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SUMMARY
In cryo-electron microscopy, accurate particle localization and classification are imperative. Recent deep
learning solutions, though successful, require extensive training datasets. The protracted generation time
of physics-based models, often employed to produce these datasets, limits their broad applicability. We
introduce FakET, a method based on neural style transfer, capable of simulating the forward operator of
any cryo transmission electron microscope. It can be used to adapt a synthetic training dataset according
to reference data producing high-quality simulated micrographs or tilt-series. To assess the quality of our
generated data, we used it to train a state-of-the-art localization and classification architecture and
compared its performance with a counterpart trained on benchmark data. Remarkably, our technique
matches the performance, boosts data generation speed 7503 , uses 333 less memory, and scales well
to typical transmission electron microscope detector sizes. It leverages GPU acceleration and parallel pro-
cessing. The source code is available at https://github.com/paloha/faket/.
INTRODUCTION

Recent developments in cryo-electron tomography (cryoET)

allow to obtain high resolution representations of macromolec-

ular complexes in their native cellular environment showing mo-

lecular interactions that are hardly accessible with other

methods.1 In cryoET, the imaged sample is in most cases a

100–200 nm thick slice of a frozen cell. From this slice, projection

images are taken in a transmission electron microscope (TEM)

from different rotation (tilt) angles. An artifact free reconstruction

would require measurements using tilt angles that would com-

plete the half circle. However, this is not feasible, due to limita-

tions of the specimen holder, and only a range of 140+ can be re-

corded. The missing tilt images later on result in a so-called

missing-wedge in the 3D reconstruction (cryo-electron tomo-

gram). In addition, the electron beam severely damages the sam-

ple during imaging, so only a low electron dose can be used to

image a biological specimen. The low dose in combination

with the presence of ice in the sample results in the acquired

data being very noisy. Consequently, the identification of mole-

cules within these reconstructions is a daunting task. Particle

identification is however necessary as the particles need to be

classified and averaged to determine high resolution structures.

While cryoET has led to a large number of breakthroughs,
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providing hitherto unseen detail in the molecular architecture of

cells,2–4 the aforementioned challenges still hinder the wide-

spread use of cryoET in the larger cell biology and structural

biology community. In this context, the development of new reli-

able software tools is of paramount importance, which is howev-

er obstructed by the lack of sufficient accessible and annotated

data to develop the software tools on.

SHREC simulator
To overcome the problem with the lack of data, in 2019, the

annual SHREC—3D Shape Retrieval Contest included a new

track titledClassification in Cryo-Electron Tomograms. The orga-

nizers of this track proposed a task of localization and classifica-

tion of biological particles in cryo-electron tomograms. In the

following years, experts from 3D object retrieval and 3D electron

microscopy communities were invited to participate in the chal-

lenge. In order to ensure fair evaluation and comparable results

across the submissions, the organizers created a dataset of ten

physics-based cryo-electron tomogram simulations (9 train and

1 test tomogram, see Figure 1) for the contestants to train and

evaluate their methods on. Each year, the results of the contest-

ing methods were presented and compared.5–7

Unfortunately, simulating the tomographic data using SHREC

is computationally very expensive. For a set of 10 small tilt-series
ished by Elsevier Inc.
eativecommons.org/licenses/by/4.0/).

mailto:pavol.harar@ista.ac.at
mailto:david.haselbach@imp.ac.at
https://doi.org/10.1016/j.str.2025.01.020
https://github.com/paloha/faket/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.str.2025.01.020&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Table 1. Evaluation of simulated data quality by examining DeepFinder’s performance on localization and classification tasks as a

function of training data

Model Training data Data cost Localiz. F1 Classification F1

DeepFinder BENCHMARK z150 h (3 3 CPU, 114 GB RAM) 0.815 0.581 (100 %)

DeepFinder FAKET + fine-tuning FAKET cost + manual labeling 0.821 0.565 (97 %)

DeepFinder FAKET z12 min (1 3 GPU, 40 GB VRAM) 0.800 0.533 (92 %)

OR z80 min (8 3 CPU, z6:5 GB RAM)

DeepFinder BASELINE z20 s (1 3 CPU, 1 GB RAM) 0.813 0.441

TM-F 0.576 0.446

TM 0.372 0.470

The performance is evaluated on the same test tomogram. The results are shown in context with the performance of standard template matching al-

gorithms (denoted TM and TM-F) reported in7 for the same testing data. Performance is measured using the F1 score for localization and the F1macro

score for classification. Each of the DF results is an average of the test performances measured at the best epoch (based on validation) over 6 different

random seeds. On the challenging classification task, DF trained using FAKET data simulated by our proposedmethod reaches 92% of the performance

of DF trained using BENCHMARK data. It even reaches 97%when fine-tuned using a portion of BENCHMARK data. All this for a fraction of computational cost

andwithout the need for a configuration protocol of the original simulation parameters used for crating BENCHMARK. The cost of data is given for thewhole

dataset comprising 10 tilt-series of shape (613 10243 1024), i.e., generating one such tilt-series with FAKET takes z70 seconds assuming a GPU is

