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Abstract

This thesis deals with several different models for complex quantum mechanical systems and is
structured in three main parts.

In Part I, we study mean field random matrices as models for quantum Hamiltonians. Our focus lies
on proving concentration estimates for resolvents of random matrices, so-called local laws, mostly
in the setting of multiple resolvents. These estimates have profound consequences for eigenvector
overlaps and thermalization problems. More concretely, we obtain, e.g., the optimal eigenstate
thermalization hypothesis (ETH) uniformly in the spectrum for Wigner matrices, an optimal lower
bound on non-Hermitian eigenvector overlaps, and prethermalization for deformed Wigner matrices.
In order to prove our novel multi-resolvent local laws, we develop and devise two main methods, the
static Ψ-method and the dynamical Zigzag strategy.

In Part II, we study Bardeen-Cooper-Schrieffer (BCS) theory, the standard mean field microscopic
theory of superconductivity. We focus on asymptotic formulas for the characteristic critical temper-
ature and energy gap of a superconductor and prove universality of their ratio in various physical
regimes. Additionally, we investigate multi-band superconductors and show that inter-band coupling
effects can only enhance the critical temperature.

In Part III, we study quantum lattice systems. On the one hand, we show a strong version of
the local-perturbations-perturb-locally (LPPL) principle for the ground state of weakly interacting
quantum spin systems with a uniform on-site gap. On the other hand, we introduce a notion of a
local gap and rigorously justify response theory and the Kubo formula under the weakened assumption
of a local gap.

Additionally, we discuss two classes of problems which do not fit into the three main parts of the
thesis. These are deformational rigidity of Liouville metrics on the torus and relativistic toy models
of particle creation via interior-boundary-conditions (IBCs).
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Introduction and Summary of Results

It is a recurrent problem in mathematical physics, to analyze complex quantum systems. These are,
in many cases, inevitably intractable due their large number of degrees of freedom, and thus their
high-dimensionality. Very often, physicists developed effective models, which are meant to grasp the
essence of a system and thereby reducing its complexity.

Although these models are meant to simplify the original complex systems, they are by no means
trivial. In this thesis, we deal with some approximating effective models themselves, analyze their
properties, and rigorously justify predictions from the physics literature.

This thesis is structured in three main parts:

• In Part I, we study mean field random matrices, providing a statistical approach to large
disordered quantum systems.

• In Part II, we study Bardeen-Cooper-Schrieffer (BCS) theory, a mean field microscopic theory
of superconductivity.

• In Part III, we study quantum lattice systems, which arise by reducing the degrees of freedom
of particles to finite dimensional subspaces.

Besides these three main parts of the thesis, we also discuss work on Liouville metrics on the torus
and relativistic toy models of particle creation in the appendix.

Part I: Random Matrices

In the first part of this thesis, we consider mean field random matrices, mostly modeling (part of)
a quantum Hamiltonian. More precisely, we consider the following random matrix ensembles, for
which mean field means that the variances have comparable sizes:

(i) Wigner matrices: These are real symmetric or complex Hermitian matrices W ∈ CN×N ,
such that the upper-triangular entries {wab ∶ a ≤ b} are independent, the off-diagonal entries
{wab ∶ a < b} are identically distributed with Ewab = 0 and E ∣wab∣2 = 1/N , and the diagonal
entries are identically distributed with Ewaa = 0 and c/N ≤ E ∣waa∣2 ≤ C/N for some N -
independent constants c,C > 0.

Wigner matrices include the famous Gaussian Orthogonal/Unitary Ensemble (GOE/GUE),
where the entries are suitably normalized real/complex centered Gaussian random variables.

(ii) Deformed Wigner matrices: Let D ∈ CN×N be a deterministic self-adjoint (i.e. real symmetric
or complex Hermitian) and W ∈ CN×N a Wigner matrix. Then H = D +W is a deformed
Wigner matrix.

1



Introduction and Summary of Results

(iii) Correlated random matrices: These are self-adjoint matrices H, for which the cumulants of
the entries decay in an integrable manner, and it holds that

N E [∣tr[(H −EH)R]∣2] ≥ c tr[R2
]

for some N -independent constant c > 0 and any matrix R in the same symmetry class (i.e. real
symmetric or complex Hermitian) as H.

(iv) Deformed i.i.d. matrices: A (non-Hermitian) i.i.d. matrix X ∈CN×N has independent and
identically distributed entries, which are centered and normalized such that E ∣xab∣2 = 1/N .
Given some deterministic Λ ∈CN×N , we call Λ +X a deformed i.i.d. matrix.

We point out that the variances in the random matrix ensembles defined above are chosen such
that their spectrum remains of order one in the large N limit. Moreover, the self-adjoint models in
(i)–(iii) are increasing in generality, in the sense that

Wigner matrices ⊊ Deformed Wigner matrices ⊊ Correlated random matrices .

Other mean-field random matrix models include sample covariance matrices [587, 433, 88], Wigner-
type matrices [15], or invariant ensembles [54, 109, 108, 304, 353]. These are, however, not studied
in this thesis. Further popular random matrix models beyond the scope of this thesis are random
band matrices [529, 110, 115, 592], sparse matrices (e.g. as adjacency matrices of random graphs)
[250, 242, 51, 52, 50], or free sums of random matrices [47, 46, 359].

Apart from the discussion of our result on non-Hermitian i.i.d. matrices below, we will henceforth
focus on Hermitian ones, without further mentioning.

Local laws and applications

Traditionally, random matrix theory aims to analyze the empirical density of states (empirical DOS)

µN ∶=
1
N

N

∑
j=1

δλj
,

a random probability measure on R with mass 1/N at the eigenvalues λ1 ≤ ... ≤ λN of a random
matrix, which we temporarily assume to be a Wigner matrix W for concreteness. In [586], Wigner
showed that, in this case, the empirical DOS converges weakly, as N → ∞, to the celebrated
semi-circular law

ρsc(x)dx ∶=
√
[4 − x2]+

2π
dx .

His proof proceeded by computing moments of µN via a graphical expansion and showing that they
converge to the moments of the semi-circular law, given by the Catalan numbers.

It turns out, that, in order to study the empirical DOS at smaller scales (than a global weak
convergence), it is convenient to analyze the Stieltjes transform, uniquely determining the measure.
Recall that, given a measure µ, its Stieltjes transform at z ∈C ∖R is defined as

mµ(z) ∶= ∫
R

dµ(z)
x − z

.

In case of the empirical DOS, using spectral decomposition, it holds that

mµN
(z) ∶= ∫

R

dµN(x)
x − z

=
1
N

N

∑
j=1

1
λj − z

=
1
N

tr[G(z)] =∶ ⟨G(z)⟩
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where we used the notation ⟨⋅⟩ ∶= N−1 tr[⋅] for the normalized trace. In this way, one has linked the
study of the empirical DOS µN to the study of the resolvent G(z) ∶= (W − z)−1 of W .

Note that the convergence of mµN
(z) = ⟨G(z)⟩ to a deterministic value clearly hinges on the spectral

parameter z ∈ C∖R. For Wigner matrices, the fact that mµN
(z) converges to the Stieltjes transform

msc(z) of the semi-circular law for every fixed, i.e. N -independent z ∈C ∖R, is equivalent to the
weak convergence of µN to Wigner’s semi-circle law. One might thus ask, if, apart from this global
law, the spectral parameter z can be chosen dependent on N , and convergence of the Stieltjes
transforms is still valid as N →∞. In fact, by spectral decomposition, we see that the convergence
of

⟨ImG(z)⟩ =
1
N

N

∑
j=1

Im z

(λj −Re z)2 + (Im z)2
(1)

to a deterministic value, essentially depends only on the eigenvalues λj lying in an interval of size ∣Im z∣
around the energy Re z. This is a consequence of the fact that x↦ π−1∣Im z∣/[(x−Re z)2+(Im z)2]
is an approximate δ-function around Re z on scale ∣Im z∣. One thus expects that, as long as ∣Im z∣ is
such that the number of eigenvalues effectively contributing to the summation in (1), roughly given
by ∼ N ∣Im z∣ρsc(Re z), is ≫ 1, it still holds that mµN

(z)→msc(z) as N →∞.

Indeed, it is a common phenomenon of rather general random matrices H (including the correlated
random matrices introduced above), that their resolvent G(z) = (H − z)−1 at a spectral parameter
z ∈ C ∖R tends to concentrate around a deterministic matrix M(z), even for ∣Im z∣ only slightly
above the local eigenvalue spacing around the energy Re z. Such estimates are called local laws and
usually take the following averaged and isotropic form: Consider a deterministic matrix B ∈CN×N

and deterministic vectors x,y ∈CN . Then it holds that

∣⟨(G(z) −M(z))B⟩∣ ≺
∥B∥

N ∣Im z∣
, ∣⟨x, (G(z) −M(z))y⟩∣ ≺ ∥x∥ ∥y∥

¿
Á
ÁÀ ρ(z)

N ∣Im z∣
, (2)

where ρ(z) ∶= π−1∣Im ⟨M(z)⟩∣ is the local self-consistent density of states (scDOS) and the ≺-notation
is a suitable notion of high-probability bound up to N ε-factors (see, e.g., the definition around
(1.1.10) below).

We will now discuss, how the deterministic matrix M(z) in (2) arises, and afterwards explain several
(nowadays standard) applications of local laws, namely eigenvalue rigidity, eigenvector delocalization,
and local eigenvalue universality.

Matrix Dyson Equation and self-consistent density of states The matrix M(z) in (2) is given
as the unique solution [236] to the matrix Dyson equation (MDE)

−M(z)−1
= z −A + S[M(z)] under the constraint ImM(z) ⋅ Im z > 0 ,

where ImM ∶= (2i)−1(M −M∗). The data pair (A,S) of the MDE is given by the first and second
moment of the random matrix H . That is, the expectation is given by A ∶= EH and the self-energy
or covariance operator S is defined as

S[R] ∶= E [(H −E[H])R(H −E[H])] for R ∈CN×N . (3)

The limiting self-consistent density of states (scDOS) ρ of H is obtained from the solution M of the
MDE as

ρ(x) = lim
η↘0

ρ(x + iη) ∶= lim
η↘0

π−1
⟨ImM(x + iη)⟩ .

As an example, in the case of Wigner matrices, we have that ρ = ρsc and M(z) =msc(z)1, where
msc(z) solves the scalar equation

−msc(z)
−1
= z +msc(z) with Immsc(z) ⋅ Im z > 0

3
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Moreover, under rather general conditions, it is shown (see [236] for a review) that M is a Hölder-1/3
continuous function of z and that the scDOS ρ has the following properties:

(i) the support of ρ consists of finitely many compact intervals;

(ii) wherever ρ is strictly positive (in the bulk), it is real analytic;

(iii) there exist two types of singularities, where ρ vanishes, edges and cusps;

(iv) for an edge point e ∈ ∂ suppρ, one has ρ(e± x) = c
√
x+ o(

√
x) and ρ(e∓x) = 0 for 0 < x≪ 1

and a constant c = c(e) > 0;

(v) for a cusp point c ∈ suppρ, one has ρ(c+x) = c∣x∣1/3 +o(∣x∣1/3) for some constant c = c(c) > 0.

The spectral regimes corresponding to (ii), (iv), and (v) are called the bulk, edge, and cusp regime
of the scDOS, respectively.

Rigidity of eigenvalues Let λ1 ≤ ... ≤ λN be the eigenvalues of a correlated random matrix H and
ρ the scDOS. Moreover, we define the typical eigenvalue locations of the eigenvalues (quantiles) γi
implicitly via

∫

γi

−∞
ρ(x)dx = i

N
for i = 1, ...,N .

Then, as a consequence of the local law (2) and using Helffer-Sjöstrand calculus, one can show that

∣λi − γi∣ ≺ ηf(γi) ,

i.e. the eigenvalues remain very close to their expected locations and are thus rigid. Here, ηf(E) is
the local eigenvalue fluctuation scale around an energy E, implicitly defined as

∫

E+ηf(E)

E−ηf(E)
ρ(x)dx = 1

N
.

It is of order N−1 in the bulk, N−2/3 at the edge, and N−3/4 at the cusp. It is a consequence of the
strong correlation of the eigenvalues, that they fluctuate only on such a small scale.

Delocalization of eigenvectors Another consequence of the local law (2) is that the eigenvectors
of H are completely delocalized. This means that, taking (ui)Ni=1 to be the ℓ2-normalized eigenvectors
of H and x ∈ CN a deterministic unit vector, we have ∣⟨x,ui⟩∣ ≺ N−1/2 for all i ∈ [N] ∶= {1, ....,N}.
Such so-called eigenvector delocalization follows from the local law (2):

∣⟨x,ui⟩∣
2
≤ C

N

∑
j=1

η2∣⟨x,uj⟩∣
2

(E − λj)2 + η2 = Cη ⟨x, ImG(E + iη)x⟩ ≺ η

for some constant C > 0 and choosing (in the bulk) η = N−1+ε for some arbitrarily small ε > 0, and
E = γi.

Three-step-strategy for universality On the eigenvalue fluctuation scale ηf, individual eigenvalues
become relevant. On this microscopic scale, it has been conjectured by Wigner in the 1950’s [586],
and later formalized as the Wigner-Dyson-Mehta (WDM) universality conjecture [446], roughly
stating that the local eigenvalue statistics are insensitive to any specifics of the model apart from the
symmetry class. We point out that, in contrast with the local law (2) on mesoscopic scale (i.e. above
the local eigenvalue spacing), which can be viewed as a law of large numbers (LLN) for the resolvent,
the emergence of universal spectral statistics can be viewed as an analog of the central limit theorem
(CLT) in the case of weakly correlated random variables.
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In order to formulate the universality of local eigenvalue statistics, we (implicitly) define the k-point
correlation function p(k)N via

∫
Rk
f(x)p

(k)
N (x)dx = (

N

k
)

−1
∑

{i1,...,ik}⊂[N]
E f(λi1 , ..., λik)

for any compactly supported smooth test function f , where the summation is running over all
k-tuples of distinct elements from [N].

We now formulate the WDM conjecture in the complex Hermitian case.

Conjecture (WDM conjecture in the Hermitian symmetry class). Assume that b, e, and c are bulk,3
edge, and cusp points of some scDOS ρ with parameters γe and γc defined in such a way that

ρ(e ± x) = γ
3/2
e x1/2

/π + o(x1/2
) and ρ(c + x) =

√
3γ4/3

c ∣x∣
1/3
/2π + o(∣x∣1/3) .

Then, for any fixed k ∈N, the universal correlation functions are given by

1
ρ(b)k

p
(N)
k (b +

x

ρ(b)N
) ≈ det(

sinπ(xi − xj)
π(xi − xj)

)
i,j∈[k]

(Bulk)

Nk/3

γke
p
(N)
k (e +

x

γeN2/3) ≈ det (KAiry(xi, xj))i,j∈[k] (Edge)

Nk/4

γkc
p
(N)
k (c +

x

γcN3/4) ≈ det (KPearcey(xi, xj))i,j∈[k] . (Cusp)

The approximation is understood up to an error of size N−c(k) when integrated against a smooth
test function.

In the bulk and edge case, the universal kernels were computed from the GUE ensemble and are
called the sine kernel [447] and Airy kernel [264], respectively. For the cusp, the Pearcey kernel
was computed from a GUE matrix with non-zero diagonal expectation diag(1, ..., 1,−1, ...,−1) via
saddle point analysis of a contour integral obtained via the Harish-Chandra-Itzykson-Zuber integral
over the unitary group [121]. There is an analogous WDM conjecture for the real symmetry class
with the bulk and edge kernels being explicitly known in this case as well. Due to the lack of the
Harish-Chandra-Itzykson-Zuber integral, however, it is not even known, whether the universal cusp
statistics is determinantal.

The WDM conjecture remained an open problem for several decades. Using moment computations,
similarly to Wigner’s original approach, Soshnikov in 1999 [531] showed validity of the WDM
conjecture at the edge of Wigner matrices. Only about 15 years ago, it was resolved in the bulk of
Wigner matrices in a series of papers by Erdős-Schlein-Yau (and collaborators) [246, 247, 251, 252]
and work by Tao-Vu [551]. Subsequently, the WDM conjecture in the bulk and at the edge was proven
for more general random matrix ensembles [406, 409, 370, 15, 17, 243, 23], including correlated
random matrices [243, 23]. At the cusp, it has been shown only for Wigner-type matrices in
[244, 155]. For general correlated random matrices, a proof of the WDM conjecture at the cusp was
achieved only very recently in [239], which is included as Chapter 6 of this thesis.

The most powerful technique for proving spectral universality is the three-step-strategy invented by
Erdős-Schlein-Yau (see [248] for a pedagogical introduction):

(i) Eigenvalue rigidity as a consequence of the local law (2).
3We will call b a bulk point, if ρ(b) ≥ δ > 0.
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(ii) Addition of a small Gaussian (GOE/GUE) component via Green function comparison (GFT).

(iii) Proof of universality for matrices with a small Gaussian component.

In the second step, one evolves the random matrix H by the Ornstein-Uhlenbeck (OU) flow

dHt = −
1
2
(Ht −A)dt +Σ1/2

[dBt] , H0 =H , (4)

where Bt is a standard real symmetric/complex Hermitian Brownian motion. Moreover, A = EH
and the non-negative operator Σ is given by

Σ[R] ∶= E [(H −E[H]) tr (R(H −E[H]))] .

The key feature of the flow (4) is that both the expectation and the covariance operator (3) associated
with H are preserved in time. As a consequence, the scDOS remains constant in t, i.e. ρt ≡ ρ.
Moreover, analyzing the (time derivative of the) resolvent Gt ∶= (Ht − z)

−1 for ∣Im z∣ ≪ ηf(Re z),
one finds that the local eigenvalue statistics are effectively unchanged for running times of the OU
flow (4) satisfying

t≪

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

N−1/2 bulk
N−1/6 edge
N−1/4 cusp .

(5)

Note that the OU flow (4) has added a Gaussian component of order
√
t, such that we have

Ht
d
= Ĥt +

√
ctU (6)

for some matrix Ĥt, independent of the GOE/GUE matrix U , and a constant c ∼ 1. By the second
step, one hence just has to prove universality for matrices having a Gaussian component of size

√
t.

In the third step, we consider a terminal time T = N εηf for some small ε > 0, and the matrix flow

dH̃t =
dB̃t
√
N
, H̃0 = ĤT (7)

where B̃t is an independent standard matrix valued Brownian motion and Ĥ is from (6). The
solution to (7) is given by H̃t = H̃0 +

√
tŨ , with Ũ being an independent GOE/GUE matrix. In this

way, we have H̃cT
d
=HT with c from (6), i.e. the two flows (4) and (7) have a joint target, and thus

universality for H0 can be inferred from universality for H̃cT
d
= HT if T can be chosen sufficiently

small.

Indeed, in order to conclude the argument, it remains to check that the eigenvalue statistics along
the flow (7) converges to the universal one sufficiently fast. One can easily check that the flow (7)
induces the so-called Dyson Brownian motion (DBM) for the eigenvalues, the following system of
coupled stochastic differential equations (SDEs):

dλi(t) =
√

2
βN

dbi(t) +
1
N
∑
j≠i

1
λi(t) − λj(t)

dt , λi(0) = λi(H̃0) , i ∈ [N] , (8)

where (bi(t))i∈[N] is a standard vector valued Brownian motion, and β = 1 for the real symmetric
case, and β = 2 for the complex Hermitian case.

The most convenient way to study (8) is via the coupling method. That is, we consider a comparison
process for (8), driven by the same Brownian motions, but with initial conditions given by the
eigenvalues of an independent GOE/GUE matrix. As a consequence, the difference variables

6



(δi(t))i∈[N] satisfy a system of deterministic parabolic differential equations. Finally, using (i) heat
kernel decay estimates for the resulting equations and (ii) the fact that the initial condition is very
close to equilibrium (due to eigenvalue rigidity from the first step), one finds that ∣δi(t)∣≪ ηf(γi)
for sufficiently long time. This fast relaxation to equilibrium of the DBM is achieved if

t≫

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

N−1 bulk
N−1/3 edge
N−1/2 cusp ,

(9)

leaving quite some room to choose T in (7), such that both (5) and (9) are satisfied. This concludes
the three-step-strategy

Multi-resolvent local laws and applications

As discussed above, the local law in (2) has profound applications; most prominently local eigenvalue
universality via the three-step-strategy. Due to this huge impact of the single resolvent local law, it is
natural to study their analog for multiple resolvents, the multi-resolvent local laws. The central object
of interest are strictly alternating4 chains of resolvents Gi = G(zi) ∶= (H − zi)−1 with zi ∈ C∖R and
deterministic matrices Bi ∈CN×N , i.e.

G1B1G2B2...GkBk . (10)

We now expand the averaged trace of (10) in spectral decomposition

1
N

N

∑
j1,...,jk=1

⟨uj1 ,B1uj2⟩⟨uj2 ,B2uj3⟩...⟨ujk ,Bkuj1⟩

(λj1 − z1) (λj2 − z2) ... (λjk − zk)
(11)

where (uj)j∈[N] are the ℓ2-normalized eigenvectors with associated eigenvalues (λj)j∈[N] of H. In
this way, one easily sees that resolvent chains like (10) are multi-point functions and contain much
more information than their single resolvent (one-point function) analog, since now eigenvector
overlaps ⟨u,Bu⟩ and multi-point eigenvalue correlations are implicitly included.

Now, a multi-resolvent local law is meant to be a concentration estimate for (10), similarly to (2).
We emphasize that a multi-resolvent local law is not a consequence of a single resolvent law, meaning
that, say,

G ≈M /Ô⇒ G2
≈M2

as (2) is only true in the above weak sense. Instead, the correct heuristic derivation of the deterministic
approximation of G2 is obtained as G2 = ∂zG ≈ ∂zM . However, this derivative trick breaks down
when considering alternating chains of the form (10) involving deterministic Bi’s. Hence, establishing
a multi-resolvent local law for (10) consists of two tasks: First, finding the right deterministic
approximation, second proving concentration around this matrix.

The systematic study of multi-resolvent local laws was initiated by Cipolloni-Erdős-Schröder in
[165, 172, 170] for Wigner matrices, on which we focus from now on, for concreteness. The
deterministic approximation M[k] for a general resolvent chain as in (10) can be obtained inductively
in the length k of the chain (via recursive Dyson equations, see, e.g., Definition 1.4.1 and Lemma 1.D.1
below), and (in case of Wigner matrices) expressed via free probability theory. The general form of a
multi-resolvent local law (in the interesting regime, where η ∶=mini ∣Im zi∣≪ 1) is then5

∣⟨G1B1G2B2...GkBk⟩ − ⟨M[k](z1, ..., zk;B1, ...,Bk)⟩∣ ≺
∏
k
i=1 ∥Bi∥

Nηk
, (12)

4We can make this assumption w.l.o.g., since any chain containing, say, a G2, can be reduced to a (linear
combination of a) single G by Cauchy’s integral formula or a resolvent identity.

5The corresponding isotropic multi-resolvent law takes a similar form. From now on, however, we focus on the
averaged case for clarity of the presentation.
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where the deterministic approximation M[k] =M[k](z1, ..., zk;B1, ...,Bk) satisfies

∥M[k]∥ ≲
∏
k
i=1 ∥Bi∥

ηk−1 . (13)

We point out a natural power counting: Every additional resolvent raises the power of η in the
denominators in (12) and (13) (compared to (2)), and the fluctuation size on the rhs. of (12) is
suppressed by (Nη)−1 ≪ 1 compared to the size of the deterministic approximation.

Early on [168], Cipolloni-Erdős-Schröder realized a strong improvement in the estimates (12)–(13)
stemming from traceless observables with ⟨B⟩ = 0. This stems from the fact, that the inverse of the
two-body stability operator

Bij[⋅] ∶= 1 −msc(zi)⟨⋅⟩msc(zj) ,

which governs the size of the estimates (12)–(13), is bounded on traceless B’s. The improvement
can roughly be captured via the √η-rule, stating that each traceless B reduces both the size of M[k]
and the fluctuation bound in (12) by a factor of √η ≪ 1. As an example, it holds that

∣⟨G1B1G2B2⟩ −m1m2⟨B̊1B̊2⟩ − ⟨B1⟩⟨B2⟩
m1 −m2
z1 − z2

∣

≺
∣⟨B1⟩∣ ∣⟨B2⟩∣

Nη2 +
∣⟨B1⟩∣ ∥B̊2∥ + ∥B̊1∥ ∣⟨B2⟩∣

Nη3/2 +
∥B̊1∥ ∥B̊2∥

Nη

where we denoted mi = msc(zi) and B̊i ∶= Bi − ⟨Bi⟩. Note that, by decomposing the general
observables Bi in (12) into their traceless part B̊i and tracial part ⟨Bi⟩, it is sufficient to study
strictly alternating chains of resolvents and traceless matrices (cf. Footnote 4).

The theory of multi-resolvent local laws has rich applications. In this thesis, we focus on two types
of physical problems. First, multi-resolvent laws allow to study eigenvector overlaps ⟨ui,Buj⟩ as
indicated by (11). More precisely, we establish validity of the Eigenstate Thermalization Hypothesis
(ETH) introduced by Deutsch [221] and Srednicki [535] in various settings where the quantum
Hamiltonian is modeled by a random matrix. The purpose of the ETH is to provide an explanation
for thermalization in closed quantum mechanical systems. Roughly speaking, the ETH asserts that
the eigenvectors ui of a chaotic quantum system are uniformly distributed in phase space. In physics
terms, this means that the matrix elements of an observable A in the eigenbasis of the Hamiltonian
effectively agree with the microcanonical average, and the fluctuations are entropically suppressed,
i.e.

⟨ui,Auj⟩ ∼ δij⟪A⟫ +

√
⟪A2⟫

N
ξi,j .

Here, ⟪⋅⟫ denotes the microcanonical average and ξi,j is an order one (pseudo-)random variable. In
the following, we will often say that we "showed ETH", if the second term above is established as
the correct order in N , and say that we "established the fluctuation around ETH" if ξi,j is identified
as well.

As the second problem, we study thermalization questions and other approach-to-equilibrium phe-
nomena, where again the random matrix H models a quantum Hamiltonian. In this case, the time
evolution generated by H according to the Schrödinger equation, can be related to resolvents by
simple contour integration

eitH
=

1
2πi ∮Γ

eitzG(z)dz

for an appropriately chosen Γ ⊂C encircling the spectrum of H. The approach to equilibrium can
then be determined by analyzing contour integrals of M[k].

Moreover, apart from the physical problems discussed above, we mention that controlling a special
two-point function (in a two-resolvent local law), allows to prove CLTs for the linear eigenvalue
statistics at macroscopic and mesoscopic scales [329, 393, 157, 156, 500, 500, 416].
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Summary of Results

We now briefly summarize our results on random matrices contained in this thesis; afterwards we
provide a concise summary of the main ideas for (some of) their proofs.

Chapter 1: Optimal lower bound on eigenvector overlaps for non-Hermitian matrices [154]
We consider large deformed i.i.d. matrices Λ +X ∈CN×N and show the following results:

(i) The ℓ2-normalized bulk right and left singular vectors (ui)i∈[N] ⊂ CN and (vi)i∈[N] ⊂ CN ,
respectively, are thermalized. That is, for any bounded deterministic matrix B ∈ CN×N it holds
that

max
i,j∈bulk

∣⟨ui,Buj⟩ − δij⟨ViB⟩∣ ≺
1
√
N

for some bounded deterministic matrix Vi ∈CN . Analogous statements hold for the overlaps
⟨ui,Bvj⟩ and ⟨vi,Bvj⟩.

(ii) The diagonal eigenvector overlap Oii ∶= ∥ri∥2 ∥li∥2 is lower bounded as

Oii ≻ N .

Here (ri)i∈[N] and (li)i∈[N] are the bi-orthonormal right- and left-eigenvectors of Λ + X,
respectively, normalized such that ⟨li,rj⟩ = ltirj = δij

The underlying technical result is a two-resolvent local law for the Hermitization

H = ( 0 Λ+X
(Λ+X)∗ 0 ) ∈C2N×2N

of Λ +X with optimal improvements for regular observables A = Åzi,zj , generalizing the concept of
traceless matrices for Wigner matrices. In fact, the regular observables form an energy dependent
codimension one subspace, on which the inverse of the stability operator Bij[⋅] ∶= 1−M(zi)S[⋅]M(zj),
with S being the self-energy operator from (3), is bounded.

Chapter 2: Gaussian fluctuations in the equipartition principle for Wigner matrices [152]
Let W1 and W2 be two independent N ×N Wigner matrices of the same symmetry class and consider
the Hamiltonian H ∶=W1 +W2. As shown in [45], the energy of an eigenstate u of H is equally
distributed among the constituents W1 and W2. This means that, if Hu = λu for a bulk eigenvalue
λ ∈R, it holds that

∣⟨u,W1u⟩ −
λ

2
∣ ≺

1
√
N

and the same for W2 instead of W1. We show Gaussian fluctuations around this equipartition
principle, i.e.

√
βN [⟨u,W1u⟩ −

λ

2
]Ô⇒N (0,1)

in the sense of moments. Here, β = 1 if W1,W2 are real symmetric Wigner matrices, and β = 2 if
they are complex Hermitian, and N (0,1) denotes a real standard Gaussian random variable.

As our main ingredient, we prove ETH and Gaussian fluctuations around ETH for general quadratic
forms of the bulk eigenvectors of Wigner matrices with an arbitrary deformation, which are deduced
with the aid of appropriate multi-resolvent laws.
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Chapter 3: Eigenstate thermalization at the edge for Wigner matrices [150] Let W be
a Wigner matrix with normalized eigenvectors (ui)i∈[N]. Then we have validity of the optimal6
eigenstate thermalization hypothesis (ETH) uniformly in the spectrum

max
i,j∈[N]

∣⟨ui,Auj⟩ − δij⟨A⟩∣ ≺
⟨∣Å∣2⟩1/2
√
N

where Å ∶= A − ⟨A⟩ .

Previous results were restricted either to the bulk of the spectrum [169] or to special observables [60].
In fact, the optimal ETH requires to simultaneously and optimally track the Hilbert-Schmidt norm of
observables and dependencies on the local density of states in the edge regime. That is, we show

⟨ImG(z1)ÅImG(z2)Å
∗
⟩ ≺ ρsc(z1)ρsc(z2)⟨∣Å∣

2
⟩ ,

noticing the change G to ImG (compared to the chain in (10) and (10)) and the resulting improvement
of having ρ’s (which are small at the edge) in the rhs.

Chapter 4: Out-of-time-ordered correlators for Wigner matrices [151] For general observables
A,B ∈CN×N , we consider their out-of-time-ordered correlator (OTOC)

CA,B(t) ∶=
1
2
⟨∣ [A(t),B] ∣

2
⟩ with A(t) = e−itWAeitW

in a mean-field chaotic quantum system described by a Wigner random matrix W . We rigorously
identify three time regimes separated by the physically relevant scrambling and relaxation times.
The main feature of our analysis is that we express the error terms in the optimal Schatten (tracial)
norms of the observables, allowing us to track the exact dependence of the errors on their rank.

This is achieved by establishing multi-resolvent local laws with Schatten norm error terms. For
example, for A ∈ CN×N traceless, spectral parameter z = E + iη with η ≫ N−1 in the bulk and
G = G(z) = (W − z)−1 it holds that (here, m =msc(z))

∣⟨GAGA⟩ −m2
⟨A2
⟩∣ ≺

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∥A∥2

Nη
from [168, Theorem 2.5];

⟨∣A∣2⟩
√
Nη

from [169, Theorem 2.2];

⟨∣A∣2⟩

Nη
+
⟨∣A∣4⟩1/2

N
√
η

from Theorem 4.3.3.

The last bound is optimal for observables of any rank and interpolates between the former two
bounds, which are optimal only for full rank and bounded rank observables, respectively.

Chapter 5: Eigenvector decorrelation for random matrices [153] Let W be a Wigner matrix
and consider two self-adjoint deterministic deformations D1,D2 ∈ CN×N . Define Hℓ ∶= W +Dℓ,
ℓ = 1,2 and denote their respective eigenvectors by (u(ℓ)i )

N
i=1 which correspond to the eigenvalues

(λ
(ℓ)
i )

N
i=1. For eigenvalues in the bulk of the spectra, we prove the optimal decorrelation estimate

∣⟨u
(1)
i ,u

(2)
j ⟩∣

2
≺

1
N
⋅

1
⟨(D1 −D2)2⟩ + ∣λ

(1)
i − λ

(2)
j ∣

2
+ LT

of the eigenvector overlaps, where the so-called linear term LT is (the absolute value of) a specific
linear combination of D1 −D2 and λ(1)i − λ

(2)
j . Our estimate manifests the interplay of two decay

effects in three different terms, which can make the eigenvectors u
(1)
i ,u

(2)
j almost orthogonal.

6The ETH below is optimal in terms of
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Moreover, similarly to the ETH, we identify a one-codimensional subspace of observables A, dependent
on λ’s and D’s, such that the overlap satisfies ∣⟨u(1)i ,Au

(2)
j ⟩∣

2
≺ N−1.

On a technical level, our results build on optimal two-resolvent local laws for deformed Wigner
matrices not sharing a common eigenbasis.

Chapter 6: Cusp universality for correlated random matrices [239] We consider large Hermitian
random matrices H with a general slowly decaying correlation structure among its entries. We
prove a local law for the resolvent of H throughout the entire spectrum, in particular including cusp
singularities of the density of states. As a consequence, we obtain universality of the local eigenvalue
statistics at such cusp points via the three-step-strategy.

Since the density of states typically exhibits only square root edge or cubic root cusp singularities, our
result completes the proof of the Wigner-Dyson-Mehta universality conjecture in all spectral regimes
for a very general class of random matrices. Previously only the bulk and the edge universality were
established in this generality [23], while cusp universality was proven only for Wigner-type matrices
with independent entries [244, 155].

Chapter 7: Prethermalization for deformed Wigner matrices [238] We consider a class of
weakly perturbed Hamiltonians of the form Hλ = H0 + λW , with W being a Wigner matrix, and
prove that they exhibit prethermalization. That is, the time evolution generated by Hλ relaxes to its
ultimate thermal state via an intermediate prethermal state with a lifetime of order λ−2, in agreement
with Fermi’s golden rule.

Additionally, we obtain a general relaxation formula, which expresses the perturbed dynamics via
the unperturbed dynamics and the ultimate thermal state P̃ λ. More precisely, under quite general
conditions, for an observable A ∈CN×N and initial state 0 ≤ P ≤ 1, it holds that

tr (APλ(t)) ≈ tr (AP̃ λ) + e−2αλ2t [tr (AP0(t)) − tr (AP̃ λ)] ,

where we denoted the Heisenberg time evolution of P by Pλ(t) ∶= e−itHλP eitHλ .

Chapter 8: Loschmidt echo for deformed Wigner matrices [237] For two Hamiltonians that
are close to each other, H1 ≈H2, we analyze the time-decay of the corresponding Loschmidt echo

M(t) ∶= ∣⟨ψ0, eitH2e−itH1ψ0⟩∣
2

for an energetically localized initial state ψ0 ∈ CN . For our model Hamiltonians we consider deformed
Wigner matrices that do not share a common eigenbasis and show that

M(t) ≈
⎧⎪⎪
⎨
⎪⎪⎩

1 − γt2 for t≪ 1
e−Γt for 1≪ t ≲ (E⟨(H1 −H2)

2⟩)
−1
,

where both decay parameters satisfy γ ∼ Γ ∼ E⟨(H1 −H2)
2⟩.

Chapter 9: Eigenstate thermalization hypothesis for translation invariant spin systems [541]
We prove ETH for local observables in a typical translation invariant system of quantum spins with
mean field interaction. This mathematically verifies observations made in the physics literature [512],
that ETH may hold for systems with additional translation symmetries for a naturally restricted class
of observables.

11
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Main Ideas of the Proofs

Traditionally, the proof of local laws consists of two largely separated parts. On the one hand, there
is a deterministic stability analysis of the MDE, say, for illustrational purpose, −m−1 = z +m in the
case of Wigner matrices. On the other hand, there is a probabilistic error control when showing that
−G−1 ≈ z +G. Combining deterministic stability and probabilistic error control, we find that G ≈m,
as formally stated in (2).

Both proof parts are, however, highly model dependent and thus considerable effort is needed in
establishing a local law. In contrast to that, steps (ii) and (iii) of the three-step-strategy have
already reached the status of a black box and can be performed essentially model independent. On
a technical level, the main goal of this thesis is to elevate the proof of single- and multi-resolvent
local laws to this status. In order to do so, we developed two methods.

The Ψ-method In order to prove the results in Chapters 1–2, we developed the Ψ-method, originally
invented in [168]. The principal idea is to consider

Ψk ∶= Nη
k/2 ∣⟨G1A1...GkAk⟩ − ⟨M[k]⟩∣ , k ∈N , (14)

for regular matrices Ai = Åi with bounded norm ∥Ai∥ ≲ 1. In accordance with the √η-rule, the
normalization factor in (14) is chosen in such a way, that the optimal multi-resolvent local law is
equivalent to Ψk ≺ 1. Then, by a minimalistic cumulant expansion and recursive moment estimates
we prove that, if Ψk ≺ ψk for some deterministic control quantities ψk ≥ 1, the improved estimates

Ψk ≺ 1 +
k−1
∑
j=1

ψj +
k−1
∑
j=1

ψjψk−j

Nη
+

√
ψ2k
√
Nη

, k ∈N (15)

hold as well. These estimates are called master inequalities and are an infinite non-linear coupled
hierarchical system of multi-resolvent local laws and their fluctuations. Apart from the target bound
of order one on the rhs. of (15), it contains the subsequent sub-homogeneous, non-linear, and
doubling term(s).

The way to close the infinite hierarchy (15) of master inequalities a priori induced by the doubling
term, is the use of reduction inequalities taking the form

Ψ2k ≺ (Nη)
2
+ ψ2

k , k ∈N . (16)

Formally, plugging (16) into (15), and using that the sub-homogeneous and non-linear terms in (15)
follow a strict triangular structure (i.e. involve ψ’s with strictly lower indices on the rhs.), we find
that Ψk ≺

√
Nη for all k ∈N as an intermediate bound. Feeding this information back into (15),

and using again the triangular structure, we arrive at the target Ψk ≺ 1.

Compared to traditional local law proofs, the Ψ-method avoids tedious cumulant expansions and
is thus capable of dealing with general multi-resolvent chains. The key difficulty, however, in the
application of the Ψ-method to the problems in Chapters 1–2 is to track the energy dependent
regularizations throughout the expansions.

The Zigzag strategy As the main method for proving local laws, in this thesis we develop and
apply the Zigzag strategy in Chapters 3–6. As illustrated in these later parts of the thesis, the Zigzag
strategy is a powerful, versatile, and fine-tunable tool, which efficiently handles instabilities, such as
non-regular observables or singularities in the spectrum (edges and cusps).

We now briefly explain the strategy in the setting of the standard local semicircle law for a Wigner
matrix W , consisting of three steps:

12



(i) Global law: For η ∼ 1, prove that ∣⟨G −m⟩∣ ≺ 1/N . Since in this regime, the rough bound
∥G∥ ≲ 1 is affordable, the global law can be obtained by simple independent methods.

(ii) Characteristic flow (Zig step): Run an Ornstein-Uhlenbeck flow

dWt = −
Wt

2
dt + dBt

√
N
, W0 =W

and simultaneously evolve the spectral parameter z = E + iη ∈C ∖R by

dzt = −m(zt)dt −
zt
2

dt . (17)

The key effect of running these two flows in tandem is a great cancellation in the differential
d⟨Gt(zt)⟩ as shown below.

(iii) Green function comparison (Zag step): The outcome of the second step is the local
semicircle law for small η, but with a large Gaussian component. This component is removed
by a self-consistent GFT argument (via Gronwall inequalities).

We point out that, previously, the characteristic flow idea only appeared in the single-resolvent setting
[6, 7, 14, 105, 111, 353], however (mostly) without combining it with a GFT. One main achievement
of this thesis is to consolidate the multi-resolvent setting as well. We remark that, in this case, the
immediate outcome of the second step are time-dependent master inequalities, similarly to (15).
The hierarchy can be closed analogously to the static Ψ-method.
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(a) Characteristic semicircular flow.

GOE/GUE

η

∼ 1

∼ 1/N

Zig

Zag

(b) Schematic picture of Zigzag.

The schematic of the Zig and Zag steps is illustrated in Figure (b); often, they are repeated multiple
times, reducing η gradually. In Figure (a), we depict trajectories of the deterministic flow (17). As
mentioned above, the key effect of combining the OU flow with (17) is a great cancellation in the
differential d⟨Gt(zt)⟩. To illustrate this, we consider d⟨G(zt)⟩, d⟨Gt(z)⟩, and d⟨Gt(zt)⟩, making
only the spectral parameter, only the randomness, or both zt and Wt time dependent, respectively.
In fact, by Itô calculus we find that

d⟨G(zt)⟩ = (∂tzt)⟨G(zt)2⟩dt

d⟨Gt(z)⟩ = [
⟨Gt(z)⟩

2
+ (⟨Gt(z)⟩ +

z

2
)⟨Gt(z)

2
⟩]dt + ...dB

d⟨Gt(zt)⟩ = [
⟨Gt(zt)⟩

2
+ (⟨Gt(zt)⟩ +

zt
2
+ ∂tzt)⟨Gt(z)

2
⟩]dt + ...dB

Hence, only for d⟨Gt(zt)⟩, the prefactor multiplying the critical ⟨G2⟩ term is small due to the choice
of characteristics (17) and the fact that ⟨G⟩ ≈m. Finally, we point out that, in the above expressions,
the martingale term ...dB can be handled via the Burkholder-Davis-Gundy (BDG) inequality.
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Conclusion

To summarize, the main contributions of Part I of this thesis are as follows:

(1) We generalize the concept of tracelessness for Wigner matrices to regular observables and
provide a systematic decomposition of general observables, thereby developing the static
Ψ-method (see Chapters 1–2).

(2) We establish the dynamical Zigzag strategy as a powerful method for proving single- and multi-
resolvent local laws. Concretely, we prove fine estimates for Wigner matrices (Chapters 3–4),
decorrelation estimates for different spectral families of deformed Wigner matrices (Chapter 5),
and a cusp local law for correlated matrices (Chapter 6).

(3) We apply the theory of multi-resolvent laws to physical problems, such as prethermalization
(Chapter 7), Loschmidt echo (Chapter 8), or ETH in translation invariant systems (Chapter 9).

Part II: BCS Theory
In the second part of this thesis, we study (translation invariant) Bardeen-Cooper-Schrieffer (BCS)
theory of superconductivity [48]. We consider a system of fermionic particles in Rd, d = 1,2,3, at
temperature T ≥ 0, chemical potential µ > 0, and interacting via a two-body (effective) interaction
denoted by V . The central mathematical object to study is the BCS free energy functional

FBCS(Γ) ∶= ∫
Rd
(p2
− µ)γ̂(p)dp − TS(Γ) + ∫

Rd
V (x)∣α(x)∣2 dx (18)

on BCS states Γ ≡ (γ,α). These are conveniently represented as 2× 2 matrices in momentum space,

Γ̂(p) =
⎛
⎜
⎜
⎝

γ̂(p) α̂(p)

α̂(p) 1 − γ̂(−p)

⎞
⎟
⎟
⎠

with the constraint 0 ≤ Γ̂(p) ≤ 1C2 , (19)

which encodes the fermionic nature of the particles. The entropy term S in (18) is given by

S(Γ) ∶= −∫
Rd

trC2 [Γ̂(p) log Γ̂(p)]dp . (20)

The BCS functional (18) can be heuristically derived from a many-body Hamiltonian by making
the following simplifying assumptions (see [309, Appendix A] and Section 14.A for details): One
restricts the grand canonical pressure functional to quasi-free states ρ, drops direct and exchange
terms, restricts to SU(2)-invariant states (ignoring spin), and assumes translation invariance.

The only term kept in the restriction to quasi-free states, is the pairing term, amounting to ∫ V ∣α∣2

in (18). The functions γ̂(p) ∼ ⟨a†
pap⟩ρ and α̂(p) ∼ ⟨apa−p⟩ρ constituting the BCS state (19), can be

interpreted as the electron density and Cooper pair density, respectively. Here, a†
p and ap denote the

creation and annihilation operator of an electron with momentum p, respectively.

The Cooper pairs constitute of two electrons with opposite momenta, that are bound together by the
effective interaction V . Physically, this arises from the attractive interactions of negatively charged
electrons and positively charged ions in the crystal lattice. By "integrating out" the lattice degrees of
freedom (phonons) then yields an effective attractive interaction V between two electrons. A Cooper
pair (formed by two fermions) is then of effective bosonic nature, and hence many Cooper pairs can
occupy the same state (form a condensate). The condensate of Cooper pairs is then responsible for
dispersionless charge transport, i.e. superconductivity.
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Hence, the question of whether a material described by the functional (18) is superconducting,
can mathematically be rephrased by asking, whether there exists a minimizer of (18) having a
non-vanishing Cooper pair density, α /≡ 0. The minimization problem associated with (18) is, however,
highly non-linear. Nevertheless, at least heuristically, one can see a competition in (18) between the
entropy and the pairing term: While by simple concavity properties of x↦ x logx, the entropy term
(20) favors a diagonal state Γ, i.e. with α ≡ 0, the attractive interaction V (having at least some
negative part) favors non-vanishing α.

The Euler-Lagrange equation associated with (18)–(19) is the celebrated BCS gap equation

∆(p) = − 1
(2π)d/2 ∫Rd

V̂ (p − q)
∆(q)
K∆
T (q)

dq (21)

satisfied by the gap function ∆ ∶= −2V α̂. In (21) we denoted

K∆
T (p) ∶=

E∆(p)

tanh (E∆(p)
2T )

with E∆(p) ∶=
√
(p2 − µ)2 + ∣∆(p)∣2 . (22)

Hence, superconductivity is equivalent7 to the existence of a non-zero solution to (21). Noting
that (i) the gap equation is equivalent to (K∆

T + V )α = 0 and (ii) [0,∞) ∋ ∆ ↦ K∆
T (p) is strictly

monotone for every p ∈Rd, it turns out that the question of existence of a non-zero solution to the
non-linear gap equation (21) can be characterized by a linear criterion. In fact, it holds that [309]

∃∆ /≡ 0 solving (21) ⇔ inf spec(KT + V ) < 0 , (23)

i.e. the pseudo-differential operator KT + V with KT (p) ≡K
0
T (p) ∶=

p2−µ
tanh((p2−µ)/2T ) has a negative

eigenvalue. The operator KT +V can be thought of as the Hessian of the functional (18) around the
normal state (γ0,0) with γ̂0(p) = (1 + e(p2−µ)/T )−1 and zero Cooper pair density. Hence existence
of a negative eigenvalue of KT + V shows that one can locally perturb around the normal state by
some α /≡ 0 and reach a strictly lower BCS free energy.

Since [0,∞) ∋ T ↦ KT (p) is strictly monotone for every p ∈ Rd, the linear characterization (23)
motivates the definition of the critical temperature

Tc ∶= inf{T ≥ 0 ∶KT + V ≥ 0}

below which (T < Tc) superconductivity exists, and above which (T ≥ Tc) it does not. This threshold
is physically measurable and highly important in practical applications.

Another important measurable quantity of a superconductor, measuring stability of the supercon-
ducting state, is the (temperature dependent) energy gap

Ξ(T ) ∶= inf
p∈Rd

E∆(p) = inf
p∈Rd

√
(p2 − µ)2 + ∣∆(p)∣2

associated to a non-zero solution ∆ to (21) for temperatures 0 ≤ T ≤ Tc. We call Ξ ≈ ∆(√µ) an
energy gap due to its interpretation as a spectral gap above the superconducting ground state of a
quasi-particle Hamiltonian (see [309, Appendix A]), at least at zero temperature.

The above mathematical formulation of BCS theory has been put forward mostly by Hainzl and
Seiringer and their collaborators [309, 316] starting from the late 2000s. Since then, many aspects
of BCS theory have been put on rigorous grounds. In particular, for d = 3, asymptotic formulas for
the critical temperature and energy gap at zero temperature have been established in limits where

7With a slight abuse of notation, we will use K∆
T to denote both, the pseudo-differential operator and its symbol

(i.e. a function).
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superconductivity is weak. More precisely, Tc have been studied in the weak coupling (i.e. replacing
V → λV and taking λ → 0) limit [269, 312] and low-density (i.e. µ → 0) limit [311, 403]. These
results show that, in particular, the ratio Ξ/Tc takes a universal value, independent of the microscopic
details of the material, i.e. the interaction V . In Chapters 10–11, for d = 3, we obtain similar
asymptotic formulas in the high density limit, µ →∞; in Chapter 12 we study the weak coupling
limit in spatial dimensions d = 1,2, in both cases obtaining universality as a corollary.

BCS theory has also been studied for temperatures close to the critical one. In this regime
of the superconducting phase transition, the microscopic BCS theory is well described by the
phenomenological Ginzburg-Landau (GL) theory [282]. The fact that GL theory in fact arises from
BCS theory as a limiting description for T ↑ Tc (see [294]), has recently been shown, even including
external electromagnetic fields [270, 272, 271, 220, 219]. Finally, we point out that BCS theory
has also been investigated in the non-translation-invariant setting [218, 310, 508, 509]. For more
detailed introductions to BCS theory, we refer the reader to the Master Thesis of Lauritsen [402],
and the PhD Theses of Bräunlich [119], Deuchert [217], Maier [428], and Roos [507].

Summary of Results

We now briefly summarize our results on BCS theory contained in this thesis; afterwards we provide
a concise summary of the main ideas for (some of) their proofs.

Chapter 10: The BCS critical temperature at high density [333] In three spatial dimensions,
we determine an asymptotic formula for the critical temperature Tc in the limit of high density,
modeled by sending the chemical potential to infinity, µ→∞, which roughly takes the form

Tc ≈ µA eB/(
√
µeµ) (24)

for some constants A,B > 0. Here, √µeµ < 0 (defined precisely in (30) below) measures the
strength of the effective interactions for electrons on the Fermi surface {p2 = µ}, which behaves as
∣
√
µeµ∣ ∼ µ

−δ for some δ > 0. Roughly said, the decay of ∣√µeµ∣ can be obtained from the decay of
the Fourier transform of the interaction, V̂ , in momentum space.

The behavior of Tc in (24) is valid for radially symmetric and (mostly) attractive potentials V ,
which are well behaved near the origin. In combination with a similar asymptotic formula valid
for low densities [311], we thus rigorously prove the existence of superconducting domes (i.e. a
non-monotonous behavior of Tc as a function of µ) in BCS theory. This has previously been predicted
only in the physics literature [400].

Chapter 11: The BCS energy gap at high density [336] Similarly to Chapter 10, we study the
BCS energy gap Ξ at zero temperature in the limit of high density, µ→∞, and find that

Ξ(T = 0) ≈ µC eB/(
√
µeµ) (25)

for B > 0 as in (24) and C = πe−γA, where A is from (24) and γ ≈ 0.577 is the Euler-Mascheroni
constant. Hence we prove universality of the ratio Ξ(T = 0)/Tc ≈ πe−γ in the limit of large densities.

