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Abstract

We study the BCS critical temperature on half-spaces in dimensionsd = 1, 2, 3
with Dirichlet or Neumann boundary conditions. We prove that the critical tem-
perature on a half-space is strictly higher than on R¢, at least at weak coupling in
d = 1, 2 and weak coupling and small chemical potential in d = 3. Furthermore,
we show that the relative shift in critical temperature vanishes in the weak coupling
limit.
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1. Introduction and Results

We study the effect of a boundary on the critical temperature of a superconductor
in Bardeen—Cooper—Schrieffer theory. It was recently observed [1,2, 14—16] that the
presence of a boundary may increase the critical temperature. For a one-dimensional
system with §-interaction, a rigorous mathematical justification was given in [6].
Here, we generalize this result to generic interactions and higher dimensions. While
in dimensions d = 2, 3 the existing numerical works only consider lattice models,
our analytic approach allows us to study continuum models. We compare the half
infinite superconductor with shape Q; = (0, 00) x R4~ to the superconductor
on Qp = R4 in dimensions d = 1,2, 3. We impose either Dirichlet or Neumann
boundary conditions, and prove that in the presence of a boundary the critical
temperature can increase. The critical temperature can be determined from the
spectrum of the two-body operator

He —Ay — Ay —2u
T — AL
tanh (%) +tanh< Az"ir ")

acting in L3, (2 x Q) = {y € L*(Q x QY (x,y) = ¥(y,x) forall x,y €
2} with appropriate boundary conditions [3]. Here, A denotes the Dirichlet or
Neumann Laplacian on €2 and the subscript indicates on which variable it acts.
Furthermore, 7' denotes the temperature, p is the chemical potential, V is the
interaction and X is the coupling constant. The first term in Hﬁ is defined through
functional calculus.

Let us explain how Hﬁ relates to the BCS critical temperature of a super-
conductor. A mathematical introduction to BCS theory can be found in [8]. BCS
theory describes the state of the system as the minimizer of the BCS functional
F. The normal state 'y is the minimizer of F among states which do not exhibit
any superconductivity. If perturbations of I'g that introduce pairing between elec-
trons decrease the value of F, the system is superconducting. It turns out that the
normal state is always a critical point of F and therefore the behavior of F in the
vicinity of I'g is determined by the Hessian, which is exactly 2H<?, as explained in
[3]. Importantly, the normal state is unstable and the system is superconducting if
inf a(HYS?) < 0. For translation invariant systems, i.e. Q2 = R4, with suitable in-
teractions V superconductivity is equivalent to inf G(H}2 ) < 0. This was shown in
[5,8] in the case without symmetry restriction on the Cooper pair wave function and
can be adapted to the case with symmetry restriction, as explained in [12]. In this
case, there is a unique critical temperature 7, determined by inf o (H%) = 0 which

—AV(x—y) (1.1)

separates the superconducting and the normal phase. The critical temperatures TCQO
and TCQ‘ are defined as

T () := inf{T € (0, 00)|inf o (Hy") > 0. (1.2)
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In [14] an equivalent definition of the critical temperature was used based on
the Birman—Schwinger version of Hﬁ and the Mittag-Leffler series for tanh. In
Lemma 2.3 we prove the inequality inf o (H;2 " <info (H;2 ). Therefore, TcQl ) >
TCQO (A). Our main concern is to show that the inequality is strict, which means that
there is a temperature range for which the system with boundary is superconducting
while the system on R is not.

Our strategy involves proving inf O’(H;Z Y < O0for T = TcQO (A) using the
variational principle. The idea is to construct a trial state involving the ground
state of H? 0 at temperature T = TcQO (1). However, H? % is translation invariant
in the center of mass coordinate and thus has purely essential spectrum. To obtain
a ground state eigenfunction, we remove the translation invariant directions, and
instead consider the reduced operator

—A—pu
_A—
tanh( 2T“>

acting in L2(R?), which corresponds to zero total momentum in H;Z . At weak

HY = —AV(r) (1.3)

enough coupling, the infimum of U(H;2 %) for T = T, (1) is attained at zero total
momentum (c.f. Lemma 2.4 and Remark 2.5). Our trial state involves the ground
state of H;) at temperature 7 = TCS20 (1). In the weak coupling limit, A — 0, we
can compute the asymptotic form of this ground state provided that & > 0 and the
operator V), : L2(S% 1y — L2(S?"1) with integral kernel

1 -~
Vulp, q) = WV(\/H(P —q)) (1.4)
has a non-degenerate eigenvalue ¢, = sup o (V) > 0 at the top of its spectrum and
the corresponding eigenfunctionis even [8,9]. Here, V (p) = W fRd V(rye P

dr denotes the Fourier transform of V. For d = 1, L*(S") is a two-dimensional

vector space, and V), has the eigenvalues %, where the plus and minus

sign correspond to an even and odd eigenfunction, respectively.
We make the following assumptions on the interaction potential:

Assumption 1.1. Let d € {1, 2,3} and i > 0. Assume that

AV e L'®RY) N LP4¢RY), where pg = 1 ford = 1, and py > d/2 for
d e {2,3},
(i1) V isradial, V # 0,
(iii) | - |V € L'(RD),
(iv) V(0) > 0,
(v) ey = supo(V,) is anon-degenerate eigenvalue and the corresponding eigen-
function is even.

Remark 1.2. The assumption V € L!'(R?) implies that V is continuous and
bounded. The operator V), is thus Hilbert—Schmidt and in particular compact. Due
to Assumption (v) we have e, > 0. This in turn implies that the critical temperature
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TCQO (1) for the system on R is positive forall A > 0 (cf. Remark 2.5). Furthermore,
for d > 2 radiality of V and (v) imply that the eigenfunction corresponding to e,
must be rotation invariant, i.e. the constant function. Assumption (v) is satisfied for
d=2,3if V> 0[8] and ford = 1if V(0), V(2,/70) > 0.

These assumptions suffice to observe boundary superconductivity ind = 1, 2.
For d = 3, we need one additional condition. Let

. . e 1 iwr/it
]d(r, //L) = W /;{171 e dw. (15)
Define

~D/N . . .
m3/ (r;u):=/ (]3(Zl,r277’3;,U«)z—|]3(11,r277’3§,U«):FJB(F;H)|2X|z1\<|r1|)d21
R
b . 2
F—7 30w, (1.6)
e

where the indices D and N as well as the upper/lower signs correspond to Dirich-
let/Neumann boundary conditions, respectively. Our main result is as follows:

Theorem 1.3. Let d € {1,2,3}, u > 0 and let V satisfy Assumption 1.1. Assume
either Dirichlet or Neumann boundary conditions. For d = 3, additionally, assume
that

/ vryms™N (r; wydr > 0. (1.7)
R3

Then there is a &1 > 0, such that for all0 < A < Ay, T2 () > TS ).
For d = 3 we prove that (1.7) is satisfied for small enough chemical potential.

Theorem 1.4. Let d = 3 and let V satisfy 1.1 (1)—(iv). For Dirichlet boundary
conditions, additionally assume that | - >V € LY (R3) and ng V(r)|ri2dr > 0.

Then there is a po > 0 such that for all 0 < p < o, ng V(r)ﬁi??/N (r; wydr > 0.

In particular, if V additionally satisfies 1.1 (v) for small 11 (e.g. lfV > 0), then for
small w there is a A () > 0 such that TCQl A) > TCQO(A)forO < A < A ().

Remark 1.5. Numerical evaluation of rﬁ3D suggests that ﬁi3D > 0 (see Sect.5, in
particular Fig. 1). Hence, for Dirichlet boundary conditions (1.7) appears to hold
under the additional assumption that V > 0. We therefore expect that for Dirichlet
boundary conditions also in three dimensions boundary superconductivity occurs
for all values of w. There is no proof so far, however.

Remark 1.6. One may wonder why in d = 1, 2 no condition like (1.7) is needed.
Actually, in d = 1, 2 the analogous condition is always satisfied if V' (0) > 0. The
reason is that if one defines n"ig/ N (r; ) by replacing j3 by jg in (1.6), the first

term diverges and %5/1\’ (r; n) = +oo.
Our second main result is that the relative shift in critical temperature vanishes as

A — 0. This generalizes the corresponding result for d = 1 with contact interaction
in [6].
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Theorem 1.7. Letd € {1, 2, 3}, u > Oandlet V satisfy Assumption 1.1 and V > 0.
Then

i L0100 = TG
m o) =
A—0 T; O(A)

0. (1.8)

We expect that the additional assumption V > 0 in Theorem 1.7 is not necessary;
it is required in our proof, however.

Remark 1.8. The temperature szl (1) is the smallest temperature 7' satisfying
inf O'(H;Z 'Y = 0. In principle, there could be other solutions to this equation,
defining larger critical temperatures. An inspection of our proof shows that it applies
equally well to these larger temperatures, i.e. Theorem 1.7 also holds if TCS21 A) s
replaced by any other solution 7" of the equation inf a(H;2 " =0.

The rest of the paper is organized as follows. In Sect.2 we prove the Lemmas
mentioned in the introduction. In Sect. 3 we use the Birman—Schwinger principle to
study the ground state of H}). Section 4 contains the proof of Theorem 1.3. Section 5
discusses the conditions under which (1.7) holds and in particular contains the
proof Theorem 1.4. In Sect.6 we study the relative temperature shift and prove
Theorem 1.7. Section 7 contains the proof of auxiliary Lemmas from Sect. 6.

2. Preliminaries

The following functions will occur frequently:

2 2
p tq —2u
Kru(p,q) = o e 2.1)
tanh (T) —+ tanh (T)
and
1
Br . (p,q) = (2.2)

Kru(p+q.p—q)
We will suppress the subscript  and write K7, By when the p-dependence is not
relevant. The following estimate [6, Lemma 2.1] will prove useful:

Lemma 2.1. For every Ty > 0 there is a constant C1(Ty, n) > 0 such that for
T > Ty, Ci(T + p2 + q2) < Kr(p,q). For every T > O there is a constant
Co(T, ) > 0 such that Kt (p, q) < C2(p? + ¢ + 1).

The minimal value of K7 is 27. Since |tanh(x)| < 1, we have for all p, ¢ € R¢
and T >0

1
Br(p,q) = and
max{|p? + ¢ — ul, 2T}
Cw)
Br(p, ) Xp2yq252p50 = T+t a2 (2.3)

where C(u) depends only on .
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Remark 2.2. Assumption 1.1(i) guarantees that V is infinitesimally form bounded
with respect to —A, — Ay [11,13]. By Lemma 2.1, H}Z defines a self-adjoint
operator via the KLMN theorem. Furthermore, H;Z becomes positive for T large
enough and hence the critical temperatures are finite.

Let K ? be the kinetic term in H}Z. The corresponding quadratic form acts as

(W KFY) = [Jou ¥ (x, KF(x, yix', Y)Y (x', y)dxdydx'dy’ where K§¥(x, y;
x’, y') is the distribution

K¥(x,y;x',y) = /RM Fo(x, p)Fa(y, ) Kr(p, 9)Fa(x', p)Fa(y', ¢)dpdq,
2.4

with

e—ip-x (e—iplxl ¥ eiplxl)e—iﬁ»)?

W and FQl(xa P)— 21/2(27'[)d/2 )

Fra(x, p) =
(2.5)

where the —/+ sign corresponds to Dirichlet and Neumann boundary conditions,
respectively. Here, X denotes the vector containing all but the first component of x.
(In the case d = 1, X is empty and can be omitted.)

Lemma 2.3. Let T, A > 0,d € {1, 2, 3}, andlet V satisfy 1.1 (). Theninfa(H;ZI) <
. Qo
inf o (H;").

With the with Lemma we may use H? instead of H;Z % to compute TCS20 (A) at
weak enough coupling.
Lemma 2.4. Let T, ) > 0,d € {1,2,3}, and let V satisfy 1.1(i). Let O’S(H(T)) denote
the spectrum of H}) restricted to even functions. Then inf O'(H;)) < inf O'(H;Z 0 <
inf o (HY).
Remark 2.5. Under Assumption 1.1, for all couplings A > O there is a unique
T9(1) > 0 satisfying inf o (H. T0 5)) = 0 (see [8, Theorem 3.2] for d = 3, and [9,
Theorem 2.5] ford = 1, 2). In Sect 3,in pamcular Remark 3.4, we shall show that
there is a Ag > O such that the ground state of HTO » is even for couplings A < Ag.
By Lemma 2.4, inf O’(HOO()L)) = inf cr(HT()()L)) = 0. Furthermore, for T < TCQ A),
due to strict monotonicity of H? inT,

inf o (H;"") < inf o (HY.,) < inf o (Hp,,) = 0.
Hence, TC‘QO (A) = TO(x) for A < A¢. In particular, the minimum of (7(H;2 ) for
T = TCQO (A) is attained at zero total momentum.

Remark 2.6. The essential spectrum of Hj 0 satisfies inf Uess(H 0y = 271 (see e.g.

[10, Proof of Thm 3.7]). Hence, zero is an elgenvalue of HTO o
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2.1. Proof of Lemma 2.3

Proof of Lemma 2.3. Let S; be the shift to the right by / in the first component, i.e.
Siv(x,y) = v (((x; — 1), %), (y1 —1,y)). Let ¥ be a compactly supported func-
tion in Hslym (R%4), the Sobolev space restricted to functions satisfying ¥ (x, y) =
¥ (y, x). For [ large enough, S;v is supported on the half-space and satisfies both
Dirichlet and Neumann boundary conditions. The goal is to prove that lim;_, o (S; ¥,

H;z LSivry = (v, H? 4). Then, since compactly supported functions are dense in
Hg,,, (R*), the claim follows.

Note that (S;¢, VS;¥) = (¥, V). Furthermore, using the symmetry of Kr
in p; and ¢, one obtains

(S0 K7 1) = /R TP DK (. )[ T, @) F T (=1, 5 e P!

FU (. (—q1, D) + T (= p1, P, (—q1, @)X P [dpg
(2.6)

for/ large enough such that v is supported on the half-space. The first term is exactly
(¥, K ? %4r). Note that by the Schwarz inequality and Lemma 2.1, the function

(P, @) = ¥ (p, K1 (p, )V (—p1, ) q) 2.7)

isin L' (R??) since ¥ € H'(R??). By the Riemann—Lebesgue Lemma, the second
term in (2.6) vanishes for / — oo. By the same argument, also the remaining terms
vanish in the limit. |

2.2. Proof of Lemma 2.4

First, we prove

Lemma 2.7. For all x, y € R we have

Xty zl( r Y ) 2.8)
tanh(x) + tanh(y) — 2 \tanh(x) tanh(y)

Proof of Lemma 2.7. Suppose |x| # |y|. Without loss of generality we may assume
y

s X 2
that x > |y|. Since iop > s

x  tanhx —tanhy .Y tanhx — tanh y

. 2.9
2 tanh x tanh x 4+ tanh y = 2tanh y tanh x + tanh y 29)

This inequality is equivalent to (2.8), as can be seen using izﬁg i:ggg; =2 ;aﬂ‘aflh 5
—1=1- % on the left and right side, respectively. By continuity, (2.8)

also holds in the case |x| = |y|. |
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Proof of Lemma 2.4. Let U denote the unitary transform U (r, z) = 2‘1%1//((7' +
2)/2, (z — r)/2) for ¥ € L*(R?*?). By Lemma 2.7 we have

— (Ve + Vo) = (V, = V)P —2u
2 2
(5 1 an (g

1 [ —(V, +V.)?—
= (Ve + Vo) )

2 —(Vr+V) =
tanh (T)

UHUT = + V()

v

PR A7 Ay
2 —(Vr=V2)2—p
tanh (T)

+V)|. (2.10)

Both summands are unitarily equivalent to %H(T) ® I, where I acts on Lz(Rd).
Therefore, infa(H;ZO) > infa(H?).

For the second inequality let f € H'(R?) with f(r) = f(—r) and ¥ (r, 2) =
e Zi-1 1241 £ (1) Note that || e 13 = 2711 £113. Since the Fourier transform of ¢ ~</"!
in LA(R) is (2/7)"/%€/(€? + p?), we have Ye(p. q) = [(q)2/m)¥2 [T, €/(e2
+ p?). Therefore,

(el UHZ U )

el
24 d 3 _
= R Jea KT O P ——— dpd
nd||f||2/de o Q)prgmﬂqn pdg
! 2
+ 74 d
B /Rd (MIf)|=dr
24 d . .
= TSR s KPP TP — dpd
ﬂd”fusz r(ep+q.€p —q) ,1:[1<1+P§>2 |f@)Pdpdg
1
" Y " 2.11

where we substituted p — €p in the second step. By Lemma 2.1,

d

1 —~
Krep+g.ep— | [ —=5 | 1F@P
j=1 (d+pj)
2 2 d 1 iy 2
sCU+de +g) | [[— | @P (2.12)
j=1 TP
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1

which is integrable. With fR dp; = /2 it follows by dominated conver-

(1+p)?
gence that
Q77 0
UHOUT H
im (VelUHp ! ve) _ (Sl T2f>. (2.13)
€0 Vel A1
Therefore, inf o (H;°) < inf oy (HY). O

0
3. Ground State of HTCO o)

Let TC0 (1) be the unique temperature satisfying inf U(H;)0 (A)) = 0 as in Re-

mark 2.5, where H? was defined in (1.3). To study the ground state of H(T)0 W’ it
is convenient to apply the Birman—Schwinger principle. For ¢ € R? let Br (-, q)
denote the operator on L2(R?) which acts as multiplication by Bz (p, ¢) (defined
in (2.2)) in momentum space. The Birman—Schwinger operator corresponding to

H}) acts on L?(R¢) and is given by
A =V'2Br(, 0V, (3.1)

where we use the notation V1/2(x) = sgn(V(x))|V|1/2(x). This operator is com-
pact [8,9]. It follows from the Birman—Schwinger principle that sup o (A(%) =1/xr

exactly for T = TC0 (1) and that the eigenvalue 0 of H?O » has the same multiplicity
0 c

T2 R
Let F : L'(RY) — L2(S?7 1) act as Fyr(0) = ¢ (J/ftw) and define O, =
V12 FTFIV|Y/2 on L2(R?). Furthermore, let

as the largest eigenvalue of A

V2 d—1
myu(T) =/0 Br(t, 0"~ dr. (32)

Note that m, (T) = u??='(In (u/T) + cq) + o(1) for T — 0, where ¢4 is a
number depending only on d [9, Prop 3.1].

The operator O, captures the singularity of A(% as T — 0. The following has
been proved in [4, Lemma 2] for d = 3 and in [9, Lemma 3.4] ford = 1, 2.

Lemma 3.1. Let d € {1,2,3} and u > 0 and let V satisfy Assumption 1.1. Then,

sup HA(} — m,(T)O,, H < o0, (3.3)
Te(0,00) HS

where ||-||lus denotes the Hilbert—Schmidt norm.

Thus, the asymptotic behavior of sup o (A(}) depends on the largest eigenvalue
of 0. Note that O, is isospectral to V, = FVFT, since both operators are
compact. The eigenfunction of O, corresponding to the eigenvalue ¢, is

W(r) = VY20 ja(rs ), (3.4)
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where j; was defined in (1.5). Note that

2
i) = \/;COS(\/EV), Ja(rs w) = Jo(Vulrl),

2 sin/ulr|

where Jj is the Bessel function of order 0. Furthermore

J3rip) =

1 ~ 1 )
ey = GmR /Sd_l V(J/1r((1,0,...,0) = p)dp = ST /Rd V(r)ja(r; w)*dr
(3.6)

The following asymptotics of TC0 (») for A — 0 were computed in [8, Theorem
3.3] and [9, Theorem 2.5]:

Lemma 3.2. Let u > 0, d € {1, 2, 3} and let V satisfy Assumption 1.1. Then

1
e S L N
e (TL.O()\)) a

Lemma 3.1 does not only contain information about eigenvalues, but also about
the corresponding eigenfunctions. In the following we prove that the eigenstate
corresponding to the maximal eigenvalue of A(} converges to .

lim <o0. (3.7
r—0

1 .
eum (TO(1)) — X‘ = lim

Lemma 3.3. Let u > 0, d € {1, 2,3} and let V satisfy Assumption 1.1.

(i) There is a Ly > 0 such that for . < Lo, the largest eigenvalue of A%‘)(A) is
non-degenerate.

(ii) Let A < Ao and let ‘IJTCQ(A) be the eigenvector of A%@(A)
largest eigenvalue, normalized such that || \IJTCO()L) ll2 = [|\V||2. Pick the phase of
\IJTC()()L) such that (WTLQ()»)’ W) > 0. Then

corresponding to the

.1 2

Remark 3.4. Let Ao be as in Lemma 3.3. By the Birman—Schwinger principle, the
multiplicity of the largest eigenvalue of A%, . equals the multiplicity of the ground

TO(1)
state of H;)o(,\)- Hence, H(T)O(A) has a unique ground state for A < Ag. For d > 2,

c

since H(T)0 o is rotation invariant, uniqueness of the ground state implies that the
ground state is radial. For d = 1, since W is even, the second part of Lemma 3.3

implies that Yroi) is even for small enough A. Hence, also the ground state of

H(T)(9 ) is even for small A.

