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SUMMARY
Hippocampal reactivation of waking neuronal assemblies in sleep is a key initial step of systems consolida-
tion. Nevertheless, it is unclear whether reactivated assemblies are static or whether they reorganize gradu-
ally over prolonged sleep. We tracked reactivated CA1 assembly patterns over �20 h of sleep/rest periods
and related them to assemblies seen before or after in a spatial learning paradigm using rats. We found
that reactivated assembly patterns were gradually transformed and started to resemble those seen in the
subsequent recall session. Periods of rapid eye movement (REM) sleep and non-REM (NREM) had antago-
nistic roles: whereas NREM accelerated the assembly drift, REM countered it. Moreover, only a subset of
rate-changing pyramidal cells contributed to the drift, whereas stable-firing-rate cells maintained unaltered
reactivation patterns. Our data suggest that prolonged sleep promotes the spontaneous reorganization of
spatial assemblies, which can contribute to daily cognitivemap changes or encoding new learning situations.
INTRODUCTION

It has been long established that sleep promotes the recall of

previously acquired memories, and there is ample evidence link-

ing sleep to systems consolidation.1 Furthermore, in many in-

stances, the hippocampus plays a critical role in sleep-associ-

ated memory stabilization.2 A long-standing idea suggests that

the hippocampus acts as an intermediate storage area for

recently acquired memories, and suchmemories are reactivated

in sleep.3–5 Subsequently, the reactivation of these memory

traces would promote their transfer to other cortical areas for

consolidation and long-term storage.6,7 This hypothesis has

received consistent experimental support from a multitude of

human and animal studies.8 Among these, rodent electrophysi-

ological experiments could directly examine the content of

neuronal activity during reactivation and test their relationship

to memory recall. These showed that the rate of reactivation is

increased after the experience of novel learning situations, and

the content of reactivation predicts subsequent memory perfor-

mance.9–12 Furthermore, suppressing or prolonging sharp-wave

ripples (SWRs), a local field potential (LFP) event that usually

accompanies hippocampal reactivation, disrupts or facilitates,

respectively, subsequent memory recall.10,13 Finally, content-

specific disruption of reactivation events leads to selective im-

pairments in the recall of the disrupted memory.14

So far, hippocampal reactivation of neuronal activity has

been primarily studied during brief (<1 h) periods of sleep or dur-

ing waking behavior, with the latter linked to different functions
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such as decision making or short-term memory. These works

may have only examined the initial stages of a more complex

sleep reactivation process, which may continue for prolonged

periods.15 Reactivation events can be detected over longer

(4–6 h) periods of time16,17 and, in these studies, neuronal pat-

terns of recent experiences were preferentially reactivated

during the entire sleep duration. However, it is not clear whether

the neural signature of specific experiences remains unchanged

over extended periods or whether it eventually undergoes some

form of modification and rearrangement due to early consolida-

tion or other network processes.

Here, we quantified reactivation dynamics during up to 20 h of

quiet rest periods and sleep following spatial learning and tested

towhat degree reactivated patterns represented previous spatial

learning patterns or resembled those seen at subsequent mem-

ory retrieval. We provide evidence for the transformation of reac-

tivated memory traces and show that many of the transformed

reactivated neuronal patterns will recur in the subsequent spatial

memory recall trials. We also show that rapid eye movement

(REM) and non-REM (NREM) periods exert opposite actions on

this transformation. Finally, we show that this transformation is

driven by a subgroup of pyramidal cells only and that interneuron

activity also reflects the speed of transformation.

RESULTS

We performed 128-channel wireless recordings in the dorsal

CA1 region in three Long-Evans rats using bilaterally implanted
lished by Elsevier Inc.
eativecommons.org/licenses/by/4.0/).
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Figure 1. Reactivation drift during prolonged periods of sleep/rest following spatial learning on the cheeseboard

(A) Behavioral sessions illustrated by animal tracking data for one example session: learning a novel set of goal locations (acquisition), long (�20 h) quiet rest/sleep

period (rest), and recall of goal locations (recall).

(B) The excess path is measured as a multiple of the optimal path to retrieve all goals during the first nine trials of memory acquisition and the first trial of recall

(*p < 0.05, ***p < 0.001, n.s. p > 0.05, one-sided Mann-Whitney U test, Bonferroni correction).

(C) Instances when acquisition and recall pHMM states were detected, with the color indicating the corresponding proportion that the pHMM state is decoded

over a fixed (n = 600) time window for one example session.

(legend continued on next page)
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32-tetrode microdrives. Continuous recordings were performed

for a period of approximately 24 h, covering the learning of a

novel set of goal locations on a cheeseboard maze,9 an inter-

leaved, extended rest period at the home cage, and the recall

of the previously learned goal locations (Figure 1A).We extracted

the activity of multiple, single units of putative pyramidal cells

and interneurons that exhibited stable spike features during the

entire recording (Figure S1). Animals learned the novel set of

goal locations within the first three trials of the learning session,

and they were able to directly retrieve the rewards at subsequent

trials, even at the first trial of the recall session the next day

(Figure 1B).

We used a Poisson hidden Markov model (pHMM) to identify

the activity of different pyramidal cell assemblies during the

learning and recall sessions (Figure S2). The model did not use

any prior assumption about assembly coding nor the spatial cod-

ing of place cells: it was only based on the correlated temporal

firing structure of pyramidal population activity in order to identify

activation states. To see whether pHMM states expressed spatial

selectivity, we plotted the location of the animal at each time a

specific state was active. The majority of pHMM states tended

to occur only at a narrow set of locations on the cheeseboard

maze, many near the goal locations, even though the states

were established without prior knowledge of the location of the

animal (Figures S3A and S3B). Consequently, the pHMM was

able to decode the animal’s location with a higher accuracy

than that obtained by a standard Bayesian decoding procedure

(Figures S3C–S3G), using a cross-validation procedure in which

the prediction in each trial was performed by fitting a model using

the other trials.

Next, we used the pHMM to trace the reactivation of waking as-

sembly patterns during the prolonged rest periods between the

learning and recall sessions. For the majority of the rest period,

the animal was immobile and sleeping—or awake but immobile

in its home cage. In examining reactivation, we only considered

quiet rest periods and excluded periods when the animal moved

within the home cage. In the decoding procedure, we used a tem-

poral binning that conserved the number of spikes in any bin

(12 spikes, if not stated otherwise). Within the rest period, we

differentiated REM sleep periods and the remaining quiet rest

NREM periods and identified reactivation events during continu-

ously detected time windows in REM sleep and in SWRs during

NREM periods. The incidence of SWRs was initially higher, but,

even toward the end of the rest session, their occurrence fre-

quency was >50% of that seen in the beginning (Figure S4E). Re-

activations of specific patterns were identified by determining, for

each fixed-spike bin, the pHMM state that matched the activity

with the highest likelihood, assuming Poisson firing probabilities

(Figure S2A; see STAR Methods). To see whether reactivated

neuronal patterns underwent a transformation during the pro-

longed rest periods, we separately compared rest patterns with
(D) The proportion of decoding acquisition over recall pHMM states at different sta

windows identified). The detection probabilities are significantly different in the

U test). Note that the acquisition and recall proportions sum up to one for each s

(E) Drift score as a function of normalized rest duration for all sessions. The smoot

session (p < 0.001, two-sided Mann-Whitney U test).

