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We demonstrate the formation of ferroelectric domain-wall polarons in a minimal two-dimensional
lattice model of electrons interacting with rotating dipoles. Along the domain wall, the rotors polarize in
opposite directions, causing the electron to localize along a particular lattice direction. The rotor-electron
coupling is identified as the origin of a structural instability in the crystal that leads to the domain-wall
formation via a symmetry-breaking process. Our results provide the first theoretical description of
ferroelectric polarons, as discussed in the context of soft semiconductors.
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The properties of many systems are governed by the
rotational degrees of freedom associated with dipolar rotors
embedded in a lattice environment [1–7]. Example systems
include dipoles trapped in optical lattices [8–10], dipoles
pinned to organic substrates [11–13], or dipoles in crys-
talline materials [14–16]. In the latter, the rotating dipoles
may be attributed to either molecules embedded in the
lattice [1], or to anharmonic and dynamically disordered
polar phonon modes behaving like effective dipoles
[2,17–20]. An overarching objective in such works is
studying the collective orientation of the dipoles, which
is often induced by dipole-dipole interactions or external
control fields [21–23] and leads to phenomena such as
ferro- or paraelectricity [24–28].
The collective orientation of the dipoles can also be

initiated by introducing a charged impurity into the lattice,
akin to the polaron concept in condensed matter physics
[29,30]. In this scenario, the impurity couples to the
rotating dipoles and forms a quasiparticle, the so-called
ferroelectric polaron [15,31,32]. In contrast to the well-
established Holstein or Fröhlich polarons [29,33–35], the
excess charge carrier in rotor lattices is dressed by the
rotational excitations of the dipoles instead of the lattice
vibrations, which significantly changes the observed phys-
ics [32].
Experimental and ab initio quantum chemistry studies

identified the presence of (effective) dipoles in exemplary
soft and polar semiconductors such as lead halide
perovskites (LHPs) [14,31,36–39] and Bi2O2Se [16].
Calculations show that a polaron forms around an excess

charge carrier and that the polaron wave function tends to
localize along different lattice directions, forming a
domain-wall-shaped polaron [15,40,41]. The dipoles in
this type of polaron are arranged in two antioriented
ferroelectric domains, with the electron confined within
the corresponding domain wall. The domain-wall forma-
tion is argued to shield the charge carrier from scattering
with defects, phonons, and other charges [14–16]. This is
one proposed explanation for the remarkable optoelectronic
properties of soft semiconductors, such as their long carrier
lifetimes and diffusion lengths [42–44].
It is therefore anticipated that domain-wall ferroelectric

polarons emerge in generic rotor lattice systems coupled to

FIG. 1. (a) Geometry of the two-dimensional rotor-lattice
model. The filled (empty) blue circles represent occupied (un-
occupied) electron sites. The red circles indicate the positions of
planar rotors. Rotor angles and displacement measures are
provided. (b),(c) Schematic of the influence of two distinct rotor
orientations on the hopping of the electron on an elementary four-
site plaquette.
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a charged impurity. Nevertheless, the minimal interaction
mechanisms required for their emergence and their asso-
ciated physical properties remain to be established.
In this Letter, we demonstrate the emergence of ferro-

electric domain-wall polarons in a minimal two-dimensional
lattice model of dipolar rotors interacting with a mobile
charge carrier; see Fig. 1(a). In two dimensions, the
orientation of the rotor controls the tunneling direction of
the electron, cf. Figs. 1(b) and 1(c), leading to a richer
interplay between electron localization and polaron transport
than its one-dimensional analog [32,45]. Our variational
phase diagram analysis reveals that domain-wall polarons
occur for anisotropic systems when the rotor-electron
attraction is of the same order as the electron kinetic energy.
Moreover, the energetics of the system allow us to propose a
pseudo-Jahn-Teller mechanism [46,63,64], according to
which these domains can arise spontaneously from an
isotropic system through symmetry-breaking structural dis-
tortions. These distortions are associated with long-
wavelength, tunneling modulating soft phonons, which
are omnipresent in materials where ferroelectric domain-
wall polarons are postulated to appear [15,16,65]. Beyond
the regime of ferroelectric domain-wall polarons, we observe
the formation of ferroelectric large and small polarons for
weak and strong interactions, respectively. These polarons
are characterized by isotropic rotor order and transport
properties.
Our two-dimensional model is composed of two super-