Chapter 12: Universality in low-dimensional BCS theory [338] For one and two spatial
dimensions, we study the BCS critical temperature and energy gap at zero temperature. As a
result, we obtain asymptotic formulas in the weak coupling limit, yielding the same universal ratio
Ξ(T = 0)/Tc ≈ πe−γ as in three dimensions.
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Chapter 13: Universal behavior of the BCS energy gap [337] In this chapter, we focus on the
three dimensional setting and prove universality [412, 399] of the ratio Ξ(T )/Tc in the weak coupling
limit (i.e. replacing V → λV and taking λ→ 0) for all temperatures 0 ≤ T ≤ Tc. More precisely, as
λ→ 0, we show that

Ξ(T )
Tc
≈ fBCS (

√
1 − T /Tc)

for some universal function fBCS, taking only the relative temperature T /Tc as an argument. In
particular, for temperatures close to the critical one, it holds that

Ξ(T )
Tc
≈

¿
Á
ÁÀ 8π2

7ζ(3)
√

1 − T /Tc ,

where ζ(⋅) denotes the Riemann ζ-function. The universal behavior of the ratio Ξ(T )/Tc is illustrated
in Figure (c) below.

0 1
0

πe−γ

T/Tc

Ξ/Tc

(c) Universal behavior of the BCS energy gap.

Chapter 14: Multi-band superconductors have enhanced critical temperatures [335] We
study an analog of the BCS functional (18) allowing for multiple interacting electronic bands,
originally put forward by Suhl-Mathias-Walker [542] and Moskalenko [457] shortly after the original
BCS model. As a result, we prove that the critical temperature of a multi-band superconductor
can only be increased by inter-band coupling, irrespective of its attractive or repulsive nature and
its strength. Moreover, for weak coupling and weaker inter-band coupling, we show the following:
The dependence of the increase in critical temperature on the inter-band coupling is (1) linear, if
there are two or more equally strongly superconducting bands, or (2) quadratic, if there is only one
dominating band.

Main Ideas of the Proofs

The central ingredient for proving asymptotic formulas for Tc and Ξ is the spectral theoretic
characterization of these quantities and their translation via the Birman-Schwinger principle.

For a large class of interaction potentials, the gap equation (21) is equivalent to the operator K∆
T +V

having zero as its lowest eigenvalue with eigenvector α given as the minimizer of the BCS functional.
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By the Birman-Schwinger principle, this is equivalent to

BT,∆ ∶= sgnV ∣V ∣1/2 1
K∆
T

∣V ∣1/2 (26)

having lowest eigenvalue −1 with eigenvector sgnV ∣V ∣1/2α. This step greatly simplifies the analysis,
since, in contrast to K∆

T + V , we have that BT,∆ is a compact operator.

In order to study the Birman-Schwinger operator, we introduce the integral

m(T,∆) ∶= 1
∣Sd−1∣ ∫∣p∣≤

√
2µ

1
K∆
T (p)

dp (27)

and decompose BT,∆ into a dominant first term, and an error term:

BT,∆ =m(T,∆) sgnV ∣V ∣1/2F†
µFµ∣V ∣

1/2
+ sgnV ∣V ∣1/2MT,∆∣V ∣

1/2 , (28)

where Fµ ∶ L
1(Rd) → L2(Sd−1) is a rescaled Fourier transform restricted to the unit sphere, and

MT,∆ is such that (28) holds. Note that the decomposition (28) effectively approximated (K∆
T )
−1

in (26) by a multiple of F†
µFµ, concentrating around the Fermi sphere {p2 = µ}, where (K∆

T )
−1 is

large (if T and ∆ are small). Finally, by simple manipulations, using that sgnV ∣V ∣1/2MT,∆∣V ∣
1/2 is

small and that BT,∆ has lowest eigenvalue −1, we find

m(T,∆) = − [inf spec(Fµ∣V ∣1/2
1

1 + sgnV ∣V ∣1/2MT,∆∣V ∣1/2
sgnV ∣V ∣1/2F†

µ)]

−1
. (29)

Observe that (29) is a highly implicit equation for T and ∆, as they (a) appear both on the lhs. and
rhs. of (29), and (b) are coupled through the integral (27). In general, there are thus no explicit
formulas available. If, however, superconductivity is weak, i.e. ∆ and Tc and thus T are small, one
can safely approximate MT,∆ ≈M0,0, thereby solving problem (a).

To overcome problem (b) as well, we note that, in the "extreme cases" (T = 0,∆) and (Tc,∆ = 0),
the integral (27) can be (asymptotically) computed explicitly, yielding

m(T = 0,∆) ≈ µd/2−1
(log µ

Ξ(T = 0)
+ log(2cd))

m(Tc,∆ = 0) ≈ µd/2−1
(log µ

Tc
+ log eγ

π
+ log(2cd))

for some explicit dimension dependent constant cd > 0. We thus have that

m(T = 0,∆) ≈ − 1
eµ

and m(Tc,∆ = 0) ≈ − 1
eµ

with eµ ∶= inf spec(FµV F†
µ) < 0 (30)

which yield asymptotic formulas as in (24)–(25) (cf. Chapters 10–11).

For temperatures T ≠ 0 (see Chapter 13) one has to treat the log-divergences of the integral (27)
more carefully. The idea is to consider the difference

m(T,∆) −m(Tc,∆ = 0) ≈ 0

and prove that this relation is essentially the defining equation for the universal function fBCS. This
approach works for temperatures not too close to the critical one, T ∈ [0, (1 − ε)Tc].

In addition, for temperatures very close to Tc, we employ the relation of BCS theory to GL theory,
showing that α minimizing (18) can very well be approximated by the minimizer of the much simpler
GL functional.
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Conclusion
To summarize, the main contributions of Part II of this thesis are as follows:

(1) We establish asymptotic formulas for Tc and Ξ(T = 0), and hence universality, for high density
in dimension d = 3 (Chapters 10–11), and in the weak coupling limit for d = 1, 2 (Chapter 12).

(2) We prove energy gap universality for all temperatures 0 ≤ T ≤ Tc (Chapter 13), refining previous
arguments for universality at zero temperature, and employing GL theory.

(3) We extend the analysis of BCS theory to multi-band systems, and study the effect of inter-band
interactions on the critical temperature (Chapter 14).

Part III: Quantum Lattice Systems
In the third part of this thesis, we study many-body quantum lattice systems with short-range
interactions. For concreteness, we consider a macroscopic Λ ⊆ Zd. To each x ∈ Λ, we attach a local
Hilbert space Hx, which, for simplicity, we assume to be of uniformly bounded dimension and can be
thought of to model local spin degrees of freedom. For a (finite) subset X ⊂ Λ, we define the Hilbert
space HX ∶=⊗x∈XHx and the algebra of local observables AX ∶= B(HX) as the bounded operators
on the Hilbert space HX . Note that one can naturally identify AX′ ∋ A ↔ A ⊗ 1X∖X′ ∈ AX for
X ′ ⊂X and one thus has the (formal) embedding AX′ ⊂ AX .

In the above setting, we consider self-adjoint Hamiltonians H = HΛ that are sum-of-local-terms
(SLT) operators

H = ∑
X⊂Λ

Φ(X) with Φ(X) ∈ AX , (31)

where ∥Φ(X)∥ decays rapidly as X grows. One instance is the situation of the interaction Φ being
of finite range, meaning that there exists R0 > 0 such that Φ(X) = 0 whenever diam(X) > R0. A
prototypical example for an SLT operator is the nearest neighbor Heisenberg model with coupling
J ∈R and in a magnetic field of strength h ∈R in 3-direction, i.e.

H = J ∑
x,y∈Λ∶
d(x,y)=1

(σ1
xσ

1
y + σ

2
xσ

2
y + σ

3
xσ

3
y) − h∑

x∈Λ
σ3
x

where σiz is the i-th Pauli matrix acting only on site z ∈ Λ (on all the other sites it acts as the
identity). We remark that there is a similar setup for fermionic systems, but in this introduction we
restrict to quantum spin systems for simplicity of the presentation.

The overarching goal of Part III of this thesis is to study the effect of a (localized) perturbation V
on the ground state of a reference Hamiltonian H0. We do this in two flavors: On the one hand, we
aim to prove stability of ground states far away from arbitrarily strong, but localized perturbations.
This is an instance of a strong version of the local-perturbations-perturb-locally (LPPL) principle
[39, 207, 35], studied in Chapter 15. On the other hand, our objective is the justification of (linear)
response theory and the Kubo formula (see Chapters 16–17), which we henceforth shall focus on.

In a nutshell, linear response theory provides an answer to the following question: Given a Hamiltonian
H0 with equilibrium state ρ0, what is the response of the system to a small static perturbation ϵV ?
Or, more formally, denoting ⟨A⟩ρ ∶= tr(ρA), what is the change

⟨A⟩ρϵ − ⟨A⟩ρ0 = ϵ σA + o(ϵ) (32)

in expectation values of an observable A induced by the perturbation ϵV , at least to leading order in
the strength 0 < ϵ≪ 1? In (32), ρϵ denotes the state, which is reached after the perturbation has
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been slowly (adiabatically) turned on, and σA is the so-called linear response coefficient, which is
usually computed by the Kubo formula.

Despite the simplicity and empirical success of response theory and the Kubo formula, the problem
of justifying it so far has escaped rigorous treatment. Clearly, the central problem lies in determining
the state ρϵ. Typically, as prominently advertised by Simon in 1984 in his "Fifteen problems in
mathematical physics" [526], the state ρϵ no longer is a non-equilibrium state, and hence the powerful
machinery of equilibrium statistical mechanics is not available.

Put briefly, the problem of justifying response theory thus relies on showing that the equilibrium
state ρ0 is driven into a non-equilibrium state ρϵ ≈ ρ0. Note that this clearly goes beyond standard
perturbation theory, since the ϵV acts over a long time, and thus an adiabatic theorem is needed.
However, due to the many-body nature of the problem, the justification of reponse theory also goes
beyond the standard adiabatic theorem. In fact, due to the orthogonality catastrophe,8 one cannot
expect that ρ0 and ρϵ are close to each other in any strong topology for macroscopic Λ. Instead, the
correct way to measure the distance between ρ0 and ρϵ is by considering expectation values of local
observables, allowing to provide error estimates which hold uniformly in the system size.

A first breakthrough in this direction was achieved by Bachmann-de Roeck-Fraas in [36]. On a high
level, their main technical idea is to exploit locality estimates in the form of Lieb-Robinson bounds
(LRBs) [419], allowing a locality preserving treatment of the problem. In fact, standard LRBs roughly
take the following form: Consider two observables A ∈ AX , B ∈ AY with disjoint support X ∩Y = ∅,
ensuring that, in particular, [A,B] = 0. Then, for an SLT Hamiltonian H, it holds that

∥[A(t),B]∥ ≲ ∥A∥ ∥B∥ evLR∣t∣−dist(X,Y ) with A(t) = e−itHAeitH (33)

for some constant vLR > 0. This means that, as long as ∣t∣≪ dist(X,Y )/vLR, the support of A(t)
has not reached Y , capturing an effective "light cone" in lattice systems with short-range interactions.

The immense power of LRBs (33) was first realized by Hastings and Wen [326], when proving locality
of the generator of the spectral flow (see also [39]). Since then, a huge line of research exploiting
and proving locality in quantum lattice systems has emerged (see [461, 462, 144] for recent reviews).
In regard of the problem of proving response theory, subsequent to [36], Monaco and Teufel [452]
extended the result to fermionic lattice systems.

A key assumption in all the above works [326, 39, 36, 452] is the existence of a spectral gap of H0
separating ρ0 from the rest of the spectrum. Moreover, as a crucial limitation, the gap is required to
remain open for Hϵ =H0 + ϵV . This apparent restriction in the range of applicability of a many-body
adiabatic theorem has then been resolved by Teufel in [556]. Jointly with him, we extended the
result to the thermodynamic limit [342] (requiring a spectral gap uniformly in the system size) and
proved the adiabatic theorem directly in the thermodynamic limit [341], assuming a gap only for the
associated GNS Hamiltonian (see [454] for a construction of the spectral flow in this setting).

We stress that in all these works a global spectral gap assumption is crucial for proving adiabatic
and response theory for local observables. In some sense, the gap "protects" the separated state
from far-away influences and thus allows a local treatment around the observable of interest. The
foremost goal of Part III is thus to bridge the (conceptual) gap between the local nature of the
problem (involving locality preserving estimates, local observables etc.), and the assumption of a
global spectral gap by introducing a local dynamical gap condition (see (35) below).

Summary of Results
We now briefly summarize our results on quantum lattice systems contained in this thesis; afterwards
we provide a concise summary of the main ideas for (some of) their proofs.

8This means that small errors for single particle wave functions deteriorate when forming a many-particle wave
function by taking a large tensor product.
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Chapter 15: Local stability of ground states in locally gapped and weakly interacting quantum
spin systems [343] We consider weakly interacting quantum spin systems with uniformly gapped
on-site terms and prove that localized but otherwise arbitrary perturbations change the ground state
of such a system only locally, even if the spectral gap gets closed. We call this a strong version of
the LPPL principle and our result is the first of this kind (followed upon by [35]). In fact, previously,
the LPPL principle has already been established in much more general gapped systems, however only
for perturbations that do not close the spectral gap of the Hamiltonian (and are thus not strong).
We also extend our result to Hamiltonians having the appropriate structure of gapped on-site terms
and weak interactions only locally in space, and hence some sort of local gap.

Although, technically, our results are corollaries of a theorem of Yarotsky [591], the paradigm
of a locally gapped Hamiltonian, insensitive to far-away perturbations, has important physical
consequences (cf. Chapter 17).

Chapter 16: On adiabatic theory for extended fermionic lattice systems [346] We review
recent results on adiabatic theory for ground states of extended gapped fermionic lattice systems under
several different assumptions. More precisely, in Chapter 16, we present generalized super-adiabatic
theorems for extended but finite as well as infinite systems, assuming either a uniform gap or a gap
in the bulk above the unperturbed ground state (cf. [556, 342, 341]). The common idea underlying
all these results is the construction of so-called non-equilibrium almost stationary states (NEASSs)
via locally generated unitaries close to the identity. This approach is known as space-time adiabatic
perturbation theory [484], or, in very similar contexts, as Schrieffer-Wolff transformations [595, 596]
or Lie-Schwinger block diagonalization [273].

The principal goal of Chapter 16 is to provide an overview of the above mentioned adiabatic theorems
and briefly outline the main ideas and techniques required in their proofs. Several of these methods
presented in Chapter 16 are then modified upon and advanced for the proofs in Chapter 17.

Chapter 17: Response theory for locally gapped systems [347] In this main chapter of Part III,
we introduce a notion of a local gap and prove the validity of response theory and the Kubo formula
for localized perturbations ϵV . As mentioned above, on a high level, our result shows that the usual
spectral gap condition, concerning the interacting many-body system as a whole, is not a necessary
condition for understanding local properties of that system.

More concretely, consider an equilibrium state ρ0 of a Hamiltonian H0. We say that ρ0 is locally
dynamically gapped in a region Λgap ⊂ Λ, whenever the Liouvillian LH0[⋅] ∶= −i[H0, ⋅] associated
with H0 is almost invertible on local observables supported well inside Λgap when tested against the
state ρ0. In order to put our local dynamical gap condition into context, we provide some alternative
notions of a local gap and discuss their relations.

Main Ideas of the Proofs
The role of the gap for the construction of NEASSs is that the Liouvillian LH0 can be locally inverted.
That is, there exists a locality preserving map9 IH0 , called the quasi-local inverse of the Liouvillian,
such that

[LH0 ○ IH0[A] −A,ρ0] = 0 ∀A ∈ AΛ . (34)

The quasi-local inverse of the Liouvillian is given as a weighted integral of the dynamics generated
by H0, and so fast decay of the weight function (in time) and Lieb-Robinson bounds as in (33)
guarantee the locality preserving nature of IH0 .

As mentioned above, the basic idea underlying the proof of the many-body adiabatic theorems
and thus response theory, is that the equilibrium state ρ0 is driven into a non-equilibrium state

9Surely, IH0 depends on the gap size, but we suppress this dependence for simplicity of the presentation.
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Πϵ = e−iϵSρ0eiϵS . This state, however, will be designed in such a way, that it is almost invariant
under the dynamics generated by Hϵ =H0 + ϵV , thus having engineered a NEASS (non-equilibrium
almost-stationary state). In order to achieve this, the generator S of the small unitary transformation
relating ρ0 and Πϵ has to be chosen in an appropriate way, in particular preserving locality as an SLT
operator.

Indeed, to ensure that [Hϵ,Πϵ] = O(ϵ
2) (i.e. invariance up to quadratic terms), we compute

e−iϵS
(H0 + ϵV )eiϵS

=H0 + ϵ (V −LH0[S]) +O(ϵ
2
) .

From this, we immediately see that choosing S ∶= IH0[V ] (to leading order), we have created an
SLT generator S yielding [Hϵ,Πϵ] = O(ϵ

2) by means of (34).

Λgap

Λpert

Λ

≫∣ log ϵ∣1/c

(d) Response theory holds if dist(Λpert,Λ ∖Λgap)≫ ∣ log ϵ∣1/c

Our approach in Chapter 17 is to modify the exact invertibility of the Liouvillian (34), which is in fact
equivalent to the usual gap condition, in a local manner and use it as an assumption. In fact, we say
that (H0, ρ0) is locally dynamically gapped in Λgap ⊂ Λ w.r.t. constants C, c, ℓ > 0 iff it holds that

∣⟨[LH0 ○ IH0[A] −A,B]⟩ρ0
∣ ≤ C∥A∥ ∥B∥ diam(X)ℓ diam(Y )ℓ×

× exp (−max {dist(X,Λ ∖Λgap
),dist(Y,Λ ∖Λgap

)}
c
)

(35)

for all observables A ∈ AX and B ∈ AY . Under this assumption, by controlling locality properties of
the NEASS construction, we show that response theory holds to any order, whenever the perturbation
ϵV acts in a region Λpert which is further than ∣ log ϵ∣1/c away from the non-gapped region Λ ∖Λgap;
cf. Figure (d) above. The linear response coefficient in (32) is given by the Kubo formula, i.e.

σA = −i⟨[IH0[V ],A]⟩ρ0 .

By using techniques from [35], we will show that the condition (35) is satisfied for ground states of
locally (in Λ ∖Λgap) but arbitrarily strongly perturbed Hamiltonians of certain Hamiltonians, having
a globally gapped ground state and satisfying local topological quantum order (LTQO).

Conclusion

To summarize, the main contributions of Part III of this thesis are as follows:

(1) We provide the first proof of a strong version of the LPPL principle for weakly interacting
quantum spin systems with uniformly gapped on-site terms (Chapter 15).
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(2) We systematically review and provide an exposition of relevant techniques and results required
for proving adiabatic theorems in extended fermionic lattice systems (Chapter 16).

(3) We propose a notion of a local gap, the local dynamical gap condition (35), prove response
theory in that setting, and provide non-trivial examples satisfying (35) (see Chapter 17).

Appendix: Miscellaneous Results
In the appendix, we discuss two more (sets of) problems, which cannot be fit into the three main
parts of the thesis.

A Liouville metrics on the torus T2 has line element

ds2 ∶= (f(x) + g(y)) (dx2
+ dy2) with (x, y) ∈ T2 . (36)

It is well known (by constructing an integral of motion), that the geodesic flow associated to (36)
is integrable. In Appendix A, we prove that integrable conformal perturbations by trigonometric
polynomials are again Liouville metrics. That is, the class of Liouville metrics is deformationally rigid
under a fairly wide class of integrable conformal perturbations, similarly to rigidity results in the
context of the Birkhoff conjecture [85, 33, 362, 26]. The proof uses tools from complex analysis,
dynamical systems, and Fourier analysis.

In Appendices B–C, we use interior-boundary conditions (IBCs) [558, 557, 389] as a method to
rigorously implement particle creation and annihilation in relativistic (toy) models. More precisely, in
Appendix B, we study Bohmian trajectories of (special) relativistic particles, described by the Dirac
equation with a sufficiently strong Coulomb potential. In Appendix C, we study a general relativistic
model, where the particle is moving in a super-critical Reissner-Nordström space time. We rigorously
construct a Hamiltonian with particle creation and provide asymptotics for the Bohmian trajectories.
The proofs use tools from functional analysis, in particular the theory of self-adjoint extension.
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Chapter1
Optimal lower bound on eigenvector
overlaps for non-Hermitian random

matrices

This chapter contains (the extended arXiv:2301.03549 version of) the paper [154]:

G. Cipolloni, L. Erdős, J. Henheik, and D. Schröder. Optimal Lower Bound on Eigenvector Overlaps
for non-Hermitian Random Matrices. J. Funct. Anal., 287(4), 2024

Abstract. We consider large non-Hermitian N ×N matrices with an additive independent, identically
distributed (i.i.d.) noise for each matrix elements. We show that already a small noise of variance
1/N completely thermalises the bulk singular vectors, in particular they satisfy the strong form of
Quantum Unique Ergodicity (QUE) with an optimal speed of convergence. In physics terms, we
thus extend the Eigenstate Thermalisation Hypothesis, formulated originally by Deutsch [221] and
proven for Wigner matrices in [165], to arbitrary non-Hermitian matrices with an i.i.d. noise. As
a consequence we obtain an optimal lower bound on the diagonal overlaps of the corresponding
non-Hermitian eigenvectors. This quantity, also known as the (square of the) eigenvalue condition
number measuring the sensitivity of the eigenvalue to small perturbations, has notoriously escaped
rigorous treatment beyond the explicitly computable Ginibre ensemble apart from the very recent
upper bounds given in [44] and [357]. As a key tool, we develop a new systematic decomposition of
general observables in random matrix theory that governs the size of products of resolvents with
deterministic matrices in between.
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1.1 Introduction
Traditional random matrix theory focuses on statistics of eigenvalues, where spectacular universality
phenomena arise: the local spectral statistics tend to become universal as the dimension goes
to infinity with new distributions arising; most importantly the celebrated Wigner-Dyson-Mehta
bulk statistics and the Tracy-Widom edge statistics in the Hermitian spectrum and the Ginibre
statistics in the non-Hermitian spectrum. More recently eigenvectors of Hermitian ensembles received
considerable attention. They also become universal, albeit in a more conventional way: they tend to
be entirely randomised, i.e. Haar distributed [112, 115, 435, 62, 167, 169, 61]. In this paper we study
two related questions: how do eigenvectors and singular vectors of a typical non-Hermitian random
matrix in high dimension look like? To answer them, we introduce a new decomposition of general
observables that identifies correlations of the Hermitised resolvents as entire matrices at different
spectral parameters. This captures correlations of the singular vectors well beyond correlations of
traces of resolvents that govern only the singular values. Somewhat surprisingly, we are then able to
transfer information on singular vectors to the non-Hermitian eigenvectors.

1.1.1 Non-Hermitian eigenvector overlaps
To be specific, we consider non-Hermitian N ×N matrices of the form Λ+X, where Λ is an arbitrary
deterministic matrix and X is random. We assume that the norm of Λ is bounded independently
of N and X has independent, identically distributed (i.i.d.) centred matrix elements with variance
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E ∣xij ∣2 = 1
N with some further moment conditions. This normalisation guarantees that ∥X∥ ≤ 2+o(1)

and the spectrum of X lies essentially in the unit disk (circular law) with very high probability, hence
Λ and X remain of comparable size as N increases. Note that X perturbs each matrix elements of Λ
by a small random amount of order 1/

√
N , however the spectra of Λ and Λ +X substantially differ.

The analysis of non-Hermitian random matrices is typically much harder than that of the Hermitian
ones. Non-Hermitian matrices have two different sets of spectral data: eigenvalues/vectors and
singular values/vectors which cannot be directly related. In particular, the study of singular vectors
and eigenvectors substantially differ: while singular vectors can still be understood from a Hermitian
theory, there is no such route for eigenvectors. Unlike for non-Hermitian eigenvalues, where Girko’s
formula translates their linear statistics into a Hermitian problem, no similar "Hermitisation" relation
is known for non-Hermitian eigenvectors. Furthermore, left and right eigenvectors differ and their
relation is very delicate. Assuming that each eigenvalue µi of Λ + X is simple, we denote the
corresponding left and right eigenvectors by li, ri, i.e.

(Λ +X)ri = µiri , lti(Λ +X) = µilti ,

under the standard bi-orthogonality relation ⟨l̄j ,ri⟩ = ltjri = δi,j . Note that this relation leaves a
large freedom in choosing the normalisation of each eigenvector. The key invariant quantity is the
eigenvector overlap

Oij ∶= ⟨rj ,ri⟩⟨lj , li⟩ ,

which emerges in many problems where non-Hermitian eigenvectors are concerned, see e.g. [18, 140,
141, 57, 107, 274]. Two prominent examples are

(i) in numerical linear algebra; where
√
Oii is the eigenvalue condition number determining how

fast µi moves under small perturbation in the worst case using the formula

√
Oii = lim

t→0
sup{∣µi(Λ +X + tE) − µi(Λ +X)

t
∣ ∶ E ∈CN×N , ∥E∥ = 1} (1.1.1)

(see, e.g. [44]);

(ii) in the theory of the Dyson Brownian motion for non-Hermitian matrices; where Oij gives the
correlation of the martingale increments for the stochastic evolution of the eigenvalues µi and
µj as the matrix evolves by the natural Ornstein-Uhlenbeck flow (see [299], [107, Appendix
A]).

The main result of this paper is an almost optimal lower bound of order N on the diagonal overlap Oii,
with very high probability. In the context of numerical linear algebra this means that non-Hermitian
eigenvalues of Λ+X still move at a speed of order

√
N under the "worst" perturbation E in (1.1.1),

despite having added a random smoothing component X to Λ. Note that in numerics one typically
views the random smoothing as a tool to reduce the overlap of Λ in order to enhance the stability
of its eigenvalues; our result shows a natural limitation for such reduction. It still does not exclude
the possibility that a very specially chosen X reduces the eigenvalue condition numbers much more
than a typical random one does, in particular it does not disprove the Davidson-Herrero-Salinas
conjecture (see [199, Problem 2.11]). However, our N -dependent lower bound on Oii shows that a
naive randomisation argument is not sufficient for resolving this conjecture. Complementary upper
bounds on Oii have recently been proven in [44] and [357]. These hold only in expectation sense, as
Oii has a fat-tail, and they are off by a factor N . Very recently this factor was removed in [240].
We remark, however, that N is the most relevant parameter of the problem only from our random
matrix theory point of view. Works motivated by numerical analysis, such as [44, 357] and references
therein, often focus on tracking the γ-dependence for the problem Λ + γX in the small noise regime
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γ ≪ 1 in order to reduce the effect of the random perturbation. In this setup the non-optimality of
the N -power may be considered less relevant.1

In the context of the Dyson Brownian motion, our lower bound on Oii implies a diffusive lower
bound on the eigenvalues of the Ornstein-Uhlenbeck (OU) matrix flow, generalizing the analogous
result of Bourgade and Dubach [107, Corollary 1.6] from Ginibre ensemble to arbitrary i.i.d. ensemble
(see (1.2.14) later).

1.1.2 Thermalisation of singular vectors

The key step to our lower bound on Oii is a thermalisation result on the singular vectors that is of
independent interest. Namely, we show that singular vectors of Λ +X are fully randomised in the
large N limit in the sense that their quadratic forms with arbitrary test matrices have a deterministic
limit with an optimal N−1/2 speed of convergence. This holds with very high probability which
enables us to make such statement for matrices of the form (Λ − z) +X simultaneously for any shift
parameter z, even for random ones. We will use this for z = µ, an eigenvalue of Λ +X. This allows
us to gain access to eigenvectors of Λ +X, by noticing that singular vectors and eigenvectors are
unrelated in general with an obvious exception: if µ is an eigenvalue of Λ+X, then any vector in the
kernel of Λ +X − µ is an eigenvector of Λ +X with eigenvalue µ, and a singular vector of Λ +X − µ
with singular value 0. Hence high probability statements for singular vectors can be converted into
similar statements for eigenvectors – this key idea may be viewed as the eigenvector version of the
transfer principle between eigenvalues and singular values encoded in Girko’s formula.

Our thermalisation result for singular vectors may be viewed as the non-Hermitian analogue of the
Quantum Unique Ergodicity (QUE) for Hermitian Wigner matrices proven in [165]. We now briefly
explain the QUE phenomenon and its physics background in the simplest Hermitian context before
we consider the singular vectors of Λ +X. In fact, via a standard Hermitisation procedure we will
turn the singular vector problem to a Hermitian eigenvector problem.

For Hermitian random matrices H, that can be considered as the Hamilton operator of a disordered
quantum system, a major motivation comes from physics, where the randomisation of the eigenvectors
is interpreted as a thermalisation effect. The Eigenstate Thermalisation Hypothesis (ETH) by
Deutsch [221] and Srednicki [535] (see also [233, 222]) asserts that any deterministic Hermitian
matrix A (observable), becomes essentially diagonal in the eigenbasis of a "sufficiently chaotic"
Hamiltonian, where chaos may come from an additional randomness or from the ergodicity of the
underlying classical dynamics. In other words,

⟨ui,Auj⟩ − δij⟨⟨A⟩⟩i → 0 , as N →∞ , (1.1.2)

where {ui} is a orthonormal eigenbasis of H and the deterministic "averaged" coefficient ⟨⟨A⟩⟩i is to
be computed from the statistics of H.

In the mathematics literature the same problem is known as the Quantum (Unique) Ergodicity,
originally formulated for the Laplace-Beltrami operator on surfaces with ergodic geodesic flow,
see [528, 178, 600], on regular graphs [24] and on special arithmetic surfaces [510, 123, 424, 533].
In [165] we proved QUE in the strongest form with an optimal speed of convergence for the
eigenvectors of Wigner matrices that, by E. Wigner’s vision, can be viewed as the "most random"
Hamiltonian. In this case, the diagonal limit ⟨⟨A⟩⟩i in (1.1.2) is independent of i and given by the
normalised trace ⟨A⟩ ∶= 1

N TrA. In fact, in subsequent papers [167, 169] (see also [62]) even the
normal fluctuation of

√
N[⟨ui,Aui⟩ − ⟨A⟩] was proven, followed by the proof of joint Gaussianity

of finite many overlaps in [61]. Previously QUE results were proven for rank one observables
1As long as γ is N independent, one may set γ = 1 by a simple rescaling so we refrain from carrying this extra

factor in the current paper. We remark that our methods would allow to trace the polynomial γ-dependence in all our
main estimates as well, albeit not with an optimal power.
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(see [368, 552] under four moment matching and [112] in general) and finite rank observables [435],
see also [59] for deformed Wigner matrices and [115] for band matrices. The proofs crucially used
that H is Hermitian, heavily relying on sophisticated Hermitian techniques (such as local laws and
Dyson Brownian Motion) developed in the last decade for eigenvalue universality questions.

Back to our non-Hermitian context, we consider the singular vectors {ui,vi}Ni=1 of Λ +X,

(X +Λ)(X +Λ)∗ui = σ2
i ui , (X +Λ)∗(X +Λ)vi = σ2

i vi ,

belonging to the singular value σi. We view them as the two N -dimensional components of the
eigenvectors wi = (ui,vi) of the 2N -dimensional Hermitisation of Λ +X, defined as

H =HΛ ∶=W + Λ̂ , W ∶=

⎛
⎜
⎜
⎝

0 X

X∗ 0

⎞
⎟
⎟
⎠

, Λ̂ ∶=
⎛
⎜
⎜
⎝

0 Λ

Λ∗ 0

⎞
⎟
⎟
⎠

. (1.1.3)

In particular, from the overlaps ⟨wi,Awj⟩ of eigenvectors for the Hermitised problem with a general
(2N) × (2N) matrix A one may read off all the singular vector overlaps of the form ⟨ui,Buj⟩,
⟨vi,Bvj⟩ and ⟨ui,Bvj⟩ with any N × N matrix B. Therefore our goal is to show the general
thermalisation phenomenon, the convergence of ⟨wi,Awj⟩ (cf. (1.1.2)), for the Hermitised matrix
HΛ thus generalizing the ETH proven in [165] beyond Wigner matrices and with an additional
arbitrary matrix Λ. Unlike in the Wigner case, the limit ⟨⟨A⟩⟩i genuinely depends on the index i
and part of the task is to determine its precise form. Note that due to the large zero blocks, W
has about half as many random degrees of freedom as a Wigner matrix of the same dimension has,
moreover the block structure gives rise to potential instabilities, thus the ETH for HΛ is considerably
more involved than for Wigner matrices. In the next section we explain the main new method of this
paper that systematically handles all these instabilities.

1.1.3 Structural decomposition of observables

We introduce a new concept for splitting general observables into "regular" and "singular" components;
where the singular component gives the leading contribution and the regular component is estimated.
In the case of Wigner matrices H in [165, 172] we used the decomposition A = ⟨A⟩ + Å, where the
traceless part of A, Å ∶= A − ⟨A⟩, is the regular component and the projection2 of A onto the one
dimensional space spanned by the identity matrix is the singular component. This gave rise to the
following decomposition of resolvent G = G(w) = (H −w)−1 for any w ∈C ∖R:

⟨GA⟩ =m⟨A⟩ + ⟨A⟩⟨G −m⟩ + ⟨GÅ⟩, (1.1.4)

where m = m(w) is the Stieltjes transform of the semicircle law. The second term in (1.1.4) is
asymptotically Gaussian of size ⟨G −m⟩ ∼ (Nη)−1 [329] and the last term is also Gaussian, but
of much smaller size ⟨GÅ⟩ ∼ ⟨ÅÅ∗⟩1/2/(Nη1/2) in the interesting regime of small η ∶= ∣Imw∣≪ 1
[172].

Similar decomposition governs the traces of longer resolvent chains of Wigner matrices, for example

⟨GAG∗B⟩ = ⟨GG∗⟩ =
1
η
⟨ImG⟩ ∼

1
η
≫ 1

if A = B = I, i.e. both observable matrices are purely singular, while for regular (and bounded)
observables A = Å, B = B̊ we have

⟨GAG∗B⟩ ∼ 1. (1.1.5)
2We equip the space of matrices with the usual normalised Hilbert-Schmidt scalar product, ⟨A,B⟩ ∶= 1

N
TrA∗B =

⟨A∗B⟩.
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Both examples indicate the √η-rule (see (1.3.16) and Remark 1.4.6 later), informally asserting that
each regular observable renders the size of a resolvent chain smaller by a factor √η than its singular
counterpart. In [168, 169] we obtained the deterministic leading terms and optimal error estimates
on the fluctuation for resolvent chains of arbitrary length

⟨G(w1)A1G(w2)A2 . . .⟩ (1.1.6)

with arbitrary observables in between. The answer followed the √η-rule hence it heavily depended
on the Ai = ⟨Ai⟩ + Åi decomposition for each observable.

In particular, in order to estimate ⟨ui,Auj⟩ − δij⟨A⟩ = ⟨ui, Åuj⟩ for ETH in (1.1.2), we had

N ∣⟨ui, Åuj⟩∣
2
≲ ⟨ImG(w1)ÅImG(w2)Å⟩ ≲ 1 ,

where we first used spectral decomposition of both G’s and then used a version of (1.1.5). Here
the spectral parameters wk = ek + iη are chosen such that e1 and e2 be close to the eigenvalues
corresponding to ui and uj , respectively, and η ∼ N−1 in order to resolve the spectrum on the fine
scale of the individual eigenvalues.3

The key point in all these analyses for Wigner matrices was that the regular/singular concept was
independent of the spectral parameter: the same universal decomposition into tracial and traceless
parts worked in every instance along the proofs. One consequence is the i-independence of the
limiting overlap ⟨⟨A⟩⟩i ∶= ⟨A⟩ in (1.1.2).4

For more complicated ensembles, like HΛ in (1.1.3), especially if an arbitrary matrix Λ is involved, the
correct decomposition depends on the location in the spectrum of H where we work. To guess it, first
we recall the single resolvent local law (Theorem 1.2.6) for the resolvent G = GΛ(w) = (HΛ −w)−1,
asserting that ⟨GA⟩ ≈ ⟨MA⟩, where M = MΛ(w) solves a nonlinear deterministic equation, the
Matrix Dyson Equation (MDE), see (1.2.20) later. Then a heuristic calculation (see Appendix 1.A.1)
shows that for w = e + iη ∈C+ we have

E ∣⟨(G −M)A⟩∣2 ≈
∣⟨ImMA⟩∣

2

(Nη)2
+
∣⟨ImMAE−⟩∣

2

N2η(∣e∣ + η)
+O(

1
N2η
) , E− ∶=

⎛
⎜
⎜
⎝

1 0

0 −1

⎞
⎟
⎟
⎠

, (1.1.7)

indicating that the singular component of A is two dimensional, depends on w, and for any A
orthogonal to the two singular directions ImM and E−ImM the size of ⟨(G −M)A⟩ is smaller
by a factor √η. The first singular direction is always present. The second singular direction is a
consequence of the block structure of H and it is manifested only for w near the imaginary axis. For
energies ∣e∣ ∼ 1, only the first singular direction, namely the one involving ImM plays a role.

What about longer chains (1.1.6)? Each matrix Ai is sandwiched between two resolvents with
different spectral parameters wi, wi+1. We find that the correct decomposition of any A between
two resolvents in a chain . . .G(w)AG(w′) . . . depends only on w,w′ and it has the form

A = ⟨V+,A⟩U+ + ⟨V−,A⟩U− + Å , V± = V
w,w′

± , Å = Å
w,w′

, (1.1.8)

where the first two terms form the singular component of A, and Å, defined by this equation, is the
regular component. We will establish that both V+ and V− are the right eigenvectors of a certain
stability operator B acting on C2N×2N that corresponds to the Dyson equation, and U± will be

3Strictly speaking we used η = N−1+ξ with any small ξ > 0, and all estimates held up to an Nξ factor but we ignore
these technicalities in the introduction.

4A quick direct way to see this independence is the special case of Gaussian Wigner matrices (GUE or GOE), where
the eigenvectors are Haar distributed, independently of their eigenvalue.
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explained later. For example, if Imw and Imw′ have opposite signs then V+ is the right eigenvector
of

B[⋅] = 1 −M(w̄)S[⋅]M(w̄′) ,

where S is covariance operator for the matrix W in (1.1.3) (see (1.2.21)). V± with other sign
combinations are defined very similarly (in Appendix 1.A.3 we present all cases). Actually, the special
directions ImM and E−ImM that we found by direct variance calculation in (1.1.7) also emerge
canonically as eigenvectors of a certain stability operator! Similar variance calculation for longer
chains would reveal the same consistency: the variance of the chain (1.1.6) is the smallest if each Ai
is regular with respect to the two neighboring spectral parameters wi,wi+1.

Note that the choice of V± is basically dictated by variance calculations like (1.1.7). However, the
matrices U± in (1.1.8) can still be chosen freely up to their linear independence and the normalisation
requirement ⟨Vσ, Uτ ⟩ = δσ,τ . The latter guarantees that the sum of the singular terms in (1.1.8)
is actually a (non-orthogonal) projection ∣U+⟩⟨V+∣ + ∣U−⟩⟨V−∣ acting on A. Since V± are the right
eigenvectors of a stability operator, one may be tempted to choose U± as certain left eigenvectors
but we did not find this guiding principle helpful. Instead, we use this freedom to simplify the
calculation of the singular terms. Substituting the singular part of A into . . .G(w)AG(w′) . . ., we
need to compute G(w)U±G(w′) and quite pragmatically we choose U± such that the entity could
be applied and thus reduce the length of the chain. Thanks to the spectral symmetry of H =HΛ, for
its resolvent we have E−G(−w)E− = −G(w), and we find that U+ = I, U− = E− do the job, which
accidentally coincide with the left eigenvectors of the stability operator for the special case of i.i.d.
matrices.

In Appendix 1.A.3 we present the canonical choices of V± and U± in a more general situation and
explain at which stage of the proof their correct choice emerges. In our current application only V±
are nontrivial (in particular energy dependent), while U± are very simple. This is due to the fact that
the chain (1.1.6) consists of resolvents of the same operator. In more general problems one may
take resolvents with two different Λ’s in the chain, in which case U± are also nontrivial.

This decomposition scheme is the really novel ingredient of our proofs. Several other tools we use,
such as recursive Dyson equations, hierarchy of master inequalities and reduction inequalities have
been introduced before (especially in our related works on Wigner matrices [165, 172]), but the
dependence of the decomposition on the spectral parameters in the current setup requires quite
different new estimates along the arguments. We informally explain the prototype of such an estimate
at the beginning of Section 1.4.1.

1.1.4 Notations

We define the 2N × 2N matrices E± ∶= E1 ±E2, where

E1 ∶=

⎛
⎜
⎜
⎝

1 0

0 0

⎞
⎟
⎟
⎠

and E2 ∶=

⎛
⎜
⎜
⎝

0 0

0 1

⎞
⎟
⎟
⎠

. (1.1.9)

Each entry of the matrix is understood as a multiple of the N ×N–identity. By ⌈⋅⌉, ⌊⋅⌋ we denote
the upper and lower integer part, respectively, i.e. for x ∈R we define ⌈x⌉ ∶=min{m ∈ Z∶m ≥ x} and
⌊x⌋ ∶=max{m ∈ Z∶m ≤ x}. We denote [k] ∶= {1, ..., k} for k ∈N and ⟨A⟩ ∶= d−1Tr(A), d ∈N, is the
normalised trace of a d × d-matrix. For positive quantities A,B we write A ≲ B resp. A ≳ B and
mean that A ≤ CB resp. A ≥ cB for some N -independent constants c,C > 0. We denote vectors by
bold-faced lower case Roman letters x,y ∈C2N , for some N ∈N, and define

⟨x,y⟩ ∶=∑
i

x̄iyi , Axy ∶= ⟨x,Ay⟩ .
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1. Optimal lower bound on eigenvector overlaps

Matrix entries are indexed by lower case Roman letters a, b, c, ... from the beginning of the alphabet
and unrestricted sums over a, b, c, ... are always understood to be over {1, ...,N,N + 1, ...,2N}.
Analogously, unrestricted sums over lower case Roman letters i, j, k, ... from the middle of the
alphabet are always understood to be over {−N, ...,−1, 1, ...,N}. Finally, the lower case Greek letters
σ and τ as indices indicate a sign, i.e. σ, τ ∈ {+,−}, and unrestricted sums over σ, τ are understood
to be over {+,−}.

We will use the concept of ‘with very high probability’, meaning that any fixed D > 0, the probability
of an N -dependent event is bigger than 1−N−D for all N ≥ N0(D). Also, we will use the convention
that ξ > 0 denotes an arbitrarily small constant, independent of N . Moreover, we introduce the
common notion of stochastic domination (see, e.g., [241]): For two families

X = (X(N)(u) ∣ N ∈N, u ∈ U (N)) and Y = (Y (N)(u) ∣ N ∈N, u ∈ U (N))

of non-negative random variables indexed by N , and possibly a parameter u, then we say that X is
stochastically dominated by Y , if for all ε,D > 0 we have

sup
u∈U(N)

P [X(N)(u) > N ϵY (N)(u)] ≤ N−D (1.1.10)

for large enough N ≥ N0(ϵ,D). In this case we write X ≺ Y . If for some complex family of random
variables we have ∣X ∣ ≺ Y , we also write X = O≺(Y ).
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1.2 Main results
We consider real or complex i.i.d. matrices X , i.e. N ×N matrices whose entries are independent
and identically distributed as xab

d
= N−1/2χ for some real or complex random variable χ satisfying

the following assumptions:

Assumption 1.2.1. We assume that Eχ = 0 and E ∣χ∣2 = 1. Furthermore, we assume the existence
of high moments, i.e., that there exist constants Cp > 0, for any p ∈N, such that

E ∣χ∣p ≤ Cp .

Additionally, in the complex case, we assume that Eχ2 = 0.

For definiteness, in the sequel we perform our entire analysis for the complex case; the real case
being completely analogous and hence omitted.

1.2.1 Non-Hermitian singular vectors and eigenvectors

Fix a deterministic matrix Λ ∈ CN×N , with N -independent norm bound, ∥Λ∥ ≲ 1. Let {σi}i∈[N]
be the singular values of X + Λ with corresponding (normalised) left- and right-singular vectors
{ui}i∈[N] and {vi}i∈[N], respectively, i.e.

(X +Λ)vi = σiui and (X +Λ)∗ui = σivi . (1.2.1)

All these objects naturally depend on Λ, but we will omit this fact from the notation.
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Let νi, i ∈ [N], be the increasingly ordered singular values of Λ. Define the Hermitisation of Λ as

Λ̂ ∶=
⎛
⎜
⎜
⎝

0 Λ

Λ∗ 0

⎞
⎟
⎟
⎠

. (1.2.2)

Due to its block structure, the spectrum of Λ̂ is symmetric with respect to zero, with eigenvalues
{νi}0≠∣i∣≤N such that ν−i = −νi for all i ∈ [N]. The empirical density of states of Λ̂ is denoted by

µΛ̂ ∶=
1

2N ∑
0≠∣i∣≤N

δνi .

Let µsc be the Wigner semicircle distribution with density ρsc(x) ∶= (2π)−1√[4 − x2]+, where [⋯]+
is the positive part of a real number. Define the free additive convolution

µ = µΛ ∶= µsc ⊞ µΛ̂, (1.2.3)

which is a probability distribution on R. We now briefly recall basic facts about the free convolution
with the semicircle density (see, e.g. the classical paper by P. Biane [81]). Most conveniently µ may
be defined by inverting its Stieltjes transform

m(w) =mΛ
(w) ∶= ∫

R

µ(de)
e −w

, w ∈C ∖R,

where m satisfies the implicit equation

m(w) = ∫
R

µΛ̂(de)
e − (w +m(w))

. (1.2.4)

With the additional constraint Imm(w) ⋅ Imw > 0 this equation has a unique solution that is analytic
away from the real axis with m(w) =m(w). Since µΛ̂ is symmetric to zero with bounded support,
µ is also symmetric with support bounded independently of N . Moreover µ is absolutely continuous
with respect to Lebesgue measure with density denoted by ρ = ρΛ. The density ρ may be obtained5

as the boundary value of Imm at any e on the real line, i.e.

ρ(e) ∶= lim
η↓0

ρ(e + iη) , ρ(w) ∶=
1
π
∣Imm(w)∣ . (1.2.5)

In fact m itself has a continuous extension to the real axis from the upper half plane m(e) ∶=
limη↓0m(e + iη). Proving the existence of these limits is standard from (1.2.4).

Next, for any (small) κ > 0, we define the κ-bulk of the density ρ as

Bκ =BΛ
κ ∶= {x ∈R ∶ ρ(x) ≥ κ1/3

} (1.2.6)

which is symmetric to the origin. Finally, we denote a (modified) ith quantile of the density ρ by γi,
i.e.

i +N

2N
= ∫

γi

−∞
ρ(e)de , ∣i∣ ≤ N , (1.2.7)

and we immediately conclude by symmetry of ρ that γi = −γ−i for every ∣i∣ ≤ N .

Our first main result establishes the thermalisation of singular vectors of X +Λ in the bulk, i.e. for
indices i, j with quantiles γi, γj uniformly in the bulk of the density ρ.

5For orientation of the reader we mention that ρ is the deterministic approximation, the so-called self-consistent
density of states (scDos), for the empirical eigenvalue density of the Hermitisation of X +Λ. This connection will be
explained in the next Section 1.2.2.
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1. Optimal lower bound on eigenvector overlaps

Theorem 1.2.2. (Thermalisation of Singular Vectors)
Fix a bounded Λ ∈ CN×N and κ > 0 independent of N . Let {ui}i∈[N] and {vi}i∈[N] be the
(normalised) left- and right-singular vectors of X + Λ, respectively, where X is an i.i.d. matrix
satisfying Assumption 1.2.1. Then, for any deterministic matrix B ∈ CN×N with ∥B∥ ≲ 1 it holds
that6

max
i,j

RRRRRRRRRRRRRR

⟨ui,Buj⟩ − δj,i
⟨Im [ γj+m(γj)

ΛΛ∗−(γj+m(γj))2 ] B⟩

πρ(γj)

RRRRRRRRRRRRRR

≺
1
√
N
, (1.2.8a)

max
i,j

RRRRRRRRRRRRRR

⟨vi,Bvj⟩ − δj,i
⟨Im [ γj+m(γj)

Λ∗Λ−(γj+m(γj))2 ] B⟩

πρ(γj)

RRRRRRRRRRRRRR

≺
1
√
N
, (1.2.8b)

max
i,j

RRRRRRRRRRRRRR

⟨ui,Bvj⟩ − δj,i
⟨Λ Im [(Λ∗Λ − (γj +m(γj))2)

−1
] B⟩

πρ(γj)

RRRRRRRRRRRRRR

≺
1
√
N
, (1.2.8c)

where the maximum is taken over all i, j ∈ [N] such that the quantiles γi, γj ∈ Bκ are in the κ-bulk
of the density ρ.

The thermalisation of singular vectors will be a simple corollary to the Eigenstate Thermalisation
Hypothesis (ETH) for the Hermitisation HΛ of X +Λ, which is formulated in Theorem 1.2.7 below.
The proof of Theorem 1.2.2 will be given in Section 1.3.

Our second main result concerns the bi-orthonormal left and right eigenvectors {li}i∈[N] and {ri}i∈[N],
respectively, of X +Λ, with corresponding eigenvalues {µi}i∈[N], i.e.

(X +Λ)ri = µiri , lti(X +Λ) = µilti , (1.2.9)

where t denotes the transpose of a vector. More precisely, the following theorem provides a lower
bound on the diagonal part of the overlaps matrix

Oij ∶= ⟨rj ,ri⟩⟨lj , li⟩ , (1.2.10)

defined subject to the standard normalisation

⟨l̄j ,ri⟩ = ltjri = δi,j . (1.2.11)

We restrict our results to eigenvalues µi in the bulk of X +Λ in the following sense.

Definition 1.2.3. We say that z ∈ C is in the bulk of X+Λ if and only if there exists an N -independent
κ > 0 for which

0 ∈BΛ−z
κ = {x ∈R ∶ ρΛ−z

(x) ≥ κ1/3
} .

There is no simple characterisation of the bulk of X +Λ in terms of the spectrum of Λ. However,
taking the imaginary part of (1.2.4) at w = 0 + i0 shows that 0 ∈BΛ−z

κ is equivalent to

1
N

N

∑
i=1

1
νi(Λ − z)2 + κ2/3 ≥ 1 ,

where νi(Λ − z) are the singular values of Λ − z.

Theorem 1.2.4. Consider X + Λ, with Λ being a deterministic matrix as in (1.2.2) and with X
being an i.i.d. matrix satisfying Assumption 1.2.1. Then

Oii ≻ N , (1.2.12)

where the index i ∈ [N] is such that µi is in the bulk of X +Λ.
6The deterministic terms following the Kronecker symbol δj,i in (1.2.8) will be shown to be bounded.

