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Latent Ewald summation for machine
learning of long-range interactions
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Bingqing Cheng1,2

Machine learning interatomic potentials (MLIPs) often neglect long-range interactions, such as
electrostatic anddispersion forces. In thiswork,we introduceastraightforwardandefficientmethod to
account for long-range interactions by learning a hidden variable from local atomic descriptors and
applying an Ewald summation to this variable. We demonstrate that in systems including charged and
polar molecular dimers, bulk water, and water-vapor interface, standard short-rangedMLIPs can lead
to unphysical predictions even when employingmessage passing. The long-rangemodels effectively
eliminate these artifacts, with only about twice the computational cost of short-range MLIPs.

Machine learning interatomic potentials (MLIPs) can learn from reference
quantummechanical calculations and then predict the energy and forces of
atomic configurations quickly, allowing for a more accurate and compre-
hensive exploration of material and molecular properties at scale1,2. Most
state-of-the-art MLIP methods use a short-range approximation: the
effective potential energy surface experienced by one atom is determined by
its atomicneighborhood.This approximation implies that the total energy is
the sum of atomic contributions, which alsomakes theMLIPs scale linearly
with system size.

The short-range MLIPs, however, neglect all kinds of long-range
interactions, such as Coulomb and dispersion. Although short-range
potentials may be sufficient to describe most properties of homogeneous
bulk systems3, they may fail for liquid-vapor interfaces4, dielectric
response5,6, dilute ionic solutions with Debye-Hückel screening, and inter-
actions between gas phase molecules7.

There has been a continuous effort to incorporate long-range inter-
actions intoMLIPs. One can include empirical electrostatics and dispersion
baseline corrections4,8,9, but for many systems, such baseline is not readily
available. Another option is to predict effective partial charges to each atom,
which are then used to calculate long-range electrostatics10–15. For example,
the fourth-generation high-dimensional neural network potential (4G-
HDNNPs)11 predicts the electronegativities of each nucleus and then use a
charge equilibration scheme16 to assign the charges. 4G-HDNNPs are
trained directly to reproduce atomic partial charges from reference quan-
tum mechanical calculations, although partial charges are not physically
observable and their values depend on the specific partitioning scheme
used13. In a similar vein, the deep potential long-range (DPLR)17 learns
maximally localized Wannier function centers (MLWFCs) for insulating
systems, and the self-consistentfieldneural network (SCFNN)12 predicts the
electronic response via the position of the MLWFCs. Message passing
neural networks (MPNNs)18–21 employ a number of graph convolution
layers to communicate information between atoms, thus capturing long-

range interaction up to the local cutoff radius times the number of layers.
However, if parts of the system are disconnected on the graph, e.g. two
molecules with a distance beyond the cutoff, the message passing scheme
does not help. Another class of methods is to learn the long-range
descriptors and interactions in the reciprocal spacewith learnable frequency
filters22,23. Finally, a very interesting approach is the long-distance equivar-
iant (LODE) method7,24, which uses local descriptors to encode the Cou-
lombandother asymptotic decaying potentials (1/rp) around the atoms, and
a related, density-based long-range descriptors25.

Here, we propose a simple method, the Latent Ewald Summation
(LES), for accounting for long-range interactions of atomistic systems. The
method is general and can be incorporated into most existing MLIP
architectures, including potentials based on local atomic environments (e.g.
HDNNP26, Gaussian Approximation Potentials (GAP)27, Moment Tensor
Potentials (MTPs)28, atomic cluster expansion (ACE)29) and MPNN (e.g.,
NequIP19, MACE30). In the present work, we combine LES with Cartesian
atomic cluster expansion (CACE) MLIP31. After describing the algorithm,
we benchmark LES on selected molecular and material systems.

Results
Theory
For a periodic atomic system, the total potential energy is decomposed into a
short-range and a long-range part, i.e. E = Esr + Elr. As is standard in most
MLIPs, the short-range energy is summed over the atomic contribution of
each atom i,

Esr ¼
X
i

EθðBiÞ; ð1Þ

where Eθ is a multilayer perceptron with parameters θ that maps the
invariant features (B) of an atom to its short-range atomic energy. B can be
any invariant features used in different MLIP methods, including those
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based on local atomic environment descriptors such as ACE29, atom-
centered symmetry functions26, smooth overlap of atomic positions
(SOAP)32, or any latent invariant features in MPNNs.