imposed square lattices, pertaining to electron and rotors;
see Fig. 1(a). Both, the rotor and the electron lattice have a
lattice constant a, and are shifted with respect to one
another by a=2 in both the x and y lattice directions. Here,
we consider a single electron band and planar rotors. The
rotor orientation, ϕj;l, with ðj; lÞ being the site index, is
given by their angle measured from the horizontal axis.
This rotor-lattice system is described by the Hamiltonian

Ĥ ¼ Ĥhop þ Ĥrot þ Ĥint: ð1Þ

The first term, Ĥhop ¼ −txT̂ x − tyT̂ y, describes the kinetic
energy of the electron in the tight-binding approximation,
moving along the x and y directions of the two-dimensional
lattice. Here, we introduce the scaled kinetic energy
operators

T̂ x¼
X

j;l

ĉ†j;lþ1ĉj;lþH:c; T̂ y¼
X

j;l

ĉ†jþ1;lĉj;lþH:c:; ð2Þ

where ĉi;j (ĉ†i;j) are the electron annihilation (creation)
operators on the electron lattice site ði; jÞ and tμ are the
tunneling integrals along the μ axis. The structure of the
kinetic energy operators together with wave function
normalization implies that for any single-electron state,
jhT̂ μij ≤ 2. Furthermore, we employ periodic boundary

conditions, i.e., ĉMyþj;Mxþl ¼ ĉj;l, where Mμ is the number
of rotors along the μ∈ fx; yg direction, and the total rotor
number is M ¼ MxMy. The term Ĥrot is the total rotational
energy,

Ĥrot ¼ −B
X

j;l

∂
2

∂ϕ2
j;l

; ð3Þ

withB being the rotational constant, which is assumed to be
equal for all rotors. Finally, the third term in Eq. (1)
describes the electron-rotor interaction,

Ĥint ¼ V0

X

j;l

ĉ†j;lĉj;l

�
cos

�
ϕj−1;l −

π

4

�
þ cos

�
ϕj;l þ

π

4

�

þ cos

�
ϕj−1;l−1 −

3π

4

�
þ cos

�
ϕj;l−1 þ

3π

4

��
; ð4Þ

with coupling constant V0. The angles are chosen so that
the electron-rotor attraction is maximized when the respec-
tive rotor points toward the electron; see Fig. 1(a). Rotor-
rotor interactions are not considered so as to focus on the
dipolar order emerging from the rotor-electron coupling
alone. In addition, such interactions are considered insig-
nificant in certain setups postulated to feature ferroelectric
polarons due to screening effects [66]. In the present work,
we restrict ourselves to V0 > 0, which describes the
interaction of dipolar rotors with electrons. Note that the
behavior presented here will not change in the case of

FIG. 2. Magnitude of the polarization vector,Pjl
rot (red), and the

electron occupation amplitude N jl
ele (black), both associated with

the variational ground state of the electron-rotor lattice. The blue
arrows indicate the orientation of the rotors, Pjl

rot, to illustrate the
corresponding dipole order. For varying V0=t andΔt, four distinct
configurations arise: domain-wall states FDWx and FDWy in (a)
and (b), FLP in (c), and FSP in (d). In all cases B ¼ 10−2t.
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holes, V0 < 0, since the single-rotor wave functions will be
just inverted. We fix the units by setting t ¼ tx þ ty ¼ 1,
which implies that the model is governed by the ratios B=t,
V0=t and the asymmetry parameter Δt ¼ ðtx − tyÞ=t.
In the case that B=t≳ 1, long-range electron-rotor