It follows that for A < A¢ we have TCQO ) = TLQ()L) as discussed in Remark 2.5.
For values of X such that the operator H;)Q o has a non-degenerate eigenvalue

at the bottom of its spectrum let ®; be the corresponding eigenfunction, with

normalization and phase chosen such that Wro(;) = V1/2®;. The next Lemma

with regularity and convergence properties of @, will be useful.
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Lemma 3.5. Let d € {1,2,3}, u > 0 and let V satisfy Assumption 1.1. For all
0 < X < oo such that H(T)O ) has a non-degenerate ground state ®,, we have
cVI 1wl

M) 1B2(p)] < {3 [VO(p)] = =

1+p?

for some number C(A) depend-
ing on A,
(i) p — ®,.(p) is continuous,
(i) [|[Prll1 < o0 and || Pylloc < 00.
Furthermore, in the limit . — 0

(i) [®rxp2-,ll1 = OOV,
V) [®xll = O(1),
(vi) and in particular || ®) ||cc = O(1).

In three dimensions, because of the additional condition (1.7), we need to compute
the limit of @, .

Lemma 3.6. Let d = 3, u > 0 and let V satisfy Assumption 1.1. Then ||®) —
j3llee = OAY?) as x — 0.

3.1. Proof of Lemma 3.3

Proof of Lemma 3.3. (i) The proof uses ideas from [7, Proof of Thm 1]. Let M7 =
Br(-,0) — mH(T)fT}". By Lemma 3.1, for A small enough the operator 1 —
AVI2M7| V|12 is invertible for all T. Then we can write

Am, (T) .
1—2A% = (1 —2Vv12Mr vV (1 - - VIRFIFIV|IZ).
T ( T| | ) 1—)\.V1/2MT|V|1/2 | |
(3.9)
Recall that the largest eigenvalue of A(%O W equals 1/A. Hence, 1 is an eigenvalue
of ‘
Am (T (h .
nl/l//;( c ( )) 1/2V1/2]_-y]:|V|1/2’ (310)
L =AVY=M7o4,) V]
and it has the same multiplicity as the eigenvalue 1/ of A‘%O o This operator is
isospectral to the self-adjoint operator ‘
am, (T2 (0
LT SV @11
1-— )\.Vl/zMT(O()L)”/ll/z
Note that the operator difference
1
FIv|'/2 vVI2Ft—y
Vi L= AVI2Mypoq) V|12 "
V12 Mopog, | VIV/?
o) +
= A F|V /2 7 7 V12 Ff (3.12)
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has operator norm of order O(X) according to Lemma 3.1. By assumption, the
largest eigenvalue of V), has multiplicity one, and Am M(TCO()L))eM =14+0%)
by Lemma 3.2. Let ¢ < 1 be the ratio between the second largest and the largest
eigenvalue of V. The second largest eigenvalue of Am M(TCO()»))V,L is of order
a + O(X). Therefore, the largest eigenvalue of (3.11) must have multiplicity 1 for
small enough X, and it is of order 1 + O(A), whereas the rest of the spectrum lies
below o+ O (A). Hence, 1 is the maximal eigenvalue of (3.11) and it has multiplicity
1 for small enough A.

(ii) Note that ‘llTLp () is an eigenvector of (3.10) with eigenvalue 1. Furthermore,
let ¥, be a normalized eigenvector of (3.11) with eigenvalue 1. Then

NE 1
VI2F N llp L= AVIZMpoq, V]2

‘i’rg)(x) = VI2Fy,

1
I (A=2VTP My, TVIT)
(3.13)
agrees with \IJT(Q(A) up to a constant phase. Since ”\I’TLQ(A) —¥|? < ||\iJT(o(A) — |3,

it suffices to prove that the latter is of order O (A) for a suitable choice of phase for

(7%
Let ¥ (p) = W. This is the eigenfunction of V), corresponding to the

maximal eigenvalue, and W = vizE Tw. In particular, for all ¢ € Lz(Sd_l),

(@, Vi) < eulld, ¥)I* + aep(ldl3 — (g, ¥) 7). (3.14)

We choose the phase of ¥, such that (¥, ¥) > 0. We shall prove that ||1/f;\—1ﬂ||§ =
O (A). We have by (3.12) and (3.14)

O = (Y, (1 =, (T2 O)V)V3)
L= Ay (T2 G)ep| (Wi, ¥) P = Ay (T G)aey, (1= [, ¥)17)
O + (1 —a)(1 — [(Ys, ¥)IP), (3.15)

where we used Lemma 3.2 for the last equality. In particular, I —| (¥, )| = O(A).
Hence,

v

1— (Y, ¥)?
— 2 =201 = (¥, =2— 27— 0o®). 3.16
Iy — ¥l (I =, ¥) 5 (o) ) (3.16)

Using Lemma 3.1 and that V/2F" . L3S 1 — L2(R?) is a bounded operator,
and subsequently (3.16) we obtain

1
] - )\,Vl/zMTCO()L)|V|1/2

VI2FE Ny, = VIPF Y+ 00)

=vI2Fy +o00'?, (3.17)

where O (1) here denotes a vector with L2-norm of order O (). Furthermore,
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11 = AV 2 Mpo IVIVHTIVIZF Yl — VIR F g
<=2V Mo VIV TV EE g = VIPF Y = 012,

(3.18)
In total, we have
4 _ ¥ l2 1/2 1/2
Yoo = WEEy, +oc T YOG
W12 1/2 ~+ 1/2
=——— VY F'Yy + 00
WieFy, )V ToeT)
=w+ 0o@R'?). (3.19)
O

3.2. Regularity and Convergence of ®;

In this section, we prove Lemma 3.5 and Lemma 3.6. The following standard

results (see e.g. [11, Sections 11.3, 5.1]) will be helpful:

Lemma 3.7. (i) Let V € LP(RY), where p = 1 ford = 1, p > 1 ford = 2 and
p =3/2ford =3. Let y € H'(RY). Then V'/>yy € L?>(R%).

(i) If V € L'(RY) and € L*(RY), then V12 e LY(R?) and hence V1/24r is
continuous and bounded.

(iii) For 1 < t, [VY/2y |y < CIVIV2 W |12, where s = 2t/(t — 1) and C is some

constant independent of Y and V.
(iv) Let f be a radial, measurable function on R and p > 1. Then there is a constant

C independent of f such that sup, gl f(p1, rr@w2y= 1O, )Lr@e)=
CULN sy + 1 1) 7

Proof. For (i) and (ii) see e.g. [11, Sections 11.3, 5.1]. For (iii) let s > 2. Applying
the Hausdorff-Young and Holder inequalities gives

e 1/2
IV12yl, < CIV2y 0, < IV, (3.20)

where l =1/p+1/sand 1 = p/2t 4+ p/2. Hence, s = 2t /(t — 1).
For (iv) we write

121 e,

o0 o0
—2n [ 1 e =2x [ 11 sds < 1500050
0 p1l &

1 [e’e)
52n/ U@Nﬂh+2n/‘If@WKQSSZnWW&+%Hﬂ£,
0 0
(3.21)

where in the second step we substituted s = ,/ p% + t2 and in the third step we

used s < max{l,sz}. O
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Proof of Lemma 3.5. The eigenvalue equation H?O O\)d> » = 0 implies that

B4(p) = ABrogy (p. OV (). (3.22)

Part (i) follows with Lemma 2.1 and 3.7(iii) and the normalization ||V /2®, |, =
|¥|l2. For part (ii), note that p +— Br(p,0) is continuous for 7 > 0. Since
®; € H'(RY), continuity of V&, follows by Lemma 3.7(i) and (ii).

Note that || ®; [|oo < (277) 4/2(| @5 [ 1=27) "2 (| @2 X p2 <2 1115 X 222, 1)
In particular, the second part of (iii) and (v) follow from the first part of (iii) and
(v), respectively. Using (3.22) and ”\I"TC"(A)”2 = ||W¥]]2 we obtain

152 <2l < A (TEONIS VY2 W 700, oo
_ 1/2
< (T2ODIS V212, (3.23)
where m,, was defined in (3.2). In particular, for fixed A, ||<I/>\,\sz<2M||1 < oo and
from Lemma 3.2 it follows that || @Xﬁdu |I1 is bounded for A — 0.
It only remains to prove that || @szﬂu |I1 is bounded for fixed A and is O (})

for . — 0. By (2.3) Br(p, O)sz>2u <C/(1+ p2) for some C independent of
T. Using (3.22) and applying Holder’s inequality and Lemma 3.7(iii),

||q>)»Xp2>2p.”s < Ch H

2 : cM g

1/2
21w, (3.24)

=
p

1
L+ ]2

where 1/s = 1/p + 1/q and g = 2¢/(t — 1). For d = 1 the claim follows with
the choicet = p=1.Ford =2,V ¢ L€ for some 0 < ¢ < 1. With the choice
t=14¢€ p=2t/(t+ 1) > 1 the claim follows.

For d = 3, we may choose 1 <t <3/2and 3/2 < p < oo which gives

1 X 2o, lls = O (3.25)

for all 6/5 < s < oo. We use a bootstrap argument to decrease s to one. Let
us use the short notation B for multiplication with Br(p, 0) in momentum space
and F : L2(R?) — L2(R?) the Fourier transform. Using (3.22) one can find by
induction that

Dy Xp2oop = N (A p2oay BFVE ' @ x 00,

n
+ > M (Xp2oay BFVF )Y @ x,2 o, (3.26)
j=1

for any n € N. The strategy is to prove that applying )(pz>2MBFVFT to an L”
function will give a function in L® N L*°, where s/r < ¢ < 1 for some fixed
constant c. For n large enough, the first term will be in L', while the second term
isin L' for all n since &3sz<2# isL'.
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Lemma 3.8. Let V € L' N L3/2t€(R3) for some 0 < € < 1/2andlet1 <r < 3/2
and f € L"(R?). Let2 > g > r and 3/2 <t < <.

(1) Then,

1Xp22u BEVF flls < Cr, ) H ILf 1l (3.27)

I+]-

where 1/s = 1/t +1/r — 1/q and C(r,q) < oo. (For s < 1, ||-||s has to be
. 1 9
interpreted as | f s = (fas 1 £ (P)I*dp)"/".)

(1) Letc = (3+E)§—3+26) > Qandletr/(1+c) <s < oo. Then ||sz>2MBFVFTf||S
= Cr, ) fll for C(r,s) < oo.

Proof of Lemma 3.8. (i): Using (2.3) we have |x 2 >2MBFVF FI = p2 |V *
f(p)|. By the Young and Hausdorff-Young inequalities, the convolution satisfies

IV s fllp < Cla, VIl £l (3.28)

for some finite constant C(g, r), where 1/p = 1/r — 1/q. The claim follows from
Holder’s inequality.

(i1): For fixed r and choosing ¢, ¢ intherange r < g < 3/2+eand3/2+¢€/2 <
t <oo,s = (1/t+1/r —1/g)~" can take all values in [r/(1 + ¢), cc]. The claim
follows immediately from (i). O

Let n be the smallest 1nteger such that 2 e c),, < 1. To bound the first term in
(3.26), recall from (3.25) that || QD,\Xp ~oulls = O() fors = 7/5. We apply the sec-
ond part of Lemma 3.8 n times After the jth step, we have ||(x 2 >2MBFVFT)j 53\,\

Xp2soulls = O) fors = 5 (1+ 57- In the nth step we pick s = 1 and obtain
||(sz>2MBFVFT)"@Xp2>2/L||1 = O(A). To bound the second term in (3.26)

recall that ||<I/>\Axpz<2ul|1 = O(1). Applying the first part of Lemma 3.8 with
r=1,t=¢q =3/2+ € implies that

n
Z,\f (X 22y BFVFNY @, 5,2 5,

j=1 1
n J
< ZA/ C(1,3/2+¢€) ’—2 IVI324¢ | 1®axp22,111
= L1152+
=0O). (3.29)

It follows that ||5;\sz>zﬂ |I1 is finite and O(A) ford = 3. |
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Proof of Lemma 3.6. Using the eigenvalue equation, Eq. (3.22), we write

err i r=r') _ GiVATr=r")
D5 (r) =/ ———=®,(p)dp +)\/
pl>vam (2m)32 Ipl <21 (2m)3

X Brogy (p. O)| V') Wro, (r)dpdr’
oI r=r)
o /|p|<«/ﬁ e’
X (Wrog) () = V20" j3(r')dpdr’
N RG]
e
We prove that the first three terms have L°°-norm of order O(1'/2). For the first

term this follows from Lemma 3.5. For the second term in (3.30), we proceed as in
the proof of [8, Lemma 3.1]. First, integrate over the angular variables

Brogy (p. O)IVI'/2(r) (3.30)

Brogy(p, )V () j3(r")dpdr.

. , Cp
f [etp‘(rfr) VS Nl ):I BTCO()L)(pv 0)dp
[pl<s/21
sin|p|lr — 7| sin/@lr —r/|
= / [ T VR — | Brogy(Ipl, 0)|pl*dipl,
Ipl<vau L Ipllr —7] VIl =r'|

(3.31)

where we slightly abuse notation writing B7 (| p|, 0) for the radial function Br (p, 0).
Bounding the absolute value of this using | sinx/x —siny/y| < C|x — y|/|x + |
and Br(p.0) < 1/|p® — | gives

|p|?
33)< C — d
B30 = f.p.m Il + v 7

In particular, the second term in (3.30) is bounded uniformly in r by

| =: C < oo. (3.32)

C

E3E

1/2
VI 219700, 12, (3.33)

which is of order O()).

To bound the absolute value of the third term in (3.30), we pull the absolute value
into the integral, carry out the integration over p and use the Schwarz inequality in
r’. This results in the bound

|S?|

—(zn)3mu(TcO()¥))||V||%/2||‘IJTC0@) — . (3.34)

By Lemma 3.2, Am,, (TC0 (1)) is bounded and by Lemma 3.3, || WTLQ(A) — ||, decays
like /2 for small A.

The fourth termin (3.30) equals Am (TLQ M)F tFV j3, where we carried out the
radial part of the p integration. Recall that j3 = F'lg and V), 1g» = e, g2, where



Arch. Rational Mech. Anal. (2025) 249:20 Page 17 of 8 20

lg is the constant function with value 1 on S?. Hence, FTFV jz=F TVMISz =
e, j3 and the fourth term in (3.30) equals kmM(TCO()\))eujg. By Lemma 3.2,
am (T2(A)e, = 14 O(A) as & — 0. Thus, @5 — j3llee = [Amu (TO(A))e, —
Hj3lleo + O(A) = O). o

4. Proof of Theorem 1.3

Instead of directly looking at H 21 we extend the domain to L*(R*?) by ex-
tending the wavefunctions (anti)symmetrically across the boundary. Recall that x
denotes the vector containing all but the first component of x. The half-space op-
erator H;z ! with Dirichlet/Neumann boundary conditions is unitarily equivalent
to

d ~ ~
H = K7 = AV (X = Y) Xpr—yl<fri 1] — 2V @1+ V1 & = 5) Xy <l
(4.1)

on L?>(R? x R?) restricted to functions antisymmetric/symmetric under swapping
x1 <> —x; and symmetric under exchange of x <> y. Next, we express H$' in
relative and center of mass coordinates » = x — y and z = x + y. Let U be the
unitary on L2(R??) given by U (r, z) = 274>y ((r + 2)/2, (z —r)/2). Then

d_ s ~
Hp = UHP'U" = UKT U" =2V () Xy <pzr) = AV @1 D Xz 1<in) (442)

on L*(R??) restricted to functions antisymmetric/symmetric under swapping r; <>
z1 and symmetric in 7. The spectra of H% and H? ! agree.

For an upper bound on inf o (H} ), werestrict H} to zero momentum in the trans-
lation invariant center of mass directions and call the resulting operator I—?} The
operator H} acts on {yy € LR x R)|[Y(r, 21) = ¥ (—r, 21) = FY (21, 7), 1)}
The kinetic part of I:I} reads as

P =r)+iq(z1=2}) . .
B (p,(q1,0))dpdg;. (4.3)

Kr(r,z137', 2)) =/

RA+1 (2ﬂ)d+1
An important property is the continuity of inf o (H}), proven in Sect.4.1.

Lemma4.1. Let d € {1, 2,3} and let V satisfy Assumption 1.1. Then infa(H})),
inf o (H;ZO) and inf U(H%) depend continuously on T for T > 0.

To prove Theorem 1.3 we show that there is a A; > 0 such that for A < Ay,
inf o (H;CQO (A)) < inf (I(I:I;CQO (A)) < 0.Forall T < TCQO (1) we have by Lemma 2.3

that infa(H}) < infa(H?“) < 0. By continuity (Lemma 4.1) there is an € > 0
such that inf o (H}) < 0 forall T < TS (1) + €. Therefore, T.>' () > TS0 ().
To prove that inf o (H ; 2 (,\)) < 0 for small enough A, we pick a suitable family

of trial states ¢ (r, z1). Let A be such that TS (1) = 72(2) and H(T)

00 has a
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unique and radial ground state ®,. According to Remark 3.4, this is the case for
0 < A < Ag. We choose the trial states

Ve (r, z1) = @5 (Ne 1l 7 @ (21, F)e <N, (4.4)

with the — sign for Dirichlet and + for Neumann boundary conditions. Since
D, (r) = Oy (—r) = Oy (—ry, r) these trial states satisfy the symmetry constraints
and lie in the form domain of H L. The norm of v/, diverges as € — 0.

Remark 4.2. The trial state is the (anti-)symmetrization of @, (e <l je. the
projection of ®; (r)e~<I*1 onto the domain of I:I} The intuition behind our choice
is that, as we will see in Sect. 6, at weak coupling the Birman—Schwinger operator
corresponding to HE ;' approximately looks like A0 (defined in (3.1)) on arestricted
domain. This is why we want our trial state to look like the ground state @, of H, 0

projected onto the domain of H}.

We shall prove that lim¢_, o (e, H ¥e) 1s negative for weak enough coupling.

Q0
7.0
This is the content of the next two Lemmas which are proved in Sects.4.2 and 4.3,

respectively.

Lemma4.3. Let d € {1,2,3}, u > 0 and let V satisfy Assumption 1.1. Let X be

such that HT(, » has a unique ground state ®,. Then,

: 71 ~\12
lim (e, HyogyyVe) = —2)»(/Rd+l V(r)[ — () F a1, P Xjzy 1<

+|Ds(z1, f)lz}drdzl

w2r [ O 5TE ﬁ)dﬁ), (4.5)
R~
where the upper signs correspond to Dirichlet and the lower signs to Neumann
boundary conditions. For d = 1, the last term in (4.5) is to be understood as
F27 D, (0)V D, (0).

For small A we shall prove that the expression in the round bracket in (4.5) is
positive.

Lemma 4.4. Let d € {1,2,3}, n > 0 and let V satisfy Assumption 1.1. Let Lo be
as in Remark 3.4. Assume Dirichlet or Neumann boundary conditions. For d = 3

assume that f]R3 V(r)rﬁ3D/N(r)dr > 0, where n73D/N was defined in (1.6). Then
there is a .y > A1 > 0 such that for A < A1 the right hand side in (4.5) is negative.

Therefore, for small enough €, (., I:I;O (}L)I//a < 0. Since TCQO and TLQ coincide
at weak coupling, this proves that inf o(H ; 2 (k)) < 0 at weak coupling. This
concludes the proof of Theorem 1.3. ‘

Remark 4.5. The additional condition [ps V(riis’" (r)dr > 0 for d = 3 is

exactly the limit of the terms in the round brackets in (4.5) for A — 0. Taking the
limit amounts to replacing ®; by j3 (cf. Lemma 3.6).
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4.1. Proof of Lemma 4.1

Proof of Lemma 4.1. Let0 < Ty < T1 < o0o. We claim that there exists a constant
Cry.1, such that |K7(p,q) — K7/(p,q)| < Cry.i|T — T'|(1 4 p* 4 ¢?) for all
To < T, T’ < Ty. To see this, compute

iK (p,q) = Kr(p.q) " (1@_;#)2 (p* — 1) + sech (‘122;11)2 @ —w
ar T 272 tanh (”22—;”) + tanh (6122;#)

(4.6)

K7 can be estimated using Lemma 2.1 and the remaining term is bounded.
The kinetic part K g of H? acts as multiplication by K7(p, 0) in momentum
space. For Ty < T, T' < T and v in the Sobolev space H'(R?), therefore

(W, (K} — KP)¥) < Crpry IT = T'|1¥ | 1 gy 4.7)

Similarly, for To < T, T' < Ty and ¢ € H'(R?9),

d d
W (KT — KgO¥) < Crony|T — TV | g1 g2ey- (4.8)

Set Dy := H'(RY), Do, := {¢ € H'R*)|Y(x,y) = ¥(y,x)} and D; :=
(v e HI®|Y(x,y) = ¥y, x) = F((—x1, ), y)}, where —/+ corresponds
to Dirichlet/Neumann boundary conditions, respectively. Let j € {0, 1, Q¢} and
€ > 0. There is a family {7} of functions in D; such that ||¥7]2 = 1 and
(Y. H{yr) < info(H}) +e.