For the long-range part, another multilayer perceptron with para-
meters ϕmaps the invariant features of each atom i to a hidden variable, i.e.

qi ¼ QϕðBiÞ: ð2Þ

The structure factor S(k) of the hidden variable is defined as

SðkÞ ¼
X
i

qie
ikri ; ð3Þ

where k = (2πnx/Lx, 2πny/Ly, 2πnz/Lz) is a reciprocal vector of the orthor-
hombic cell, and ri is the Cartesian coordinates of atom i. The long-range
energy is then obtained using an Ewald summation form that best captures
the electrostatic potential (1/r)33:

Elr ¼ 1
V

X
0<k<kc

e�σ2k2=2

k2
jSðkÞj2; ð4Þ

where σ is a smearing factor which we typically set to 1Åwith justifications
in theMethods, k= ∣k∣ is themagnitude, and kc is themaximumcutoff.q can
be multi-dimensional, in which case the total long-range energy is
aggregated over contributions from different dimensions of q after the
Ewald summation.

The LES method can be interpreted in two ways. First, the hidden
variable q is analogous to the environmental-dependent partial charges on
each atom. This implies that the method is at least as expressive as those
explicitly basedon learningpartial atomic charges, as itwould yield the same
results if q replicated the partial charges. Additionally, q can be multi-
dimensional, potentially enhancing expressiveness further. Unlike partial
charges, q is not constrained by requirements such as charge neutrality or
correct chargemagnitudes.As theEwald summation inEq. (4) omits the k=
0 term, a non-zero net q does not cause energy divergence issues. Physically,
this means the tinfoil boundary condition is applied. In addition, Eq. (4)
omits the self-interaction term present in the regular Ewald summation for
long-range charge interactions. This is because the Elr here does not need to

correspond to aphysical electrostatic potential, and the self-interaction term
is short-ranged and can be included in the Esr components. The second
interpretation of LES is as a mechanism that allows atoms far apart in the
simulation box to communicate their local information. In this sense, LES is
related to the recent Ewald-based long-range message passing method,
which facilitates message exchange between atoms in reciprocal space23.

Example on molecular dimers
We benchmark the LES method on the binding curves between dimers of
charged (C) and polar (P) molecules at various separations in a periodic
cubic box with a 30 Å edge length. The dataset7, originally from the Bio-
Fragment Database34, includes energy and force information calculated
using theHSE06 hybrid density functional theory (DFT)with amany-body
dispersion correction. We selected one example from each of the three
dimer classes (CC, CP, PP), derived from the combination of the three
monomer categories. Figure 1 shows a snapshot of each example.

Thegoal of this benchmark is to evaluatewhether theMLIPmodels can
extrapolate dimer interactions at larger separations based on training data
from smaller distances. For each molecular pair, the training set consists of
10 configurationswith dimer separation distances between approximately 5
Å and 12 Å, and the test set includes 3 configurations with separations
between approximately 12 Å and 15 Å.

For each molecular pair, we trained a short-range (SR) model using
CACE with a cutoff rcut = 5 Å, 6 Bessel radial functions, c = 8, lmax ¼ 2,
νmax ¼ 2,Nembedding = 3, and onemessage passing layer (T=1). It should be
noted that this settingof the “SR”modelalready achieves aperceptivefieldof
10 Å through the message passing layer, which is quite typical for current
MPNNs. In comparison, more traditional MLIPs based on local atomic
descriptors typically use a cutoff of around5or 6Å,making themevenmore
short-ranged.

In the long-range (LR) model, the short-range component Esr used the
same CACE setup, while the long-range component Elr employed a
4-dimensional hidden variable computed from the same CACE B-features
and utilized Ewald summation (Eq. (4)) with σ= 1Å and a k-point cutoff of
kc = 2π/3. It is important to fit both energy and forces for these datasets, as
fitting only to a few energy values may result in models that accurately
predict binding energy but perform poorly on forces.