available. For comparison, a usual-sized tilt-series of shape (613 35003 3500), that is z123 larger in comparison to BENCHMARK, can be simulated

under 10 min. For a comprehensive time and memory consumption profiling of FAKET, see Section Data S6.
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(61 tilts of size 10243 1024) it took approx. 450 central process-

ing unit (CPU) hours of computation on a node with 23 Intel

Xeon E5-2630 v4 CPUs. The implementation is able to utilize

only 3 CPU cores per job in parallel and each job needs 114

GB of random-access memory (RAM). The memory consump-

tion is also a reason why utilizing graphics processing units

(GPU)s and simulating tilt-series of common sizes is not yet

feasible (personal communication with the authors Gubins, I.,

and Chaillet, M.). This limits the scope of its applicability, mainly

in data-hungry applications such as deep learning. Moreover, at

the time of writing of this article, the source code of the simulator

is not publicly available prohibiting more detailed comparisons,

e.g., in terms of FLOPs.

Our contribution
In this paper, we propose FAKET, a fast and scalable data-driven

method for simulating the forward operator of any cryo transmis-

sion electron microscope with the aim to generate synthetic mi-

crographs or tilt-series. It was created, among other reasons, to

generate fully labeled real-like data for training deep neural net-

works to solve tasks such as particle localization and (much

more challenging) particle classification. Our method combines

a noiseless simulated sample, see Figure 2, with additive noise,

see Figure 3, and neural style transfer (NST) technique based on

the study by Gatys L.A. et al.8 to capture, using only unlabeled

reference data, the structure of the complex noise introduced

by TEM, see Figure 4. To carry out the NST, FAKET utilizes a pre-

trained model, eliminating the need for users to train it them-

selves. That means users can use FAKET to simulate data from

any TEMand under any configuration, assuming they posses un-

labeled TEM data that could serve as a style reference. FAKET de-

livers data of quality nearly identical (in terms of their practical

utility for subsequent tasks, rather than exact manifestation of

the physical interactions between the sample and the transmis-

sion electron microscope) to the reference, at a cost only slightly

higher than simply adding Gaussian noise to a noiseless syn-

thetic sample (created using existing models of biological

macromolecular structures, represented as Coulomb density
volume). This makes it a practical, effective, and efficient choice

for simulation.

For the purpose of evaluating our method, in the experiments

presented within this article, we employed FAKET to mimic the

behavior of the physics-based TEM simulator SHREC (due to

the availability of ground truth). On top of evaluating the quality

of our simulated data using standard image metrics (available

in the supplement) that are of limited value in this context, we

evaluated it directly on practically relevant downstream tasks

by training DeepFinder (DF)9—a neural network specifically

tailored to the task of particle localization and classification,

see also DeepFinder.

In contrast to SHREC, our method accelerates the data gener-

ation process by a factor of 750 while using 33 times less mem-

ory (see Table 1). It also does not require any calibration protocol

as other simulators, see Other simulators. The NST model does

not need to be retrained to be used on new data, nor does it

require labeled reference data. FAKET therefore has the potential

to save experts countless hours of manual work in labeling their

datasets. (Depending on the imaged sample, an expert may

spend several hours of manual work per tilt-series per particle la-

beling the data. At the same time, certain smaller particles

cannot be visually found at all, thus fully labeled tomograms do

not really exist.) Moreover, FAKET is capable of simulating large

tilt-series, which are common in experimental environments

(about 123 larger than SHREC projections). For example, we

generated a 613350033500 tilt-series on a single NVIDIA

A100 40GB SXM4 GPU in less than 10 min. To achieve the re-

ported speeds, a minimum of one GPU is recommended;

CPU-only simulations are feasible and can be a valid option in

specific situations, albeit slower. This advance makes it possible

to train particle localization and classification networks from

scratch or to pre-train networks that are later fine-tuned using

manually labeled experimental data, see Section Data S3. On

top of that, our method is open source and our experiments

are reproducible.

Additionally, we include comparisons of the BENCHMARK and the

proposed FAKET method with a simple BASELINE method based on
Structure 33, 820–827, April 3, 2025 821



Figure 1. Simulated projection taken from SHREC 2021 dataset

Axes x and y correspond to width and height of the imaged grandmodel.

Colorbar denotes simulated intensities in arbitrary units. See section Data S1

for side-by-side comparison with other projections.

Figure 2. Noiseless projection used to create the input to our pro-

posed method

Axes x and y correspond to width and height of the imaged grandmodel.

Colorbar denotes intensities measured using Radon transform and negated

such that particles have lower intensities than the background, as it is in the

case of TEM which measures attenuation of electron beams. The particles are

not embedded in any solvent (as if they were in vacuum instead of being

embedded in ice), therefore the background appears much brighter than in the

simulated projections. See section Data S1 for side-by-side comparison with

other projections.
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additive Gaussian noise, see Figure 3, aiming at providing

comparative results in full practical range. The costly SHREC

method defines an upper-boundary of performance, while the

cheap addition of Gaussian noise establishes a lower boundary.