36



1.2. Main results

In the introduction we already mentioned the consequence of this result on the sensitivity of an
eigenvalue of X+Λ under small perturbations. Now we explain its other consequence on the diffusivity
of the Dyson-type eigenvalue dynamics. Let each entry of X = X(t) evolve as an independent
complex OU process,

dXij =
dBij
√
N
−

1
2
Xijdt,

where Bij are independent standard complex Brownian motions and the initial condition X(0)
satisfies Assumption 1.2.1. A direct calculation [107, Proposition A.1] shows that the eigenvalues
µi = µi(t) follow the Dyson-type stochastic dynamics

dµi = dMi −
1
2
µidt, {µi(0)} = SpecX(0), 1 ≤ i ≤ N, (1.2.13)

where the martingales Mi have brackets ⟨Mi,Mj⟩ = 0 and d⟨Mi,Mj⟩t =
1
NOij(t)dt. In particular,

we immediately obtain, for any ϵ > 0 that

E [∣µi(t) − µi(0)∣21(µi(0) ∈Bκ)] ≥ tN
−ϵ (1.2.14)

up to some time t ≤ T (κ), where Bκ denotes the κ-bulk of X(0). For Ginibre initial condition X(0)
(1.2.14) was established in [107, Corollary 1.6], we now generalise it to i.i.d. initial conditions. We
remark that (1.2.13) is similar to its Hermitian counterpart, the standard Dyson Brownian motion
(DBM) on the real line, with some notable differences. In particular, in the latter process the
eigenvalues cannot cross each other, hence they are quite rigid and confined to an interval of size
essential 1/N , so they are not diffusive beyond a time-scale 1/N . Along the evolution (1.2.13)
the non-Hermitian eigenvalues still repel each other (encoded in the typically negative off-diagonal
overlaps, see [107, Theorem 1.3] in the Gaussian case), but they still can pass by each other and not
hindering the diffusive behavior (1.2.14).

Example 1.2.5. The most prominently and extensively studied [283, 40, 555, 113, 114, 597, 554,
164, 171, 166] deformation is Λ = −z with z ∈C, since it plays a key role in Girko’s formula [283]
expressing linear statistics of non-Hermitian eigenvalues of X in terms of the Hermitisation of X − z.
In this case, the self-consistent equation (1.2.4) reduces to the well-known cubic relation

−
1
m
= w +m −

∣z∣2

w +m
.

As a consequence, the deterministic terms in (1.2.8) drastically simplify (e.g., the fractions in (1.2.8a)
and (1.2.8b) are simply replaced by ⟨B⟩) and one also has explicit formulas for the bulk (1.2.6) in
terms of solution of a cubic equation. In particular, for ∣z∣ < 1− ϵκ, the κ-bulk Bκ consists of a single
interval, while for ∣z∣ ≥ 1 − ϵκ it consists of two intervals, where ϵκ ∼ κ2/3. In the former case 0 ∈ Bκ.
Consequently, Theorem 1.2.4 gives the lower bound (1.2.12) for all the diagonal overlaps Oii of
eigenvectors of X whose eigenvalue µi lies in a disk of radius 1 − ϵ with some ϵ > 0 independent of
N .

In the next section we explain the key technical result behind our main theorems, the eigenstate
thermalisation for the Hermitisation of X +Λ.

1.2.2 Eigenstate Thermalisation Hypothesis for the Hermitisation of X +Λ
The key to access the non-Hermitian singular vectors of X +Λ is to study its Hermitisation [283],
which is defined as

H =HΛ ∶=

⎛
⎜
⎜
⎝

0 X +Λ

(X +Λ)∗ 0

⎞
⎟
⎟
⎠

=∶W + Λ̂ , (1.2.15)
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∼ κ2/3 ∼ κ

∼ κ1/3

-2 2
Rew

ρ(Rew)

Figure 1.2.1: Depicted is the density ρ for the deformation Λ = −z with ∣z∣ slightly less than one. On
the horizontal axis, we indicated the two components of the bulk Bκ. The distance between Bκ

and a regular edge scales like κ2/3, while near an (approximate) cusp the distance between the two
components scales linearly (see also (1.2.6) and (1.2.23)).

where Λ̂
∗
= Λ̂ was defined in (1.2.2) and can also be viewed as the matrix of expectation Λ̂ = EHΛ.

We denote by {wi}∣i∣≤N the (normalised) eigenvectors of H and by {λi}∣i∣≤N the corresponding eigen-
values.7 By means of the singular value decomposition in (1.2.1), the eigenvalues and eigenvectors
of H are related to the singular values and singular vectors of X +Λ as follows:

wi = (ui,vi)
t and λi = σi for i ∈ [N] ,

up to a normalisation, since now ∥ui∥2 = ∥vi∥2 = 1
2 . Moreover, the block structure of H induces a

symmetric spectrum around zero, i.e. λ−i = −λi for any i ∈ [N]. This symmetry for the eigenvalues
is also reflected in the eigenvectors, which satisfy w−i = E−wi for any i ∈ [N]. By spectral
decomposition, this immediately shows the chiral symmetry

E−G(w) = −G(−w)E−, with E− =

⎛
⎜
⎜
⎝

1 0

0 −1

⎞
⎟
⎟
⎠

, (1.2.16)

for the resolvent G(w) = GΛ(w) ∶= (HΛ −w)−1, with spectral parameter w ∈C ∖R. We also have
⟨G(w)E−⟩ = 0 for any w since ⟨wi,E−wi⟩ = ∥ui∥

2 − ∥vi∥
2 = 0.

A basic feature of a very large class of random matrices is that their resolvent becomes approximately
deterministic in the large N limit, often even for any spectral parameter with ∣Imw∣ ≥ N−1+ϵ; these
statements are called local laws. In our case the deterministic approximation of the resolvent G(w)
is given by

M(w) =MΛ
(w) ∶=

⎛
⎜
⎜
⎝

M11(w)
ΛM22(w)
w+m(w)

Λ∗M11(w)
w+m(w) M22(w)

⎞
⎟
⎟
⎠

∈C2N×2N , w ∈C ∖R, (1.2.17)

with each block being understood as a matrix in CN×N , where the diagonal entries are defined via

M11(w) ∶=
w +m(w)

ΛΛ∗ − (w +m(w))2
, M22(w) ∶=

w +m(w)

Λ∗Λ − (w +m(w))2
. (1.2.18)

Here we require m(w) = ⟨M(w)⟩, which is an implicit equation for the function m(w). Simple
calculation shows that this implicit equation is exactly (1.2.4). Moreover, one can easily check that
M(w) also satisfies the chiral symmetry (1.2.16), i.e.

E−M(w) = −M(−w)E− . (1.2.19)
7In the definition of the eigenvectors and eigenvalues, we omitted 0 in the set of indices, i.e. ∣i∣ ≤ N really means

i ∈ {−N, ...,−1,1, ...,N}.
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To derive these formulas systematically, we recall that the deterministic approximation to G(w) is
obtained as the unique solution to the matrix Dyson equation (MDE) (introduced first in [332] and
extensively studied in [16, 17, 22]). The MDE corresponding to the random matrix H is given by

−
1

M(w)
= w − Λ̂ + S[M(w)] (1.2.20)

under the constraint ImM(w) ⋅ Imw > 0, where ImM(w) ∶= 1
2i[M(w)− (M(w))

∗]. Here S[⋅], the
self-energy operator, is defined via

S[T ] ∶= Ẽ(H̃ −EH)T (H̃ −EH)

for any T ∈ C2N×2N , where H̃ denotes an independent copy of H . In our case we can write S in the
following two ways

S[T ] = 2E1⟨TE2⟩ + 2⟨E1T ⟩E2 = ∑
σ=±

σ⟨TEσ⟩Eσ, (1.2.21)

with E1,E2 defined as in (1.1.9), and E± = E1 ± E2. Using ⟨M11(w)⟩ = ⟨M22(w)⟩ that directly
follows from (1.2.18), it is straightforward to check that M(w) as defined in (1.2.17) satisfies the
MDE (1.2.20). Since the MDE has a unique solution, we see that the density ρ defined via free
convolution in Section 1.2.1 coincides with the self-consistent density of states (scDos) corresponding
to the MDE, defined as the boundary value of 1

π ⟨ImM⟩ on the real axis in the theory of MDE [17, 22].

For the reader’s convenience in Appendix 1.B.1 we will collect a few facts about M , in particular we
will show that it has a continuous extension as a matrix valued function to the real axis, i.e. the limit
M(e) ∶= limη↓0M(e+ iη) exists for any e ∈R. This extends the similar result on its trace mentioned
in (1.2.5). Moreover, we will also show that for spectral parameters w ∈C ∖R with Rew ∈ Bκ, we
have

∥M(w)∥ ≲ 1 . (1.2.22)

In particular, together with (1.2.17)–(1.2.18) this implies that the deterministic terms in (1.2.8) are
bounded. Finally, we will also prove an important regularity property of the κ-bulk, namely that

dist(∂Bκ′ ,Bκ) ≥ c(κ − κ
′
) (1.2.23)

for any small 0 < κ′ < κ and some N -independent constant c = c(∥Λ∥) > 0. In fact, for our proof it is
sufficient if c = c(κ, ∥Λ∥), i.e. an additional κ dependence is allowed – in Appendix 1.B.1 we will
explain that this weaker result is considerably easier to obtain (see Remark 1.B.3). We will also show
that Bκ is a finite disjoint union of compact intervals; the number of these components depends
only on κ and ∥Λ∥.

The above mentioned concentration of G around M is the content of the following single resolvent
local law, both in averaged and isotropic form, which we prove in Appendix 1.C.

Theorem 1.2.6. (Single resolvent local law for the Hermitisation H)
Fix a bounded deterministic Λ ∈CN×N and κ > 0 independent of N . Then, for any w ∈C ∖R with
∣w∣ ≤ N100 and Rew ∈Bκ, we have

∣⟨(G(w) −M(w))B⟩∣ ≺
1
Nη

, ∣⟨x, (G(w) −M(w))y⟩∣ ≺
1
√
Nη

,

where η ∶= ∣Imw∣, for any bounded deterministic matrix ∥B∥ ≲ 1 and vectors ∥x∥, ∥y∥ ≲ 1.

Our main result for the Hermitised random matrix H is the Eigenstate Thermalisation Hypothesis
(ETH), that in mathematical terms is the proof of an optimal convergence rate of the strong Quantum
Unique Ergodicity (QUE) for general observables A, uniformly in the bulk (1.2.6) of the spectrum of
H, i.e. in the bulk of the scDos ρ.
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Theorem 1.2.7. (Eigenstate Thermalisation Hypothesis for the Hermitisation H)
Fix some bounded Λ ∈ CN×N and κ > 0 independent of N . Let {wi}∣i∣≤N be the orthogonal
eigenvectors of the Hermitisation H of X +Λ, where X is an i.i.d. matrix satisfying Assumption 1.2.1.
Then, for any deterministic matrix A ∈C2N×2N with ∥A∥ ≲ 1 it holds that

max
i,j
∣⟨wi,Awj⟩ − δj,i

⟨ImM(γj)A⟩

⟨ImM(γj)⟩
− δj,−i

⟨ImM(γj)E−A⟩

⟨ImM(γj)⟩
∣ ≺

1
√
N
, (1.2.24)

where the maximum is taken over all ∣i∣, ∣j∣ ≤ N , such that the quantiles γi, γj ∈ Bκ defined in (1.2.7)
are in the bulk of the scDos ρ.

The main technical result underlying Theorem 1.2.7 is an averaged local law for two resolvents with
different spectral parameters, which we will formulate in Theorem 1.4.4 later.

Remark 1.2.8. Given the optimal bound (1.2.24), following a Dyson Brownian Motion (DBM)
analysis similar to [167, 169], it is possible to prove a CLT for single diagonal overlaps ⟨wi,Awi⟩.
However, for the sake of brevity, we do not present this argument here and defer the CLT analysis to
future work.

In the following Section 1.3 we precisely define the regularisation and we will prove our main results
formulated above assuming the key technical Proposition 1.3.4. This proposition is obtained from
a local law, which we prove in Section 1.4. Local laws are proved by a hierarchy of master and
reduction inequalities, that are derived in Sections 1.5 and 1.6, respectively. Appendix 1.A contains
two motivating calculations for the correct regularisation. Several technical and auxiliary results are
deferred to the other appendices.

1.3 Proof of the main results
The key to understanding the eigenvector overlaps and showing our main results is an improved
bound on the averaged trace of two resolvents with regular (see Section 1.3.1 below for the precise
definition) deterministic matrices A1,A2 in between, i.e. for

⟨G(w1)A1G(w2)A2⟩ . (1.3.1)

Naively, for arbitrary A1,A2, estimating (1.3.1) via a trivial Schwarz inequality and Ward identity
yields the upper bound ∣⟨G(w1)A1G(w2)A2⟩∣ ≺ 1/η, where η ∶=minj ∣Imwj ∣. However, this bound
drastically improves, whenever the matrices A1,A2 are regular, i.e. orthogonal to certain critical
eigenvectors V± of the associated two-body stability operators (1.B.2), which is denoted as Aj = Åj ;
see (1.3.2) and Definitions 1.3.1 and 1.4.2. In this case, in our key Proposition 1.3.4 we will show
that

∣⟨G(w1)Å1G(w2)Å2⟩∣ ≺ 1

even for very small η ∼ N−1+ϵ as a consequence of a more precise local law for (1.3.1), which we
present in Section 1.4. We find that (see Theorem 1.4.4 and Remark 1.4.6) both the size of its
deterministic approximation and the fluctuation around this mean heavily depend on whether (one or
both of) the matrices A1,A2 are regular, i.e. satisfy ⟨V±,Aj⟩ = 0, or not.

Therefore, the general rather structural regularizing decomposition (or regularisation) of a matrix A
shall be conducted as

A○ ≡ Å ∶= A − ⟨V+,A⟩U+ − ⟨V−,A⟩U− (1.3.2)

for Uσ, Vσ ∈ C2N×2N satisfying ⟨Vσ, Uτ ⟩ = δσ,τ and the normalisation ⟨Uσ, Uσ⟩ = 1, where recall that
⟨R,T ⟩ ∶= ⟨R∗T ⟩ denotes the (normalised) Hilbert-Schmidt scalar product. The regularisation map

(1 −Π) ∶C2N×2N
→C2N×2N , A↦ Å , (1.3.3)
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where Π is a two-dimensional (non-orthogonal) projection,8 is closely related to the built-in chiral
symmetry (1.2.16) of our model. Indeed, for other ensembles without this special structure only one
of the terms ⟨Vσ,A⟩Uσ in (1.3.2) would be present.

As mentioned above, the matrices V± are determined as critical eigenvectors (with corresponding
small eigenvalue) of naturally associated two-body stability operators with their precise form worked
out in Appendix 1.A and given in (1.A.19). In Appendix 1.A we also give two different calculations
that helped us guess these formulas. However, for the directions U± there are a priori no further
constraints (apart from orthogonality and normalisation). Hence, as it turns out to be convenient for
our proofs, we will choose the matrices Uσ (in principle, even allowing for two different deformations
Λ1 ≠ Λ2) in such a way, that a resolvent identity

GΛ1(w1)UσG
Λ2(w2) ≈ (G

Λ1(w1) −G
Λ2(σw2))Uσ , (1.3.4)

can be applied (here, the symbol ‘≈’ neglects lower order terms). This is used to reduce the number
of resolvents in a chain. Note that, again due to the eminent chiral symmetry (1.2.16) for the
resolvents, there are in fact two matrices Uσ for which a resolvent identity (1.3.4) can be applied.

Although the regularisation (1.3.2) shall be motivated for arbitrary deformations Λ1,Λ2 in Ap-
pendix 1.A, we will henceforth choose a single bounded deformation Λ ∈ CN×N , which remains fixed
with the just mentioned exception in Appendix 1.A. For a single deformation Λ, this restricts the
matrices U± satisfying (1.3.4) to be given by E±.

In case that the spectral parameters (w1,w2) appearing in (1.3.1) (with a single fixed deformation
Λ) are such that none of the eigenvectors of the stability operator is critical (cf. Appendix 1.B),
we consider every matrix A as regular. The distinction between these two scenarios is regulated by
cutoff functions 1±δ introduced in (1.3.6) below.

1.3.1 Regular observables: A bound on (1.3.1)

As already mentioned above, our main result for the Hermitised random matrix, Theorem 1.2.7, shall
be derived from a bound on (1.3.1), where we assume the (real parts of the) spectral parameters
w1,w2 to be in the bulk of the scDos ρ (recall (1.2.6)).

We now specify the concept of regularisation (1.3.2) to our setting. The eigenvectors V± will be
computed in Appendix 1.A, the matrices U± are simply chosen as E±.

Definition 1.3.1. (Regular observables) Given κ > 0, let9

δ = δ(κ, ∥Λ∥) > 0 (1.3.5)

be sufficiently small (to be chosen below, see (1.4.22)) and let w,w′ ∈ C ∖R with Rew,Rew′ ∈ Bκ

be spectral parameters. Furthermore, we introduce the (symmetric) cutoff functions

1±δ (w,w
′
) ∶= ϕδ(Rew ∓Rew′) ϕδ(Imw) ϕδ(Imw′) , (1.3.6)

where 0 ≤ ϕδ ≤ 1 is a smooth symmetric bump function on R satisfying ϕδ(x) = 1 for ∣x∣ ≤ δ/2 and
ϕδ(x) = 0 for ∣x∣ ≥ δ.

8The condition ⟨Vσ, Uτ ⟩ = δσ,τ guarantees that the regularisation is idempotent, i.e. (Å)○ = Å and Π2
= Π.

9Note that the parameter δ > 0 is independent of the matrix size N .
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1. Optimal lower bound on eigenvector overlaps

(a) We define the (w,w′)-regular component or (w,w′)-regularisation Åw,w
′

of a matrix A as 10

Å
w,w′
∶= A − ∑

τ=±
1τsδ (w,w

′
)
⟨M(Rew + iImw)AM(Rew′ + τ iImw′)Eτs⟩

⟨M(Rew + iImw)EτsM(Rew′ + τ iImw′)Eτs⟩
Eτs , (1.3.7)

where the relative sign of the imaginary parts is defined as

s ≡ sw,w′ ∶= − sgn(Imw Imw′) . (1.3.8)

(b) We say that A is (w,w′)-regular if and only if A = Åw,w
′

.

The regularisation shall be revisited in Definition 1.4.2, where we tailor it to certain averaged (1.4.5)
or isotropic (1.4.6) resolvent chains.

Remark 1.3.2. We have several comments concerning the above definition.

(i) In case that at least one of the spectral parameters is away from the imaginary axis, say
∣Rew∣ > δ w.l.o.g., then the regularisation in (1.3.7) contains at most one summand: If
1+δ (w,w

′) = 1, i.e. Rew is close to Rew′, then we have that

Å
w,w′
∶= A −

⟨M(w)AM(Rew′ + siImw′)⟩

⟨M(w)M(Rew′ + siImw′)⟩
E+ ,

whereas if 1−δ (w,w
′) = 1, i.e. if Rew is close to −Rew′, then we have that

Å
w,w′
∶= A −

⟨M(w)AE−M(−Rew′ + siImw′)⟩

⟨M(w)M(−Rew′ + siImw′)⟩
E− ,

where we used that M(w)E− = −E−M(−w) (see (1.2.19))

(ii) The cutoff functions in (1.3.6) satisfy the basic symmetry properties

1±δ (w,w
′
) = 1±δ (w̄,w

′
) = 1±δ (w, w̄

′
) = 1±δ (w̄, w̄

′
) .

However, Å is not symmetric in its two spectral parameters, i.e. Åw,w
′

≠ Å
w′,w in general

(iii) For spectral parameters satisfying 1±δ (w,w
′) > 0, it will be shown in Appendix 1.B that the

respective denominators in (1.3.7) are bounded away from zero. In particular, the linear map
A↦ Å is bounded with a bound depending only on δ and ∥Λ∥.

(iv) Whenever it holds that 1±δ (w,w
′) = 0 then also 1±δ′(w,w

′) = 0 for every 0 < δ′ < δ. Conversely,
whenever it holds that 1±δ (w,w

′) = 1 then also 1±δ′(w,w
′) = 1 for every 0 < δ < δ′.

(v) We point out that the notion of regularity implicitly depends on κ and δ and hence also on
the (norm of the) deformation Λ.

Moreover, the regularisation defined above satisfies the following elementary properties. The identities
in (1.3.10) and (1.3.9) are immediate from the definition, the perturbative statements are proven in
Appendix 1.B.

10Putting the summation parameter τ at the second spectral parameter w′ (and not at w) is simply a free choice,
which we made here. More precisely, defining the regularisation as

Å
w,w′

∶= A − ∑
τ=±

1τs
δ (w,w

′
)
⟨M(Rew + τ iImw)AM(Rew′ + iImw′)Eτs⟩

⟨M(Rew + τ iImw)EτsM(Rew′ + iImw′)Eτs⟩
Eτs

would equally work in our proofs (see Appendices 1.A and 1.B for details).
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1.3. Proof of the main results

Lemma 1.3.3. Fix a bounded deterministic deformation Λ ∈ CN×N and let A ∈ C2N×2N be an
arbitrary bounded deterministic matrix.

(i) Let w,w′ ∈C ∖R with Rew,Rew′ ∈Bκ. Then, we have the identities

(Å
w,w′
)
∗
= (A∗)˚ w̄′,w̄

, Å
w,w′

E− = (AE−)˚ w,−w′
, E−Å

w,w′

= (E−A)˚ −w,w′
. (1.3.9)

(ii) Moreover, by definition it holds that

Å
w,w̄′

= Å
w,w′

, (1.3.10)

and setting s ∶= − sgn(ImwImw′), we have the perturbative estimate11

Å
w̄,w′

= Å
w,w′

+O(∣w − sw̄′∣ ∧ 1)Es +O(∣w + sw
′
∣ ∧ 1)E−s . (1.3.11)

(iii) Let w1,w
′
1,w2,w

′
2 ∈C ∖R with Rew1,Rew′1,Rew2,Rew′2 ∈ Bκ as well as Imw1 ⋅ Imw2 > 0

and Imw′1 ⋅ Imw′2 > 0 be spectral parameters. Then we have that

Å
w2,w′1

= Å
w1,w′1

+O(∣w1 −w2∣ ∧ 1)E+ +O(∣w1 −w2∣ ∧ 1)E− , (1.3.12)

Å
w1,w′2

= Å
w1,w′1

+O(∣w′1 −w
′
2∣ ∧ 1)E+ +O(∣w′1 −w′2∣ ∧ 1)E− . (1.3.13)

We can now state the bound on (1.3.1) for regular observables, which shall be proven in Section 1.4
as an immediate corollary to a local law for (1.3.1) given in Theorem 1.4.4 and the bound from
Lemma 1.4.3.

Proposition 1.3.4. Fix a bounded deterministic Λ ∈CN×N , ϵ > 0, κ > 0, and let w1,w2 ∈C with
∣w1∣, ∣w2∣ ≤ N

100, Rew1,Rew2 ∈ Bκ, and ∣Imw1∣, ∣Imw2∣ ≥ N
−1+ϵ. Moreover, let A1 ∈ C2N×2N

be a (w1,w2)-regular and A2 ∈ C2N×2N a (w2,w1)-regular deterministic matrix, both satisfying
∥A1∥, ∥A2∥ ≲ 1. Then we have

∣⟨G(w1)Å
w1,w2
1 G(w2)Å

w2,w1
2 ⟩∣ ≺ 1 . (1.3.14)

1.3.2 Estimating (1.3.1) for general observables
Armed with the correct regularisation, we can now present a systematic analysis of ⟨G(w1)A1G(w2)A2⟩
from (1.3.1) for arbitrary bounded deterministic matrices A1,A2. Decomposing A1,A2 according to
Definition 1.3.1 as

A1 = Å
w1,w2
1 + ⟨⟨A1⟩⟩

+
w1,w2E+ + ⟨⟨A1⟩⟩

−
w1,w2E− ,

A2 = Å
w2,w1
2 + ⟨⟨A2⟩⟩

+
w2,w1E+ + ⟨⟨A2⟩⟩

−
w2,w1E− ,

(1.3.15)

(where ⟨⟨⋅⟩⟩σw,w′ can be read off as the coefficients in (1.3.7)) and plugging (1.3.15) into (1.3.1), we
find that

⟨G(w1)A1G(w2)A2⟩ =∑
σ,τ

⟨⟨A1⟩⟩
σ
w1,w2⟨⟨A2⟩⟩

τ
w2,w1⟨G(w1)EσG(w2)Eτ ⟩

+∑
σ

⟨⟨A1⟩⟩
σ
w1,w2⟨G(w1)EσG(w2)Å

w2,w1
2 ⟩

+∑
τ

⟨⟨A2⟩⟩
τ
w2,w1⟨G(w1)Å

w1,w2
1 G(w2)Eτ ⟩

+ ⟨G(w1)Å
w1,w2
1 G(w2)Å

w2,w1
2 ⟩ .

(1.3.16)

11Note that the asymmetry between (1.3.11) and (1.3.10) stems from the asymmetry imposed in the definition of
the regularisation, namely by placing the summation index τ in (1.3.7) at the second spectral parameter.
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1. Optimal lower bound on eigenvector overlaps

Which terms in (1.3.16) are effectively present depends on the coefficients ⟨⟨⋅⟩⟩σw,w′ , i.e. on the
singular components of A1,A2. For terms with nonzero coefficients the following rule of thumb
applies. Denoting η ∶=min (∣Imw1∣, ∣Imw2∣) ≥ N

−1+ϵ, the terms ⟨GEGE⟩ in the first line of (1.3.16)
are bounded by 1/η, the terms ⟨GEGÅ⟩ in the two middle lines of (1.3.16) are bounded by 1/√η,
and ⟨GÅGÅ⟩ in the last line is of order one (Proposition 1.3.4). This is in perfect agreement with
the √η-rule mentioned in the Introduction (see also Remark 1.4.6 below). Some of these bounds
are actually sharp for special values of w1,w2, for example

⟨G(w)E+G(w̄)E+⟩ =
⟨ImG(w)⟩

η
∼

1
η
, or ⟨G(w)E−G(−w̄)E−⟩ = −

⟨ImG(w)⟩

η
,

where we used the chiral symmetry (1.2.16). In fact, two terms with στ = −1 in the first line
of (1.3.16) are identically zero by applying the chiral symmetry, followed by the resolvent identity
and ⟨GE−⟩ = 0. For a middle term in (1.3.16) we have

⟨G(w)E+G(w̄)Å
w̄,w
⟩ =

1
η
⟨ImG(w)Å

w̄,w
⟩ ≲ 1 + 1

Nη

1
√
η
.

In the very last relation we treated ⟨G(w)Åw̄,w⟩ and ⟨G(w̄)Åw̄,w⟩ separately. In both cases we first
used Lemma 1.3.3 to adjust the regularisation to Åw,w and Åw̄,w̄, respectively, to match the new
single-resolvent setup and then we applied the corresponding single-resolvent local law with regular
observable (see Theorem 1.4.5 below).

Note that the most critical estimate concerns the last line of (1.3.16), i.e. the regular part for both
observable matrices. The bound (1.3.14) is obtained from a local law with two resolvents and two
regular matrices, while the first and the middle terms in (1.3.16) can be understood already from
an improved local law for one resolvent and one regular matrix (see Theorem 1.4.5 below) after
applying resolvent identities and adjusting the regularisation by Lemma 1.3.3. Furthermore, observe
that the sizes of the first three lines in (1.3.16) are sensitive to w1,w2 via the usual resolvent identity
(see (1.3.21) below) and the chiral symmetry (1.2.16), for example

∣⟨G(w1)E+G(w2)E+⟩∣ = ∣
⟨G(w1) −G(w2)⟩

w1 −w2
∣ ≲

1
∣w1 −w2∣

,

or ∣⟨G(w1)E−G(w2)E−⟩∣ = ∣⟨G(w1)G(−w2)⟩∣ ≲
1

∣w1 +w2∣
,

while the last line in (1.3.16) is typically order one.

Summarizing, the singular parts of ⟨G(w1)A1G(w2)A2⟩ can be explicitly computed (using single-
resolvent local laws) as explicit functions of w1,w2, while the regular part remains of order one.
A combination of our decomposition (1.3.7), the perturbation formulas from Lemma 1.3.3, and
our single- and two-resolvent local laws together with their explicit deterministic terms from the
subsequent Section 1.4 provide an effective recipe to compute ⟨G(w1)A1G(w2)A2⟩ with high
precision in all cases. We refrain from formulating it as a comprehensive theorem due to the large
number of cases.

1.3.3 Proof of the main results
We will first focus on the proof of Theorem 1.2.7 and turn to the proofs of Theorem 1.2.2 and
Theorem 1.2.4 afterwards.

1.3.3.1 Proof of Theorem 1.2.7

As a first step towards the proof of Theorem 1.2.7, we show that (1.2.24) indeed follows from a
bound similar to (1.3.14), where G is replaced by ImG. The proof of the following simple lemma is
given after completion of the proof of Theorem 1.2.7.

44



1.3. Proof of the main results

Lemma 1.3.5. Fix a bounded deterministic Λ ∈ CN×N , ϵ > 0, κ > 0, and let B ∈ C2N×2N . Then, for
any bulk indices ∣i∣, ∣j∣ ≤ N , i.e. with γi, γj ∈Bκ, and η ≥ N−1+ϵ, we have

N ∣⟨wi,Bwj⟩∣
2
≺ (Nη)2⟨ImG(γi + iη)BImG(γj + 2iη)B∗⟩ . (1.3.17)

The same bound still holds without the factor of two in the argument of the second resolvent in
(1.3.17). However, we chose to have it, in order to ensure that the spectral parameters of the two
resolvents are always forced to be different.

Proof of Theorem 1.2.7. Having Lemma 1.3.5 at hand, we are left with estimating the rhs. of
(1.3.17) for

B = A −
⟨ImM(γj)A⟩

⟨ImM(γj)⟩
E+ −

⟨ImM(γj)E−A⟩

⟨ImM(γj)⟩
E− (1.3.18)

using Proposition 1.3.4. Note that the two terms in (1.2.24) carrying a δ-symbol arise from the
orthogonality relations ⟨wi,E±wj⟩ = δj,±i, following from the spectral symmetry described around
(1.2.16).

We now write out ImG(w) = (G(w) −G(w̄))/(2i), such that (1.3.17) leaves us with four different
terms, each of which can be bounded individually. Since their treatment is completely analogous, we
focus on the exemplary term

⟨G(γi + iη)BG(γj − 2iη)B∗⟩ (1.3.19)
with the deterministic matrix B being defined in (1.3.18). We rely on the following simple perturbative
lemma, which follows from Lemma 1.3.3 by invoking Lemma 1.B.4.

Lemma 1.3.6. Using the notation introduced in (1.3.7), the matrix B ∈ C2N×2N from (1.3.18)
satisfies

B = Å
γi+iη,γj−2iη

+O(∣γi − γj ∣ + η)E+ +O(∣γi + γj ∣ + η)E− ,

B∗ = (A∗)˚ γj−2iη,γi+iη
+O(∣γi − γj ∣ + η)E+ +O(∣γi + γj ∣ + η)E− .

(1.3.20)

Hence, plugging (1.3.20) into (1.3.19), we get a sum of several terms, which can all be estimated
separately. For the ‘leading term’, we use Proposition 1.3.4 to get that

∣⟨G(γi + iη)Åγi+iη,γj−2iη
G(γj − 2iη)(A∗)˚ γj−2iη,γi+iη

⟩∣ ≺ 1 .

Two further representative terms are given by

O(∣γi ∓ γj ∣ + η) ⟨G(γi + iη)E±G(γj − 2iη)C⟩ ,

where C ∈ C2N×2N is some generic bounded matrix. Now, by using (1.2.16), these terms can be
rewritten as

O(∣γi ∓ γj ∣ + η) ⟨G(γi + iη)G(±(γj − 2iη))E±C⟩ .
For either sign choice (due to the factor two), we can now employ a simple resolvent identity

G(w1)G(w2) =
G(w1) −G(w2)

w1 −w2
, (1.3.21)

leaving us with
O(∣γi − γj ∣ + η)

(γi ∓ γj) + (1 ± 2)iη
⟨[G(γi + iη) −G(±(γj − 2iη))]C⟩ ,

which is surely stochastically dominated by one by means of Theorem 1.2.6. Thus, collecting all the
terms, we find that ∣(1.3.19)∣ ≺ 1.

Finally, we choose η = N−1+ξ for an arbitrarily small ξ > 0, such that Lemma 1.3.5 with B as in
(1.3.18) yields Theorem 1.2.7.
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1. Optimal lower bound on eigenvector overlaps

We conclude with giving a proof of Lemma 1.3.5.

Proof of Lemma 1.3.5. By spectral decomposition we write

⟨ImG(γi + iη)BImG(γj + 2iη)B∗⟩ = 1
2N ∑k,l

2η2∣⟨wk,Bwl⟩∣
2

[(λk − γi)2 + η2][(λl − γj)2 + 4η2]

≻
∣⟨wi,Bwj⟩∣

2

Nη2 ,

which proves (1.3.17). We point out that in the last inequality we used rigidity of the eigenvalues
[17, 243]:

∣λi − γi∣ ≺
1
N
, (1.3.22)

which holds for bulk indices as a standard consequence of the single-resolvent local law, Theorem 1.2.6.

1.3.3.2 Proof of Theorem 1.2.2

The bounds in (1.2.8a), (1.2.8b), and (1.2.8c) follow from Theorem 1.2.7 by choosing

A =

⎛
⎜
⎜
⎝

B 0

0 0

⎞
⎟
⎟
⎠

, A =

⎛
⎜
⎜
⎝

0 0

0 B

⎞
⎟
⎟
⎠

, and A =

⎛
⎜
⎜
⎝

0 0

B 0

⎞
⎟
⎟
⎠

,

respectively, and invoking (1.2.17)–(1.2.18).

1.3.3.3 Proof of Theorem 1.2.4

By the definition

Hz ∶=

⎛
⎜
⎜
⎝

0 X +Λ − z

(X +Λ − z)∗ 0

⎞
⎟
⎟
⎠

it follows that µ ∈ Spec(X +Λ) if and only if λµ1 = 0. Here by {λzi }i∈[N] we denoted the increasingly
ordered non–negative eigenvalues of Hz. We remark that Λ is omitted by the notation since it is
fixed throughout the proof. In particular, using the bound for products of two resolvents and two
regular matrices in (1.3.14), we will now prove the lower bound in (1.2.12) for the overlap of left and
right eigenvectors corresponding to eigenvalues µ which lies in the bulk of the spectrum of X +Λ.

Proof of Theorem 1.2.4. Define

F ∶=

⎛
⎜
⎜
⎝

0 0

1 0

⎞
⎟
⎟
⎠

∈C2N×2N ,

then by (1.3.14), for η ≥ N−1, we conclude

sup
z∈bulk

⟨ImGz(iη)F ImGz(iη)F ∗⟩ ≺ 1 , (1.3.23)

where the supremum is taken over the bulk as given in Definition 1.2.3. The fact that (1.3.23)
holds for the supremum over the z’s with very high probability follows by a standard grid argument
together with the Lipschitz continuity of z ↦ ImGz. Here we used that F is regular in the sense
of (1.3.7); this immediately follows from the fact that F is (block) off–diagonal and ImM(iη) is
(block) diagonal (see Lemma 1.B.1). We now want to show that if we choose z = µi to be a bulk

46



1.4. Local laws with regular observables

eigenvalue of X +Λ the upper bound (1.3.23) implies a lower bound on Oii. To make the notation
simpler, from now on we denote µ = µi.

Consider the non-Hermitian left/right–eigenvectors l,r, with corresponding eigenvalue µ, defined as
in (1.2.9) and set

P ∶=

⎛
⎜
⎜
⎝

l l
∗

∥l∥2 0

0 rr∗

∥r∥2

⎞
⎟
⎟
⎠

.

Clearly P is a rank two orthogonal projection whose range lies in the kernel of Hµ, recalling that up
to scalar multiples the non-Hermitian eigenvectors l,r coincide with some singular vectors u,v of
X +Λ − µ, respectively, forming an eigenvector w = (u,v) in the kernel of Hµ. Note that Ker(Hµ)

has dimension two if µ is a simple eigenvalue, but in general the multiplicity of µ and the multiplicity
of λµ1 = 0 may differ. Let Q be the orthogonal projection onto the kernel of Hµ, then P ≤ Q. Then,
almost surely, by spectral decomposition (and by the spectral symmetry of Hµ)

ImGµ(iη) = Q
η
+ ∑
i∶λµ

i ≠0

η

(λµi )
2 + η2

⎛
⎜
⎜
⎝

uµi

vµi

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

uµi

vµi

⎞
⎟
⎟
⎠

∗

≥
P

η
.

By (1.3.23) we thus obtain

1 ≻ sup
z∈bulk

⟨ImGz(iη)F ImGz(iη)F ∗⟩ ≻ 1
η2 ⟨PFPF

∗
⟩ =

∣⟨l,r⟩∣
2

Nη2∥r∥2∥l∥2
,

which, by (1.2.11), implies

Oii =∥r∥
2
∥l∥2 ≻

1
Nη2 .

Choosing η = N−1+ϵ/2, this concludes the proof.

1.4 Local laws with regular observables

The goal of the present section is to establish the key Proposition 1.3.4 by proving an averaged
local law for a product of two resolvents (of the Hermitisation (1.2.15)) in the bulk of the scDos ρ
with regular (recall Definition 1.3.1 and see Definition 1.4.2 below) deterministic matrices A1,A2 in
between. Throughout the rest of this paper, we consider the case of several spectral parameters
w1,w2, ... and fixed bounded deformations Λ1 = Λ2 = ... ≡ Λ ∈ CN×N , which we continue to omit
from the notation.

Using the abbreviations Gi ∶= G(wi) ∶= GΛ(wi) (and analogously for Mi), the deterministic approxi-
mation to the resolvent chain

G1B1⋯Bk−1Gk

for arbitrary deterministic B1, ...,Bk
12 is denoted by

M(w1,B1, ...,Bk−1,wk) (1.4.1)

and defined recursively in the length k of the chain.

12We will use the the notational convention, that the letter B denotes arbitrary (generic) matrices, while A is
reserved for regular matrices, in the sense of Definition 1.4.2.
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1. Optimal lower bound on eigenvector overlaps

Definition 1.4.1. Fix k ∈ N and let w1, ...,wk ∈ C ∖R be spectral parameters. As usual, the
corresponding solutions to the MDE (1.2.20) are denoted by M(wj), j ∈ [k]. Then, for deterministic
matrices B1, ...,Bk−1 we recursively define

M(w1,B1, ...Bk−1,wk) = (B1k)
−1
[M(w1)B1M(w2, ...,wk) (1.4.2)

+ ∑
σ=±

k−1
∑
l=2

σM(w1)⟨M(w1, ...,wl)Eσ⟩EσM(wl, ...,wk)] ,

where we introduced the shorthand notation

Bmn ≡ B(wm,wn) = 1 −M(wm)S[⋅]M(wn) (1.4.3)

for the so-called stability operator, discussed later in Appendix 1.B.

Note that the recursion (1.4.2) is well defined, since on the rhs. of (1.4.2), there are only
M(wm, ...,wn) appearing for which the number of spectral parameters is strictly smaller than
on the lhs. of (1.4.2), i.e. n −m + 1 < k. We may call these formulas (1.4.2) recursive Dyson
equations as they provide us with the correct deterministic quantity for longer resolvent chains. As
an example, we have that

M(w1,B1,w2) = B
−1
12 [M1B1M2] =M1X12[B1]M2 , (1.4.4)

where B−1
12 is the inverse stability operator (1.4.3) and X12 = (1 − S[M1 ⋅M2])

−1. We remark that
M satisfies several different recursions besides (1.4.2); they are presented in Lemma 1.D.1 (see
also [170, Lemma 5.4] for a simpler setup of Wigner matrices). The equivalence of these recursions
will be proved via the so-called meta-argument, see e.g. [181].

As already mentioned above, we are aiming at local laws for expressions of the form

⟨G1A1⋯GkAk⟩ (1.4.5)

in the averaged case, or
(G1A1 ⋯AkGk+1)xy

(1.4.6)

in the isotropic case, where the deterministic matrices A1, ...,Ak are assumed to be regular.
The general concept of regularity depending on two spectral parameters w and w′ has already been
introduced in Definition 1.3.1. In the following definition we tailor this concept to observables in
chains (1.4.5) and (1.4.6). It basically says that observable Aj , located between Gj = G(wj) and
Gj+1 = G(wj+1) in these chains will naturally be regularised using the spectral parameters wj and
wj+1.

Definition 1.4.2. (Regular observables in chains)
Fix κ > 0 and let δ = δ(κ, ∥Λ∥) > 0 be small enough (see (1.3.5) and (1.4.22)). Consider one of the
two expressions (1.4.5) or (1.4.6) for some fixed length k ∈N and bounded matrices ∥Ai∥ ≲ 1 and
let w1, ...,wk+1 ∈ C ∖R be spectral parameters with Rewi ∈ Bκ. For any j ∈ [k], analogously to
(1.3.6), we denote

1±δ (wj ,wj+1) ∶= ϕδ(Rewj ∓Rewj+1) ϕδ(Imwj) ϕδ(Imwj+1) (1.4.7)

and sj ∶= − sgn(ImwjImwj+1), where, here and in the following, in case of (1.4.5), the indices are
understood cyclically modulo k.

(a) For i ∈ [k] we define the regular component or regularisation of Ai from (1.4.5) or (1.4.6)
(w.r.t. the pair of spectral parameters (wi,wi+1)) as

Åi ∶= Å
wi,wi+1
i . (1.4.8)
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1.4. Local laws with regular observables

(b) Moreover, we call Ai regular (w.r.t. (wi,wi+1)) if and only if Åi = Ai.

For example, in case of (1.4.5) for k = 1 with spectral parameter w1 ∈C ∖R satisfying Rew1 ∈ Bκ,
∣Rew1∣ ≤ δ/4 and ∣Imw1∣ ≤ δ/2 (recall (1.3.5) and (1.4.7)), the regular component of A1 is given by

Å1 ∶= A1 −
⟨ImM1A1⟩

⟨ImM1⟩
E+ −

⟨M1A1M1E−⟩

⟨M1E−M1E−⟩
E− . (1.4.9)

Here we used the short–hand notation M1 ∶=M(w1).

We emphasise, that our notation ⋅̊ for the regular component of Ai does not have an overall fixed
meaning but depends on the spectral parameters of the resolvents ‘surrounding’ the deterministic
matrix Ai under consideration, i.e.

⟨ ⋯ GiAiGi+1 ⋯ ⟩ or ( ⋯ GiAiGi+1 ⋯ )xy
,

or in case of (1.4.5) for k = 1 the single spectral parameter involved. However, if we aim at specifying
the spectral parameters defining the operation ⋅̊ , we add them (or their indices) as a subscript,
i.e. write

Å
wi,wi+1
i ≡ Å

i,i+1
i ≡ Åi ≡ A

○
i ≡ A

○i,i+1
i ≡ A

○wi,wi+1
i ,

as done in Definition 1.3.1, and do not use imprecise notation Åi.

The just explained caveats are in stark contrast to the case of Wigner matrices [165, 168, 169],
where the regular component of a matrix A is simply its traceless part, i.e. Å = A − ⟨A⟩, irrespective
of the spectral parameters involved. Apart from this independence of the location in the spectrum,
there is a one further important difference to our case, which we already mentioned in Section
1.3: For Wigner matrices, the condition for A being regular is one-dimensional and hence restricts
A to a (N2 − 1)-dimensional subspace of CN×N (the traceless matrices), whereas in our case,
the regularity condition is two-dimensional (if 1σδ (⋅, ⋅) = 1) and hence restricts a regular matrix A
to a ((2N)2 − 2)-dimensional subspace of C2N×2N , which depends on the ‘surrounding’ spectral
parameters.

We now give bounds on the size of the deterministic term M(w1,B1, ...,Bk−1,wk) from (1.4.1),
where all Bi are regular in the sense of Definition 1.4.2. The proof of this lemma is presented in
Appendix 1.D.

Lemma 1.4.3. (Bounds on M , see [168, Lemma 2.4])
Fix κ > 0. Let k ∈ [4] and w1, ...,wk+1 ∈C ∖R be spectral parameters with Rewj ∈Bκ. Then, for
bounded regular deterministic matrices A1, ...,Ak (in the sense of Definition 1.4.2), we have the
bounds

∥M(w1,A1, ...,Ak,wk+1)∥ ≲

⎧⎪⎪
⎨
⎪⎪⎩

1
η⌊k/2⌋

if η ≤ 1
1

ηk+1 if η > 1
, (1.4.10)

∣⟨M(w1,A1, ...,Ak−1,wk)Ak⟩∣ ≲

⎧⎪⎪
⎨
⎪⎪⎩

1
η⌊k/2⌋−1 ∨ 1 if η ≤ 1
1
ηk if η > 1

, (1.4.11)

for the deterministic approximation (1.4.1) of a resolvent chain, where η ∶=minj ∣Imwj ∣.

For the presentation of our main results, we would only need (1.4.10) and (1.4.11) for k ∈ [2] from
the previous lemma. However, the remaining bounds covered by Lemma 1.4.3 will be instrumental in
our proofs of Theorems 1.4.5 and 1.4.4 below (see Sections 1.5 and 1.6).

The main result of the present section and most important input for our proofs in Section 1.3 is the
following averaged local law in the bulk of the spectrum for two resolvents and regular matrices.
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1. Optimal lower bound on eigenvector overlaps

Theorem 1.4.4. (Local laws with two regular matrices)
Fix a bounded deterministic Λ ∈ CN×N , ϵ > 0 and κ > 0. Then, for spectral parameters w1,w2,w3 ∈ C
satisfying maxj ∣wj ∣ ≤ N100, Rewj ∈ Bκ and η ∶= minj ∣Imwj ∣ ≥ N

−1+ϵ, deterministic vectors x,y
with ∥x∥, ∥y∥ ≲ 1, and any regular deterministic matrices A1,A2 ∈ C2N×2N (cf. Definition 1.4.2),
we have the averaged local law

∣⟨G1A1G2A2 −M(w1,A1,w2)A2⟩∣ ≺

⎧⎪⎪
⎨
⎪⎪⎩

1√
Nη

if η ≤ 1
1

Nη3 if η > 1
(1.4.12a)

and the isotropic law

∣⟨x, (G1A1G2A2G3 −M(w1,A1,w2,A2,w3))y⟩∣ ≺

⎧⎪⎪
⎨
⎪⎪⎩

1
η if η ≤ 1

1√
Nη4 if η > 1

. (1.4.12b)

Together with (1.4.11) for k = 2, this proves Proposition 1.3.4. Moreover, as a byproduct of our
proof of Theorem 1.4.4, we obtain the following optimal local laws with a single regular matrix.

Theorem 1.4.5. (Optimal local laws with one regular matrix)
Fix a bounded deterministic Λ ∈CN×N , ϵ > 0 and κ > 0. Then, for spectral parameters w1,w2 ∈C
satisfying maxj ∣wj ∣ ≤ N100, Rewj ∈ Bκ and η ∶= minj ∣Imwj ∣ ≥ N

−1+ϵ, deterministic vectors x,y
with ∥x∥, ∥y∥ ≲ 1, and any regular deterministic matrix A1 (cf. Definition 1.4.2), we have the optimal
averaged local law

∣⟨(G1 −M1)A1⟩∣ ≺

⎧⎪⎪
⎨
⎪⎪⎩

1
Nη1/2 if η ≤ 1

1
Nη2 if η > 1

(1.4.13a)

and the optimal isotropic local law

∣⟨x, (G1A1G2 −M(w1,A1,w2))y⟩∣ ≺

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1√
Nη2 if η ≤ 1
1√
Nη3 if η > 1

. (1.4.13b)

Remark 1.4.6. We have several comments.

(i) The above local laws are in agreement with the √η-rule first established for Wigner matrices
for traceless matrices in [168, Theorem 2.5]: Every regular deterministic matrix Ai reduces
both the size of the deterministic approximation and the error term by a factor √η.

(ii) The error terms in Theorem 1.4.4 dealing with two regular matrices can still be improved by a
factor 1/

√
Nη, as shown in [168]. A similar analysis could have been conducted here, but we

refrain from doing so, as it is not needed for our main results from Section 1.2. However, the
error bounds in (1.4.13) with one regular matrix are in fact optimal.

(iii) Given Theorem 1.2.6, and Theorems 1.4.4–1.4.5, it is possible to deduce similar bounds for
averaged and isotropic chains as in (1.4.12), where not both matrices A1,A2 are regular (see
(1.3.16)).

In the rest of this paper, we give a detailed proof of Theorem 1.4.4 in the much more involved
η ≤ 1 regime. For η > 1, the bound simply follows by induction on the number of resolvents in chain
by invoking the trivial ∥M(w)∥ ≲ 1/∣Imw∣. The detailed argument has been carried out in [168,
Appendix B] for the case of Wigner matrices. However, at a certain technical point (within the proof
of the master inequalities in Proposition 1.4.9 and the reduction inequalities in Lemma 1.4.10), the
proof uses Theorems 1.4.4 and 1.4.5 (and even its analogues for longer chains) for the η > 1 regime.
But the master and reduction inequalities are not needed for proving the above estimates in the η > 1
regime, hence the argument is not circular. With partial exception in Appendix 1.D, where we prove
Lemma 1.4.3, throughout the rest of this paper we assume that minj ∣Imwj ∣ =∶ η ≤ 1.

50



1.4. Local laws with regular observables

1.4.1 Basic control quantities and proof of Theorems 1.4.4 and 1.4.5

Our strategy for proving Theorem 1.4.4 (and thereby Theorem 1.4.5 as a byproduct) is to derive
a system of master inequalities (Proposition 1.4.9) for the errors in the local laws by cumulant
expansion, then use an iterative scheme to gradually improve their estimates. The cumulant expansion
introduces longer resolvent chains, potentially leading to an uncontrollable hierarchy, so our master
inequalities are complemented by a set of reduction inequalities (Lemma 1.4.10) to estimate longer
chain in terms of shorter ones. We have used a similar strategy in [168, 169] for Wigner matrices,
but now many new error terms due to regularisations need to be handled.

Before entering the detailed proof, we explain the main mechanism of the new type of error terms.
Cumulant expansions applied to chains . . .GiAiGi+1 . . . with regular Ai’s introduce more resolvent
factors, for example . . .GiGiAiGi+1 . . . or . . .GiE−GiAiGi+1 . . . without introducing more A’s.
Multiple G factors without intermediate A’s appear which we wish to reduce to fewer G factors using
resolvent identities (1.3.21) or contour integral representations; in the example above we will use

GiGi = G(wi)
2
=

1
2πi ∫Γ

G(z)

(z −wi)2
dz, (1.4.14)

where Γ is an appropriate contour (see Lemma 1.5.1). When this formula is inserted into the chain,
we have . . .G(z)AiGi+1 . . ., i.e. Ai is not regular any more with respect to the neighboring spectral
parameters (z,wi+1) since wi has been changed to z. We need to regularise Ai to the new situation.
Fortunately, the regularisation is Lipschitz continuous by Lemma 1.3.3, so roughly speaking we make
an error of order ∣z − wi∣ when we regularise Ai from (wi,wi+1) to (z,wi+1). This error exactly
compensates the higher power of z − wi in the denominator in (1.4.14), making eventually the
adjustment of regularisations harmless in the estimates. We need to meticulously implement this
strategy for longer chains and also taking into account the chiral symmetry to reduce GiE−Gi in
chains like . . .GiE−GiAiGi+1 . . .. The precise form of the error terms in Lemma 1.3.3 is essential. It
is remarkable that the signs appearing in (1.3.11), (1.3.12), and (1.3.13) exactly match those that
arise in the denominators of the contour integral formulas like (1.4.14). We now start the actual
proof.