correlations are suppressed and the physics is dominated
by the elementary excitations of the rotors adjacent to the
electron [32], preventing the formation of intrinsically
long-range domain walls. However, in the case where
B=t ≪ 1, the interplay between the rotor-electron attrac-
tion, promoting rotor polarization, and the electron kinetic
energy, being hindered by variations of the rotor polariza-
tion, can lead to large polaron formation. This regime is
also relevant experimentally, since density-functional
theory [67–69] calculations for LHPs showed that
t; V0 ≈ 0.1–1 eV, while the molecular dipoles rotate much
slower, because B ≈ 1 meV [70,71]. The separation of
rotational and vibrational timescales allows the parametric
treatment of electron-phonon interactions by renormalizing
tμ [45]. Hence, we focus on the regime B=t ≪ 1; V0=t ≈ 1.
In the limiting case, B → 0, the rotors are classical,

parametrized only by their orientation ϕj;l ¼ ϕcl
j;l. The

rotors are fully polarized and the electron localizes in
the effective potential provided by the interaction term Hint
due to the orientation of the rotors. The way the rotor
orientation affects the localization basin of the electron can
be understood by considering a rotor surrounded by
four electron sites. If a rotor is aligned toward a site [see
Fig. 1(b)], it provides a large potential energy benefit or
deficit for the sites it points toward or away from,
respectively. This large potential variation suppresses the
electron tunneling, resulting in a kinetic energy penalty. In
contrast, if a rotor points between two electron sites [see
Fig. 1(c)], it allows for tunneling between these two sites
but prohibits tunneling in the perpendicular direction.
Therefore, polarized rotors act like traffic control for the
electron, either localizing it or allowing it to be transported
along one lattice direction. The energetically preferable
configuration strongly depends on the anisotropy Δt, with
single-site localization preferable for lower anisotropies
and strong interactions V0 ≫ t [Fig. 1(b)] and the directed
tunneling being preferable for high anisotropies and weaker
interactions [Fig. 1(c)]. In the lattice case, there exists one
such elementary plaquette for each rotor, and the adjacent
rotors effectively interact since their plaquettes share an
edge, leading to an emerging rotor order [45]. Notice that
excited states of the electron are typically separated by
energies of the order of minðt; V0Þ, while shifting the center
of localization results in a degenerate state since Ĥ is
translational invariant.
In the semiclassical regime, B > 0; B ≪ t; V0, the rotors

in the spatial region where the electron is localized fluctuate
weakly around their respective equilibrium orientations. In
contrast, the rotors far away from the electron become
completely depolarized, as they only interact very weakly
with it. Therefore, the rotor order does not change

significantly from the classical case. However, as previ-
ously stated, the interaction between the rotors and their
neighbors within the electron localization basin lifts the
degeneracy of states with different localization centers,
thereby enabling the transport of the localized elec-
tron state.
To capture this behavior, we employ the mean-field

product ansatz [47–49,72] jψ1;1i ¼ jψ elei ⊗j;l jφj;li, by
which we evaluate the localized state centered at the
coordinate origin, jψ1;1i, via its expansion in the variational
electron, jψ elei, and single-rotor states jφj;li. Subsequently,
to approximate the total state of the system, we diagonalize
the full Hamiltonian in the basis provided by jψ j;li ¼
T̂l−1
x T̂j−1

y jψ1;1i, where T̂μ is the translation operator in the μ

lattice direction, e.g., T̂xϕi;j ¼ ϕiþ1;j; T̂xĉ
ð†Þ
i;j ¼ ĉð†Þiþ1;j. The

above procedure is variational in nature and provides an
adequate approximation in the semiclassical regime,
B ≪ t; V0, where emergent quantum rotor-rotor correla-
tions and electron excitations can be neglected.
As witnesses of the interplay between rotor-electron

attraction and electron kinetic energy, we will use T̂ μ from
Eq. (2), and the polarization vector

P̂jl
rot ¼

X

j0;l0
ĉ†j0;l0 ĉj0;l0 ðcosϕjþj0;lþl0ex þ sinϕjþj0;lþl0eyÞ; ð5Þ

which indicates the orientation of the rotor in the ðj; lÞth
rotor position relative to the electron. The localization
characteristics of the electron wave function can be inferred
from the distribution of the electron occupation ampli-
tude N jl

ele ¼ hψ jĉ†jlĉjljψi.
Our variational analysis reveals the presence of four

classes of ground states for varying V0 and Δt, each
characterized by a unique arrangement of the dipole
moments and the electron localization. This distinction