This configuration enables us to position our method along this

spectrum, showcasing FAKET’s capability to offer results close

to the upper-boundary while maintaining computational effi-

ciency of a much simpler method. We hope our comparisons

will be useful for practitioners who need to decide which method

fits into their computational budget and for those seeking

insightful understanding of the inherent trade-offs. The contribu-

tion of our method is further supported by an ablation study pre-

sented in Section Data S4, where we also offer insight into the

potential limits of DF on the studied data by conducting experi-

ments using completely noiseless simulated tomograms.

Related work
A similar idea in X-ray-based computed tomography angiog-

raphy (CTA) was investigated in the study by Seemann M.

et al.10 The authors focused on solving a lumen segmentation

task. However, due to the very different nature of the samples

imaged in CTA (the objects of interest in CTA are on average

two orders of magnitude larger in relation to the size of the tomo-

gram than those in cryoET, where the particles often span only

tens of voxels), it was not clear whether a similar NST based

framework could be successfully applied in cryoET to image

nanoscale particles. In addition, the article does not provide

source code and does not document the experiments in enough

detail for us to be able to reproduce the results or adapt the

method to the cryoET domain.

Other simulators
The value of simulated data in cryoEM is well recognized and

micrograph simulation has been attempted several times. In first

approximation, a single cryoEMmicrograph is the projection of a
822 Structure 33, 820–827, April 3, 2025
3D object, convolved with the electron microscope’s point

spread function. Additionally, the overall process comprises

several sources of noise coming from the nature of the sample,

the microscope, and the imaging procedure which are hard to

model accurately. For a better overview of the attempts, it is

necessary to mention TEM simulators that were developed in

the past decades to simulate micrographs in cryo conditions.

Earlier works provided fast simplistic models mostly based on

additive whiteGaussian noise (thismotivated our choice of base-

line) or colored noise.11 Other works originated from the insights

into the physics of TEM image formation and advanced the sim-

ulations by modeling various sources of noise, e.g., an improve-

ment in modeling the structural noise was proposed in TEM

Simulator (C).12 Another improvement was done in InSilicoTEM

(MATLAB) presented in the study by Vulovic M. et al.13 by imple-

menting themultislicemethod originally proposed in the study by

Cowley J.M. et al.14 This makes it the next most relevant simu-

lator related to our work after SHREC which is, as many others,

also based on the same multislice method (this motivated our

choice of benchmark). To the best of our knowledge, the most

recent improvement presented in the study by Himes B. and Gri-

gorieff N.15 is distributed as a part of cisTEM package (C++). It

introduced frozen plasmon method to explicitly model spatially

variable inelastic scattering processes in cryo-electron micro-

scopy. The aforementioned works, based on the samemultislice

method, however, suffer from a heavy computational burden or

are limited to simulations of a single molecular complex. Despite

these limitations, they represent a set of precise advanced phys-

ics-based simulators and as such also provide a comprehensive

literature survey referring the reader to a body of detailed



Figure 3. BASELINE projection created by adding Gaussian noise to the

noiseless projection

Axes x and y correspond to width and height of the imaged grandmodel.

Colorbar denotes simulated intensities in arbitrary units. Please note that this

projection is not exactly the same as in Figure 1 or in Figure 4, see also the

explanation in the caption of Figure 4 and section Data S1 for a side-by-side

comparison with other projections.

Figure 4. FAKET projection output by our method

Axes x and y correspond to the grandmodel’s width and height respectively,

and colorbar indicates simulated intensities in arbitrary units. Though visually

similar to Figure 3, there is a subtle difference that has a significant impact on

DF’s performance. This similarity complicates comparison of projections from

various simulators using currently available image metrics. See section Data

S1 for a side-by-side comparison with other projections.
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resources about modeling the image formation in transmission

electron microscopy.

In material sciences, GPU accelerated simulators such as

MULTEM (C++, CUDA),16,17 abTEM (Python),18 or Prismatic

(C++, CUDA)19 have emerged. However, as reviewed in in the

study byKirkland E.J.,20 advanced TEMsimulators used inmate-

rial sciences require atomic models of the background and the

entire specimen. Moreover, in cryoEM, the sample and its inter-

action with the electron beam is fundamentally different. While

in material science samples are often only a few layers of atoms

thick and the imaged atoms have strong interactionwith the elec-

tron beam, cryoEM samples are thousands of atom layers thick,

are less ordered, andonlyweakly interactwith the electron beam.

Additionally, cryoEM samples can only withstand little radiation

before complete destruction resulting in much lower signal to

noise ratios. Due to these differences, such simulators are of

limited use for macromolecular biological specimen simulations

that we experiment with in this article. Finally, in contrary to our

approach, all aforementioned methods require precise calibra-

tion protocols for setting the values of simulation parameters.