As the basic control quantities in the sequel of the proof, we introduce the normalised differences

Ψav
k (wk,Ak) ∶= Nη

k/2
∣⟨G1A1⋯GkAk −M(w1,A1, ...,wk)Ak⟩∣ , (1.4.15)

Ψiso
k (wk+1,Ak,x,y) ∶=

√
Nηk+1 ∣(G1A1⋯AkGk+1 −M(w1,A1, ...,Ak,wk+1))xy

∣ (1.4.16)

for k ∈N, where we used the short hand notations

Gi ∶= G(wi) , η ∶=min
i
∣Imwi∣ , wk ∶= (w1, ...,wk) , Ak ∶= (A1, ...,Ak) .

The deterministic matrices ∥Ai∥ ≤ 1, i ∈ [k], are assumed to be regular (i.e., Ai = Åi, see
Definition 1.4.2) and the deterministic counterparts

M(w1,A1, ...,Ak−1,wk)

used in (1.4.15) and (1.4.16) (see also (1.4.1)) are given recursively in Definition 1.4.1.

For convenience, we extend the above definitions to k = 0 by

Ψav
0 (w) ∶= Nη∣⟨G(w) −M(w)⟩∣ , Ψiso

0 (w,x,y) ∶=
√
Nη∣(G(w) −M(w))

xy
∣

and observe that
Ψav

0 +Ψiso
0 ≺ 1 (1.4.17)
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1. Optimal lower bound on eigenvector overlaps

is the usual single-resolvent local law (in the bulk) from Theorem 1.2.6, where here and in the
following the arguments of Ψav/iso

k shall occasionally be omitted. We remark that the index k counts
the number of regular matrices in the sense of Definition 1.4.2.

Throughout the entire argument, let ϵ > 0 and κ > 0 be arbitrary but fixed, and let

D(ϵ,κ) ∶= {w ∈C ∶ Rew ∈Bκ , N
100
≥ ∣Imw∣ ≥ N−1+ϵ} (1.4.18)

be the target spectral domain, where the κ-bulk Bκ has been introduced in (1.2.6). This target
spectral domain D(ϵ,κ) will be reached by shrinking a larger initial spectral domain

D(ϵ0,κ0) ∶= {w ∈C ∶ Rew ∈Bκ0 , N
100
≥ ∣Imw∣ ≥ N−1+ϵ0} (1.4.19)

many times, say (L − 1) times, during our whole argument, where L = L(ϵ) is an N -independent
positive integer to be determined below (see Remark 1.4.12). In (1.4.19), we set ϵ0 ∶= ϵ/2 and chose
the initial bulk parameter

κ0 = κ0(ϵ, κ) =
κ

L(ϵ)
> 0 (1.4.20)

The just mentioned shrinking of domains will be conducted alongside the decreasing family (D(ϵ0,κ0)
ℓ )ℓ∈[L]

of spectral domains, defined via

D(ϵ0,κ0)
ℓ

∶= {w ∈C ∶ Rew ∈Bℓκ0 , N
100
≥ ∣Imw∣ ≥ ℓN−1+ϵ0} ⊂D(ϵ0,κ0) . (1.4.21)

D(ϵ,κ)

N−1+ϵ
∼ N−1+ϵ0

D(ϵ0,κ0)

D(ϵ0,κ0)
2

D(ϵ0,κ0)
3

∼ κ2/3

∼ κ

-2 2
Rew

Imw

Figure 1.4.1: Depicted are the target spectral domain (1.4.18), the initial spectral domain (1.4.19)
and four intermediate domains from the family (1.4.21). The solid black curve represents the
symmetric scDos ρ for the perturbation Λ = −z with ∣z∣ slightly less than one (see Example 1.2.5).
Close to a regular edge of the scDos, the horizontal distance between two domains scales like κ2/3.
Near an (approximate) cusp, the scaling agrees with the linear lower bound given in (1.2.23).

Finally, the cut-off parameter δ > 0 used in the definition of the regular component of an observable
(see (1.3.5) and (1.4.8) in Definition 1.4.2) shall be chosen by the following two requirements: First,
it has to be much smaller than the initial bulk-parameter κ0 from (1.4.20), i.e.

0 < δ ≪ cκ0 , (1.4.22)

where c > 0 is the same constant as introduced in (1.2.23). Second, it has to be small enough such
that the denominators in (1.4.8) (see also Appendix 1.B) as well as in Lemmas 1.5.5, 1.5.7, and 1.E.1
are uniformly bounded away from zero – in case that 1σδ (wi,wi+1) = 1. Note that these requirements
also depend on the deformation Λ ∈ CN×N (but only via the norm ∥Λ∥ ≲ 1) as it determines the
scDos ρ.
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1.4. Local laws with regular observables

Definition 1.4.7. (Uniform bounds in domains)
Let ϵ > 0 and κ > 0 as above and let k ∈N. We say that the bounds

∣⟨G(w1)B1 ⋯ G(wk)Bk −M(w1,B1, ...,wk)Bk⟩∣ ≺ E
av ,

∣(G(w1)B1 ⋯ BkG(wk+1) −M(w1,B1, ...,Bk,wk+1))xy
∣ ≺ E

iso
(1.4.23)

hold (ϵ, κ)-uniformly for some deterministic control parameters Eav/iso = Eav/iso(N,η), depending only
on N and η ∶=mini ∣Imwi∣, if the implicit constant in (1.4.23) are uniform in bounded deterministic
matrices ∥Bj∥ ≤ 1, deterministic vectors ∥x∥, ∥y∥ ≤ 1, and admissible spectral parameters wj ∈D(ϵ,κ)
satisfying 1 ≥ η ∶=minj ∣Imwj ∣.

Similarly, we use the phrase that a bound holds (ϵ0, κ0, ℓ)-uniformly (or simply ℓ-uniformly), if the
above statement is true with D(ϵ0,κ0)

ℓ in place of D(ϵ,κ).

Moreover, we may allow for additional restrictions on the deterministic matrices. For example, we
may talk about uniformity under the additional assumption that some (or all) of the matrices are
regular (in the sense of Definition 1.4.2).

Note that (1.4.23) is stated for a fixed choice of spectral parameters wj in the left hand side, but
it is in fact equivalent to an apparently stronger statement, when the same bound holds with a
supremum over the spectral parameters (with the same constraints). More precisely, if E iso ≥ N−C

for some constant C > 0, then (1.4.23) implies

sup
w1,...,wk+1

∣(G(w1)B1 ⋯ BkG(wk+1) −M(w1,B1, ...,Bk,wk+1))xy
∣ ≺ E

iso (1.4.24)

(and analogously for the averaged bound), where the supremum is taken over all choices of wj ’s in
the admissible spectral domain D(ϵ,κ) or D(ϵ0,κ0)

ℓ . This bound follows from (1.4.23) by a standard
grid argument (see, e.g., the discussion after [168, Def. 3.1]). Throughout the entire paper, we will
frequently use the equivalence between (1.4.23) and (1.4.24), e.g. when integrating such bounds
over some spectral parameters as done in Sections 1.5 and 1.6.

We can now formulate our main results of the present section, Theorem 1.4.4 and Theorem 1.4.5, in
the language of our basic control quantities Ψav/iso

k .

Lemma 1.4.8. (Estimates on Ψav/iso
1 and Ψav/iso

2 ) For any ϵ > 0 and κ > 0 we have

Ψav
1 +Ψiso

1 ≺ 1 and Ψav
2 +Ψiso

2 ≺
√
Nη

(ϵ, κ)-uniformly in regular matrices (i.e. for spectral parameters wj ∈D(ϵ,κ) with 1 ≥ η ∶=minj ∣Imwj ∣).

Proof of Theorems 1.4.4 and 1.4.5. These immediately follow from Lemma 1.4.8.

The rest of the proof is structured as follows: First, in Section 1.4.2, we state the master inequalities
and corresponding reduction inequalities on the Ψav/iso

k parameters, which we then use in Section 1.4.3
to prove Lemma 1.4.8. Afterwards, in Section 1.5, we prove the master inequalities and, finally, the
proof of the reduction inequalities is presented in Section 1.6.

1.4.2 Master inequalities and reduction lemma
We now state the relevant part of a non-linear infinite hierarchy of coupled master inequalities for
Ψav
k and Ψiso

k . In fact, for our purposes, it is sufficient to have only the inequalities for k ∈ [2], but
with fairly more effort (despite closely following the arguments in Section 1.5) it is possible to obtain
analogous estimates for general k ∈N.
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1. Optimal lower bound on eigenvector overlaps

Proposition 1.4.9. (Master inequalities) Assume that

Ψav/iso
i ≺ ψ

av/iso
i , i ∈ [4] , (1.4.25)

ℓ-uniformly (i.e. for spectral parameters wj ∈D(ϵ0,κ0)
ℓ and 1 ≥minj ∣Imwj ∣) in regular matrices, for

some deterministic control parameters ψav/iso
i , which are independent of the spectral parameters wj .

Then it holds that

Ψav
1 ≺ 1 + ψ

av
1
Nη
+
ψiso

1 + (ψ
av
2 )

1/2

(Nη)1/2
+
(ψiso

2 )
1/2

(Nη)1/4
, (1.4.26a)

Ψiso
1 ≺ 1 + ψ

iso
1 + ψ

av
1

(Nη)1/2
+
(ψiso

2 )
1/2

(Nη)1/4
, (1.4.26b)

Ψav
2 ≺ 1 + (ψ

av
1 )

2 + (ψiso
1 )

2 + ψav
2

Nη
+
ψiso

2 + (ψ
av
4 )

1/2

(Nη)1/2
+
(ψiso

3 )
1/2 + (ψiso

4 )
1/2

(Nη)1/4
, (1.4.26c)

Ψiso
2 ≺ 1 + ψiso

1 +
ψav

1 ψ
iso
1 + (ψ

iso
1 )

2

Nη
+
ψiso

2 + (ψ
iso
1 ψiso

3 )
1/2

(Nη)1/2
+
(ψiso

3 )
1/2 + (ψiso

4 )
1/2

(Nη)1/4
, (1.4.26d)

now (ℓ+1)-uniformly (i.e. for spectral parameters wj ∈D(ϵ0,κ0)
ℓ+1 with 1 ≥ η ∶=minj ∣Imwj ∣) in regular

matrices.

As shown in the above proposition, resolvent chains of length k are estimated by resolvent chains up
to length 2k. In order to avoid the indicated infinite hierarchy of master inequalities with higher and
higher k indices, we will need the following reduction lemma.

Lemma 1.4.10. (Reduction inequalities) Assume that Ψav/iso
n ≺ ψ

av/iso
n holds for 1 ≤ n ≤ 4, ℓ-

uniformly (i.e. for spectral parameters wj ∈D(ϵ0,κ0)
ℓ with 1 ≥ η ∶=minj ∣Imwj ∣) in regular matrices

(cf. Definition 1.4.7). Then we have

Ψav
4 ≺ (Nη)

2
+ (ψav

2 )
2 , (1.4.27)

on the same domain. Furthermore, we have

Ψiso
3 ≺ Nη (1 +

ψiso
2√
Nη
)(1 + ψ

av
2
Nη
)

1/2
,

Ψiso
4 ≺ (Nη)

3/2
(1 + ψiso

2√
Nη
)(1 + ψ

av
2
Nη
)

(1.4.28)

again uniformly in wj ∈D(ϵ0,κ0)
ℓ and in regular matrices.

1.4.3 Proof of Lemma 1.4.8
Within the proof, we repeatedly use a simple argument, which we call iteration.

Lemma 1.4.11. (Iteration) For every D > 0, ν > 0, and α ∈ (0, 1), there exists some K =K(D,ν,α),
such that whenever (i) X ≺ ND on D(ϵ0,κ0)

1 and (ii) X ≺ x on D(ϵ0,κ0)
ℓ for some ℓ ∈N, implies that

X ≺ A +
x

B
+ x1−αCα on D(ϵ0,κ0)

ℓ+1

for some constants B ≥ Nν and A,C > 0, it also holds that

X ≺ A +C on D(ϵ0,κ0)
ℓ+K .
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1.4. Local laws with regular observables

We can now turn to the proof of Lemma 1.4.8.

Proof of Lemma 1.4.8. Assume that
Ψav/iso
j ≺ ψ

av/iso
j , j ∈ [4] ,

ℓ-uniformly, for some fixed ℓ > 0, i.e. it holds on the domain D(ϵ0,κ0)
ℓ . Then, by (1.4.26a)–(1.4.26d),

using that Nη ≥ 1 to remove some lower order terms, we immediately obtain

Ψav
1 +Ψiso

1 ≺ 1 + ψ
av
1 + ψ

iso
1

(Nη)1/2
+
(ψav

2 )
1/2 + (ψiso

2 )
1/2

(Nη)1/4

Ψav
2 +Ψiso

2 ≺ 1 + ψiso
1 +

(ψav
1 )

2 + (ψiso
1 )

2

Nη
+
ψav

2 + ψ
iso
2

(Nη)1/2

+
(ψav

4 )
1/2

(Nη)1/2
+
(ψiso

1 ψiso
3 )

1/2

(Nη)1/2
+
(ψiso

3 )
1/2 + (ψiso

4 )
1/2

(Nη)1/4

(1.4.29)

on the domain D(ϵ0,κ0)
ℓ+1 . We point out that to get the second bound in (1.4.29) we also used

ψiso
1 ψav

1 ≤ (ψiso
1 )

2 + (ψav
1 )

2. Now, given the first estimate in (1.4.29) we obtain a bound for
Ψav

1 +Ψiso
1 which is better than the original a priori bound (1.4.25). We can thus replace the ψav/iso

1
from (1.4.25) with the rhs. of the first line of (1.4.29). Using iteration in both lines, we thus get

Ψav
1 +Ψiso

1 ≺ 1 + (ψ
av
2 )

1/2 + (ψiso
2 )

1/2

(Nη)1/4
,

Ψav
2 +Ψiso

2 ≺ 1 + (ψ
av
4 )

1/2
√
Nη

+
(ψav

2 )
1/4 + (ψiso

2 )
1/4

(Nη)1/8
⋅
(ψiso

3 )
1/2

(Nη)1/2
+
(ψiso

3 )
1/2 + (ψiso

4 )
1/2

(Nη)1/4
,

(1.4.30)

on the domain D(ϵ0,κ0)
ℓ+K , for some K as in Lemma 1.4.11. We now use the reduction inequalities

from Lemma 1.4.10 in the second line of (1.4.30):

Ψav
1 +Ψiso

1 ≺ 1 + (ψ
av
2 )

1/2 + (ψiso
2 )

1/2

(Nη)1/4

Ψav
2 +Ψiso

2 ≺ (Nη)
1/2
+

ψav
2√
Nη
+ (Nη)1/4(ψiso

2 )
1/2
+ (ψav

2 )
1/2
+
(ψav

2 ψ
iso
2 )

1/2

(Nη)1/4
,

+ ((Nη)1/4 +
(ψav

2 )
1/4 + (ψiso

2 )
1/4

(Nη)1/8
)(1 + (ψ

iso
2 )

1/2

(Nη)1/4
+
(ψav

2 )
1/4

(Nη)1/8
+
(ψiso

2 )
1/2(ψav

2 )
1/4

(Nη)3/8
) ,

(1.4.31)

on the domain D(ϵ0,κ0)
ℓ+K . Next, using iteration once again in the second line of (1.4.31), we obtain

Ψav
1 +Ψiso

1 ≺ 1 + (ψ
av
2 )

1/2 + (ψiso
2 )

1/2

(Nη)1/4
, Ψav

2 +Ψiso
2 ≺ (Nη)

1/2

on the domain D(ϵ0,κ0)
ℓ+K+K′ , for some K ′ as in Lemma 1.4.11. We point out that here we used Schwarz

and Young inequalities for several terms. Finally, using iteration one last time we conclude
Ψav

1 +Ψiso
1 ≺ 1 , Ψav

2 +Ψiso
2 ≺ (Nη)

1/2

on the domain D(ϵ0,κ0)
ℓ+K+K′+K′′ , for some K ′′ as in Lemma 1.4.11. This concludes the proof.

Remark 1.4.12. We observe that in every application of Lemma 1.4.11 during the proof of
Lemma 1.4.8, the parameter D is uniformly bounded by, say, D ≤ 10, as follows by estimating every
resolvent in Ψav/iso

k by norm and using the trivial 1/η-bound on inverse of the stability operator in
the iterative definition of M(w1, ...,wk) given in Definition 1.4.1. A further quick inspection of the
above proof shows, that α can be chosen as fixed α = 1/2. Finally, the parameter ν is lower bounded
by (some universal positive constant times) ϵ, since Nη ≥ N ϵ/2 by construction of the initial domain
(1.4.19). Hence, the constants K, K ′, and K ′′ only depend on ϵ and therefore also the maximal
number L = L(ϵ) of domain shrinkings.
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1. Optimal lower bound on eigenvector overlaps

1.5 Proof of the master inequalities, Proposition 1.4.9
Before going into the proofs of the master inequalities, we state a simple lemma, which will frequently
be used in the following. Recall that the deformation Λ ∈ CN×N is fixed and hence omitted from the
notation.

Lemma 1.5.1. (Integral representations for products of resolvents)
Let k ∈N and w1, ...,wk ∈ C ∖R be spectral parameters, whose imaginary parts have equal sign,
i.e. sgn(Imw1) = ... = sgn(Imwk) =∶ τ . Then, for any J ⊂ R being a union of compact intervals
such that Rewi ∈ J̊ (the interior) for all i ∈ [k] and 0 < η̃ < η ∶=minj ∣Imwj ∣, we have the integral
representation

k

∏
j=1

G(wj) =
1

2πi ∫Γ
G(z)

k

∏
j=1

1
z −wj

dz , (1.5.1)

where the contour Γ from (1.5.1) is defined as (see Figure 1.5.1)

Γ ≡ Γτη̃(J) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

∂(J × [iη̃, i∞)) if τ = +

∂(J × (−i∞,−iη̃]) if τ = −
(1.5.2)

and the boundary is parameterised in counter-clockwise orientation.

Proof. This easily follows from residue calculus. For example, for k = 2, we have that

1
λi −w1

1
λi −w2

=
1

2πi ∫Γ

1
λi − z

1
z −w1

1
z −w2

dz

for every eigenvalue λi of H by definition of the contour. This implies (1.5.1) for k = 2 by spectral
decomposition for H; the argument for general k is analogous.

Re z

Im z

Figure 1.5.1: Depicted is the scenario from Lemma 1.5.1 with five spectral parameters represented
as dots in the upper half plane. Moreover, we indicated the union of compact intervals J on the real
axis and the contour Γ as described in (1.5.2). Note that one of the three intervals constituting J
does not contain any Rewj .

We recall the definition of the second order renormalisation, denoted by underline, from [165]. For
functions f(W ), g(W ) of the random matrix W (see (1.2.15)), we define

f(W )Wg(W ) ∶= f(W )Wg(W ) − Ẽ[(∂W̃ f)(W )W̃g(W ) + f(W )W̃ (∂W̃ g)(W )] , (1.5.3)

where ∂W̃ denotes the directional derivative in the direction of

W̃ ∶=

⎛
⎜
⎜
⎝

0 X̃

X̃
∗ 0

⎞
⎟
⎟
⎠

,
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where X̃ is a complex Ginibre matrix that is independent of W . The expectation is taken w.r.t. the
matrix X̃. Note that, if W itself consists of a complex Ginibre matrix X, then E f(W )Wg(W ) = 0,
while for X with a general distribution this expectation is independent of the first two moments of X.
In other words, the underline renormalises the product f(W )Wg(W ) to second order. We remark
that underline (1.5.3) is a well-defined notation, if the ‘middle’ W to which the renormalisation
refers is unambiguous. This is always be the case in all our proofs, since the functions f, g will be
products of resolvents, never involving explicitly monomials in W .

We note that for any deterministic matrix R ∈C2N×2N we have

Ẽ W̃RW̃ = 2⟨RE2⟩E1 + 2⟨RE1⟩E2 =∑
σ

σ⟨REσ⟩Eσ = S[R]

and furthermore, that the directional derivative of the resolvent is given by

∂W̃G = −GW̃G .

For example, in the special case f(W ) = 1 and g(W ) = (W + Λ̂ −w)−1 = G, we thus have

WG =WG + S[G]G

by definition of the underline in (1.5.3).

Using this underline notation in combination with the identity G(W + Λ̂ −w) = E+ and the defining
equation (1.2.20) for M , we have

G =M −MWG +MS[G −M]G =M −GWM +GS[G −M]M . (1.5.4)

Recall that ⟨GE−⟩ = 0 (see below (1.2.16)) which immediately yields that S[G] = ∑σ σ⟨GEσ⟩Eσ =
⟨G⟩. Moreover, we have that S[M] = ⟨M⟩, as follows from (1.2.17)–(1.2.18), and hence S[⋅]
effectively acts like a trace on G and M , i.e.

S[G −M] = ⟨G −M⟩ . (1.5.5)

Now, similarly to [168], the key idea of the proof of Proposition 1.4.9 is using (1.5.4) for some
Gj in a chain G1A1⋯AkGk+1 and extending the renormalisation (1.5.3) to the whole product at
the expense of adding resolvent products of shorter length. This will be done for each of the four
estimates from Proposition 1.4.9 separately and presented in an underlined lemma in the beginning
of each of the following subsections. Afterwards, the renormalisation of the whole product will be
handled by cumulant expansion, exploiting that its expectation vanishes up to second order. While
the proofs of the underlined lemmas for Ψav/iso

1 are presented in detail, we defer the analogous
arguments for Ψav/iso

2 to Appendix 1.E.

1.5.1 Proof of the first master inequality (1.4.26a)

Let w ≡ w1 be a spectral parameter in D(ϵ0,κ0)
ℓ+1 (in particular in the bulk of the scDos, recall (1.4.21))

and A ≡ A1 a (w,w)-regular matrix (cf. Definition 1.4.2). We use the notation w = e + iη and we
assume without loss of generality (by conjugation with E−, see (1.2.16)) that 1 ≥ η > 0. We also
assume that (1.4.25) holds (in this subsection we will need it only for Ψav

1 and Ψav
2 ).

Lemma 1.5.2. (Representation as full underlined)
For any regular matrix A = Å we have that

⟨(G −M)Å⟩ = −⟨WGÅ
′
⟩ +O≺(E

av
1 ) (1.5.6)

for some other regular matrix A′ = Å′, which linearly depends on A (see (1.5.24) for the precise
formula for A′). For the error term in (1.5.6), we used the shorthand notation

E
av
1 ∶=

1
Nη1/2 (1 +

ψav
1
Nη
) . (1.5.7)

57



1. Optimal lower bound on eigenvector overlaps

Having this approximate representation of ⟨(G−M)Å⟩ as a full underlined term at hand, we turn to
the proof of (1.4.26a) via a (minimalistic) cumulant expansion: For fixed indices a, b and a smooth
function f(W ) we have

Ewabf(W ) = ∑
l1+l2≥1

1
l1!l2!

κ({wab}
l1+1,{wba}

l2)E∂l1ab∂
l2
baf(W ), (1.5.8)

where κ({wab}l1+1,{wba}
l2) is the cumulant l1 + 1 copies of the random variable wab and l2 copies

of the random variable wba, and ∂l1ab∂
l2
ba denotes the l1-th derivative in the ab-entry and the l2-th

derivative in the ba-entry.

Proof of (1.4.26a). Let p ∈N. Then, starting from (1.5.6), and recalling the second order renormal-
isation (1.5.3), we have

E ⟨WGA⟩ ⟨(G −M)A⟩2p−1
=

1
N
∑
ab

Ewab(GA)ba ⟨(G −M)A⟩
2p−1

=
1
N
∑
ab

E(GA)ba(κ(wab,wba)∂ba ⟨(G −M)A⟩2p−1
+ κ(wab,wab)∂ab ⟨(G −M)A⟩

2p−1
)

+
1
N
∑
ab

∑
l1+l2≥2

1
l1!l2!

κ({wab}
l1+1,{wba}

l2)E∂l1ab∂
l2
ba[(GA)ba ⟨(G −M)A⟩

2p−1
].

(1.5.9)

By computing the resolvent derivatives explicitly as

∂ab ⟨(G −M)A⟩ = −
1
N
(GAG)ba (1.5.10)

and using that κ(wab,wba) = Rab/N , the first term in the middle line of (1.5.9) simplifies to

1
N3 ∑

ab

(GA)ba(GAG)ab =
⟨E1GAE2GAG⟩ + ⟨E2GAE1GAG⟩

N2

(up to the factor of ⟨(G −M)A⟩2p−2) , the second term being similar up to an additional transposition.
Here

Rab ∶= 1(a ≤ N, b ≥ N + 1 or b ≤ N,a ≥ N + 1)

is the indicator function for the off-diagonal blocks of W . For the remaining term in (1.5.9) we
simply estimate the cumulants by their size ∣κ({wab}l1+1,{wba}

l2)∣ ≤ N−(l1+l2+1)/2Rab to obtain

E∣⟨(G −M)A⟩∣2p

= ∣−E⟨WGA′⟩⟨(G −M)A⟩p−1
⟨(G −M)∗A∗⟩p∣ +O≺((E

av
1 )

2p) (1.5.11)

≲E
∣∑σ σ⟨GEσGA

′EσGA⟩∣ + ∣∑σ σ⟨G
∗EσGA

′EσG
∗A∗⟩∣

N2 ∣⟨(G −M)A⟩∣
2p−2

+ ∑
∣l∣+∑(J∪J∗)≥2

E Ξav
1 (l, J, J∗)∣⟨(G −M)A⟩∣

2p−1−∣J∪J∗∣
+O≺((E

av
1 )

2p) ,

where Ξav
1 (l, J, J∗) is defined as

Ξav
1 ∶= N

−(∣l∣+∑(J∪J∗)+3)/2
∑
ab

Rab∣∂
l
(GA′)ba∣∏

j∈J
∣∂j
⟨GA⟩∣∏

j∈J∗
∣∂j
⟨G∗A∗⟩∣ (1.5.12)

and the summation in the last line of (1.5.11) is taken over tuples13 l ∈ Z2
≥0 and multisets of tuples

J, J∗ ⊂ Z2
≥0 ∖{(0, 0)}. Moreover, we set ∂l =∂(l1,l2) ∶= ∂l1ab∂

l2
ba, similarly ∂j = ∂(j1,j2) ∶= ∂j1ab∂

j2
ba and we

13Note that the role played by (l1, l2) here is slightly different than in (1.5.9) above. Here the derivatives are applied
to the individual factors according to Leibniz’ rule, resulting in l, J, J∗, and l encodes only the derivatives hitting the
(GA′)ab factor.
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1.5. Proof of the master inequalities, Proposition 1.4.9

define ∣l∣ = ∣(l1, l2)∣ = l1 + l2, ∑J = ∑j∈J ∣j∣. In the remainder of the proof, we need to analyze the
rhs. of the inequality derived in (1.5.11). We begin with the third line and study the terms involving
Ξav

1 from (1.5.12) afterwards.

Before going into the proof, we note that, due to the cumulant expansion in (1.5.11), there are
chains of resolvents G and deterministic matrices A appearing, where some of the A’s are not
necessarily regular w.r.t. the spectral parameters of the surrounding G’s. The principal idea is to
decompose such A with the aid of Lemma 1.3.3 and carefully track the resulting errors. As a rule
of thumb, potentially small denominators resulting from resolvent identities (1.3.21) or the integral
representation in Lemma 1.5.1 are balanced with the linear perturbative estimates from Lemma 1.3.3.
See also Remark 1.5.3 below.

Gaussian contribution: third line of (1.5.11). In order to do so, we need to analyze in total four
terms, each of which carries a factor of

⟨GEσGA
′EσGA⟩ or ⟨G∗EσGA

′EσG
∗A∗⟩ , for σ = ± .

Since their treatment is very similar, we focus on the two exemplary terms

(i) ⟨GGA′GA⟩ and (ii) ⟨G∗GA′G∗A∗⟩ . (1.5.13)

In the analysis of the Gaussian contribution in Section 1.5.2, we will discuss the analogs of the other
two terms in more detail.
First term. For the first term in (1.5.13), we apply the integral representation from Lemma 1.5.1 to
GG with

τ = + , J =Bℓκ0 , and η̃ =
ℓ

ℓ + 1
η ,

for which we recall that w ∈ D(ϵ0,κ0)
ℓ+1 , i.e. in particular η ≥ (ℓ + 1)N−1+ϵ0 and hence η̃ ≥ ℓN−1+ϵ0 .

The fact that J is a union of compact intervals follows from the fact the support of the density of
HΛ has finitely many components. In particular, Γ ≡ Γτη̃(J) ⊂D(ϵ0,κ0)

ℓ . Now, we split the contour Γ
in three parts,14 i.e.

Γ = Γ1 + Γ2 + Γ3 . (1.5.14)

As depicted in Figure 1.5.2, the first part of the contour consists of the entire horizontal part of Γ.
The second part, Γ2, covers the vertical components up to ∣Im z∣ ≤ N100. Finally, Γ3 consists of the
remaining part with ∣Im z∣ > N100.

Now, the contribution coming from Γ3 can easily be estimated by one via a trivial norm bound on
G. For z ∈ Γ2, we use that 1±δ (z,w) = 0 for every w ∈ D(ϵ0,κ0)

ℓ+1 (recall (1.2.23) and (1.4.22)) and
hence every matrix is (z,w)-regular. Therefore, after adding and subtracting the corresponding
deterministic approximation, we can bound this part by (1+ψav

2 /(Nη)) with the aid of Lemma 1.4.3.
Hence, after splitting the contour integral and bounding each contribution as just described, we find

∣⟨GGA′GA⟩∣ ≺ (1 + ψ
av
2
Nη
) + ∫

Bℓκ0

∣⟨G(x + iη̃)A′G(e + iη)A⟩∣
(x − e)2 + η2 dx . (1.5.15)

Next, we decompose A = Å = Åe+iη,e+iη and A′ = Å′ = (A′)˚ e+iη,e+iη
according to Lemma 1.3.3 as

Å
e+iη,e+iη

= Å
e+iη,x+iη̃

+O(∣x − e∣ + η)E+ +O(∣x − e∣ + η)E− ,

14In the case of several w1, ...,wk, the second part might require a further decomposition: If the spectral parameters
of the resolvents which are not involved in such an integral representation have spectral parameters with imaginary
parts of absolute value greater than one, we need to split Γ2 according to ∣Im z∣ ≤ 1 and ∣Im z∣ > 1. While the former
will be treated exactly as Γ2 here, the latter shall be estimated by means of the η > 1-laws, which we discussed after
Remark 1.4.6.
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11

2

3

D(ϵ0,κ0)
ℓ+1

D(ϵ0,κ0)
ℓ

Γw
i

iN100

Re z

Im z

Figure 1.5.2: The contour Γ is split into three parts (see (1.5.14)). In case of multiple spectral
parameters, the second part might require a further decomposition at the level indicated by the
dashed horizontal line (see Footnote 14). Depicted is the situation, where the bulk Bℓκ0 consists of
two components.

(A′)˚ e+iη,e+iη
= (A′)˚ x+iη̃,e+iη,

+O(∣x − e∣ + η)E+ +O(∣x − e∣ + η)E− .

Plugging this into (1.5.15), we obtain several terms contributing to the integral. Adding and
subtracting the deterministic approximation, the leading term accounts for

∫
Bℓκ0

∣⟨G(x + iη̃)(A′)˚ x+iη̃,e+iη
G(e + iη)Åe+iη,x+iη̃

⟩∣

(x − e)2 + η2 dx ≺ 1
η
(1 + ψ

av
2
Nη
)

by means of Lemma 1.4.3. Here the “1” on the right-hand side is due to the contribution of the
deterministic approximation ⟨M(x+ iη̃, (A′)○, e+ iη)Åe+iη,x+iη̃

⟩, while the “ψav
2 /(Nη)” is due to the

definition of Ψav
2 and the bound Ψav

2 ≺ ψ
av
2 . The error terms can be dealt with by simple resolvent

identities (1.3.21) in combination with the usual single-resolvent local law, Theorem 1.2.6, proving
them to be bounded by η−1. Indeed, for a generic B ∈C2N×2N , we consider the exemplary term

∫
Bℓκ0

∣⟨G(x + iη̃)E+G(e + iη)B⟩∣ ∣x − e∣ + η
(x − e)2 + η2 dx

≲∫
Bℓκ0

∣⟨(G(x + iη̃) −G(e + iη))B⟩∣
(x − e)2 + η2 dx ≺ 1

η
.

Second term. The second term in (1.5.13) is much simpler than the first. After writing GG∗ = ImG/η,
it suffices to realise that, by means of Lemma 1.3.3,

A′ = (A′)˚ e+iη,e−iη
, (A′)˚ e−iη,e−iη

= A′ +O(∣e∣)E− , and A∗ = (A∗)˚ e−iη,e±iη

in order to bound

∣⟨G∗GA′G∗A∗⟩∣ ≺
1
η
(1 + ψ

av
2
Nη
) +
∣e∣

η

∣⟨[G(−e + iη) −G(e − iη)]A∗E−⟩∣
∣e∣ + η

≺
1
η
(1 + ψ

av
2
Nη
)

with the aid of Lemma 1.4.3, the chiral symmetry (1.2.16), a resolvent identity (1.3.21) and
Theorem 1.2.6.

This finishes the estimate for the Gaussian contribution from the third line of (1.5.11), for which we
have shown that

1
N2 ∑

σ

(∣⟨GEσGA
′EσGA⟩∣ + ∣⟨G

∗EσGA
′EσG

∗A∗⟩∣) ≺
1

N2η
(1 + ψ

av
2
Nη
) . (1.5.16)

We are now left with the terms from the last line (1.5.11) resulting from higher order cumulants.
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Higher order cumulants and conclusion. The terms stemming from higher order cumulants are
estimated in Section 1.5.5, the precise bound being given in (1.5.74a). Indeed, plugging (1.5.16)
and (1.5.74a) into (1.5.11) we obtain

E∣⟨(G −M)A⟩∣2p ≺ (Eav
1 )

2p

+

p

∑
m=1
[

1
Nη1/2 (1 +

ψiso
1 + (ψ

av
2 )

1/2

(Nη)1/2
+
(ψiso

2 )
1/8

(Nη)1/8
)]

m

(E ∣⟨(G −M)A⟩∣2p)1−m/2p

and get the appropriate estimate E ∣ . . . ∣2p using Young inequalities. Since p was arbitrary, it follows
that

Ψav
1 ≺ 1 + ψ

av
1
Nη
+
ψiso

1 + (ψ
av
2 )

1/2

(Nη)1/2
+
(ψiso

2 )
1/4

(Nη)1/8
.

The bound given in Proposition 1.4.9 is an immediate consequence after a further trivial Young
inequality.

Remark 1.5.3. Although the proof of the first master inequality (1.4.26a) is rather short, it already
revels a general strategy for dealing with a generic (not strictly) alternating chain

⋯GGAGAGE−AGE−GA⋯ (1.5.17)

of resolvents G and deterministic matrices A.

(i) Apply resolvent identites (1.3.21) and the integral representation from Lemma 1.5.1 in order
to reduce a product of resolvents to a linear combination (discrete or continuous, respectively).
For terms of the form GE−G instead of GG this additionally requires an application of the
chiral symmetry (1.2.16).

(ii) In the resulting strictly alternating chain, decompose every deterministic A according to the
regularisation from Definition 1.4.2 w.r.t. the spectral parameters of its surrounding resolvents
by using Lemma 1.3.3.

(iii) Estimate the regular parts coming from this decomposition in terms of Ψav/iso
k ≺ ψ

av/iso
k .

Carefully track the resulting errors stemming from the other parts.

These steps shall be applied repeatedly until the entire chain (1.5.17) has been examined. The first
two steps outlined above will be performed mechanically without any complication. However, the
third step is non-trivial and requires careful analysis on a case-by-case basis.
We have already mentioned that, as a rule of thumb, potentially small denominators resulting from
Step (i) are balanced with the linear perturbative numerators from Step (ii).

It remains to give a proof of Lemma 1.5.2.

Proof of Lemma 1.5.2. Similarly as in (1.5.6), we suppress the indices of G ≡ G1, M ≡M1 etc.

We start with the first identity in (1.5.4), such that, after defining the one-body stability operator

B ∶= 1 −MS[⋅]M

we find
B[G −M] = −MWG +MS[G −M](G −M)

and consequently, by inversion, multiplication by A = Å (in the sense of (1.4.8), see also (1.4.9))
and taking a trace

⟨(G −M)A⟩ = −⟨WGX [A]M⟩ + ⟨S[G −M](G −M)X [A]M⟩ , (1.5.18)
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where we introduced the linear operator

X [B] ∶= ((B∗)−1
[B∗])

∗
= (1 − S[M ⋅ M])

−1
[B] for B ∈C2N×2N .

Then, it is important to note that the condition 1+δ ⟨ImMA⟩ = 0 (the first of the two imposed via
(1.4.9); recall the definition of the cutoff function 1+δ from (1.3.6) and (1.4.7)), is stable under the
linear operation A↦ X [A]M .

Lemma 1.5.4. For a generic B ∈C2N×2N , we find

⟨X [B]M ImM⟩ = ⟨BB−1
[M ImM]⟩ =

i
2
⟨BImM⟩

⟨ImM⟩
+O(η) . (1.5.19)

Proof. Using (1.B.10), we compute

B
−1
[M ImM] =

B−1[M2 −MM∗]

2i
=

i
2

ImM

η + ⟨ImM⟩
+

1
2i

1 − ⟨MM∗⟩

1 − ⟨M2⟩
M2 .

Now, by means of Lemma 1.B.4 and Lemma 1.B.5, we find that

∣1 − ⟨MM∗
⟩∣ = O(η) and ∣1 − ⟨M2

⟩∣ ≳ 1 , respectively.

Recall from (1.5.5) that S[G −M] = ⟨G −M⟩. Therefore, by means of the usual averaged local
law, Theorem 1.2.6, which in particular shows that ∣⟨WGB⟩∣ ≺ 1

Nη for arbitrary ∥B∥ ≲ 1 (see also
Appendix 1.C and [243]), we can write (1.5.18) as

⟨(G −M)A⟩ = − ⟨WG(X [A]M)○⟩ + ⟨G −M⟩⟨(G −M)(X [A]M)○⟩

− 1−δ c−(X [A]M)⟨WGE−⟩ +O≺(N
−1) , (1.5.20)

where in the underlined term, we used that the E+ component of the regularisation of X [A]M is
negligible thanks to Lemma 1.5.4 and the regularity of A, and we introduced the short hand notation

c−(X [A]M) ∶=
⟨MX [A]MME−⟩

⟨ME−ME−⟩
.

Next, with the aid of WG = I − Λ̂G +wG and using ⟨GE−⟩ = 0 from (1.5.5), we undo the underline
in the second to last term, such that we infer

⟨WGE−⟩ = −⟨GE−Λ̂⟩ = −⟨(G −M)E−Λ̂⟩ = −⟨(G −M)(E−Λ̂)○⟩ .

In the second equality, we used that ⟨ME−Λ̂⟩ = 0, which follows by a simple computation using the
explicit form of M given in (1.2.17)–(1.2.18). For the last equality, we note that

(E−Λ̂)○ = E−Λ̂ − 1+δ
⟨ImME−Λ̂⟩
⟨ImM⟩

E+ − 1−δ
⟨ME−Λ̂ME−⟩

⟨ME−ME−⟩
E− = E−Λ̂ ,

which again follows after a simple computation using the fact that Λ̂ is off-diagonal together with
(1.2.17)–(1.2.18).

We can now write (1.5.20) for A = Å = (E−Λ̂)○ = E−Λ̂ and solve the resulting equation for
⟨(G −M)E−Λ̂⟩. Plugging this back into (1.5.20) yields

⟨(G −M)A⟩ = − ⟨WG(X [A]M)○⟩ + ⟨G −M⟩⟨(G −M)(X [A]M)○⟩ +O≺(N
−1)

+
1−δ c−(X [A]M)

1 − 1−δ c−(X [E−Λ̂]M)
[ − ⟨WG(X [E−Z]M)

○
⟩ (1.5.21)
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+ ⟨G −M⟩⟨(G −M)(X [E−Z]M)
○
⟩ +O≺(N

−1)] .

Since ∥X [Å]∥ ≲ 1 (see Lemma 1.B.6), the only thing left to check is, that the denominator in
(1.5.21) is bounded away from zero.

Lemma 1.5.5. For small enough δ > 0, we have that

∣1 − 1−δ (w,w) c−(X [E−Λ̂]M)∣ ≳ 1 .

Proof. The statement is trivial for 1−δ (w,w) = 0 and we hence focus on the case where λ ∶=

1−δ (w,w) ∈ (0,1]. First, we note that X [E−Λ̂] = E−Λ̂, which follows from the explicit form of
M given in (1.2.17)–(1.2.18) using the fact that Λ̂ is purely off-diagonal. Next, we use the MDE
(1.2.20), the chiral symmetry (1.2.19), and Lemma 1.B.4 (a) to infer

1 − c−(X [E−Λ̂]M) = 1 − ⟨ME−Λ̂MME−⟩

⟨ME−ME−⟩
=

1
2
[1 − w +m

m
⟨M2
⟩] .

Now, specialising to w = iη with sufficiently small η, we find that, to leading order,

Re [1 − η + Imm

Imm
⟨M2
⟩] ∼ Re [1 − ⟨M2

⟩] = 1 − ⟨MM∗
⟩ + 2⟨(ImM)2⟩ ≥ 2⟨ImM⟩2 ≳ 1 (1.5.22)

by direct computation. Using Lipschitz continuity of this expression in w, this principal lower bound
on Re [1 − c−(X [E−Λ̂]M)] of order one persists after a small perturbation of w allowing for a
non-zero real part, but as long as λ = 1−δ (w,w) > 0 for some δ > 0 small enough. Hence, we conclude
the lower bound

∣1 − λc−(X [E−Λ̂]M)∣ ≥ (1 − λ)1 + λRe [1 − c−(X [E−Λ̂]M)] ≳ 1 (1.5.23)

for the convex combination, by separately considering smaller and larger values of λ ∈ (0,1].

From the expansion (1.5.21) it is apparent, that the main terms for understanding the size of
⟨(G −M)A⟩ are the underlined ones, the rest carrying additional ⟨G −M⟩-factors, hence they will
become negligible errors. In fact, summarizing our investigations, we have shown that

⟨(G −M)Å⟩ = −⟨WGÅ
′
⟩ +O≺(E

av
1 ) ,

where we used the shorthand notation

Å
′
∶= (X [Å]M)○ +

1−δ c−(X [Å]M)
1 − 1−δ c−(X [E−Λ̂]M)

(X [E−Λ̂]M)○ (1.5.24)

in the underlined term. Using the usual averaged local law (1.4.17) and (1.4.25), we collected all
the error terms from (1.5.21) in Eav

1 , defined in (1.5.7).

1.5.2 Proof of the second master inequality (1.4.26b)

Let wj ∈D(ϵ0,κ0)
ℓ+1 for j ∈ [2] be spectral parameters and A1 a regular matrix w.r.t. the pair of spectral

parameters (w1,w2) (see Definition 1.4.2). By conjugation with E−, we will assume w.l.o.g. that
Imw1 > 0 and Imw2 < 0. Moreover, we use the notations ej ≡ Rewj , ηj ∶= ∣Imwj ∣ for j ∈ [2] and
define 1 ≥ η ∶=minj ∣Imwj ∣. We also assume that (1.4.25) holds.
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Lemma 1.5.6. (Representation as full underlined)
For ∥x∥, ∥y∥ ≤ 1 and any (w1,w2)-regular matrix A1 = Å1, we have that

(G1Å1G2 −M(w1, Å1,w2))xy
= −(G1Å

′
1WG2)xy

+O≺(E
iso
1 ) (1.5.25)

for some (w1,w2)-regular matrix A′1 = Å
′
1, which linearly depends on A1 = Å1 (see (1.5.57)). For

the error term in (1.5.25), we used the shorthand notation

E
iso
1 ∶=

1
√
Nη2

(1 + ψav
1

(Nη)1/2
+
ψiso

1
Nη
) . (1.5.26)

Note that unlike in Section 1.5.1, now in (1.5.25) the second resolvent G2 was expanded instead of
G1 rendering the W factor in the middle of the underlined term. This prevents the emergence of
resolvent chains in the proof of (1.4.26b), which are ‘too long’ to be handled within our hierarchical
framework of master inequalities (e.g., a chain involving four resolvents would appear in Ξ̃iso

1 defined
below).

Having this approximate representation of (G1Å1G2 −M(w1, Å1,w2))xy
as a full underlined term

at hand, we turn to the proof of (1.4.26b) via a (minimalistic) cumulant expansion.

Proof of (1.4.26b). Let p ∈N. Then, starting from (1.5.25) and using the same notations as in the
proof of (1.4.26a), we obtain

E∣(G1Å1G2 −M(w1, Å1,w2))xy
∣
2p (1.5.27)

≲E Ξ̃iso
1 ∣(G1Å1G2 −M(. . .))xy

∣
2p−2

+ ∑
∣l∣+∑(J∪J∗)≥2

E Ξiso
1 (l, J, J∗)∣(G1Å1G2 −M(. . .))xy

∣
2p−1−∣J∪J∗∣

+O≺((E
iso
1 )

2p) ,

where

Ξ̃iso
1 ∶=

∑σ [∣(G1Å
′
1EσG1Å1G2)xy

(G1EσG2)xy
∣ + ∣(G1Å

′
1EσG2)xy

(G1Å1G2EσG2)xy
∣]

N

+
∑σ [∣(G1Å

′
1EσG

∗
2(Å1)

∗G∗1)xx
(G∗2EσG2)yy

∣ + ∣(G1Å
′
1EσG

∗
1)xx
(G∗2(Å1)

∗G∗1EσG2)yy
∣]

N

and Ξiso
1 (l, J, J∗) is defined via

Ξiso
1 ∶= N

−(∣l∣+∑(J∪J∗)+1)/2
∑
ab

Rab∣∂
l[(G1Å

′
1)xa(G2)by]∣ (1.5.28)

×∏
j∈J
∣∂j(G1Å1G2)xy

∣∏
j∈J∗
∣∂j(G∗2(Å1)

∗G∗2)yx
∣ .

In the remainder of the proof, we need to analyze the rhs. of the inequality derived in (1.5.27).
Following the general strategy outlined in Remark 1.5.3, we begin with the second line and study the
terms involving Ξiso

1 from (1.5.28) afterwards.

Gaussian contribution: third line of (1.5.27). In order to do so, following Remark 1.5.3, we need
to analyze in total eight terms, each of which carries one of the summands in the definition of Ξ̃iso

1
as a factor. Since their treatment is very similar, we focus on the two exemplary terms

(i) (G1Å
′
1E−G1Å1G2)xy

(G1E−G2)xy
, (ii) (G1Å

′
1E−G

∗
1)xx
(G∗2(Å1)

∗G1E−G2)yy
, (1.5.29)
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showcasing the key difficulties. Recall that, in the analysis of the Gaussian term in Section 1.5.1 we
discussed analogs of the above terms with the choice σ = +.

Term (i) in (1.5.29). For the first term, we decompose, similarly to Lemma 1.3.3,

(Å
′
1)

1,2E− = ((Å
′
1)

1,2E−)
○1,1
+O(∣e1 + e2∣ + ∣η1 − η2∣)E+ +O(∣e1 + e2∣ + ∣η1 − η2∣)E− . (1.5.30)

Inserting this into the first term in (1.5.29) and using Lemma 1.4.3, we find

∣(G1Å
′
1E−G1Å1G2)xy

∣ ≺
1
η
(1 + ψiso

2√
Nη
) + (∣e1 + e2∣ + ∣η1 − η2∣)∑

σ

∣(G1EσG1Å1G2)xy
∣ . (1.5.31)

In the last term, we focus on σ = −, while σ = + can be dealt with by Lemma 1.5.1. In fact, using
(1.2.16) and a resolvent identity (1.3.21), we obtain

∣(G1E−G1Å1G2)xy
∣ = ∣

1
w1
([G(−w1) −G(w1)]Å

w1,w2
1 G(w2))(E−x)y∣ ≺

1
η2 (1 +

ψiso
1√
Nη
) ,

where in the last step we used Lemma 1.4.3 and the trivial approximation

Å
−w1,w2
1 = Å

w1,w2
1 +O(1)E+ +O(1)E− .

For the second factor in the first term in (1.5.29), we use (1.2.16) and employ the integral represen-
tation from Lemma 1.5.1 with

τ = + , J =Bℓκ0 , and η̃ =
ℓ

ℓ + 1
η ,

for which we recall that wj ∈ D(ϵ0,κ0)
ℓ+1 , i.e. in particular η ≥ (ℓ + 1)N−1+ϵ0 and hence η̃ ≥ ℓN−1+ϵ0 .

After splitting the contour integral and estimating the contribution as described around (1.5.14), we
find, with the aid of Lemma 1.4.3 and absorbing logarithmic corrections into ‘≺’, that

∣(G1E−G2)xy
∣ ≺ 1 + ∫

Bℓκ0

∣(G(x + iη̃))
x(E−y)∣

∣(x − e1 − i(η1 − η̃)) (x + e2 − i(η2 − η̃))∣
dx

≺ 1 + 1
∣e1 + e2∣ + η1 + η2

(1.5.32)

where in the last step we used the usual single resolvent local law from Theorem 1.2.6. Notice the
key cancellation of the ∣e1 + e2∣ factor in (1.5.31) and (1.5.32). Collecting all the estimates, we have
shown that

∣(1.5.29) (i) ∣ ≺ 1
η2 (1 +

ψiso
1√
Nη
+
ψiso

2√
Nη
) . (1.5.33)

Term (ii) in (1.5.29). In the first factor in the second term in (1.5.29), we again employ the decom-
position (1.5.30) to find

∣(G1Å
′
1E−G

∗
1)xx
∣ ≺

1
η1/2 (1 +

ψiso
1√
Nη
) +
∣e1 + e2∣ + ∣η1 − η2∣

η
(1.5.34)

with the aid of Theorem 1.2.6 and Lemma 1.4.3 as well as a resolvent identity (1.3.21) and
Lemma 1.5.1 for the E+ and E− in (1.5.30), respectively.

In the second factor, similarly to (1.5.32) above, we use Lemma 1.5.1 together with the decomposi-
tion15

(Å
w1,w2
1 )

∗
= (A∗1)

˚ w̄2,w̄1
= (A∗1)

˚ w̄2,w1
= (A∗1)

˚ w̄2,x+iη̃
+∑

σ

Oσ(∣x − e1∣ + ∣η1 − η̃∣)Eσ

15 The notation ∑σOσ(α)Eσ means that, for each σ, the term Oσ(α) is a scalar function gσ(α) of order O(α).
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from Lemma 1.3.3 for arbitrary x to find

∣(G∗2(Å1)
∗G1E−G2)yy

∣ ≺
1
η1/2 (1 +

ψiso
1√
Nη
)

+ ∫
Bℓκ0

∣(G(w̄2)(A
∗
1)

˚ w̄2,x+iη̃
G(x + iη̃))

y(E−y)∣

∣(x − e1 − i(η1 − η̃)) (x + e2 − i(η2 − η̃))∣
dx

+ ∫
Bℓκ0

∑σ ∣(G(w̄2)EσG(x + iη̃))
y(E−y)∣

∣x + e2 − i(η2 − η̃)∣
dx (1.5.35)

≺
1
η1/2 (1 +

ψiso
1√
Nη
)(1 + 1

∣e1 + e2∣ + η1 + η2
) +

1
η
.