We first argue that there is a constant C > 0 such that for all T € [Ty, T1] :
l¥rllgt < C. Recall that 2T lies in the essential spectrum of H(T) restricted to
even functions. Together with Lemmas 2.3 and 2.4, (Y7, H% vr) < 2T1 + €.
Furthermore, by Lemma 2.1, the kinetic part of H% is bounded below by some
constant C1(7p)(1 — A), where A denotes the Laplacian in all variables. Since the
interaction is infinitesimally form bounded with respect to the Laplacian, there is
a finite constant C2(7Tp), such that for all v € D; with [|[y]2 = 1, (¥, H;zp)
S (g, (1= A)gr) = Ca(To) = S5y || 1 — Co(Tp). In particular, [[Y7 |5
ﬁ(zn + €+ Ca(Tp)) =: C.

Let T, T’ € [Ty, T1]. Then

=
=

inf o (H}) + € > (Yr. Hivr) = (Y. Hy 1) + (Wr, (K1 — Kp)yr)
> info(H},) — |T — T'|Cr 1,C. (4.9)

Swapping the roles of T, T’, we obtain

info(H.) —e —|T = T'|Cry.1, C
<info(H,) < info(H}) +e+|T —T'|Cr 1,C (4.10)
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and thus

info(H}) —e < lim info(Hj,) < info(Hj) +e. @11
T'—T

Since € was arbitrary, equality follows. Hence inf J(H%) is continuous in 7" for
T > 0. O

4.2. Proof of Lemma 4.3

The following technical lemma will be helpful for d = 3:

Lemma 4.6. Let V., W € L' N L32(R3), let W be radial and let € L*(R3).
Then

Virzy WO, p—q VI (p1, §)ldpdd
LV D W05 =) VP 1 Dl
< CIWO. s IV 2l < o0 @.12)

for some constant C independent of V, W and .

Proof of Lemma 4.6. By Lemma3.7(iv), W(O, ) e L3R?)NL*®(R?). By Young’s
inequality, the integral is bounded by

5/3
dpi.  (4.13)

6/5
dp

~ 1 —
C|IIW (@O, )3 viz
IW( >||Lz(Rz>/R‘/RZ'1+p2 v (p)

By Lemma 3.7(iii), [|[V1/2¢ |s < C||V 13311 l2. Applying Holder's inequality in
the p variables, we obtain the bound

4/3 1/3

dpi.

/ V20 (p)5df
RZ

~ 1
CI|wW(Q, - ————dp
|| ( )“L%Rh/;g \/]Rz (1+p2)3/2 P

4.14)

Applying Holder’s inequality in pj, we further obtain
5 3
p dm) IVI2yIE.  (4.15)

R 1
ClIWQO, )l 32y (/R /R2 a+ p2)3/2dp

The remaining integral is finite. O

Proof of Lemma 4.3. Plugging in the trial state and regrouping terms we obtain
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(e, HyopVie) =2 [

[%(r)e—f'“'(KT(r, 27, 2h)
R2d+2
—2V ()8 — (21 — 2D (e

T, (e FN(Kr(r, 2157, 7))

—AV ()8 —r)8(z1 — e M, (2], f/)]drdzldr/dzﬁ

+2 / [)»V(V)Xz1|<|r1||q’x(r)|2€_2€Z"
Rd“

FO, (e AV ) X2y <mje” VM Dy (21, )
AV @1 F) X <z | D () [P 21

FO5. (e AV (21, F) Xz > 1m 1”1 D5 (21, F)
—AV(z1, F)| @, (r)|Pe €1

+®, (Ne 1AV (zy, e ", (21, f)]drdzl. (4.16)

We will prove that the first integral vanishes due to the eigenvalue equation H?O o D,
= 0 as € — 0. For the second integral in (4.16), we will show that it is bourfded as
€ — 0 and argue that it is possible to interchange limit and integration. The limit
of the second integral is exactly the right hand side of (4.5).

The first two terms in the integrand of the second integral in (4.16) can be
bounded by A||®[|%, |V (") x|z <|r,|- This is an L' function, since | - |V € L' and
[P, |lc < 00 by Lemma 3.5. The same argument applies to the next two terms as
well.

For the fifth term in the second integral, we can interchange limit and integration
by dominated convergence if fRd+1 [V()||®;(z1,7) |2drdzl < 00. Observe that

/ IV ()@ (z1, 7)*drdz;
Rd+l

— ' [ BV~ D dpdd. @17
According to Lemma 3.5(i) the latter is bounded by

— 1 o
C viz2y —[VI(0, p—g
L VP (5 7105 = )

p2
1 1/7\ - N
1 +p%+c}2|v Yrogy(P1,q)ldpdg. (4.18)
For d = 1, 2 we bound this by
1

cnvn%nwn%/R pdi.  (@&19)

= —d
2t (L4 pi + pH(1+ pi +4%)
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which is finite. For d = 3, (4.19) is finite by Lemma 4.6 since W = |V| is radial
andin L' N L3/, Hence, limit and integration can be interchanged for the fifth term
in the second integral in (4.16).

For the last term in (4.16) we have

/ B eIV (21, Fe= N1, (21, Fdzdr
Rdﬂ

2 = €
== D, —VCD dpd
- (p)eerq2 21 (g1, p)dpdq:
1 1 _—
=— ;(ep1, ) p) V®,(eq1, p)dpdgr.  (4.20)
/ 1+¢2 1+ p12

According to Lemma 3.5(i) and Lemma 3.7(iii), the integrand is bounded by
coy _IVInIvIS
1457 (4D (+pD)
and since fR 11de = g, this term converges to the last term in (4.5). Ford = 3,
the following result will be useful:

For d = 1, 2 this is integrable, so by dominated convergence

Lemmad4.7. Let A, T, u > 0 and d = 3 and let V satisfy 1.1. The functions

fonan = [ FoVE @, @21

and
g(p1,q1) = /R i By (p1, D), (q1. 0N @i (p1, P)@u(qr, p)dp  (4.22)

are bounded and continuous.

Its proof can be found after the end of the current proof.
We write the term in (4.20) as

2 f(ep1,eqr)

Lk LA 4.23
R? (1+q%)<1+p> 29

By Lemma 4.7 we can exchange limit and integration by dominated convergence
and (4.23) converges to the last term in (4.5).

For the second summand in the first integral in (4.16) we also want to argue
using dominated convergence. The interaction term agrees with (4.20). The kinetic
term can be written as

4/ 1 1 - <= ~
- ———————-B; ((ep1, P), (€q1,0)) Py (ep1, p)Pr(eq1, p)dpdg;
w Jrart (1+ g1+ pd) T

4 1
) (A +g)H+p) »€qndpidqr. 4.24
/Rz (1 +gDH A+ p}) g(ep1, €qi)dpidgn 424)

For d = 3, we can apply dominated convergence according to Lemma 4.7. For
d =1, 2 note that by Lemma 3.5 and Lemma 2.1,
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_ <~ ~ 1+ p2+4q?
B (p. (q1.0)[®:. ()| Ps(q1. )| < Cr,p0i L Vi3
r A+ p(U+ g} + ) ?
VI3
< ZCT,;L,)\—I T (4.25)
Therefore, the integrand is bounded by Lﬂ\‘l’llﬁ For d = 1,2 this is
’ (I4+¢D)(1+pH(1+52) ’

integrable and we can apply dominated convergence. We conclude that the limit of
the second summand in the first integral in (4.16) as € — 0 equals

. / (M 38,00, VB0, ﬁ)) 4p=0, (426
Rd_l BT((Ov p)vo)
where we used that [, 1+ﬁdx = 7 and (3.22).
To see that the first summand in the first integral in (4.16) vanishes as € — 0,
we use (3.22) to obtain

% 2 _% -1 N 2
A V()[PrL(r)|7dr = By (p, 0)[®.(p)"dp
€ R4 € JRrRd

4 e 1 = 2
S — B '(p,0)|® dpdg;. 4.27
7 Jran (€2+q12)2 r (P, 0)|Pxr(p)|~dpdg: (4.27)

Hence, we need to prove that

2

. € —1 A —1 = 2
1 ——(B ,(q1,0) — B ,0)|® dpdg; =0.
lim i (62+q12)2( 7 (P, (q1,0)) — By (p, 0)|P,.(p)|"dpdq

(4.28)
We split the integration into two regions with |g1| > C; and |q1| < C1, respectively.

By Lemma 2.1, we have B;l(p, q) < Co(1 + p? + g?). Together with ®; €
H'(R?), we therefore have that

2
————— Bz (p, (q1,0)) — By ' (p, 0)[|®5(p)|*dpdq
/Rd+1,|q1|>c1 @4+q¢2 T ’

2 2 NS 2
(14 p~ + )P (p)]
<20, / - dpdg < C3€2(| s 17,1,
R2,|q1|>Cy q1

(4.29)

which vanishes in the limit e — 0. For the case |g| < C, the next lemma is useful:
its proof can be found at the end of this Section.

Lemmad4.8. Let T, u > 0, d € {1, 2, 3}. The function
1
k(p,q) = |q—|(BT(p, q) — Br(p,0)) (4.30)

is continuous at ¢ = 0 and satisfies k(p,0) = 0 for all p € R?. Furthermore,
there is a constant C depending only on T, ., d such that |k(p, q)| < ﬁfor all

P, q € R4,
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Since B;l(p, q) — B;l(p, 0) = —%, we have
2
/ (B (P (q1.0) — By (p. 0)[®:.(p)Pd pdgy
RI*1 |gi|<Cy (€7 +47)

_ _/ |11 X1g11<C /e k(p. (g1, 0)) 1, (p)Pdpdg,
R+t (1+4gD)?  Br(p, (eq1,0)Br(p,0)

431)

By Lemma 2.1 and Lemma 4.8, we can bound the absolute value of the integrand
by

lq1]

c lg11X1q11<C) /e ;
(1 +g7)?

(1+p*>+CHD.(p))?
(1+4D? P

4.32)

(1+ p* +E¢DIDu(p)> < C

The latter is integrable since ®; € H'!(R?). Thus, by dominated convergence and
since k(p, 0) = 0, the integral vanishes in the limit € — 0. |

Proof of Lemma 4.7. For convenience, we introduce the notation D¢(p,g1) =
ABT(p,0) and

Dg(p, q1) = X*Br(p,0)Br(p, (q1,0) "' Br((q1, p). 0). (4.33)

For h € {f, g}, Dr(p,q1), Dg(p,q1) < # by Lemma 2.1 and (2.3). Further-
more,

movay = [ VO D a0 VO @ . 434

using (3.22).

Lemma 4.9. For h € {f, g},

— cC —
sup  [Da((p1, ), gV Pr(wi, )12y < sup || ———=VPi(wi, )
pr.q1,wieR wieRr | 141 - | LI(R2)
< 0. 4.35)

Proof. Using Holder’s inequality,

1 Dr((p1s ), gV @iwi, )L w2

< ¢ Vo, (wi, )
_ wi, -
= 1+||2 A 1

L (R2)

1 c = - —~ ~
< W/R A T 721V §) = BII®i k) dkdp
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~ 1/s _ .
/</ |V(w1—kl’ﬁ)|sdﬁ> (/ |<1>x(k)|dk>dk1
L"(R2) JR \J/R? R2

supl|V (k1. )l 192111 (4.36)
LV(RZ) ki

1
<C|—
¢l

1
<C|———=
<<|r=rr

where 1 = 1/r + 1/s. For this to be finite we need r > 1, i.e. s < oo. By
Lemma 3.7(iv), sup,, 1V (g1, )lls < oo. Furthermore ||®,||; is bounded by
Lemma 3.5. O

The functions f and g are bounded, as can be seen using that ||V/<I>\A||OO <
CIVIL1Wr00, ll2 by Lemma 3.7(ii) and [ W70, [l = 1. hence we get that, for
hel{f gh

1/2 e
[h(p1,q1)| < CIIVlll/ sup [[Dp((p1, ), q)V®(q1, gy, (4.37)
P1,91

which is finite by Lemma 4.9. To see continuity, we write, for i € { f, g},

|h(p1 + €1, 91 +€2) — h(p1, q1)l

=

/RZ (Vo (pr+er, P)—=Voér 3(p)Dr((p1+er, 13)741+€2)V<1>/\(Q1+€2,15)d15‘

+ ‘ /R2 V&, (p)Dr((p1 + €1, p)q1 +€2)(VO,(q1 + €2, p) — V<I>x(f11,13))d17dk‘

+' /R VL) (Dy((p1 + 1. ). an +€2)—Dh(P»Q1))‘7¢\A((]1»15)dI3‘~ (4.38)

Observe that

1 .
= Gn)ii /Rd [ = 1|V ()| @2 (r)ldr

€1l Palloolll - [VIl1
(27.[):1/2

|V ®;(p1+ €1, p) — VOilp)l

(4.39)

With Lemmas 4.9 and 3.5, we bound the first two terms in (4.38) by Ce; and Cey,
respectively. Hence they vanish as €1, e — 0. The absolute value of the integrand

in the last term in (4.38) is bounded by ||Vq3||m%@(ql, 7). By Lemma 4.9,
this is an L! function. Hence, when taking the limit €1, e, — 0, we are allowed

to pull the limit into the integral by dominated convergence, showing that also the
last term vanishes. Therefore, the functions f and g are continuous. O

Proof of Lemma 4.8. This Lemma is a generalization of [6, Lemma 3.2] and its
proof follows the same ideas. For |¢g| > 1,Lemma2.1 implies the bound |k(p, g)| <

1+C7. For |g| < 1, we use the partial fraction expansion (see [6, (2.2)])
=2 Y lgl2u — g% =2p* +4(p - (D) — diwnp - L
P =2 L s g7 — ) ((p = 40 — i+ 1) (P — i — ) (P — i+ )

(4.40)
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where w, = (2n+ 1)z T. Continuity of k follows e.g. using the Weierstrass M-test.
Noting that w,, = —w_,_1, it is easy to see that k(p, 0) = 0.
With the estimates

lg12u — ¢ = 2p* +4(p - I)?)
((P+@)? = —iwa) (p— @)% — p+iwy)

- lgl2u + q* + 6p?) .
= sup =:c] <0

v ia<1 [[(p+ g = u] +wd[(p — 9% — u]’ + ui

sup
(p.q)eRX |q|<1

(4.41)
and
4iw, p
sup 3 _ 5 .
(paper2 i<t | (P + @)% = —iwn) ((p = @) — 1+ iwy)
4|p| )
< sup =) <00 (4.42)
v lal<1[[(p + ) — ]’ + w3
one obtains
1
k(p. @) <2T(ci +¢2) Y (4.43)

2 2 2
. . . neZ (p B M/) + wn .
Using that the summands are decreasing in n, we can estimate the sum by an integral

_ | o |
(p. ) = 4T (1 o) | — s+ [ dx
(P2 —n)’ +wd iz (p2 =)’ +4n2T22
[ 1 arctan ("i}‘”)
= 4T (c1 + c2) +
(pz—p,)z—i—u)g 21T p? — pl
1
< CTPZ (4.44)
for some constant C independent of p and g. O

4.3. Proof of Lemma 4.4

Proof of Lemma 4.4. Recall thatWro;,) =V 1/2 @, with normalization || Yroa,) ||% =
W3 = fga V(r)ja(r)*dr, where j; was defined in (1.5). Recall from (4.5) that

| 1
~ o Am Ve, Hyo) ,Ve)
- / V()| Py (21, 7 Pdrdz:
Rd+l
- / V)21, F) F B3 ()P tiey < drdzy
Rd-H

F2r /R B0, )V D,0, p)dp. (4.45)
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The claim follows, if we prove that the right hand side is positive in the limit A — 0.
For d € {1, 2} we prove that the second and third term are bounded and the first
term diverges as A — 0. For d = 3 the first term is bounded too, so we need to
compute the limit of all terms. The idea is that in the limit, one would like to replace
®, by j3 using Lemmas 3.3 and 3.6. We consider each of the three summands in
(4.45) separately.

Second term: The second term is bounded by 4||| - |V||1||<I>;L|| , which is
bounded for small A by Lemma 3.5. For d = 3 we want to compute the limit.
By Lemma 3.6 the integrand is bounded by 8|V(r)|||j3|| Xlz1l<|ri| Tor A small
enough, which is integrable. By dominated convergence, the term thus converges
to

= [ V@i P) F 50O e drdan (4.46)
Third term: Using (3.22) the third term in (4.45) equals

F2mh /R VP60, )P Brog, (0. ). 0)d (4.47)

Ford = 1, this is bounded by 274 B70;, (0, 0)|| VI/Z\IJTCO(A) |2, By Lemma 3.7(iii)
and since supy B7(0, 0) = ﬁ, this is O(A) as A — 0. For d = 2 we use (2.3) to
bound (4.47) by

27 / Brogy (0. ), 0)dp [V 120,112,
IpI2<2p

T
+C)\/Iﬁ|2>2u1 ﬁzdp V2 W706) % (4.48)

where C is independent of A. By Lemma 3.7(iii) ||V1/2\IJT(0(M||Oo is bounded as
A — 0. The second term in (4.48) thus vanishes as . — 0. For the first term, recall

from (3.2) that 52 _,, Bro ,((0, p),0)dp = 2rmd=2(T(%)). By Lemma 3.2

the first term is bounded for small A. For d = 3, we rewrite (4.47) as

F27A / VI2W06,(0. )P Bro((0. ). 0)dp
pe>2p

e PG VAT G5
Py V1w
i /52<2M /]R6 700 () )2

X Bro((0, p), 0)V'/*Wro, (y)dxdydp

A V12y Vj eiﬁ‘%‘(i_i)
i /HM/R< o) = “(’“))W
xBro((0, p), OV Wro;) (y)dxdydp

VTGP )
:F)L/ 2<2u / V(X)]3(x) Q2 )2 BTCO((O, p), 0)
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x (vl/zxchm)(y) _ Vj3(y)) dxdydp

lf‘p‘ (x=y)
4:)»/ / V(x) j3(x) ———5—B70((0, p), 0)V(y) j3(y)dxdydp.
pr<2p (2m) ¢

(4.49)

We prove that the first four integrals vanish as A — 0 and compute the limit of the
expression in the last line.

Using (2.3), Lemma 3.7(iii) and Wro;) = V1/2®, the first term in (4.49) is
bounded by
V(0. )

1/2
CIVIL1Wr00, 12 , (4.50)

L1(R2)

1
L+]-?
where C is independent of 1. By (4.36),

1

<|l— supl|V (k1 )13/ P11
LI(R?) ” NNk

L32(R?) ki

Vd,(0, )

Ie

L+]- 2
4.51)

By Lemma 3.7(iv), supy, ||‘7(k1, I3 < oo. Furthermore ||5)\||1 is bounded uni-

formly in X by Lemma 3.5. In total, the first term in (4.49) is O (1) as A — O.
For the second line of (4.49) we use that

ip(X—y) lf‘p‘ (X=3)
1207 yor / Broy (0, ). 0)dj| < oo,
)L>O)}&ER2 R2,52<2u (271—)3 ) (2)

(4.52)
as was shown in the proof of [9, Lemma 3.4]. Applying the Schwarz inequality, the
second line is bounded by CA||V||; ”\DTP(M ||% for some constant C and vanishes

for A — O.
We bound the third line of (4.49) by

I(VI2W5.(x) = Vj3(0))]
(27'[)2 stﬁ2<2,u R6 ( )
X B1o3y (0, p), )|V 2 W0 (v)|dxdyd p

<)\‘ﬁ
- (2 )2 M

TNV I Y700 21 W700) — $la,  (4.53)

where in the second step we carried out the p integration and used the Schwarz
inequality in x and y. By Lemma 3.2, )»mffz (TL,O (1)) isbounded and by Lemma 3.3,
[Wr0G) — Wll2 decays like 1172 Hence, this vanishes for A — 0. Similarly, the

fourth integral in (4.49) is bounded by

']
@n?"

=A@ONNVILIVY 31209706y — Wi, (4.54)
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which vanishes for A — 0.
For the last line of (4.49) we first carry out the integration over x, y and the
radial part of p, and then use that V j3 is a radial function. This way, we obtain that

Famg, =2 (T (0))2m /S V(0. iw)Pdw
= FAmd=A(T0 ) /S i \Vja(/pw) Pdw. (4.55)

The latter integral equals (|V['/2j3, 0,V/2j3) = e, [ps V(x)j3(x)*dx. By
Lemma 3.2,

1

. d=2 ;70 o 0 _
xlgﬂ) Am) = (T, (M)ey, = kh_)n}))»ln(u/ T, (M)e, = W (4.56)
Therefore, the limit of the last line of (4.49) for . — 0 equals
/] . 2
F 7 [ V@3()dr. (4.57)
wl/z Jgs

First term: It remains to consider the first term in (4.45). If V > 0, one could
argue directly using the convergence of ®; in Lemma 3.6 for d = 3. However, the
analogue of Lemma 3.6 does not hold for d = 1. Instead, the strategy is to use the
L2-convergence of the ground state in the Birman—Schwinger picture, Lemma 3.3.
This approach also allows us to treat V that take negative values.

