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Email: ramona.heim@posteo.de 1. Climate change is expected to induce shifts in the composition, structure and
Funding information functioning of Arctic tundra ecosystems. Increases in the frequency and sever-
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ity of tundra fires have the potential to catalyse vegetation transitions with far-

Handling Editor: Robert G. Bjork 2. We propose that post-fire tundra recovery, coupled with climate change, may
not necessarily lead to pre-fire conditions. Our hypothesis, based on surveys and
literature, suggests two climate-fire driven trajectories. One trajectory results in
increased woody vegetation under low fire frequency; the other results in grass
dominance under high frequency.

3. Future research should address uncertainties regarding possible tundra ecosys-
tem shifts linked to fires, using methods that encompass greater temporal and
spatial scales than previously addressed. More case studies, especially in under-
represented regions and ecosystem types, are essential to broaden the empirical
basis for forecasts and potential fire management strategies.

4. Synthesis. Our review synthesises current knowledge on post-fire vegetation tra-
jectories in Arctic tundra ecosystems, highlighting potential transitions and alter-
native ecosystem states and their implications. We discuss challenges in defining

and predicting these trajectories as well as future directions.

KEYWORDS
climate change, disturbance, fire frequency, grasses, lichens, mosses, permafrost, plant
functional types, recovery, shrubs

For affiliations refer to page 1051.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.

© 2025 The Author(s). Journal of Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

1042 wileyonlinelibrary.com/journal/jec Journal of Ecology. 2025;113:1042-1056.


www.wileyonlinelibrary.com/journal/jec
mailto:
https://orcid.org/0000-0002-2503-7075
https://orcid.org/0000-0002-4618-2407
https://orcid.org/0000-0001-6597-2415
https://orcid.org/0000-0002-5134-0334
https://orcid.org/0000-0001-8851-7386
http://creativecommons.org/licenses/by/4.0/
mailto:ramona.heim@posteo.de
http://crossmark.crossref.org/dialog/?doi=10.1111%2F1365-2745.70022&domain=pdf&date_stamp=2025-03-13

HEIM €T AL.

1043

1 | ARCTIC TUNDRA IN THE FACE OF
CLIMATE CHANGE

In the face of climate change and related increases in fire occur-
rence, the state of the Arctic tundra biome is being re-evaluated
(Armstrong McKay et al., 2022; Callaghan et al., 2022). The
Arctic tundra has been a relatively stable biome, capable of with-
standing perturbations during the last millennia, since reaching
its current ecological state at the end of the last glacial period
(Bliss et al., 1973; Dunbar, 1973). However, this is no longer the
case; the Arctic is warming four times faster than the globe on
average (Chylek et al.,, 2022; Niittynen et al., 2020; Rantanen
et al., 2022). Its hydrologic cycle has intensified, with increased
atmospheric moisture, precipitation, and river discharge rates
(Bintanja et al., 2020; Box et al., 2019; Rawlins & Karmalkar, 2023).
Increased precipitation does not always mean that Arctic eco-
systems become wetter. In some regions, climate change is also
leading to the drying of the ecosystem due to increased evapo-
ration that exceeds precipitation, or due to permafrost (perenni-
ally frozen ground) thaw (Liljedahl et al., 2016; Zhang et al., 2009).
Climate change impacts on Arctic tundra ecosystems thus drive
permafrost degradation (Schuur & Mack, 2018), changes in vege-
tation productivity (Jia et al., 2003), and intensifying fire regimes
(Chen, Romps, et al., 2021).

1.1 | Changes in tundra vegetation

Climate change-induced increases in temperature, moisture lev-
els and nutrient availability may enhance tundra vegetation pro-
ductivity, which is typically constrained by environmental factors
(Martin et al., 2017; Mekonnen et al., 2018). These changes can
also impact other processes related to the carbon cycle (Jeong
et al., 2018). Under climate warming, increased shrub abundance
is considered a primary factor driving enhanced productivity and
vegetation community changes, especially in mesic and wet tun-
dra habitats (ElImendorf et al., 2012). This highlights the potential
for interactions among temperature, water and nutrient avail-
ability to drive shifts in plant community composition (Chapin Il
et al., 1995). These environmental changes resulting from climate
warming are also predicted to advance the treeline from the bo-
real forest into the tundra (Harsch et al., 2009; Kruse et al., 2019,
2023).