Figure 1 shows that the LR MLIPs outperform the SR MLIPs in all
cases. Furthermore,SRmodels fail to adequately capture the trainingdata, as

Fig. 1 | Comparison of the short-range (SR) and
long-range (LR) machine learning interatomic
potential performance for three dimer classes:
charged-charged (CC), charged-polar (CP), and
polar-polar (PP). For each class, the upper panel
shows a snapshot of the systemwith the charge states
indicated, the middle panel shows the parity plot for
the force components, and the lower panel shows the
binding energy curve, which is the potential energy
difference between the dimer, and two isolated and
relaxed monomers. The root mean square errors
(RMSE) for the energy and force components of the
test sets are shown in the insets.
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indicated by the flattening of the binding curves and the large discrepancies
between some predicted and true forces (gray symbols in Fig. 1). The pri-
mary limitation of the SR models is that molecules separated by distances
beyond theMLIP cutoff exist on independent atomic graphs, rendering the
message-passing layers ineffective for communication between the dimers.
Direct comparison of the accuracy of the present LRmodels with the LODE

method [7] is challenging, as different training protocols were used in ref.
[7], andLODEdepends significantly on the choiceof the potential exponent
p for each dimer class. However, based solely on RMSE values, the LR
models presented here appear to be more accurate. For example, in the CC
class, the energy RMSE is 15.5 meV, compared to approximately 0.1 eV for
LODE with the optimal choice of p.

Example on molten NaCl
Molten bulk sodium chloride (NaCl) presents non-negligible long-
range electrostatic interactions. The dataset from ref. 25 contains
1014 structures (80% train and 20% validation) of 64 Na and 64 Cl
atoms. Table 1 compares the root-mean-square percentage error
(RMSPE) using different methods. rcut = 6 Å were used for all models
except for the LODE flexible (7 Å). The CACE-LR models use 6 Bessel
radial functions, c = 12, lmax ¼ 3, νmax ¼ 3, Nembedding = 3, zero (T = 0)
or onemessage passing layer (T = 1), a 4-dimensional q, σ= 1Å and a k-
point cutoff of kc = 2π/3 in Ewald summation. The details for the other
models are in ref. 25. We also trained hybrid models incorporating
long-range electrostatics via element-dependent fixed charges on Na
and Cl ions, with the remaining energy and forces fitted to short-
ranged CACE T = 0 potentials. One model utilized nominal charges of
1e/-1e for Na/Cl ions, while another employed optimized fixed charges
of 0.65e/−0.65e for Na/Cl ions.

Table 1 shows that the short-ranged models, including SOAP27,32,35,
MACE30T = 0, and CACE T = 0 exhibit the highest errors. The simple
baseline model using nominal fixed charges (CACE + fixed q = 1e) per-
forms worse than the short-range models. However, after optimizing the
fixed charge values through training, the CACE + fixed q=0.65e model
demonstrates improved accuracy. Other long-ranged models, including
LODE7,24 with different settings, a density-based long-range model25, and
CACE-LR outperform the purely SR methods. MACE30 with message
passing (T = 1), especially the one using equivariant features, also achieves
accurate results, as message passing increases the effective perceptive field.
Overall, CACE-LRmodels, with and without message passing (T = 0 and T
= 1), obtain the best accuracy.

Example of bulk water
As an example application to dipolar fluids, we applied the LESmethod to a
dataset of 1593 liquid water configurations, each containing 64molecules36.
The dataset was calculated using revPBE0-D3 DFT. For the CACE repre-
sentation, we used a cutoff of rcut = 5.5Å, 6 Bessel radial functions with c =
12, lmax ¼ 3, νmax ¼ 3, Nembedding = 3, and no message passing (T = 0) or
onemessage passing layer (T= 1). For the long-range component, we used a
4-dimensional q, a maximum cutoff of kc = π, and σ = 1 Å in the Ewald
summation.

The learning curves in Fig. 2 demonstrate that message passing sig-
nificantly improves the accuracy of MLIPs, consistent with previous
studies19,30. The LR component further reduces the error for both models
without amessage-passing layer (T=0) andwith amessage-passing layer (T
=1).The improvement is particularlynotable in theT=0 scenario. For theT
= 1 models, the LR component results in a smaller reduction in errors,
probably because the T = 1 SR models already capture atomic interactions
up to 11Å. Nevertheless, theT=1LRmodeldemonstrates greater efficiency
in learning with fewer data.We also compared the inference speeds of these
models during molecular dynamics (MD) simulations, as detailed in the
Methods section.