Now, combining (1.5.34) and (1.5.35), we obtain

∣(1.5.29) (ii) ∣ ≺ 1
η2 (1 +

ψiso
1√
Nη
)

2

. (1.5.36)

This finishes the estimate for the Gaussian contribution from the third line of (1.5.27), for which we
have shown that

Ξ̃iso
1 ≺

1
Nη2 (1 +

(ψiso
1 )

2

Nη
+
ψiso

2√
Nη
) (1.5.37)

as easily follows by combining (1.5.33) with (1.5.36) and using a Schwarz inequality.

We are now left with the terms from the last line (1.5.27) resulting from higher order cumulants.

Higher order cumulants and conclusion. The estimate stemming from higher order cumulants
is given in (1.5.74b). Then, plugging (1.5.37) and (1.5.74b) into (1.5.27), we find, similarly to
Section 1.5.1, that

Ψiso
1 ≺ 1 + ψ

iso
1
Nη
+
ψiso

1 + ψ
av
1

(Nη)1/2
+
(ψiso

2 )
1/2

(Nη)1/4
+
(ψiso

2 )
1/4

(Nη)1/8
.

The bound given in Proposition 1.4.9 is an immediate consequence after a trivial Young inequality.

It remains to give a proof of Lemma 1.5.6. This is much more involved than for the previous underlined
Lemma 1.5.2. The proof of Lemma 1.5.2 crucially used that the orthogonality ⟨ImMA⟩ = 0 is
(almost) preserved under the operation A↦ X [A]M (see Lemma 1.5.4). This is simply not available
here, since we deal with two spectral parameters w1,w2.

Proof of Lemma 1.5.6. We denote A1 ≡ Å1, except we wish to emphasise A1 being regular. Just as
in Section 1.5.1, we start with

G2 =M2 −M2WG2 +M2S[G2 −M2]G2 ,

such that we get

G1Ã1G2 = G1Ã1M2 −G1Ã1M2WG2 +G1Ã1M2S[G2 −M2]G2

for Ã1 = X12[A1] and A1 = Å1 (note that ∥X12[Å1]∥ ≲ 1 by Lemma 1.B.6), where we introduced
the linear operator

X12[B] ∶= (1 − S[M1 ⋅ M2])
−1
[B] for B ∈C2N×2N . (1.5.38)

Extending the underline to the whole product, we obtain

G1Ã1G2 =M1Ã1M2 + (G1 −M1)Ã1M2 −G1Ã1M2WG2
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+G1Ã1M2S[G2 −M2]G2 +G1S[G1Ã1M2]G2 ,

from which we conclude that

G1(Ã1 − S[M1Ã1M2])G2 = M1Ã1M2 + (G1 −M1)Ã1M2 −G1Ã1M2WG2

+G1Ã1M2S[G2 −M2]G2 +G1S[(G1 −M1)Ã1M2]G2

and thus

G1A1G2 =M1X12[A1]M2 + (G1 −M1)X12[A1]M2 −G1X12[A1]M2WG2 (1.5.39)
+G1X12[A1]M2S[G2 −M2]G2 +G1S[(G1 −M1)X12[A1]M2]G2 .

We note that ∥X12[Å1]∥ ≲ 1 by means of Lemma 1.B.6.

Then, we need to further decompose X12[A1]M2 in the last three terms in (1.5.39) as

X12[A1]M2 = (X12[A1]M2)
○
+∑

σ

1σδ cσ(X12[A1]M2)Eσ , (1.5.40)

where we suppressed the spectral parameters (and the relative sign of their imaginary parts, which has
been fixed by Imw1 > 0 and Imw2 < 0) in the notation for the linear functionals cσ(⋅) on C2N×2N

defined as
c+(B) ∶=

⟨M1BM2⟩

⟨M1M2⟩
and c−(B) ∶=

⟨M1BM
∗
2E−⟩

⟨M1E−M∗
2E−⟩

. (1.5.41)

Plugging (1.5.40) into (1.5.39) we find G1A1G2 to equal

M1X12[A1]M2 + (G1 −M1)X12[A1]M2 −G1(X12[A1]M2)
○
WG2 (1.5.42)

+G1(X12[A1]M2)
○
S[G2 −M2]G2 +G1S[(G1 −M1)(X12[A1]M2)

○
]G2

+∑
σ

1σδ cσ(X12[A1]M2) [−G1EσWG2 +G1EσS[G2 −M2]G2 +G1S[(G1 −M1)Eσ]G2] .

Recall that the regular component is defined w.r.t. the pair of spectral parameters (w1,w2). In
particular, (X12[A1]M2)

○
= (X12[A1]M2)

○1,2 in the last term in the second line of (1.5.42) is not
regular as defined via the conditions with one resolvent (1.4.9).

In the last line of (1.5.42) we now undo the underline and find the bracket [⋯] to equal (the negative
of)

G1EσWG2 +G1EσS[M2]G2 +G1S[M1Eσ]G2

=G1Eσ +G1(Eσ(w2 − Λ̂ + S[M2]) + S[M1Eσ])G2

=G1Eσ −G1(EσM
−1
2 − S[M1Eσ])G2 =∶ G1Eσ −G1ΦσG2 ,

where we used WG2 = E+ +w2G2 − Λ̂G2 in the first step and the MDE (1.2.20) in the second step.
Moreover, we introduced the shorthand notation

Φσ ∶= Eσ
1
M2
− S[M1Eσ] . (1.5.43)

From the expansion (1.5.42) it is apparent (and it can also be checked by hand using the explicit
form of (1.5.43)) that

M1Eσ =M1(EσM
−1
2 )M2 =M1X12[Φσ]M2 =M(w1,Φσ,w2) ,

where in the last step we used (1.4.4). This finally yields that G1A1G2 equals

M(w1,A1,w2) + (G1 −M1)X12[A1]M2 −G1(X12[A1]M2)
○
WG2 (1.5.44)
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+G1(X12[A1]M2)
○
S[G2 −M2]G2 +G1S[(G1 −M1)(X12[A1]M2)

○
]G2

+∑
σ

1σδ cσ(X12[A1]M2) [−(G1 −M1)Eσ + (G1ΦσG2 −M(w1,Φσ,w2))] .

The last term in the last line of (1.5.44) requires further decomposition of Φσ from (1.5.43)
(completely analogous to (1.5.40) and (1.5.41)) as

Φσ = Φ̊σ +∑
τ

1τδ cτ(Φσ)Eτ .

Using the explicit form of Φσ, we further observe that

cτ(Φσ) ∼ δσ,τ and cτ(X12[Φσ]M2) ∼ δσ,τ . (1.5.45)

Therefore, by means of the first relation in (1.5.45), the expansion (1.5.44) can be carried out further
as

M(w1,A1,w2) + (G1 −M1)X12[A1]M2 −G1(X12[A1]M2)
○
WG2 (1.5.46)

+G1(X12[A1]M2)
○
S[G2 −M2]G2 +G1S[(G1 −M1)(X12[A1]M2)

○
]G2

+∑
σ

1σδ cσ(X12[A1]M2) [ − (G1 −M1)Eσ + (G1Φ̊σG2 −M(w1, Φ̊σ,w2))

+ cσ(Φσ)(G1EσG2 −M(w1,Eσ,w2))] .

Next, we write (1.5.46) for both, A1 = Å1 = Φ̊+ and A1 = Å1 = Φ̊−, and solve the two resulting linear
equations for G1Φ̊±G2 −M(w1, Φ̊±,w2). Observe that by means of the second relation in (1.5.45)
the original system of linear equations boils down to two separate ones. Thus, plugging the solutions
for G1Φ̊±G2 −M(w1, Φ̊±,w2) back into (1.5.46) we arrive at

G1A1G2 =M(w1,A1,w2) + (G1 −M1)X12[A1]M2 −G1(X12[A1]M2)
○
WG2 (1.5.47)

+G1(X12[A1]M2)
○
S[G2 −M2]G2 +G1S[(G1 −M1)(X12[A1]M2)

○
]G2

+∑
σ

1σδ cσ(X12[A1]M2)

1 − 1σδ cσ(X12[Φ̊σ]M2)
[(G1 −M1)X12[Φ̊σ]M2 −G1(X12[Φ̊σ]M2)

○
WG2

+G1(X12[Φ̊σ]M2)
○
S[G2 −M2]G2 +G1S[(G1 −M1)(X12[Φ̊σ]M2)

○
]G2

− (G1 −M1)Eσ + cσ(Φσ)(G1EσG2 −M(w1,Eσ,w2))] .

We now need to check that the denominators in (1.5.47) are bounded away from zero.

Lemma 1.5.7. For small enough δ > 0, we have that

∣1 − 1σδ (w1,w2) cσ(X12[Φ̊σ]M2)∣ ≳ 1 for σ = ± .

Proof. The statements are trivial for 1σδ (w1,w2) = 0 and we hence focus on cases where λσ ∶=
1σδ (w1,w2) ∈ (0,1]. First, we compute

1 − c+(X12[Φ̊+]M2) = ⟨M1⟩
⟨M1M2M2⟩

⟨M1M2⟩2
and (1.5.48)

1 − c−(X12[Φ̊−]M2) =
⟨M1E−M

∗
2M

−1
2 E−⟩ + ⟨M1⟩⟨M1E−M

∗
2E−⟩

1 + ⟨M1E−M2E−⟩

⟨M1E−M2M
∗
2E−⟩

⟨M1E−M∗
2E−⟩

2
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for arbitrary spectral parameters w1,w2. Recall that we assumed the two spectral parameters to
be on different halfplanes, i.e. s1 = − sgn(Imw1Imw2) = +, hence we shall specialise (i) the first
expression in (1.5.48) to w2 = w̄1 and (ii) the second expression in (1.5.48) to w2 = −w1.

In this case, for the first expression in (1.5.48), using Lemma 1.B.4 and ImM1Imw1 > 0, we obtain

∣1 − c+(X12[Φ̊+]M2)∣ = ∣⟨M1⟩
⟨ImM1M

∗
1 ⟩

⟨ImM1⟩2
(⟨ImM1⟩ + Imw1)∣ ≥ ⟨ImM1⟩

2
≳ 1 (1.5.49)

in the bulk of the spectrum. This principal lower bound of order one persists after a small perturbation
of w2 around the special case w2 = w̄1, but as long as λ+ = 1 (for some δ > 0 small enough), which
proves the claim for σ = + and λ+ = 1. A further direct computation by estimating real and imaginary
part of 1 − c+(X12[Φ̊+]M2) instead of its absolute value in (1.5.49), similarly to (1.5.22) shows that
also the convex combination

(1 − λ+)1 + λ+[1 − c+(X12[Φ̊+]M2)]

is bounded away from zero (in absolute value), by separately considering small and large values of
λ+ ∈ (0,1). For the second expression in (1.5.48), the argument is similar and hence omitted.

Next, we take the scalar product of (1.5.47) with two deterministic vectors x,y satisfying ∥x∥, ∥y∥ ≤ 1.
In the resulting expression,there are two particular terms, namely the ones of the form

(G1S[(G1 −M1)Å
1,2
1 ]G2)xy

and (1.5.50)

cσ(X12[Å
1,2
1 ]M2)cσ(Φσ)(G1EσG2 −M(w1,Eσ,w2))xy

, (1.5.51)

whose direct (naive) estimates are 1/(Nη2) and 1/η, respectively, and thus do not match the target
size. Hence, they have to be discussed in more detail. In our notation, we emphasised that the
regularisation is defined w.r.t. the spectral parameters (w1,w2), i.e., in particular, A○1 = A

○1,2
1 .

Estimating (1.5.50). For the term (1.5.50), we expand

(G1S[(G1 −M1)Å
1,2
1 ]G2)xy

=∑
σ

σ⟨(G1 −M1)Å
1,2
1 Eσ⟩(G1EσG2)xy

(1.5.52)

and observe that, by definition of ⋅○ in (1.4.8), we have, similarly to Lemma 1.3.3 (see also (1.5.30)),

Å
1,2
1 Eσ = (Å

1,2
1 Eσ)

○1,1
+O(∣e1 − σe2∣ + ∣η1 − η2∣)E+ +O(∣e1 − σe2∣ + ∣η1 − η2∣)E− . (1.5.53)

Now, in the second term in (1.5.52) for σ = + and Eσ = E+, we use a resolvent identity (1.3.21) and
the usual isotropic local law (1.4.17) to estimate it as

∣(G1G2)xy
∣ ≺ 1 + 1

∣e1 − e2∣ + η1 + η2
. (1.5.54)

Furthermore, in the second term in (1.5.1) for σ = − and Eσ = E−, we employ the integral
representation from Lemma 1.5.1 in combination with the usual isotropic local law (1.4.17) (see also
(1.5.32)) to infer

∣(G1E−G2)xy
∣ ≺ 1 + 1

∣e1 + e2∣ + η1 + η2
. (1.5.55)

Combining (1.5.54) and (1.5.55) with the decomposition (1.5.53) and the usual averaged local law
(1.4.17), we find that (1.5.52) can be bounded by

∑
σ

(∣⟨(G1 −M1)(Å
1,2
1 Eσ)

○1,1
⟩∣ +
∣e1 − σe2∣ + ∣η1 − η2∣

Nη1
)(1 + 1

∣e1 − σe2∣ + η1 + η2
) .
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Using the definition of Ψav
1 in (1.4.15) and the apriori bound Ψav

1 ≺ ψ
av
1 , this immediately implies

the estimate
∣(1.5.50)∣ ≺ 1

Nη
+

1
√
Nη

ψav
1

(Nη)1/2
. (1.5.56)

Estimating (1.5.51). For the term (1.5.51), we first note that the two prefactors cσ(X12[A
○1,2
1 ]M2)

and cσ(Φσ) are bounded. However, in each of the two cases σ = ±, the bound on one of the
prefactors needs to be improved: In the first case, σ = +, we use (1.B.11) and compute

c+(Φ+) =
⟨M1⟩(1 − ⟨M1M2⟩)

⟨M1M2⟩
= O(∣e1 − e2∣ + η1 + η2)

from (1.5.41) and (1.5.43). Combining this with the bound

∣(G1G2 −M(w1,E+,w2))xy
∣ ≺ (

1
√
Nη1

+
1

√
Nη2
) ⋅

1
∣e1 − e2∣ + η1 + η2

which is obtained completely analogous to (1.5.54), we conclude that (1.5.51) for σ = + can be
estimated by 1/

√
Nη (recall η ∶= min{η1, η2}). Similarly, in the second case, σ = −, we perform

a computation similar to the one leading to (1.5.19) and use (1.B.11) in order to obtain that
c−(X12[Å

1,2
1 ]M2) equals

i
2
⟨M1Å

1,2
1 M∗

2E−⟩

⟨M1E−M∗
2E−⟩

+
1
2i
⟨M1Å

1,2
1 M2E−⟩

⟨M1E−M∗
2E−⟩

1 + ⟨M1E−M
∗
2E−⟩

1 + ⟨M1E−M2E−⟩
= O(∣e1 + e2∣ + η1 + η2)

Combining this with the bound

∣(G1E−G2 −M(w1,E−,w2))xy
∣ ≺

1
√
Nη
⋅

1
∣e1 + e2∣ + η1 + η2

which is obtained completely analogous to (1.5.55), we conclude that (1.5.51) can be estimated by
1/
√
Nη – now in both cases σ = ±.

Conclusion. Summarizing our investigations, we have shown that

(G1Å1G2 −M(w1, Å1,w2))xy
= −(G1Å

′
1WG2)xy

+O≺(E
iso
1 ) ,

where we used the shorthand notation

Å
′
1 ∶= (X12[Å1]M2)

○
+∑

σ

1σδ cσ(X12[Å1]M2)

1 − 1σδ cσ(X12[Φ̊σ]M2)
(X12[Φ̊σ]M2)

○ (1.5.57)

in the underlined term. Combining (1.5.56) and the bound on (1.5.51) established above with
the usual single resolvent local laws (1.4.17) and the bounds on deterministic approximations in
Lemma 1.4.3, we collected all the error terms from (1.5.47) in (1.5.26).

1.5.3 Proof of the third master inequality (1.4.26c)

Let wj ∈D(ϵ0,κ0)
ℓ+1 for j ∈ [2] be spectral parameters and A1 a regular matrix w.r.t. (w1,w2) and A2

a regular matrix w.r.t. (w2,w1) (see Definition 1.4.2). By conjugation with E−, we again assume
w.l.o.g. that Imw1 > 0 and Imw2 < 0. Just as in Section 1.5.2, we use the notations ej ≡ Rewj ,
ηj ∶= ∣Imwj ∣ for j ∈ [2] and define 1 ≥ η ∶=minj ∣Imwj ∣. We also assume that (1.4.25) holds.

Lemma 1.5.8. (Representation as full underlined)
For any (w1,w2)-regular matrix A1 = Å1 and (w2,w1)-regular matrix A2 = Å2, we have that

⟨(G1Å1G2 −M(w1, Å1,w2))Å2⟩ = −⟨WG1Å1G2Å
′
2⟩ +O≺(E

av
2 ) (1.5.58)
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for some (w2,w1)-regular matrix A′2 = Å
′
2, which linearly depends on A2 = Å2 (analogously to

(1.5.57), see (1.E.18) for an explicit formula). For the error term in (1.5.58), we used the shorthand
notation

E
av
2 ∶=

1
Nη
(1 + (ψ

av
1 )

2

Nη
+
ψav

2
Nη
) . (1.5.59)

Note that similarly to Lemma 1.5.2 but contrary to Lemma 1.5.6, we again expanded the first
resolvent G1. Otherwise, the proof of Lemma 1.5.8, given in Appendix 1.E, is very similar to the one
of Lemma 1.5.6. We only mention that the quadratic error (ψav

1 )
2 stems from terms of the form

⟨S[G1Å
1,2
1 G2](G2 −M2)Å

2,1
2 ⟩ ,

appearing in the analogue of (1.5.47) (see (1.E.9) in Appendix 1.E). Having the approximate
representation (1.5.58), we turn to the proof of (1.4.26c) via cumulant expansion of the full
underlined term.

Proof of (1.4.26c). Let p ∈N. Starting from (1.5.6), we obtain, as in the proofs of (1.4.26a) and
(1.4.26b),

E∣⟨(G1Å1G2 −M(w1, Å1,w2))Å2⟩∣
2p (1.5.60)

≲E Ξ̃av
2 ∣⟨(G1Å1G2 −M(. . .))Å2⟩∣

2p−2

+ ∑
∣l∣+∑(J∪J∗)≥2

E Ξav
2 (l, J, J∗)∣⟨(G1Å1G2 −M(. . .))Å2⟩∣

2p−1−∣J∪J∗∣
+O≺((E

av
2 )

2p) ,

where
Ξ̃av

2 ∶=
1
N2 ∑

σ

∣⟨G1Å1G2Å2G1EσG1Å1G2Å
′
2Eσ⟩∣ +⋯

with the other terms being analogous, just 1 and 2 in the first half G1Å1G2Å2G1 of the chain
interchanged or the entire half taken as adjoint, and Ξav

2 (l, J, J∗) is defined as

Ξav
2 ∶= N

−(∣l∣+∑(J∪J∗)+3)/2
∑
ab

Rab∣∂
l
(G1Å1G2Å

′
2)ba∣ (1.5.61)

×∏
j∈J
∣∂j
⟨G1Å1G2Å2⟩∣∏

j∈J∗
∣∂j
⟨G∗2Å

∗
2G
∗
1Å
∗
1⟩∣ .

As in Sections 1.5.1 and 1.5.2, in the remainder of the proof, we need to analyze the rhs. of (1.5.60).
We begin with the second line and study the terms involving Ξav

2 from (1.5.61) afterwards.

Gaussian contribution: second line of (1.5.60). Along the principal strategy outlined in Remark 1.5.3,
we need to analyze in total eight terms, each of which carries one of the summands in the definition
of Ξ̃av

2 as a factor. Since their treatment is very similar, we focus on the exemplary term

⟨G1Å
w1,w2
1 G2Å

w2,w1
2 G1G1Å

w1,w2
1 G2(Å

′
2)
w2,w1⟩ . (1.5.62)

Now, we represent G1G1 via the integral representation from Lemma 1.5.1 with

τ = + , J =Bℓκ0 , and η̃ =
ℓ

ℓ + 1
η ,

for which we recall that w ∈ D(ϵ0,κ0)
ℓ+1 , i.e. in particular η ≥ (ℓ + 1)N−1+ϵ0 and hence η̃ ≥ ℓN−1+ϵ0 .

After splitting the contour integral and bounding the individual contributions as described in (1.5.14),
we obtain, with the aid of Lemma 1.4.3,

∣(1.5.62)∣ ≺ 1
η2 (1 +

ψav
4
Nη
) + ∫

Bℓκ0

∣⟨G1Å
w1,w2
1 G2Å

w2,w1
2 G(x + iη̃)Åw1,w2

1 G2(Å
′
2)
w2,w1⟩∣

(x − e1)2 + η2
1

dx .
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Next, we decompose Åw2,w1
2 and Åw1,w2

1 in the integrand as (recall the notation in Footnote 15)

Å
w2,x+iη̃
2 = Å

w2,w1
2 +∑

σ

Oσ(∣x − e1∣ + ∣η1 − η̃∣)Eσ

Å
x+iη̃,w2
1 = Å

w1,w2
1 +∑

σ

Oσ(∣x − e1∣ + ∣η1 − η̃∣)Eσ .
(1.5.63)

While the properly regularised term contributes an η−2(1 + ψav
4 /(Nη))-error, a typical cross term

shall be estimated as

∫
Bℓκ0

∣⟨G1Å
w1,w2
1 G2Å

w2,x+iη̃
2 [G(x + iη̃) −G2](Å

′
2)
w2,w1⟩∣

(∣x − e1∣ + η1) (∣x − e2∣ + η2)
≺

1
η2 (1 +

ψiso
2√
Nη
) (1.5.64)

where in the second step we wrote out the averaged trace and estimated each summand in isotropic
form with the aid of Lemma 1.4.3, using ψiso

2 instead of ψav
3 .

Finally, for ‘error × error’-type terms are bounded by η−2, simply by using a trivial Schwarz inequality
in combination with a Ward identity and the usual local law from Theorem 1.2.6 to infer

∣⟨G1B1G2B2∣ ≤
√

⟨G1B1B∗1G
∗
1⟩⟨G2B2B∗2G

∗
2⟩ ≤

1
η

√

⟨ImG1B1B∗1 ⟩⟨ImG2B2B∗2 ⟩ ≺
1
η
,

which is valid for arbitrary bounded matrices ∥B1∥, ∥B2∥ ≲ 1.

This finishes the estimate for the Gaussian contribution from the second line of (1.5.60), for which,
collecting the above estimates, we have shown that

Ξ̃av
2 ≺

1
N2η2 (1 +

ψiso
2√
Nη
+
ψav

4
Nη
) . (1.5.65)

We are now left with the terms from the last line of (1.5.60) resulting from higher order cumulants.

Higher order cumulants and conclusion. The estimate stemming from higher order cumulants is
given in (1.5.74c) in Section 1.5.5. Then, plugging (1.5.65) and (1.5.74c) into (1.5.60), we find,
similarly to Section 1.5.1, that

Ψav
2 ≺ 1 + (ψ

av
1 )

2 + (ψiso
1 )

2 + ψav
2

Nη
+
ψiso

2 + (ψ
av
4 )

1/2

(Nη)1/2
+
(ψiso

2 )
1/2

(Nη)1/4
+
(ψiso

3 )
3/8 + (ψiso

4 )
3/8

(Nη)3/16 .

The bound given in Proposition 1.4.9 is an immediate consequence after a trivial Young inequality.

1.5.4 Proof of the fourth master inequality (1.4.26d)

Let wj ∈ D(ϵ0,κ0)
ℓ+1 for j ∈ [3] be spectral parameters and A1 a regular matrix w.r.t. (w1,w2) and

A2 a regular matrix w.r.t. (w2,w3) (see Definition 1.4.2). By conjugation with E−, we will assume
w.l.o.g. that Imw1 > 0, Imw2 < 0, and Imw3 > 0. As before, we use the notations ej ≡ Rewj ,
ηj ∶= ∣Imwj ∣ for j ∈ [3] and define 1 ≥ η ∶=minj ∣Imwj ∣. We also assume that (1.4.25) holds.

Lemma 1.5.9. (Representation as full underlined)
For ∥x∥, ∥y∥ ≤ 1 and any (w1,w2)-regular matrix A1 = Å1 and (w2,w3)-regular matrix A2 = Å2, we
have that

(G1Å1G2Å2G3 −M(w1, Å1,w2, Å2,w3))xy
= −(G1Å

′
1WG2Å2G3)xy

+O≺(E
iso
2 ) (1.5.66)

for some other (w1,w2)-regular matrix A′1 = Å
′
1, which linearly depends on A1 = Å1 (analogously to

(1.5.57), see (1.E.33) for an explicit formula). For the error term in (1.5.66), we used the shorthand
notation

E
iso
2 ∶=

1
√
Nη3

(1 + ψiso
1 +

ψav
1 ψ

iso
1

Nη
+
ψiso

2
Nη
) . (1.5.67)
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Note that similarly to (1.5.25), we again expanded the second resolvent. The proof of Lemma 1.5.9,
given in Appendix 1.E, is very similar to the one of Lemma 1.5.6. We only mention that the errors
carrying ψiso

1 ψav
1 and ψiso

1 stem from terms of the form

(G1S[(G1 −M1)A
○1,2
1 ]G2Å2G3)xy

and

cσ(X12[Å1]M2)cσ(Φσ)(G1EσG2Å2G3 −M(w1,Eσ,w2, Å2,w3))xy
,

respectively, appearing in the analogue of (1.5.47) (see (1.E.24) and (1.E.26) in Appendix 1.E).
Having the representation (1.5.66) we turn to the proof of (1.4.26d) via cumulant expansion of the
underlined term.

Proof of (1.4.26d). Let p ∈N. Then, starting from (1.5.66), we obtain

E∣(G1Å1G2Å2G3 −M(w1, Å1,w2, Å2,w3))xy
∣
2p (1.5.68)

≲E Ξ̃iso
2 ∣(G1Å1G2Å2G3 −M(. . .))xy

∣
2p−2
+O≺((E

iso
1 )

2p)

+ ∑
∣l∣+∑(J∪J∗)≥2

E Ξiso
2 (l, J, J∗)∣(G1Å1G2Å2G3 −M(. . .))xy

∣
2p−1−∣J∪J∗∣

,

where

Ξ̃iso
2 ∶=

∑σ∑
3
j=1 ∣(G1Å

′
1EσGjÅj . . .G3)xy

(G1Å1 . . . Åj−1GjEσG2Å2G3)xy
∣

N

+
∑σ∑

3
j=1 ∣(G1Å

′
1EσG

∗
j Å
∗
j−1 . . . Å

∗
1G
∗
1)xx
(G∗3 . . . Å

∗
jG
∗
jEσG2Å2G3)yy

∣

N

and Ξiso
2 (l, J, J∗) is defined as

Ξiso
2 ∶= N

−(∣l∣+∑(J∪J∗)+1)/2
∑
ab

Rab∣∂
l[(G1Å

′
1)xa(G2Å2G3)by]∣ (1.5.69)

×∏
j∈J
∣∂j(G1Å1G2Å2G3)xy

∣∏
j∈J∗
∣∂j(G∗3Å

∗
2G
∗
2Å
∗
1G
∗
2)yx
∣ .

We need to analyze the rhs. of the inequality derived in (1.5.68). We begin with the second line.

Gaussian contribution: second line of (1.5.68). Following Remark 1.5.3, we need to analyze in
total twelve terms, each of which carries one of the summands in the definition of Ξ̃iso

2 as a factor.
Again, using Lemma 1.3.3 for the A’s, we pick two exemplary terms

(G1Å
w1,w2
1 G2Å

w2,w3
2 G3E−G2Å

w2,w3
2 G3)xy

(G1(A
′
1)

˚ w1,w2
E−G3)xy

(1.5.70)

(G1(Å
′
1)
w1,w2G∗2(A

∗
1̊)
w̄2,w̄1G∗1)xx

(G∗3(A
∗
2)

˚ w̄3,w̄2
G∗2G2Å

w2,w3
2 G3)yy

(1.5.71)

which shall be treated in more detail. The other terms are analogous and hence omitted.

The term (1.5.70). In the first factor, we use (1.2.16), Lemma 1.3.3, Lemma 1.4.3 and Lemma 1.5.1
with parameters

τ = + , J =B(ℓ+ 1
2 )κ0

, and η̃ =
2ℓ

2ℓ + 1
η ,

(in order to have some flexibility before approaching the boundary of the domain D(ϵ0,κ0)
ℓ ) to bound

it as

∣(G1Å
w1,w2
1 G2Å

w2,w3
2 G3E−G2Å

w2,w3
2 G3)xy

∣ ≺
1
η3/2 (1 +

ψiso
3√
Nη
)
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+ ∫
B(ℓ+ 1

2 )κ0

∣(G1Å
w1,w2
1 G2Å

w2,w3
2 G(x + iη̃)(E−A2)˚ −w2,w3

G3)xy
∣

(∣x − e3∣ + η3) (∣x + e2∣ + η2)
dx .

Next, we decompose Åw2,w3
2 and (E−A2)˚ −w2,w3 according to the integration variable with the aid of

Lemma 1.3.3 (iii), analogously to (1.5.63). This leaves us with four terms, which shall be estimated
separately. While the fully regularised term gives

1
η3/2 (1 +

ψiso
3√
Nη
)(1 + 1

∣e2 + e3∣ + η2 + η3
) ,

the cross terms can be estimated as
1
η2 (1 +

ψiso
2√
Nη
) ,

analogously to (1.5.64). As an exemplary error term, we consider

∫
B(ℓ+ 1

2 )κ0

∣(G1Å
w1,w2
1 G2E+G(x + iη̃)E−G3)xy

∣dx (1.5.72)

and use Lemma 1.5.1 with new parameters

τ = − , J =Bℓκ0 , η̃ =
ℓ

ℓ + 1
η ,

to find, dropping the integration domains for ease of notation,

∣(1.5.72)∣ ≺ 1
η1/2 (1 +

ψiso
1√
Nη
) + ∫ dx∫ dy

∣(G1Å
w1,w2
1 G(y − iη̃))

x(E−y)∣

(∣y − e2∣ + η2) (∣y + x∣ + η) (∣y + e3∣ + η3)

≺
1
η3/2 (1 +

ψiso
1√
Nη
)(1 + 1

∣e2 + e3∣ + η2 + η3
) ,

where in the last step we used Lemma 1.3.3 for decomposing Åw1,w2
1 accordingly, and Lemma 1.4.3.

This finishes the bound on the first factor in (1.5.70). The second factor can easily be estimated as

∣(G1(A
′
1)

˚ w1,w2
E−G3)xy

∣ ≺
1
η1/2 (1 +

ψiso
1√
Nη
) +
∣e2 + e3∣ + η2 + η3

η

using (1.2.16), Lemma 1.3.3, and Lemma 1.4.3. Notice the cancellation of ∣e2 + e3∣ between the two
factors.

The term (1.5.71). For the first factor in (1.5.71), we realise that (Å′1)w1,w2 = (Å
′
1)
w1,w̄2 , which

without approximation immediately yields that

∣(G1(Å
′
1)
w1,w2G∗2(A

∗
1̊)
w̄2,w̄1G∗1)xx

∣ ≺
1
η
(1 + ψiso

2√
Nη
)

with the aid of Lemma 1.4.3.

In the second factor, we apply a Ward identity to G∗2G2 and again use that the regularisation is
insensitive to complex conjugation in the second spectral parameter. In this way, and decomposing

Å
w2,w3
2 = Å

w̄2,w3
2 +O(∣e2 − e3∣ + ∣η2 − η3∣)E+ +O(∣e2 + e3∣ + ∣η2 − η3∣)E−

by means of Lemma 1.3.3 (ii), we find that the second factor is stochastically dominated by

1
η2 (1 +

ψiso
1 + ψ

iso
2√

Nη
) .
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This finishes the estimate for the Gaussian contribution from the second line of (1.5.68), for which,
collecting the above estimates, we have shown that

Ξ̃iso
2 ≺

1
Nη3

⎡
⎢
⎢
⎢
⎢
⎣

(1 + ψiso
3√
Nη
)(1 + ψiso

1√
Nη
) + (1 + ψ

iso
1 + ψ

iso
2√

Nη
)

2⎤
⎥
⎥
⎥
⎥
⎦

. (1.5.73)

We are now left with the terms from the last line of (1.5.68) resulting from higher order cumulants.

Higher order cumulants and conclusion. The estimate stemming from higher order cumulants is
given in (1.5.74d) in Section 1.5.5. Then, plugging (1.5.73) and (1.5.74d) into (1.5.68), we find,
similarly to Section 1.5.1, that

Ψiso
2 ≺ 1 + ψiso

1 +
ψav

1 ψ
iso
1 + (ψ

iso
1 )

2 + ψiso
2

Nη
+
ψiso

2 + (ψ
iso
1 ψiso

3 )
1/2

(Nη)1/2
+
(ψiso

3 )
3/8 + (ψiso

4 )
3/8

(Nη)3/16

The bound given in Proposition 1.4.9 is an immediate consequence after a trivial Young inequality.

1.5.5 Contributions from higher order cumulants
The goal of the present section is to estimate the terms originating from higher order cumulants in
(1.5.11), (1.5.27), (1.5.60), and (1.5.68). In order to do so, we assume that (1.4.25) holds.

Lemma 1.5.10. For any J, J∗ ⊂ Z2
≥0 ∖ {(0,0)}, l ∈ Z2

≥0 with ∣l∣ +∑(J ∪ J∗) ≥ 2 it holds that

(Ξav
1 )

1/(1+∑(J∪J∗))
≺

1
Nη1/2 (1 +

ψiso
1

(Nη)1/2
+
(ψiso

2 )
1/4

(Nη)1/8
) , (1.5.74a)

(Ξiso
1 )

1/(1+∑(J∪J∗))
≺

1
√
Nη2

(1 + ψiso
1

(Nη)1/2
+
(ψiso

2 )
1/4

(Nη)1/8
) , (1.5.74b)

(Ξav
2 )

1/(1+∑(J∪J∗))
≺

1
Nη
(1 + (ψ

iso
1 )

2

Nη
+

ψiso
2

(Nη)1/2
+
(ψiso

3 )
3/8 + (ψiso

4 )
3/8

(Nη)3/16 ) , (1.5.74c)

(Ξiso
2 )

1/(1+∑(J∪J∗))
≺

1
√
Nη3

(1 + (ψ
iso
1 )

2

Nη
+

ψiso
2

(Nη)1/2
+
(ψiso

3 )
3/8 + (ψiso

4 )
3/8

(Nη)3/16 ) . (1.5.74d)

For k = 1, 2, l ∈ Z2
≥0 and a multiset J ⊂ Z2

≥0∖{ (0,0) } we now define slightly (notationally) simplified
versions of Ξav/iso

k , namely

Ξav
k (l, J) ∶= N

−(∣l∣+∑J+3)/2
∑
ab

∣∂l
((GA)k−1GA′)ba∣∏

j∈J
∣∂j
⟨(GA)k⟩∣ , (1.5.75)

Ξiso
k (l, J) ∶= N

−(∣l∣+∑J+1)/2
∑
ab

∣∂l
[(GA)xa(G(AG)

k−1
)by]∣∏

j∈J
∣∂j
((GA)kG)xy ∣ , (1.5.76)

where ∑J ∶= ∑j∈J ∣j∣, ∣(j1, j2)∣ ∶= j1 + j2 and ∂(j1,j2) ∶= ∂j1ab∂
j2
ba. Here, for notational simplicity, we do

not carry the dependence on the spectral parameters of the resolvents but assume that implicitly
each resolvent has its own spectral parameter and that each A is correctly regularised with respect
to its neighboring resolvents. In particular compared to (1.5.12), (1.5.28), (1.5.61), and (1.5.69), it
is not necessary to distinguish the sets J, J∗.

Proof of Lemma 1.5.10. Throughout the proof, we denote ϕk ∶= ψiso
k /
√
Nη. The naive estimate for

the derivatives simply is

∣∂l
((GA)k−1GA′)ba∣ ≺ η

−(k−1)/2
(1 + ϕk−1) ,

∣∂j
⟨(GA)k⟩∣ ≺

1
Nηk/2

∑
k1+k2+⋯=k

∏
i

(1 + ϕki
)

(1.5.77)
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due to (1.4.10) and recalling (1.4.16). Here a single derivative just splits the chain with k resolvents
into two chains with a total of k + 1 resolvents, leaving the estimates on the main and the error term
unchanged. Using (1.5.77) in (1.5.75) we obtain

∣Ξav
1 ∣ ≺ (Nη

1/2
)
−1−∣J ∣N (2−∣l∣−∑J)

√
Nη (1 + ϕ1)

∣J ∣
,

∣Ξav
2 ∣ ≺ (Nη)

−1−∣J ∣N (2−∣l∣−∑J)
√
Nη (1 + ϕ1)(1 + ϕ2 + ϕ

2
1)
∣J ∣
,

∣Ξiso
1 ∣ ≺ (

√
Nη)−1−∣J ∣η1+∣J ∣/2N (4−∣l∣+∣J ∣−∑J)/2(1 + ϕ1)

∣J ∣
,

∣Ξiso
2 ∣ ≺ (

√
Nη3/2

)
−1−∣J ∣η1+∣J ∣/2N (4−∣l∣+∣J ∣−∑J)/2(1 + ϕ1)(1 + ϕ2 + ϕ

2
1)
∣J ∣
,

(1.5.78)

and therefore have proved (1.5.74a) and (1.5.74c) in all cases except ∣l∣+∑J = 2 and (1.5.74b) and
(1.5.74d) in all cases except ∣l∣ +∑J − ∣J ∣ < 4. For the remaining cases we need a more refined
estimate using the following Ward lemma:

Lemma 1.5.11. Let x be any deterministic vector of bounded norm, let w1, . . . ,wk ∈D(ϵ0,κ0)
ℓ+1 be

spectral parameters and A1, . . . ,Ak deterministic matrices of bounded norm. Then for Gi = G(wi)
it holds that

1
N
∑
a

∣(G1Å
w1,w2
1 ⋯Å

wk−1,wk

k−1 GkAk)xa∣ ≺
1
√
Nη

1
η(k−1)/2 (1 + ϕ1 +⋯ + ϕ2k)

1/2
,

which improves upon the term-wise bound by a factor of (Nη)−1/2 at the expense of replacing 1+ϕk
by 1 +

√
ϕ1 +⋯ + ϕ2k.

The proof of the above Ward lemma is largely based on yet another more general estimate.

Lemma 1.5.12. Let x,y be normalised vectors, let w1, . . . ,wk+1 ∈D(ϵ0,κ0)
ℓ+1 be spectral parameters

and A1, . . . ,Ak be deterministic matrices of bounded norm such that a of them are regular, i.e.
Å
wi,wi+1
i = Ai for all i ∈ I for some I ⊂ [k] of cardinality a. Then with Gi = G(wi) it holds that

∣(G1A1G2⋯AkGk+1)xy ∣ ≺
1

ηk−a/2
(1 + ϕ1 +⋯ + ϕa) . (1.5.79)

We defer the proof of Lemma 1.5.12 to the end of this section.

Proof of Lemma 1.5.11. By Cauchy-Schwarz and the norm bound on the middle Ak we have

(
1
N
∑
a

∣(G1Å
w1,w2
1 ⋯Å

wk−1,wk

k−1 GkAk)xa∣)
2

≲
1
N
(G1Å

w1,w2
1 ⋯Å

wk−1,wk

k−1 GkG
∗
kÅ

w̄k,w̄k−1
k−1 ⋯Å

w̄2,w̄1)
1 G∗1)

xx

≺
1

Nηk
(1 + ϕ1 +⋯ + ϕ2k)

due to Lemma 1.5.12 for 2k resolvents and a = 2k − 2 regularised A-matrices.

The rest of the proof is split into several cases.

Treatment of (1.5.74a) and (1.5.74c) for ∣l∣ +∑J = 2: For the case ∣l∣ +∑J = 2 we either have
∣l∣ ∈ {0,2} or ∑J = 1 = ∣J ∣. In the former case an off-diagonal resolvent is guaranteed to be present
in the first factor of (1.5.75) (by parity) and in the latter case the second factor consists of a single
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off-diagonal resolvent chain. In either case we may use Lemma 1.5.11 to gain a factor of 1/
√
Nη

compared to (1.5.77) and obtain

∣Ξav
1 ∣ ≺ (Nη

1/2
)
−1−∣J ∣

(1 + ϕ1)
(∣J ∣−1)+(1 + ϕ1 + 1(∣J ∣ ≥ 1)ϕ1/2

2 ) ,

∣Ξav
2 ∣ ≺ (Nη)

−1−∣J ∣
(1 + ϕ2

1 + ϕ2)
(∣J ∣−1)+(1 + ϕ3

1 + ϕ
3/2
2 + 1(∣J ∣ ≥ 1)(ϕ3 + ϕ4)

3/4
) ,

(1.5.80)

where we used the fact that for ∣J ∣ = 0 only a single factor of (1 + ϕ1) needs to be replaced by
a factor of (1 + (ϕ1 + ϕ2)

1/2) for Ξav
2 and no factor needs to be replaced for Ξav

1 . Moreover, we
used ϕ1(ϕ3 + ϕ4)

1/2 + ϕ2
1ϕ

1/2
2 ≲ ϕ3

1 + ϕ
3/2
2 + (ϕ3 + ϕ4)

3/4 by a simple Young inequality. Now (1.5.80)
implies (1.5.74a) and (1.5.74c) by another simple Young inequality.

Treatment of (1.5.74b) and (1.5.74d) for ∣l∣ +∑J − ∣J ∣ ∈ {2,3}: In this case we can simply use
Lemma 1.5.11 for the two resolvent chains in the first factor of (1.5.76) involving x,y to gain a
factor of (Nη)−1 compared to (1.5.77) at the expense of replacing 1 + ϕ1 by 1 + ϕ1/2

1 + ϕ
1/2
2 in case

of Ξiso
2 which proves (1.5.74b) and (1.5.74d) in this case.

Treatment of (1.5.74b) and (1.5.74d) for ∣l∣ +∑J − ∣J ∣ = 0: In this case we necessarily have ∣l∣ = 0
and ∣J ∣ ≥ 2 and ∣j∣ = 1 for all j ∈ J . In particular all factors of (1.5.76) consist of two resolvent
chains evaluated in (x, a), (y, b) or (x, b), (y, a), respectively. This allows to use Lemma 1.5.11
four times (twice for the a- and twice for the b-summation) to gain a factor of (Nη)−2 compared
to (1.5.77) at the expense of replacing

one factor of (1 + ϕ1) by (1 + (ϕ1 + ϕ2)
1/2
)

in case of Ξiso
1 and

one factor of (1 + ϕ1)(1 + ϕ2
1 + ϕ2) by (1 + (ϕ1 + ϕ2)

1/2
)(1 + ϕ1 + ϕ2 + (ϕ3 + ϕ4)

1/2
) (1.5.81)

in case of Ξiso
2 . This concludes the proof in case of Ξiso

1 and together with

(1 + (ϕ1 + ϕ2)
1/2
)(1 + ϕ1 + ϕ2 + (ϕ3 + ϕ4)

1/2
) ≲ 1 + (ϕ1 + ϕ2)

3/2
+ (ϕ3 + ϕ4)

3/4

also in case of Ξiso
2 .

Treatment of (1.5.74b) and (1.5.74d) for ∣l∣ +∑J − ∣J ∣ = 1: In this case we necessarily have ∣J ∣ ≥ 1
and either ∣l∣ = 0 or ∣j∣ = 1 for all j ∈ J . In either case we can use Lemma 1.5.11 twice for the first
factor and once for some other factor in (1.5.76) to gain a factor of (Nη)−3/2 compared to (1.5.77)
at the expense of replacing (1.5.81) in case of Ξiso

1 and

one factor of (1+ϕ1)(1+ϕ2
1+ϕ2) by (1+(ϕ1+ϕ2)

1/2
)((1+ϕ1)(1+ϕ1+ϕ2)

1/2
+(ϕ3+ϕ4)

1/2
)

in case of Ξiso
2 . Together with

(1 + (ϕ1 + ϕ2)
1/2
)((1 + ϕ1)(1 + ϕ1 + ϕ2)

1/2
+ (ϕ3 + ϕ4)

1/2
) ≲ 1 + (ϕ3 + ϕ4)

3/4
+ ϕ

3/2
2 + ϕ2

1

this concludes the proof also in this case.

It remains to give the proof of Lemma 1.5.12.

Proof of Lemma 1.5.12. The proof is via induction, i.e. we assume that (1.5.79) has been established
for resolvent chains of up to k resolvents. For k + 1 resolvents and a = k, i.e. in case when all
deterministic matrices are regular, the claim follow by definition of ψiso

k . Therefore we may assume
that some Aj is not regular which we decompose into its regular component Åwj ,wj+1

j and a linear
combination of E±. By linearity it thus suffices to check (1.5.79) for the cases Aj = E±, and
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moreover, by chiral symmetry GjE−Gj+1 = −E−G(−wj)E+Gj+1 and Åwj−1,wj
E− = Å

wj−1,−wj (recall
Lemma 1.3.3) the estimate for E− follows from the estimate for E+ upon replacing wj by −wj .
Therefore it suffices to check (1.5.79) in case Aj = E+.

If sj = − sgn(ImwjImwj+1) = +, i.e. the adjacent spectral parameters lie in opposite half-planes,
then we use the resolvent identity (1.3.21) to write

Aj−1GjE+Gj+1Aj+1Gj+2 = Aj−1
Gj −Gj+1

wj −wj+1
Aj+1Gj+2 .

We discuss each of the two resulting summands separately. For the summand involving Gj+1, if Aj−1
was not counted as regularised, i.e. j − 1 /∈ I, then the claim follows by induction and the trivial
estimate ∣wj −wj+1∣ ≥ η since k has been reduced by one, while a has been preserved. On the other
hand, if Aj−1 was correctly regularised, then we use Lemma 1.3.3 to write

Å
wj−1,wj

j−1 = Å
wj−1,w̄j

j−1 = Å
wj−1,wj+1
j−1 +O(∣w̄j −wj+1∣)E+ +O(∣w̄j −wj+1∣)E− . (1.5.82)

Inserting (1.5.82) into Aj−1Gj+1Aj+1Gj+2/(wj −wj+1) the claimed bound follows from induction
since for the Åwj−1,wj+1

j−1 -term a has been preserved and k has been reduced by one compensating for
∣wj −wj+1∣ ≥ η, while for E± both k, a have been reduced by one and ∣w̄j −wj+1∣/∣wj −wj+1∣ ≤ 1.
Next, for the summand involving Gj , the argument is completely analogous, apart from the two error
terms in

Å
wj ,wj+1
j+1 = Å

wj ,wj+2
j+1 +O(∣wj − w̄j+1∣ + ∣wj − sj+1wj+2∣)Esj+1 (1.5.83)

+O(∣wj − w̄j+1∣ + ∣wj + sj+1w̄j+2∣)E−sj+1 ,

appearing for an Aj+1 = Å
wj+1,wj+2
j+1 , which has been correctly regularised. Here, we applied

Lemma 1.3.3 and denoted, as usual, sj+1 = − sgn(Imwj+1Imwj+2). Now, for the error terms,
we assume that the second summand in each O(...) is non-zero (otherwise we are back to (1.5.82))
and argue by induction: Indeed, using (1.2.16) and applying a resolvent identity (1.3.21), we find

∣wj − w̄j+1∣ + ∣wj − sj+1wj+2∣

wj −wj+1
GjEsj+1Gj+2 (1.5.84)

=
∣wj − w̄j+1∣ + ∣wj − sj+1wj+2∣

(wj −wj+1) (wj − sj+1wj+2)
sj+1(G(wj) −G(sj+1wj+2))Esj+1 ,

such that, in the resulting chain we have reduced k by two and a by one, and the prefactor in
(1.5.84) is bounded by 1/η. The argument for the second error in (1.5.83) is completely analogous,
after realizing that (∣wj − w̄j+1∣ + ∣wj + sj+1w̄j+2∣)/(∣wj −wj+1∣ ∣wj + sj+1wj+2∣) ≤ 1/η.

On the contrary, if sj = − sgn(ImwjImwj+1) = −, i.e. the adjacent spectral parameters lie the same
half-plane (without loss of generality the upper one), then we use the integral representation from
Lemma 1.5.1 to write

Aj−1GjE+Gj+1Aj+1 =
1

2πi ∫Γ

Aj−1G(z)Aj+1

(z −wj)(z −wj+1)
dz , (1.5.85)

where Γ is an appropriately chosen contour. If j − 1, j + 1 /∈ I, i.e. both Aj−1,Aj+1 were not counted
as regularised, then the claim follows by induction and estimating the integral by η−1 (up to log
factors) since k has been reduced by one, and a has been preserved. On the other hand, if both
Aj−1,Aj+1 were counted as regularised, then we use Lemma 1.3.3 to write them as

Å
wj−1,wj

j−1 = Å
wj−1,z
j−1 +O(∣wj − z∣)E+ +O(∣wj − z∣)E− ,

Å
wj+1,wj+2
j+1 = Å

z,wj+2
j+1 +O(∣wj+1 − z∣)E+ + +O(∣wj+1 − z∣)E− .

(1.5.86)
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The resulting term with Åwj−1,z
j−1 , Å

z,wj+2
j can be estimated by induction since k has been reduced by

one, a has been preserved and the integral may be estimated by η−1. The other terms with either one
or two E± can also be estimated by induction since the integral is at most logarithmically divergent,
k has been reduced by one and a by at most two. Finally, if in (1.5.85) one of Aj−1,Aj+1 were
counted as regularised, then we use the relevant expansion from (1.5.86), so that for the resulting
term with Å, k has been reduced by one, and a has been preserved, so that the η−1 estimate on
the integral is affordable. The other term with E± can also be estimated by induction with both
a, k reduced by one, and the integral being at most logarithmically divergent. This concludes the
proof.

1.6 Proof of the reduction inequalities, Lemma 1.4.10
During the proof of Lemma 1.4.10, we will heavily rely on the following integral representation for
the absolute value ∣G∣ of a resolvent (see also [168, Lemma 5.1]).

Lemma 1.6.1. (Integral representation for the absolute value of a resolvent)
Let w = e + iη ∈C ∖R. Then the absolute value of the resolvent G(w) can be represented as

∣G(e + iη)∣ = 2
π
∫

∞

0
ImG(e + i

√
η2 + s2)

ds
√
η2 + s2

. (1.6.1)

Proof. This immediately follows from the functional calculus for H and the identity

1
∣x − iη∣

=
1
iπ ∫

∞

0
(

1
x − i(η2 + s2)1/2

−
1

x + i(η2 + s2)1/2
)

ds
√
η2 + s2

.