(F) Drift score changes are stronger during the first half of rest than during the se

1448 Neuron 113, 1446–1459, May 7, 2025
the set of pHMM states of both acquisition and recall and tracked

their likelihoods during rest. We found that in the first half of the

rest session, acquisition pHMM states were preferentially de-

coded (Figures 1C and 1D). In contrast, later acquisition and recall

states were decoded with similar probability or the decoding of

acquisition states showed a weak preference. This indicated a

drift in the reactivation patterns: the majority of activity patterns

were initially similar to those expressed in the acquisition stage,

but, later, progressively more of them resembled better recall-

stage activity patterns seen after the rest session.

Next, we tracked over time how the reactivation of learning-

associated neuronal patterns was gradually overtaken by

recall-associated patterns. To do so, for each reactivation event,

we compared the decoding log-likelihood of the learning and

recall pHMM states and a drift score was calculated, defined

by the normalized difference of the log-likelihoods (Figure S2A).

A negative drift score indicates the reactivation of acquisition

pHMM states, whereas a positive score corresponds with pat-

terns more similar to the recall states. The smoothed drift score

gradually increased over time, reaching positive values only after

the second half of the rest session, after 7–8 h (Figure 1E). How-

ever, the speed of change of the drift score was faster during the

first half of the rest session than in the second half, suggesting

that the majority of new recall states had already started to be

active in the first half of the rest session (Figure 1F). We obtained

similar results when Bayesian position prediction probabilities

were used to calculate the drift score (Figures S3H–S3J) or

with the pHMM when n = 6 spikes were used (Figures S4F and

S4G). We further tested whether similar reactivation patterns

could be detected during putative quiet waking periods in which

<5 min immobility periods were surrounded by active movement

periods (Figures S4A–S4C). We observed similar reactivation

drift and the decoding probabilities were somewhat higher in

these periods. The amount of active wakefulness did not corre-

late with the drift score (Figure S4D).

Given that in the second half of the rest session, the proportion

of events decoded as acquisition or recall states was similar

(40%–60%), we further tested whether these events were not

spuriously classified. To this end, we scrambled the cell assign-

ment of spikes by taking 10,000 consecutive spikes (scramble

interval <100 s, continuously during REM and consecutive

SWRs during NREM) by randomly swapping the cell identity of

spike pairs (Figures 2A and 2B). This procedure maintained the

temporal patterns of the spikes at the population level: it only

scrambled their cell assignment. Consistently, we detected

higher decoding probabilities for the original data than for scram-

bled spike data for both decoded acquisition or recall states.

This showed that reactivation events were not random. This dif-

ference was not only observed when reactivation patterns during

REMandNREMwere analyzed separately but also when outside

SWR events were tested (Figures S4H–S4K).
ges of rest for all sessions (i.e., the proportion of acquisition or recall decoding

first and second half of the rest session (p < 0.001, two-sided Mann-Whitney

ession; therefore, session curves are mirror images of each other.

hed (n = 20,000) drift scores are different in the first and second half of the rest

cond half of rest (p < 0.05, paired t test).
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Figure 2. Validation of pHMM-model-based decoding and the influence of rate equalization

(A and B) Difference in log-likelihoods between decoding acquisition (A) and recall states (B) using original data and spike-jittered data. The jittering was per-

formed n = 100 times, and the average results are shown. Differences are above zero for the first half and the second half of the rest for all sessions,

***p < 0.001 t tests with Bonferroni correction.

(C and D) Log-likelihood of decoded acquisition (C) and recall (D) state, Z scored using shuffle (n = 100) in which state vectors of each model are scrambled on a

cell-by-cell basis (decoding likelihoods of 100 artificial acquisition and recall states). ***p < 0.001, t test with Bonferroni correction.
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In addition to the spike jittering, we also performed a pHMM

state shuffling procedure in which we scrambled the cells’ firing

rate across different state vectors of the samemodel (Figures 2C

and 2D). That is, for each cell, we randomly reassigned their firing

rates across different pHMM state vectors. We performed this

shuffling independently for acquisition and recall models using

100 shuffling iterations. Then, we Z scored the log-likelihood of

the original decoded states relative to the shuffled values. This

Z score was consistently positive throughout the entire rest ses-

sion, again supporting the specificity of reactivated patterns dur-

ing this period.

Next, we further tested whether the decoded model (either

acquisition or recall) could be reliably differentiated from the

other model. The difference of maximum log-likelihoods of the

two models was always >3, indicating at least a 103-fold differ-

ence in decoding likelihoods (Figures 3A and 3B). In addition,

we provided further confirmation as to whether the decoded
acquisition and recall states can be statistically separable from

the maximum likelihood state of the other model (Figures 3C

and 3D). To do so, we took the firing-rate vector of these two

(maximum likelihood) states and randomly exchanged the firing

rate of the corresponding cells (for each cell, either swapped it

or did not) and the log-likelihood differences were calculated

while using the scrambled state vectors for the decoding.

Scrambling was performed 100 times and the mean and the

SD of the log-likelihood differences derived from the scrambled

state vectors were calculated. Finally, the original differences

(non-scrambled state vectors) were Z scored relative to those

from the scrambled vectors. The Z scored values were positive,

showing that the likelihood differences with the original state

vectors were significantly higher than those of the state scram-

bled vectors.

In summary, the neural activity during rest gradually changed

from being initially better aligned with acquisition patterns to
Neuron 113, 1446–1459, May 7, 2025 1449
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Figure 3. Distinguishing acquisition and recall pHMM states

(A and B) Difference in log-likelihood between the decoded state and the state with the highest likelihood from the other model: (A) using only decoded acquisition

states and (B) recall states. Differences are larger than zero for the first and second half of all sessions (all p < 10e�50, t test with Bonferroni correction) and they

are also significantly different p < 0.001, Mann-Whitney U test.

(C and D) Z scored difference in log-likelihood between decoded state (acquisition, C or recall, D) and maximum likelihood state from the other model, Z scored

relative to differences yielded from shuffled cases in which rates of the two state vectors were randomly swapped. The differences were Z scored using the mean

and SDof the difference using 100 artificially generated states for the decoding in which the firing rate of themax likelihood states of the twomodels was randomly

swapped for each cell. Values for the first and second half are larger than 0 for all sessions (all p < 10e�50, t test with Bonferroni correction), and they are also

significantly different p < 0.001, Mann-Whitney U test.
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being increasingly similar to the recall-associated neural activity

at the end of rest.

We next examined whether reactivation drift exhibited dif-

ferences in REM and NREM periods. When we plotted drift

scores over time after performing a smoothing window aver-

aging, we observed temporal fluctuations with a zigzagging

appearance. We asked how these repeated upward and

downward trends aligned with the transitions between the

NREM and REM phases. We found that the smoothed drift

scores tended to increase during NREM while decreasing dur-

ing REM periods, hence demonstrating that the fluctuations

we saw were driven by the NREM-REM cycles (Figure 4A).