Significant vegetation shifts on a local scale have wide-ranging
impacts on biodiversity (Wallace & Baltzer, 2020), habitat structure
(Ims et al., 2019), and ecosystem services (Mauclet et al., 2022),
while also contributing to climate tipping points through altered
energy (Oehri et al.,, 2022; Swann et al., 2010) and carbon fluxes
(Clemmensen et al., 2021). When permafrost thaws, changes in
vegetation and soil release substantial greenhouse gases (Olefeldt
etal., 2016; Schuur et al., 2015), although increased vegetation could
potentially offset some of these emissions by enhancing carbon
storage (McGuire et al., 2018; Mekonnen et al., 2021).
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1.2 | Consequences of fire on Arctic tundra
ecosystems

Compared with the direct effects of gradual climate warming on
Arctic plant communities, fires can have more abrupt consequences
on tundra ecosystems. Understanding these impacts is especially
important as observed increases in fire occurrence are expected to
continue into the future (Chen, Romps, et al., 2021; Hu et al., 2015).
The drivers of increased fire activity and severity include rising tem-
peratures, longer growing seasons and increased lightning activity
(He et al., 2022), as well as land-use changes, such as the expansion
of infrastructure (Povoroznyuk et al., 2022). Post-fire vegetation
successional trajectories are strongly related to the fire regime (i.e.
the frequency, severity, season and extent of a fire), the abiotic con-
ditions (edaphic and climatic conditions) and the life-history traits
of the plants, including their disturbance legacy within a vegetation
community (Davis et al., 2018; Johnstone et al., 2016; Figure 1).
Consequently, post-fire recovery exhibits high variability across
tundra locations, reflecting not only diverse fire characteristics but
also local ecosystem differences such as ground ice regimes (Foster
et al,, 2022).

The effect of fire on above- and below-ground biomass and soil
organic matter depends on fire severity (Bowman et al., 2020). At
one extreme, vegetation affected by low-severity fires can recover
within 1-2 growing seasons, whereas at the other extreme, high-
severity fires can consume all biomass and soil organic matter, leav-
ing behind only bare mineral soil. The period between fires defines
the time span in which vegetation can recover through resprouting
and colonisation. Increased fire frequency favours fast-growing spe-
cies (e.g. ruderal herbs and graminoids) at the expense of slower-
growing species (evergreen shrubs and lichens) that require more
time to recover (Hollingsworth et al., 2021). Changes in the fire re-
gime can thus lead to shifts in the abundance of different plant func-
tional types (PFTs) with impacts on the environment and ecosystem
functioning.

Fires can also affect vegetation indirectly through changes
to the soil. These indirect effects are particularly strong in per-
mafrost regions, as the combustion of vegetation and the soil or-
ganic layer leads to a decline in thermal insulation, and charred
surfaces have lower albedo, resulting in higher soil temperatures
(Chambers et al., 2005; Jiang et al., 2015; Rocha & Shaver, 2011).
Higher soil temperatures, in turn, accelerate permafrost thaw,
increase soil microbial activity and organic matter decomposi-
tion (Gibson et al., 2018; Jansson & Hofmockel, 2020), which can
lead to shifts in vegetation (Ogden et al., 2023). Tundra fires can
also alter soil moisture dynamics, increasing or decreasing mois-
ture supply depending on microtopography, soil temperature
and thermokarst development (Chen, Lara, et al., 2021; Pegoraro
et al., 2021; Rodenhizer et al., 2023). Soil moisture can, for exam-
ple, decline after fire because of increased permafrost thaw and a
thinner organic layer, while rapid subsidence can lead to localised
water saturation (He et al., 2021; Rodenhizer et al., 2023). These
changes in permafrost and soil processes have feedbacks on
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Tundra fires are generally rare compared to the fire
occurrence in other ecosystems, but they may become
more frequent due to global change (Chen, Romps, et

al., 2021; Hu et al., 2015; Povoroznyuk et al., 2022).

Severity

Fire severity can be measured through the loss of
below- or aboveground organic matter (Keeley,
2009). According to the intensity of the fire, large
parts of the aboveground biomass are burned

Moisture

In boreal forests, increased fire frequency was correlated
with a decreased lichen cover (Palm et al., 2022), which
is a probable scenario for tundra fires as well.

.

Spatial extent

For functional types of the vegetation that must re-
establish, the recovery starts at the borders of the fire
scar and moves further inwards with elapsed time.
Lichen layers are often completely burned by fires and
their recolonization in burned areas is slow, as many
lichen species spread through fragmented parts of the
thallus — which is inefficient in terms of long-distance
spreading (Heinken, 1999; Miller et al., 2018).

Season

Tundra vegetation that burns early in the growing
season, recovers more quickly than vegetation that
burns later in the growing season (Racine et al., 1985).

R

directly (Bowman et al., 2020).

PR

Post-fire tundra
getation

Life-history traits .7
and interactions

Refugia can form in damp
depressions, where plants can
survive the fire (Frost et al.,
2020).

Permafrost

Permafrost thaw and subsidence impact post-fire
vegetation through its impacts on
microtopography, soil hydrology, biogeochemical
cycles and microbial communities (Jones et al.
2015, Jin et al. 2021).