Switching to momentum space and using the eigenvalue equation (3.22), we
rewrite the first term in (4.45) as

_d = ~ o~ ~ ~
et [ BV 5. pipdd
d
= 2m)' 72 (W00, Drogy Yrogy)s (4.58)
where Dr is the operator given by
w.orw) = [ VIR B (0,070, 5 =)
xBr((p1, @), OIVIV2¢ (p1, ¢)dpdg (4.59)
for ¥ € L2(R?). We decompose (4.58) as
1-4,2
Q)22 (Y700 Doy Yroa))
_d
= @m)! 2’\2(<‘I’T£<x> — W, DrogyWrog) + (W, Drogy (Wropy — W)
W, DTCO(A)m). (4.60)
Recall that by Lemma 3.3, ||\IIT(9 — W, = O(AY?). The strategy is to prove that

| D7 and (¥, Dy W) are of the same order for T — 0. Then, the positive term
(W, DTCU(A)\D) will be the leading order term in (4.60) as A — 0. The asymptotic
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behavior of ||D7|| and (W, Dy W) is the content of the following two Lemmas.
These asymptotics strongly depend on the dimension and this is where the different
treatment of d = 3 versus d € {1, 2} in Theorem 1.3 originates.

It will be convenient to introduce the operator D as

(W, Diy) = / V129 (p)Br (p, )V (0, p — )
IpR<2u.1(p1.§) 2 <2u.p3<p

< Br((p1. ), OIVI2y (p1, §)dpdg .61)

for ¥ € L*(R?). Furthermore, for d = 2 we define for 0 < § < u the operator
DJ. as
T

(Y. DY) = / V124 (p) Br (p, )V (0, p2 — g2)
;,L—8<[)%<ﬂ,p§<28,q22<25
xBr((p1,q), O|V['2y(p1, g2)dpdgs (4.62)

for ¥ € L?(R?).

Lemma 4.10. Let v > § > 0 and let V satisfy 1.1. There are constants C, Ty > 0
such that for all0 < T < Ty ford = 1 ||Dr|| < C/T, ford = 2 ||Dr]| <
Cnu/T)> and |Dr — Dy || < C(np/T)? and ford =3 | Drll < C(np/T)
and |Dy — D3 || < Clnp/T.

Lemma 4.11. Let i > 0 and let V satisfy 1.1. Recall that W = V'/2 j;. There are
constants C, Ty > 0 such that forall0 < T < Ty, (¥, DrV¥) > C/T ford =1
and > C(Inpu/T)3 for d = 2. For d = 3, limy_0(2m) /222 (W, Drogy¥) =

Jga V() j3(z1, i w)?drdz.

ForA — 0,byLemma3.2,In(u/ TC0 (1)) isof order 1 /X, hence the last term in (4.60)
diverges for d = 1, 2. For d = 3 we get the desired constant by Lemma 4.11. O

Proof of Lemma 4.10. Assume that T/u < 1/2. We treat the different dimensions
d separately.
Dimension one: Note that

(¥, D )| = |‘7(0)|/RBT(P,O)ZHV/WTw(PNZdP

< v fR Br(p, 02dpll 2. 4.63)

where we used Lemma 3.7. Recall from (2.3) that By (p, 0) < min [ Ipzl—ul’ %]

We estimate the integral
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/ Br(p.0)2dp
R

<

/ Xipl<yii—Z + X+ T <p<aym
R

/Jﬁfﬁ<|p|<ﬁ+fﬁ 477 n(pl = i)?

1
+ ——=dp. 4.64
/p>2ﬁ -2’ 6

The first term equals (ﬁT)_l. The last term is a finite constant independent of
T. In the second term we substitute || p| — /| by x and get the bound

VI 2
2/ —dx = ——(1/T — /). (4.65)
L px VI

Dimension two: Using the Schwarz inequality we have

(Y, Dry) < CIIVII7 fﬂ@ Bru(p, 0)Br, . ((p1,§), 0)dpdg || ¥/II3.  (4.66)

The integral can be rewritten as

2
/(/ BT,MP%(Pz,O)dm) dpi, (4.67)
R \JR

where B7 , here is understood as the function on R x R instead of R? x R2,
Similarly,

¢, (Dr — D(]S")I/IH = C”V”%/IJ@(I - Xu—8<p%<uxp§<28xpéz<28)
X Br (P, 0)Br . ((p1, @), 0)dpdd Iy ]3.  (4.68)

We prove that (4.67) and (4.68) are of order 0(1n(u/T)3) and O(In(un/ T)?) for

T — 0, respectively. To bound the integrals we consider three regimes, p% <pu—T,

uw—T < p% <pu+T,and u+T7T < p%. Corresponding to these regimes, we need

to understand [ B, (p,0)dp for T/ <1, —1 < /T < 1,and u/T < —1.
In the first regime, there is a constant Cy, such that, forall 7/u < 1,

w
‘\/ﬁ/RBT)/L(p,O)szdudp —2In ?’ + ‘\/E/RBT,/L(paO)Xp2>2udp =C.
(4.69)

This follows from rescaling /it [ Br,u(p,0)dp = [ Br/u.1(p,0)dp and ap-
plying [6, Lemma 3.5]. For the second regime, we rewrite

I [ tanh((p*> — p/T)/2)
B ,0)dp = — dp. 4.70
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Since tanh(x)/x < min{l, 1/|x|}, the latter integral is uniformly bounded for
lw/T| < 1

/ Br [,L(py 0)dp < \/_ “4.71)
For the third regime, it follows from (4.70) that
/ Bra(p,0)dp < — / q f 4. G
T,ulp,V)dp = — p= p = )
R VT Jr p* = /T V=i Jr p*+1 VA
4.72)

Combining the bounds in the three regimes, we bound (4.67) from above by

(o) )

/ 7 dpl
Ipil<v/u=T K= P
C? c3
+f Far+ . 47
Vi—T<|pil<vi+T T JiEFT<Ip1| PT —
The first integral is bounded above by
1
(21n< ) n C1) / Sdpr. (4.74)
Ipil<v/n=T M — P
Since
1 1 2u =T+ /u(uw—T)
(/ ——dp; = 1n< = O(In(u/T)),
Ip1l</u=T K — p] VI T

(4.75)

the first integral in (4.73) is of order O (In(u/ 7)%). In the second integral, the size
of the integration domain is 27/ ./ + O (T?), so the integral is bounded as T — 0.
The third integral equals

g§m<m+T+¢mEIﬂ
Ji T
In total (4.67) is of order O (In(u/T)3).

For the integral in (4.68) we obtain the upper bound similar to (4.73). The main
difference is that in the regime /it — § < |p1| < /0 — T, at least one of the vari-

ables py, p) is constrained to absolute values larger than v/28 > \/2(u — 1’1) and

) = O(Inp/T). (4.76)

thus for the integration over this variable there will be no In <@> contribution

from (4.69). The upper bound for (4.68) is
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(en(i) )

f 2 dpl
[p1l</1=3 M= D]
2(21n (” pl) +c1> Ci
/ ) dpl
V=8<|pi|<s/u=T K= D]

2 2
+/ —2dp, +f dp1 4.77)
Ji=T<Ipil<vi¥T T Vi+T<|pil P1

We have already seen above that the last two integrals are of order O(1) and

O(In u/ T),respectively. The firstintegral in (4.77) is bounded above by (21n (%) +
2 1 _ 2 .. . .

Cy) flm\<«/ﬂ mdpl = O(In(u/T)~). Similarly, the second integral in (4.77)

is of order O (In(u/ T)?%) by (4.75).
Dimension three: For d = 3, we first prove that | D7 | = O(n(u/T)%). We
bound (4.61) using the Schwarz inequality

< 2 2
(¥, Dy V) < ||V||1 ||'§”||2 /I; X|p|2<2u’|(p1,g)|<2u’p%<MBT,u(P’ 0)
xBr . ((p1,q),0)dpdq. (4.78)
The integral can be rewritten as
2

T# pz(t 0)tdr | dp. 4.79)

(1
T
0 0

Substituting s = (r> + pf — )/ T gives

2 2
Vi [ ru/T tanh #/T tanh
nz/' / an (s)ds dpy < Jin? </ an (S)ds> ’
0 —(u—ph/T S —u)T S

(4.80)

since tanh(x)/x < min{l, 1/|x|}, this is bounded by
JAr? (14 1n(u/T))>. (4.81)

To bound || Dy — D7 ||, we distinguish the cases were p*and (p1, ) are larger
or smaller than 2. Using the bound on B7 given in (2.3), we estimate that

(Y. (Dr — D))

< IVIRIvI3 /R XipP <2yl (pr.ipl <2t BTu(P- 0BT 1 (p1.9), 0)dpdg
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+2IIV||1IIW|I2/ IV(0 P = DIBru(p1,4), 0) X (p.4)12<2dPdG

C - -
+/ |V|1/2W(P) 3 |V|1/2¢(P1,61)dpd61,
RS pe+1

(4.82)

VO, p—§)|——s—
P+t +1

where C is a constant independent of 7. For the first term, proceeding similarly to

(4.79)—(4.81), the integral equals

2 2
5 V2 w/T tanh(s) 5 V2 m
T ds ) dp; <nm In 5 dp; < o0
N ( P — M

pl-w/T S Vit
(4.83)
For the second term in (4.82) we apply Young’s inequality to bound the integral by
(4.84)

IV (0, )l 3 2y 1S 1m,. (T),
L3/2(R2)

c 1
L+ 2
whichis O(In i/ T). The third term in (4.82) is bounded by C||v ||% by Lemma 4.6.

O
Proof of Lemma 4.11. By assumption,0 < e, = W de_. V(p—ﬂw)dfl(w)

= Vj?(|p| = /). By continuity ofﬁ(p) in p, there is an € > 0 such that
Vija(p) > Yjallpl = i) > 0forall \/ii —€ < |pl < /i + €. In that follows

we treat the different dimensions separately.
Dimension one: Suppose T < €. Since V(0) > 0,

V2 Drvi2jy = 7(0) /R Br(p. 02VIi (p)Pdp
JIA+e€ (4.85)
Br(p,0)*dp

VOV (V) [

Jr+T

4>|~

h h .
For p € [(Ju+ T, /u+ €], Br(p,0) > [al;,z(_“f) > (zﬁig@m. Since

Vit L_dp=1 /T — 1/€, we obtain the lower bound

st =gmr
» tanh(/7)* 1
VO WP g s (——2), (4.86)

-hl'—‘

(VY2 Drvi2j) >

and the claim follows.
Dimension two: Since V(0) > 0, by continuity also V(p) > 0 for small | p|

Therefore, there are constants 0 < § < u and C > 0 such that for all \/u —§ <

p1 < Jmand |pal, lg2| < (28)!/2
Vi(p1, p VO, p2 — )V ia(p1, q2) > C. (4.87)
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By Lemma 4.10, we have
(VI2j2, DrV12 0y = (V2 )5 DSVI2 jo) + O((In pn/ TH).

It hence suffices to show that (V1/2 j,, DaTVl/zjz) grows like (In 1/ T)3. Let A :=

{(p1.p2.q2) € R3Viw=38 < p1 < J/it.0 < pr.ga < 82 pl +p3 > n+
T, p% + q22 > p 4+ T}. This is a subset of the support in DBT. Using that all terms
in the integrand of (V1/2j,, D‘ST V1/2 j,) are positive, we estimate

(V12 DAVI2jy > € / Br(p,0)Br((p1,q2),0)dpdga.  (4.88)
A

For (p1, p2, g2) € A we have p% + p% — pu > T, and thus,
tanh (1)

Br(p,0) > —4——5=—.
pi+pi—u

(4.89)

Forp%>u+T—8

§1/2 1 1

dpy =
2 2
/‘/M+T—p% pi+tpr;— 1 [ — 17%
2

T —
X | artanh 1-— —— | - artanh K= Py
nw+T — pi 8

(4.90)

Hence, the integral in (4.88) is bounded below by

1\? [V~ 1 T
tanh (—) / B artanh 1— —2
2) JyirT=s n— u+T —p
2 (4.91)

n— p}
5

— artanh dp;

Assume that T < §/2. For a lower bound, we further restrict the pq-integration to

the interval («/pv —8/2,\/u — Ml/le/z) . For these values of p;, we have

n=pi 1 T2
artanh ——— | <artanh ( — ) < artanh 11— ——
5 NG e
T
< artanh 1-— — |- 4.92)
u+T— P
Furthermore,

/m 1 1 (1 ~ r/a+ DA - b/ﬁ))

dp; = — artanh
=32 w—p} N/ Ji/a—b/Jr
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(4.93)
where a = /u —8/2and b = /. — u'/2T1/2 < /. This is bounded below by
1 DA -»b
—aﬂanh(l—(ﬁ/a+ ) /*/‘D). (4.94)
NG Jila—1
In total, (4.91) is bounded from below by
2
: h<1)2 w( [i- L2 h(l)
——tanh | - artan — ——= | —artanh | —
NV Wiz 2
DA —/1—=(T/w)l/?
x artanh | 1 — (Vi/a+ 1) /W) . (4.95)
JRja—1

With artanh(1 — x) = 1in 2/x 4+ o(1) as x — 0, we obtain that, for T — 0,

T2 1 "
— (16?) +o(1) (4.96)

artanh l1— ——
ul/2 4

and

— — 1/2
artanh<1_(¢ﬁ/a+1><1 V1= T/ ))

Jija—1
1 —1\?
— " 16(M) EY Lo, 4.97)
4 Jija+1) T
In particular, we obtain
) . Cc my3 N2
1/2 1/2 Ll Ll
(V25 Drv12jy) > ﬂln<T) +o<1n(T)) (4.98)

for some C > 0, which implies the claim.
Dimension three: Using that || Dy — D7 || < CIn u/ T according to Lemma4.10
and that In /T2 (A) ~ 1/ by Lemma 3.2,

: 2 1/2 . 1/2 - . 2 1/2 . 1/2 -
lim A2(V12 3, Dyogy V12 ja3) = lim 22V 3, Do V12 ja). - (4.99)

By integrating out the angular variables

RN

/R3 V() j3(r; M)W

dr = @/R»* V() j3(r; p)dr =ey,.
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Therefore, we can write

(V23 Diogy V' 2 3)

1 . .
@n)3 Jrus 2 g2 <au-ph i< [VJ3(V§ (e — VIR Brog ) (p, 0)
x V{0, p = @) Brogy (p1,§), 0)e P Vjs(r's )
+ Vja(rs e VEr PP B oG (p, )V (0, p = §)Brogy (21,3, 0)  (4.100)
X (7T — TNV PIP Y s ) |dpdgardr
+ e / Brog (p 0y
HIrs 52 g2 <opu—pt pien W )3
x Brog,)((p1, q), 0)dpdgdr
By [8, Proof of Lemma 3.1]

/eilr\w-p_eiﬁlrlw-p/lpldw < |p| \/_ (4.101)
S2

Ipl+ /1

Ipl—/It

Furthermore, note that B (p, 0) TN < ﬁ Hence, the first integral in (4.100) is
bounded by
C . 2o ~ o
— ViV o B]"(Q()L)((pl, q),0)dpidpdg
K Pl <2 p?<2u
< CIVAIT IV lloomu(T2(1). (4.102)

which is of order 1/A by Lemma 3.2.
Changing to angular coordinates for the p and g integration, the integral on the
last line of (4.100) can be rewritten as

\/2”, pl \/2;4 p? ol (tw—sw")F
/ dr/ dp1/ / ds/ dw/ dw' ————~—
R3 st s @m)dr
X Brog)(y/ Pt +12,0)tV(F)BTCQ(>\)(\/P1 +52,0)s
Vi Nem Nem (4.103)
=2f dr/ dplf dx dy/ dwf dw’Brog, (x, 0)x
R’ pi pi s! st ‘

1(,/)(2 plw—‘/y —pzw )-F

where we substituted x = ,/ p% +12,y=,/ p% + s2. Next, we want to replace the

x2 and y? in the exponent by . We rewrite (4.103) as

iy/x2— 2w-F i/ jpu— 2w-F
e P71 —e “=P7

i Iv2_p2y.F
2/BTCO()»)(X’O)X (27[)3/2 V(r)e Ly —piwr
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. 2
X Brogs) (v, 0)ydpidrdxdydwdw’ + 2/ Brogy (x, 0)xe VTP
(e—t}/yz—p%w/f . ei,/u—p]zw’f
(27.[)3/2
iy n=piw—w')F

(27.[)3/2

xV(r)

BTLQ(A) (v, 0)ydprdrdxdydwdw’

+2f BTCQ(,\)(x, 0)x V(r)BT(Q(A) (v, 0)ydp1drdxdydwdw’.

(4.104)

By [9, Proof of Lemma 3.4]

ez}/x—plzwi . ez}/u—plzwi
/;1

(2m)?

1/3

dw SC‘\/xz—p%—\/u—p%

x }(x2 —pH VS (- pf)_l/é‘ :
(4.105)

We bound this further by C [x2 — | ((x2 = p?)~1/3 4 (u — p?)~1/3). Using
that BTCO(M (x,0) < 1/|x2 — p| by (2.3) and recalling the definition of m , in (3.2)
we bound the first two lines in (4.104) by

CIVIm =T / Y / s = ﬁ|2/3l(x ENGRE
0 m (4.106)

1 1
X —+ .
((xz—pf)”3 (u—pf)‘”)

The integral is bounded by

V2 x
f/ d / d ! ! PR
< OQ.
Blo ) P =B \GBG = pniB T (= )i
(4.107)

Hence, the first two lines in (4.104) are of order O(1/)1) by Lemma 3.2. For the
third line we carry out the r-integration and obtain

VE [ (V2 2 _ 5 ,
2/ / BTO(A)(x, 0)xdx (/ / \%4 (O, w—prw—w )) dwdw’) dp.
0 P1 ¢ st Js!

(4.108)
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Note that [Y>* Byog,) (x, 0)xdx = md=2(T9G)) — [ Brog,(x, 0)xdx and

P 1 (HT0) tanh 1
/ Brogy(x, 0)xdx = —/ sds < —1In R
0 ‘ (

21
p—pH/TO0) S 2 u—p

(4.109)

where we substituted s = (1 — x2)/ TCO(A). In particular,

Nz Nem 2
'2 / : ( / ' Brogy (x, 0)xdx> — mi=(T) (1)
0 p1
X </§1 /Sl v <0, V= piw — w’)) dwdu/) dp;

2
N Vi1 n 1 _
<28 P [ 5 (0t )+ =aton) | ap
0 [l 2 n — P

< C+mi=(T2(W)), (4.110)
which is of order O(1/1) by Lemma 3.2. In total, we thus obtain

1
o 2 d=2,70\2 2 o 20 /
_)}TOZA my; (TC)\/ﬁeﬂ/(; (/Sl/él‘/(()’\/ﬁ 1 —pr(w w))dwdw)dpl.
(4.111)

By writing out the definition of j3 and then switching to spherical coordinates and
carrying out the r integration, we have

/ V(r) j3(z1, 75 p)*drdz
‘ J dndrd 1p~r"7(p) el /(1) (u=v)
éQ”L2”A7Pr11@)wz Q)3

/ f sm@d@/ sm@d@/dw/ dw’
(27T)3/2 R \Jo 0 s sl

x V (0, VI (sin Ow — sin @'w")e! Vi1 (cos—cost )) dz;

1 1 1
c Ll
yrQo2 o o Js st

x V0, (/1= 2w — V1 = s2w)8(s — 1), (4.112)

where in the last step we substituted ¢ = cosd, s = cosf’ and carried out the z;
integration. Furthermore, according to Lemma 3.2, lim; _,¢ )\mffz(TCO)e "= L.

N
This gives the desired
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lim A2(V1/2 j3, Dyo) V12 j3) = @) / V3G F ) drdz.
- R
(4.113)

O

5. Boundary Superconductivity in 3d

In this section we shall prove Theorem 1.4, which provides sufficient conditions
for (1.7) to hold. Due to rotation invariance, we consider the spherical average of

ms'™ (defined in (1.6)). With
PIN(r); )y = —/ PN (1rlw; wdo, (5.1)

we have [p3 V(r)nﬁé)/N(r; wdr = [ps V(r)mé)/N(|r|; w)dr. Furthermore, we
have the scaling property

m?”vurm):ﬂ m2™N () 1). (5.2)

We shall derive the following, more explicit, expression for m? N in Sect.5.1:

Lemma 5.1. For x > 0 we can write mj Dix;1) = Z/ 1 tj(x) and my N 1) =

Zj:l 1j(x) — Zj:3 tj(x), where

4 [ sin%(xk)
Hx)=— —— arcoth(k)dk
X J1 k

2 sin?(x)
hx)=——
ToX
2
sin”(x)
B(x) = -2 5
x
4sin x
ta(x) = 2 (sinx Si2x — cos x Cin 2x)

smx/ / sm(xw1|a)l|)e_’x“"”
T2y o Je ] ’

with Cin(x) = [¢f #dr and Si(x) = [y Sitﬂdt_

To determine for which interactions fR3 V(r)mé) / N(|r|; w)dr > 0 holds, we

need to understand mé)/N(|r|; 1). In Figs. 1 and 2 we plot m% and m%’ for u = 1,
respectively.