To quantify this effect, we calculated the change in drift

scores for each REM and NREM epoch at a fine temporal

scale (n = 20 smoothing) to limit instances in which a smooth-

ing window contained mixed states (Figure S4L). The average
1450 Neuron 113, 1446–1459, May 7, 2025
drift score changes were positive for NREM and negative for

REM, with only about a quarter of the REM and NREM epochs

showing the opposite tendencies (Figure 4B, i.e., positive

REM and negative NREM). Consequently, the cumulative ef-

fect of NREM periods on the drift score was positive, whereas

REM periods showed a negative cumulative effect (Figures 4C

and S3J). We found a difference of two orders of magnitude

when we compared the cumulative change in the drift score

throughout the rest with the epoch-by-epoch change in

NREM and REM (Figure 4D). Short- and longer-term changes

in drift score occurring during NREM and REM epochs were

not correlated (Figure S3K). Hence, the drift score fluctuated

strongly on shorter timescales without a clear direction,

whereas the long-term change was directed and much smaller

in magnitude, which implies that different processes drive the

short-term fluctuation and the long-term drift.
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Figure 4. NREM periods accelerated the reactivation drift, whereas REM periods countered it

(A) Smoothed (n = 900) drift score as a function of rest duration (REM periods in red, NREM periods in blue) for one example session. Inset: time-expanded trace

illustrating the DDrift score calculations.

(B) Contributions of REM and NREM epochs to drift. For each epoch, the DDrift score was computed as the difference in the drift score between the end and

beginning using n = 20window smoothing. The percentage of epochs with positive and negative values are depicted for REM (red) and NREM (blue). Data from all

sessions (mean ± SEM, **p < 0.01, two-sided Mann-Whitney U test).

(C) Summed DDrift score for REM and NREM epochs for all sessions (p < 0.01, two-sided Mann-Whitney U test).

(D) The net effect of change in drift score (difference in drift score between the beginning and the end of rest) and the cumulative effect of change in drift score (sum

of absolute DDrift score for REM and NREM periods). Data from all sessions (***p < 0.001, two-sided Mann-Whitney U test).

(E) DDrift score values of NREM with subsequent REM epochs (R = �0.62, p = 1.6e�132).

(F) DDrift score values of REM with subsequent NREM epochs (R = �0.38, p = 6.2e�45).

(G) DDrift score values for NREM and REM epochs after equalizing firing rates across the neighboring epochs (R = �0.4, p = 1.7e�45).

(H) DDrift score values for subsequent NREM epochs (R = 0.08, p = 0.003).
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Next, we tested whether the magnitude of up- and downward

shifts in the drift scores across NREM and REM periods were in-

dependent or whether the drift in subsequent epochs was inter-

related. The drift score changes in neighboring NREM vs. REM

periods were negatively correlated, and the NREM to REM drift

score changes exhibited stronger correlations than the REM to

NREM ones (p = 3e–15, Fisher’s z test, Figures 4E and 4F). How-

ever, the correlations of the drift score changes were weaker

when subsequent NREM periods were compared (Figure 4H)

and not significant for subsequent REM periods (R = 0.01, p =

0.85). Overall, these results suggested that NREM periods drove

the drift of reactivated assemblies toward the ones that will re-

emerge during the recall session, whereas REM periods coun-

tered this effect. The correlations also suggest that the NREM

drift influences the magnitude of subsequent REM drift more

than REM drift influences the subsequent NREM changes.

To test the contribution of individual cells to the observed re-

activation drift, we characterized the firing-rate changes of neu-
rons between the acquisition and the recall period (Figure 5A;

STAR Methods). We observed that some pyramidal cells ex-

hibited stable firing rates across the two sessions whereas

others either increased or decreased their firing rate from one

to the other (Figure 5B).

When we looked at the mean rate of the cells as specified in

their pHMM mean-firing-rate vectors (Figure S2A), the same

trend appeared when acquisition and recall states were

compared (Figure S5A). This showed that, with the activation

of recall pHMM patterns later on during the rest session, cells

showed more similar firing-rate trends to those seen later dur-

ing the recall session. More than half of the recorded cells were

from the decreasing group, and only a smaller portion of cells

had stable or increasing firing rates over the entire experiment

(Figure S5B). Cells with persistent activity, on average, ex-

hibited lower firing rates than the rate-changing groups but

maintained a comparatively higher rate during the rest session

(Figures 5C and S5C–S5E). The burstiness of the rate-changing
Neuron 113, 1446–1459, May 7, 2025 1451
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Figure 5. Pyramidal cell classification on the basis of firing-rate change

(A) Average firing rates of persistent, increasing, and decreasing cells during acquisition, recall, and fixed periods of rest. Cells from all sessions are shown. Cells

were classified depending on whether their firing-rate distributions exhibited significant differences (p < 0.05) between acquisition and recall.

(B) Normalized firing-rate change from acquisition to recall for persistent, decreasing, and increasing cells (all p < 0.001, two-sided Mann-Whitney U test,

Bonferroni correction).

(C) Normalized firing-rate change between rest vs. acquisition or recall (n.s. p > 0.05, ***p < 0.001, two-sided Mann-Whitney U test).

(D–F) Example rate maps for persistent (D), increasing (E), and decreasing (F) cells. Top numbers: peak firing rate in Hz, red dots: reward locations. Bluemarks the

low-firing-rate region and yellow the higher-rate place field region.

ll
OPEN ACCESS Article
groups was different, but they tended to exhibit higher burst

propensity when their rate was lower (Figures S6E and S6F).

We did not find differences in SWR firing gain or waveform sta-

bility between the different subsets (Figures S5F and S5H).

Different cells recorded from the same electrode could exhibit

different rate modulations (i.e., belong to different groups) (Fig-

ure S5G) and, accordingly, the polarity of the recorded sharp

waves from the electrode that a cell was recorded from

did not differentiate cell groups (Figures S6G and S6H). The

difference between the preferred theta phase in REM and

waking theta (measured during acquisition) was also similar

(Figures S6A–S6D). Spatial information of the persistent cells

was lower compared with decreasing cells during the acquisi-

tion and lower compared with the increasing cells during recall

(Figure S5I). Nevertheless, we did not observe major differ-

ences in the goal-related remapping during learning or recall

between persistent and rate-changing cells (Figures S7A–S7D).

When we performed the reactivation drift analysis using only

the persistent cells, the drift score remained stable near zero

across the entire rest period, indicating a high similarity of acqui-

sition and recall patterns and their consistent reactivation during

sleep (Figure 6). However, reactivations by the other two groups
1452 Neuron 113, 1446–1459, May 7, 2025
yielded drift score changes similar to those calculated with all

cells. This result suggests that firing-rate changes of the rate-

changing cell groups were the primary drivers of the reactivation

drift. Furthermore, we also found that the spatial coding of the

environment remained more similar for the persistent cell group

than for the rate-changing groups, as measured with population

vector similarity across acquisition and recall (Figures S5I

and S5J).

The fact that only rate-changing cells contributed to the reac-

tivation drift might suggest that solely the excitability changes

drove the reactivation drift. However, this was not the case. To

show this, we equalized the firing rate of the cells throughout

the entire rest session by dividing the rest periods into five seg-

ments and randomly down-sampled the activity of each cell so

that their average rate in each segment corresponded to that

of the lowest rate segment in the original data (Figure S4M). In

this instance, we observed a similar reactivation drift to the orig-

inal case (Figure S4N), showing that rate changes themselves

were not necessary for the emergence of reactivation drift.

To further investigate the contribution of pyramidal rate

changes to reactivation drift, we tested whether rate changes

seen during individual REM and NREM epochs correlated with
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Figure 6. Contribution of different firing-rate modulation cell groups to reactivation drift

(A) Drift score using either all cells (gray), only persistent cells (violet), only increasing cells (orange), or only decreasing cells (turquoise) for one example session.