Proof of Lemma 1.4.10. To keep the notation simpler within this proof we may often denote

Ai = Åi = Å
wi,wi+1
i ,

i.e. sometimes we drop the spectral parameters wi = ei + iηi.

We start with the proof of (1.4.27), for which, similarly to [168, Lemma 3.6], we get

Ψav
4 ≲ Nη +N

2η2
(⟨∣G1∣A1∣G2∣A

∗
1⟩⟨∣G2∣A2∣G3∣A

∗
2⟩⟨∣G3∣A3∣G4∣A

∗
3⟩⟨∣G4∣A4∣G1∣A

∗
4⟩)

1/2
, (1.6.2)

by Lemma 1.4.3, spectral decomposition, and a Schwarz inequality. Next, we use (1.6.1) to write

⟨∣G1∣A1∣G2∣A
∗
1⟩ =

4
π2 ∬

∞

0
⟨ImG(w1,s)Å

w1,w2
1 ImG(w2,t)(Å

w1,w2
1 )

∗
⟩

dsdt
√
η2

1 + s
2
√
η2

2 + t
2
, (1.6.3)

where we defined wi,s ∶= ei + i
√
η2
i + s

2. The very large s, t–regimes in (1.6.3) can be easily shown
to be negligible (e.g. see [168, Proof of Lemma 5.1]), i.e. even if not stated explicitly we assume
that the upper integration limit can be replaced by N100. Additionally, we can restrict to the case
when η ∶=minj ∣Imwj ∣ ≤ 1, when this is not the case we use the local law in the regime η > 1 from
Theorems 1.4.4–1.4.5 (see [168, Proof of Lemma 5.1] for a detailed argument). We remark that this
argument is not circular since in the proof of the local law for η > 1 sketched below Remark 1.4.6
one does not use the reduction inequalities in (1.4.27)–(1.4.28).

In order to estimate the rhs. of (1.6.3) we write ImG = 1
2i(G −G

∗) for both ImG to obtain four
terms with two resolvents; to keep the presentation concise we only present the estimate for one of
them. From now on we consider only the term ⟨∣G1∣A1∣G2∣A

∗
1⟩, the bound for all the other terms in
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1. Optimal lower bound on eigenvector overlaps

the last line of (1.6.2) is completely analogous and so omitted. In the following we will often use the
approximations from Lemma 1.3.3 (omitting the trivial ∧1 in the errors for notational simplicity):

Å
w1,w2

= Å
w1,s,w2,t

+O(∣

√

η2
1 + s

2 − η1∣ + ∣
√

η2
2 + t

2 − η2∣)E+

+O(∣

√

η2
1 + s

2 − η1∣ + ∣
√

η2
2 + t

2 − η2∣)E− ,

(Å
w1,w2

)
∗
= (Å

∗
)
w2,t,w1,s +O(∣e1 − e2∣ +

√

η2
1 + s

2 +
√

η2
2 + t

2)E+

+O(∣e1 + e2∣ +
√

η2
1 + s

2 +
√

η2
2 + t

2)E− .

(1.6.4)

We point out that when taking the adjoint of the first formula to arrive at the second we used that
for any w1,w2 it holds (Åw1,w2

)∗ = (Å
∗
)w2,w1 , see Lemma 1.3.3. Recall that within this proof we

always assume that η ≤ 1. From now on for the error terms we will always use the bounds

∣

√

η2
1 + s

2 − η1∣ ≲ s ,
√

η2
1 + s

2 ≤ η1 + s , (1.6.5)

and a similar bound with η1, s replaced with η2, t. The first bound is not optimal for small η1, but
good enough for our estimates. Then using (1.6.4) we write

∬

∞

0
⟨G(w1,s)Å

w1,w2
1 G(w2,t)(Å

w1,w2
1 )

∗
⟩

dsdt
√
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2
√
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2 + t
2

=∬
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dsdt
√
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2
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2 + t
2

+ ∑
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∬
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dsdt

√
η2
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2
√
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2 + t
2
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∬
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2
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2
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2
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2
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√
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2 + t
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(1.6.6)

We now estimate the terms in the rhs. of (1.6.6) one by one. In the following estimates we will
always omit logN -factors. We start with

RRRRRRRRRRR
∬

∞

0
⟨G(w1,s)Å

w1,s,w2,s

1 G(w2,t)(Å
∗
1)
w2,t,w1,s⟩

dsdt
√
η2

1 + s
2
√
η2

2 + t
2

RRRRRRRRRRR

≺ 1 + ψ
av
2
Nη

,

which readily follows by the definition of Ψav
2 in (1.4.15) and from the assumption Ψav

2 ≺ ψ
av
2 . For

the third to the fifth line in (1.6.6) we use the bound
RRRRRRRRRRR
∬
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0
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1 + s
2
∧

1
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[η1 + η2 + s + t]

dsdt
√
η2

1 + s
2
√
η2

2 + t
2
≲ 1 ,

(1.6.7)
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1.6. Proof of the reduction inequalities, Lemma 1.4.10

for any deterministic norm bounded matrices B and for σ ∈ {+,−}. For the fifth line of (1.6.6) we
used the bound (s2 + t2) ∧ 1 ≤ (s + t) ∧ 1 (recall that ∧1 is omitted in the error terms in (1.6.6) for
notational simplicity). Note that here we used:

∣⟨G(w1,s)EσG(w2,t)B⟩∣ ≺
1

√
η2

1 + s
2
∧

1
√
η2

2 + t
2
, (1.6.8)

which holds uniformly in matrices with ∥B∥ ≲ 1. We point out that to obtain the bound (1.6.8) we
used spectral decomposition of the resolvents and that ⟨wi,Eσwj⟩ = δi,σj to bound16

∣⟨G(w1,s)EσG(w2,t)B⟩∣ = ∣
1

2N ∑i
⟨wi,Bwσi⟩

(λi −w1,s)(λi − σw2,t)
∣

≲
1
N
∑
i

1
∣λi −w1,s∣∣λi − σw2,t∣

≺
1

∣Imw1,s∣ ∨ ∣Imw2,t∣
,

where in the last inequality we used the single resolvent local law.

Finally, for the last three lines in (1.6.6) we use that for any norm bounded matrix B, by resolvent
identity (1.3.21), we have (recall that E+ = I)

∣⟨G(w1,s)BG(w2,t)⟩∣ ≺
1

∣w1,s −w2,t∣
, ∣⟨G(w1,s)BG(w2,t)E−⟩∣ ≺

1
∣w1,s +w2,t∣

, (1.6.9)

which after the integration in (1.6.6) gives a bound of order one, as a consequence of

∣e1 ± e2∣

∣w1,s ±w2,t∣
≲ 1 .

Note that here it is important that the error terms in (1.6.6) involving ∣e1 − e2∣ are always multiplied
with the matrix E+, while errors of order ∣e1 + e2∣ are in the direction of E−.

Combining the computations in (1.6.6)–(1.6.9) we conclude that

∣⟨∣G1∣A1∣G2∣A
∗
1⟩∣ ≺ 1 + ψ

av
2
Nη

, (1.6.10)

which, after plugging it in the rhs. of (1.6.2), clearly implies (1.4.27) .

For (1.4.28) for Ψiso
3 , we find

Ψiso
3 ≲
√
Nη +Nη2

((G1A1∣G2∣A
∗
1G
∗
1)xx
(G∗4A

∗
3 ∣G3∣A3G4)yy

⟨∣G2∣A2∣G3∣A
∗
2⟩)

1/2
, (1.6.11)

again by Lemma 1.4.3, spectral decomposition, and a Schwarz inequality. Then, using again the
integral representation (1.6.1), we find that

(G1A1∣G2∣A
∗
1G
∗
1)xx

=
2
π
∫

∞

0
(G1A1ImG(w2,s)A

∗
1G
∗
1)xx

ds
√
η2

2 + s
2
,

recalling the notation w2,s = e2 + i
√
η2

2 + s
2. The estimate for this term is fairly similar to the one in

(1.6.3), hence we present only the main differences and skip the details; actually the current case is
easier since we now have only one ∣G∣.

16We point out that here wi denotes an eigenvector of HΛ, and it should not be confused with the spectral
parameters w1,s,w2,t.
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1. Optimal lower bound on eigenvector overlaps

After splitting ImG = 1
2i(G −G

∗) and handling both terms separately, we can write, similarly to
(1.6.6) and using (1.6.4)–(1.6.5), the following approximation:

∫

∞

0
(G1A1G(w2,s)A

∗
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∗
1)xx

ds
√
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2 + s
2
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η2

2 + s
2
+ E .

(1.6.12)

Here E is an error coming from all the errors in (1.6.4). For the first term in the second line of
(1.6.12) we use the bound

RRRRRRRRRRR
∫

∞

0
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∗
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RRRRRRRRRRR
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η
(1 + ψiso

2√
Nη
) , (1.6.13)

which follows by the definition of Ψiso
2 . For the error term we do not write the details, since once we

replace (1.6.8)–(1.6.9) with (here B,B1,B2 are deterministic norm bounded matrices)

∣(G1B1G(w2,s)B2G
∗
1)xx
∣ ≤ (G1B1B

∗
1G
∗
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1/2
xx
(G1B

∗
2G(w2,s)G(w2,s)
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∣(G1EσG(w2,s)BG
∗
1)xx
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1
η∣w1 −w2,s∣

,

(1.6.14)

respectively, the estimate
∣E ∣ ≺

1
η

(1.6.15)

follows completely analogously. The estimates (1.6.14) follow by repeated applications of the resolvent
identity (1.3.21) (after commuting Eσ with G in case of the second formula), the trivial bound
∥G∥ ≤ 1/η and the single resolvent local law. Combining, (1.6.13)–(1.6.15) we conclude

∣(G1A1∣G2∣A
∗
1G
∗
1)xx
∣ ≺

1
η
(1 + ψiso

2√
Nη
) . (1.6.16)

The bound in (1.6.16), together with (1.6.10) to estimate the averaged term in (1.6.11), concludes
the proof (1.4.28) for Ψiso

3 .

Analogously to (1.6.11), for Ψiso
4 we find that

Ψiso
4 ≲
√
Nη +Nη5/2

((G1A1∣G2∣A
∗
1G
∗
1)xx
(G∗5A

∗
4 ∣G4∣A4G5)yy
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∗
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∗
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∗
4 ∣G4∣A4G5)yy
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1/2

× (⟨∣G2∣A2∣G3∣A
∗
2⟩⟨∣G3∣A3∣G4∣A

∗
3⟩⟨∣G4∣A

∗
3 ∣G3∣A3⟩⟨∣G3∣A

∗
2 ∣G2∣A2⟩)

1/4

where in the last inequality we used spectral decomposition and a bound as in [168, Proof of
Lemma 3.6] to bound the trace with four G’s and four A’s in terms of a product of traces containing
only two G’s and two A’s. Finally, using the bounds (1.6.10), (1.6.16), we conclude the proof of
(1.4.28) for Ψiso

4 as well.

1.A Motivating derivations of the regularisation
In this appendix, we shall motivate and derive the regularisation (1.3.2) introduced in Definition 1.3.1
by considering two basic examples. We also use these examples to present two different approaches
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1.A. Motivating derivations of the regularisation

to guess the right regularisation. Before the details, we give an informal summary of these two model
calculations.

First, in Section 1.A.1, we compute
E ∣⟨WG(iη)A⟩∣2, (1.A.1)

which is the leading contribution to ⟨(G−M)B⟩ in the single-resolvent local law, with A = X [B]M ,
see (1.5.18). We will show that, in order to be able to reduce its naive size 1/(Nη)2 to the target
1/(N2η), we need that ⟨A,V±⟩ = 0, i.e. we need A ∈ C2N×2N to be orthogonal to two certain
directions V± in C2N×2N . For simplicity, we chose the spectral parameter w = iη to be on the
imaginary axis, assuming that 0 ∈Bκ for some κ > 0. In this case, both cutoff functions (1.4.7) in
the actual definition of the regularisation satisfy 1±δ (iη, iη) = 0 for η > 0 small enough. Hence, at
least a posteriori, we really catch both directions V± and not only one. This calculation is rather
foundational and unambiguously reveals two directions V±, for which we need that ⟨A,V±⟩ = 0, in
order to reduce the naive size of (1.A.1).

Second, in Section 1.A.2, we consider the averaged chain with two resolvents

⟨GΛ1(w1)A1G
Λ2(w2)A2⟩ , (1.A.2)

where the resolvents are even allowed to have generally different17 deformations, Λ1 and Λ2. Let
M1 ∶=M

Λ1(w1) and M2 ∶=M
Λ2(w2). For simplicity, we will assume that the stability operators

Bm(∗)n(∗) ∶= 1 −M (∗)
m S[⋅]M

(∗)
n , m,n ∈ [2] , (1.A.3)

for all constellations of adjoints, have at most one critical eigenvalue βm(∗)n(∗) which is not of order one
(with associated right and left eigenvectors Rm(∗)n(∗) and Lm(∗)n(∗) , respectively, cf. (1.B.16) later).
As we will show in Lemma 1.B.5 (c), this is the case, e.g., if Λ ≡ Λ1 = Λ2 and Rew1,Rew2 ∈ BΛ

κ ,
and actually remains true for other more general random matrix models with a flat [17] self-energy
operator S[⋅]. Recall that S[⋅] is flat if

c⟨R⟩ ≤ S[R] ≤ C⟨R⟩ (1.A.4)

for some constants c,C > 0 and any positive semi-definite matrix R ≥ 0.

Again, the main question is what special property A1,A2 must have so that (1.A.2) be smaller than
its naive size of order 1/η obtained from a simple Schwarz inequality. Similarly to (1.A.1), we could
directly compute the second moment of the corresponding underline term (see Lemma 1.5.8), but
for pedagogical reason we present an alternative argument. Quite pragmatically, we start the usual
proof via cumulant expansion for a bound on (1.A.2) and find that certain deterministic terms are
too big for general A1,A2. We shall see that there exist two matrices Ṽ ± ∈ C2N×2N (which turn
out to be certain right eigenvectors Rm(∗)n(∗) of (1.A.3), see (1.A.15) and (1.A.18) later), such
that, if ⟨Ai, Ṽ ±⟩ = 0, these critical terms are smaller. This suggests a pragmatic ansatz of the
form (1.3.2) on the regularisation. We will observe that, for the situation Λ1 = Λ2 and w1 = w2 = iη,
the expressions for Ṽ ± in fact coincide with those for V± obtained in Section 1.A.1. Notice that the
imaginary part of the single-resolvent setup leading to (1.A.1) is a special case of the two-resolvent
setup (1.A.2) since

Im ⟨GB⟩ = ⟨(ImG)B⟩ = η⟨GBG∗E+⟩

for self-adjoint B. Hence the regularity of B tested against ImG(iη) is the same as the regularity
of B between G(iη) and G∗(iη) = G(−iη). This shows, at least in this special case, that the
foundational and the pragmatic approaches lead to the same regularisation. Similar conclusion about
the equivalence of both approaches holds in general.

17All results in the current paper concern the Λ1 = Λ2 case; the generalisation Λ1 ≠ Λ2 is mentioned only to stress
that our method is also valid beyond the scope of the current paper.
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1. Optimal lower bound on eigenvector overlaps

Finally, in Section 1.A.3, motivated by the previous tandem of foundational and pragmatic com-
putations in Sections 1.A.1 and 1.A.2, respectively, we list generally valid (i.e. for arbitrary w1,w2
also away from the imaginary axis) explicit formulas for the directions V± regularising (1.A.2) in case
that Λ1 = Λ2. These explicit formulas are identical to those used in the regularisation introduced in
Definition 1.3.1.

1.A.1 Variance calculation of (1.A.1)
In the following, we simply write G = G(iη) for ease of notation. Then, using a cumulant expansion
and neglecting cumulants of order at least three (or assuming that X is Ginibre), one gets

E∣⟨WGA⟩∣
2
=

1
N
∑
ab

RabE⟨∆abGA⟩∂ba⟨A
∗G∗W ⟩

=
1
N
∑
ab

RabE⟨∆abGA⟩⟨GA∗G∗∆ba
⟩ (1.A.5)

+
1
N2 ∑

abcd

RabRcdE⟨∆abG∆dcGA⟩⟨A∗G∗∆baG∗∆cd
⟩

=
1
N2 ∑

σ

σE⟨EσGAEσA∗G∗⟩ +
1
N2 ∑

στ

στE⟨EσG∗EτGA⟩⟨EσGEτ(GA)∗⟩ .

The rescaled cumulant Rab ∶= Nκ(ab, ba) has been introduced above (1.5.11) and ∆ab ∈ C2N×2N

contains only one non-zero entry at position (a, b), i.e. (∆ab)cd = δacδbd.

As we will show, the cumulant expansion (1.A.5) yields that (up to a constant)

E ∣⟨WGA⟩∣
2
≈

E ∣⟨ImGA⟩∣
2

(Nη)2
+

E ∣⟨ImGAE−⟩∣
2

(Nη)2
+O (

1
N2η
) . (1.A.6)

Indeed, the first summand in the last line of (1.A.5) is estimated by 1/(N2η), the target size, with
the aid of a trivial Schwarz inequality and a Ward identity using Theorem 1.2.6. By writing out the
summation in the last summand, we get in total four terms. Since their treatment is very similar, we
focus on two exemplary terms with σ = τ = + (analogous to σ = τ = −) and σ = −τ = − (analogous
to σ = −τ = +).

For the former, we apply a Ward identity and find it to be given by

E ∣⟨ImGA⟩∣
2

(Nη)2
, (1.A.7)

which, without any further information on A, using that ⟨GA⟩ ∼ 1 from Theorem 1.2.6, is too
big, compared to the targeted 1/(N2η)-size. However, this drastically improves if ⟨ImM,A⟩ = 0
(recall that ImM is self adjoint): Since ⟨(G −M)A⟩ and ⟨WGA⟩ are roughly of the same size
(see (1.5.18)), the contribution (1.A.7) basically becomes a lower-order correction. We have thus
identified the first of the two directions V±, to which A has to be orthogonal to in order to reduce
the naive size of (1.A.1), namely

V+ = α+ ImM for some non-zero α+ ∈C . (1.A.8)

The latter case, σ = −τ = −, is slightly more involved due to the asymmetry of the two factors in the
last summand in the last line of (1.A.5): For the first factor, again a Ward identity is sufficient. In
the second factor, we use (1.2.16) together with the integral representation [168, Eq. (3.14)]

G∗G∗ = ∫
R

ImG(x + iη/2)
(x + iη/2)2

dx ,
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1.A. Motivating derivations of the regularisation

similar to Lemma 1.5.1, in the approximate form G∗G∗ ∼ ImG/η. This follows (at least as an
effective upper bound) by replacing the Cauchy kernel in the integral

∣⟨G∗G∗E−A
∗
⟩∣ ≤ ∫

R

∣⟨ImG(x + iη/2)E−A∗⟩∣
x2 + (η/2)2

dx ∼ ImG(iη)
η

by a δ-distribution. Overall, this leaves us (roughly) with

E ∣⟨ImGAE−⟩∣
2

(Nη)2
(1.A.9)

for the second case. Hence, arguing for (1.A.9) completely analogous as done for (1.A.7), we find
the second direction V−, to which A has to be orthogonal to, in order to reduce the naive size of
(1.A.1), namely

V− = α− ImME− for some non-zero α− ∈C . (1.A.10)

We point out that the first term in (1.A.6) would have worked in the exact same way also for spectral
parameters w = e + iη with e ≠ 0. However, the second direction V− would not have been visible in
this scenario, since the second term in (1.A.6) would have been replaced by (at least for an upper
bound)

E ∣⟨ImG(e + iη)AE−⟩∣
2

N2η (∣e∣ + η)
+

E ∣⟨ImG(e + iη)AE−⟩⟨ImG(−e + iη)E−A∗⟩∣
N2η (∣e∣ + η)

.

1.A.2 General structural regularisation in (1.A.2)
We begin with the general rather structural regularizing decomposition of a matrix A (recall (1.3.2)),
which shall be conducted as (dropping the tilde, which has been temporarily introduced below
(1.A.3))

A○ ≡ Å ∶= A − ⟨V+,A⟩U+ − ⟨V−,A⟩U− (1.A.11)

for some Uσ, Vσ ∈ C2N×2N to be determined but subject to the conditions ⟨Vσ, Uτ ⟩ = δσ,τ and
⟨Uσ, Uσ⟩ = 1. We point out, that the following calculations are largely insensitive to the form of the
self-energy operator S[⋅] (but see Footnote 18) and hence the conclusions for Uσ and Vσ derived in
this section are valid beyond our concrete model (up to the fact that, due to the chiral symmetry
(1.2.16), the regularisation involves a two-dimensional projection).

The goal of the present subsection is to show that V± must be chosen as certain right eigenvectors
Rm(∗)n(∗) of (1.A.3). This follows by expanding (1.A.2) and identifying several terms, whose size is
too big for general deterministic matrices. Now, these terms can be neutralised, if ⟨Ai,Rm(∗)n(∗)⟩ = 0
for certain right eigenvectors. However, as already mentioned in Section 1.3, for the directions U±
there are a priori no further constraints or conditions (apart from orthogonality and normalisation).
Hence, as it turns out to be convenient for our proofs, we will choose the matrices Uσ in such a way,
that a resolvent identity, i.e. the transformation of a product into a difference,

GΛ1(w1)UσG
Λ2(w2) ≈ (G

Λ1(w1) −G
Λ2(σw2))Uσ ,

can be applied (here, the symbol ‘≈’ neglects lower order terms). Finally, the condition ⟨Vσ, Uτ ⟩ =
δσ,τ will guarantee that the regularisation is idempotent, i.e. (Å)○ = Å. Note that our general
ansatz (1.A.11) is restricted to the non-degenerate situation, where Uσ and Vσ are non-orthogonal,
⟨Vσ, Uσ⟩ ∼ 1. This is guaranteed for our concrete model with deformations Λ1 = Λ2 (see Section 1.A.3)
but requires some non-trivial arguments in more general cases.

Although the regularisation is inherently two-dimensional (at least for our model), we also define

Å
σ
= A○σ ∶= A − ⟨Vσ,A⟩Uσ , σ ∈ {+,−} ,
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1. Optimal lower bound on eigenvector overlaps

and refer to A○σ as the σ-regular component (or σ-regularisation) of A and to ⟨Vσ,A⟩Uσ as its
σ-singular component. Note that (A○+)○− = (A○−)○+ = Å, since ⟨Vσ, Uτ ⟩ = δσ,τ .

As usual, we use the common notation ηi ∶= ∣Imwi∣ for i ∈ [2] and abbreviate (see (1.3.8))

si ∶= − sgn(ImwiImwi+1) , i ∈ [2] , (1.A.12)

where the indices are understood cyclically modulo 2 (cf. Definition 1.4.2). This means that, in
particular, s1 = s2 due to the short length of the chain (1.A.2). In the following, we will drop the
arguments by writing, e.g., M1 =M

Λ1(w1) and G2 = G
Λ2(w2). Moreover, we take A1 = Å1 and

A2 = Å2 to be regular, i.e. orthogonal to some yet to be specified V±.

Now, by means of
G1 =M1 −M1WG1 +M1S[G1 −M1]G1 ,

we immediately find

G1A1G2 =M1A1G2 −M1WG1A1G2 +M1S[G1 −M1]G1A1G2 ,

from which we conclude that

B12[G1A1G2] = M1A1M2 +M1A1(G2 −M2) −M1WG1A1G2

+M1S[G1 −M1]G1A1G2 +M1S[G1A1G2](G2 −M2) .

This implies

⟨(G1A1G2 −M
A1
12 )A2⟩ = ⟨M1A1(G2 −M2)X21[A2]⟩ − ⟨M1WG1A1G2X21[A2]⟩

+ ⟨M1S[G1 −M1]G1A1G2X21[A2]⟩

+ ⟨M1S[G1A1G2](G2 −M2)X21[A2]⟩

where we defined

MA1
12 ∶= B

−1
12 [M1A1M2] =M1X12[A1]M2 =M(w1,A1,w2) (1.A.13)

(recall (1.4.4) and Definition 1.4.1) and used the shorthand notation

Xmn[B] = ((B
∗
nm)

−1
[B∗])

∗
= (B

−1
m∗n∗)

∗
[B] , B ∈C2N×2N .

The adjoint of Bnm is understood with respect to the standard (normalised) inner product ⟨S,T ⟩ ∶=
⟨S∗T ⟩ for S,T ∈C2N×2N , which is given by

B
∗
≡ B

∗
(w1,w2)[⋅] ∶= 1 − S[(M(w1))

∗
⋅ (M(w2))

∗
] . (1.A.14)

So far, the regularisation of A1 and A2 has been rather structural. To make it more concrete, we
must allow Vσ and Uσ to be potentially different depending on which of the Ai is regularised. In
order to do so, we also temporarily introduce the additional index i, referring to the considered Ai.
That is, we will write Vσ,i instead of Vσ.

The matrices Vsi,i (recall (1.A.12) for the definition of si) shall be determined by requiring that

∥MA1
12 ∥ = ∥M1X 12[A1]M2∥ ≲ ∥A1∥ for i = 1 and ∥X21[A2]∥ ≲ ∥A2∥ for i = 2 ,

meaning that the (adjoint of the) stability operator has a bounded inverse on regular observables
(i.e. subtracting the si-singular component amounts to removing the ‘bad direction’ of the stability
operators X12 and X12, respectively). From this condition, we find the characterisation of Vs1,1 and
Vs2,2, namely

Vs1,1 = R1∗2∗ = (R21)
∗ and Vs2,2 = R2∗1∗ = (R12)

∗ , (1.A.15)

86



1.A. Motivating derivations of the regularisation

up to a normalisation constant, which can be specified only after determining Uσ (recall that
⟨Vσ, Uτ ⟩ = δσ,τ and ⟨Uσ, Uσ⟩ = 1). Recall from (1.A.3), that we denote by Rm(∗)n(∗) and Lm(∗)n(∗)
the (normalised) right and left eigenvectors of Bm(∗)n(∗) corresponding to the (potentially) critical
eigenvalue βm(∗)n(∗) .

Indeed, in order to verify that (1.A.15) is the right choice for Vsi,i, we use the decomposition

Xmn = (B
−1
m∗n∗)

∗
=

1
β̄m∗n∗

∣Lm∗n∗⟩ ⟨Rm∗n∗ ∣ +O(1) , (1.A.16)

where O(1) is a shorthand notation for a linear operator E ∶ C2N×2N →C2N×2N satisfying ∥E[B]∥ ≲
∥B∥. This linear operator is represented by a contour integration of the form

1
2πi ∮

dz
z − B∗m∗n∗

where the contour encircles all non-critical eigenvalues of B∗m∗n∗ and remains at an order one
distance from the entire spectrum. Note that for general non-Hermitian operators the resolvent
(z − B∗m∗n∗)

−1 would not necessarily be bounded (independently of N) just because z is well away
from the eigenvalues. However, the explicit form of S (see (1.2.21)) implies18 that B∗m∗n∗ = 1 + T
where T is a rank-two operator. For such operators elementary linear algebra shows that

∥
1

z − B∗m∗n∗
∥ ≲ [dist(z,Spec(B∗m∗n∗))]

−2
,

i.e. the non-Hermitian instability only affects a two-dimensional subspace.

Using (1.A.16) we find

X12[Å
s1
1 ] =

1
β̄1∗2∗

(⟨R1∗2∗ ,A1⟩ − ⟨Vs1,1,A1⟩⟨R1∗2∗ , Us1,1⟩)L1∗2∗ +O(1)[A1]

for the decomposition of A1 and

X21[Å
s2
2 ] =

1
β̄2∗1∗

(⟨R2∗1∗ ,A2⟩ − ⟨Vs2,2,A2⟩⟨R2∗1∗ , Us2,2⟩)L2∗1∗ +O(1)[A2] ,

for the decomposition of A2. This implies that for (⋯) to be vanishing for every Åsi

i , the matrix
Vsi,i has to be chosen according to (1.A.15) (recall ⟨Vσ,i, Uτ,i⟩ = δσ,τ ).19 Overall, subtracting the
si-singular component already accounts for removing the ‘bad direction’ of a involved stability
operator and thus – in particular – reduces the naive size of the deterministic approximation (1.A.13).

However, removing the si-singular component is not sufficient: Although ⟨Vsi,i, U−si,i⟩ = 0 and thus
U−si,i is si-regular, we observe that

⟨G1U−s1,1G2U−s2,2⟩ (1.A.17)

still (potentially) has large fluctuations: In our concrete i.i.d. model, take z ≡ z1 = z2 (to be suppressed
from the notation) and w ≡ w1 = −w2 with e = Rew1 and η = Imw1 > 0 w.l.o.g., which implies

18This is the only place in Section 1.A.2 where the special form of S is currently used. For more general S operator
an appropriate generalisation of the symmetrised (saturated) self-energy operator [17, Def. 4.5] to two different spectral
parameters is needed, see [392, Eq. (2.30)] in the commutative case.

19In case that Λ1 = Λ2, by the lower bound (1.B.15), the choices in (1.A.15) not necessarily have to be made exact,
but tolerate an error of the order given in the rhs. of (1.B.15). Having such a tolerance might be important if one treats
the Λ1 ≠ Λ2 case (contrary to Λ1 = Λ2 as done in this paper) and still has to satisfy the constraints ⟨Vσ, Uτ ⟩ = δσ,τ

and ⟨Uσ, Uσ⟩ = 1.
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1. Optimal lower bound on eigenvector overlaps

that s1 = s2 = + and Uσ = Eσ for σ = ± (see the discussion below (1.3.4)). In this situation, we use
(1.2.16) and thus (1.A.17) takes the form

⟨G(e + iη)E−G(−e − iη)E−⟩ = −⟨G(e + iη)G(e + iη)⟩ .

By construction of Vsi,i, the corresponding deterministic approximation (1.A.13) is bounded by one,
but this is dominated by the fluctuation of order 1/(Nη2) in the relevant small regime η ∼ N−1+ϵ.
This example shows again, what we have already established in Section 1.A.1: For our concrete
model, at least close to the imaginary axis, the regularisation (1.3.2) is necessarily a two-dimensional
operation.

For determining the other directions V−si,i, we note that the regularisation should be designed in such
a way, that it covers also the cases where one (or both) of the resolvents G1,G2 are taken as an adjoint
(see, e.g., (1.5.13) and (1.6.10)). Hence, requiring that the same arguments leading to (1.A.15)
should also be followed for (i) ⟨G1A1G

∗
2A2⟩ and (ii) ⟨G∗1A1G2A2⟩ (considering ⟨G∗1A1G

∗
2A2⟩ would

again lead to a conclusion for Vsi,i as the relative sign of imaginary parts is preserved), we find
that V−s1,1 = (R2∗1)

∗ and V−s2,2 = (R12∗)
∗ in case (i), and V−s1,1 = (R21∗)

∗ and V−s2,2 = (R1∗2)
∗

in case (ii). In general, the right eigenvectors for these two cases are not the same. However, as
pointed out in Footnote 19, there is a certain tolerance in choosing the V±. Therefore, within this
tolerance and in order to have a consistent and conceptually simple choice, we take V−s1,1 from case
(i) and V−s2,2 from case (ii), i.e.

V−s1,1 = R1∗2 = (R2∗1)
∗ and V−s2,2 = R2∗1 = (R1∗2)

∗ . (1.A.18)

Here, in both situations the spectral parameter being the right neighbour of Ai receives a complex
conjugate. In comparison, if we took V−s1,1 from case (ii) and V−s2,2 from case (i), we would have
ended up with the alternative regularisation from Footnote 10, where the left neighbor of Ai received
a complex conjugate. Again, the relations in (1.A.18) are understood up to a normalizing constant,
which can be specified only after determining Uσ.

Now, it is very important to observe that, for our concrete model with Λ1 = Λ2 and w1 = w2 = iη
(in particular, s1 = s2 = −), our choices for V± in (1.A.15) and (1.A.18) agree with those in (1.A.8)
and (1.A.10) obtained from a variance calculation with only a single resolvent. This follows from
the explicit formulas for the critical right eigenvector given later in (1.B.16), Lemma 1.B.4 (a), and
(1.2.19)

1.A.3 Explicit formulas for our concrete model and Λ1 = Λ2

In this subsection, we will give explicit formulas for V± and U± for our concrete model with one fixed
deformation Λ. In fact, for Λ1 = Λ2, the so far unspecified matrices Uσ can be characterised by
requiring that, jointly with the symmetry relation E−Gz(−w)E− = −Gz(w), a resolvent identity (see
(1.3.21) for the standard resolvent identity) can be applied to G2UσG1. This yields, together with
the normalisation ⟨Uσ, Uσ⟩ = 1, that20

U+ = E+ and U− = E− .

The singular (or critical) eigenvectors of the stability operators characterizing Vsi,i can also be
explicitly calculated. Using (1.A.15) and (1.A.18), we infer, by means of (1.B.16) and the normali-
sation/orthogonality condition ⟨Vσ,i, Uτ,i⟩ = δσ,τ , that

Vs1,1 =
M2Es1M1

⟨M2Es1M1Es1⟩
, V−s1,1 =

M∗
2E−s1M1

⟨M∗
2E−s1M1E−s1⟩

,

Vs2,2 =
M1Es2M2

⟨M1Es2M2Es2⟩
, V−s2,2 =

M∗
1E−s2M2

⟨M∗
1E−s2M2E−s2⟩

,

(1.A.19)

20Note that the assignment of ± is a priori not determined, but we chose it in that way. This is also reflected in
(1.A.15) and (1.A.18).
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matching the definition of the regularisation given in (1.4.8) and (1.3.7). The normalisation is
obvious and the orthogonality readily follows from (1.2.19) in combination with Lemma 1.B.4.

Finally, we remark that in order to define the regularisation (1.3.7) and work with (1.A.15) and
(1.A.18), it is not necessary to have the explicit forms for Vσ,i at hand. Instead, the single instance of
relevant explicit formulas is the proof of Theorem 1.2.7, more precisely, the bound in Proposition 1.3.4,
where one needs that for ∣Imw1∣ ∼ N

−1+ϵ, e.g., (R1∗1)
∗ is close to ImM1 (up to a normalisation).

But this is true beyond our model, as easily follows after taking the imaginary part of the general
matrix Dyson equation (see [236])

−
1
M
= w −A + S[M] , Imw ⋅ ImM > 0

with self-adjoint matrix of expectations A = A∗ and (flat) self-energy operator S[⋅]. In fact, this
yields

(1 −MS[⋅]M∗)(ImM) = (Imw)MM∗ ,

i.e. for ∣Imw∣ ≪ 1 very small, ImM is an approximate right eigenvector of the stability operator
1 −MS[⋅]M∗ corresponding to the critical eigenvalue (recall the discussion below (1.A.3)).

1.B Properties of the MDE and the stability operator: Proof of
Lemma 1.3.3

In the first part of this appendix, we derive several elementary properties of the MDE

−
1
M
= w − Λ̂ + S[M] , w ∈C ∖R , (1.B.1)

(recall (1.2.20)) and its unique solution M (under the usual constraint ImM ⋅ Imw > 0) where the
operator S was given in (1.2.21) and Λ̂ ∈C2N×2N is from (1.2.2). Afterwards, in the second part,
we turn to the associated two-body stability operator

B ≡ B(w1,w2)[⋅] ∶= 1 −M(w1)S[⋅]M(w2) (1.B.2)

and its adjoint B∗ (see (1.A.14)). Moreover, we also explain the relation between the regularisation
from Definition 1.3.1 and the stability operator.

Finally, after proving and combining Lemmas 1.B.1 and 1.B.4 with Lemma 1.B.6 on M and B,
respectively, we will complete the proof of Lemma 1.3.3.

1.B.1 The Matrix Dyson Equation (1.B.1) and its solution
Existence and uniqueness of the solution M =M(w) to (1.B.1) with ImM ⋅ Imw > 0 has already
been shown in [332]. By [17, Prop. 2.1], this solution can also be represented as the Stieltjes
transform of a compactly supported semi-definite matrix-valued probability measure on R, which has
the immediate consequence that ∥M(w)∥ ≤ ∣Imw∣−1.

Lemma 1.B.1. Let M be the unique solution to (1.B.1) and write its 2 × 2-block representation as

M =

⎛
⎜
⎜
⎝

M11 M12

M21 M22

⎞
⎟
⎟
⎠

. (1.B.3)

Then we have the following:

(a) The average trace ⟨M⟩ coincides with the solution m of (1.2.4), ⟨M(w)⟩ =m(w), and the
blocks in (1.B.3) are given by (1.2.17)–(1.2.18). We have M∗(w) =M(w̄).
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(b) The solution has a continuous extension to the real line from the upper half plane, denoted by
M(e) ∶= limη↓0M(e + iη); the limit from the lower half plane is M∗(e). The self-consistent
density of states of the MDE, defined as ρ(e) = 1

π ⟨ImM(e)⟩, is identical to the free convolution
of µΛ̂ ⊞ µsc from (1.2.3). Both ρ and its Stieltjes transform m are Hölder continuous with a
small universal exponent c, i.e.

∣ρ(e1) − ρ(e2)∣ ≤ C ∣e1 − e2∣
c, e1, e2 ∈R,

and
∣m(w1) −m(w2)∣ ≤ C

′
∣w1 −w2∣

c, w1,w2 ∈C+, (1.B.4)

where C,C ′ depend only on ∥Λ∥.

(c) We have the chiral symmetry

E−M(w) = −M(−w)E− . (1.B.5)

In particular, for purely imaginary spectral parameter, w = iImw, it holds that m = iImm as
well as M11 = iImM11 and M22 = iImM22. Moreover, the off-diagonal blocks of ImM are
vanishing on the imaginary axis.

(d) Fix κ > 0. For any spectral parameter in the κ-bulk, w ∈C ∖R with Rew ∈Bκ, we have

∥M(w)∥ ≤ C(κ, ∥Λ∥) (1.B.6)

for some constant depending only on κ and an upper bound on the norm ∥Λ∥. Moreover, ρ(e)
is real analytic on Bκ with derivatives controlled uniformly

max{∣∂kρ(e)∣ ∶ e ∈Bκ} ≤ C(k, κ, ∥Λ∥) (1.B.7)

with a constant C(k, κ, ∥Λ∥) for any k ∈N.

Proof. For part (a), a direct computation shows that M from (1.B.3) with the blocks given in (1.2.17)–
(1.2.18) indeed solves (1.B.1) if m is replaced with ⟨M⟩ in these formulas. The calculation uses
the simple observation that ⟨M11⟩ = ⟨M22⟩ from (1.2.18), hence S[M] = ⟨M⟩. Furthermore, the
MDE also implies that ⟨M⟩ solves (1.2.4), but this equation has a unique solution by the theory of
free convolutions with a semicircular density, hence m = ⟨M⟩. Finally M∗(w) =M(w̄) follows from
m̄(w) =m(w̄). This proves (a).

For part (b), since S[M] = ⟨M⟩, we observe that M solves

−
1
M
= w − Λ̂ + ⟨M⟩ ,

which is exactly the MDE for a deformed Wigner matrix model.21 The point is that the Hermitised
H from (1.2.15) does not satisfy the uniform lower bound in the flatness condition on the self-energy
operator, i.e. S[T ] ≥ c⟨T ⟩ does not hold in general. Nevertheless, for the purpose of computing
M we can replace H with the deformed Wigner model W + Λ̂ with self-energy given S[T ] = ⟨T ⟩
and which is flat. Thus we can use several results from the analysis of the MDE with flatness
condition. The Hölder-continuity of the scDos was proven in [17, Prop. 2.2], which easily extends to
the Hölder-continuity of its Stieltjes transform m, see e.g. [16, Lemma A.7]. In particular ⟨M(w)⟩
extends continuously to the real line and thus the scDos ρ(e) ∶= 1

π ⟨ImM(e)⟩ = 1
π Imm(e) is well

defined. Since it has the same Stieltjes transform as the free convolution (1.2.3) by part (a), we
proved that the scDos defined via MDE is the same as the free convolution (1.2.3).

21That is, a matrix H =W + Λ̂, where W is a Hermitian matrix with normalised i.i.d. (up to the symmetry) entries
of variance 1/(2N).
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The continuous extension of M (and not only its trace) requires an additional argument. For any
open interval I ∈R define

∥M∥I ∶= sup{∥M(e + iη)∥ ∶ e ∈ I, η > 0} .

Suppose for some open I ∈R we have ∥M∥I <∞, then we have the Lipschitz continuity

∥M(w1) −M(w2)∥ ≤ ∥M∥
2
I ∣w1 −w2∣ , Rew1,Rew2 ∈ I

following from the resolvent identity applied to M(w) = (Λ̂ −w −m)−1. Thus M(w) continuously
extends to any e ∈ I.

So the key question for the extension (and for many other results on the MDE) is the boundedness
∥M∥I <∞. In the bulk spectrum, i.e. for any e ∈R with ρ(e) > 0, we can use the bound

∥M(w)∥ ≤ ∣Imm(w) + Imw∣−1

that is obtained by taking the imaginary part of (1.B.1), yielding

ImM = (Imw + ⟨ImM⟩)MM∗ ,

and using ∥MM∗∥ = ∥M∥2 and ∥ImM∥ ≤ ∥M∥. By the Hölder continuity (1.B.4) in small neigh-
borhood I of e (whose size depend on the lower bound on ρ(e)) we obtain ∥M∥I ≲ ρ(e)−2 < ∞.
Thus M continuously extends to I with the same bound and it is locally Lipschitz continuous with a
Lipschitz constant of order ρ(e)−2. In the entire κ-bulk this extension is controlled by a constant
depending only on κ and ∥Λ∥ (via (1.B.4)). This proves (1.B.6).

Near the spectral edges we have only an N -independent upper bound for ∥M∥. Using the spectral
decomposition of Λ̂ with eigenvalues νi and normalised eigenvectors yi, i ∈ ±[N], we have

M(w) =∑
i

∣yi⟩⟨yi∣

νi −w −m(w)
, thus ∥M(w)∥ ≤

2N
mini ∣νi −w −m(w)∣

. (1.B.8)

On the other hand the imaginary part of (1.2.4) implies

Imm =
1

2N ∑i
Imm + Imw

∣νi −w −m∣2

thus
1

2N ∑i
1

∣νi −w −m∣2
=

Imm

Imm + Imw
≤ 1

so ∣νi −w −m∣ ≥ 1/
√

2N . From (1.B.8) this gives the uniform bound

∥M(w)∥ ≤ (2N)3/2, w ∈C ∖R,

which guarantees the continuous extension of M to the real line with a uniform Lipschitz constant
(2N)3/2. As we have seen, in the bulk this regularity can be improved.22

For part (c), the symmetry ρ(e) = ρ(−e) immediately implies the symmetry m(w) = −m(−w) for its
Stieltjes transform. Then (1.B.5) is an immediate consequences of the formulas (1.2.17)–(1.2.18).

Finally, for part (d), the bound (1.B.6) was already proven above. The real analyticity of ρ and m in
the bulk with the bounds on the derivative (1.B.7) follows from taking derivatives in (1.2.4) and
using again the lower bound on Imm.

22We remark that under some extra condition on Λ further improvements away from the bulk are possible for m but not
for M . For example, if the singular values νi of Λ are 1/2-Hölder continuous in the sense that ∣νi−νj ∣ ≤ C0[∣i−j∣/N]

1/2,
then m is also uniformly bounded and 1/3-Hölder continuous with a constant depending on C0, see Section 11.4
of [16].
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Finally, we prove some regularity property of the κ-bulk, see (1.2.23).

Lemma 1.B.2. Let 0 < κ′ < κ be two small constants, then

dist(∂Bκ′ ,Bκ) ≥ c(κ − κ
′
) (1.B.9)

with some N -independent constant c = c(∥Λ∥) > 0. Moreover, Bκ is a finite union of disjoint compact
intervals; the number of these components depends only on κ and ∥Λ∥.

Proof. As in the proof of Lemma 1.B.1, we interpret Bκ as the κ-bulk of the deformed Wigner
matrix W + Λ̂, i.e. a model with the flatness condition. The statement on the number of components
directly follows from the real analyticity of ρ and (1.B.7).

The same argument would also imply (1.B.9) with a constant c that depends on κ and an upper
bound on ∥Λ∥. To remove the κ-dependence, we need to use the detailed shape analysis for ρ
from [22]. In particular, the flatness condition and ∥M∥I < C(κ) for any interval I ⊂ Bκ (equivalent
to [22, Eq. (4.16)]) implies that Assumption 4.5 in [22] holds. Therefore Theorem 7.2 in [22] applies
to our case. This theorem says that in the regime where ρ is small, it is approximately given by
explicit 1/3-Hölder continuous functions, moreover ρ itself is 1/3-Hölder continuous with Hölder
constant depending only on the so-called model parameters of the problem, which in our case is just
an upper bound on Λ (note that [22] was written for much more complicated self-energy operators
to include the MDE analysis for random matrices with correlated entries). Noticing the κ1/3 power
in the definition of Bκ in (1.2.6), this means that the boundaries of Bκ are Lipschitz continuous
functions of κ when κ is small with a Lipschitz constant depending only on an upper bound on
∥Λ∥.

Remark 1.B.3. Note that the proof of the independence of c = c(∥Λ∥) of κ required a much more
sophisticated analysis. However, for our main proof, c = c(κ, ∥Λ∥) > 0 in (1.B.9) is sufficient, note
that (1.B.9) is only used in choosing δ in (1.4.22) appropriately. More precisely, for fixed L = L(ϵ)
and κ0 > 0, given the family (ℓκ0)ℓ∈[L] of parameters for the domains D(ϵ0,κ0)

ℓ , we would have that
dist(∂B(ℓ−1)κ0 ,Bℓκ0) ≥ c(ℓκ0, ∥Λ∥)κ0. Now, the cutoff parameter δ in (1.4.22) is chosen much
smaller than c(ℓκ0, ∥Λ∥)κ0 for every ℓ ≤ L(ϵ).

1.B.2 The stability operator (1.B.2) and its spectral properties
Throughout the entire paper, the two-body stability operator (1.B.2) and its adjoint (1.A.14) play a
crucial role. These operators depend on two (a priori) different spectral parameters w1,w2 via the
solutions M1 = M(w1) and M2 = M(w2) of the MDE (1.B.1). For these solutions, we have the
following basic lemma.

Lemma 1.B.4. Let w1,w2 ∈ C∖R be two spectral parameters and M1 =M(w1),M2 =M(w2) the
corresponding solutions to (1.B.1).

(a) Then we have the M -Ward identity,

M1 −M2 = [(w1 −w2) + (⟨M1⟩ − ⟨M2⟩)]M2M1 . (1.B.10)

In particular, M1 and M2 commute and it holds that

(1 − ⟨MM∗
⟩) ⟨ImM⟩ = Imw ⟨MM∗

⟩ . (1.B.11)

(b) Fix κ > 0 and let Rew1,Rew2 ∈ Bκ. Then, for Imw1Imw2 > 0, we have the perturbative
estimate

∥M(w1) −M(w2)∥ = O(∣w1 −w2∣ ∧ 1) .
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Proof. Part (a) is an immediate consequence of the MDE (1.B.1) using the fact that

M = (Λ̂ − (w +m))−1

is a resolvent of Λ̂. The special case (1.B.11) follows from (1.B.10) with w1 = w and w2 = w̄, and
taking a trace.

For part (b), we focus on the case of small imaginary parts for the spectral parameters (the
complementary regime being trivial) and use that M is analytic away from the real axis and
differentiate (1.B.1) w.r.t. w, such that we find

∂wM =
1

1 − ⟨M2⟩
M2

by means of S[M2] = ⟨M2⟩ as follows from the explicit form of M in (1.2.17)–(1.2.18). Next, using
(1.B.11), the denominator is lower bounded as

∣1 − ⟨M2
⟩∣ = ∣(1 − ⟨MM∗

⟩) − 2i⟨M ImM⟩∣ ≥ 2∣⟨(ImM)2⟩∣ ≥ 2⟨ImM⟩2 , (1.B.12)

which shows that ∥∂wM∥ ≲ 1 in the bulk. Now the claim follows from the fundamental theorem of
calculus together with the boundedness of M , see (1.2.22).

Armed with this information, we can now turn to the following lemma, collecting several basic
spectral properties stability operator B. Its proof will be given at the end of this section.

Lemma 1.B.5. Let w1,w2 ∈C ∖R and M1,M2 be the respective solutions of (1.B.1).

(a) The associated two-body stability operator

B = 1 −M1S[⋅]M2

has two non-trivial eigenvalues β± (the other (2N)2 − 2 are equal to one), given by

β± = 1 ∓ ⟨M1E±M2E±⟩ . (1.B.13)

The corresponding right- and left-eigenvectors

B[R±] = β±R± , B
∗
[L∗±] = β̄±L

∗
± ,

take the explicit form
R± =M1E±M2 , L± = E± , (1.B.14)

up to a normalisation ensuring that ⟨L±,R±⟩ = 1.

(b) The eigenvalues (1.B.13) can be lower bounded as

∣β±∣ ≳ (∣Rew1 ∓Rew2∣ + ∣Imw1∣ + ∣Imw2∣) ∧ 1 . (1.B.15)

In particular, the inverse stability operator B−1 exists.

(c) Fix κ > 0 and denote s ∶= − sgn(Imw1 Imw2). Then, for Rew1,Rew2 ∈ Bκ, we have that
∣β−s∣ ≳ 1.
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By the last item, given s ∶= − sgn(Imw1 Imw2), we will always refer to

(β ∶= 1 − s⟨M1EsM2Es⟩ , R ∶=M1EsM2 , L ∶= Es) (1.B.16)

as the critical eigentriple (and accordingly β as the critical eigenvalue etc.), consisting of the
eigenvalue and the corresponding right- and left-eigenvector. Moreover, the estimate (1.B.15) shows
that, if we have (recall (1.3.6))

1±δ (w1,w2) ∶= ϕδ(Rew1 ∓Rew2) ϕδ(Imw1) ϕδ(Imw2) = 0

for some δ > 0, then the inverse stability operator B−1 is bounded and none of the eigenvalues β± is
really critical. In the complementary regime, 1±δ (w1,w2) = 1, and Rew1,Rew2 ∈Bκ, we shall now
explain the interplay between the critical eigentriple (1.B.16) and the regularisation (1.3.7).

Lemma 1.B.6. Let w1,w2 ∈ C ∖R with Rew1,Rew2 ∈ Bκ for some fixed κ > 0 and denote the
relative sign of imaginary parts by s ∶= − sgn(Imw1 Imw2). Moreover, let M1 = M(w1),M2 =
M(w2) be the respective solutions of (1.B.1) and A ∈C2N×2N a bounded deterministic matrix.

(a) If 1s
δ(w1,w2) = 1 for some δ > 0 small enough, the critical left- and right-eigenvectors (1.B.16)

are normalised as ⟨L,R⟩ ∼ 1. In particular, if 1±δ (w1,w2) = 1, the respective denominator in
the regularisation Åw1,w2 (see (1.3.7)) is bounded away from zero.