The function m g) seems to be nonnegative. If one could prove that m_q)D > (), then
Theorem 1.3 would apply to all V > 0 satisfying Assumption 1.1. Unfortunately,
this is beyond our reach. On the other hand, the function m%v changes sign, but is
positive in a neighborhood of zero.
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m5(x;1)

0.4

02

0.1
1 1 1 1 1 1 1 f 1 1 1 1 1 1 1 X
10 20 30 40 50
Fig. 1. Plot of mg) for u = 1, created using [17]
mé\l(xﬂ)
i

5 10 15 20

Fig. 2. Plot of mgv for u = 1, created using [17]

Remark 5.2. To create the plots, it is computationally more efficient to use the
first expression for 74, whereas for the following analytic computations the second
expression is more convenient.

Intuitively, if we let £ — 0, due to the scaling (5.2) the sign of
Jos VrymY™N (Ir|; w)dr is determined by the values of m~/™ (|r[; 1) for r in the
vicinity of zero. To obtain Theorem 1.4, we prove that both functions m;) / N(|r [; 1)
are non-negative in a neighborhood of zero.

The following is proven in Sect.5.2:
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Table 1. Values of the functions 7; and m? /N

entries are not needed

and their derivatives at zero. The missing

f 1 n 13 1y mP (1) m¥ (1)
() 2 0 -2 0 0 4

7(0) iy my 0 4/n 0

77(0) —8/9 0 4/3 0 4/9

Lemma 5.3. The functionst; for j = 1,2, 3, 4 are bounded and twice continuously
differentiable. The values of the functions and their derivatives at zero are listed in
Table 1.

Proof of Theorem 1.4. We start with the case of Neumann boundary condition. By
(5.2), it suffices to prove that lim,, o [gs V (r)my (/z|r|; 1)dr > 0. With V € L!
and Lemma 5.3 it follows by dominated convergence that

lim/ V(rymY (Jalr]; 1)dr = mY (0; 1)f V (r)dr :4[ V (r)dr.
n—0 JRr3 - R3 3

R

Since V(O) > (0 by assumption, this is positive.
For Dirichlet boundary conditions, according to Lemma 5.3, m3 D(0; 1) and its
first derivative vanish. Thus, we consider I (\/x) := ng m3 (f |r|; )V (r)dr.

Since m3 D(.; 1) is bounded, I is continuous away from 0. It suffices to prove that

lim; 0 1(,/u) > 0. According to Lemma 5.3 and Taylor’s theorem, we have

mP(x; 1) = %(mg’)”(o 1)x2+ R(x), where R is continuous with lim,_, o ‘R(x)l
0.Lete > 0 and ¢ := supy<, | x(f)‘ < 00. One can bound

1 1
L8 RI DY )| = x gar<e (5 0n8) 0 1) + )PPV )

Im? |
X e 3 =5V e))

< (500 0; 1) 4 e 5] 3||°°)|| PVel (53)

which is integrable by the assumptions on V. By dominated convergence

lim 1 (/50) =/ fim " WD v ar
=0 R3 #—0 ol

_ l/ mP)"(0: )V (r)|rdr
2 R3
2/ ,

— 2 [ v, (5.4)
9 R3

which is positive by assumption. O
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5.1. Proof of Lemma 5.1

Proof of Lemma 5.1. With
hr)= / 731,72, 733 D2 X2y = 1m1d21
R

0(r) = —j3(r; 1)2/RX|Z1\<IV1Idzl
B(r) = Frj30r; 1)?

14(r) = £2j3(r; l)ijs(Zl,rz,w; D Xjz11<|r19215

.~ 4 -~ ~ 2~ 4~
one can write m?(r; 1) = ijl 1j(r) and mév(r; )= ijl tj(r)— Zj=3 1j(r).
Lett;(|r|) = # Je f/I.J/N(|r|a); w)dw. The following explicit computations show
that the 7; agree with the claimed expressions.

Recall that jz(r; 1) = \/; Sl?rll” For #; we write out the integral in spherical
coordinates and substitute z; = xy and s = cos 6

127 sin? /23 + (x sin 9)2 _
nx) =— / / 2 Xlz1|>x| cos6| Sin Odz1df
1

w Am + (x sin6)?2
! sin? x/y2 £ 1 =52
T x T2 hi=kdyds. (5.5)

Next, we use the reflection symmetry of the integrand in s and y, substitute y by
k = /y%2 + 1 — 52 and then carry out the s integration to obtain

( ) ”x\/ / v +S T / ( )
arco .
(5'6)

For 1, we have

2x 1 2 sin?x

T 2x|wi|dw = ——
x% 4m Js2 TX

2 sin
nx) =——
T

(5.7)

Since 73 is radial, we have t3 = #3. For t4 we want to derive two expressions. For
the first, we perform the same substitutions as for ¢

4smx27rf fSlH Zl—i-(xsme)2

V23 + (xsin6)?

2 sinx sinxy/y2 4+ 1 —s2

= X dyds
/ / \/}T [yI<ls|
8 smx/‘ /‘ sin xk
= ——————— X322~ 1 dkds
0 /—k2+s2_1 k*+s>1

14(x) X|z1]<x| cos 9| Sin 0dz;d6

T x 4w
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8 sinx [! .
= — sin xk artanh kdk
X 0
4 sin x
=2 (sinx Si2x — cos x Cin 2x) . (5.8)
To obtain the second expression for 74, note that fR e~io1z Xlz1<m1dz1 = 251“&)—“11'”‘

Therefore,

2 sinx 1 emio@1.x0) ,
fax) =2 x 47 /Sz/ /sz (2m)3/2 T Mail<xloj deodzide

sin x sinxwp || _ .~
f / LT F qde . (5.9)
s? Js2? w1

:F

5.2. Proof of Lemma 5.3

Proof of Lemma 5.3. Since sin(x)/x is a bounded and smooth function, also #, and
13 are bounded and smooth. Elementary computations give the entries in Table 1.

For #4 use the second expression in Lemma 5.1. Since the integrand is bounded
and smooth and the domain of integration is compact, the integral is bounded and
we can exchange integration and taking limits and derivatives. In particular, #4 is
bounded and smooth and it is then an elementary computation to verify the entries
in Table 1. For instance,

ti(0)=L/ / Iw’llda)da)’zi. (5.10)
273 s2 Js2 T

To study #; we define auxiliary functions f(x) = % artanh(x) and g(x) =
Sinx(—f)z. Note that f(x) diverges logarithmically for x — 1 and is continuous oth-
erwise with f(0) = %. Furthermore, f(x) is increasing on [0, 1) and for every

0 <e < 1,supgye f/ix) = —f/e(é)

of artanh(x) are positive.
We can write

< oo since all coefficients in the Taylor series

o]

hx) = /1 xg(ek) £ (1/k)dk = /1 xg(ek) £(1/ )k + f (k) f (x/ )k
(5.11)

for any constant ¢ > 1. The first integrand is bounded by Cx arcoth(k), the sec-
ond one by C (since f is bounded on the integration domain). By dominated

convergence we obtain that 71 is continuous and #1(0) = % fo g(k)dk = 2.
For x > 0, we compute the derivative

c o 1
1 (x) :/1 (g(xk)+xkg’(xk))f(1/k)dk—Cg(CX)f(l/C)+/ g(k)f/(x/k);dk

cxX
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C o0 l
=/1 (g(xk)+xkg/(xk))f(1/k)dk—Cg(CX)f(l/C)+/ g(kX)f'(l/k)Edk,
(5.12)

where we could apply the Leibnitz integral rule since f’'(1/k) decays like 1/k for

k — oo. By dominated convergence, f; is continuous for x > 0. By continuity

of #; and the mean value theorem, #{(0) = lim,_.g ”(")x;"(o)

n)—=t(y)
X—y

= limy_ ¢ limy_¢
= lim,_,o 7] (x). We evaluate

c o0 1
H(0) = /1 FA/OK — cf (1/e) + / £ /0 ak
C o0 l
_ /1 (/) — f(1/e)) dk — f(1/e) + / R TERE)

This is a number independent of ¢. To compute the number, we let ¢ — o0, and by
monotone convergence

o0 2
ti<o>=/1 FA/B = fON &k —fO ==~ 2 =2 (14

Note that g’ (k) = 2(cos f—sin k) sink has a zero of order one atk = 0. Therefore,
g/ (kx) f'(1/ k)| < x2 — and for x > O the second derivative is

1(x) = / Qxg'(xk) + xk?g" (xk)) £ (1/k)dk — ?g'(ex) f(1/c)
1

o
+/ g (kx) f'(1/k)dk
C
C
= / (2xg'(xk) + xkg" (xk)) £ (1/k)dk — * g (ex) f (1/¢)
1
o0 !/ /
+/ g f (X/y)dy (5.15)
ex Y x/y
We can bound &2 (Y) < 1+y‘ and sup,, |f;/§y Xysex| = ¢f'(1/¢) < oo. By domi-
nated convergence the function above is continuous (also at zero). We have
o /! /
l‘{/(O) :/ 8 (y) f (x) (5.16)
0 y x—>0 X
Since 3 #dy = —Z% and lim, ¢ L) (x) %i we obtain
8
1/ (0) = —5 (5.17)
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6. Relative Temperature Shift

In this section we shall prove Theorem 1.7, which states that the relative tem-
perature shift vanishes in the weak coupling limit. We proceed similarly to the
S-interaction case in one dimension analyzed in [6]. For this, we switch to the
Birman—Schwinger formulation. Let 1 = {(r, z) € R2?||ri| < z1}. Define the
operator Ay on ¢ € L2(Q1) = {¢ € L2(QDIY (r, 2) = ¥(—r, 2)} via

1
(W, ALy) = f drdr’dpdqudZ// le/ dz} ——=
T Réd+2(d~1) Iril<z1 K<z Q2m)
X Y (r, )V ()2 7D By (p, q)

% <e—i(1)1z’1+q1ri) + Pz Fairy) T e~ i@z +pury) T ei(qlz’1+mr{)>

x eI Y () Py, 2,
(6.1)

where the upper signs correspond to Dirichlet and the lower signs to Neumann
boundary conditions, respectively. It follows from a computation analogous to [6,
Lemma 2.4] that the operator AlT is the Birman—Schwinger operator corresponding
to H? ! in relative and center of mass variables. The Birman—Schwinger principle
implies that sgn inf o (H;Z' ) =sgn(l/A—supo (AIT)), where we use the convention
that sgn 0 = 0.

Recall the Birman-Schwinger operator A(% corresponding to H(T) from (3.1).
Similarly, the Birman-Schwinger operator A?" corresponding to H;Z % in relative
and center of mass variables is defined on ¥ (r, z) € L?(R? x R?) with ¥ (r, z) =
Y (—r, z) and satisfies

Q T 1 2€i(P~(z—z/)+t]'(r—”/))
(v, Ar'Y) = f drdr'dpdgdzdzy (r, 2)V (n)"/ 2
RO6d (27[)

xBr (p, ) IV (', 7). (6.2)

Let a% = supo(AJ}). Let us first observe that there is a 7o > 0 such that
a?o = ag for T < Ty. Let Ay > O such that TL.SZO(A) = T9() for 1 < Ao,
see Remark 2.5. Choose Ty = TcQO (Ao) = TCO(AO) and let T < Ty. Due to strict
monotonicity of HY in T, T = T2()) for some A < Ag. By choice of Xy also
9.

For T — 0, the asymptotics of aST2 % thus agrees with the asymptotics of a(T),
ie. a = e,u>'In(u/T) + O(1) [8, Theorem 3.3] and [9, Theorem 2.5].
One can reformulate the claim of Theorem 1.7 in terms of the Birman-Schwinger
operators. Then

T%()) = T. The Birman-Schwinger principle implies aSTZO =Ll=a

i TS0 — T
m o)
r—0 Tc O(A)

This is a straightforward generalization of [6, Lemma 4.1] and we refer to [6,
Lemma 4.1] for its proof.

— ; Qo _ 1Y) _
=0 lim (af" —af) = 0. 6.3)
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Proof of Theorem 1.7. First we will argue that a?o < aj. If inf cr(K;20 —AV) <
2T, then infa(KSZO - AV) < infa(K;ZO — AV) for all A’ > A. Furthermore,
inf o (K3 — (@) ~'V) =0 = info (K —(a})"1V) < inf o (K3 —(a})~'V),
where we used Lemma 2.3 in the last step. In particular, ast 0 < a}.

It remains to show that limr_,¢ (a?o — a}) >0.Let:: L2(Q)) - L*2(R™)

be the isometry
- - 1 - ~
wr(ri, 7,21, 2) =ﬁ(1/f(r1,r, 21 D) Xg, (15 2) 6.4)
+ Y (=r1. P =21, D xg, (=1 7L =21, 2).
Let F, denote the Fourier transform in the second variable
By (r,q) = W fRd e~y (r, z)dz and F; the Fourier transform in the first
variable F1y (p, q) = W f]Rd e~iP 4 (r, ¢)dr. Recall that by assumption V >

0 and for functions ¥ € LZ(RY x R?) we have V /2y (r, q) = V2 (r, q).
We define self-adjoint operators E7 and G7 on L?(R2¢) through

W. Ery) = a1y 115 — /RMBr(p,anIV‘/zw(p,q)|2dpdq (65)

and

(W, Gry) = /R P2y (@1 ). (p1. @) Br (p. O F1V'2y(p, ¢)dpdg.
(6.6)

With this notation, we have aT °T— A = LTFJ(ET + Gr)Fat, where I denotes
the identity operator on L%(Ql). In particular,

Qo

a’ —aj = inf (Faur, (Er £ Gr)Faur)
YeL2(Q)), 1Y =1
> inf (¥, (Er £ Gr)¥), (6.7)

YeLZ(RM), ||y |2=1

where we used that || Fti/||2= || ]|2. Define the function
Er(q) =ap® = |V'?Br (. V', (6.8)

where ||-||s denotes the operator norm of the operator restricted to even functions.
Since a?o = sup, ||V1/ZBT(~, q)V1/2||s, we have E7(g) > Oforall T. Let E7 act
on L*(R*) as Ery(r,q) = E1(q)¥ (r, q). Then

Q() 1 .
—ar > inf (Y, (Er = G1)¥). (6.9)
T @iyl
It thus suffices to prove that lim7_,¢inf o (ET £ Gr) > 0. With the next three
Lemmas, which are proved in the next sections, the claim follows completely anal-
ogously to the proof of [6, Theorem 1.2 (ii)]. For completeness, we provide a sketch
of the argument in [6, Theorem 1.2 (ii)] after the statement of the Lemmas.
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Lemma 6.1. Let © > 0, d € {1,2,3} and let V > 0 satisfy Assumption 1.1(1).
Then supr_o|lGrll < o0.

Lemma 6.2. Let u > 0, d € {1, 2,3} and let V > 0 satisfy Assumption 1.1(i). Let
I<c act on L*(R*) as I<c ¥/ (r, p) = ¥ (r, p)X|p|<e- Then

lin}) sup||I<cGrl<c||= 0.

€e~VT>0

Lemma 6.3. Let u > 0, d € {1,2,3} and let V > 0 satisfy Assumption 1.1. Let
0 < € < /u. There are constants c1, c2, Ty > 0 such that for 0 < T < Ty and
|g| > € we have ET(q) > c1|In(cy/T)|.

Since E7(q) > 0, we can write

1 1
ETﬂ:GT—}—SZ\/ET—}—(S(H )y/ET—G—(S

+ Gr
VEr+48  Er+38

(6.10)

for any § > 0. It suffices to prove that, for all § > 0,

lim
T—0

1
G — 0. 6.11
JEr +0 TJ&HH (©.11)

To prove (6.11), with the notation introduced in Lemma 6.2 we have, for all 0 <
€ < lu’9

1 1 1 1
G < |I< G I<
H\/ET+5 T\/ET+5"_" “VEr+ts JEr+s8 —

1 1
+ (I G I
H “VEr+s  JEr 8
1 1
+ (1 G . 6.12
>€\/ET+5 T«/ET-I—SH ( )
With E7 > 0 and Lemma 6.3 we obtain
lim : Gr ! H < sup 1 ||]I<€GT]I<€ ||
T-0|Er+38  Er+39 75068 -
li Grll. (6.13
i e o2 1eTl- (©13)

The second term vanishes by Lemma 6.1 and the first term can be made arbitrarily
small by Lemma 6.2. Hence (6.11) follows. m|

Remark 6.4. The variational argument above relies on AIT being self-adjoint. This
is why we assume V > 0 in Theorem 1.7.
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6.1. Proof of Lemma 6.1

Proof of Lemma 6.1. We have ||Gr| < [|G7 |l + |G7 I, where, for d € {2, 3},

(U, GT) =/de FiV124:((q1, ), (p1, @) BT (P, Q) X151 <2yt

x FiV2y(p, ¢)dpdq,

(6.14)

and for G7 change Xipl<2 i 10 Xp>2.u- Ford =1 set G; =Grand G7 =0.
We will prove that G5 and G7 are bounded uniformly in T'.
To bound G7 ind = 2, 3 we use the Schwarz inequality in p1, g| to obtain

IG7I < sup / BT(177‘Z)X|ﬁ|>2ﬁ|F1V1/21/’(P,‘I)|2dqdl7~
YeL2(R), |y ||=1 JRM

(6.15)

The right hand side defines a multiplication operator in g. By (2.3) there is a constant
C > Oindependent of T such that |G7 || < C||M]|, where M := VI/ZﬁVI/2 on
L*(R%). It follows from the Hardy-Littlewood-Sobolev and the Holder inequalities
that M is a bounded operator [8,9,11].
1/2
To bound G note that for fixed ¢, | Fi V2, @)lloe < CIVIL W ¢ @)1

by Lemma 3.7(iii). Therefore, we estimate

IGF I <C*[IVIh sup /RM v, (p1,g)ll2Br (P, q)

YeLX(®RX),|ly||=1 (6.16)

X X2 <21V (- @) l2dpdg.

Since the right hand side defines a multiplication operator in g, we obtain

IGFII < C* VI sup - sup i Y (p)Br(p, @) X2 <2,V (q1)dpdqgu,
GeRI-1 yeL2(R), |y (=1

(6.17)

where for d = 1 the supremum over ¢ is absent. For d = 1, the operator with
integral kernel Bt (p, q) is bounded uniformly in T according to [6, Lemma 4.2],
and thus the claim follows. For d € {2, 3} we need to prove that the operators with
integral kernel fRd*l Br(p. q) X|p|<2sudp are bounded uniformly in g and 7. We
apply the bound [6, Lemma 4.6]

2
(p+@)?—pnl+1(p—q@)?*—nl

Then, we scale out © and estimate the expression by pulling the supremum over ¥
into the p-integral

Br(p.q) = (6.18)

/ 2x1p1<2ym¥ (DY (q1)
sup sup 5 5
GeRd-1 yeLl2®), |y |=1 JRH (P + @) =l +1(p — ) — pl

dpdq;
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- 2x151<2¥ (P ¥ (q1)

GeRd-1 yel2®), [y|=1 /R4 (P + @) =1+ 1(p —q)* = 1]

S Md/z_l sup / X‘ﬁ|<2
qeRd—l Rd-1
2
« sup / k v (pD) Y (q1) —dpdar | 45
ver2®), =1 J&2 1(p + @) = 1|+ |(p — q)> — 1]
(6.19)

Letuy=1—(p+ 5)2 andupy =1—(p — (j)z. For fixed 1, up we need to
bound the operator with integral kernel

2
l(p1 + g% — il + 1(p1 — q1)? — pal”

Dy (p1,q1) = (6.20)

Lemma 6.5. Let 1, o < 1withmin{uy, p2} # 0. The operator D, 1, on L%(R)
with integral kernel given by (6.20) satisfies

1Dy, ol < CA+d(r, po) minfuey, wa}|=?) (6.21)

for some finite C independent of |11, L2, where

min{uy,u2}|
1 otherwise.

1+1In <1+—maX{”1’“2} ) if min{u,, < 0 < max{uy, u2},
d(py, ) = { | {1, n2} = {11, po}

6.22)

This is a generalization of [6, Lemma 4.2]. The proof of Lemma 6.5 is based on the
Schur test and can be found in Sect.7.1. Since max{u, u2} < 1, it follows from
Lemma 6.5 that for any & > 1/2 one has || Dy, i, | < C (14 |min{u1, u2}|™%)
for a constant C independent of 11, i2. The following Lemma concludes the proof
of supy_ollGF |l < oo. O

Lemma 6.6. Letd € {2,3}and 0 < a < 1. Let uy = 1 — (p + §)* and pu» =
1 —(p —§)> Then

Gerd—1 Jra-1 [ min{py, po}*

Lemma 6.6 follows from elementary computations carried out in Sect.7.2.