Structure of this article
To build our proposed method, presented in method details

(referred to as FAKET), we used a data-driven approach (i.e., no

calibration protocol is needed). More information about the

data we used is in Data. With our method, we managed to suc-

cessfully approximate the input-output behavior, on par with the

SHREC simulator (referred to as BENCHMARK) but for a fraction of

its computational cost. To experimentally prove the need for

our method, we also compared it to a simple addition of

Gaussian noise (referred to as BASELINE) that was naturally very

fast to compute, but did not lead to comparable results on the

downstream tasks.
To evaluate the methods, we used the simulated data by

each of them as a training set for the DeepFinder neural

network (more in DeepFinder). The network was trained to

solve two evaluation tasks proposed in SHREC challenge.

The final comparison was done by observing the models’ per-

formances on the test tomogram chosen by SHREC. Detailed

description of the evaluation is in Evaluation. More on experi-

ments and results is in Results section. Procedures of each

method are compared in Figure 5. This paper is accompanied

with source code, the results are fully-reproducible, and the

full experiment results are available in the repository – https://

github.com/paloha/faket/.

Side-by-side comparison of all projections used in this article

is available in section Data S1. The process of re-creating the

BENCHMARK data is detailed in section Data S2. Fine-tuning ex-

periments that further improved the DF performance are

described in section Data S3. Additional experiments, NST

ablation study, and investigation of DF limits are presented in

section Data S4. Further details on the performance of studied

models on the particle classification task are provided in sec-

tion Data S5.

Key findings
(1) FAKET successfully utilizes NST to simulate cryo-electron mi-

crographs or tilt-series of common sizes. (2) FAKET produces real-

istic TEM simulations of quality nearly identical to the unlabeled

reference data. (3) Cost of FAKET simulation is only slightly higher

than simply adding Gaussian noise while significantly lower than

that of complex physics-based simulators. (4) Apart from unla-

beled reference data, FAKET does not require further training or

calibration. (5) FAKET is a practical and efficient tool for simulating

fully labeled training data for deep learning.
Structure 33, 820–827, April 3, 2025 823
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Figure 5. Diagram of steps to simulate the BENCHMARK, BASELINE, FAKET, and noiseless projections and reconstructions

Red arrows highlight steps to reproduce SHREC data from which we use the last tomogram for testing. All methods except SHREC were filtered using a reverse-

engineered filter (see section Data S2) because the SHREC filtering step is under-documented. The style projections never feature the same contents as the

simulated ones (see section Data S1). Grandmodels, noiseless artificial samples containing randomly scattered particles, were created using existing models of

biological macromolecular structures, represented as Coulomb density volumes.

ll
OPEN ACCESS Resource
RESULTS

Comparison of DeepFinder’s performance on localization and

classification tasks as a function of training data is presented

in Table 1. The mean performances per epoch with 68% and

95% confidence intervals (CIs) are presented in Figures 6 and

7. Results of additional experiments can be found in section

Data S3, Data S4, and Data S5.

The performance of DF trained on BENCHMARK data turned out to

be the best in both localization and classification tasks, as ex-
Figure 6. Performance on localization task
Darker and lighter regions show 68% and 95% CI.
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pected, since the testing tomogram was reconstructed from

the exactly same tilt-series as BENCHMARK training set. In practice,

however, it is infeasible to have such favorable conditions as fully

labeled tomograms are not existent. Most biological studies

focus on one or a subset of molecules to be labeled. And since

the labeling process is laborious and requires domain experts,

it is also expensive. With that in mind, we can hardly expect to

have a training set of tomograms from exactly the same distribu-

tion as the tomograms we are interested in. Nevertheless, this

result serves us, as the name suggests, as a benchmark that

we are trying to reach with our proposed methods.

The highest BENCHMARK F1 score of 81.5% (68% CI [81.1%,

82.0%]) on localization task and 58.1% (68% CI [57.9%,

58.3%]) on classification task on average across 6 different

random seeds was achieved after 65 ± 4 epochs of training.

To put these numbers in perspective, we investigated the

limits of DF performance by training and evaluating on

completely noiseless data, see section Data S4 for more details.

In this setting, DF achieved F1 score of 83.2% (68% CI [82.4%,

84.0%]) on localization task and 72.5% (68%CI [70.5%, 74.6%])

on classification task.

Our fastest method of simulating the projections and subse-

quently the tomograms, BASELINE, scored 81.3% (68% CI

[81.1%, 81.6%]) on localization task. It was a surprise that

such a simple method led to so high localization performance,

considering that it requires z150 h to create the BENCHMARK pro-

jections, while it takes almost no time to create the BASELINE

projections. This method can be therefore regarded as the

‘‘poor-man’s’’ choice in settings where the computational

budget is very limited, or in settingswhere this task has to be per-

formed repeatedly many times. Unfortunately, the classification



Figure 7. Performance on classification task

Darker and lighter regions show 68% and 95% CI.

ll
OPEN ACCESSResource
performance of 44.1% (68% CI [43.2%, 45.1%]) was rather

poor, not surprisingly, as classification is an inherently harder

task, cf.7

Our proposed method FAKET, based on additive noise (using

our advanced estimation of in-projections noise) and subse-

quently neural style transfer, with on average 80.0% (68% CI

[79.8%, 80.2%]) F1 score on localization task performed on

par with the BENCHMARK and significantly outperformed standard

template matching algorithms. The best performance on the

classification task was achieved after 65 ± 4 epochs with a

score of 53.3% (68% CI [52.8%, 53.8%]). With this result, FAKET

matched the BENCHMARK to 92% while reducing the cost of data

generation by a factor of 750 and using 33 times less memory.