To investigate howmessage passing and long-range interactions affect
predicted structural properties,we performedMDsimulations of bulkwater
with a density of 1 g/mLat 300Kusing eachmodel. Theupperpanel of Fig. 3
shows the oxygen-oxygen (O-O) radial distribution function (RDF) com-
puted with differentMLIPs. All computedO-O RDFs are indistinguishable
and in excellent agreement with the experimental results of the X-ray dif-
fraction measurements37. This suggests that local representations are suffi-
cient to accurately predict the RDFs of bulk liquid water, consistent with
previous findings3.

Table 1 | The root-mean-square percentage error (RMSPE) for
the validation set of molten NaCl, using the short-ranged
SOAP descriptor27,32,35, two setting of LODE7,24 descriptors
(minimal andflexible),MACE30with zero (T=0) oronemessage
passing layers (T = 1) aswell as using invariant and equivariant
messages, CACE short-ranged T = 0 model, hybrid models
combining fixed-charge electrostatic baseline and CACE SR
T = 0, a density-based long-range model (Density-LR)25, and
CACE-LR with zero (T = 0) or one message passing layers
(T = 1)

RMSPE E (%) RMSPE F (%)

SOAP27,32,35 7.7 12.6

MACE30 T = 0 8.5 8.5

MACE30 T = 1 invariant 3.0 3.1

MACE30 T = 1 equivariant 2.1 2.2

CACE T = 0 4.8 8.2

CACE + fixed q = 1e 7.3 10.5

CACE + fixed q = 0.65e 3.0 4.3

LODE7,24 minimal 5.6 3.7

LODE7,24
flexible 7.0 11.0

Density-LR25 2.2 3.3

CACE-LR T = 0 1.9 2.3

CACE-LR T = 1 1.4 1.8

The fits other than the CACE models are from ref. 25.

Fig. 2 | Learning curves of energy (E) and force (F) mean absolute errors (MAEs) on
the bulk water dataset36, using short-range (SR) or long-range (LR) models and with
or without massage passing layers (T = 0 or T = 1).
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We then investigated the effect of long-range interactions on the
dielectric properties of water by computing the longitudinal component of
the dipole density correlation function6, hem?

z ðkÞemzðkÞi, where em is the
Fourier transform of the molecular dipole density and k = kz is along the
z-axis. The dipole correlation function at the long-wavelength limit can be
used to determine the dielectric constant of water12.

As shown in Fig. 4, while the dipole density correlation functions
predicted by differentMLIPs are in excellent agreement formost values of k,
discrepancies emerge at long wavelengths. Specifically, the results from
short-ranged models sharply increase as k → 0. This divergence has also
been observed in previous studies comparing the SR and LRmodels6,12. The
divergence of the T = 0 short-ranged MLIP appears at a k value corre-
sponding to a real length scale of approximately 11 Å, while the T = 1 SR
model diverges at about 16 Å. Interestingly, these length scales, where
divergence occurs, exceed the effective cutoff radius, suggesting that SR
MLIPs may partially describe long-range effects beyond their cutoffs in a
mean-field manner. When comparing the two SR MLIPs, the message
passing layer delays the onset of divergence at small k values but does not
eliminate it. In this scenario, only true LR models can adequately describe
the dielectric response.

Example on interfacial water
It is widely recognized that short-range MLIPs fall short in describing
interfaces4,12. To demonstrate the efficacy of the LES method for interfaces,

we used a liquid-water interface dataset from ref. 4, computed with the
revPBE-D3 functional. This data set contains approximately 17,500 training
configurations, and was used to train a short-ranged DeePMD model17

combined with a long-range electrostatic baseline employing charges taken
fromanempiricalwater forcefield4. Fromthese,we selecteda small subset of
500 liquid-vapor interface configurations, each containing 522 water
molecules.

