2n =⇒ q ≡ 0 mod n.

Let us set q = n = N/2. The constant becomes

q2 + q = n2 + n = n(n+ 1).

Since n is odd, (n + 1) is even, so n(n + 1) is divisible by 2n = N .
Therefore, q2 + q ≡ 0 mod N and hence q = N/q is the smallest
number that satisfies (14).

Subcase 2.2: n is even (N ≡ 0 mod 4).

From (16):

2q ≡ 0 mod 2n =⇒ q ≡ 0 mod n.

Let us set q = n. The constant term yields

q2 + q = n2 + n = n(n+ 1).
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Since n is even, n and (n+ 1) are consecutive, one even and one odd.
However, n(n+ 1) is divisible by n but not necessarily by 2n or 4n.
Therefore, q2 + q may not be divisible by N = 2n or N = 4n. Thus,
q = N is the smallest positive integer satisfying both conditions.
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