Multi-class classification performance certainly can not be

reduced only to one number and it is important to consider

also other metrics, such as per-class classification report and

confusion matrices. The per-class classification performance is

shown in Figure 8 and we provide the confusion matrices in sec-

tion Data S5. The full performance reports are available in the

accompanying repository for enthusiastic readers.
Figure 8. Per-class performance on classification task
Darker and lighter regions show 68% and 95% CI.
In section Data S3, we present further experimental results

showcasing the fine-tuning of FAKET models using a subset of

BENCHMARK data. This approach further narrows the performance

gap between the FAKET and BENCHMARK models, achieving 97% of

the BENCHMARK model’s classification performance, while

exceeding its performance on localization task. These results

might be valuable for cryoET practitioners who are seeking to

maximize the performance of their models and have, or can

get a small but representative sample of their data labeled.

DISCUSSION

In this paper, we proposed FAKET, a fast and scalable data-driven

method for simulating the forward operator of any electron mi-

croscope based on additive noise and neural style transfer.

The proposed method can be used for generating synthetic

cryo-electron micrographs or tilt-series that closely approximate

the quality of reference TEM data, at a computational cost only

marginally higher than that of simply adding Gaussian noise.

The data can be used to train deep neural networks to solve

tasks such as particle localization and (much more challenging)

particle classification. The field of cryo-electron tomography

currently suffers from the lack of sufficient amounts of annotated

data, and the proposed method aims to solve this problem.

In this study, we evaluated FAKET as a surrogate model that

mimics the behavior of the physics-based TEM simulator

SHREC, while being drastically less computationally expensive,

both in terms of time and memory. It accelerates the data gener-

ation process by a factor of 750 while using 33 times less mem-

ory, making the generation of thousands of tilt-series feasible.

Moreover, it is capable of simulating large tilt-series, which are

common in experimental environments. For example, we gener-

ated a 613350033500 tilt-series on a single NVIDIA A100 40GB

SXM4 GPU in less than 10 min. It also does not require any cali-

bration protocol, it does not need to be retrained to be used on

new data, nor does it require labeled reference data. Themethod

is open source, and the experiments are reproducible.

The quality of our approximations was evaluated using the

DeepFinder network, which emerged from the SHREC challenge

as one of the most successful. The results showed that the
Structure 33, 820–827, April 3, 2025 825
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performance of models trained using our approximations is on

par with the BENCHMARK method on localization task and reached

92% of its performance on classification task while significantly

outperforming standard template matching algorithms. When

further fine-tuned using a portion of BENCHMARK data, the classifi-

cation performance was improved to 97%.

This advancement simplifies the generation of fully labeled,

high-quality synthetic tilt-series that resemble experimental

TEM data requiring analysis. This simulated data can either be

used to train particle localization and classification neural net-

works from scratch, or serve as pre-training data for networks

that will be fine-tuned with manually labeled experimental data

later. Researchers investigating reconstruction algorithms can

also benefit from our simulator since the availability of ground

truth allows for effortless evaluation of their novel methods. How-

ever, when simulating data for use cases other than training neu-

ral networks for particle localization or classification, it is impor-

tant to take into account that no explicit knowledge of the

underlying physics phenomena of TEM is built into the simulator.

In future work, wewill focus on further validation of our method

using experimental TEM data. Additionally, we plan to improve

the method by replacing the VGG-19 network that was pre-

trained on natural images, with a state-of-the-art vision network

pretrained on cryoEM data. Moreover, we aim to provide the

community of practitioners with a fully functional and easy-to-

use piece of software for generating their synthetic datasets.

Either based on chosen particles from Protein Data Bank, or us-

ing already available whole-cell models. The goal is to enable

more accurate and efficient data analysis while also making

the process more accessible to researchers in the field. We

hope this advancement will serve as the basis for development

of new computational methods in cryoEM and cryoET.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by Dr. Pavol Harar (pavol.harar@ista.ac.at, or find the current con-

tact using ORCID: 0000-0001-5206-1794).

Materials availability

This study did not generate new unique materials.

Data and code availability

All data, the original source code of FakET, and additional information needed

to reproduce this study are publicly available as of the date of publication. DOIs

and URLs are listed in the key resources table. Any additional information

required to reanalyze the data reported in this paper is available from the
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

2021 SHREC challenge dataset described by Gubins

et al., 2021 in https://doi.org/10.2312/3dor.20211307.

d shrec2021_original_groundtruth.zip

d shrec2021_full_dataset.zip

Gubins et al. https://doi.org/10.34894/XRTJMA (version 2.0)

Software and algorithms

Accompanying repository of FakET: Simulating Cryo-Electron

Tomograms with Neural Style Transfer by Harar et al., 2023.