Pre-fire vegetation
and seed bank |

PSRN

Some plants that have not been destroyed by
fire, can re-sprout (e.g., shrubs or tussock
graminoids) (Wein & Bliss, 1973), while
others rely on seed banks and seed dispersal
(Pausas & Keeley, 2014).

Depending on the life-history traits of species and
their interactions, vegetation composition changes
during post-fire succession. Thus, different species
and plant groups dominate the successional post-
fire stages (Tiribelli et al., 2018).

FIGURE 1 Factors that influence post-fire Arctic tundra vegetation.

vegetation through changes in hydrology and nutrient availability
(Jin et al., 2021).

Fires initially reduce nutrients, especially nitrogen, through
combustion (Heim et al., 2022; Mack et al., 2011). However, over
time, fires can increase nitrogen levels due to enhanced mineralisa-
tion (Aerts, 2006; Jiang et al., 2015; Salmon et al., 2016). Fire also
increases mineral phosphorus supply through pyromineralisation
(Klupar et al., 2021). The impact of fire on nutrient availability and
plant growth varies based on soil temperature, moisture and acid-
ity (Hobbie & Gough, 2004). Post-fire deepening of the seasonally
thawed active layer allows plants to access previously frozen nu-
trients, benefiting vascular plants with deeper roots and more re-
sources (Blume-Werry et al., 2019; Wang et al., 2017).

Fires are relatively rare in the Arctic compared with other bi-
omes (Wein, 1976), and fire frequency is highly variable (Racine
et al., 1985). The time between fires spans an order of magnitude
from 424 to 4374 years in southern versus northern Arctic Alaska
(Rocha et al., 2012). In Siberia, the transition zone between the
tundra and boreal forest biome (Payette et al., 2001) has a fire re-
turn interval of 792years (Berner et al.,, 2012). However, these
estimates are highly variable and uncertain because fires are so in-
frequent in the Arctic, and observational records are relatively short.

Paleorecords indicate that wildfires occurred more frequently in an-
cient shrub tundra ecosystems, with an average fire return interval
of 144 years—a frequency comparable to that of modern boreal for-
ests (Higuera et al., 2008). In recent decades, the annual burnt area
has approximately tripled in the Siberian Arctic (Kharuk et al., 2022)
and on the North Slope of Alaska (Miller, Jones, et al., 2023).

Fire also strongly interacts with other disturbance processes in
Arctic landscapes. Fires are, for example, strongly linked to drought
stress, and they also drive cryoturbation and ice-wedge degrada-
tion (Foster et al., 2022). These interactions between disturbances
are complex and not well understood, but most Arctic disturbance
regimes are expected to intensify with continued warming, so in-
teractions between disturbances will likely intensify as well (Foster
et al., 2022).

2 | A META-ANALYSIS OF FIRE EFFECTS
ON TUNDRA VEGETATION COVER

Although relatively scarce across the circumpolar region, existing
field studies provide information on long-term post-fire vegetation
trajectories. We performed a meta-analysis across 15 studies to
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elucidate trends in post-fire succession of low Arctic vegetation for
five PFTs (lichens, bryophytes, herbs, graminoids, shrubs) across
more than seven decades (Figure 2; detailed methods described in
Supporting Information, Material). The studies comprise different
ecosystem types, including forest-tundra, defined as the transition
zone between the tundra and forest biome (Payette et al., 2001),
lichen-dominated upland tundra, dwarf-shrub tundra, tussock
tundra and sedge wet meadow tundra. It is important to note that,
because this meta-analysis spans several decades, it likely captures
interactive effects between fire and climate change that cannot
be disentangled. These confounding factors may influence the
observed recovery patterns, potentially altering traditional post-fire
succession trajectories. In this section, we present the results of our
meta-analysis, focusing on the observed post-fire recovery patterns
of the different PFTs. Our aim here is to report the data-driven
findings without introducing speculative elements.

2.1 | No clear post-fire pattern for bryophyte and
herbaceous cover

Across all studies, we did not find a clear post-fire pattern for bryo-
phyte and herb PFTs (Figure 2b,c). Short-term increases in certain
herbaceous species, such as fireweed (Chamaenerion angustifolium
or its synonym Epilobium angustifolium; Onagraceae), are frequently
observed following a burn (Landhdusser & Wein, 1993). However,
the long-term effects on herbaceous cover are less clear.

The lack of a pattern for bryophytes and herbaceous species can
be attributed to the large differences between studies. Bryophytes,
for example, can increase after fire (Frost et al., 2020; Heim
et al., 2021; Racine et al., 1987) or decrease (Barrett et al., 2012;
Jones et al., 2013; Narita et al., 2015). Differences in the recovery
pattern of bryophytes can be linked to the pre-fire vegetation type,
soil moisture, permafrost condition or microtopography. These im-
pacts can obscure broader trends, making it challenging to identify
generalised patterns.