(B) Slope fit to drift score (**p < 0.01, *p < 0.05, n.s. p > 0.05, two-sided Mann-Whitney U test, Bonferroni correction).
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the magnitude of drift score changes at the same epochs: for

the increasing group, we detected a positive correlation,

whereas a negative correlation was seen for the decreasing cells

(Figures 7A–7G). Similar to the drift score changes, neighboring

REM and NREMperiods exhibited correlated firing-rate changes

for both the decreasing and increasing groups, with a stronger

effect for NREM periods being followed by REM periods (p =

1.23e�22 for decreasing cells, p = 4.91e�19 for increasing cells,

Fisher’s z test, Figures S7E–S7H). Firing rate changes between

rest epochs of the same type were only weakly correlated

(Figures S7I–S7L).

Previous work suggested that, in NREM sleep, overall network

excitation increases, which is countered by rate reduction in the

subsequent REM period.18,19 Therefore, we checked whether a

non-specific change in network excitability alone could drive

the REM/NREM reactivation fluctuation. To test this, we equal-

ized the population rate in subsequent NREM-REM periods

by randomly omitting spikes. Yet, even in this case, the changes

in drift score in subsequent NREM and REM epochs were

negatively correlated (Figure 4G). Moreover, macroscopic mea-

sures of network activity, such as Z scored pyramidal network

firing rate or LFP amplitude, did not correlate with the change

of drift score during REM or NREM periods (all r < 0.06, all

p > 0.05)—nor did the number of SWR during NREM correlate

with it (r = �0.01, p = 0.85).

Our data showed that rate-increasing cells preferably fired

with specific recall assemblies (pHMM states), whereas rate-

decreasing cells preferred acquisition assemblies (Figures S7M–

S7T). Therefore, we further checked whether the transient rate

increases of the increasing group during NREM and the similar

transient REM increases of the decreasing group are assembly

specific (i.e., pHMM-state related). We reasoned that, in the

case of an assembly dependent rate increase of these cells, the

decoding likelihoods should also increase. However, the decod-

ing likelihood should decrease if the cells’ rate increases were in-

dependent from the activity of their assembly partners. Indeed,

the increasing group, which is preferentially active when the recall
state is decoded (Figure S5A), exhibited a positive correlation

with the change recall model maximum log-likelihood changes

(Figures S7P and S7T). By contrast, the decreasing group,

active when the acquisition state is decoded, exhibited a similar

correlation with acquisition maximum log-likelihood changes

(Figures S7M and S7Q).

Next, we tested whether the interneuron activity was related to

reactivation drift. The activity of some interneurons strongly re-

flected the drift score changes in REM and NREM epochs

(Figures 8A and 8B). In agreement with this, 25.2% of the inter-

neurons exhibited a significant correlation between their firing

rate and the change in drift score (Figure 8C). Some of these in-

terneurons increased their firing rates with the magnitude of rate

changes during both REM and NREM epochs, whereas others

reduced it.

After separating REM and NREM epochs, a significant frac-

tion of interneurons only maintained a relationship between

mean firing and the change in drift score for REM epochs

(Figures S8A–S8N). However, interneurons exhibited a reversed

relationship in REM andNREMperiods betweenmean firing rate

and change in drift score: if an interneuron’s firing rate showed a

positive relationship with the change in drift score in REM, the

relationship was negative in NREM and vice versa (Figure 8D).

This effect modulated all recorded interneurons regardless of

the strength of the firing rate to drift relationship. In summary,

the firing rates of a subset of interneurons mirrored the fluctua-

tions of the drift score. Moreover, the whole interneuron popula-

tion exhibited a reversed coupling to REM and NREM periods in

terms of their net firing-rate modulation, with some exhibiting

preferred rate increases either in REM or NREM compared

with the other state.

DISCUSSION

Here, we demonstrated that reactivated patterns in the hippo-

campus reorganize during prolonged rest periods (17–20 h) after

spatial learning of novel goal locations in a familiar environment.
Neuron 113, 1446–1459, May 7, 2025 1453
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Figure 7. Reactivation drift correlates with the firing-rate modulations of pyramidal populations

(A) Illustration of drift score and firing probability fluctuations of decreasing and increasing cells for one example session.

(B–G) Correlation between DDrift score and the change in firing probability for increasing cells during NREM and REM periods. Correlation coefficients (R) and

corresponding p values are shown on the top left. Inset: R values per session.
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In the first 8–10 h of rest, these reactivated patterns primarily rep-

resented the previous learning session patterns, but, later, they

were gradually overtaken by those resembling future patterns ex-

pressed in the subsequent recall session. We also found that this

reactivation drift was antagonistically modulated by the succes-

sion of NREM and REM epochs: whereas NREM periods favored

the drift toward new patterns of the recall session, REM periods

had the opposite effect. Hence, we observed the gradual reorga-

nization of reactivated hippocampal assembly patterns, and the

reorganization was regulated by NREM-REM cycles.

Reactivation drift reflects place map reorganization
Our ability to detect the progressive transformation of hippo-

campal reactivated patterns relied on their continuous moni-

toring over prolonged periods of sleep/rest. Previous studies in

which intermediate sleep durations (<6 h) were used observed

a relatively stable reactivation expression.16,17 In our case, the

majority of the novel recall patterns emerged in the first half of

the rest periods, and reactivation drift occurred primarily in this

period, during which new patterns gradually replaced the prior

learning patterns. However, after about 8–10 h, recall assembly

patterns matched or overtook the learning patterns. Therefore,

the more frequent occurrence of the old patterns during the

earlier part of the sleep could explain why previous studies of

shorter sleep durations observed relatively stable reactivation

even after the prior exploration of novel environments.

However, there are experimental data suggesting that reacti-

vated sleep patterns do not exclusively represent recent experi-

ences. Even early reactivation studieswere able to detect aweak
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but significant similarity between sleep activity patterns and sub-

sequent waking patterns of familiar environments under condi-

tions in which the animal visited the familiar environment a day

before at the earliest.20 This suggests that less recent experi-

ences are also reactivated in sleep, including those the animal

experienced in previous days. However, later preplay was

observed in which sleep temporal patterns were similar to

place-cell firing patterns that emerge later in a novel environ-

ment.21–23 Even in familiar environments, one can observe a

representational drift of placemaps, where some new place cells

emerge while others disappear in later exploration of the same

environment.24–26 Similar to preplay, neuronal patterns during

sleep can also reflect activity patterns of place cells that newly

emerge in a familiar environment.27 These data all suggest

that, after prolonged sleep, some of the patterns can reflect

novel patterns seen after sleep in novel or familiar environments.

Can the reactivation drift in our data be related to preplay or

the representational drift of place representations seen across

familiar environments? Our data analysis used a pHMM model

to identify distinct cell assemblies, which only took into account

the correlated temporal firing structure of the recorded pyrami-

dal cell population. However, the waking activation of pHHM

states exhibited spatial selectivity, indicating that these corre-

sponded to distinct assemblies of place cells representing

different locations. Accordingly, the activation of recall states

in the prior rest session suggests that some of the updated place

cell assemblies of the recall session already emerged in prior

sleep. We could further confirm this effect by using a Bayesian

place-decoding reactivation analysis (Figures S3H–S3J).
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Figure 8. For a subset of interneurons, change in drift score correlates with interneuron within epoch firing rate

(A) Example of the correlated fluctuation of the drift score and the firing rate of an interneuron.