The repository contains all source code needed to run the method

or reproduce all experiments exactly as presented in the paper.

This paper https://github.com/paloha/faket/

releases/tag/2304.02011v3

2021 SHREC challenge eval.py evaluation script used by

Gubins et al., 2021 in https://doi.org/10.2312/3dor.20211307.

This script was adjusted for this study and is available from the

accompanying repository of FakET linked in this table.

Gubins et al. https://doi.org/10.34894/XRTJMA (version 2.0)

Implementation of the DeepFinder v1.0 method published by

Moebel et al. 2021 in https://doi.org/10.1038/s41592-021-01275-4.

This method was adjusted for this study and is available from the

accompanying repository of FakET linked in this table.

Moebl et al. https://gitlab.inria.fr/serpico/deep-finder/-/

tree/fa6a0c2b7b792e888d0619c847

302f0954caead2/deepfinder

Implementation of the Neural Style Transfer method described by

Gatys et al. 2016 in https://doi.org/10.1109/CVPR.2016.265.

This method was adjusted for this study and is available from

the accompanying repository of FakET linked in this table.

Katherine Crowson https://github.com/crowsonkb/style-

transfer-pytorch/commit/1107fe68639

a59bd54bcda018e25dd770819ab19
METHOD DETAILS

The methods described in this section represent surrogate models that mimic the behaviour of the aforementioned SHREC physics-

based simulator. The methods are to be applied in the projection space, i.e. all of them take noiseless (and ice-less) projections as

inputs, shown in Figure 2, and produce real-like looking projections by matching their appearance with a target ‘‘style’’ projections.

The outputs are ready to be reconstructed into final tomogram volumes using a reconstruction algorithm of choice. There aremultiple

reasons why we decided, and why it is reasonable, to model the simulator’s behaviour in projection space. Firstly, different recon-

struction algorithms produce different types of artifacts and are suitable in different situations. Therefore, simulating only projections

means themodels do not have tomimic the artifacts crated by the reconstruction algorithm (e.g. smearing due to themissing wedge).

Moreover, this approach does not limit the practitioners in their choice of the reconstruction algorithm, and opens the possibility for

researchers to also use the methods in research of novel reconstruction algorithms. But most importantly, simulating in projection

space means the models need to process and produce an order-of-magnitude less data points, as compared to simulating the final

reconstruction volumes. That means, simulating q3N2 data points instead of N3. In our case, q = 61 and N = 1024. In practice, q

stays approximately the same, but N is usually 3 – 4 3 larger.

Additive noise (BASELINE)
Before moving on to the development of more complicated methods, we wanted to see how a very simple method involving tilt-

dependent scaling and the addition of Gaussian noise would approximate the target projections. The modality of projections pro-

duced by this method is referred to as BASELINE projections in the whole text. First, we shifted and scaled each tilt of the noiseless

input projections separately according to the average mean and standard deviation of each tilt within the training set. Through

this tilt-dependent scaling, we attempt to model different degrees of attenuation as a function of tilt angle - the more extreme the

tilt angle, the greater the attenuation due to the longer electron beam trajectory.

Next, we simply add Gaussian noise, as this is the natural choice of practitioners when they need to quickly create some simulated

tilt-series. Of course, this raises the question of how much noise to add. In reality, practitioners would probably visually choose a

value for s that gives a similar signal-to-noise ratio. However, we opted for a more objective procedure by subtracting the noiseless

content from the target projections to extract the noise and measure its statistics. With SHREC data, where precise ground truth is

available, this task is less challenging thanwith real data, where we lack ground truth for the entire tomogram. So in a real scenario we

would have to select regions for which we can estimate the ground truth and calculate the noise statistics only for these regions
e1 Structure 33, 820–827.e1–e4, April 3, 2025
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instead of using the whole tilt values. After adding the Gaussian noise, the resulting volume was scaled to match the average mean

and standard deviation of the training set with respect to tilt. The steps for creating projections and consequently reconstructions

using this method are shown in Figure 5, and an example of a simulated projection can be seen in Figure 3. The calculation of

this modality takes only a few seconds using a single CPU.

Neural style transfer (FAKET)
To capture the noise structure of the BENCHMARK projections more closely, in FAKET we devised a more elaborate method of estimating

the noise statistics as opposed to the simpler one used in BASELINE. In this case, we estimate the noise statistics for each tilt in the

whole training set separately and fit a second-degree polynomial over the averages. This process captures the average noise sta-

tistics as a function of tilt angle based on the information from the whole training set. After adding the better estimated Gaussian

noise, we obtained projections which we will refer to as noisy projections. To further adapt those projections, we used the Neural

Style Transfer technique implemented in PyTorch framework21 and introduced in.8

NST was built to render the semantic content of natural images in different styles. At its core lies VGG net,22 a convolutional neural

network optimized for object recognition and -localization. Within the NST framework, the VGG-19 model is used for extracting the

content and style representations of so-called ‘‘content’’ and ‘‘style’’ images, which are provided as inputs. NST then iteratively up-

dates the output image to simultaneously match the content representation and the style representation of the provided inputs at

multiple scales. The NST technique is described in the aforementioned paper in great detail and we encourage the reader to consult

it if any questions would arise. The VGG-19 model used in FAKET was pretrained on ImageNet data set of natural images, eliminating

the need for users to train the model themselves. For those interested in further fine-tuning the NST model (benefits of which are still

under investigation by the authors), guidelines are available on the PyTorch website. Fine-tuning would necessitate partially labeled

data, unless an autoencoder approach is adopted, which would require no labels.