6.2. Proof of Lemma 6.2

Proof of Lemma 6.2. With the notation introduced in the proof of Lemma 6.1 we
have [[I<cGrl<e|l < ”]ISGG;HSGH + ”]ISEG;]ISGH'
For d = 2, 3 we have, analogously to (6.15),

I<eG7l<e|l < sup / Xlgl<e X|(pr.d)|<e BT (P, @) X\p1>2.yu
YeL2RY), |y |=1 /R (6.2

4)
x |F\V2y(p, ¢)1*dgdp.
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Let1 < ¢ < oo suchthat V e L!(RY). According to Lemma 3.7(ii), for fixed g we
have

IE V29 ¢ @) s ray <CIvI I, DIl 2wy (6.25)

where 2 < s = 2t/(t — 1) < oco. By (2.3) and Holder’s inequality in p, there is a
constant C independent of 7' such that

ecGiled =€ sup [ KBS R VIR g)Pdpdg
T Yel2®) |y |=1JR2 1+ P
<C|v| tinize 4\ (6.26)
= a7 '

In particular, the remaining integral is of order O (¢! and vanishes as € — 0.
To estimate ||T<. G} I<¢|l we proceed as in the derivation of the bound on ||G 7 ||
from (6.16) until the first line of (6.19) and obtain
M<eGTI<cll < ClIV 1%

/ 2X1pillgil<e Xipl<2yu¥ (PDY (1) dnd
R+t [(p+ @)% =l +1(p — @)% — pl

sup sup
lg]<e yeL2(R).[¥II=1

qi1-
(6.27)

Hence, we need that the norm of the operator on L*(R) with integral kernel

2X1p1l. X|p
/‘ ;Pl| lgil<e |17|<2«/l72 dp (6.28)
ri-1 (P + )" = pl+1(p—q)” — nl

vanishes uniformly in g as € — 0. In d = 1, the Hilbert-Schmidt norm clearly
vanishes as € — 0. Similarly, for d = 2, 3, the following Lemma implies that the
Hilbert-Schmidt norm vanishes uniformly in g as € — 0. O

Lemma 6.7. Let d € {2, 3}. Then

lim sup / X [/ ZXP <2 ﬁ]zdpldql -0
0 012 S TP fou G — T 1 — ) — 1]
(6.29)

The proof can be found in Sect.7.3. We give the proof for d = 2 only; the one for
d = 3 works analogously and is left to the reader.

6.3. Proof of Lemma 6.3

Proof of Lemma 6.3. Since a?o diverges like euud/z’l In(u/T) as T — 0, the
claim follows if we prove that supy. sup|q‘>5||V1/zBT(-, @)V'?| < oc. For
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d = 1 we have

IVY2Br(, ) VY212 <IVY2Br (-, )Vl

o) \?
:/ Vi)V /BT(p,q) dp | drdr’
R2 R 2

1 2
S 4k ( /R Br(p. q)dp) :

(6.30)

It was shown in the proof of [6, Lemma 4.4] that sup;_ lgl>e fR Br(p,q)dp < oc.
For d € {2, 3}, the claim follows from the following Lemma which is proved
below.

Lemma 6.8. Let d € {2,3} and nu > 0. Let V satisfy Assumption 1.1 and V >
0. Recall that 0,=V'2FTFV/? (defined above (3.2)). Let f(x)=x(0.1/2)(x)
In(1/x). There is a constant C(d, u, V) such that for all T > 0, g € RY, and
¥ € L*RY) with [yl = 1

(W, VI2Br(, V29 < n* Ny, 0,9) f(max{T /i, |/ /1t})
+CWd, 1, V). (6.31)

This concludes the proof. O

Proof of Lemma 6.8. Note that if we set g = 0, and optimize over v, the left hand
side would have the asymptotics a% e w?>'n(1/T) as T — 0. Intuitively,
keeping ¢ away from 0 on a scale larger than 7 will slow down the divergence.
In the case ¢ = 0, divergence comes from the singularity on the set |p| = ,/i.
For |g| > 0, there will be two relevant sets, (p + ¢)> = pu and (p — ¢)* = u.
These sets are circles or spheres in 2d and 3d, respectively. The function Br is
very small on the region which lies inside exactly one of the disks or balls (see
the shaded area in Fig.3). The part lying inside or outside both disks (the white
area in Fig. 3) will be relevant for the asymptotics. Define the family of operators

0r(q) : L'(RY) — L*®(RY) for ¢ € R? through

W T @¥) = Yy 1) ) /R 7 (Vap/1p)[” Br(p.)

max( £ 4 (6.32)
X X(p+9) =) ((p—q) =) >0 X p2 <34 P

We claim that Q7 captures the divergence of Br.

Lemma 6.9. Let d € {2,3} and u > 0. Let V satisfy Assumption 1.1. Then

sup sup [|[VI2Br(, IVIV2 = V200V <00.  (6.33)
T>0qeRd
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Fig. 3. Two circles of radius ,/u, centered at (—|g|, 0) and (|g|, 0). In d = 2 the function
Bt (p, (l¢],0)) diverges on the two circles as 7 — 0 and approaches zero in the shaded area.
Given an angle ¢, the numbers 7+ (ey) are the distances between zero and the intersections
of the circles with the ray tilted by an angle ¢ with respect to the p{-axis

The proof of Lemma 6.9 can be found in Sect.7.4. It now suffices to prove that
there is a constant C such that for all 7 > 0 and ¢ € R?

W, Q1 () < n> Ny, FIFy) f(max{T/u, |q1/ /1)) + ClIv 3.
(6.34)

Then for all ¥ € L*(R?) with ||/]» = 1

W, V201 @ V) < w7V, 0ur) f(max{T /s, g1/ /i) + CIV i1,
(6.35)

and the claim follows with Lemma 6.9.

We are left with proving (6.34). By the definition of Qr, it suffices to restrict
to |g| < /m/2, T < ju/2. Let R be the rotation in R? around the origin such that
q = R(l¢,0).Ford = 2 thecondition (p+(g|, 0)*—w)((p—(lgl, 0)*—p) > 0
holds exactly in the white region sketched in Fig.3. The inner white region is
characterized by (| p1]|+|g D2+ p2 < p,and the outer region by (| p1|— lgD2+p? >
. Thus,

(b, Or(@)¥) = fRd |V (VieRp/Ip))[* [Xapiiigh 2 <u + Xapi1-lgh?+2>u]

x Br(p. (191, 0) 2 3,dp.
(6.36)

where we substituted p by Rp.



20 Page 54 of 85 Arch. Rational Mech. Anal. (2025) 249:20

Letususethe notationry (e) = £leq|lg|++/ 0 — e%|q |2 and ey = (Cos @, sin @),
where the choice of r+ is motivated in Fig. 3. For d = 2 rewriting the integral (6.36)
in angular coordinates gives

2 5 r—(ey) V&
‘/(; }1// (ﬂRe¢|)| ‘/(; Bt (reg, (Iq], 0))rdr +f ( )BT(re(p, (Igl, 0)rdr | de.
r4 ew
(6.37)

For d = 3 with the notation ey, 9 = (cos ¢, sin @ cos 8, sin ¢ sin ) and using that
Br(regp, (I91,0,0)) = Br(rey, (Ig]. 0)), (6.36) equals

b4 2 r—(eg)
/0 (/0 ¥ (Vireg )| de) [/O Br(re,. (Ig. 0))r2dr
(6.38)

NED 5

—i—/ Br(rey, (Iq1, 0))r=dr | sin pde.
r4(eg)

We distinguish two cases depending on whether r is within distance 7/./u

to r4 or not. Note that r_(e) > —|q| + /u > “/Tﬁ > \/Lﬁ and ry(e) + \/Lﬁ <

lgl+/uw+T <2,/ If ris close to r+ we use that By (p, g) < 1/2T. Otherwise

we use (6.18). The expressions in the square brackets in (6.37) and (6.38) are thus
bounded by

r(eg)= 7z pd—1 r(ep)  pd—1
/ ————dr + / dr
0 r

pw—r—q? (ep)-L 2T
r+(e(p)+% pd—1 NEm pd—1
+ / dr + f . (6.39)
ri(eg) 2r i i

The second and third term are clearly bounded for T < /2. Since ||$ oo <
27)~2||1y |1, they contribute C||4/]|1 to the upper bound on (yr, Q7 (q)¥).

To bound the contributions of the first and the last term in (6.39) we treat d = 2
and d = 3 separately.

Case d = 2: The sum of the two integrals equals

(n—q>HQ2u+q?)

In T 7 .
(=47 = (r—(ep) = TD((r+(ep) + TP +47 — )

(6.40)

To bound this expression, we first make a few observations. Note that

T 2
w—q*— (r_(e¢)—ﬁ) =2|e1||q|<m—lelllql>

41 (z (e, T)
A
N /T
T
> (W3- DHleillgl + 5 (6.41)
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where we used that r_(ey) > /0 — |gl and |q|, T/ /i < /it/2. Similarly,

2
<r+<e¢> 4 i) +q? — i =2lerllgl (i — Rl + lerllal
Vi

+i<2r(6)+i>
JENTT

> V3 /leillg| + v/3T. (6.42)

Furthermore, note that 2 + ¢° < %. The expression under the square root in
(6.40) is therefore bounded above by

512

43 = Dyrlelllgl + D3 /lerllgl +v/3T)

(6.43)

We now bound this from above in two ways. First we drop the T terms in the

denominator, and second we drop the other terms in the denominator, which gives

51 512 . .
WD PIE and AT respectively. Thus, (6.40) is bounded above by
S(max{T/u,lq|//n}) + In(1/]e1]) + C. The contribution to the upper bound

on (v, Or(q)¥) is
27
/0 | (Vize, )| £(max{T/u, 1q1//ith)dg
2
+@m) 2y |3 fo (In (1/| cos ) + C) dg, (6.44)

where for the second term we used that |1’//\ (ﬂed) |2 < (271)_2 ||1,D||%. Note that
the first summand equals (i, FIFy) f(max{T/u, lg1//m}) and that the integral
in the second summand is finite. In total, we have obtained (6.34) for d = 2.

Case d = 3: Note that (%(—r + aartanh(r/a)) = r?/(a* — r?) and ‘f—r(r —
a arcoth(r/a)) = ;'2/(r2 — az). The sum of the first and the last integral in (6.39)
hence equals

AR /TR G VAT
V3= ri(ey) —r_(e,) — Y1 ln<
o YT 2 3~V -2
= Vi =2 +r-(ep) = 72) (Vi = q> +r(eg) + 1)
2 Vi =q% = r-(ep) + 72) (r(ep) + =V — %)
(6.45)

+

The terms in the first line are bounded. The argument of the logarithm in the second
line equals

Wi =q? +r-(ep) = 7207 (Vi — g% +ri(ep) + 2)°
(1= g% = (r=(ey) = 7)) ((r(ep) + 7207 = +47)
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cu?

< b
T (V3= Dyalellgl+ 53 ymlellgl + V/3T))

(6.46)

where we used (6.41) and (6.42). Analogously to the case d = 2 the contribution
to the upper bound on (i, Q7 (q)V¥) is

i [ ( / 7 (Vieps)) d@) Fnax{T /1, g1/ /D sin pdg
4+ VAR [ 1 /lcosgl) + C)sinpds. (6.47)

and (6.34) follows. |

7. Proofs of Auxiliary Lemmas
7.1. Proof of Lemma 6.5

Proof of Lemma 6.5. If we write Dy, asasum Dy, ,, = Z?:l Dlj:lell«Z a.e. for
some 1ntegral kernels D m wos then | Dy o || < ZJ 1||DM1 w2 |- We will choose
the Dm, w, as localized versions of D, ,, in different regions (by multiplying
Dy s bylcharacteristic functions).
- 2 -
Let Dy, y, = Duy oz Xmax(ipillgi)>2 and Dy, e = Dyuy, o Xmax{ipa .11 <2
We first prove that the Hilbert—Schmidt norm of D! 11,1, 18 bounded uniformly in

[1, 2. Note that if max{|p1], lg1]} > 2, we have max{(p1 £ ¢1)*} = (Ip1] +
lg11)* > 4 and 1, 2 < 1. Hence,

2xmax{|pil,lgi}>2 _ 2Xmax{|pi].lq11}>2
Dl (171,6]1) < 115191 < Pil1q1 ) (7.1)
Ht (pil+ gD =1 pt+qi—1

For the Hilbert—Schmidt norm we obtain that

*© r 4
”D;lu,m”ﬁs = 4/ wdmdql 871/2 (—dr =

2 (pl —|—ql 1)2 r2 — 1)2 3’
(7.2)
and therefore || D! o | is indeed bounded uniformly in 11, @7.
For Dil u, We first observe that ”Duz wll = ”Dm 1, |l since Dm w(P1q1) =

Dm 1, (P1, —q1). Hence, without loss of generality we may assume 1 < p» from
now on. To bound the norm of Dﬁl 1, We distinguish the cases 1y < Oand ;g > 0
and continue localizing.

Case j1; < 0: We localize in the regions |p; — q1|2 <k and |p1 —q11* > 2,

where the first one only occurs if uy > 0. Let Dm gy = Dm 12 X1 pr—q1 |2 <p, and
Dt =D

K1, p2 w2 XIpr—qi12>p2
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3 : : _ 172
For DM1 1y We do a Schur test with test function k(p1) = |p1] /

symmetry of the integrand under (p1, q1) — —(p1, q1), we have

I< sup |pl'V? /21 Xipi—q1P<p 1 i
H1,M12 _72<p1<2 722p1ql+(uz_ul)/4 |q1|1/2

| |1/2 /Pl-h/MZ 1 1 1 q 73)
= X0 sup  |p1 ~ q1- .
e 0<p1<2 vz 2 p1q + (o — ) /4 g1 |/?

. Using the

1D,

For s > 0, carrying out the integration we obtain

1D}, LIl < sup arctan 4p1(p1 + /12)
e «/F M2 — M1
—Xpi>/iz arctan 41)12”21_ M\]/_)
+Xp, < iz artanh \/@
< \/ﬁ [% + artanh( ﬁ } : (7.4)

where we used the monotonicity of artanh. Note that for, x > 0,

{5 {1

=InQ2)+ = ln ( ) (7.5)
In total, we obtain
C n2
||D | < <1 +In (1 + —>> (7.6)
M1, Mz /_—Ml -

for some constant C.
The Hilbert—Schmidt norm of D% is given by

L1, 12
y 172
Ip1—q112> 1o
ID% s = / dpdgt ) . D)
e 222 (P} +qf — 322

For s < 0, we clearly have || D# |Dl‘ih0||Hs. For uy > 0 observe that

o llHS =
the constraint |p; — ¢1|> > o implies p% + q12 > % Hence,

00 1/2 1/2
ID* s < 27'[/ S A— = (2—77) . (79)
1,02 — \/%7 (r2 _ Ml';llz )2 —
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q1 = /H1— D1

q1 = /M2 + P1
9
q1 = —y/H2 t 1

@ =
10
——————— >
p1
Qo= — 52

Fig. 4. In the proof of Lemma 6.5, in the case 0 < @1 < o we split the domain of py, g1
into ten different regions. The solid lines indicate the boundaries between these regions

Case (11 > 0: We are left with estimating Dﬁ o
2

o (p1, q1). Oneach of the diagonal
lines in Fig. 4, one of the two terms | (p; —i—ql)z—,ul [, |(p1 —q1)2—,u2| in the denom-
inator of Dil)m (p1, q1) vanishes. The function szu,/tz(pl , q1) thus has four sin-
gularities located at the crossings of the diagonal lines in Fig. 4. The coordinates of

the singularities are (p1, q1) € {(s1, —s2), (52, —s1), (—S1, 52), (—s2, 51)}, where

in the case that u; > 0. First
we sketch the location of the singularities of D

§] = —V’“; VI2 o = —VM; VL Note that s? + 53 = W and 15y = L2704
To bound || D> I, the idea is to perform a Schur test with test function

B, 12
h(p1) = min{||p1| — s1]'/2, | p1] — 52|'/?}. Since the behavior of D . (p1,q1)
strongly depends on whether |p1 +q1| 2 /11, |p1 —q1| 2 /@2 and which singu-

larity of DIZH’ u, 18 close to p1, g1, we distinguish the ten different regions sketched

in Fig.4. For 5 < j < 14, we define the operator D[;l > to be localized in region

Js Dl = thwthJ" According to the Schur test,

2
1D/l = st hpy)” / Dhunpranh@dg. (19
pil< -

The bounds on || D[‘L1 .z || we obtain from the Schur test are listed in Table 2. In the
following we prove all the bounds:
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Table 2. Overview of the estimates used in the proof of Lemma 6.5

Operator Upper bound Proof
DS ﬁ (7.10)~(7.12)
Do H16/2 (7.13)~(7.18)
1/2
p’ G2y " (7.19)~(7.21)
My
ok 2/:,/?;‘ (7.22)(7.26)
1
Do ﬁ (7.27)~(7.29)
1
plo # (7.30)—(7.33)
1
pl! # (7.34)=(7.37)
1
D" 25 (7.38)~(7.40)
1
D'3 —“mnhlill{;@*”) (7.41)~(7.49)
1
pl4 4({1;1) (7.50)—(7.54)

Region 5: By the symmetry of the integrand under (p1, ¢1) — —(p1,q1), we
have

ID5, < sup h(pp) / N :
’ —2<p<2 -2 p] +q1 _Sl _SZ h(‘i])
= sup lp1 —s1l s ‘1/2dq1
AT+ <pr<2 JE=p P}t ai = sf = s34+

P1—H2 1 1
of =20
Vi2/2 p1+q1—s1—s2 lg1 — s1l

<2 sup [Im — 51|12
\/171+@<p1 <2
/vn—vﬁﬁ’ 1 1 d ]
X q1
Va2 pai —st—s3 g1 —s11Y/?

<2 sup

Ip1 _51|1/2 //’l—f 1
BT e 5dq1.

+82—st-s3Jymp o —silV

r+r<p1 2[71
(7.10)
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Notethatp1 +— —s12 —s% = p1 ﬂ - % = @(Fl —,/% + %).Carrying
out the integration, (7.10) is bounded above by

8 Ip1 — 51|12
— sup

v 1 fui 4 p2
H2 Vi+Y2 p<apr— 5+ F

1/2
VM1
x ( (T) + Xprosi+ymrlPL—s1— «/_w”z). (7.11)

Note that s; > /%5t + &2, Using that for x > a > b, (x —a)/(x —b) < 1 we
bound (7.11) above by

VET\ /2
8 ( (+5%) . 1)
VIR I+ G -

172
_ 8 A+ e BRI
TV i+ 212 «/ Vi '

Region 6: By symmetry under (p1, g1) — —(p1, q1), we obtain

105 ]

< h(p1) ‘1 X6 L
< sup h(p = q1
_2<pi<2 —2 2 —pi1q1 — s152 h(q1)

7.13
< o[ @

—2<pi<—s2

min{—p1+ 77,2} | 1
X/ N ]/qu1:|.
max{—/iT—p1, Y02, Jaz+pi) —P191 — 5152 |q1 — s1]

We split the integral into the sum of the integral over ¢; > s1 and q; < s7. For
p1 < —sp and g1 > s1 we have —p1q1 — s1s2 > —(p1 + s2)s1. Hence,

min{—p1+/i1,2} 1 |
sup h(m)/ >dar
—2<pi<—s2 51 —p191 — 5152 |q1 — s1
- 1 / [ U -
= sup —  dg =2 < .
epr<—sy IP1F 8211251 [ lg1 — s1]1/2 s1 [

The case g1 < s1 only occurs for p; > —s; — /1. For —‘/T’Tz < pr < —5

and /U2 + p1 < g1 < 51 note that —p1q1 — s152 = —p1(J U2 + p1) — s152 =
[p1 + s21(p1 +51) > |p1 +le@. Hence,
st 1 1

sup  h(p1) 777991
ey, v g szl =il
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2 /” 1 4
< W e dgp = ——.
vm_, o, VP wilpr+ 522 J jmipy g = s1l/ N
(7.15)

AT A/ 12 A2
For —s; — < pr < —%5 and 5o < q1 <1, we have —p1q1 — s152 >
7 — s152 = ‘7. Therefore,

1
sup h(l’l)/ —dq1
_Sl—@<pl<—@ @ —P1q1 — S152 |‘Z1 _Sl| /
4p1 +s11'? 1
< sup " /M = |1/2dq1
—sl—@<p1<—@ 1 2 q1 1
1/2
s(F) v 4
< < ) = —75- (7.16)
751 2 /‘Ll/

For —s1 — /1 < p1 < —s1 — v/}

T and —p; — /11 < q1 < s1, we have
—pi1q1 — 5152 = p1(p1 + 1) — 5152

= —(p1 + s1)(s2 — p1). Hence,

1 1
sup h(Pl)f S |1/2de1
—s1— AT <p1<—s1— Y51 pi—yin —P141 — $152 191 — 81

- wup 2lp1+ i+ 2 _ 4
= 1/2(g, — - = :
1= ET<pr <5 — LT |p1 5117202 = p1) gy 45 + @ N

(7.17)
In total, summing the contributions from ¢; > s; and g1 < 51 gives
IDS, Il < 0 (7.18)
wipall =" :
Region 7: By symmetry of the two components of region 7 we have
2
X7 1
ID], I < sup h(p)
Ht —2<p1<2 P +q1 _52 h(fh)
<2 sup [npu —5l'?
—2<p1<2

2 1 1
x I/qul
max{ /i1 —p1./H2+p1} pr+q? — st —s2 g1 — 1|

(7.19)
For |[pi] > s2, g1 > s1 we observe p? + g7 —s? — 3 > (q1 + s1)(q1 — 51) >
2s1(q1 — s1). Therefore,
2
1 1
sup  Ip1l —sz|‘/2/
s2<|p1l<2 m

dqi
ax{/I1—p1./B2+p1} P1 +q1 _51 _52 g1 — s1]1/2
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lIp1l = 521!/ !
npi =51 ———3pda
s2<Ipi]<2 251 max{ /i1 p1./ia+p1) (41 = 51)
12 1 1
— [lp1l — 52l = — < ——. (1.20)
sa<|pr|<2 St(max{/u1 — p1, /2 + p1} — s1) / 51 v