(b) The operator X12, acting as

X12[B] ∶= ((B
∗
12)
−1
[B∗])

∗
= (1 − S[M1 ⋅M2])

−1
[B] , B ∈C2N×2N ,

where B12 ∶= 1 −M1S[⋅]M2, is well defined and bounded on the s-regular component Ås

(w.r.t. the pair of spectral parameters (w1,w2)) of any bounded A. This means, for

Å
s
∶= A − 1s

δ(w1,w2)
⟨M1AM2Es⟩

⟨M1EsM2Es⟩
Es (1.B.17)

it holds that ∥X12[Å
s
]∥ ≲ 1.

In particular, combining Lemma 1.B.4 (b) with Lemma 1.B.6 (a), (1.2.19), and Lemma 1.B.4 (a),
we conclude the perturbative statements from Lemma 1.3.3.

Proof of Lemma 1.B.6. For part (a), similarly to the proof of Lemma 1.B.5 (c) given below, we
focus on the extreme case w2 = sw̄1, where the critical eigentriple is given by

(β = 1 − s⟨M(w1)EsM(sw̄1)Es⟩ , R =M(w1)EsM(sw̄1) , L = Es) . (1.B.18)

Now by means of the chiral symmetry (1.2.19), we readily obtain

⟨L,R⟩ = s⟨M1M
∗
1 ⟩ = s

⟨ImM1⟩

Imw1 + ⟨ImM1⟩
∼ 1 ,

where we used (1.B.11) in the second step. This principal normalisation of order persists after small
perturbation of w2 around the extreme case, but as long as 1s

δ(w1,w2) = 1. Our claim for the
denominators in the regularisation (1.3.7) follows immediately from the representation in (1.B.18).

For part (b), we first note that, by means of Lemma 1.B.5, the statement is trivial for constellations of
spectral parameters w1,w2 satisfying 1s

δ(w1,w2) = 0 and we can hence focus on the complementary
extreme case 1s

δ(w1,w2) = 1. Then it follows from the explicit form

X12[B] = B +∑
σ

σ
⟨M1BM2Eσ⟩

1 − σ⟨M1EσM2Eσ⟩
Eσ
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and Lemma 1.B.5 that
X12[B] = s

1
β
⟨M1BM2Es⟩Es +O(1)[B] , (1.B.19)

where O(1) is a shorthand notation for a linear operator E ∶ C2N×2N →C2N×2N satisfying ∥E[B]∥ ≲
∥B∥. Now, plugging Ås from (1.B.17) into (1.B.19) yields the desired.

It remains to give the proof of Lemma 1.B.5.

Proof of Lemma 1.B.5. For (a), we first observe that, due to the simple structure of S[⋅], indeed
(2N)2 − 2 of the (2N)2 eigenvalues of B are equal to one. The expressions (1.B.13) and (1.B.14)
can be verified by direct computation, invoking Lemma 1.B.4 in combination with the chiral symmetry
(1.2.19).

For (b) with w1 ≠ ±w2, we first find that

1
β±
=

1
1 ∓ ⟨M1E±M2E±⟩

= 1 + ⟨M1⟩ ∓ ⟨M2⟩

w1 ∓w2
(1.B.20)

as a consequence of Lemma 1.B.4 (a) and the chiral symmetry. Now, using that ∣⟨M⟩∣ ≤ ⟨MM∗⟩1/2 <
1, which follows from MM∗ = ImM/(Imw + ⟨ImM⟩) (see Lemma 1.B.4 (a)), we conclude that

∣β±∣ ≳ ∣Rew1 ∓Rew2∣ ∧ 1 (1.B.21)

by application of a triangle inequality in (1.B.20). Next, we estimate

min {∣β+∣ , ∣β−∣} ≥ ∣1 − ⟨M1M
∗
1 ⟩

1/2
⟨M2M

∗
2 ⟩

1/2∣ ≳ (∣Imw1∣ + ∣Imw2∣) ∧ 1 , (1.B.22)

where in the first step we used ⟨MM∗⟩ < 1 together with a Schwarz inequality, and (1.B.11) in the
second step. Combining (1.B.21) and (1.B.22) yields the claim.

Finally, for (c), we consider the case of small imaginary parts for the spectral parameters (the
complementary regime being trivial) and focus on the extreme case w1 = −sw2. Then, using (1.2.19)
and (1.B.12), we obtain

∣β−s∣ = ∣1 − ⟨M2
1 ⟩∣ ≥ 2⟨ImM1⟩

2
≳ 1 . (1.B.23)

This principal lower bound persists after small perturbations of w2, and the complementary regime
can be dealt with by (1.B.15).

1.C Proof of Theorem 1.2.6
In this appendix, we give a short proof of the usual single resolvent local law in the bulk given in
Theorem 1.2.6. In the literature, bulk local laws are established under the usual flatness assumption
(see [243, Assumption E]) on the self-energy operator S (recall (1.A.4)). However, for our model, the
stability operator S[R] = ∑σ σ⟨REσ⟩Eσ violates the lower bound in the flatness condition (1.A.4),
which is why we need to provide a separate argument. The main idea is that lacking of the lower
bound in (1.A.4) is compensated by the orthogonality relation ⟨GE−⟩ = ⟨ME−⟩ = 0 as a consequence
of (1.5.5).

The following argument heavily relies on [243, Theorem 4.1], where a general high-moment bound
on the underlined term in

⟨(G −M)B⟩ = −⟨WGX [B]M⟩ + ⟨G −M⟩⟨(G −M)X [B]M⟩ (1.C.1)

and its isotropic counterpart (see (1.C.2) below) has been shown. We stress that this estimate
from [243] does not require the lower bound in (1.A.4) for the self-energy operator S. As usual,
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we suppressed the spectral parameter w ∈ C ∖R satisfying Rew ∈ Bκ for some fixed κ > 0 from
the notation. The expansion (1.C.1) for an arbitrary deterministic matrix B ∈C2N×2N has already
been established in (1.5.18), where we introduced the linear operator X [B] ∶= (1−S[M ⋅M])−1

[B]
acting on matrices.

For given B, we now decompose it into its (−)-regular and (−)-singular component (see (1.B.17),
the cutoff function being irrelevant here),

B = B̊
−
+
⟨MBME−⟩

⟨ME−ME−⟩
E− ,

respectively. For the second summand, we note that ⟨GE−⟩ = ⟨ME−⟩ = 0, and we can hence focus
on the regular component, i.e. assume that B = B̊− is (−)-regular.

In this case, for a bounded deterministic ∥B∥ ≲ 1 we thus have ∥X [B]∥ ≲ 1 from Lemma 1.B.6. With
the high-moment bound on the underlined term from [243, Theorem 4.1, part (b)] one can conclude
the proof of Theorem 1.2.6 in the averaged case, ∣⟨(G −M)B⟩∣ ≺ (Nη)−1, by a standard bootstrap
argument (see, e.g., [243, Sections 5.3 and 5.4]).

In the isotropic case, we evaluate (1.C.1) for B = 2N ∣y⟩ ⟨x∣, where x,y ∈ C2N are deterministic
vectors in with ∥x∥, ∥y∥ ≲ 1. More precisely, we subtract its (−)-singular component (which can be
dealt with separately as explained above) and insert

B = B̊
−
= 2N ∣y⟩ ⟨x∣ − ⟨x,ME−My⟩

⟨ME−ME−⟩
E−

in the expansion (1.C.1), which leaves us with

(G −M)
xy
= − (WG)

x(My) + ⟨G −M⟩(G −M)x(My) (1.C.2)

+ [
⟨x,ME−My⟩

⟨ME−ME−⟩
+
⟨x,M2y⟩

1 − ⟨M2⟩
] [⟨WGE−M⟩ − ⟨G −M⟩⟨(G −M)E−M⟩] .

After realizing that the denominators in (1.C.2) are bounded away from zero (see Lemma 1.B.5 and
Lemma 1.B.6), the proof of Theorem 1.2.6 in the isotropic case, ∣(G −M)

xy
∣ ≺ (Nη)−1/2, can be

concluded again by a standard bootstrap argument, now using the high-moment bound from [243,
Theorem 4.1, part (a)] and the already proven averaged law ∣⟨(G −M)B⟩∣ ≺ (Nη)−1 with ∥B∥ ≲ 1
as an input.

1.D Bounds on the deterministic approximations: Proof of
Lemma 1.4.3

The goal of this appendix is to prove the bounds from Lemma 1.4.3 on the deterministic approximation

M(w1,B1,w2, ...,Bk−1,wk)

to a resolvent chain
G(w1)B1G(w2)⋯Bk−1G(wk) .

While M(w1, ...,wk) has been introduced for an arbitrary number k of spectral parameters w1, ...,wk
in Definition 1.4.1, the bounds in Lemma 1.4.3 shall be proven for k at most five and the deterministic
matrices B1, ...,Bk−1 being regular w.r.t. to the surrounding spectral parameters.

As a preparation for the proof of Lemma 1.4.3, we shall now show that M(w1, ...,wk) from (1.4.2)
satisfies multiple recursive relations, called recursive Dyson equations, by using a so-called meta
argument, that relies on the fact that M(w1, ...,wk) actually approximates a chain of products of
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resolvents. In fact, we only picked one of the recursive relations (namely (1.D.1) with j = 1) for
actually defining M(w1, ...,wk) in Definition 1.4.1. Although the second recursion relation (1.D.2)
will not be used in the proof of Lemma 1.4.3, it is obtained completely analogous to (1.D.1) and we
hence give it for completeness. A similar meta argument has been done several times, see e.g. [181].
For convenience of the reader we repeat it in our setup.

Lemma 1.D.1. (Recursive Dyson equations for M(w1, ...,wk), see [168, Lemma 4.1])
Fix k ∈N. Let w1, ...,wk ∈C ∖R be spectral parameters and B1, ...,Bk−1 ∈C2N×2N deterministic
matrices. Then for any 1 ≤ j ≤ k we have the relations

M(w1,...,wk) =M(w1, ...,wj−1,Bj−1M(wj)Bj ,wj+1, ...,wk) (1.D.1)

+ ∑
σ=±

j−1
∑
l=1
σM(w1, ...,Bl−1,wl,Eσ,wj ,Bj , ...,wk)⟨M(wl, ...,wj−1)Bj−1M(wj)Eσ⟩

+ ∑
σ=±

k

∑
l=j+1

σM(w1, ...,Bj−1M(wj)Eσ,wl,Bl...,wk)⟨M(wj , ...,wl)Eσ⟩

and

M(w1,...,wk) =M(w1, ...,wj−1,Bj−1M(wj)Bj ,wj+1, ...,wk) (1.D.2)

+ ∑
σ=±

j−1
∑
l=1
σM(w1, ...,Bl−1,wl,EσM(wj)Bj , ...,wk)⟨M(wl, ...,wj)Eσ⟩

+ ∑
σ=±

k

∑
l=j+1

σM(w1, ...,Bj−1,wj ,Eσ,wl,Bl, ...,wk)⟨M(wj)BjM(wj+1, ...,wl)Eσ⟩ .

If j = 1 or j = k, we define B0 = E+ resp. Bk = E+ in (1.D.1) and (1.D.2).

The formulas (1.D.1) and (1.D.2) shall be derived by expanding the jth resolvent Gj in the resolvent
chain G1B1 ⋯GjBj ⋯ Bk−1Gk corresponding to M(w1, ...,wk) in an underlined term, once to the
right (for (1.D.1), see (1.D.8)) and once to the left (for (1.D.2), see (1.D.10)). Altogether, this
yields 2k different recursions for M(w1, ...,wk), which are listed in the above lemma. Moreover, it
would be possible to prove directly that all these different recursions define the same M(w1, ...,wk).
This strategy has been used in a much simpler setup [170] dealing with Wigner matrices. Here, we
find it simpler to use the alternative meta argument.

Proof. The principal idea is to derive the respective relations (1.D.1) and (1.D.2) on the level of
resolvent chains G1B1⋯Bk−1Gk, which, after taking the expectation and using that Gi ≈Mi from
Theorem 1.2.6, yields the same relation on the level of the deterministic approximations. For the
purpose of proving identities about M(w1, ...,wk), we may use the most convenient distribution for
X, namely Gaussian. For the sake of this proof, we thus assume the single entry distribution χ of X
to be a standard complex Gaussian χ =NC(0,1), i.e. X in Assumption 1.2.1 is a complex Ginibre
matrix, in which case it holds that (recall the discussion below (1.5.3))

E f(W )Wg(W ) = 0 . (1.D.3)

Let w1, ...,wk ∈ C ∖R be arbitrary (but fixed!) spectral parameters. We now conduct the meta
argument, consisting of three steps.
Step 1. We consider the resolvent chain

G1B1 ⋯ Bk−1Gk . (1.D.4)

Expanding G1 via the identity

G1 =M1 −M1WG1 +M1S[G1 −M1]G1
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and using S[G1 −M1] = ⟨G1 −M1⟩ from (1.5.5), we find that

G1B1 ⋯ Bk−1Gk

=M1B1 ⋯ Bk−1Gk −M1WG1B1 ⋯ Bk−1Gk + ⟨G1 −M1⟩M1G1B1 ⋯ Bk−1Gk

=M1B1 ⋯ Bk−1Gk + ∑
σ=±

k−1
∑
l=2

σM1⟨G1B1 ⋯ Bl−1GlEσ⟩EσGlBl ⋯ Bk−1Gk (1.D.5)

−M1WG1B1 ⋯ Bk−1Gk + ⟨G1 −M1⟩M1G1B1 ⋯ Bk−1Gk +M1S[G1B1 ⋯ Bk−1Gk]Mk ,

where in the last step we distributed the derivatives coming from the definition of the underline in
(1.5.3) according to the Leibniz rule. Now, (1.D.9) can be rewritten as

G1B1 ⋯ Bk−1Gk

=(B1k)
−1
[M1B1 ⋯ Bk−1Gk + ∑

σ=±

k−1
∑
l=2

σM1⟨G1B1 ⋯ Bl−1GlEσ⟩EσGlBl ⋯ Bk−1Gk

−M1WG1B1 ⋯ Bk−1Gk + ⟨G1 −M1⟩M1G1B1 ⋯ Bk−1Gk] . (1.D.6)

Apart from the last two terms in (1.D.6), this is the exact same relation on the level of resolvents as
in Definition 1.4.1 for M(w1, ...,wk).
Step 2. Let the original matrix size N be fixed. For any d ∈N, we consider the dN × dN Ginibre
random matrix X(d) with entries having variance 1/(dN), and the deformation Λ(d) ∶= Λ ⊗ Id ∈
CdN×dN , where Id ∈ Cd×d is the identity matrix. Analogously to (1.2.2) and (1.2.15), we also define
the Hermitisations Λ̂(d) and W (d), as well as the resolvents G

(d)
i =G(d)(wi) ∶= (W

(d)+Λ̂(d)−wi)−1.
It is crucial to observe that the correspondingly modified MDE

−
1

M (d) = w − Λ̂(d) + S(d)[M (d)
]

under the usual Imw Im M (d) > 0 constraint with

S
(d)
[R] ∶= Ẽ W̃

(d)
RW̃

(d)
=∑

σ

σ⟨RE(d)σ ⟩E
(d)
σ , where E(d)σ ∶= Eσ ⊗ Id ,

has the unique solution M (d) =M ⊗ Id, where M is the unique solution of the MDE (1.2.20) on
C2N×2N . In particular, if we define B

(d)
i ∶= Bi⊗Id for all i ∈ [k], then it holds that (1.4.2) defined with

M
(d)
i and B

(d)
i as inputs, also satisfies M (d)(w1,B

(d)
1 , ...,B

(d)
k−1,wk) =M(w1,B1, ...,Bk−1,wk)⊗Id.

We now multiply the analogue of (1.D.6) in boldface matrices by some B
(d)
k = Bk ⊗ Id with

Bk ∈ C2N×2N and take the averaged trace. Next, by means of (1.D.3), taking the expectation of
the resulting expression removes the underlined term. Hence, using the one-to-one correspondence
between the terms in the second line of (1.D.6) and the terms on the rhs. of (1.4.2), mentioned
below (1.D.6), it follows by telescopic replacement and a simple induction on the length k of the
chain, that

lim
d→∞

E ⟨G(d)1 B
(d)
1 ⋯ G

(d)
k B

(d)
k ⟩ = ⟨M(w1,B1, ...,wk)Bk⟩ (1.D.7)

by means of the usual global law [243, Theorem 2.1] for the last term on the rhs. of (1.D.6). In
fact, due to the tensorisation, we have that ∣⟨G(d)1 −M

(d)
1 ⟩∣ ≺ 1/(Nd) since ∣Imw1∣ ≳ 1, where the

implicit constant potentially depends on N but not on d.

We emphasise that the tensorisation by Id is indeed a necessary step, since the matrices Mi and Bi
are N -dependent and hence one cannot take the limit N →∞ in (1.D.7) for d = 1.
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Step 3. Having (1.D.7) at hand, the recursive relations in (1.D.1) and (1.D.2) can be proven as
follows: For (1.D.1), let 1 ≤ j ≤ k and expand Gj in (1.D.4) according to

Gj =Mj −MjWGj +MjS[Gj −Mj]Gj , (1.D.8)

which yields, analogously to (1.D.5),

G1 ⋯ Bj−1GjBj ⋯ Gk = G1 ⋯ Bj−1MjBj ⋯ Gk (1.D.9)

+ ∑
σ=±

j−1
∑
l=1
σG1 ⋯ Bl−1Gl⟨Gl ⋯ Gj−1Bj−1MjEσ⟩EσGjBj ⋯ Gk

+ ∑
σ=±

k

∑
l=j+1

σG1 ⋯ Bj−1Mj⟨GjBj ⋯ Bl−1GlEσ⟩EσGlBl ⋯ Gk

−G1 ⋯ Bj−1MjWGjBj ⋯ Gk + ⟨Gj −Mj⟩G1 ⋯ Bj−1MjGjBj ⋯ Gk .

Hence, after taking the trace against some arbitrary Bk ∈C2N×2N , by performing the tensorisation
from Step 2, taking an expectation, and using (1.D.7), we obtain (1.D.1), but in a trace against
Bk. However, since Bk was arbitrary, we conclude the desired.

For the second recursion (1.D.2), the argument is identical except from the fact that we expand Gj
in (1.D.4) according to

Gj =Mj −GjWMj +GjS[Gj −Mj]Mj . (1.D.10)

The recursive relations from Lemma 1.D.1 can be used to show the bounds from Lemma 1.4.3 on
the deterministic counterparts in the definition of Ψav/iso

k in (1.4.15) resp. (1.4.16) for k ≤ 4. Recall
that all deterministic matrices Ai appearing in the respective averaged or isotropic chain are regular
in the sense of Definition 1.4.2.

Proof of Lemma 1.4.3. In the following, we will distinguish the two regimes η ≤ 1 and η > 1 and
argue for each of them separately, iteratively using Lemma 1.D.1. Before going into the iteration,
recall that ∥M(w1)∥ ≲ min(1, 1

∣Imw1∣) from Lemma 1.B.1, which immediately yields (1.4.11) for
k = 1.
Regime η ≤ 1. Using (1.D.1) for k = j = 2, we find that

M(w1,A1,w2) =M(w1)X12[A1]M(w2) = B
−1
12 [M(w1)A1M(w2)] , (1.D.11)

where X12[B] ∶= (1−S[M(w1) ⋅ M(w2)])
−1
[B] for B ∈ C2N×2N . Since A1 is regular, we conclude

(1.4.10) for k = 1 (by means of Lemma 1.B.6 (b)), which immediately translates to (1.4.11) for
k = 2.

Next, for (1.4.10) and k = 2, we again use (1.D.1) with j = 2, such that we obtain

M(w1,A1,w2,A2,w3) =M(w1,X12[A1]M(w2)A2,w3) (1.D.12)
+∑

σ

σM(w1,X12[A1]M(w2)Eσ,w3)⟨M(w2,A2,w3)Eσ⟩ .

Moreover, using (1.4.11) for k = 2 in combination with (1.D.11) and the lower bound (1.B.15) on
the eigenvalues of the stability operator B, (1.4.10) for k = 2 readily follows.

For (1.4.11) and k = 3 we need a different representation of M(w1,A1,w2,A2,w3) as

B
−1
13 [M(w1)A1M(w2,A2,w3) +∑

σ

σM(w1)EσM(w2,A2,w3)⟨M(w1,A1,w2)Eσ⟩] ,
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which follows from (1.D.1) with j = 1 (or simply by Definition 1.4.1). This implies

⟨B
−1
13 [⋯]A3⟩ = ⟨[⋯]X31[A3]⟩

and thus, since ∥[⋯]∥ ≲ 1 from (1.4.10) with k = 1 and ∥X31[A3]∥ ≲ 1 (recall Lemma 1.B.6 (b)), we
have proven (1.4.11) for k = 3.

In order to see (1.4.10) for k = 3, we first need to show that (1.4.10) for k = 2 remains valid, if only
one of the two involved matrices A1,A2 is regular. Henceforth, we will assume that A1 = Å1 and A2
is arbitrary, the other case being similar and hence omitted. We start with (1.D.12) and use the lower
bound (1.B.15) on the eigenvalues of B in the first term in (1.D.12), such that the remaining terms
to be investigated are in the last line of (1.D.12), where we study each factor separately. Thereby,
we focus on the case Imw1 > 0 and s1 = s2 = + (recall (1.3.8)), other constellations being completely
analogous. Now, in the second factor in the last line of (1.D.12) we use

∣⟨M(w2,A2,w3)E−⟩∣ = ∣⟨M(w2)A2M(w3)X32[E−]⟩∣ ≲ 1

for σ = −. For σ = +, we find, using cyclicity of the trace, that ∣⟨M(w2,A2,w3)E+⟩∣ equals

∣⟨A2M(w3,E+,w2)⟩∣ =
1

∣w3 −w2∣
∣⟨A2(M(w3) −M(w2))⟩∣ ≲ 1 + 1

∣w3 −w2∣
.

In the first factor in the last line of (1.D.12), we use the usual bound (1.B.15) for σ = − and conclude
the desired estimate together with the bound on the second factor for σ = −. However, for σ = +,
the argument is slightly more involved: Using the usual notations ej = Rewj and ηj = ∣Imwj ∣, recall
from the proof of Lemma 1.5.6 (see the estimate of (1.5.51)) that

⟨M1X12[A
○1,2
1 ]M2M

∗
2E−⟩ = O(∣e1 + e2∣ + η1 + η2) ,

which readily implies that

⟨M1X12[A
○1,2
1 ]M2M3E−⟩ = O(∣e2 − e3∣ + ∣e1 + e2∣ + η1 + η2 + η3) (1.D.13)

by means of Lemma 1.B.4 (b). Employing the associated decomposition in the first factor in the last
line of (1.D.12) (and using the analogous cτ(...)-notation as in (1.5.41)), we find it being equal to

M(w1, (X12[A1]M(w2))
○1,3

,w3) +∑
τ

cτ(X12[A
○1,2
1 ]M2)M(w1,Eτ ,w3) .

The first summand is easily bounded by one, as follows from (1.4.10) for k = 1. Using (1.D.11), the
term with τ = + is also bounded by one. The remaining term with τ = − can be estimated with the
aid of (1.D.13) as

∣e2 − e3∣ + ∣e1 + e2∣ + η1 + η2 + η3
∣w1 +w3∣

.

Collecting all the estimates from above, we find that ∥M(w1, Å1,w2,A2,w3)∥ is bounded by

1
η
+ (1 + ∣e1 + e3∣ + ∣e2 − e3∣ + η1 + η2 + η3

∣e1 + e3∣ + η1 + η3
)(1 + 1

∣e3 − e2∣ + η2 + η3
) ≲

1
η
,

which shows that (1.4.10) remains valid if only one of the two involved matrices A1, A2 is regular.

Having this at hand, we can now turn to the proof of (1.4.10) for k = 3. In fact, by (1.D.1) for
k = 4, we find

M(w1, ..,w4) =M(w1,X12[A1]M(w2),A2,w3,A3,w4) (1.D.14)
+∑

σ

σM(w1,X12[A1]M(w2)Eσ,w3,A3,w4)⟨M(w2,A2,w3)Eσ⟩
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+∑
σ

σM(w1,X12[A1]M(w2)Eσ,w4)⟨M(w2,A2,w3,A3,w4)Eσ⟩ ,

where the first and second line of (1.D.14) are bounded by 1
η and we can thus focus on the last line.

Structurally, this term is the analog of the last line in (1.D.12) and also proving it being bounded by
1
η is completely analogous to the arguments above. This concludes the proof of (1.4.10) for k = 3,
from which (1.4.11) for k = 4 immediately follows.

Finally, we turn to the proof of (1.4.10) for k = 4. By (1.D.1) for j = 1 (or simply by Definition 1.4.1)
we find the different representation

M(w1, ...,w5) =B
−1
15 [M(w1)A1M(w2, ...,w5)

+∑
σ

σM(w1)EσM(w2, ...,w5)⟨M(w1,A1,w2)Eσ⟩

+∑
σ

σM(w1)EσM(w3, ...,w5)⟨M(w1, ...,w3)Eσ⟩

+∑
σ

σM(w1)EσM(w4,A4,w5)⟨M(w1, ...,w4)Eσ⟩] .

Combining ∥[⋯]∥ ≲ η−1, as follows from (1.4.10) for k ∈ [3] and (1.4.11) for k ∈ [4], with the usual
bound (1.B.15), we conclude the desired. This finishes the proof in the first regime where η ≤ 1.
Regime η > 1. In this second regime, we note that all inverses of stability operators are bounded
(see (1.B.15)). Moreover, it easily follows from (1.D.1) that every summand in the definition of
M(w1, ...,wk) carries at least k factors of (different) M(wi). Now, as mentioned in the beginning
of the proof, we have ∥M(wi)∥ ≲ 1/η, which implies the desired bound.

1.E Proof of Lemmas 1.5.8 and 1.5.9
In this appendix, we carry out the proofs of the two Lemmas 1.5.8 and 1.5.9.

Proof of Lemma 1.5.8. Similarly to the proof of Lemma 1.5.6, we get from Appendix 1.A and (1.4.4)
that

⟨(G1A1G2 −M1X12[A1]M2)A2⟩ (1.E.1)
= ⟨M1A1(G2 −M2)X21[A2]⟩ − ⟨M1WG1A1G2X21[A2]⟩

+ ⟨M1S[G1 −M1]G1A1G2X21[A2]⟩ + ⟨M1S[G1A1G2](G2 −M2)X21[A2]⟩ .

We note that ∥X12[Å1]∥ ≲ 1 and ∥X21[Å2]∥ ≲ 1 by means of Lemma 1.B.6.

Then, analogously to (1.5.40), we need to further decompose X21[A2]M1 in the last three terms in
(1.5.39) as

X21[Å2]M1 = (X21[Å2]M1)
○
+∑

σ

1σδ cσ(X21[Å2]M1)Eσ ,

where we again suppressed the spectral parameters (and the relative sign of their imaginary parts,
which has been fixed by Imw1 > 0 and Imw2 < 0) in the notation for the linear functionals cσ(⋅) on
C2N×2N defined as

c+(B) ∶=
⟨M2BM1⟩

⟨M2M1⟩
and c−(B) ∶=

⟨M2BM
∗
1E−⟩

⟨M2E−M∗
1E−⟩

. (1.E.2)

Continuing the expansion of (1.E.1), we arrive at

⟨M1Å1(G2 −M2)X21[Å2]⟩ − ⟨WG1Å1G2(X21[Å2]M1)
○
⟩

+ ⟨S[G1 −M1]G1Å1G2(X21[Å2]M1)
○
⟩ + ⟨S[G1Å1G2](G2 −M2)(X21[Å2]M1)

○
⟩
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+∑
σ

1σδ cσ(X21[Å2]M1)[ − ⟨WG1Å1G2Uσ⟩ + ⟨S[G1 −M1]G1Å1G2Eσ⟩

+ ⟨S[G1Å1G2](G2 −M2)Eσ⟩] .

We emphasise that, in case of Å2 and its linear dependents, the regular component is defined
w.r.t. the pair of spectral parameters (w2,w1).

Next, analogously to the proof of Lemma 1.5.6, we undo the underline in [⋯], such that our expansion
of (1.E.1) becomes

⟨(G1Å1G2 −M1X12[Å1]M2)Å2⟩

= ⟨M1Å1(G2 −M2)X21[Å2]⟩ − ⟨WG1Å1G2(X21[Å2]M1)
○
⟩ (1.E.3)

+ ⟨S[G1 −M1]G1Å1G2(X21[Å2]M1)
○
⟩ + ⟨S[G1Å1G2](G2 −M2)(X21[Å2]M1)

○
⟩

+∑
σ

1σδ cσ(X21[Å2]M1)[ − ⟨Å1G2Eσ⟩ + ⟨G1Å1G2Φ̊σ⟩ + cσ(Φσ)⟨G1Å1G2Eσ⟩] ,

where
Φσ ∶= Eσ

1
M1
− S[M2Eσ] (1.E.4)

was further decomposed with the aid of cσ(Φτ) ∼ δσ,τ and we used the notation (1.E.2).

We can now write (1.E.3) for both, Å2 = Φ̊+ and Å2 = Φ̊−, and solve the two resulting equation for
⟨G1Å1G2Φ̊σ⟩ and ⟨G1Å1G2Φ̊−⟩. Observe that by means of

cτ(X21[Φ̊σ]M1) ∼ δσ,τ ,

the original system of linear equations boils down to two separate ones. Thus, plugging the solutions
for ⟨G1Å1G2Φ̊±⟩ back into (1.E.3) we arrive at

⟨(G1Å1G2 −M1X12[Å1]M2)Å2⟩

= − ⟨WG1Å1G2(X21[Å2]M1)
○
⟩ + ⟨G1 −M1⟩⟨G1Å1G2(X21[Å2]M1)

○
⟩

+ ⟨M1Å1(G2 −M2)X21[Å2]⟩ + ⟨S[G1Å1G2](G2 −M2)(X21[Å2]M1)
○
⟩ (1.E.5)

+∑
σ

1σδ cσ(X21[Å2]M1)

1 − 1σδ cσ(X21[Φ̊σ]M1)
[ − ⟨WG1Å1G2(X21[Φ̊σ]M1)

○
⟩ (1.E.6)

+ ⟨G1 −M1⟩⟨G1Å1G2(X21[Φ̊σ]M1)
○
⟩ + ⟨M1Å1(G2 −M2)X21[Φ̊σ]⟩

+ ⟨S[G1Å1G2](G2 −M2)(X21[Φ̊σ]M1)
○
⟩ (1.E.7)

− ⟨Å1(G2 −M2)Eσ⟩ + cσ(Φσ)⟨(G1Å1G2 −M
Å1
12 )Eσ⟩] . (1.E.8)

We now need to check that the denominators in (1.E.6) are bounded away from zero.

Lemma 1.E.1. For small enough δ > 0, we have that

∣1 − 1σδ (w2,w1) cσ(X21[Φ̊σ]M1)∣ ≳ 1 for σ = ± .

Proof. Completely analogous to Lemma 1.5.7.

Next, there are two particular terms, namely the ones of the form

⟨S[G1Å
1,2
1 G2](G2 −M2)Å

2,1
2 ⟩ , (1.E.9)
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appearing in (1.E.5) and (1.E.7), and

cσ(X21[Å
2,1
2 ]M1)cσ(Φσ)⟨(G1Å

1,2
1 G2 −M1X12[Å

1,2
1 ]M2)Eσ⟩ , (1.E.10)

appearing in (1.E.8), whose naive size 1/(Nη2) does not match the target. Hence, they have to be
discussed in more detail. In (1.E.9) and (1.E.10), we emphasised the pair of spectral parameters
with respect to which the regularisation has been conducted. Moreover, for the following estimates,
we recall the a priori bounds (1.4.25).

Estimating (1.E.9). We begin by expanding

⟨S[G1Å
1,2
1 G2](G2 −M2)Å

2,1
2 ⟩ =∑

σ

σ ⟨G1Å
1,2
1 G2Eσ⟩⟨(G2 −M2)Å

2,1
2 Eσ⟩ (1.E.11)

and note that, analogously to (1.5.53),

Å
i,j

i Eσ = (Å
i,j

i Eσ)
○i,i
+O(∣ei − σej ∣ + ∣ηi − ηj ∣)E+ +O(∣ei − σej ∣ + ∣ηi − ηj ∣)E− (1.E.12)

as well as

Å
i,j

i Eσ = (Å
i,j

i Eσ)
○j,j
+O(∣ei − σej ∣ + ∣ηi − ηj ∣)E+ +O(∣ei − σej ∣ + ∣ηi − ηj ∣)E− (1.E.13)

for i ≠ j ∈ [2] and σ = ±.

In the first term in (1.E.11), for σ = + and Eσ = E+, we use a resolvent identity (1.3.21) and the
usual averaged local law (1.4.17) in combination with (1.E.12), (1.E.13) and (1.4.8), in order to
bound it as

∣⟨G1Å
1,2
1 G2⟩∣ ≺ 1 + 1

∣e1 − e2∣ + η1 + η2
max
i∈[2]
∣⟨(Gi −Mi)(Å

1,2
1 )

○i,i⟩∣ . (1.E.14)

For σ = − and Eσ = E−, we first add and subtract the corresponding deterministic approximation
⟨M(w1, Å

1,2
1 ,w2)E−⟩, which itself is bounded by means of Lemma 1.4.3. In the difference term, we

use (1.2.16) and employ the integral representation from Lemma 1.5.1 with

τ = + , J =Bℓκ0 , and η̃ =
ℓ

ℓ + 1
η ,

for which we recall that wj ∈ D(ϵ0,κ0)
ℓ+1 , i.e. in particular η ≥ (ℓ + 1)N−1+ϵ0 and hence η̃ ≥ ℓN−1+ϵ0 .

Note that Lemma 1.5.1 is also true on the level of the corresponding deterministic approximations, as
can be seen, e.g., by a meta argument similarly to the proof of Lemma 1.D.1. Hence, after splitting
the contour integral and bounding the individual contributions as described in (1.5.14), we obtain

∣⟨G1A
○1,2
1 G2E−⟩∣ ≺ 1 + ∫

Bℓκ0

∣⟨(G(x + iη̃) −M(x + iη̃))A○1,2
1 E−⟩∣

∣(x − e1 − i(η1 − η̃)) (x + e2 − i(η2 − η̃))∣
dx

≺1 + ∫
Bℓκ0

∣⟨(G(x + iη̃) −M(x + iη̃))(A○1,2
1 E−)

○x+iη̃,x+iη̃
⟩∣

∣(x − e1 − i(η1 − η̃)) (x + e2 − i(η2 − η̃))∣
dx ,

where in the second step we used (1.E.12) and (1.E.13), and absorbed logarithmic corrections from
the integral into ‘≺’. This finally yields that

∣⟨G1A
○1,2
1 G2E−⟩∣ ≺ 1 + 1

∣e1 + e2∣ + η1 + η2
⋅
ψav

1
Nη1/2 . (1.E.15)

Combining (1.E.14) and (1.E.15) with the estimate

∣⟨(G2 −M2)A
○2,1
2 Eσ⟩∣ ≺

∣e1 − σe2∣ + ∣η1 − η2∣

Nη
+

ψav
1

Nη1/2 (1.E.16)
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for the second term in (1.E.11),which readily follows from (1.E.12) and (1.4.17), we find that (1.E.9)
can be bounded as

∣⟨S[G1A
○1,2
1 G2](G2 −M2)A

○2,1
2 ⟩∣ ≺

1
Nη
+
(ψav

1 )
2

(Nη)2
, (1.E.17)

where we used the trivial estimate ψav
1 ≺ η

−1/2.

Estimating (1.E.10). For the term (1.E.10), we first note that the two prefactors cσ(X21[A
○2,1
2 ]M1)

and cσ(Φσ) are bounded. However, completely analogous to the proof of Lemma 1.5.6, in each of
the two cases σ = ±, the bound on one of the prefactors can be improved: In the first case, σ = +,
we use (1.B.11) and compute

c+(Φ+) =
⟨M1⟩(1 − ⟨M1M2⟩)

⟨M1M2⟩
= O(∣e1 − e2∣ + η1 + η2) .

∣⟨G1Å1G2 −M(w1, Å1,w2)⟩∣ ≺
1
Nη
+

1
∣e1 − e2∣ + η1 + η2

max
i∈[2]
∣⟨(Gi −Mi)(A

○1,2
1 )

○i,i⟩∣

which is obtained completely analogous to (1.E.14), we conclude that (1.E.10) for σ = + can be
estimated by 1/(Nη). Similarly, in the second case, σ = −, we perform a computation similar to the
one leading to (1.5.19) and use (1.B.11) in order to obtain that c−(X12[A

○1,2
1 ]M2) equals

i
2
⟨M1A

○1,2
1 M∗

2E−⟩

⟨M1E−M∗
2E−⟩

+
1
2i
⟨M1A

○1,2
1 M2E−⟩

⟨M1E−M∗
2E−⟩

1 + ⟨M1E−M
∗
2E−⟩

1 + ⟨M1E−M2E−⟩
= O(∣e1 + e2∣ + η1 + η2)

Combining this with the bound

∣⟨(G1A
○1,2
1 G2 −M(w1,A

○1,2
1 ,w2))E−⟩∣ ≺

1
Nη
+

1
∣e1 + e2∣ + η1 + η2

⋅
ψav

1
Nη1/2

which is obtained completely analogous to (1.E.15), we conclude that (1.E.10) can be estimated by
1/(Nη) – now in both cases σ = ±.

Conclusion. Summarizing our investigations, we have shown that

⟨(G1Å1G2 −M(w1, Å1,w2))Å2⟩ = −⟨WG1Å1G2Å
′
2⟩ +O≺(E

av
2 ) ,

where we used the shorthand notation

Å
′
2 ∶= (X21[Å2]M1)

○
+∑

σ

1σδ cσ(X21[Å2]M1)

1 − 1σδ cσ(X21[Φ̊σ]M1)
(X21[Φ̊σ]M1)

○ (1.E.18)

in the underlined term. Combining (1.E.17) and the bound on (1.E.10) established above with
the usual single resolvent local laws (1.4.17) and the bounds on deterministic approximations
in Lemma 1.4.3, we collected all the error terms from the expansion around (1.E.5)–(1.E.8) in
(1.5.59).

Proof of Lemma 1.5.9. We denote Ai ≡ Åi, except we wish to emphasise Ai being regular. As usual,
we use the customary shorthand notations and start with

G2 =M2 −M2WG2 +M2S[G2 −M2]G2 ,

such that we get

G1Ã1G2Å2G3 = G1Ã1M2Å2G3 −G1Ã1M2WG2Å2G3 +G1Ã1M2S[G2 −M2]G2Å2G3

for Ã1 = X12[A1] with A1 = Å1 (note that ∥X12[Å1]∥ ≲ 1 by Lemma 1.B.6) and the linear operator
X12 has been introduced in (1.5.38). The definition of X23 is completely analogous.
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Extending the underline to the whole product, we obtain

G1(Ã1−S[M1Ã1M2])G2Å2G3

=G1Ã1M2Å2G3 −G1Ã1M2WG2Å2G3 +G1Ã1M2S[G2Å2G3]G3

+G1Ã1M2S[G2 −M2]G2Å2G3 +G1S[(G1 −M1)Ã1M2]G2Å2G3 ,

which leaves us with

G1Å1G2Å2G3 −M(w1,A1,w2,A2,w3) (1.E.19)
= (G1 [X12[Å1]M2(Å2 + S[M2X23[Å2]M3])]G3 −M(w1, [⋯],w3))

−G1X12[Å1]M2WG2Å2G3 +G1X12[Å1]M2S[G2 −M2]G2Å2G3

+G1S[(G1 −M1)X12[Å1]M2]G2Å2G3 +G1X12[Å1]M2S[G2Å2G3 −M2X23[Å2]M3]G3 ,

where we used Lemma 1.D.1 for assembling the purely deterministic terms on the l.h.s. To continue,
we first note that ∥X12[Å1]∥ ≲ 1 and ∥X23[Å2]∥ ≲ 1 (again, the matrices being regular removes the
potentially ‘bad direction’ of the stability operators X12 and X23).

Then, we need to further decompose X12[A1]M2 in the last four terms in (1.E.19) as

X12[A1]M2 = (X12[A1]M2)
○
+∑

σ

1σδ cσ(X12[A1]M2)Eσ , (1.E.20)

where, similarly as for ⋅○, we suppressed the spectral parameters w1,w2 in the notation for the linear
functionals cσ(...), which have been defined in see (1.5.41). Now, plugging (1.E.20) into (1.E.19)
we find

G1Å1G2Å2G3 −M(w1, Å1,w2, Å2,w3) (1.E.21)
= (G1 [X12[Å1]M2(Å2 + S[M2X23[Å2]M3])]G3 −M(w1, [⋯],w3))

−G1(X12[Å1]M2)
○
WG2Å2G3 +G1(X12[Å1]M2)

○
S[G2 −M2]G2Å2G3

+G1S[(G1 −M1)(X12[Å1]M2)
○
]G2Å2G3 +G1(X12[Å1]M2)

○
S[G2Å2G3 −M2X23[Å2]M3]G3

+∑
σ

1σδ cσ(X12[Å1]M2)[ −G1EσWG2Å2G3 +G1EσS[G2 −M2]G2Å2G3

+G1S[(G1 −M1)Eσ]G2Å2G3 +G1EσS[G2Å2G3 −M2X23[Å2]M3]G3] .

Next, as in the earlier sections (see, e.g., the display above (1.E.4)), in the last line of (1.E.21) we
now undo the underline and find the bracket [⋯] to equal (the negative of)

G1Eσ(Å2 + S[M(w2, Å2,w3)])G3 −G1ΦσG2Å2G3 ,

where we denoted
Φσ ∶= Eσ

1
M2
− S[M1Eσ] .

It is apparent from the expansion (1.E.21) (and it can also be checked by hand) that

M(w1,EσÅ2 +EσS[M(w2, Å2,w3)],w3) =M(w1,Φσ,w2, Å2,w3) ,

which finally yields

G1Å1G2Å2G3 −M(w1, Å1,w2, Å2,w3) (1.E.22)
= (G1 [X12[Å1]M2(Å2 + S[M2X23[Å2]M3])]G3 −M(w1, [⋯],w3))
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−G1(X12[Å1]M2)
○
WG2Å2G3 +G1(X12[Å1]M2)

○
S[G2 −M2]G2Å2G3

+G1S[(G1 −M1)(X12[Å1]M2)
○
]G2Å2G3 +G1(X12[Å1]M2)

○
S[G2Å2G3 −M2X23[Å2]M3]G3

+∑
σ

1σδ cσ(X12[Å1]M2)[ − (G1Eσ(Å2 + S[M(w2, Å2,w3)])G3 −M(w1, [⋯]w3))

+ (G1Φ̊σG2Å2G3 −M(w1, Φ̊σ,w2, Å2,w3)) +∑
σ

cσ(Φσ)(G1EσG2Å2G3 −M(w1,Eσ,w2, Å2,w3))] ,

where we further decomposed Φσ in the last line of (1.E.22) (while using the first relation in (1.5.45))
just as X12[A1]M2 in (1.E.20).

Next, we write (1.E.22) for both, A1 = Å1 = Φ̊+ and A1 = Å1 = Φ̊−, and solve the two resulting linear
equations for G1Φ̊±G2 −M(w1, Φ̊±,w2). Observe that by means of the second relation in (1.5.45)
the original system of linear equations boils down to two separate ones. Thus, plugging the solutions
for G1Φ̊±G2Å2G3 −M(w1, Φ̊±,w2, Å2,w3) back into (1.E.22), we arrive at

G1Å1G2Å2G3 −M(w1, Å1,w2, Å2,w3) (1.E.23)
= (G1 [X12[Å1]M2(Å2 + S[M2X23[Å2]M3])]G3 −M(w1, [⋯],w3))

−G1(X12[Å1]M2)
○
WG2Å2G3 +G1(X12[Å1]M2)

○
S[G2 −M2]G2Å2G3

+G1S[(G1 −M1)(X12[Å1]M2)
○
]G2Å2G3 +G1(X12[Å1]M2)

○
S[G2Å2G3 −M2X23[Å2]M3]G3

+∑
σ

1σδ cσ(X12[Å1]M2)

1 − 1σδ cσ(X12[Φ̊σ]M2)
[ − (G1[Eσ(Å2 + S[M(w2, Å2,w3)])]G3 −M(w1, [⋯]w3))

+ (G1 [X12[Φ̊σ]M2(Å2 + S[M2X23[Å2]M3])]G3 −M(w1, [⋯],w3))

−G1(X12[Φ̊σ]M2)
○
WG2Å2G3 +G1(X12[Φ̊σ]M2)

○
S[G2 −M2]G2Å2G3

+G1S[(G1 −M1)(X12[Φ̊σ]M2)
○
]G2Å2G3 +G1(X12[Φ̊σ]M2)

○
S[G2Å2G3 −M2X23[Å2]M3]G3

+ cσ(Φσ)(G1EσG2Å2G3 −M(w1,Eσ,w2, Å2,w3))] .

It has been shown in Lemma 1.5.7 that the denominators are bounded away from zero.

Next, we take the scalar product of (1.E.23) with two deterministic vectors x,y satisfying ∥x∥, ∥y∥ ≤ 1.
In the resulting expression, in case that 1σδ (w1,w2) = 1, there are three particular terms, namely the
ones of the form

(G1S[(G1 −M1)A
○1,2
1 ]G2Å2G3)xy

, (1.E.24)

as appearing twice, in the fourth and second to last line,

(G1A
○1,2
1 S[G2Å2G3 −M(w2, Å2,w3)]G3)xy

, (1.E.25)

as appearing, again twice, in the fourth and second to last line,

cσ(X12[Å1]M2)cσ(Φσ)(G1EσG2Å2G3 −M(w1,Eσ,w2, Å2,w3))xy
, (1.E.26)

as appearing in the last line, whose naive sizes 1/(Nη3), 1/(Nη3), and 1/
√
Nη4 do not match the

target. Hence, they have to be discussed in more detail.

Estimating (1.E.24). For the terms of the first type, we begin by expanding

(G1S[(G1 −M1)A
○1,2
1 ]G2Å2G3)xy

=∑
σ

σ⟨(G1 −M1)A
○1,2
1 Eσ⟩(G1EσG2Å2G3)xy

and recall from (1.E.16) that first factor can be estimated by

∣⟨(G1 −M1)A
○1,2
1 Eσ⟩∣ ≺

∣e1 − σe2∣ + ∣η1 − η2∣

Nη
+

ψav
1

Nη1/2 . (1.E.27)
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In the second factor, we distinguish the two cases σ = ±. For σ = +, we find

G1G2A
○2,3
2 G3 =

G1A
○2,3
2 G3 −G2A

○2,3
2 G3

(e1 − e2) + i(η1 + η2)

by a simple resolvent identity (1.3.21), which together with

Å
w2,w3
2 = Å

w1,w3
2 +O(∣e1 − e2∣ + ∣η1 − η2∣ + ∣e1 − e3∣ + ∣η1 − η3∣)E+

+O(∣e1 − e2∣ + ∣η1 − η2∣ + ∣e1 + e3∣ + ∣η1 − η3∣)E−

from Lemma 1.3.3 (note the difference between the E+-error and the E−-error!) and the usual
isotropic law (1.4.17) yields the estimate

∣(G1G2A
○2,3
2 G3)xy

∣ ≺
1
η
+

1
∣e1 − e2∣ + η1 + η2

⎛

⎝
1 + ψiso

1√
Nη2

⎞

⎠
, (1.E.28)

where we again used the a priori bound (1.4.25). For σ = − we employ the integral representation
from Lemma 1.5.1 and argue similarly as for (1.E.15) such that we finally obtain

∣(G1E−G2A
○2,3
2 G3)xy

∣ ≺
1
η
+

1
∣e1 + e2∣ + η1 + η2

⎛

⎝
1 + ψiso

1√
Nη2

⎞

⎠
. (1.E.29)

Now, combining (1.E.27) with (1.E.28) and (1.E.29), we find

∣(G1S[(G1 −M1)A
○1,2
1 ]G2Å2G3)xy

∣ ≺
1

√
Nη3

(1 + ψ
av
1 ψ

iso
1

Nη
) , (1.E.30)

where we used that ψav
1 ≺ η

−1/2 trivially by (1.4.17).

Estimating (1.E.25). For terms of the second type, we again start by expanding

(G1A
○1,2
1 S[G2Å2G3 −M(w2, Å2,w3)]G3)xy

=∑
σ

σ⟨(G2Å2G3 −M(w2, Å2,w3))Eσ⟩(G1A
○1,2
1 EσG3)xy

.

Then, for the first factor, we recall from the estimate of (1.E.9) that

∣⟨(G2A
○2,3
2 G3 −M(w2,A

○2,3
2 ,w3))Eσ⟩∣ ≺

1
Nη
+

1
∣e2 − σe3∣ + η2 + η3

⋅
ψav

1
Nη1/2 .

Treating the second factor analogously to (1.E.28) and (1.E.29) above, we find

∣(G1A
○1,2
1 EσG3)xy

∣ ≺
∣e2 − σe3∣ + ∣η2 − η3∣

η
+
⎛

⎝
1 + ψiso

1√
Nη2

⎞

⎠
.

Combining the two estimates, we have shown that

∣(G1A
○1,2
1 S[G2Å2G3 −M(w2, Å2,w3)]G3)xy

∣ ≺
1

√
Nη3

(1 + ψ
iso
1
Nη
+
ψav

1 ψ
iso
1

Nη
) (1.E.31)

where we again used that ψav
1 ≺ η

−1/2 trivially by (1.4.17).

Estimating (1.E.26). For the third term, we recall the (improved) estimates

c+(Φ+) = O(∣e1 − e2∣ + η1 + η2)
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1. Optimal lower bound on eigenvector overlaps

c−(X12[Å1]M2) = O(∣e1 + e2∣ + η1 + η2)

on the anyway bounded prefactors, which have been shown in the course of estimating (1.5.51). By
arguing analogously to (1.E.28) and (1.E.29), we also find

∣(G1EσG2Å2G3 −M(w1,Eσ,w2, Å2,w3))xy
∣ ≺

1
√
Nη3

+
1

∣e1 − σe2∣ + η2 + η3

ψiso
1√
Nη2

.