Cryo-electron projections are not natural images as those used to pre-train the VGG net. It would be therefore surprising if the NST

provided us with desired results ‘‘out-of-the-box’’. The first experiments with NST using the noiseless projections as content images

and BENCHMARK projections as style images were disappointing due to numerous strong artifacts scattered apparently randomly over

the adapted projections. Search over the space of hyper-parameters did not result in satisfactory output even after 10 thousand it-

erations. Further experiments with BASELINE projections as content images performed poorly on the evaluation task, especially on

localization of smaller particles. It might be useful for the readers to know that before we even decided to work in projection space,

our very first experiments were done in reconstruction space, but this idea had to be quickly abandoned due to the poor performance,

failure to transfer the artifacts of reconstruction algorithm and computational infeasibility.

In order to obtain the desired results, we adjusted the NST to our specific needs. Firstly, we adjusted the code to accept sequences

of 1-channel floating point arrays as inputs to improve the speed of processing. Next, we rid the code of conversions associated with

handling RGB images in order to preserve the floating point precision of our data. And finally, we implemented the support for other

than random initialization or initialization with the content whichwas a crucial change to produce the desired results.We initialized the

NST with noisy projections, used noisy projectionswith 25% of noise as content, and provided the associated BENCHMARK projections

as style images. We would like to point out that the associated style images were taken from a different training tomogram, therefore

do not feature the same content. I.e. it is not possible to simply minimize the element-wise mean absolute error to get the desired

output.

From the NST pipeline, we only used the 1024x1024 scale because downsampling to smaller scales combined with anti-aliasing

used in NST to transition between the scales is well suited for natural images and lots of NST iterations but not for our use case on

scientific data. Using new initialization and slightly noisy content images allowed us to increase the learning rate of the NST optimizer,

so we were able to produce visually persuasive outputs in just one iteration, as seen in Figure 4.

This method is more involved than just adding the noise, but produces better results, is very fast due to our changes of NST initial-

ization and hyper-parameters, requires less domain-specific knowledge than implementing the forward operator, and can be used in

real-world scenarios. Computing this modality of data, including the steps to create the noisy projections and content projections for

10 tomograms took onlyz 12 minutes on a single NVIDIA A100 40GB SXM4GPU, which on average represents a 7503 speedup in

comparison to BENCHMARK. This method also needed only z 3.5 GB of GPU memory per tomogram as opposed to 117GB of RAM

whichwas necessary for BENCHMARK. TheGPUmemory usage of ourmethod could be even further optimized. This represents 33 times

less memory usage. Certainly, it is not possible to do a head-to-head comparisons between GPU memory and RAM, but this infor-

mation can be used to estimate the hardware requirements. Moreover, as opposed to the BENCHMARK method, it is possible to scale

our method to volumes that match usual sizes of experimental data on still reasonable hardware.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data
For the purposes of this paper, we used the latest version of the SHREC data set from the year 2021. More specifically, we based the

presented methods on full-resolution grandmodels (synthetic volumes containing randomly scattered particles) and simulated pro-

jections from the SHREC 2021 additional data set that was made publicly available (more info at www.shrec.net/cryo-et, download
Structure 33, 820–827.e1–e4, April 3, 2025 e2
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version 2.0 from https://doi.org/10.34894/XRTJMA). An example visualization of a simulated projection using the SHREC simulator is

depicted in Figure 1. We use the unchanged simulated projections as a benchmark which we try to approximate with our proposed

method.

The steps to create the simulations were described in.7 However, at the time of writing of this paper, the implementation is not

publicly available and from the description of the steps it is clear that the method is, and rightfully so, very elaborate, and not at

all elementary to reimplement (also due to various steps being under-documented, see Section Data S2).

On the following lines, we briefly summarize the steps needed to create the SHREC data set. The authors first constructed 3D

ground-truth specimens (grandmodels) along with annotations. Each specimen contained uniformly distributed and rotated protein

instances (represented as Coulomb density) of varying size and structure from the Protein Data Bank (PDB),23 as well as membranes

and gold fiducials, which are commonly found in tomograms. Then, they simulated a layer of amorphous ice into the grandmodels

before rotating them over 61 evenly-spaced tilt angles, ranging from - 60+ to + 60+, in order to be projected. The noiseless projections

were produced using their own implementation of a TEM simulator based on the multislice approach presented in.13 Next, they

sampled from a Poisson distributionwith a specific electron dose to obtain the final electron counts (files labeled as projections). After

that, they randomly shifted the projections to model the tilt misalignment and scaled the amplitudes in Fourier space using informa-

tion about amplitudes from experimental images in order to increase their similarity (files labeled as projections_unbinned). In the end,

they obtained the final images (files labeled as reconstruction) by reconstructing the 23 binned projections using weighted-backpro-

jection algorithm from a private version of the PyTom package.24

We chose the SHREC data set as it is established, well-executed, downloadable, and allows researchers to compare their results

with previous works without the need to reproduce all results from scratch. In this paper, we are not focusing on solving the proposed

tasks, instead, we are using them as evaluation metrics to measure the performance of our proposed method. However, the avail-

ability of the data and descriptions of the methods made this research feasible.