We employed the same settings for fitting the MLIPs as used for the
bulk water dataset. The learning curves for forces are shown in Fig. 5. The
energy errors are very low, reaching less than 0.1 meV/atom in mean
absolute error (MAE) for all models using only 50 training configurations.
The force errors are also small, ranging from about 14meV/Å to 27meV/Å
inMAEwhen trainedon90%of the dataset. The learningbehavior is similar
to that observed in the bulkwater case: bothmessagepassing and long-range
interactions enhance the accuracy of the MLIPs.

For each of the T = 0 SR, T = 0 LR, T = 1 SR, and T = 1 LRmodels, we
trained three MLIPs using different random splits of 90% for training and
10% for testing.We then simulated the liquid-vapor interface at 300Kusing
both a thinner slab (Fig. 6a) and a thicker slab of about double the thickness
(Fig. 6d). The resulting density profiles of the water slabs are shown in
Fig. 6b, e. All SR and LRmodels predict similar density profiles, and for the
thinner slab, all models accurately reproduce the density profiles of the
reference DFT water data.

In addition to density profiles, we evaluated the orientational order
profiles, shown in Fig. 6c, f, by computing the angle, θ, between the dipole
orientation of water molecules and the z-axis. For each model, the three
different fits of MLIPs provide slightly different predictions, and the var-
iances are larger for the SR models compared to the LR models. At the
interfaces, water molecules tend to form a dipole layer, which is screened by
subsequent layers, ensuring that the bulk does not exhibit net dipole
moments4. However, without long-range interactions, this screening effect
is not adequately captured, leading to extendeddipole ordering into the bulk
as seen in theT=0SRmodel. The introductionofmessage passing (T=1SR
model) alleviates this issue at least for the thinner slab, but it also introduces
an artifact: dipole ordering in the bulk along the opposite direction for the
thicker slab. In contrast, on average and with smaller variance between
different fits, the LRmodels recover the correct orientational order profiles,
effectively capturing the screening effect and accurately representing the
physical polarization behavior at the liquid-vapor interfaces.

Discussion
The current LESmethod can be extended in a number of ways. The form of
the Ewald summation in Eq. (4)was selected to best capture the electrostatic
potential (1/r), which dominates long-range interactions. It remains unclear
what is the effect of not directly accounting for other decaying potentials.

Fig. 4 | Predicted dipole density correlations in reciprocal space, using short-
range (SR) or long-range (LR)models andwith orwithoutmassage passing layers
(T = 0 or T = 1). The inset shows a zoom-in of the small k values.

Fig. 5 | Learning curves on the liquid-vapor water interface dataset4 using the short-
range (SR) and long-range (LR) models with no message passing (T = 0) or one
message passing layers (T = 1).

Fig. 3 | Predicted oxygen-oxygen radial distribution functions (RDF) of water at
300 K and 1 g/mL, using short-range (SR) or long-range (LR)models and with or
without massage passing layers (T = 0 or T = 1). The experimental O-O RDF at
ambient conditions was obtained from ref. 37.
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Different forms can be used to capture other decaying potentials 1/rp with
different p components. For examples, to best capture the London disper-
sion (1/r6), one can use33,38.

Elr
6 ¼ π3=2

24V

� �X
k>0

k3 π1=2erfcðbÞ þ 1

2b3
� 1

b

� �
× expð�b2Þ

� �
jSðkÞj2;

ð5Þ

where b2 = σ2k2/2, and erfc denotes the complimentary error function.
Currently, the hidden variable q is a rotational invariant, and it may be
extended to adopt a vector or tensor form to capture the dipole andmultiple
moments on an atom.

The relation between LES and the LODE method7,24 is worth
exploring. The key difference is the ordering of local and global interac-
tions. In LES, the hidden variable qi is determined by the local atomic
environment-dependent features Bi of atom i, reflecting the nearsight-
edness principle: partial atomic charges depend mainly on local envir-
onments, similar to the short-range approximation in standard MLIPs.
Although, it should be pointed out that such locality approximation
remains empirical rather than systematic. These local q then interact
globally via the Ewald summation to determine the global long-range
energy. In contrast, in LODE7,24 the potential field (e.g. electrostatic
potential and other 1/rp decaying potentials) generated by all the atoms in
the system is calculated in the reciprocal space via Ewald summation, and
such field near a central atom i up to some cutoff radius is then projected
onto a set of basis functions to form the LODE descriptors. Finally, the