For [pi| < s2,q1 > s1 we have (p{ + g7 — s{ — s3)(q1 — sD'? = (g1 +

Vst s3—pDiar — /st + 53— ph? = 2s51(q1 — ,/s]+s2 p1)*/%. Hence,

=

sup ||p1|—sz|”2/ 72 da1
Ipil<s2 max{JiT—p1, Via+p1} Pl +611 — st —s3 a1 —S1|
1/2 1
< sup [p1 + 52| f da
Ipil<sa 251 VIRHPL (g — \[s? 453 — p})32
|p1 + 2|2 1
= sup
i<z S (I pr— st 53— pD12
- 1 1p1+ 22 Jm2 + pr+ /5T + 53 — pDY/?
= u _—
|p1]<sz S1 (p1+ Sl)l/z(Pl +S2)1/2
| (V24 p1+ /st +s3— phl/?
= Ssup = 12
Ip1]<sa S1 (p1+s1)
3 1/2 1/2 3 1/2
++/2 ++/2
< (2 f Lo (2 +v2) . (7.21)
/4 172
STy My

: 7 (6+2v2)!/2
In total, we obtain | D’|| < NI

Region 8: Taking the supremum separately over the two symmetric components
of region 8§, we have

1D 0,
2
X8 1
< sup h(p1) 3
—2<p1<2 -2 5] +S2 P1 - 6]1 h(ql)
<2 sup |:h(171)
~ 2 <pi<ym- 42
/min{m+p1,m—p1} 1 1 :| (7.22)
§ .
Ji2/2 sty —pi—qi s —aqil'?
h
<2 sup [ﬂ
— L2 <pi<ym-42 e
min{,/i2+p1./I1—Pp1} 1 1
g ]
Vol N (i
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: 2 2 2 Hi n2 n2 V2
since /sy +s3 —pi +q1 > /5 +5F —F + 5 = /e For |pi| > s,

we have s1 > ‘/512 + s% — p%, whereas for |p| < 52,51 < ‘/slz + s% — p%. For

p1 < —s2 we obtain

2h(py) [minlViztrnVir—pil 1 1
W Um / T a2
AR premsy VHZ VRS2 st+s3—pi—a T
2p1 + |2 VP 1
< sup —/ dq
AR g, V2 (st s —pp—qn¥?
41p1 + 52"/
= sup
ey 25T+ 53— P — /2 — p)'/?
AGst 3 —pi+ I+ pD'? o142 o1y
= sup 172 12 = 1/4 = /2"
Ty, 212 /i (pr + s1) /i ]
(7.23)
Similarly, for p; > s> (which only occurs if 2, /> < 3./11),
2h(py) [min{yr2+pr/ri-pi) 1 1
TP Vi 2 242 2 Is1 —¢ Il/qu1
s<pr<yii-¥52 v/ Jst+s3—pl—q S1 T
2|p; — so|/2 V2= P1 1 21724
< sup P1\/72 / — dg; < 73
32<p1<‘/7 #2 - (‘/s] +855 =P _QI)3/2 Hq
(7.24)
by (7.23). For | p1| < s2,
2h(py) [VHEITP 1 1
sup 1/2d
—sa<p1<s2 VM2 J Jiz/2 /S12 + S% _ 1712 —q ls1 —qi1l
A i A G
< sup ————— 75 dq
—s2<p1<82 N M2 —00 ls1 — ‘11| /
4||p1| — s2|1/? 4
— s [lp1l — s2 _ . (7.25)

—s)<p1<s2 «/M2|S2+P1|]/2 N M2

In total, we have

21724

8
D | < —i75 (7.26)
My

M1,M12
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Region 9: By taking the supremum separately over the two components of region
9 and using the symmetry in (p1, q1) — —(p1, q1), we obtain

D% |l < hoD) 29 X9 1 d
< su P 5 !
Hr-p2 —2<p11)<2 —2 2 p1gq1 + 5152 h(q1) 1
< sup |:h(P1) (7.27)
—s2<p1<2
min{p1+./12.2} 1 1
% / 172 ql}
max{,/ii—pi,/12/2, p1—/I2} piqi T s182 |q1 B SI|

For p1 > —s> and max{,/u1 — p1, */T’Tz} < q1 < /2 + p1 note that

p1(/m2 + p1) +s152 = (p1 + s2)(p1 + 51) if pp <0
p1q1 +s152 = { 11 — p1) 5152 = (p1 +52)(s1 — p1) if /g — §Zp1 >0
n Y52 451 if p1 > max(/i7 — Y52, 0)
> L1 ) (7.28)
Hence,
2 P1+y/12 1
1D, Il < —/ = .
f2 —s2<p1<2 Vpr+s)V2 ) gl — Sl|1/2 - J
(7.29)
Region 10: By symmetry in pj, we have
2
X10 1
1D LI < sup h(py)
HRIRE =y pi<2 2 p gl — st —s3 h(Cll)
i min{m—m,ﬂ} 1 |
= sup |P1 —S1| / / 12 f]1~
s1<p1<2 max{iT—p1.— Y2} p?+qi — 57 — 53 llq1] — 52
(7.30)

If we mirror the part of region 10 with p; > 0,q; < 0 along g; = 0, its image
contains the part of region 10 with p; > 0, g1 > 0. Since the integrand is symmetric
in g1, we can thus bound

1D, Il < sup [2|p1—s1|”2
s1<p1<2
(7.31)

/‘min{m\//fl,@} 1 1
X

dq1 .
max(yGE-p1 0 P+ ai — st —s3 lqn— 52|/

Note that for g1 > /w2 — p1, p1 > s1 we have

pital — st —s3=(p1—s1)*+ (@1 — 52)% + 251(p1 — 51) + 252(q1 — $2)
> 2s1(p1 — s1) + 282(51 — p1) = 2/m1(p1 —s1).  (7.32)
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Therefore,
1 Pr=yit 1 4
/ —mdm = —.
Jia-p1 g1 —s2] NI
(7.33)

10
D < sup ———
H1-H2 s1<p1<2 A/ M |P1 _51|1/2

Region 11: By symmetry in pj, we obtain

2
X11 1
1D} Wl < sup h(p) | 5 dg)
e S —2 2 —p1q1 — s152 h(q1)
1 1/2
N LT
2 (7.34)
2 1 1
X 1/2dq] .
max{— /i p1,/ia+pi1} —P141 — 5152 |q1 — 82
For p1 < —s1 we have —p1q1 — s152 > s1(q1 — s2). Hence,
1 o [T 1 1
sup Sl tsil o s a1 — 51200
—m—@<m<—n —Jri—p1 —P1q1 152 191 2
+ 51]1/? 1 1 1
= sup %‘/ —S/qul =— = —.
—M]—@<p1<—s1 51 —JR1—p1 lg1 — 52l S1 M1
(7.35)

For p1 > —s1, we carry out the integration
N}

12 [ 2 1 1
sup 2|P1 + 51l 7da1
—s1 <p1<7£ JRz+pr —P141 — 8152 lg1 — s2l

1 $1/2 71/2 21724172
< sup 5 artanh 2 73 | = A artanh f/ﬁ .
N |p1|1/2s2 Ip1l JI wy

—si<pi<—¥3=

(7.36)
With artanh(x) < —*—, we obtain
1/2 1/2 1/2
N <21/2s2/ ) L2 s2/ 212 5y o+ _ 4
/4 172 1/4 = 1/4 1/2 1/4 172 =12
My 5y Mo “—/ - s;/z Mo B My
(7.37)

11 4
Therefore, 1Dy ol = —/

Region 12: By symmetry in p1, we obtain

2

X12 1
sup  h(p1) | = dgi
—2<pi<2 —2 2 p1q1 + s152 h(q1)

1D 0 <

Hi,p2 —
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= sup

—JH2<p1<— \/72

min{p;+./i2,—/m1—p1} 1 1
(m)/ dqi
P1q1 + 5152 1s2 — q1]1/?

(7.38)

For p; > —sj note that p1g1 + s152 > s1(s2 —q1) > @(sz —q2).For p1 < —s1
and ¢1 < p1 + /12 observe that

p1q1 + 8152 = (=p1 —s1)(s2 — q1) + 51052 — q1) + 52(p1 + 51)

v M1 M2
> 5 (2 —q1) + > (52 — q1) +52(g1 — /142 + 51)
N/ NI
= (52 —q1) + > (52 —q1) — 52052 — q1)
Vit
> > (52 —q1). (7.39)
Therefore,
Ip1 + 51112
IIDM wll = sup E——
—Jm<pi<—Jm  ~VH1
/min{p1+JlTsJ/Tlp1} 1 2
x dg) = . (7.40)
—o0 ls2 — q1]3/? NI

Region 13: By symmetry under (p1, q1) = —(p1, q1), we obtain

DB Il < w1y
< sup h(pi = q1
R T = <2 22 p1g1 +s152 h(q1)
= sup [h(Pl)X (7.41)
2 < <22
V2

2 1 1
dql].
/rnax{mp],o,m+p]} pig1 + s12 1s2 — qi|'/?

For p1 > /i1, q1 > 0, we have p1q1 + s152 > /u1(q1 + s2). Therefore,

NG

2 1 1
s hip) | —da,
VET<Pp1<Jli2+52 max{ /77— p1,0,— iz +p1} P141 + 5152 |52 — q1]
_gl/2 oo |
N
< sup 1 L / 1/2dq1
JET<pi<Jiat+s:  VHI 0 q1t+s2ls2—qi
212 oo 1

= dq)
Vo g+ 111 —q]'/?

L2 / 1 +/°° Ly _ 2% (7.42)
SUmlh Tt ) g = U '




Arch. Rational Mech. Anal. (2025) 249:20 Page 67 of 8 20

and
e 1 1
2
s i [ 5da
Jiats<p <2 max{ /71— p1,0,—/ia+pi) P11+ $182 |52 — q1]
< sup |p1 — 1]/ / 1 1 da
- JAta<p <2 VI Jiatp @12 lq1 — 52|12
|X|1/2 1 1 q
= sup - dy
2y YL VHI y 1y — 28|12
- Sup /—/ 2sz 29 = /—/ 24y
25 <X <[Up— “//T y |y | / y |y - 1|
el e ] o
= y Y| = , .
wr L 1y —111/2 )y —1)3/2 o
where we substituted x = p; — s1 and y = g1 + s2. Next, we consider the case

p1 < @.For@ >q1 > /i1 — prand —sy < p1; < @ we have

pP1q1 +s152 = @(m +52) ifpr>0
| 1 =g (p1+52) — pi1Gs1 —q) +qi1(p1 +s2)if p1 <0

VI .
> :(SIT(pI +s2) if p1 >0 - _Vzm(pl + 52). (7.44)

—q)(p1+s2)if pr <0 —

Therefore,

i

)

2 1 1
sup h(Pl)/ I/qul
T ey <L max{ /i1 —p1.0.—Jiz+pi1} P11+ s152 52 — g1l
N
- sup 2h(p1) z 1
B S iep < Jiipr+s2) J gar-p IS2—611|1/2
4

< sup —— i

iy <Y Jri(pr+s2)

172 )
(*/T’Tl) if /u1 — p1 > s
X )

| (7.45)

/2 .
(T) + (52 — o1+ pD)' 2 if ST — pr < 52

Note that sup V53

J 1 — s2 we have

1/2
+f<p1<r(p1 + 52)71/2 (@) = 1 and that for p; >
s2—/H1+p1

p1+s2

< 1. One can hence bound (7.45) above by \/%.
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For g1 > 0 and p; > f we have pi1q; + s152 > r(ql + s2). Therefore,

— 1 1
sup h(l’l)/ 2441
N max{ /i —p1,0,—Jia+p) P191 + 5152 152 — q1]
_ 2h(Pl) 1
= Sup 1/2 QI

Ny S N (q1 + 52)Is2 — q1

4h(py) |artanh mzf+m) +mif 55 > /1 — p1

= sup T
@<p1<\//71 VI 52 arctan( ﬁ) ifS2< VM1 — Pl
(7.46)
We estimate the two cases separately:
4h - +
sup (p1) artanh | [f2T VP E P i
S —s2<p1< 1 \//1«1\/252 282
1
4|5 — 4 59|12 1 artanh (—) + 7
< ls1 — /1 + s2] |:artanh <_> +JT] g\
1282 V2 N
(7.47)
and
sup 4h (pl) arctan ( L
ST py < JRi—s2 WITERVEX) 1= P1L— 82
4 lsi —pil'? =1/ = pr =5l
< — sup \/2_ 5
m @<Pl<\/171—52 52
—py — 5o |1/2 2
N |1 — p1 — 52 wretan 52 } (7.48)
282 VHT = p1— 82
4 V2
RV [| e Tyt 1}
123 @<p1<\/171ﬂ2 S1—P1 M1 — Pp1—52
45 +1
< —=—.
N/
In total, we obtain
2126 4 8 4(artanh(1/5/2) +7) 4(m/2+ 1)
”Dm ol = max )y —5, —75, — 75 12 ’ 12
H“yq “q Hq 23 M
4 artanh(1 +
( ( 1//;/_) ) (7.49)

My
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Region 14: By symmetry in p;, we have

2
X14 1
ID Il < sup h(p1)
112 —2<p1<2 -2 512+52 P1 _ql h(ql)
min{ /7 p1. Y52} 1
= sup h(p1) 2.2 22
0<p1 <si max{— /i1 —p1,—/i2/2.—/ia+pi} ST T8 = PT — 4
1
X —————=dq
llg1] — 21172
min{ JAT+p1. Y52, S —pi) 1
< sup 2h(p1)
0<pi<s; max{0, pi —/jt1} S12 + S% - P% - q12
. 1/ qlv
I|611| — 5|12

(7.50)

where in the last inequality we increased the domain to be symmetric in g1 and
used the symmetry of the integrand.

For p1 < s2 and /i1 + p1 > q1 Wehaveslz—i—s%—p]z—ql2 > slz—i—s%—plz—
(i1 + p1)* = 2(s2 = p1)(p1 + s1). Hence,

JH1+pi 1 1
Sup 2h(p1)/ dq;
0 s?2+53 — pt—q? llg1| — 52|12

0<p|< -/

< 1 ﬁ+Pl 1
=< sup —5 — 1/2

0<pr <2 s B2 = PO Pty llg1] = s2|

172 \/_I’Tl 1/2

_ 2512+ (p1 + T =50 _ 263 +( : ) )
- _ 1/2 — 1/2

0<p1<@—\/;T1 (s2 — pv) /= (p1 +s1) (JTMT) .

N 1/2
4(T> 8

= =< . (7.51)
()" v

Slmllarly, for p1 > s2 and Juy — p1 > g1 we have s1 + s2 — p1 — ‘11 >
52+ 53 — p? — (2 — p1)? = 2(s1 — p1)(p1 — s52). Therefore,

Vi—pi 1 .
JT’TZSEIE)KM oy pi—vET ST+ —pi—ai g — Szll/qu1
1 Vi2—p1 1
< @Siiﬁl (s1 — p)'2(p1 — 52) -y mdql
T, =T (7.52)

N P1r—52 /M1
2

<p1<s1
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For Y2 -/ <p1<*/£72andq1<‘/T’Tz,wehaves12+s§—p12—q122%.
Thus
e 1 1
sup 2h(p1)/ dq
ST Ym max{0.p1 — a7} S+ 85 — pt —qf g1 — 52|12
< < ) e
= —— 7 dqi
M1 V2 g g — s2|1/?
() ()
7 4
< V3 + 1). (7.53)
3/4 172 (
212 My
In total, we have
D% <2 (VA (7.54)
wpall =770 : :
M
m|

7.2. Proof of Lemma 6.6

Proof of Lemma 6.6. The integral in (6.23) is invariant under rotations of g. There-
fore, it suffices to take the supremum over ¢ = g > 0 ford = 2 and ¢ = (g2, 0)
with go > 0 for d = 3. Furthermore, it suffices to restrict to pp > 0 since the
integrand is invariant under p — — p. Note that under these conditions | < .
We split the domain of integration in (6.23) into two regions according to | =
min{py, u2} s 0.

Dimension three: We first consider the case | < 0,i.e. |p2 +¢2)* > 1 — p%.
In this case,

Xmin{uy,p2}<0 -
(—min{uy, ua})*

. sup /X\15|<2XP220
G=(q2,0),42>0 /R?

=SUP[/ dP3/\/47m : P2

3220 axt\/1-p2—g2.0) (P2 + q2)> + p} — 1)"‘

,/4717% 1
+ / dps / dp2:|. (7.55)
1<|p3|<2 0

((p2+q2)? + p2 — 1)

Let g» and |p3| < 1 be fixed. By substituting x = p> +¢>» — /1 — p% if g <

/1 — p3, one obtains

2 1
dp>
/max{ 1-p3—q2,0} ((p2 + q2)2 + [7% — D«
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<

/‘2 quf,/l—p§ d
X

O Gy 1=pD>+p3-De

2 qu>\/1—p§
_|_
0

((p2+ /1= pD*+p; — D"

dps

2
1
< f dp < > (7.56)
O @pyt-ppe AT

for some finite constant C. Since f_ll (1— p%)_"‘/zdm < 00, the first term in (7.55)
is bounded. The second term is bounded by

2
1
dp3/ ———dpr < o0. (7.57)
/1<|p3|<2 0 (p3— 1)

For the case ;1 > 0 we have |p2 + q2|* < 1 — p%. Hence,

XO0<minf{pi,pu2} 5 ~

sup / X|pl<2Xpr>0—
g2 PP min (o)

G=(42,0),42=0
/1 /‘/1—p§—qz 1
0

dpsx
L P i (1= (p2+q2)* = p*

= sup
q2=0

dps.

(7.58)

For fixed |p3| < land g2 < /1 — p% substituting x = ,/1 — p% — g2 — p2 gives
/\/1—17%—!12 1
0

(—(mta?— P
J1-rd-a |
) (1= (1= 13 =02 = p
J1-rd-a |

Thus the expression in (7.58) is bounded by

dx

dx. (7.59)

1-pi—q 1

1
sup/ dp3x 2/ dx
@=0J-1 sy Jo x*(/1 = p3 + q2)°

dx < oo. (7.60)

1 1
1
S/ dp3/ —
-1 0 x¢( /l_pg)oz
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Dimension two: For the case 1 < 0 we have |p2 + ¢2| > 1. Hence,

2
Xmin{p1, 12} <0 1
sup / . dp2 = sup / dpa.
p=0Jo (—min{uy, uo =0 Jmax{1—-¢2,0) (P2 +q2)* — ¥
(7.61)

This is finite according to (7.56).
For the case u; > 0,

2 . 1—g2 1
sup —X(.kmm{m’ﬂz} dpr = sup f g dr2
¢=0Jo min{wy, u2}® 0<g2<1J0 (I = (p2+q2)°)~
1
1
=/ —dx < oo, (7.62)
0 X*(2—-x)“
where we used (7.59) in the second equality. O

7.3. Proof of Lemma 6.7

Proof of Lemma 6.7. The proof follows from elementary computations. We carry
out the case d = 2 and leave the case d = 3, where one additional integration over
g3 needs to be performed, to the reader.

By symmetry, we may restrict to py, g1, p> > 0. Furthermore, we will partition
the remaining domain of p3, > into nine subdomains. Let x; be the characteristic
function of domain j. Since (a + b)2 < 2(a2 + bz), there is a constant C such that
the expression in (6.29) is bounded above by C Z?:] lim¢_,¢ 1;, where

2
I / fﬁ 2x) dgr | dpid
j = Sup X0<pi.q1< q2 p1dqi.
L e 2 T sl p+ =1+ (p — )2 = 1]

(7.63)

Hence, we can consider the domains case by case and prove that lim¢_.o /; = 0
for each of them.

We use the notation u1 = 1 — (p; —|—q1)2 and ur =1—(p; — q1)2. (Note that
this differs from the notation in Lemma 6.5). Since p1, g1 > 0 we have > > pu.
We assume that e < 1/4, and thus for py, g1 < € wehave i, o > 1—4€% > 3/4.

For fixed 0 < p1, ¢1 < €, we choose the subdomains for p», g2 as sketched in
Fig.5. The subdomains are chosen according to the signs of (p> + qz)2 — u1 and
(p2 — q2)2 — 2, and to distinguish which of —, /iy — p2, —\/p2 + p2 is larger.