FIG. 3. (a) Segment of a long-wavelength, tunneling modulat-
ing lattice deformation displacing the electron sites (blue) along
the x axis. This deformation mode extends over at least the
domain-wall region and locally results in Δt > 0. (b) Combined
variational ground state phase diagram for B ¼ 10−2t, consider-
ing only the state of minimum energy. The order parameters are
T μ and the gray lines indicate the sharp phase transitions within
the vGH ansatz.
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can be illustrated by examining N jl
ele and the orientation of

polarization vectors Pjl
rot ¼ hψ jP̂jl

rotjψi; see Fig. 2.
Remarkably, for asymmetric lattices, Δt ≠ 0, we find

that the ground state distribution of the Pjl
rot has a domain-

wall structure on the rotor-lattice with rotational C2

symmetry; see Figs. 2(a) and 2(b). The rotors form two
opposite and largely polarized ferroelectric domains with a
lateral extension of 8–10 rotors, depending on V0=t. In the
transverse direction, the rotor polarization extends over 2–4
rotors. The electron wave function is confined to the
domain wall, as illustrated by the distribution of N jl

ele.
This is a manifestation of the mechanism described in
Fig. 1(c), enabling the transport of the electron perpen-
dicularly to the rotor polarization. These states correspond
to ferroelectric domain-wall polarons [16] and herewith we
refer to them as ferroelectric domain walls (FDWμ). Their
wave function anisotropy leads to an anisotropic contribu-
tion to its kinetic energy. In particular, for a FDWμ,

1 < T μ ¼ hψ jT̂ μjψi ≤ 2, while T η≠μ < 1.
In contrast, the distributions of N jl

ele and Pjl
rot are C4

symmetric in the weak and strong coupling regimes for
Δt ¼ 0 [see Figs. 2(c) and 2(d)], where the Pjl

rot vectors
always point toward the electron, since the mechanism of
Fig. 1(b) is dominant. For weak couplings, the polarization
cloud extends over 6–8 rotors in both lattice directions and
we call the respective state ferroelectric large polaron
(FLP). In this state, the electron kinetic energy dominates
and thus it is characterized by T μ ⪅ 2 for μ∈ fx; yg. For
strong couplings, the rotor excitations localize along both
lattice directions, forming a ferroelectric small polaron
(FSP). In this state, the rotors localize the charge carrier to a
few sites, thus resulting in T μ → 0 for both μ∈ fx; yg.
As mentioned above, this approach based on electron

localization is limited to the regime where V0 ≫ B. A
complementary variational analysis shows that for weak

couplings, V0 ∼ B, the ground state is more accurately
described by an extended, delocalized polaron ansatz
analogous to the vGH ansatz presented in [32]. In this
ansatz, we describe the electron in a plane wave basis and
formulate the rotor wave function in the comoving frame of
the electron, which inherently accounts for rotor-electron
correlations. The variational optimization of the vGH
ansatz improves the FLP ground states of the localized
ansatz in a regime where V0 ≲ 0.35t and the highly
asymmetric domain-wall states for jΔtj ≳ 0.7 [45]. In the
remaining parameter regimes, the vGH ansatz gives rise to
FDWμ and FSP states with overestimated energy compared
to the localization-based ansatz. Nevertheless, the vGH
states have comparable physical characteristics in terms of
Pjl

rot, N
jl
ele and T μ.

In Fig. 3(b), we show the phase diagram in the Δt − V0

plane resulting from both variational approaches, consid-
ering only the state of minimum energy [45]. For sym-
metric lattices,Δt ¼ 0, there is a smooth transition from the
FLP to the FSP states as one goes from the weak to the
strong coupling regime. The introduction of a finite
tunneling anisotropy, Δt ≠ 0, leads to FDWμ states. In
the limiting case Δt → �1, the FDWμ states are the ground
states even for weak couplings, V0 → 0; cf. [32].
The dependence of the energy on Δt shows a significant

energy benefit for increasing anisotropy [see Fig. 4(a)],
indicating an instability toward anisotropic states. To
quantitatively estimate the regime of this instability, we
expand the electronic Hamiltonian Ĥhop in terms of long-
wavelength, tunneling modulating lattice displacements up
to second order around Δt ¼ 0, assuming that the vibra-
tional Hamiltonian favors an isotropic state. That is, we can
write Ĥhop → Ĥhop þ κΔ2

t . The parameter κ is inversely
proportional to the electron-phonon coupling and propor-
tional to the elastic constant of the lattice [45,50–52]. Based
on this, the instability sets in for systems with strong
electron-phonon couplings or soft lattices, i.e., where
κ < κcrit ¼ 1