2.2 | Lichen cover does not recover to
pre-fire levels

Even many decades post-fire, ground lichen cover was lower com-
pared with the pre-fire abundance (Figure 2a). Lichens are extremely
slow-growing (Abdulmanova & Ektova, 2015) and their dispersal dis-
tances by thallus fragments (Heinken, 1999) or spores are relatively
short. Additionally, they are vulnerable to competition for light from
taller, faster-growing vegetation.

2.3 | Rapid recovery of graminoid cover

Graminoid (grasses and sedges) cover exceeded pre-fire levels in
the first few decades post-fire, but then declined to below pre-fire
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levels by four decades post-fire (Figure 2d). True grasses (Poaceae)
and sedges (Cyperaceae) have different post-fire recovery dynamics.
While sedges can dominate unburnt tundra, grass cover is usually
low. Sedges like tussock cottongrass are fire resistant because their
growth form protects root-stocks, allowing them to dominate early
successional stages (Bliss & Wein, 1972; Curasi et al., 2023; Wein &
Bliss, 1973). Grasses also become abundant shortly after fire due to
resprouting from below-ground organs, germination from seedbanks
(Racine et al., 1987), wind-disseminated propagules (Rowe, 1983),
and their ability to efficiently adapt their root structures to acquire
nutrients (Wang et al., 2017).

2.4 | Strongincrease in shrub cover after several
decades

Shrub cover (including tall shrubs, dwarf or deciduous and ever-
green shrubs) was lower compared with control levels in the first
years after fire (Figure 2e). In contrast to lichens, shrub cover even-
tually increased and typically exceeded pre-fire levels within four
decades (e.g. Frost et al., 2020). This pattern can be related to the
ability of shrubs, like the dwarf birch (Betula nana s.l.; Betulaceae), to
resprout from organs protected from the fire, such as the root collar,
rhizomes and roots (Racine et al., 1987). In addition, shrubs respond
positively to many climate change impacts, such as increased active
layer depth, extended growing season, or increased summer tem-
peratures (Myers-Smith et al., 2015). Established shrubs, particularly
deciduous ones, can create self-reinforcing cycles. By increasing
vegetation turnover time, they enhance long-term nutrient avail-
ability, further promoting their own growth and expansion (Parker
etal., 2015, 2021).

3 | POSSIBLE VEGETATION
TRAJECTORIES IN THE ARCTIC TUNDRA
UNDER CLIMATE CHANGE AND FIRES

Fires are globally powerful agents of ecosystem change, capable of
inducing ecosystem shifts that persist over ecologically significant
timescales, often lasting decades, centuries, or even millennia
(Fletcher et al., 2014; Tiribelli et al., 2018). Fires can accelerate
vegetation transitions caused by climate change, especially when
environmental conditions exceed the limits that once allowed
existing plant communities to naturally replenish themselves (Hansen
& Turner, 2019; Johnstone et al., 2016). In addition, fires can trigger
ecosystem shifts between various states under the same climatic
conditions, and are capable of propelling changes in either direction
(Pausas, 2015). The concept of alternative ecosystem states (AES)
suggests that a single set of external factors can lead to various
possible ecosystem states. This idea is rooted in the mathematical
principle of multiple stable states, where a system can exhibit
more than one stable condition based on the same parameters
(Petraitis, 2013). Disturbances, particularly fires, play a crucial role
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FIGURE 2 Trends in the long-term development of vegetation cover of five plant functional types after tundra fires with (a) lichens

(R%,,,=0,R2 ,=0.89), (b) bryophytes (R, =0,R2 ,=0.31), (c) herbs (RZ_ =0,R%  =0.05), (d) graminoids (RZ_ =0.13,RZ  =0.56), () shrubs
(anarg=0.26, Rfon d=O.73). Coloured dots are data from the 15 datasets (see f for location) included in the meta-analysis. Thin horizontal lines

indicate zero difference and thus maintain the pre-fire (control) state. Grey lines show predicted means for the best model (null model, years after
fire or with the quadratic term of years after fire). Solid lines indicate a significant impact of years after fire on the cover values, while dashed lines
indicate a non-significant impact of years after fire on cover. The shaded area is the 95% credible Interval (Crl). If the 95% Crl does not include
the zero line (see lichens), it means that there is at no point in time a predicted recovery of the cover to pre-fire levels. Bayesian R? is reported for
all models in Table S2. Please find the results of the same analysis without imputed values in Figure S1.
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in forming AES through impacts on vegetation communities globally
(Pausas & Bond, 2020). Changes in fire return intervals can induce
stable state shifts, potentially driving ecosystems towards distinct
states that persist (Landesmann et al., 2021; Tiribelli et al., 2018)
even under constant climate conditions (Pausas, 2015).