(B) Correlation of firing rate and DDrift score for the interneuron from (A) (R = 0.51, p = 7.11e�10).

(C) Distribution of Pearson R values for interneuron firing rate and delta drift score using REMandNREMepochs. A significant proportion of interneurons exhibited

a significant (p < 0.05) correlation between firing rate and DDrift score (p < 0.001, binomial test).

(D) Pearson R values for interneuron firing rate and DDrift score were calculated separately in NREM and REM epochs (R = �0.43, p = 6e�6).

ll
OPEN ACCESSArticle
Considering that we observed this effect in a familiar environ-

ment (albeit during novel spatial goal learning), our findings may

also be related to the representational drift observed across

hippocampal place cells over repeated exposure to familiar en-

vironments.24,25,28 However, our experimental conditions were

different from the preplay studies in which an entirely novel envi-

ronment was introduced. In our case, the animal learned a novel

set of reward locations in a familiar environment and the pro-

longed rest period separated the next day’s recall. This condition

was actually similar to a recent work in which extra-stable

recording in two-photon imaging was performed daily while an-

imals learned and recalled a reward zone on a running belt.29 In

this study, 35% of place cells maintained similar spatial repre-

sentations across days. This proportion is somewhat similar
(25%) to our stable cell groups that maintained stable firing rates

across learning and recall. The spatial population vectors of the

stable cells strongly correlated (r = 0.9) across learning and recall

sessions, demonstrating that, indeed, this groupmaintained sta-

ble spatial representations for longer than a day. However, the

other two groups exhibited lower but still relatively strong popu-

lation vector correlations (decreasing 0.5 and increasing 0.7),

indicating that some of these cells also maintained similar place

fields while others cells may have remapped. Also, a significant

portion of the rate-changing cells remained active during the

entire recording (top 50% exhibited >0.3 Hz). However, the rela-

tively higher population vector correlations and sustained activ-

ity at a lower firing rate suggest that many of the rate-changing

cells may have undergone rate remapping.
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Stable and rate-changing pyramidal cell groups
Several studies demonstrated that hippocampal pyramidal cells

are not uniform and can be subdivided into groups based on their

anatomical or physiological properties. Initially, CA1 pyramidal

cells have been differentiated according to their calbindin expres-

sion.30–35 Later work showed that CA1 pyramidal cells could be

subdivided according to their oscillatory firing properties, firing

rate, and burst propensities.36 In our classification, we compared

the firing-rate distribution of cells across learning and recall ses-

sions to separate them into stable-rate persistent cells and rate-

changing groups that either increased or decreased their rate

from learning to recall. We showed that persistent cells alone did

not exhibit reactivation drift, whereas the rate-changing groups

did. Interestingly, about half of the pyramidal cells belonged to

the rate-reducing group in which cells also exhibited a rate reduc-

tion whenever the newly emerging recall pHMM states were acti-

vatedat rest. This isconsistentwith thehomeostatic rate reduction

roleof sleep and further suggests amore sparseplace representa-

tion to emerge after sleep.37We also observed a negative correla-

tion between firing-rate changes across REM and NREM sleep,

which is in line with the opposing role of these states in firing-

rate regulation.18

In relation to replay and preplay, plastic and rigid cell groups

have been differentiated: rigid cells participated in the preplay

of firing sequences, whereas plastic cells refined replay se-

quences in subsequent sleep without contributing to preplay.22

Overall, in that study, the rigid cells exhibited higher firing rates

and reduced spatial selectivity compared to the plastic group.

As mentioned above, reminiscent of preplay, we observed the

emergence of updated recall assembly patterns before and dur-

ing the rest session. However, conditions in our case were

different; the rate-changing cells exhibited more similar firing

characteristics to the rigid cell groups seen in preplay: they

had overall higher firing rates than the persistent cells.

Network mechanism of reactivation drift
As we saw above, the persistent cells exhibited stable reactiva-

tion and spatial coding for the entire duration of the recordings.

These cells probably overlap with those place cells that, in cal-

cium imaging experiments, maintained stable place fields across

days.29,38 These cells can enable continuity and provide a refer-

ence frame for the transformation of reactivation patterns. At the

same time, we expect that the update of reactivated spatial as-

semblies would require plasticity that enables new members of

the increasing group to associate with existing members of

the persistent group and the decreasing group to decouple

from them.

SWRs themselves may provide the means for plastic changes

to enhance the assembly association of new members.39 Previ-

ously, it was shown that if a CA1 cell is repeatedly excited during

a SWR, that cell will increase its SWR-associated firing after the

pairing.40 We expect that assembly specific SWR pairing will in-

crease the cell’s firing only when that paired assembly is acti-

vated during SWRs, considering that SWR-like synchronization

enhances the plasticity of cells that are co-active.41,42 The drift

toward the updated assemblies primarily occurred during

NREM periods in the presence of SWRs. Therefore, we specu-

late that the association of new members to an assembly may
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be initiated by a random process in which some non-member

cells may start to fire with a specific assembly. If that cell has a

lower threshold for plasticity, even a few random pairing events

may initiate a self-reinforcing process in which pairing will lead to

increased activation probability with an assembly, whichwill lead

to further pairing and a further increase in assembly association.

In parallel with the opposing role of REM sleep in reactivation

drift, plastic changes during REM sleep may favor assembly sta-

bilization instead of assembly drift. Plastic changes that are

thought to enhance the stabilization of newly formed place fields

in waking theta oscillations may operate in a similar manner dur-

ing REM sleep as well. These may also enable the strengthening

of existing assemblies. This process may also extend to updated

assemblies that emerge in previous NREM periods and enable

them to be maintained in subsequent waking activity as well.

Given that theta oscillations can facilitate both long-term poten-

tiation and long-term depression,43,44 not only could associa-

tions of new members be enhanced during REM sleep but the

decoupling of other cells from the rate-decreasing group could

also occur.

A number of additional factors may also impact different reac-

tivation dynamics and associated circuit functions during REM

and NREM epochs.45 Many of these could be attributed to

different physiological states due to the different levels of neuro-

modulation provided by acetylcholine or other non-specific neu-

rotransmitters, including serotonin.46,47 Moreover, sleep stages

are also different in terms of large-scale network interactions

across the entire brain.6,47–49 One could speculate that

enhanced out-of-assembly activation during SWR events might

have originated from bi-directional interactions of the hippocam-

pus with other cortical centers.50 In the same way, the strength-

ening of existing assemblies during REM periods could be al-

lowed by the relative isolation of the hippocampus from

external sources of information, which is thought to be a hallmark

of REM periods of sleep.51–53

The process we outlined may point to a general sleep mecha-

nism that is not restricted to the case of updated spatial maps in

familiar environments or similar spatial learning contexts seen

across days. Similar processes may help the rapid initial forma-

tion of novel cognitive maps54 as well and may even enable pre-

play.21–23 Ultimately, updated assemblies that emerge during

prolonged sleep/rest periods could be used to provide the initial

building block for cognitive maps that emerge during the first

exposure to a novel environment. Unlike fixed assemblies, this

can enable a wide variety of assembly patterns to emerge in

sleep, ensuring the emergence of diverse assemblies represent-

ing distinct cognitive maps. Similar assembly reorganization

involving the gradual morphing of assemblies in sleep could

also take place in other brain areas.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Three male Long-Evans rats (300-400 g, 2-4 months of age; Janvier, France) were used in the study. The animals were housed in a

separate room on a 12-hour light/dark cycle and were taken to the recording room each day prior to the experiments. Animals shared

a cage with littermates before surgery. All procedures involving experimental animals were carried out in accordance with Austrian

animal law (Austrian federal law for experiments with live animals) under a project license approved by the Austrian Federal Science

Ministry (License number: BMWFW-66.018/0015-WF/V3b/2014).