2
∂E2=∂Δ2

t jΔt¼0. This is consistent with the
notion that ferroelectric domain-wall polarons occur in
materials with soft lattices [15,16]. The stability regions in
terms of κcrit [see Fig. 4(b)] depend on material parameters
and thus make a qualitative prediction for the stability-
instability transition. As expected, the system is largely
stable in the weak coupling limit, V0 → 0, as the polaron is
in a delocalized state. For strong couplings, the system is
also stable, as the electron becomes almost completely
localized in a single lattice site. In both cases, the polaron
energy depends very weakly on Δt. For intermediate
couplings, however, κcrit peaks around V0 ∼ 0.5t, indicating
the presence of a structural instability as the polaron energy
strongly decreases for increasing anisotropy; see Fig. 4(a)
and [45].
This instability is a manifestation of the pseudo-Jahn-

Teller symmetry-breaking mechanism [46], as quantum

FIG. 4. (a) Variational ground state energy dependence on the
tunneling anisotropy for an intermediate coupling, V0 ¼ 0.6t.
The two-step process leading to the formation of domain-wall
polarons is illustrated by the gray arrows and yellow boxes.
(b) Phase diagram for a stability-instability transition, based on
the critical lattice stiffness as a function of the coupling strength
for B ¼ 10−2t.
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fluctuations associated with the electron-phonon interac-
tion can reduce the total energy of the system due to the net
energetic benefit of the Δt ≠ 0 configuration provided by
FDWμ formation. Within the vGH ansatz, the FDWμ states
are degenerate for Δt ¼ 0, which can be lifted for Δt ≠ 0;
see Fig. 4(a). Therefore, Jahn-Teller symmetry breaking
[46,63,73] is expected, independent of the stability proper-
ties of the electron-rotor system. In the localized ansatz, the
degeneracy at Δt ¼ 0 is lifted by correctly accounting for
the coupling between electron and rotors. This leads to a
cutoff in terms of κ to trigger C4 to C2 symmetry reduction
modes, and hence, the system exhibits the pseudo-Jahn-
Teller effect [46]. These modes can be provided by
tunneling modulating electron-phonon interactions [see
Fig. 3(a)] if the corresponding lattice stiffness parameter
is weak enough [45].
As a result of this mechanism, the ferroelectric domain-

wall polaron formation is a two-step process. First, the
electron localizes, forming FLP states. Then, the energy of
the system relaxes further through structural distortions of
the inorganic sublattice, giving rise to a tunneling
anisotropy and symmetry broken FDWμ state. This two-
step mechanism was previously proposed for FDWμ for-
mation in LHPs based on density-functional theory case
studies [15,40,41]. Furthermore, the instability condition
obtained within our model, V0 ∼ t, agrees with typical
parameters in LHPs [70,71].
In conclusion, we have studied the phase diagram of an

effective, material-independent, two-dimensional rotor-lat-
tice polaron model with two variational approaches. In the
regime of small rotational constants, there are four distinct
phases, each characterized by the collective ordering of the
dipole moments. Based on energetic considerations, we put
forth a two-step polaron formation process, which involves
charge localization in the dipolar field of the rotors,
followed by pseudo-Jahn-Teller symmetry-breaking struc-
tural distortions. The resulting anisotropic wave function
connects our model to the “Belgian waffle” polarons
theoretically proposed in soft semiconductors [15,16].
To rigorously map these ferroelectric polarons to those

observed in soft semiconductors, further investigations
should identify the origin of the effective dipoles, study
the transport characteristics, and analyze the three-dimen-
sional generalization where the rotors have even richer
possibilities to control the tunneling direction of the
electron. Finally, experimentally testing our prediction
regarding structural instability could identify new materials
that host domain-wall ferroelectric polarons.
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