We start with domains 1 to 4, where (p + ¢)> — 1 = (p2 +¢2)*> — i1 > 0 and
(p — q)2 —1=(p2— q2)2 — w2 > 0. Note that in domain 4, py > M >

+/1 — 4€2, whichis larger than €. Hence x4 = 0 for p; < +/1 — 4€Z, giving I = 0.
For domains 2 and 3, we have

I, = sup /RZ X0<p1,q1<e X2pa<./li2— /i1

0<pa<e
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92 5 g2 = +/H2 + P2
| 1

Q2 = —+/Ik2 + D2

Lo~
8
|
6
|
l
) G2 = /1 — P2
l
! q2 = —4/H1 — P2
Fig. 5. Domains occurring in the proof of Lemma 6.7
[ e |
X dg> | dpidqn, (7.64)
w PiHai+pr+as—1
I3 = sup / X0<pr.qi<e X2py> . /in—/it1
0<pr<e JR?
[ i |
X dgz | dpidqi, (7.65)
as PT+ai+p3+a;—1

where ap = /12 — p2 and a3 = /i1 + p2. Since 0 < py, g1, p2 < €, we have
1 —p% —qlz —p% > 3/4 and thus

1- 1917 %
/2 1 artanh ~————— — artanh
J
a

2. 2, 2., .2 = /
p Aty ar =l \/l—plz—qlz—pﬁ
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J1-r—ai -3
aj '

< C artanh

(7.66)

Since artanh(x /y) = In((y +x)?/(y* —x?))/2 and \/1 —pi—qi—pi+a; <3
we get

=3 /
— su <
2 O<p2p<€ R X0<p1.q1 <€ X2pa</ia— /i1

9
[ 2(p1q1 — p2(Ju2 — p2))

2
} dpidq (7.67)
and

sup /Rz X0<p1.qi<e€ X2p2>/la—/1n1

2
X [ln ? i| dpidq;. (7.68)
2(p1q1 + p2(/Ir1 + p2))

For domain 2, we substitute z = p; + g1 and r = p; — ¢ and obtain the bound

C
L < — _
2 = 2 055;12116 /1%2 Xlrl<z<2e X2py< /2 — /i1
2
|:l 18 i| drd (7.69)
X n raz. .
22 —r2—4py(N1—r? = py)

The condition 2py < /12— /i1 implies that x := z2 —r2—4py(v/1 — r2—p;) >
0. Substituting z by x gives

¢ 1872 1
I < Z sup / dr/ dx |:ln—]
0=pa<e 0 Yo x4 2+ 4py(VT=12 = po)
c (€7 1877 1
< —6/ |:ln —:| —dx. (7.70)
2 Jo X \/;
This vanishes as € — 0. For domain 3 we bound (7.68) by
9 12
I <C 1 dpidq, 7.71
3= /RZ X0<p1.qi<e |:n 2p1Q1:| p1dq1 ( )

which vanishes in the limit € — 0. For domain 1 note that since /12 +p2 > az, as,
we have IT1 < I, + 1.

Now consider domain 5, where (p + ¢)> — 1 = (p2 + ¢2)> — 1 > 0 and
(P —q@)* =1 = (p2 — q2)* — n2 < 0. We have

I / /r“” 1 d 2d d
5= sup X0<pi, ————dq2 | dpidq.
0<py<e JR? s Jii—p 2(p191 + p2g2)
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(7.72)

Integration over ¢» gives

fﬁnwz 1 ( (w@—vﬂﬁm+2ﬁ>

dgx = L
Jii—p2 2(p1g1 + p2g2) 2p> riqi+ (i — p2)p2

(7.73)

Note that \/i1z — /i1 = 4p1g1/ (2 + 1) < 2p1q1/v/1 —4€? and /i1 —

p2 > +/1 — 4€2 — €. We can therefore bound the previous expression from above
by

1 2p> 2p2 1 1
—In(1+ + < + <C,
2p2 VN1 —4e2 1 —4e2 —¢ V1 —4€2 1 —4e? -«
(7.74)

where we used that In(1 4+ x)/x < 1 for x > 0. Therefore I5 < C2¢? vanishes as
e — 0.
For region 6 we have

Is = sup /]RZ X0<p1.q1<e X2pr</lia— /i1

0<pr<e
—J/Rr1—p2 1 2
X / ——dgo | dp1dq;. (7.75)
—vim+p: 2(p1g1 + p2q2)
Integration over ¢» gives
—VER 1 1 (VH2 — /it — 2p2)
- dp=—"(1+p
—via+p: 2(p191 + p2q2) 2p2 riq1 — (Ju2 — p2)p2
(7.76)

One can compute that
9 2= —2 8
B e Vo Sl 5>0.  (1.77)
ap2 prg1 — (V2 —p2)p2 - (V2 + /i —2p2)
Thus, for x2p,< /uz— /7 We have
[l — I =2p2  _ lim NI T

11 — (V2 — P2~ p—(Jim—vi/2 P1a1 — (V2 — p2)pa i1
(7.78)

The expression in (7.76) is thus bounded above by

1 2 1
o, (””w—) Vi s

(7.79)
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which is bounded as € — 0. In total, we have Ig < Ce?, which vanishes in the
limit € — 0.
For region 7,

I = sup /R2 X0<pr.qi<e X2p2>/in— /1t

0<pr<e

—JHm2+p2 1 2
X / dgo | dpi1dq;. (7.80)
—Jii-p2  —2(p1q1 + p2g2)

Integration over g gives

/Wﬁm 1 1 <1+ (M—m—2p2)>

dgz = =—1In P2
_Jii-p» —2(p1q1 + p2q2) 2ps pi1q1 — (Ju2 — p2)p2
(7.81)

According to (7.77), for (\/u2 — /IX1)/2 < p> < € this is bounded by

Lln<1+p2(*/“__‘/m_2e))slze_wﬂ__”m. (7.82)
2py p1g1 — (12 — €)e 2 (B2 — €)e — piqi

For p1, g1 < € this can be further estimated by

1 2 1
5 < , (7.83)
2( 2 —€)e —€ V1 —4e? —2¢
which is bounded for ¢ — 0. Hence, Iy < C €2 vanishes for € — 0.
For domains 8 and 9, we have
Ig = sup / X0<p1.q1<€ X2p2 < Jiia— /i1
0<py<e JR?
VE1=p2 1 2
X / 5 5 5 quz dpidg, (7.84)
~Jii-p V= Pi =41 —P; — 43
lo = sup / X0<p1,q1<€ X2pa> /12— /1i1
0<pr<e JR?
JII=p2 1 2
X / 3 3 3 2dq2 dpidq;. (7.85)
~Viztp 1 =P —4i —P3 — 45
We bound
/‘\//TI*PZ 1 4 5 JH1+p2 1 d
q2 = / q2
—Jii-p2 1 = pt—q} —p3 — 43 l—pt—af—p3—a3

1 | (wl—p%—qlz—p%h/uwpz)
= n
J1-p7 -4} - p} 1= p?—q?—p— Jir — p2
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1 | ((\/l—pf—qlz—p§+\/m+pz)2)
= n
2 —
1— p% _ q% _ p% (p191 — p2(Ju1 + p2))

1 9
1 . 7.86
= V1—=3e2 ! (2(1?1611 — p2(Ji1 +1)2))> (7.86)

Substituting z = p1 + q1 and r = p; — g1 we obtain

Ig <C sup AZ X0<p1.q1<e X2py</ma— /101

0<pr<e

9 2
x In ( ) dp1dq;
2(p1g1 — p2( Y1 +
(P11 — p2 (/i1 + p2)) (7.87)

C 2e €
< £) sup /0 dz/ dr)(\r|<zx2p2< N—rZ—J1—22
—€

0<par<e

- < 18 )2
n .
2 =r?=4App(V1 =22+ p2)

Substituting 7 by x = z> —r? —4py(+/1 — z2 + p) and using Holder’s inequality,
we obtain

C 2¢ 22—4py(pr+v/1=22) 18 2
Is < — sup / dz/ In (—)
4 0<pr<e J4pr—4p3 0 X
1
X dx
\/zz —4py(V1 =22+ p2) —x
13
=

C 2e 2—4ps(pa+v1-22) 18\ ©
— sup / dz[ / In (—) dx
4 0=<pr<e J4pr—4p3 0 X

2—4py(p2+V1-22) 1 2/3
X / dx ]
0 (22 —4p2 (V1 =22 + pp) — x)3/4

(7.88)

In the last line we substitute y = z> — 4py(+v/1 — 22 4+ p2) — x, and then we use
22 —4py(W1 — 22 + py) — x < 4€? to arrive at the bound

C 2e 4¢2 18 6 173 4¢2 1 2/3
— sup / dz / In{ — ) dx / 3—/4dy
4 0<py<e Jap,—ap? 0 x 0oy
2 ] 13 2 23 (7.89)
C € 18 €< 1
—€ In{ — ) dx —dy ,
2 0 x o y¥4

Iy

IA

IA
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which vanishes as € — 0. For Iy we bound (analogously to (7.86))

/\/171172 1
dg2
—Jiwmm V=P —at —pi— a3

Vi2=p2 1
§2f0 1—p%—qf—p§—q§dqz
_ 1 . (1=t —af - p3+ vim - pa)’
\/1_p%_q12_p% 2(p2 (2 — p2) — p1q1)

(7.90)

1 4
1 )
= V1 =32 n<2(pz(«/u _PZ)_P141)>

Substituting z = p1 + g1 and r = p; — g1 we obtain

Iy <C sup /];%2 X0<p1,q1<e X2pr>./ma—. /i1

0<p2<e

4 2
n ( ) dp1dqi
2 _ _
(p2(/ 12 — p2) — p141) (7.90)

3
s— sup ﬁgdr/ dzXiri<e Xppy o T2 T=22

0<p2 <€

8

2
In .
% (4p2(«/1—r —p)—22 +r2>

Substituting z by x = 4pa2(+/1 — r2 — p3) — z% +r? and using Holder’s inequality,
we obtain

C € 4pr (W 1=rZ=py)+r? 8\ 2
Ig < — sup / dr/ In (—)
4 0<ppr<e J—¢ 0 X

1
X
\/4p2(\/1 —r2—p)+r?—x

C € < 4py(V1=r2=py)+r? 8\
— sup / dr / In (—) dx
4 0<pr<e J—¢ 0 X
4pr (VT2 = pa)r? | 23
X / dx
(0 Ap2(W1 =712 = p2) +r2 —x)3/4 )

1/3 de+e? 1 2/3
/0 ) (7.92)

which vanishes for € — 0. O

dx

1/3

IA

IA
S Ne)
m
Y
S—
&
[0}
+
m
=3
7N
= | oo
~
o)
o
=
SNS—
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7.4. Proof of Lemma 6.9

Proof of Lemma 6.9 To prove Lemma 6.9 we show that the following expressions
are finite:

(i) supz— /o sup,erallV'2Br (-, @IV

(i) supy sup,cpa [ V'/2Br (. @) xp 23, V12l

(iii) supy sup,cra |V B1 (. ) X((+r2— i ((—q2—y <0l VIl

(iv) supr sup v | VI2Br (o ) X p2 <3 X (4P — (g r—w=0l V

(v) suprsupy i |V [Br (@)X <suXicgr-mc—ar-m=0 = €1(@)]
<|VI'72|

1172

In combination, they prove (6.33).

We start with (i) and (ii). By Lemma 2.1 there is a constant ¢ depending only
on 1, such that By (p, ¢) < co/(1+ p?) forall T > p/2and p, g € R?. Similarly,
using (2.3) one sees that there is a constant ¢; depending only on p such that
Br(p,q) <c1/(1 + p>) forall T > 0 and p,q € R? with g> > 3. The claim
follows since [[|V|"/2 15|V [!/?] is bounded [8,9, 11].

For (iii), it suffices to prove that

Y = sup sup / Br (. )X ((p+9)>— i ((p—q>—my<0dP < 00, (7.93)
T qeRd R4

since (iii) is bounded by ||V|[{Y. The integrand is invariant under rotation of
(p,q) — (Rp, Rq) around the origin. Hence, the integral only depends on the
absolute value of ¢ and we may take the supremum over ¢ of the form g = (|g|, 0)

only. For p, (g1, 0) satistying ((p + (g1, 0)* — w)((p — (g1, 0))* — p) < 0, we
can estimate that by [6, Lemma 4.7]

Br(p, (q1,0)

2 1 . - -
< exp (—;mmmpn gD+ 52 — e — (Up1l — g1 — p2}> . (7.94)

Note that (|p1|+ |g11)* + p* — i < w— (Ip1l = lg11)* — p* < p* +qf < ju. We
can therefore further estimate

Br(p, (@1, O) X(1p1 14191124+ 52> > (1 p1 |~ a1 )2+ 52

2 1 -
< 2 exp (= 2P+ D+ 72 = 10) Kttt

2 1 )
+oexp <—7(u« —(pil = lq1)* = p2)> Xp=(pri—lap2+p2- (1.95)

We now integrate the bound over p and use the symmetry in p; to restrictto p; > 0,

replace |p1| by p1 and then extend the domain to p; € R. We obtain

4 1 N
Y < sup sup — |:/ exp <——((P1 +|¢11|)2+P2—M)>
T qeR R T
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X X(prHian P45 >n X p2 gt <u 9P
l ~
- /Rd P <_T(“ — (= lqr)* Pz)) XM>(P1—|41)2+I52dpi| .(7.96)

Now we substitute p; & |g1| by p; and obtain

4 1 2 2
Y <sup sup — exp (—*(171 +p —M)>X 2 X a2 dp
T lqil<yie T Jrd T PiHp7 > (pr=lqi))*+p+qi <p

4 1 s d
+Sl;p; RdeXp —?(M—Pl—P) X pi+ 24P

4S9 (2 /myd—1on/T oo
sup | GV e / Ty

= s T r
41Sd—1|_d=1,~u/T /i
+ sup | |\/HT ¢ / e’z/Tdr, (7.97)
T 0

where we used that (p; — |q1))> + p* + q% < = p* < 2u. Note that

w/T oo 12
&/ e Tdr = n—\/Ee"/Terfc <\/E) (7.98)
T 2 VT T
—u/T N 1/2
Ve T / Ty = ”—\/Ee—“/ T orfi \/E . (7.99)
T J 2 VT T

As in the proof of [6, Lemma 4.4], we conclude that Y < oo since the functions

and

xe"zerfc(x) and xe"‘zerﬁ(x) are bounded for x > 0.
For (iv), it again suffices to prove that

X =sup sup / Br (s @ X p2> <3 X((p+072—10)(p—q)?—y=0dP < 00,
T 1> E TR

(7.100)

since (iv) is bounded by || V' ||1 X. Again we can restrict to g of the form g = (|g|, 0).
The idea is to split the integrand in X into four terms localized in different regions.
The integrand is supported on the intersection and the complement of the two
disks/balls with radius ,/u centered at (41, 0). (For d = 2 this is the white region
in Fig.3).

o The first term covers the domain with |p| > /i outside the disks/balls: X| =
SUPT SUP| | v Jra Br(p, (@1, 0)x p2 <3, X 2= AP

e The second term covers the remaining domain with | p{| > |g| outside the two
disks/balls:

X2 =sup sup

dj /
T N /132<u [p11>+/1n—p*+lq1

|(11\>T
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e The third term covers the remaining domain with |p| < |g1| outside the two
disks/balls:

X3 =sup sup

dj f
T |q1>¢2ﬁ/u—q%<ﬁ2<u Ip1l<—~/u—p*+lq1|

dp1Br(p, (q1,0) xp2 <3,

e The fourth term covers the domain in the intersection of the two disks/balls:

X4 =sup sup / dﬁ/ dp1Br(p, (q1,0)) X 23

T P <ngt Jipil</i= = e
We prove that each X; is finite. It then follows that X < X + Xo + X3 + X4 is
finite. We use the bounds

1 : 2 ~2
——— it (Ip1l = lq1D* + p* > u,
Br(p, <q1,0)>s{”+?' "

i 2 52
=g Hpl D™+ p7 <,

(7.101)

which follow from (6.18). The first line applies to X, X5, X3, the second line
to X4. For X|, we have p? + q12 - un > ‘112 > /4 and thus X; < oo. Sim-

ilarly, for X», we have p> + ¢7 — u = (\/q} + p} + Vi — PO (g} + pT —
V=755 > lgil(pil — v — p2) = g} > /4 and thus X» < oo. For X3,
we have p + g2 — 1 = lq1l(q1] — Ve — 52 = YL (lg1| — /i — p?). Hence,

4 - 2_ 2
X3 < Sup, i Tﬁfu—q%<52<u dp < oo. For X4 we have u — p* — qf >

2

w—Guw—p—1q)? = p* — g} = 2lq11(/i — B2 — Iq1]). Thus,

1

X4 < sup / —dp < o0. (7.102)
Vi St <u—q? 191l

lg1]> 5 !

To prove that (v) is finite, let St 4(g) : LY(R?) — L®(R?) be the operator
with integral kernel

d/ [ei(ky»p _ei«/ﬁ(xfy%p/lpl]
@m)¢ Jra

XBr (P DX ((p+a)* ) ((p-q2—-)>0X p2 <3 dP- (7.103)

Sr.a(g@)(x,y) =

Then (v) equals supy SuPIqI<4 || V1/2ST,d (q)|v|1/2 || . With (2.3) and |e* —e'Y| <

min {|x — y|, 2} we obtain

1 min {|(Ip| — V) (x = y) - p/Ipll, 2}

1S7,a(q)(x, )| < o) e PR —
X X(p+a) =) (p—q)*— ) =0 X p2 <3 4P
21 min {||p| — /&llx — yl, 2}
~ @m)d Jra Ip* +q% — ul

XX(p+9)* =) (p—q)?—) >0 X p2 <3P (7.104)
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Again, the integral only depends on |g|, so we may restrict to ¢ = (|g|, 0). We
now switch to angular coordinates. Recall the notation r+ and e, introduced before
(6.37) and that (|r cos¢| F |q1)> + r?sing? = u < r = ry(ey). Ford = 2 we
have

rdr

1 2 N&Taee . 2
|ST,2((CI],0))(x,y)|§W/(; |:/ min {|r — /&l|x — yl, 2}

riey) r24qi —
=) min { (/&£ —r)lx — yl,2
+/ L >3 }rdr}dw =:1g(x,y,q1)
0 w—r—q
(7.105)
and ford =3
™[ Y3 min {)r — Rl = y1,2)
Srattan ) = 5 [ [/ =i binortar
2m)= Jo r4(eg) re+qy —n
r-(¢9) min —r)x—yl,2 J3
+/ {(ﬁ 2)| 3 Y| }sin9r2dri|d9 < —Mg(x,y,ql).
0 n—rs—q 2
(7.1006)
‘We bound g by
lgCx. y. g1l
o ! /2” /W min {7 — ri-(ep))lx — y1, 2} + min {| /72— re(eplx =y, 2}
Tem? o | ey 2 4q7 —n
r—(eg) mi — — i — _
+/ 4 mln{(r_(e¢) r)|x y|,2}+2m1n{2(ﬁ r—(egp))|x yl,z}rdri|d<p.
0 n—re—q
(7.107)

Note that r (e,) attains the minimal value |/ — q12 at || = 5 and the maximal

value /it + |q1] at |¢| = 0. Similarly, r_(e,) attains the maximal value ,/u — ql2

at |g| = % and the minimal value /1w — |g1] at |¢| = 0. For the first summand
in both integrals we take the supremum over the angular variable. For the second
summand in both integrals, we carry out the integration over r and use that |/ —
r—(ep)l, |/ —ry(ep)| < |q1]. We obtain the bound

lg(x, ¥, q1)l

: 2
min { |[r — —qi|lx — |,2}r .
_L { ey min (lqi||x -y, 2)

27 Jo "2 +qf — ul 2(2m)?

2 20+ 2 _ 2
x/ In ahi +1n P ) | de. (7.108)
0 ry(ep)” +qi — 1 m—qi —r—(eg)
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Recall that we are only interested in |g1 | < ,/u/2. For the first term, we use thatr <

Vamand P2 +q} —pl = Ir—Ju— g} lir+ i — g}l = r— /i — g}l — g

This gives the following bound, where we first carry out the r-integration and then
use that ,/u — q12 > 31/2:

V3 _ 1
/ i Iz y|, dr
T\ —qi Ir =/ —dqil
2
V3 w—qilx —yl
< R In | max {1, —21
w1 —ai
(V3 — /i —adlx -yl
+2+1In | max {1,
2
Bulx —
§C|:1+ln <1+%>} (7.109)
For the second term, we use that
2 + g? poai _ 2n+ai (7.110)
rileg) +af —pp—qt —r(e,)?  Alega Pl
and |q1| < \/1u/2,as wellas |ey 1| = |cos | > m1n{|——<p| |3£T — @[}, to arrive
at the bound
min {|q;|[x — y|,2} [*7 m( V3 )d
(2m)? 2|eg0 191
4mi — vy, 2
- mm{lcnllx2 yl }/ ( )dso
2m) logi
min {|g;[|x — yl, 2} 2.3
= 1 +1In
27 7lqi|
min x—yl|,2 21
_ {lg1llx — v, 2} ( (@Ix—yl)—i—ln( ))
2 Ix — yllqil
(7.111)

where we usedfln(l/x)dx = x+x1In(1/x). Since x In(1/x) < C, this is bounded
above by

1
= (1+max{1n <\/3,u|x—y|),0]> el (7.112)
In total, we obtain the bound
sup [g(x,y,q)| = C[1+1In(1+ulx—yl)]. (7.113)

lgi 1< £
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Let M : L>(R?Y) — L?*(R?) be the operator with integral kernel M(x,y) =
VI (1 +1n (1+ /rlx = yIDIVIVA(y). We have

sup sup_ | V'2874@1 V12| < Cu )M (7.114)

Tog< £

for some constant C(u, d) < oo. The operator M is Hilbert—Schmidt, since the
function x — (1 + In(1 + |x])?)|V (x)| is in L1 (RY). O
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