METHOD DETAILS

Surgery
Animals were implanted bilaterally with microdrives housing 32 (2x16) independently movable tetrodes targeting the dorsal CA1 re-

gion of the hippocampus. Each tetrode was fabricated out of four 10 mm tungsten wires (H-Formvar insulation with Butyral bond coat

California FineWire Company, Grover Beach, CA) that were twisted and then heated to bind them into a single bundle. The tips of the

tetrodes were then gold-plated to reduce the impedance to 200-400 kU. During surgery, the animal was under deep anesthesia using

isoflurane (0.5%–3% MAC), oxygen (1-2l/min), and an initial injection of buprenorphine (0.1mg/kg). Two rectangular craniotomies

were drilled centered above CA1 and positioned relative to bregma (centered at AP = �3.2; ML = ±1.6), the dura mater removed

and the electrode bundles implanted into the superficial layers of the neocortex, after which both the exposed cortex and the elec-

trode shanks were sealed with paraffin wax. Five to six anchoring screws were fixed onto the skull and two ground screws (M1.4)

were positioned above the cerebellum. After removal of the dura, the tetrodes were initially implanted at a depth of 1-1.5 mm relative

to the brain surface. Finally, the microdrive was anchored to the skull and screws with dental cement (Refobacin Bone Cement R,

Biomet, IN, USA). Two hours before the end of the surgery, the animal was given the analgesic Metacam (5mg/kg). After a one-

week recovery period, tetrodes were gradually moved into the dorsal CA1 cell layer (stratum pyramidale). After completion of the ex-

periments, the rats were deeply anesthetized and perfused through the heart with 0.9% saline solution, followed by a 4% buffered

formalin phosphate solution for the histological verification of the electrode tracks.

Data Acquisition, Training and Behavior
The animals were housed individually in a separate room under a 12h light/12h dark cycle. Following the postoperative recovery

period, rats were reduced to and maintained at 85% of their age-matched preoperative weight. Water was available ad libitum.

Each animal was handled and familiarized with the recording room and with the general procedures of data acquisition. Behavioral

training was performed after electrode implantation during days when the electrodes were moved towards the hippocampus but

before they reached the hippocampus. Overall recordings were performed in three rats that were trained to perform the seek of

the hidden rewards task on the cheeseboard maze9,56 and come back to the start-box. In order to achieve this, random groups

of visible food pellets (MLab rodent pellet 20 mg, TestDiet) were spread out on the surface of the cheeseboard maze while the rat

was inside the start box. Then we opened the door and left the animal freely foraging the entire maze and once the animal returned

to the start box, we closed the start-box door. With the help of this training protocol, we could shape our animals’ behavior to

explore the entire maze and return to the start box automatically. Despite the automatic behavior, we could ensure that, under ex-

periments, rats had no or limited experience in performing the cheese-board maze task during the time of the recordings. Each daily

experiment consisted of a sequence of nine recording sessions in the following order: a free exploration session on a familiar
e1 Neuron 113, 1446–1459.e1–e6, May 7, 2025
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environment, half-hour immobility/sleep rest session in the animal’s own cage, free exploration on the cheese-board, an immobility/

sleep rest session (own cage), a learning session (4 randomly selected invisible locations) on the cheese-board, 20-hour continuous

monitoring in the cage, recall learning session with the same bait locations, an immobility/sleep rest session (own cage), post probe

on the cheese-board (free exploration, unrewarded) and another free exploration session on the same familiar environment as the first

one. During the learning session, once animals learned the four invisible goal locations, they performed only five additional trials to

master the task. Following the�20-hour long rest session, we tested the recall performance of the animal on the cheeseboard maze

in 50 further rewarded trials with the same bait locations, which were learned 20 hours before.

To be able to record extracellular electric signals continuously over a long period of time, we adapted to our commonly built 3D

printed microdrive a new, high-fidelity 64- (two animals) and 128-channel (one animal) wireless recording system from TBSI (Triangle

BioSystems, Durham, NC, W128) to use in our experiments. In animals in which only the 64-channel telemetry system was available,

only half of the recorded channels of the 128-channel drive were used. Using this experimental preparation, we recorded cell pop-

ulation activity continuously over 30 hours during learning, long periods of rest where reactivation takes place and memory recall

tests at the end. This telemetry system has been able to amplify and transmit wide band (0.7 Hz to 9 kHz) signals above 20 kHz

on the analog channels, which were then digitized at 20 kHz.

Two small light-emitting diodes (LEDs) mounted on the preamplifier headstage were used to track the location of the animal via an

overhead video camera. The animal’s location was constantly monitored throughout the experiment. We detected the two LEDs with

custom-made tracking software (positrack, github.com/kevin-allen/positrack) made by Kevin Allen. The video signal has been trig-

gered and tracked continuously with a TTL pulse sent by the camera’s computer on a common analog channel.

QUANTIFICATION AND STATISTICAL ANALYSIS

Spike Detection, Sorting and Stability
The spike detection and sorting procedures, and clustering were performed as previously described.57,58 Continuously recorded

wide-band signals were digitally high-pass filtered (0,8-5 kHz). Action potentials were extracted by first computing power in the

800-9000 Hz range within a sliding window (12.8 ms). Action potentials with a power of > 5 SD from the baseline mean were selected

and spike features were then extracted by using principal components analyses (PCA). The detected action potentials were segre-

gated into multiple single units by using automatic clustering software (http://klustakwik.sourceforge.net/). These clusters were

manually refined by a graphical cluster-cutting program. Only units with clear refractory periods in their autocorrelation (<2 ms)

and well-defined cluster boundaries were used for further analysis. We further confirmed the quality of cluster separation by calcu-

lating the Mahalanobis distance between each pair of clusters.55 To be able to analyze changes in the firing patterns of neuronal en-

sembles over time, we had to guarantee that our set of putative cells was sampled from clusters with stable firing over the whole

recording. To ensure this, we clustered together periods of waking and rest sessions and then we plotted spike features over

time by plotting 2-dimensional unit PCA cluster plots across the whole recording in addition to the stability of spike waveforms.

With the help of this method, we could exclude those spike clusters that overlapped during the course of recordings. To further verify

spike cluster stability, we used the t-student stochastic neighbor embedding (t-SNE) dimensionality reduction method: t-SNE em-

beds the n-dimensional extracellular spikes (n = number of features by which each spike is decomposed) into a low dimensional

space.59 The t-SNE focuses on ensuring that the local structure remains intact while it ignores the global structure; therefore,

whenwe expressed t-SNE features over time, we could visually exclude those clusters that were unstable during the whole recording

due to electrode drifting.