short-range descriptors and the LODE descriptors of atom i are used to
predict its energy. The density-based long-range descriptors25 are similar
to LODE, but the global atomic density itself is used instead of the field.
Comparing the formulisms of both, LES uses local descriptors to predict
global long-range energy, while LODE uses global field to inform local
descriptors. To the best of our knowledge, there is no straightforward
mathematical connections between the LES and LODE formulisms,
particularly considering the non-linearity introduced by the multilayer
perceptron in LES that predicts qi from Bi (Eq. (2)). Physically speaking,
LES encodes the long-range interation between a pair of far-away atoms
via Gaussian smeared charges on the atoms. LODE is more flexible in the
sense that the form of the interaction between the far-away atoms is not
prescribed and is encoded in the long-range field descriptors to inform
atomic energies. In principle, LES can bemodified to bemore similar with
LODE: the LES hidden variable qi of an atom i can be concatenated with
the local descriptorsBi used to predict its atomic energy, althoughwe have
not tested how such procedure would influence that accuracy.

LES also shares similarities with the recently proposed Ewald-based
long-range message-passing method23, as both utilize structure factors.
While LES directly determines the long-range energy from the structure
factor of a hidden low-dimensional variable (Eq.(4)), the Ewald message-
passing method23 employs a learnable frequency filter to map the structure
factor of atomic descriptors to real space. This mapping generates a long-
range message for each atom that is used to update atomic descriptors
during themessage-passing step. LEScan thusbe interpreted as aminimalist
version of Ewald message-passing, with only one long-range message-
passing layer, compressed message dimension, fixed frequency filter, and

Fig. 6 | A comparison of the interface properties of water predicted using short-
range (SR) or long-range (LR) models and without (T = 0) or with one massage
passing layer (T = 1). a shows a snapshot of the thinner water slab configuration,
b shows the water density profile, and c shows average cosine (c) the average cosðθÞ

for the angle formed by the water dipole moment and z-axis. DFT results are from
ref. 4. d, e and f show the snapshot, the water density, and hcosðθÞi for the thicker
water slab, respectively.
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simplified readout. Such minimalist design makes the model light-weight
and allows for easier physical interpretation.

In summary, we present a simple and general method, the Latent
Ewald Summation (LES), for incorporating long-range interactions in
atomistic systems. Unlike many existing LRmethods, LES does not require
user-defined electrostatic or dispersion baseline corrections4,8,9, does not rely
on partial charges or Wannier centers during training10–15, and does not
utilize charge equilibration schemes16. Moreover, LES shows best accuracy
compared to other long-range methods and message passing neutral net-
works in the example on molten salt.

Our results demonstrate that the LR model effectively reproduces
correct dimer binding curves for pairs of charged and polarmolecules, long-
range dipole correlations in liquid water, and dielectric screening at liquid-
vapor interfaces. In contrast, standard short-ranged MLIPs, even when
utilizing message passing, often yield unphysical predictions in these con-
texts. These challenges are common in atomistic simulations of molecules
and materials, particularly in systems like water, which is ubiquitous in
nature and essential to biological processes.Moreover, long-range effects are
crucial in aqueous solutions, organic electrolytes, and other interfacial
systems.

We anticipate that the LESmethod will be widely adopted in atomistic
modeling: while many bulk material properties can be accurately modeled
using short-ranged potentials, phenomenadriven by electrostatic forces and
dielectric responses may require explicit treatment of long-range interac-
tions. In the example of water, while the SR and the LR models predict the
same RDFs, they produce dramatically different dipole correlation func-
tions.Meanwhile, the long-rangeMLIP incurs only amodest computational
cost, roughly double that of the short-range version (see Methods). Fur-
thermore, the LES method can be easily integrated into other MLIP fra-
meworks, such asHDNNP26, ACE29, GAP27,MTPs28, DeePMD17, NequIP19,
MACE30, etc.