Alternative states are not a new concept for tundra ecosystems,
as evidenced by previous studies exploring state shifts in Arctic
tundra vegetation due to grazing pressures, including the role of
reindeer in mitigating climate-induced shifts from grass to shrub
dominance, and hypotheses about shifts from lichen to graminoid-
dominated states under varying levels of grazing intensity (Brathen
et al., 2017; Egelkraut et al., 2018; Van der Wal, 2006).

As we discuss both fire and climate change effects, it is im-
portant to distinguish between AES and climate-driven transitions.
AES refers to two different ecosystems occurring under the same
environmental and climatic conditions, while climate-driven transi-
tions represent changes occurring due to changing environmental
factors. Our intention is not to provide conclusive evidence of the
existence of transitions and AES in tundra ecosystems, but rather to
identify potential mechanisms and hypotheses related to possible
divergent trajectories. We aim to develop concepts that catalyse
future research in this area, recognising that definitively proving
these transitions and states will remain a significant challenge in the
future. This difficulty is exemplified by the recent work of Higgins
et al. (2024), which highlights the complexities of identifying AES
even in well-studied savanna -forest systems. In the next three sec-
tions, climate change becomes a central theme as we discuss how
recovery patterns might evolve under changing environmental con-
ditions and how fire, climate change, and vegetation are anticipated
to interact.

3.1 | Hypothetical post-fire trajectory to increased
shrub abundance

Paleorecords from the Arctic indicate that prehistoric shrub-
dominated tundra had a higher fire frequency than today and re-
mained stable for millennia (Higuera et al., 2008). Tundra shrubs
generally thrive under warmer climatic conditions, exhibit-
ing increased growth (lturrate-Garcia et al., 2017; Myers-Smith
etal., 2011). If shrub cover expands after a fire event (see Figure 2e),
a warmer climate could sustain this elevated shrub cover state com-
pared with pre-fire levels (Figure 3a). Examples of this post-fire tra-
jectory, related to a climate-change induced ecosystem transition,
can already be observed in the recovery patterns of very old tun-
dra fires on the North Slope of Alaska that have remained shrub-
dominated for more than 100years after a fire (Jones et al., 2013;
Miller, Jones, et al., 2023).

One potential trajectory related to climate change is therefore
the dominance of woody plants after a fire event. This can occur
due to shrubs' ability to rapidly recover from underground organs,
surviving plant parts, or seed banks. Once established, these woody
species remain dominant due to warmer climatic conditions that
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alter environmental factors such as soil temperature (Landhdusser &
Wein, 1993). In this scenario, other functional groups such as lichens
would not recover to pre-fire levels because of interactions between
climate warming and fire that individually and jointly decrease Arctic
lichen cover and give woody species a competitive advantage (Joly
et al., 2009).

3.2 | Hypothetical post-fire trajectory to increased
grass abundance

While our meta-analysis did not directly examine fire frequency,
we can infer potential shifts towards a grass-dominated vegetation
based on the combined results of our analysis and literature review.
Our meta-analysis reveals a significant increase in graminoid vegeta-
tion within two decades post-fire, while shrubs fail to recover during
this period. This finding suggests that if tundra fires occur at inter-
vals less than 25years, a transition towards increased grass abun-
dance is feasible in tundra ecosystems. Tundra grasses demonstrate
rapid recovery and colonisation following fire events, thriving under
conditions of increased fire frequency (Hollingsworth et al., 2021).
Climate warming and increased fire occurrence have the potential
to transform previously fire-resistant landscapes into more fire-
prone environments, as observed in Alaska's Noatak Valley (Gaglioti
et al., 2021). As grasses become dominant after fire events, veg-
etation flammability increases, creating a positive feedback loop
that further increases fire susceptibility (Landesmann et al., 2021;
Tiribelli et al., 2018).