Putative pyramidal cells and putative interneurons in the CA1 region were discriminated by their autocorrelations, firing rate, and

waveforms, as previously described.57

Sleep classification
In recordings, exploratory and immobility or quiet rest periods weremanually separated offline as previously described.57,58 For each

session, the theta/delta ratio was plotted against speed so that the behavioral state could bemanually identified. The theta/delta field

power ratio was measured in 1,600 ms segments (800 ms steps between measurement windows) with Thomson’s multitaper

method.60,61 Waking behavior included periods of locomotion and/or the presence of theta oscillations (visible in the theta/delta ra-

tio), with no more than�2.5 s of transient immobility. Rest epochs were selected when both the speed and theta-delta ratio dropped

below a pre-set threshold (speed: <4cm/s, theta/delta ratio: <2) for at least 2.4 s. During periods of active waking behavior, theta-

oscillatory wave detection was performed as previously described57,58 using the negative peaks of individual theta waves from

the filtered trace of the local field potential (5–28 Hz). The band used for the detection was wider than the theta band in order to pre-

cisely detect the negative peaks of the theta waves, which otherwise would have smoothed out by using a narrow theta band. Quiet

rest segments have been identified by longer periods of immobility (because of the lengths of our recording, at least 10 min) and the

clear presence of REM-theta and slow-wave field oscillations.

Sharp wave ripple detection
For the detection of SWRs, local field potentials were band-pass filtered (150–250 Hz), and a reference signal (to ensure the lack of

ripple activity, we left a tetrode above the hippocampus as a reference) was subtracted to eliminate the so-called common noise
Neuron 113, 1446–1459.e1–e6, May 7, 2025 e2
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(muscle artifacts due to scratching, twitching, etc.). The power (root mean square) of the filtered signal was calculated for each elec-

trode and summed across electrodes considered to be in the CA1 stratum pyramidale. The threshold for SWR detection was set to

7 SD above the background mean. The SWR detection threshold was always set in the first immobility session, but longer (at least

35 min) as it was described earlier and the same threshold was used for all other sessions.57,58

Quantification of stability of clustering features over time
To assess the temporal stability of waveforms, we used the first 12 clustering features. For each feature, the mean was computed for

the corresponding interval (5th, 10th, 15th hour) and z-scored using the mean and std of the first hour.

Cell separation over time
We estimated the separation of cells by using the first 12 clustering features and three different approaches. First, for each cell, we

divided the distance (1 - Pearson R) between the mean value of each feature during the nth hour and the cell’s own mean feature

values from the first hour by the distance between the mean feature values during the nth hour and the other cells’ feature means

from the first hour. Using this measure we investigated whether a cell’s waveform at a later stage during the experiment is more

similar to its own waveform from the first hour than to first hour waveforms from other cells. Second, for each cell, we divided the

distance (1 - Pearson R) between the mean feature values during the nth hour and the cell’s own mean values from the first hour

by the distance between the other cells’ feature means during the nth hour and the cell’s own feature means from the first hour.

This measure estimates whether other cells’ waveforms at later stages during the experiment are more similar to the cell’s waveform

from the first hour than its own waveforms at later stages. Third, we compared the across-cell distance with the within-cell distance.

For the across-cell distance, the distance between themean feature values per cell of the first hour and the other cells’ feature means

from the first hour was calculated. The within distance corresponds to the distance between the cell’s feature averages from the first

hour and the same cell’s feature averages of the last hour of the experiment.

Clustering feature stability
For each cell, we calculated the mean and std for each of the first 10 PCA clustering features using data from the first hour. We then

computed the mean per clustering feature of each cell at different time intervals (7th, 15th, and 21st hour) of the experiment. In order to

test whether clustering features drift away from the initial values, we z-scored themeans during different time intervals using themean

and std from the first hour.

Measuring excess path during acquisition and recall
We assessed the animal’s ability to learn and recall goal locations on the cheeseboard by computing the excess path: once the rat

had left the start box, we measured the length of the path the animal took to reach any of the four goals (animal position within 10 cm

radius around goal location). Next, we detected when the animal left the goal again and measured the path length to the next goal.

This procedure was repeated for the remaining two goals. We then calculated the optimal paths as straight lines between either the

start location and the first goal or between subsequently visited goals. Each taken path length was then divided by the optimal path

length to yield the excess path as a multiple of the optimal path.

Poisson Hidden Markov Model (pHMM) and model fitting
We trained two separate hiddenMarkovmodels with Poisson emissions (pHMM) on the neural data obtained during the cheeseboard

task before (acquisition) and after (recall) the long sleep. Only data from running periods (speed > 5cm/s) was used. The acquisition

data length was matched in terms of duration to the recall data to have the same training data length for acquisition and recall. Then,

the neural data was binned using temporal bins of 100 ms length.

The pHMM model assumes the temporal evolution of an unobserved discrete state as described in Maboudi et al.62 In short, the

probability of observing an ensemble EN of N independently firing neurons at time t for state i can be modeled as:

Pðstate = iÞ =
YN
n = 1

Pðstate = iÞf
YN
n = 1

ðln;iÞsnt expð� ln;iÞ (Equation 1)

where snt is the firing rate of neuron n at time t. The firing rate is modeled according to a Poisson process with a mean firing rate ln,i
defined by the unobserved discrete state i.

The transition probabilities between M unobserved states were captured by the M x M transition matrix A. The hyperparameter M

defining the number of states of the model was determined using the cross-validated maximum likelihood (Figure S2). All model pa-

rameters were computed using the EM algorithm.

Rate map generation for Bayesian decoding
For each session and cell, one rate map for acquisition and one rate map for recall were computed. In order to reconstruct the two-

dimensional spatial distribution of each cell’s firing probability, we used a maximum entropy model inference paradigm.63 Only

running periods were considered by applying a 5 cm/s speed filter. The cell activity was binned using time windows of 10 ms.
e3 Neuron 113, 1446–1459.e1–e6, May 7, 2025
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We assigned a binary variable Si(t) to each neuron to denote the presence or absence (+1/-1) of spikes emitted by neuron iwithin time

bin t. Including the dependence of each neuron’s state on the previous state (t-1) of the population, themaximum entropy distribution

over the state Si(t) of neuron i at time t is

pðSiðtÞÞ =
exp½SiðtÞHðt � 1Þ�
2 cosh½Hðt � 1Þ� (Equation 2)

with H(t) being the time-varying covariate representing the external field in statistical physics. Equation 1 describes a Generalized

Linear Model (GLM) with the interaction kernel extending to a one-time step in the past.

By maximizing the log-likelihood with respect to H(t) we found the most likely values of H(t) to generate the observed data:

L½S;H� =
X
i

½SiðtÞHiðt � 1Þ � logð2 cosh Hiðt � 1ÞÞ� (Equation 3)

For the spatial input we assumed the sum of two-dimensional Gaussian basis functions centered on an evenly spaced M x M

square lattice that spanned the cheeseboard. The spatial field of cell i at time t can then be computed in the following way:

HiðtÞ =
XM;N

j = 1;k = 1

aijk exp

"��
ðxðtÞ � xjkÞ2+

�
yðtÞ � yjk

�2�
r2

#
+ hi (Equation 4)

where hi is the baseline activity of cell i, (xjk, yjk) are the centers of the Gaussians and r is the standard deviation of basis functions. An

accurate representation of the cell activity in space was computed by inferring parameters aijk of the linear combinations of Gaussian

basis functions. The resulting map was then partitioned into bins of 4 cm.