Methods
Implementation
We implemented the LES method as an Ewald module in CACE, which is
written using PyTorch. The code is available in https://github.com/
BingqingCheng/cace. The current implementation of the Ewald summa-
tion should in principle, follow an overall scaling ofOðN3=2Þ39, withN being
the number of atoms. The implementation of the code can be further
optimized using algorithms with OðN logðNÞÞ scaling employing techni-
ques with the charges interpolated to a 3D grid such as the Particle-Particle

Particle-Meshmethod39. TheMD simulations can be performed in the ASE
package, but the LAMMPS interface implementation is currently absent.

Selection of the smearing factor σ
For a system of point charges, the Ewald summation expression in Eq. (4)
implies that the long-range energy corresponds to the electrostatic energy
of Gaussian distributed charges with σ being the standard deviation, while
the short-range term needs to account for the difference between the
Gaussian charges and the point charges. The value of the smearing factor σ
needs to be a fraction of the real-space cutoff radius rrut in order to
effectively eliminate the short-range error40. Meanwhile, a larger σmakes
theEwald series ink (Eq. (4))more converged and avoids a high reciprocal
space cutoff kc. and its optimal choice has been extensively discussed in the
literature40. Combining these considerations, σ values in the rough range
of 0.5 Å and 2 Å are reasonable choices. We tested the choice of σ on the
bulk water dataset, with same settings as before and no message passing
layer. Figure 7 shows that σ = 1 Å in this case leads to the lowest error,
although the differences in outcome between various σ choices are
quite small.

Benchmark of inference speed
We benchmarked short- and long-range CACE water models with and
without message passing for MD simulations of liquid water using a single
Nvidia L40S GPU with 48 GB of memory. Figure 8 illustrates the time
required perMD step. All models, with andwithout LR ormessage passing,
exhibit favorable scaling. SR models support simulations with up to
approximately 30,000 atoms on a single GPU, while LR models handle
around 10,000 atoms due to the higher memory demands of the Ewald
routine, which may still be optimized. LR models run at roughly half the
speed of SRmodels. It may be sufficient to use a lower k-point cutoff in the
LR model to further increase the speed.

MD of bulk water
For eachMLIP,weperformedNVT simulations of bulkwater at 1 g/mLand
300 K to compute the RDF shown in Fig. 3. The simulation cell contained
512 water molecules, with a time step of 1 femtosecond, using the Nosé-
Hoover thermostat. The total simulation time was 300 ps.

To compute the longitudinal component of the dipole density corre-
lation function for each model, we performed an NVT simulation of 2048
water molecules at 1 g/mL and 300 K in an elongated simulation box with a
z-dimension of 99.3 Å. The simulation time for this system was 200 ps.

Fig. 8 | Timing of molecular dynamics simulations of the bulk liquid water system
with varying number of atoms (N) on a L40S GPU, using short-range (SR) or long-
range (LR) CACE models and with or without massage passing layers (T = 0 or
T = 1).

Fig. 7 | Energy (E) and force (F) mean absolute errors (MAEs) on the bulk water
dataset36 with difference values of the smearing factor σ, using short-range models
without massage passing.
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To compute the dipole density correlation functions, we calculated the
dipolemoment of eachwatermolecule, assuming that hydrogen atoms and
oxygen atoms have charges of+ 0.4238e and− 0.8476e, respectively. This
assumptiononly affects the absolute amplitudeof the correlation function in
Fig. 4, without altering the relative scale.

MD of water liquid-vapor interfaces
For the NVT simulations of the thinner slab at 300 K, we used a simulation
cell with dimensions (25.6Å, 25.6Å, 65.0Å), containing 522watermolecules.
The thicker slab system had dimensions (24.8Å, 24.8Å, 120.0Å), containing
1,024 water molecules. In both cases, the width of the water slab was less
than half the total width of the cell. For the thinner slab, each independent
NVT simulation lasted for about 400 ps. One run using T = 1 SR model
became unstable after about 280 ps and we discarded the unstable portion.
For the thicker slab, each run lasted for about 600 ps. One simulation using
theT=1SRmodel becameunstable after about 250ps, andweonly used the
stable portion for the analysis.

Data availability
The training scripts, trained CACE potentials, and MD input files are
available at https://github.com/BingqingCheng/cace-lr-fit.

Code availability
The CACE package is publicly available at https://github.com/
BingqingCheng/cace.
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