3.3 | Hypothetical shifts between shrub and grass
dominance under climate change

The persistence of fire-driven AES depends on an interplay of fire and
vegetation adaptations (Baudena et al., 2020; Magnani et al., 2023;
Pausas, 2015; Staver et al., 2011). Strong feedbacks between veg-
etation and fire are crucial for maintaining a fire-driven stable state
(Pausas & Keeley, 2014). Tundra shrubs have a lower flammability
compared with grasses (Sylvester & Wein, 1981). In addition, they
transform the surrounding environment and outcompete other spe-
cies for resources such as light and nutrients (Mekonnen et al., 2018;
Myers-Smith et al., 2011; Pajunen et al., 2011). These feedback
mechanisms lead to the maintenance of a woody-dominated state
by reinforcing shrub dominance and mitigating frequent fires. Dead
grass leaves are the most flammable among tundra plants, rendering
them more prone to ignition than shrubs (Sylvester & Wein, 1981).
The quick buildup of dry leaf litter in graminoid tundra types signifi-
cantly increases their flammability compared with shrub-dominated
areas. Grasses possess several competitive advantages in post-fire
environments, including rapid regeneration from rhizomes or seed-
ling establishment (Racine et al., 1987) to quickly extend roots into
newly accessible, nutrient-rich soil layers that were previously fro-
zen (Wang et al., 2017).
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FIGURE 3 (al1-a3) The post-fire trajectory of tundra vegetation cover back to the original state (al) and of two possible trajectories
under climate change (a2, a3). The y-axis displays the difference in cover between control and fire plots. The black x-axis is the at y=0. If
the difference of the cover reaches that line, the cover has recovered to the control state. The entire time span displayed on the x-axis is
roughly ~150vyears. The vegetation trajectories of the first decades after fire follow the patterns that our meta-analysis indicated. (a2) Fires,
as well as a warmer climate, promote shrub encroachment. After a fire, shrubs gain dominance because of their ability to regenerate quickly
from surviving plant parts and keep it because of changed climatic conditions. (a3) Transition to a graminoid-dominated state because of

an increased fire frequency (<40years intervals). Fire symbols and dashed lines show the fire disturbances after the initial fire event. (b)
Expected post-fire recovery with no climate change and trajectories under a warmer climate with climate-fire induced transitions towards
two alternative ecosystem states: One with increased woody abundance under low fire frequency and another towards increased grass
abundance, induced by short fire intervals. This figure shows dry lichen-dominated tundra as an example for the original vegetation.

Drawing from studies in other ecosystems, we understand
that two fires occurring in rapid succession can significantly alter
an ecosystem's composition, promoting, for example, shifts from
resprouter (i.e. shrubs) to seeder (i.e. grasses) dominance (Batllori
et al., 2015). Post-fire climatic shifts, such as increased aridity, can
drive ecosystem shifts by synergistically interacting with fire effects,
impacting vegetation resilience and colonisation abilities (Baudena
et al., 2020). For example, growth and ramet sprouting of the shrub
species Betula nana are inhibited by decreased summer precipitation
(Li et al., 2016), and moisture stress may also hinder growth of Arctic
and subarctic trees (Timoney et al., 2019). In addition, shrub cover
was much reduced relative to grasses after multiple fires in rapid
succession (Hollingsworth et al., 2021).

If continued climate change leads to increased Arctic moisture
levels that in turn decrease fire frequency (Higuera et al., 2008),
grass-dominated ecosystems may transition towards greater woody
dominance. Furthermore, shrub growth under future warmer con-
ditions is positively linked to increased moisture levels (Ackerman
et al., 2017; Keuper et al., 2012).

3.4 | Hypothetical post-fire vegetation trajectories
for different tundra ecosystem types

The Arctic region is composed of diverse landscapes that encompass
various tundra ecosystem types. Tundra ecosystems burn when en-
vironmental conditions are suitable, with fire susceptibility varying
among vegetation types; areas dominated by shrubs or graminoids,
which have higher above-ground biomass, are generally more prone
to fires than low-biomass areas like barren tundra, particularly if
moisture levels are low (Rocha et al., 2012).

Thawing permafrost and microtopographic changes alter
drainage characteristics and impact moisture availability, which
in turn influence post-fire predominance of shrub or graminoid-
dominated ecosystem types (Chen, Hu, et al., 2021). Consequently,
these site-specific factors may be critical drivers of divergent
successional trajectories in tundra ecosystems, especially where
ice wedge degradation results in wetter troughs and drier high-
centred polygons (Jones et al., 2015; Miller, Jones, et al., 2023).
Existing data constraints limit our ability to provide conclusive
evidence on how different tundra ecosystems will respond to the

combined effects of fire and climate change. Nevertheless, we

propose that post-fire trajectories under a warmer climate may
share common patterns across various tundra ecosystem types:
(1) increased woody vegetation or (2) increased grass vegetation,
both driven by interactions between climate, fire characteristics
and vegetation feedbacks.

Most research on post-fire succession has concentrated on tus-
sock tundra, prevalent in areas with frequent tundra fires (Raynolds
et al.,, 2019; Walker et al., 2005). A known outcome of these fires
is an increase in shrub cover compared with pre-fire levels after
24 years (Racine et al., 2004). Gaglioti et al. (2021) proposed that
fire and wetting from permafrost thaw could lead tussock tundra
towards a more productive, shrub-dominated state (Figure 3b).
Other studies indicate that graminoid cover often rises in the years
immediately following a fire (Jones et al., 2013; Racine et al., 2006)
with long-term vegetation responses varying based on fire severity
and frequency. For instance, Hollingsworth et al. (2021) found that
high-severity fires and increased fire frequency boosted grass abun-
dance, resulting in a stable graminoid-forb-rich tundra rather than a
shift to shrub dominance.