As stated earlier, we used the full-resolution grandmodels from the SHREC data set to create our own noiseless projections using

Radon transform, as implemented in the scikit-image library for image processing in Python.25 We computed our own noiseless pro-

jections for three primary reasons. Firstly, SHREC only supplied full-resolution noiseless projections embedded within the simulated

ice layer, a feature we also aimed to incorporate in our surrogate. Secondly, we intended to provide access to all implementation

steps within the code-base. Lastly, it was necessary to produce noiseless reconstructions that could later be used to estimate

the performance boundaries of DF on this data set. We also had to omit the usage of the reconstructions provided by SHREC

because the exact configuration of all the steps is not published and the version of the PyTom software package used to create

this data is not public. Also, the public version is not yet properly documented or straightforward to use. Thus, the only feasible option

to ensure comparable results across our experiments was to create our own reconstructions from all the newly created projections

described in Method details. Nevertheless, we put a lot of effort into matching our reconstructions with the ones originally published

in SHREC.We created them using the RadonTea Python package26 using a custom filter described in Section Data S2. For additional

flexibility, we also implemented support for tomographic reconstructions using the well-known IMOD package.27 To ensure compa-

rability also with previously published results, we used the original SHREC model_9 reconstruction as a test tomogram for all pre-

sented methods as it was done in all the past challenges.

Evaluation
To evaluate the quality of the proposed simulated projections and subsequently tomograms, no widely acceptedmetrics exist,10 and

it is not clear how well the standard metrics such as the mean squared error, or more elaborate metrics such as the Fréchet inception

distance,28 relate to the performance on tasks of interest to the practitioners.

We therefore trained a randomly initialized DF neural network to solve two evaluation tasks proposed in the SHREC 2021 challenge,

namely particle localization and classification. These tasks are of utmost importance to practitioners in determining the structure of

proteins and macromolecular complexes. We argue that evaluation on a task of practical relevance is much more valuable than

merely computing the currently available metrics. It also gives the reader an advantage to see the newly created data modalities

in practice, even though the computational cost of evaluation is high. Nevertheless, we also provide the evaluation results using

the standard metrics in Table S2.

To obtain themain results, we trained DF for 70 epochs on BENCHMARK, FAKET, and BASELINE training data, every time across 6 different

seeds of randomness (336 times in total). Each model was tested on the same test tomogram – model_9 from the original SHREC

data set. The final comparison was done by observing the models’ performances in terms of F1 score for localization task and F1

macro score for classification task. The computation of the scores was done the same way as in7 where also further particularities

of the tasks are described. To estimate the 68% and 95% confidence intervals, we used the bootstrapping method. The results are

visualized and discussed in Results. Results of additional experiments are presented in the Supplementary material.

DeepFinder
DeepFinder emerged from the SHREC challenge as one of the most successful candidates. One other reason why we chose to use

DF was the availability of its source code. DF is a deep 3D-convolutional neural network trained in a supervised fashion by optimizing

a dice loss. For training of themodels, we used the Adamoptimizer with learning rate of 0.0001. The exponential decay rate was set to

0.9 for the first moment estimate and 0.999 for the second moment estimate as in.9
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To train the DF, we used tomograms containing particle instances from 16 classes (two of those being background and vesicles).

We adjusted the training procedure of DF such that in one epoch, all patches containing particles within the training data set were

seen once, or with minimal repetition. a patch in a shape of a box is rotated by 180+ at random. Patches are processed in batches

constructed from a randomly permuted list of all particles in the training set. After our changes in the training procedure, an epoch

represents a different number of gradient steps than in,9 therefore the numbers of epochs are not comparable with the original paper.

To perform the particle localization and -classification on the test tomogram, DF carries out a segmentation procedure followed by

clustering and thresholding steps, where the two latter steps are computed using a CPU. The thresholding is used to reduce the num-

ber of false positive findings.

To train the DF network implemented in Keras framework29 using TensorFlow backend,30 we utilized multiple NVIDIA A100 40GB

SXM4 GPUs. That allowed us to run multiple experiments in parallel. One training job comprising of 9 training tomograms required

approx. 17GB of GPU memory, therefore we were able to submit two jobs on one GPU at a time. One training epoch, as defined

earlier, took z 21 min. to finish. The segmentation of a test tomogram took z 2.5 min. on the aforementioned GPU. The clustering

step took z 30 min. on a single core of a 2364-core AMD EPYC 7742 CPU. The most computational expensive step was thus the

training of the DF.
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