Decoding rest activity using pHMM
In order to compensate for differences in temporal dynamics between REM and NREM rest, we binned the rest data using bins with a

constant number of 12 spikes. Since the awake pHMM models were trained on temporal bins of 100 ms, we computed a scaling

factor between awake and rest neural activity to match the two. First, we calculated the mean number of spikes occurring within

100 ms time bins during awake behavior nawake,100ms. The scaling factor gphmm is defined as:

gphmm =
12

nawake;100ms

(Equation 5)

The likelihood of the rest activity at time t given the discrete pHMM state i is computed as follows:

Lðstate = iÞ =
YN
n = 1

gphmml
sn;t
i;n

sn;t
exp

�
gphmmli;n

�
(Equation 6)

where sn,t is the number of spikes of neuron n at time t and li,n is themean firing rate of that neuron in state i. Notice that for our decod-

ing procedure, the transition probabilities across states were not considered. To assess which state was most likely reactivated at

time t during rest, the state with the maximum log-likelihood was selected.

Decoding rest activity using Bayesian decoding
Equivalent to the pHMM decoding approach, the rest data was binned using bins with a constant number of 12 spikes. In the case of

Bayesian decoding, the acquisition and recall rate maps were computed using 10ms time bins. Therefore, the scaling factor gbayesian
is computed using the mean number of spikes occurring within 10 ms time bins nawake,10ms during awake behavior:

gbayesian =
12

nawake;10ms

(Equation 7)

The likelihood of the rest activity at time t given the spatial bin x is given by:

Lðspatial bin = xÞ =
YN
n = 1

gbayesianl
sn;t
x;n

sn;t
exp

�
gbayesianlx;n

�
(Equation 8)

where sn,t is the number of spikes of neuron n at time t and lx,n is the mean firing rate of that neuron in spatial bin x. To reconstruct the

spatial bin that was most likely reactivated at time t, the spatial bin with the maximum log-likelihood was selected.

Quantifying drift during rest
For each time point t in rest, we calculated the Drift score in the following way:

Drft score =
maxðLrecallÞ � maxðLacquisitionÞ
maxðLrecallÞ+maxðLacquisitionÞ (Equation 9)
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with Lrecall and Lacquisition being the maximum likelihoods across all states or spatial bins (when the Bayesian decoding was used in

Figures S3H–S3J) for the acquisition or recall models (pHMM or rate maps) at time t, respectively. The resulting Drift score was

smoothed across time.

First vs. second half of rest
In order to validate whether the drift is more prominent during the first half of the rest, we computed the delta of the drift score for the

first and second half of the rest separately. Then, we tested whether the ratio between the delta of the first half and the delta of the

second half was greater than 1 using the student T-test.

Net effect vs. cumulative effect of drift
In order to assess the amount of memory drift with respect to different timescales, we compared the net effect and cumulative effect.

For the net effect, we computed the difference in drift score between the beginning and the end of the rest period. On the other side,

the cumulative effect was computed by summing the absolute values of the drift score throughout the rest period.

Opposing effects on drift in NREM and REM
NREM and REM periods were identified as described above. Neighboring rest epochs of the same type were merged to obtain a set

of alternating NREM/REM epochs. For each epoch, the change in drift score was computed by subtracting the first value of the epoch

from the last value of the epoch.

Calculation of firing rate, LFP amplitude, and SWR number per REM/NREM epoch
To relate the firing rate and LFP amplitude to delta drift score, we measured the firing rate (z-scored across the entire session) and

average LFP amplitude per epoch and we also noted the delta drift score for that specific epoch and correlations were calculated

between delta drift score vs firing rate and delta drift score vs LFP amplitude during REM andNREMepochs. Similarly, SWR numbers

were calculated for each NREM epoch and correlated with the delta drift score.

Persistent and unstable subsets

Persistent and unstable cell subsets were identified based on changes in their firing rate distributions from acquisition to recall. For

each cell, the distributions of firing rates for acquisition and recall were computed separately. If the acquisition distribution was signif-

icantly greater than the recall distribution (one-sided MWU, p<0.01), the cell was assigned to the decreasing subset. If, on the other

hand, the recall distribution was significantly greater than the acquisition distribution (one-sided MWU, p<0.01), the cell was labeled

as increasing. All other cells that did not show a significant difference in their firing rate distributions from acquisition to recall made up

the persistent subset.

Drift using different subsets of cells

To evaluate the effect of using only a subset of cells for our rest decoding procedure on the observed drift we proceeded as follows.

We removed all cells not contained in the subset from state vectors of the original pHMMmodel and computed the drift score using

themaximum likelihoods from the acquisition and recall states. Then, the drift score for the entire rest duration was to fit a line and the

resulting slope was calculated.

Firing probability changes in NREM and REM
REM and NREM epochs were identified as described above. Thereafter, for each subset of persistent, increasing and decreasing

cells, we computed the change in firing probability from the beginning to the end of each epoch. The firing probability is defined

as the number of spikes contributed by the subset to the total number of spikes per constant spike bin. We computed the change

by subtracting the firing probability of the first bin of the epoch from the value of the last bin of the epoch. Only epochs with significant

changes in firing probability were considered.

Measuring spatial information

To assess the spatial information of single cells we computed the sparsity and spatial information per second as previously

described.64 The spatial information per second was computed using the following equation:

Isec =
XM
i = 1

pili log

�
li
l

�
(Equation 10)

where pi and li are the probability of occupying and the firing rate of bin i, respectively. Parameter l describes the mean firing rate of

the cell in the environment.

Decoding positions using neural activity during behavior

Bayesian decoding. We applied standard Bayesian decoding using 1 cm2 spatial bins. First, we computed the mean number of

spikes ln,i for each cell n and spatial bin i representing all the bins of the two-dimensional environment. Given the spikes SN of N neu-

rons at time t, we computed the likelihood of being in bin i using the following equation:

Lðbin = iÞ =
YN
n = 1

lsnn;i expð� ln;iÞ
sn!

(Equation 11)
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with sn being the number of spikes of neuron n at time t. The spatial bin with the highest likelihood represented the decoded

location.

Decoding position using pHMM. Using the entire neural data from the acquisition and the trained pHMM,we inferred themost likely

state sequence using the Viterbi algorithm. By matching the sequence of states with the tracking data of the animal, we identified a

mean spatial location for each state.

Given the activity of N neurons at time t, we computed the normalized likelihood for each state of our pHMM. The decoded location

was then calculated by weighing the mean location of each state with its normalized likelihood and computing the average position

across all states.

Computing mean firing rates

Acquisition, rest and recall were split into 5 min. chunks to compute the mean and maximum firing rates of the different cell subsets.

Distance between peak firing and closest goal

For each cell, we computed its rate map and determined the location on the maze with the highest firing rate. Next, we calculated the

distance between the location with the peak firing rate and the closest goal location.

Population vector correlations

Neurons were separated into persistent, increasing and decreasing cells according to the procedure defined above. Neural activity

per subset was binned using spatial bins of 10 cm2 size, yielding one population vector per spatial bin. Spatial bins that were not

visited in all relevant behavioral episodes were excluded. Then, Pearson correlations between population vectors of the same spatial

bin during the different behavioral episodes were computed.
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