Fire impacts differ between lowland and upland tundra, with
shrub cover decreasing in lowlands and increasing in dry up-
lands due to fire and climate change. The extent of shrub cover
increase in uplands positively correlates with fire severity, likely
due to greater nutrient release and reduced competition in more
severely burned areas (Chen, Hu, et al., 2021). In addition, upland
tundra is often dominated by slow-growing lichen mats that need
decades to recover, which means that fire opens space for shrub
encroachment.

The interaction of fire with treeline expansion remains un-
clear. It is anticipated that this relationship will involve dynamic
interactions among vegetation, climate, and disturbance fac-
tors (Lloyd et al., 2002). Fire promotes tree invasion into tundra
(Landhdusser & Wein, 1993), but increased fire frequency could
also halt treeline advance (Payette et al., 2008). The uncertainty
stems from the interplay between fire frequency, vegetation re-
covery dynamics and climate feedbacks. A single fire event may
thereby facilitate treeline expansion through permafrost thaw and
the provision of seedbeds for tree establishment (Landh3usser &
Wein, 1993). Conversely, fires can directly reduce forest cover
through tree mortality, and when coupled with drought stress
from a warming climate, they can impede forest expansion in

some regions (Payette et al., 2008).
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3.5 Challenges and opportunities for the
definition of post-fire trajectories

Uncertainty surrounding ecosystem transitions and shifts after tun-
dra fires under climate change demands scientific attention. We ad-
vocate for remote sensing analyses that cover larger spatial scales
than field studies alone, and modelling approaches to extend tem-
poral scales (Beamish et al., 2020), while also emphasising the need
for more field studies in understudied Arctic regions and tundra
ecosystems.

Our meta-analysis reveals both strengths and limitations in avail-
able data on post-fire vegetation recovery. Reliance on satellite im-
agery for identifying old burn areas restricts the time scale, while
alternative methods like charcoal sampling lack precise dating (Jones
et al., 2013). Most studies focus on general vegetation categories or
major plant groups over time, limiting the analysis of more detailed
vegetation composition or fire frequency/severity impacts. Limited
data on vegetation responses to climate change over decades adds
uncertainty.

In our meta-analysis, we addressed missing variance by imput-
ing it, a common practice that enhances the robustness of our re-
sults (Kambach et al., 2020). This approach allowed us to analyse a
larger dataset over a longer timescale, providing a comprehensive
view of vegetation changes. We included a subset analysis without
imputed values in the Supporting Information, Materials to ensure
transparency and verify that trends remain consistent with our main
analysis (Figure S1). Without the data points that include imputed
data, we observed modest differences in recovery patterns in three
of the five PFTs over a shorter timescale (46 vs. 70years post-fire).
Lichen cover increased but did not reach unburnt levels, indicating
slow recovery. Bryophyte cover increased, exceeding unburnt levels,
which is the primary difference from the main analysis. The trend for
shrubs is also equivalent, with the difference from the main analy-
sis being a quadratic rather than a linear relationship, suggesting a
plateau in shrub cover 30years after fire. That the results between
the two analyses differ is not unexpected due to the subset analysis
having both a smaller sample size and shorter timeframe, which we
interpret to obscure long-term trends. Nonetheless, the overall re-
covery patterns for both analyses support our hypotheses, aligning
with known impacts of fire and climate change on these ecosystems.

Our current knowledge of fire effects on the Arctic tundra
biome stems mostly from Alaskan tussock tundra, especially from
the more accessible Seward Peninsula (Hollingsworth et al., 2021;
Holt et al., 2008; Jandt et al., 2008; Racine et al., 2004). Less is
known about other parts of the circumpolar region, particularly the
vast remote areas of the Siberian tundra (Heim et al., 2021; Loranty
et al., 2014). Thus, there is a strong geographical bias in studies that
have investigated vegetation change after tundra fires (Figure 2f).
A reduction of this bias becomes even more urgent with recent ex-
treme fire seasons during 2019-2021 in central and eastern Siberia
(Scholten et al., 2022).

The species composition of circumpolar Arctic vegetation is rel-
atively similar compared with other biomes (Walker et al., 2005).

Herds of wild caribou are common in Alaska and Siberia, and sev-
eral areas in Siberia have been influenced by reindeer pastoralism
(Forbes & Kumpula, 2009). As herbivory strongly affects tundra veg-
etation dynamics (Osterrieth & Bosker, 2024; Steketee et al., 2022;
Sundqvist et al., 2019), it is also likely that grazing influences post-
fire vegetation trajectories (Jandt et al., 2008). Climate change
(Bjorkman et al., 2020), fire, and herbivory (Frost et al., 2020; Jandt
et al., 2008) affect Arctic tundra ecosystem types through reduc-
tions in lichens and increases in vascular plant species. However, it is
unclear how herbivory impacts post-fire vegetation.

Many fire studies were conducted in relatively moist terrain with
predominantly moist tussock graminoid-dominated tundra (Jones
et al., 2013; Narita et al., 2015), and less is known about vegetation
recovery in non-tussock tundra ecosystem types (Frost et al., 2020).
Many Arctic tundra ecosystem types are currently underrepresented
in research because they are difficult to access, generally rare, or be-
cause fire occurrence in the ecosystem type is generally lower.

3.6 | Moving forward

To better understand post-fire successional trajectories in the Arctic
tundra biome, we must address five key questions that emerge from
the challenges and knowledge gaps identified above. The associated
sub-questions indicate how these key questions can be tackled in a

tractable manner:

1. To what extent are post-fire successional trajectories related
to climate and climate change? What are the specific climatic
factors (e.g. temperature, precipitation, growing season length)
that most strongly influence post-fire vegetation recovery?

2. How do fire regime changes (i.e. frequency and severity) interact
with vegetation dynamics in tundra ecosystems, potentially con-
tributing to AES? What are the key thresholds or tipping points
in the fire -vegetation feedback mechanisms that lead to shifts
between different tundra ecosystem states?

3. To what degree do other disturbances such as herbivory and
permafrost thaw influence post-fire successional pathways in
tundra ecosystems? What are the specific mechanisms by which
herbivory and permafrost thaw influence post-fire vegetation
recovery?

4. What are the impacts of changing Arctic fire regimes on tundra
ecosystems and the services they provide? How do the impacts
of changing fire regimes vary across different tundra ecosystem
types and regions? How are plant functional traits linked to flam-
mability and post-fire succession?

5. Beyond anthropogenic climate change, how are human activi-
ties interlinked with changing fire regimes and post-fire vegeta-
tion dynamics, and how do these ecological shifts, in turn, affect
Indigenous communities and livelihoods? What are the specific
human activities (e.g. resource extraction, infrastructure develop-
ment, tourism) that most significantly influence fire regimes and
post-fire vegetation dynamics in the Arctic tundra?
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Because of the temporal limitations of field studies, process-
based dynamic vegetation modelling is a useful tool to address many
of these questions (e.g. Euskirchen et al., 2022; Kantzas et al., 2015).
Similarly, remote sensing analyses that leverage high-resolution data
will be necessary to extrapolate results to larger spatial scales and
to better document historical unrecorded fires (Miller, Baughman,
et al., 2023). However, there are still several constraints that limit
the accuracy of modelling. Long-term monitoring and more field data
from a wider range of Arctic regions will help to understand whether
fire-induced AES shifts are already under way in recent tundra burns
and to better constrain model analyses.

Studies that have performed experimental burning in the Arctic
are rare (Alexander et al., 2018; Hermesdorf et al., 2022). Controlled
fire experiments are beneficial as they allow direct measurement of
the antecedent properties of the burnt area, rather than relying on
space-for-time substitutions. Experimental burns can help address
questions related to short-term recovery and/or severity impacts
on recruitment. However, to fully characterise the recovery pro-
cess, such experiments would need to span several decades, if not
a century.

Tundra biome changes have not only ecological but also human
and cultural dimensions. For instance, the Nenets in Eastern Europe
and the Yamal-Nenets and Western Siberia rely on lichen as a cru-
cial food source for their reindeer herding practices (Forbes, 2013). In
these regions, a reduction in lichen abundance caused by tundra fires
would threaten the livelihoods of Indigenous Peoples and rural com-
munities, as well as reindeer or caribou habitat (Gustine et al., 2014).

Ecological understanding of tundra fires is thus crucial for making
informed decisions on wildfire management. This includes determin-
ing how different PFTs alter flammability and fuel loads. Moreover,
future studies must investigate the interactive effects of tundra fire
and vegetation change, as well as subsequent impacts on biodiver-
sity, plant functional traits, and ecosystem function. With this infor-
mation, managers can then decide whether to suppress fires or allow
them to burn. Equally important, however, is the urgent need to ex-
pand our knowledge of the global impacts of tundra fires and the
potential AES, as vegetation changes profoundly influence surface
energy fluxes, permafrost thaw, and greenhouse gas emissions. The
Arctic tundra is experiencing significant ecological transformations
due to climate change, particularly through increased temperatures
and altered fire regimes. These changes not only impact ecosystem
dynamics and biodiversity but also highlight the potential for per-

sistent new ecosystem states.
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