Now, combining these estimates, we conclude

∣(1.E.26)∣ ≺ 1
√
Nη3

(1 + ψiso
1 ) . (1.E.32)

Conclusion. Summarizing our investigations, we have shown that

(G1Å1G2Å2G3 −M(w1, Å1,w2, Å2,w3))xy
= −(G1Å

′
1WG2Å2G3)xy

+O≺(E
iso
2 ) ,

where we used the shorthand notation

Å
′
1 = (X12[A1]M2)

○
+∑

σ

1σδ cσ(X12[A1]M2)

1 − 1σδ cσ(X12[Φ̊σ]M2)
(X12[Φ̊σ]M2)

○ (1.E.33)

in the underlined term. Combining (1.E.30), (1.E.31), and (1.E.32) with the usual single resolvent
local laws (1.4.17) and the bounds on deterministic approximations in Lemma 1.4.3, we collected all
the error terms from (1.E.23) in (1.5.67).
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Chapter2
Gaussian fluctuations in the

equipartition principle for Wigner
matrices

This chapter contains the paper [152]:

G. Cipolloni, L. Erdős, J. Henheik, and O. Kolupaiev. Gaussian fluctuations in the equipartition
principle for Wigner matrices. Forum Math., Sigma, 11, 2023

Abstract. The total energy of an eigenstate in a composite quantum system tends to be distributed
equally among its constituents. We identify the quantum fluctuation around this equipartition
principle in the simplest disordered quantum system consisting of linear combinations of Wigner
matrices. As our main ingredient, we prove the Eigenstate Thermalisation Hypothesis and Gaussian
fluctuation for general quadratic forms of the bulk eigenvectors of Wigner matrices with an arbitrary
deformation.
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2.1 Introduction
The general principle of the equipartition of energy for a classical ergodic system asserts that in
equilibrium the total energy is equally distributed among all elementary degrees of freedom. A similar
principle for the kinetic energy has recently been verified for a general quantum system coupled
to a heat bath [602], see also the previous works on the free Brownian particle and a dissipative
harmonic oscillator in [70, 534, 71] and extensive literature therein. Motivated by E. Wigner’s original
vision to model any sufficiently complex quantum system by random matrices, a particularly strong
microcanonical version of the equipartition principle for Wigner matrices was first formulated and
proven in [45]. In its simplest form, consider a fully mean field random Hamilton operator H acting
on the high dimensional quantum state space CN that consists of the sum of two independent
N ×N Wigner matrices,

H =W1 +W2 ,

as two constituents of the system. Recall that Wigner matrices W = (wij) are real or complex
Hermitian random matrices with independent (up to the symmetry constraint wij = w̄ji), identically
distributed entries. Let u be a normalised eigenvector of H with eigenvalue (energy) λ = ⟨u,Hu⟩,
then equipartition asserts that ⟨u,Wlu⟩ ≈

1
2λ for l = 1,2. In [45, Theorem 3.4] even a precise error

bound was proven, i.e. that

∣⟨u,Wlu⟩ −
1
2
λ∣ ≤

N ϵ

√
N
, l = 1,2 , (2.1.1)

holds with very high probability for any fixed ϵ > 0; this estimate is optimal up the N ϵ factor. The
main result of the current paper is to identify the fluctuation in (2.1.1), more precisely we will show
that

√
N[⟨u,Wlu⟩ −

1
2
λ]

converges to a centred normal distribution as N →∞. We also compute its variance that turns
out to be independent of the energy λ but depends on the symmetry class (real or complex). The
result can easily be extended to the case when H is a more general linear combination of several
independent Wigner matrices.

The estimate (2.1.1) is reminiscent to the recently proven Eigenstate Thermalisation Hypothesis
(ETH), also known as the Quantum Unique Ergodicity (QUE),1 for Wigner matrices in [165, Theorem
2.2] (see also [169, Theorem 2.6] for an improvement) which asserts that

∣⟨u,Au⟩ − ⟨A⟩∣ ≤
N ϵ

√
N
, ⟨A⟩ ∶=

1
N

TrA, (2.1.2)

holds for any bounded deterministic matrix A. In fact, even the Gaussian fluctuation of
√
N[⟨u,Au⟩ − ⟨A⟩] (2.1.3)

was proven in [167, Theorem 2.2] and [169, Theorem 2.8], see also [62] and the recent generalisa-
tion [61] to off-diagonal elements as well as joint Gaussianity of several quadratic forms. Earlier

1ETH for Wigner matrices was first conjectured by Deutsch [221]. Quantum ergodicity has a long history in
the context of the quantisations of chaotic classical dynamical systems starting from the fundamental theorem by
S̆nirel’man [528]. For more background and related literature, see the Introduction of [165].
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2.1. Introduction

results on ETH [247, 369, 88, 63] and its fluctuations [112, 368, 552, 435] for Wigner matrices
typically concerned rank one or finite rank observables A.

Despite their apparent similarities, the quadratic form in (2.1.1) is essentially different from that
in (2.1.2) since Wl is strongly correlated with u while A in (2.1.2) is deterministic. This explains
the difference in the two leading terms; note that 1

2λ in (2.1.1) is energy dependent and it is far
from the value ⟨Wl⟩ ≈ 0, which might be erroneously guessed from (2.1.2). Still, the basic approach
leading to ETH (2.1.2) is very useful to study ⟨u,Wlu⟩ as well. The basic idea is to condition on
one of the Wigner matrices, say W2, and consider H =W1 +W2 in the probability space of W1 as
a Wigner matrix with an additive deterministic deformation W2. Assume that we can prove the
generalisation of ETH (2.1.2) for such deformed Wigner matrices. In the space of W1 this would
result in a concentration of ⟨u,W2u⟩ around some quantity f(W2) depending only on W2; however,
the answer will nontrivially depend on the deformation, i.e. it will not be simply ⟨W2⟩. Once the
correct form of f(W2) is established, we can find its concentration in the probability space of W2,
yielding the final answer.

To achieve these results we prove more general ETH and fluctuation results for eigenvector overlaps
of deformed Wigner matrices of the general form H =W +D, where W is an N ×N Wigner matrix
and D is arbitrary, bounded deterministic matrix. The goal is to establish the concentration and
the fluctuation of the quadratic form ⟨u,Au⟩ for a normalised eigenvector u of H with a bounded
deterministic matrix A. We remark that for the special case of a rank one matrix A = ∣q⟩⟨q∣, ETH is
equivalent to the complete isotropic delocalisation of the eigenvector u, i.e. that ∣⟨q,u⟩∣ ≤ N ϵ/

√
N

for any deterministic vector q with ∥q∥ = 1. For a diagonal deformation D this has been achieved
in [405, 395] and for the general deformation D in [243]. The normal fluctuation of ⟨u,Au⟩ for a
finite rank A and diagonal D was obtained in [59].

It is well known that for very general mean-field type random matrices H their resolvent G(z) =
(H − z)−1 concentrates around a deterministic matrix M =M(z); such results are called local laws,
and we will recall them precisely in (2.4.1). Here M is a solution of the matrix Dyson equation
(MDE), which, in case of H =W +D, reads as

−
1

M(z)
= z −D + ⟨M(z)⟩ . (2.1.4)

Given M , it turns out that
⟨ui,Auj⟩ ≈ δi,j

⟨ImM(λi)A⟩

⟨ImM(λi)⟩
, (2.1.5)

where λi is the eigenvalue corresponding to the normalised eigenvector ui, i.e. Hui = λiui. Since the
eigenvalues are rigid, i.e. they fluctuate only very little, the right hand side of (2.1.5) is essentially
deterministic and in general it depends on the energy. Similarly to (2.1.3), we will also establish the
Gaussian fluctuation around the approximation (2.1.5). For zero deformation, D = 0, the matrix M
is constant and (2.1.5) recovers (2.1.2)–(2.1.3) as a special case. For simplicity, in the current paper
we establish all these results only in the bulk of the spectrum, but similar results may be obtained at
the edge and at the possible cusp regime of the spectrum as well; the details are deferred to later
works.

We now comment on the new aspects of our methods. The proof of (2.1.5) relies on a basic
observation about the local law for H =W +D. Its average form asserts that

∣⟨(G(z) −M(z))A⟩∣ ≤
N ϵ

Nη
, η ∶= ∣Im z∣≫

1
N
, (2.1.6)

holds with very high probability and the error is essentially optimal for any bounded deterministic
matrix A. However, there is a codimension one subspace of the matrices A for which the estimate
improves to N ϵ/(N

√
η), gaining a √η factor in the relevant small η ≪ 1 regime. For Wigner
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2. Gaussian fluctuations in the equipartition principle

matrices H =W without deformation, the traceless matrices A played this special role. The key idea
behind the proof of ETH for Wigner matrices in [165] was to decompose any deterministic matrix as
A =∶ ⟨A⟩ + Å into its tracial and traceless parts and prove multi-resolvent generalisations of the local
law (2.1.6) with an error term distinguishing whether the deterministic matrices are traceless or not.
For example, for a typical A we have

⟨G(z)AG(z)∗A⟩ ∼
1
η

but for the traceless part of A we have

⟨G(z)ÅG(z)∗Å⟩ ∼ 1 , η ≫
1
N
,

with appropriately matching error terms. In general, each traceless A improves the typical estimate
by a factor √η. ETH then follows from the spectral theorem,

1
N

N

∑
i,j=1

η

(λi − e)2 + η2
η

(λj − e)2 + η2 ∣⟨ui, Åuj⟩∣
2
= ⟨ImG(z)ÅImG(z)Å⟩ ≤ N ϵ ; (2.1.7)

choosing z = e + iη appropriately with η ∼ N−1+ϵ we obtain that ∣⟨ui, Åuj⟩∣
2 ≤ N−1+3ϵ which even

includes an off-diagonal version of (2.1.2).

To extend this argument to deformed Wigner matrices requires to identify the appropriate singular
(“tracial”) and regular (“traceless”) parts of an arbitrary matrix. It turns out that the improved
local laws around an energy e = Re z hold if A is orthogonal2 to ImM(e), see (2.2.11) for the new
definition of Å, which denotes the regular part of A. In this theory the matrix ImM emerges as the
critical eigenvector of a linear stability operator B = I −M⟨⋅⟩M∗ related to the MDE (2.1.4). The
major complication compared with the pure Wigner case in [165] is that now the regular part of a
matrix becomes energy dependent. In particular, in a multi-resolvent chain ⟨G(z1)A1G(z2)A2 . . .⟩
it is a priori unclear at which spectral parameters the matrices Ai should be regularised; it turns out
that the correct regularisation depends on both zi and zi+1, see (2.4.10) later. A similar procedure
was performed for the Hermitisation of non-Hermitian i.i.d. matrices with a general deformation
in Chapter 1, see Appendix 1.A for a more conceptual presentation. Having identified the correct
regularisation, we derive a system of master inequalities for the error terms in multi-resolvent local
laws for regular observables; a similar strategy (with minor modifications) have been used in [168, 169]
for Wigner matrices and in Chapter 1 for i.i.d. matrices. To keep the presentation short, here we
will not aim at the most general local laws with optimal errors unlike in [168, 169]. Although these
would be achievable with our methods, here we prove only what is needed for our main results on
the equipartition.

The proof of the fluctuation around the ETH uses Dyson Brownian motion (DBM) techniques,
namely the Stochastic Eigenstate Equation for quadratic forms of eigenvectors. This theory has
been gradually developed for Wigner matrices in [112, 115, 435], we closely follow the presentation
in [167, 169]. The extension of this technique to deformed Wigner matrices is fairly straightforward,
so our presentation will be brief. The necessary inputs for this DBM analysis follow from the
multi-resolvent local laws that we prove for deformed Wigner matrices.

In a closing remark we mention that the original proof of (2.1.1) in [45] was considerably simpler
than that of (2.1.2). This may appear quite surprising due to the complicated correlation between
u and W, but a special algebraic cancellation greatly helped in [45]. Namely, with the notation
W ∶=W1−W2 and G(z) ∶= (H−z)−1, z = e+iη ∈ C+, a relatively straightforward cumulant expansion
showed that ⟨ImG(z)WImG(z)W⟩ is essentially bounded3 even for spectral parameters z very

2The space of matrices is equipped with the usual Hilbert-Schmidt scalar product.
3This means up to an N ϵ factor with arbitrary small ϵ.
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close to the real axis, η ≥ N−1+ϵ/2. Within this cumulant expansion an algebraic cancellation emerged
due to the special form of W . Then, exactly as in (2.1.7) we obtain ∣⟨u,Wu⟩∣2 ≲ N1+ϵη2 = N−1+2ϵ.
In particular, it shows that ⟨u,Wu⟩ = ⟨u,W1u⟩ − ⟨u,W2u⟩ is essentially of order N ϵ/

√
N for

every eigenvector of H. Since ⟨u,W1u⟩ + ⟨u,W2u⟩ = ⟨u,Hu⟩ = λ, we immediately obtain the
equipartition (2.1.1). Similar idea proved the more general case, see (2.2.4) later. Note, however,
that this trick does not help in establishing the fluctuations of ⟨u,Wlu⟩. In fact, the full ETH
analysis for deformed Wigner matrices needs to be performed to establish the necessary a priori
bounds for the Dyson Brownian motion arguments.

Notations and conventions
For positive quantities f, g we write f ≲ g and f ∼ g if f ≤ Cg or cg ≤ f ≤ Cg, respectively, for
some constants c,C > 0 which depend only on the constants appearing in the moment condition,
see (2.2.1) later. For any natural number n we set [n] ∶= {1,2, . . . , n}.

We denote vectors by bold-faced lower case Roman letters x,y ∈CN , for some N ∈N. Vector and
matrix norms, ∥x∥ and ∥A∥, indicate the usual Euclidean norm and the corresponding induced matrix
norm. For any N ×N matrix A we use the notation ⟨A⟩ ∶= N−1TrA to denote the normalised trace
of A. Moreover, for vectors x,y ∈CN and matrices A ∈CN×N we define the scalar product

⟨x,y⟩ ∶=
N

∑
i=1
xiyi .

Finally, we will use the concept of “with very high probability” (w.v.h.p.) meaning that for any
fixed D > 0 the probability of an N -dependent event is bigger than 1 −N−D for N ≥ N0(D). We
introduce the notion of stochastic domination (see e.g. [241]): given two families of non-negative
random variables

X = (X(N)(u) ∶ N ∈N, u ∈ U (N)) and Y = (Y (N)(u) ∶ N ∈N, u ∈ U (N))

indexed by N (and possibly some parameter u in some parameter space U (N)), we say that X is
stochastically dominated by Y , if for all ξ,D > 0 we have

sup
u∈U(N)

P [X(N)(u) > N ξY (N)(u)] ≤ N−D (2.1.8)

for large enough N ≥ N0(ξ,D). In this case we use the notation X ≺ Y or X = O≺(∣Y ∣). We also
use the convention that ξ > 0 denotes an arbitrary small exponent which is independent of N .
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2.2 Main results
We consider N ×N real symmetric or complex Hermitian Wigner matrices W =W ∗ having single-
entry distributions wab = N−1/2χod, for a > b, and waa = N

−1/2χd, where χod and χod are two
independent random variables satisfying the following assumptions:

Assumption 2.2.1. We assume that χd is a real centred random variable, that χod is a real or
complex random variable such that Eχod = 0 and E ∣χod∣

2 = 1; additionally in the complex case
we also assume that Eχ2

od = 0. Customarily, we use the parameter β = 1,2 to indicate the real
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or complex case, respectively. Furthermore, we assume that all the moments of χod and χd exist,
i.e. for any p ∈N there exists a constant Cp > 0 such that

E ∣χod∣
p
+E ∣χd∣

p
≤ Cp. (2.2.1)

For definiteness, in the sequel we perform the entire analysis for the complex case; the real case
being completely analogous and hence omitted.

The equipartition principle concerns linear combinations of Wigner matrices. Fix k ∈N and consider

H ∶= p1W1 + ⋅ ⋅ ⋅ + pkWk, (2.2.2)

for some fixed N -independent vector p = (p1, ..., pk) ∈Rk of weights and for k independent N ×N
Wigner matrices Wl, belonging to the same symmetry class (i.e. the off-diagonal random variables χod
are either real or complex for each of the Wl, l ∈ [k]). Then, denoting by {λi}i∈[N] the eigenvalues
of H, arranged in increasing order, with associated normalised eigenvectors {ui}i∈[N], the total
energy ⟨ui,Hui⟩ = λi of the composite system (2.2.2) is proportionally distributed among the k
constituents, i.e.

⟨ui, plWl ui⟩ ≈
p2
l

∥p∥2
λi (2.2.3)

for every l ∈ [k], where ∥p∥ ∶= (∑kl=1 ∣pl∣2)
1/2 denotes the usual ℓ2-norm. This phenomenon, known

as equipartition, was first proven in [45, Theorem 3.4], with an optimal error estimate:

∣⟨ui, plWluj⟩ − δi,j
p2
l

∥p∥2
λi∣ ≺

1
√
N
. (2.2.4)

Our main result is the corresponding Central Limit Theorem to (2.2.4) for i = j, i.e. the proof of
Gaussian fluctuations in Equipartition for Wigner matrices – for energies in the bulk of the spectrum
of H.

Theorem 2.2.2 (Gaussian Fluctuations in Equipartition).
Fix k ∈ N. Let W1, . . . ,Wk be independent Wigner matrices satisfying Assumption 2.2.1, all of
which being in the same real (β = 1) or complex (β = 2) symmetry class, and p = (p1, . . . , pk) ∈Rk

be N -independent. Define H as in (2.2.2) and denote by {λi}i∈[N] the eigenvalues of H, arranged
in increasing order, with associated normalised eigenvectors {ui}i∈[N]. Then, for fixed κ > 0, every
l ∈ [k] and for every bulk index i ∈ [κN, (1 − κ)N] it holds that

¿
Á
ÁÀ

βN

2
∥p∥2

p2
l (∥p∥

2 − p2
l )
[⟨ui, plWlui⟩ −

p2
l

∥p∥2
λi]Ô⇒N (0,1) (2.2.5)

in the sense of moments,4 where N (0,1) denotes a real standard Gaussian.

By polarisation we will also obtain the following:

Corollary 2.2.3. Under the assumptions from Theorem 2.2.2, the random vector X = (X1, ...,Xk) ∈

Rk with

Xl ∶=

√
βN

2
[⟨ui, plWlui⟩ −

p2
l

∥p∥2
λi] , l ∈ [k] , (2.2.6)

is approximately (in the sense of moments) jointly Gaussian with covariance structure

Cov(Xl,Xm) =
p2
l (δl,m∥p∥

2 − p2
m)

∥p∥2
.

4Given a sequence of N -dependent random variables, we say that XN converges to X∞ in the sense of moments if
for any k ∈N it holds E ∣XN ∣

k
= E ∣X∞∣k +O(N−c(k)

), for some small possibly k–dependent constant c(k) > 0.

114



2.2. Main results

Remark 2.2.4. We stated Theorem 2.2.2 only for diagonal overlaps for simplicity. However, one can
see that following the proof in [61, Section 3] it is possible to obtain an analogous Central Limit
Theorem (CLT) for off–diagonal overlaps as well:

¿
Á
ÁÀ

∥p∥2βN

p2
l (∥p∥

2 − p2
l )
∣⟨ui, plWluj⟩∣Ô⇒ ∣N (0,1)∣. (2.2.7)

This also gives an analogous version of (2.2.3) for off-diagonal overlaps. Furthermore, again following
[61, Theorem 2.2], it is also possible to derive a multivariate CLT jointly for diagonal and off–diagonal
overlaps. See also Remark 2.2.10 below for further explanation.

Theorem 2.2.2 and Corollary 2.2.3 will follow as a corollary to the Eigenstate Thermalisation
Hypothesis (ETH) and its Gaussian fluctuations for deformed Wigner matrices, which we present as
Theorem 2.2.7 and Theorem 2.2.9 in the following subsection.

Remark 2.2.5. By a quick inspection of our proof of Theorem 2.2.2, given in Section 2.3, it is
possible to generalise the Equipartition principle (2.2.4) as well as its Gaussian fluctuations (2.2.5) to
linear combinations of deformed Wigner matrices, i.e. each Wl in (2.2.2) being replaced by Wl +Dl,
where Dl =D

∗
l is an essentially arbitrary bounded deterministic matrix (see Assumption 2.2.8 later).

However, for brevity of the current paper, we refrain from presenting this extension explicitly.

2.2.1 ETH and its fluctuations for deformed Wigner matrices
In this section, we consider deformed Wigner matrices, H = W + D, with increasingly ordered
eigenvalues λ1 ≤ λ2 ≤ ⋅ ⋅ ⋅ ≤ λN and corresponding orthonormal eigenvectors u1, . . . ,uN . Here,
D = D∗ ∈ CN×N is a self-adjoint matrix with uniformly bounded norm, i.e. ∥D∥ ≤ CD for some
N -independent constant CD > 0. While the Eigenstate Thermalisation Hypothesis (ETH) will be
shown to hold for general deformations D, we shall require slightly stronger assumptions for proving
the Gaussian fluctuations (see Assumption 2.2.8 below).

In order to state our results on the ETH and its fluctuations (Theorems 2.2.7 and 2.2.9, respectively),
we need to introduce the concept of regular observables, first in a simple form in Definition 2.2.11
(later along the proofs we will need a more general version in Definition 2.4.2). For this purpose we
introduce M(z) being the unique solution of the Matrix Dyson Equation (MDE):5

−
1

M(z)
= z −D + ⟨M(z)⟩, ImM(z)Im z > 0. (2.2.8)

The self consistent density of states (scDos) is then defined as

ρ(e) ∶=
1
π

lim
η↓0
⟨ImM(e + iη)⟩ . (2.2.9)

We point out that not only ⟨ImM(e + iη)⟩ has an extension to the real axis, but the whole matrix
M(e) ∶= limη↓0M(e + iη) is well defined (see Lemma 1.B.1 (b)). The scDos ρ is a compactly
supported Hölder-1/3 continuous function on R which is real-analytic on the set {ρ > 0}6. Moreover,
for any small κ > 0 (independent of N) we define the κ-bulk of the scDos as

Bκ = {x ∈R ∶ ρ(x) ≥ κ1/3
} , (2.2.10)

5The MDE for very general mean field random matrices has been introduced in [17] and further analysed in [22].
The properties we use here have been summarised in Appendix 1.B.

6The scDos has been thoroughly analysed in increasing generality in [16, 17, 22]. It is supported on finitely many
finite intervals. Roughly speaking there are three regimes: the bulk, where ρ is well separated away from 0, the edge
where ρ vanishes as a square root at the edges of each supporting interval that are well separated, and the cusp where
two supporting intervals (almost) meet and ρ behaves (almost) as a cubic root. Correspondingly, ρ is locally real
analytic, Hölder-1/2, or Hölder-1/3 continuous, respectively. Near the singularities, it has an approximately universal
shape. No other singularity type can occur and for typical deformation D there is no cusp regime.
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which is a finite union of disjoint compact intervals, see Lemma 1.B.2. For Re z ∈Bκ it holds that
∥M(z)∥ ≲ 1, as easily follows by taking the imaginary part of (2.2.8).

Definition 2.2.6 (Regular observables – One-point regularisation). Fix κ > 0 and an energy e ∈ Bκ

in the bulk. Given a matrix A ∈ CN×N , we define its one-point regularisation w.r.t. the energy e,
denoted by Åe, as

Å = Å
e
∶= A −

⟨ImM(e)A⟩

⟨ImM(e)⟩
. (2.2.11)

Moreover, we call A regular w.r.t. the energy e, if and only if A = Åe.

Notice that in the analysis of Wigner matrices without deformation, D = 0, in [165, 170, 168, 169],
M was a constant matrix and the regular observables were simply given by traceless matrices, i.e.
Å = A − ⟨A⟩. For deformed Wigner matrices the concept of regular observables depends on the
energy.

Next, we define the quantiles γi of the density ρ implicitly by

∫

γi

−∞
ρ(x)dx = i

N
, i ∈ [N]. (2.2.12)

We can now formulate the ETH in the bulk for deformed Wigner matrices which generalises the
same result for Wigner matrices, D = 0, from [165].

Theorem 2.2.7 (Eigenstate Thermalisation Hypothesis). Let κ > 0 be an N -independent constant
and fix a bounded deterministic D = D∗ ∈ CN×N . Let H =W +D be a deformed Wigner matrix,
where W satisfies Assumption 2.2.1, and denote the orthonormal eigenvectors of H by {ui}i∈[N].
Then, for any deterministic A ∈CN×N with ∥A∥ ≲ 1, it holds that

max
i,j
∣⟨ui, Å

γi
uj⟩∣ =max

i,j
∣⟨ui,Auj⟩ − δij

⟨AImM(γi)⟩

⟨ImM(γi)⟩
∣ ≺

1
√
N
, (2.2.13)

where the maximum is taken over all i, j ∈ [N] such that the quantiles γi, γj ∈ Bκ defined in (2.2.12)
are in the κ-bulk of the scDos ρ.

This "Law of Large Numbers"-type result (2.2.13) is complemented by the corresponding Central
Limit Theorem (2.2.14), which requires slightly strengthened assumptions on the deformation D.

Assumption 2.2.8. We assume that D ∈CN×N is a bounded self-adjoint deterministic matrix such
that

(i) the unique solution M(z) to (2.2.8) is uniformly bounded in norm, i.e. supz∈C ∥M(z)∥ ≤ CM
for some N -independent constant CM > 0;

(ii) the scDos ρ is Hölder-1/2 regular, i.e. it does not have any cusps (see Footnote 6).

The requirements on D in Assumption 2.2.8 are natural and they hold for typical applications, see
Remark 2.2.12 later for more details. We can now formulate our result on the Gaussian fluctuations
in the ETH which generalises the analogous result for Wigner matrices, D = 0 from [167].

Theorem 2.2.9 (Fluctuations in ETH). Fix κ,σ > 0 N -independent constants and let H =W +D
be a deformed Wigner matrix, where W satisfies Assumption 2.2.1 and D satisfies Assumption 2.2.8.
Denote the orthonormal eigenvectors of H by {ui}i∈[N] and fix an index i ∈ [N], such that the
quantile γi ∈ Bκ defined in (2.2.12) is in the bulk. Then, for any deterministic Hermitian matrix
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A ∈ CN×N with ∥A∥ ≲ 1 (which we assume to be real in the case of a real Wigner matrix) satisfying
⟨(A − ⟨A⟩)2⟩ ≥ σ, it holds that

¿
Á
ÁÀ βN

2 Varγi(A)
[⟨ui,Aui⟩ −

⟨AImM(γi)⟩

⟨ImM(γi)⟩
]Ô⇒N (0,1) (2.2.14)

in the sense of moments (see Footnote 4), where7

Varγi(A) ∶=
1

⟨ImM(γi)⟩2
⎛

⎝
⟨(Å

γiImM(γi))
2
⟩ −

1
2

Re
⎡
⎢
⎢
⎢
⎢
⎣

⟨(M(γi))
2
Å
γi
⟩
2

1 − ⟨(M(γi))
2
⟩

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠
. (2.2.15)

This variance is strictly positive with an effective lower bound

Varγi(A) ≥ c ⟨(A − ⟨A⟩)
2
⟩ (2.2.16)

for some constant c = c(κ, ∥D∥) > 0.

Remark 2.2.10. We stated Theorem 2.2.9 only for diagonal overlaps to keep the statement simple,
but a corresponding CLT for off–diagonal overlaps as well as a multivariate CLT for any finite family
of diagonal and off–diagonal overlaps can also be proven.
We decided not to give a detailed proof of these facts in the current paper in order to present the main
new ideas in the analysis of deformed Wigner matrices in the simplest possible setting consisting of
only diagonal overlaps. But we remark that following an analysis similar to [61, Section 3], combined
with the details presented in Section 2.5, would give an analogous result to [61, Theorem 2.2] also in
the deformed Wigner matrices setup. However, this would require introducing several new notations
that would obfuscate the main novelties in the analysis of deformed Wigner matrices compared to
the Wigner case, which instead are clearer in the simpler setup of Section 2.5.

In the following two remarks we comment on the condition ⟨(A−⟨A⟩)2⟩ ≥ σ and on Assumption 2.2.8.

Remark 2.2.11. The restriction to matrices satisfying ⟨(A − ⟨A⟩)2⟩ ≥ σ, i.e. A − ⟨A⟩ being of high
rank, is technical. It is due to the fact that our multi-resolvent local laws for resolvent chains
⟨G(z1)A1G(z2)A2 . . .⟩ in Proposition 2.4.4 are non-optimal in terms of the norm for the matrices
Ai; they involve the Euclidean norm ∥Ai∥ and not the smaller Hilbert-Schmidt norm

√
⟨∣Ai∣2⟩ which

would be optimal. For the Wigner ensemble, this subtlety is the main difference between the main
result in [167] for high rank observable matrices A and its extension to any low rank A in [169].
Following the technique in [169] it would be possible to achieve the estimate with the optimal norm
of A also for deformed Wigner matrices. However, we refrain from doing so, since in our main
application, Theorem 2.2.2, A itself will be a Wigner matrix which has high rank.

Remark 2.2.12. We have several comments on Assumption 2.2.8.

(i) The boundedness of ∥M(z)∥ is automatically fulfilled in the bulk Bκ (see remark below (2.2.10))
or when Re z away from the support of the scDos ρ (see [22, Proposition 3.5]) without any
further condition. However, the uniform (in z) estimate formulated in Assumption 2.2.8 does
not hold for arbitrary D. A sufficient condition for the boundedness of ∥M∥ in terms of the
spectrum of D is given in [22, Lemma 9.1 (i)]. This especially applies if the eigenvalues
{di}i∈[N] of D (in increasing order) form a piecewise Hölder-1/2 regular sequence,8 see [22,
Lemma 9.3]. In particular, by eigenvalue rigidity [17, 243], it is easy to see that any “Wigner-
like" matrix D has Hölder-1/2 regular sequence of eigenvalues with very high probability. This
is important for the applicability of Theorem 2.2.9 below in the proof of our main result,
Theorem 2.2.2, given in Section 2.3.

7See the first paragraph of Section 2.5 for an explanation of why the variance takes this specific form.
8In this context, Hölder-1/2 regularity means that ∣di − dj ∣ ≤ C0(∣i − j∣/N)

1/2 for some universal constant C0 > 0.
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(ii) The assumption that ρ does not have any cusps is a typical condition and of technical nature
(needed in the local law (2.4.1) and in Lemma 2.A.2). In case that the sequence of matrices
D =DN has a limiting density of states with single interval support, then also ρ, the scDos
of W +D, has single interval support [81], in particular, ρ has no cusps [22]. Again, this is
important for the applicability of Theorem 2.2.9 in the proof of our main result, in which case
D is a Wigner matrix with a semicircle as the limiting density of states.

In the following Section 2.3, we will prove our main result, Theorem 2.2.2, assuming Theorems 2.2.7
and 2.2.9 on deformed Wigner matrices as inputs. These will be proven in Sections 2.4 and 2.5,
respectively. Both proofs crucially rely on an averaged local law for two resolvents and two regular
observables, Proposition 2.4.4, which we prove in Section 2.6. Several additional technical and
auxiliary results are deferred to the Appendix.

2.3 Fluctuations in Equipartition: Proof of Theorem 2.2.2
It is sufficient to prove Theorem 2.2.2 only for k = 2 with p1, p2 ≠ 0, since we can view the sum (2.2.2)
as the sum of p1W1 and

k

∑
l=2
plWl

d
= (

k

∑
l=2
p2
l )

1/2

W̃ ,

where W̃ is a Wigner matrix independent of W1 and the equality is understood in distribution.

As a main step, we shall prove the following lemma, where we condition on W2.

Lemma 2.3.1. Under the assumptions of Theorem 2.2.2 with k = 2 it holds that

EW1⟨ui, p2W2ui⟩ =
p2

2
∥p∥2

γi +O≺ (N
−1/2−ϵ

) , (2.3.1)

βN

2
VarW1[⟨ui, p2W2ui⟩] =

p2
1p

2
2

∥p∥2
+O≺ (N

−ϵ
) , (2.3.2)

for any ϵ > 0, where γi is the ith quantile of the semicircular density with radius 2∥p∥, i.e.

1
2π∥p∥2 ∫

γi

−∞

√
[4∥p∥2 − x]+dx =

i

N
.

Expectation and variance are taken in the probability space of W1, conditioned on W2 being in an
event of very high probability, while the stochastic domination in the error terms are understood in
the probability space of W2.

Proof of Theorem 2.2.2. First, we note that all requirements for applying Theorem 2.2.9 to H =
p1W1 +D, with D = p2W2 for some fixed realisation of W2 in a very high probability event, are
satisfied. This follows from Remark 2.2.12 and ⟨(W2 − ⟨W2⟩)

2⟩ ≳ 1 with very high probability. Next,
observe that replacing γi in (2.3.1) by the eigenvalue λi appearing in (2.2.5) is trivial by the usual
eigenvalue rigidity ∣γi − λi∣ ≺ 1/N for Wigner matrices in the bulk [248]. Thus, Theorem 2.2.9 shows
that, conditioned on a fixed realisation of W2,

√
βN

2
[⟨ui, p2W2ui⟩ −

p2
2
∥p∥2

λi] (2.3.3)

is approximately Gaussian with an approximately constant variance (independent of W2) given in
(2.3.2). Since this holds with very high probability w.r.t. W2, this proves (2.2.5) for l = 2; the proof
for l = 1 is the same.
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Proof of Corollary 2.2.3. We formulated Theorem 2.2.9 as a CLT for overlaps ⟨ui,Aui⟩ for a single
deterministic matrix A, but by standard polarisation it also shows the joint approximate Gaussianity
of any p-vector

(⟨ui,A1ui⟩, ⟨ui,A2ui⟩, . . . , ⟨ui,Apui⟩) (2.3.4)

for any fixed k and deterministic observables A1,A2, . . .Ap satisfying ⟨(Aj − ⟨Aj⟩)2⟩ ≥ c, j ∈ [p].
Namely, using Theorem 2.2.9 to compute the moments of ⟨ui,A(t)ui⟩ for the linear combination
A(t) = ∑j tjAj with any real vector t = (t1, t2, . . . , tp), we can identify any joint moments of the
coordinates of the vector in (2.3.4) and we find that they satisfy the (approximate) Wick theorem.

Now we can follow the above proof of Theorem 2.2.2, but without the simplification k = 2.
Conditioning on W2, . . . ,Wk and working in the probability space of W1, by the polarisation
argument above we find that not only each Xl from (2.2.6) is asymptotically Gaussian with a
variance independent of W2, . . . ,Wk, but they are jointly Gaussian for l = 2,3, . . . , k. This is
sufficient for the joint Gaussianity of the entire vector X since ∑lXl = 0. This completes the proof
of Corollary 2.2.3.

The proof of Lemma 2.3.1 is divided into the computation of the expectation (2.3.1) and the
variance (2.3.2).

2.3.1 Computation of the expectation (2.3.1)
As in the proof of Theorem 2.2.2 above, we condition on W2 and work in the probability space of W1
i.e. we consider p2W2 as a deterministic deformation of p1W1. This allows us to use Theorem 2.2.9
as9

EW1⟨ui, p2W2ui⟩ =
⟨p2W2ImM2(γi,2))⟩

⟨ImM2(γi,2)⟩
+O≺ (N

−1/2−ϵ
) (2.3.5)

for some constant ϵ > 0. Here M2(z), depending on W2, is the unique solution of the MDE

−
1

M2(z)
= z − p2W2 + p

2
1⟨M2(z)⟩ , (2.3.6)

corresponding to the matrix p1W1 + p2W2, where p2W2 is considered a deformation, and γi,2 is the
ith quantile of the scDos ρ2 corresponding to (2.3.6). The subscript ‘2’ for M2, ρ2 and γi,2 in (2.3.5)
and (2.3.6) indicates that these objects are dependent on W2 and hence random.

The Stieltjes transform m2(z) of ρ2 is given by the implicit equation

m2(z) ∶= ⟨M2(z)⟩ =
1
p2
⋅ ⟨

1
W2 −

1
p2
(z + p2

1m2(z))
⟩

with the usual side condition Im z ⋅ Imm2(z) > 0. Applying the standard local law for the resolvent
of W2 on the right hand side shows that

∣m2(z) −
1
p2
msc(w2)∣ ≺

1
N ∣Imw2∣

, w2 ∶=
1
p2
(z + p2

1m2(z)). (2.3.7)

where msc is the Stieltjes transform of the standard semicircle law, i.e. it satisfies the quadratic
equation

msc(w)
2
+wmsc(w) + 1 = 0 (2.3.8)

with the side condition Imw ⋅ Immsc(w) > 0. Note that in (2.3.7) w2 is random, it depends on W2,
but the local law for ⟨(W2 −w)

−1⟩ holds uniformly in the spectral parameter ∣Imw∣ ≥ N−1, hence a
9Note that Theorem 2.2.7 alone would prove (2.3.5) only with ϵ = 0, but the convergence in the sense of moments

from Theorem 2.2.9 gains a factor N−ϵ with a positive ϵ.
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standard grid argument and the Lipschitz continuity of the resolvents shows that it holds for any
(random) w with ∣Imw∣ ≥ N−1+ξ with any fixed ξ > 0.

Applying (2.3.8) at w = w2 together with (2.3.7) implies that

−
1

∥p∥m2(z)
=

z

∥p∥
+ ∥p∥m2(z) +O≺(

1
N ∣Imw2∣

). (2.3.9)

We view this relation as a small additive perturbation of the exact equation

−
1

msc(
z
∥p∥)

=
z

∥p∥
+msc(

z
∥p∥) (2.3.10)

to conclude
∣∥p∥m2(z) −msc(

z
∥p∥)∣ ≺

1
N ∣Im z∣

, ∣Im z∣ ≥ N−1+ξ , (2.3.11)

using that ∣Imw2∣ ≳ ∣Im z∣ from the definition of w2 in (2.3.7) and that Im z ⋅ Imm2(z) > 0. The
conclusion (2.3.11) requires a standard continuity argument, starting from a z with a large imaginary
part and continuously reducing the imaginary part by keeping the real part fixed (the same argument
is routinely used in the proof of the local law for Wigner matrices, see, e.g., [248]).

The estimate (2.3.11) implies that the quantiles of ρ2 satisfy the usual rigidity estimate, i.e.

∣γ2,i − γi∣ ≺
1
N

(2.3.12)

for bulk indices i ∈ [κN, (1 − κ)N] with any N -independent κ > 0. Moreover, (2.3.11) also implies
that for any z in the bulk of the semicircle, i.e. ∣Immsc(z)∣ ≥ c > 0 for some c > 0, independent of N ,
we have ∣Imm2(z)∣ ≥ c/2 as long as ∣Im z∣ ≥ N−1+ξ. Using the definition of w2 in (2.3.7) again, this
shows ∣Imw2∣ ∼ ∣Imw∣ for the deterministic w ∶= 1

p2
(z + p2

1msc(z)) for any z with ∣Im z∣ ≥ N−1+ξ.
Feeding this information into (2.3.9) and viewing it again as a perturbation of (2.3.10) but with the
improved deterministic bound O≺(1/(N ∣Imw∣)), we obtain

∣∥p∥m2(z) −msc(
z
∥p∥)∣ ≺

1
N ∣Imw∣

, with w =
1
p2
(z + p2

1msc(z)) , (2.3.13)

uniformly in ∣Im z∣ ≥ N−1+ξ. In particular, when z is in the bulk of the semicircle, then we have that

∣∥p∥m2(z) −msc(
z
∥p∥)∣ ≺

1
N

and this relation holds even down to the real axis by the Lipschitz continuity (in fact, real analyticity)
of the Stieltjes transform m2(z) in the bulk.

In the following, we will use the shorthand notation A ≈ B for two (families of) random variables A
and B if and only if ∣A −B∣ ≺ N−1. Evaluating (2.3.6) at z = γi,2, we have

M2(γi,2) =
1
p2
⋅

1
W2 −wi,2

, wi,2 ∶=
1
p2
(γi,2 + p

2
1m2(γi,2)) , (2.3.14)

and note that wi,2 ≈ wi ∶= 1
p2
(γi +

p2
1
∥p∥msc (

γi

∥p∥)) by (2.3.13) and since γi,2 ≈ γi in the bulk by
rigidity (2.3.12).

Now we are ready to evaluate the rhs. of (2.3.5). By elementary manipulations using (2.3.14), we
can now write the rhs. of (2.3.5) as

⟨p2W2ImM2(γi,2)⟩

⟨ImM2(γi,2)⟩
= γi,2 +

p2
1
p2

Im [⟨(W2 −wi,2)
−1⟩2]

Im ⟨(W2 −wi,2)−1⟩
. (2.3.15)
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2.3. Fluctuations in Equipartition: Proof of Theorem 2.2.2

Using (2.3.13), we obtain

⟨(W2 −wi,2)
−1
⟩ ≈ ⟨(W2 −wi)

−1
⟩ ≈msc(wi) (2.3.16)

with very high W2-probability. Continuing with (2.3.15) and using γi,2 ≈ γi, we thus find

⟨p2W2ImM2(γi,2))⟩

⟨ImM2(γi,2)⟩
≈ γi +

p2
1
p2

Im [msc(wi)
2]

Immsc(wi)
. (2.3.17)

Next, we combine (2.3.8) with p2m2(γi) ≈ msc(wi) from (2.3.7), (2.3.14) and (2.3.16) and find
that

msc(wi)
2
≈ −

p2
2

p2
1 + p

2
2
(1 + 1

p2
γimsc(wi)) . (2.3.18)

Hence, plugging (2.3.18) into (2.3.17) we deduce

⟨p2W2ImM2(γi,2))⟩

⟨ImM2(γi,2)⟩
≈ (1 − p2

1
p2

1 + p
2
2
)γi =

p2
2
∥p∥2

γi .

This completes the proof of (2.3.1).

2.3.2 Computation of the variance (2.3.2)
As in the calculation of the expectation in Section 2.3.1, we first condition on W2 and work in
the probability space of W1. So, we apply Theorem 2.2.9 to the matrix p1W1 + p2W2, where the
second term is considered a fixed deterministic deformation. Indeed, using the same notations as in
Section 2.3.1, this gives that the lhs. of (2.3.2) equals

p2
2 Varγi,2 (W2) = p

2
2

1
⟨ImM2(γi,2)⟩2

⎛

⎝
⟨(W̊

γi,2
2 ImM2(γi,2))

2
⟩ −

p2
1

2
Re
⎡
⎢
⎢
⎢
⎢
⎣

⟨(M2(γi,2))
2
W̊

γi,2
2 ⟩

2

1 − p2
1⟨(M2(γi,2))

2
⟩

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠

(2.3.19)
up to an additive error of order O≺(N−ϵ), which will appear on the rhs. of (2.3.2). The factor p2

1 in
the second term of (2.3.19) is a natural rescaling caused by applying Theorem 2.2.9 to a deformation
of p1W1 instead of a Wigner matrix W1. Further we express M2 in terms of a Wigner resolvent
G ∶= (W2 −w)

−1 and use local laws not only for a single resolvent ⟨G⟩ but also their multi-resolvent
versions for ⟨G2⟩ and ⟨GG∗⟩ (see [168]). With a slight abuse of notation we shall henceforth drop
the subscript ‘2’ in γi,2 and wi,2 and replace them by their deterministic values γi and wi, respectively,
at a negligible error of order N−1 exactly as in Section 2.3.1. Note that Imwi ≳ 1 for bulk indices i,
so all resolvents below are stable and all denominators are well separated away from zero; this is
needed to justify the ≈ relations below.

The first term in (2.3.19) can be rewritten as (here G = G(wi) and msc ∶=msc(wi) for brevity)

⟨(W̊
γi

2 ImM2(γi))
2
⟩ ≈

1
2

Re
⎛

⎝
∣
wi
p2
−

γi
p2

1 + p
2
2
∣

2
⟨GG∗⟩ − (

wi
p2
−

γi
p2

1 + p
2
2
)

2
⟨G2
⟩
⎞

⎠

≈
1
2

Re
⎛

⎝
∣
wi
p2
−

γi
p2

1 + p
2
2
∣

2
∣msc∣

2

1 − ∣msc∣2
− (

wi
p2
−

γi
p2

1 + p
2
2
)

2
m2

sc
1 −m2

sc

⎞

⎠

≈
p4

1
2p2

2(p
2
1 + p

2
2)

2 Re ( 1
1 − ∣msc∣2

−
1

1 −m2
sc
) , (2.3.20)

where in the last step we used (2.3.18). Similarly for the second term in (2.3.19), we have

⟨(M2(γi))
2
W̊

γi

2 ⟩
2

1 − p2
1 ⟨(M(γi))

2
⟩
≈

[ 1
p2
⟨ 1
p2
G + (wi

p2
−

γi

p2
1+p

2
2
)G2⟩ ]

2

1 − p2
1
p2

2
⟨G2⟩

≈
m2

sc(p
2
2 − (p

2
1 + p

2
2)m

2
sc)

p2
2(p

2
1 + p

2
2)

2(1 −m2
sc)

. (2.3.21)
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Plugging (2.3.20) and (2.3.21) into (2.3.19) we obtain

p2
2 Varγi(W2) ≈

2p2
2 + p2γiRemsc

(Immsc)
2 ⋅

p2
1p

2
2

2(p2
1 + p

2
2)

2 . (2.3.22)

Taking the imaginary part of (2.3.18), we find that ∣msc∣
2 ≈

p2
2

p2
1+p

2
2

and hence, using (2.3.8) again,
we infer

1
p2

1 + p
2
2

2p2
2 + p2γiRemsc

(Immsc)
2 ≈

Re [∣msc∣
2 −m2

sc]

(Immsc)2
= 2 . (2.3.23)

Combining (2.3.22) and (2.3.23) with (2.3.19), this completes the proof of (2.3.2). This proves
Lemma 2.3.1.

2.4 Multi–resolvent local laws: Proof of Theorem 2.2.7
To study the eigenvectors of H we analyse its resolvent G(z) ∶= (H − z)−1, with z ∈ C ∖R. It
is well known [243, 23] that G(z) becomes approximately deterministic in the large N limit. Its
deterministic approximation (as a matrix) is given by M(z), the unique solution of (2.2.8), in the
following averaged and isotropic sense:

∣⟨(G(z) −M(z))B⟩∣ ≺
1

N ∣Im z∣
, ∣⟨x , (G(z) −M(z))y⟩∣ ≺

1
√
N ∣Im z∣

, (2.4.1)

uniformly in deterministic vectors ∥x∥ + ∥y∥ ≲ 1 and deterministic matrices ∥B∥ ≲ 1. To be precise,
while the local laws (2.4.1) hold for Re z ∈ Bκ and dist(Re z, supp(ρ)) ≳ 1 for arbitrary bounded
self-adjoint deformations D = D∗ (see [243, Theorem 2.2]), the complementary regime requires
the strengthened Assumption 2.2.8 on D (see [23]). Note that cusps for ρ have been excluded
in Assumption 2.2.8, hence the complementary regime only consists of edges, which are covered
in [23, Theorem 2.6], under the requirement that ∥M∥ is bounded – which was also supposed in
Assumption 2.2.8.

The isotropic bound ⟨x, ImG(z)x⟩ ≺ 1 from (2.4.1) immediately gives an (almost) optimal bound on
the delocalisation of eigenvectors: ∣⟨ui,x⟩∣ ≺ N−1/2 [405, 395, 243, 23, 62]. However, these estimates
are not precise enough to conclude optimal bounds for eigenvector overlaps and generic matrices A
as in Theorem 2.2.7; in fact by (2.4.1) we can only obtain the trivial bound ∣⟨ui,Auj⟩∣ ≺ 1. Instead
of the single resolvent local law (2.4.1), we rely on the fact that (see (2.4.17) below)

N ∣⟨ui,Auj⟩∣
2
≲ ⟨ImG(γi + iη)AImG(γj + iη)A∗⟩ , (2.4.2)

for η ∼ N−1+ϵ, where ϵ > 0 is small but fixed, and γi, γj ∈ Bκ are in the bulk and we estimate the
rhs. of (2.4.2). In particular, to prove Theorem 2.2.7 we will use the multi-resolvent local laws from
Proposition 2.4.4 below.

Multi-resolvent local laws are natural generalisations of (2.4.1) and they assert that longer products

G1B1G2⋯Gk−1Bk−1Gk (2.4.3)

of resolvents Gi ∶= G(zi) and deterministic matrices10 B1, ...,Bk−1 also become approximately
deterministic both in average and isotropic sense in the large N limit as long as N ∣Im zi∣≫ 1. The
deterministic approximation to the chain (2.4.3) is denoted by

M(z1,B1, z2, ..., zk−1,Bk−1, zk). (2.4.4)

It is not simply M(z1)B1M(z2)B2 . . ., i.e. it cannot be obtained by mechanically replacing each G
with M as (2.4.1) might incorrectly suggest. Instead, it is defined recursively in the length k of the
chain as follows (see Definition 1.4.1):

10We will use the the notational convention, that the letter B denotes arbitrary (generic) matrices, while A is
reserved for regular matrices, in the sense of Definition 2.4.2 below.
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2.4. Multi–resolvent local laws: Proof of Theorem 2.2.7

Definition 2.4.1. Fix k ∈ N and let z1, ..., zk ∈ C ∖R be spectral parameters. As usual, the
corresponding solutions to (2.2.8) are denoted by M(zj), j ∈ [k]. Then, for deterministic matrices
B1, ...,Bk−1 we recursively define

M(z1,B1, ...Bk−1, zk) = (B1k)
−1
[M(z1)B1M(z2, ..., zk) (2.4.5)

+
k−1
∑
l=2

M(z1)⟨M(z1, ..., zl)⟩M(zl, ..., zk)] ,

where we introduced the shorthand notation

Bmn ≡ B(zm, zn) = 1 −M(zm)⟨⋅⟩M(zn) (2.4.6)

for the stability operator acting on the space of N ×N matrices.

It turns out that the size of M(z1,B1, z2, . . . , zk) in the relevant regime of small η ∶= minj ∣Im zj ∣
is roughly η−k+1 in the worst case, with a matching error term in the corresponding local law.
This blow-up in the small η regime comes recursively from the large norm of the inverse of the
stability operator B1k in (2.4.5). However, for a special subspace of observable matrices Bi, called
regular matrices, the size of M(z1,B1, z2, . . . , zk) is much smaller. For Wigner matrices, i.e. for
D = 0, the regular observables are simply the traceless matrices, i.e. observables B such that
⟨B⟩ = 0. In [165, 170, 168, 169] it was shown that when the matrices Bi are all traceless, then
M(z1,B1, z2, . . . , zk) hence (2.4.3) are smaller by an ηk/2-factor than for general Bi;’s.

The situation for deformed Wigner matrices is more complicated, since the concept of regular
observables will be dependent on the precise location in the spectrum of H, i.e. dependent on the
energy. More precisely, we will require that the trace of A tested against a deterministic energy
dependent matrix has to vanish; this reflects the inhomogeneity introduced by D. Analogously to the
Wigner case, in Proposition 2.4.4 below we will show that resolvent chains (2.4.3) are much smaller
when the deterministic matrices Bi are regular.

Next, we give the definition of regular matrices in the chain (2.4.3). Using the notation A for regular
matrices, we will consider chains of resolvents and deterministic matrices of the form

⟨G1A1⋯GkAk⟩ (2.4.7)

in the averaged case, or
(G1A1⋯AkGk+1)xy

(2.4.8)

in the isotropic case, with Gi ∶= G(zi) and Ai being regular matrices according to the following
Definition 2.4.2 (cf. Definition 1.4.2), which generalises the earlier Definition 2.2.6.

Definition 2.4.2 (Regular observables – Two-point regularisation in chains). Fix a parameter κ > 0
and let δ = δ(κ, ∥D∥) > 0 be small enough (see the discussion below). Consider one of the two
expressions (2.4.7) or (2.4.8) for some fixed length k ∈N and bounded matrices ∥Ai∥ ≲ 1 and let
z1, ..., zk+1 ∈C ∖R be spectral parameters with Re zj ∈Bκ. For any j ∈ [k], we denote

1δ(zj , zj+1) ∶= ϕδ(Re zj −Re zj+1) ϕδ(Im zj) ϕδ(Im zj+1) (2.4.9)

where 0 ≤ ϕδ ≤ 1 is a smooth symmetric bump function on R satisfying ϕδ(x) = 1 for ∣x∣ ≤ δ/2
and ϕδ(x) = 0 for ∣x∣ ≥ δ. Here and in the following, in case of (2.4.7), the indices in (2.4.9) are
understood cyclically modulo k.

(a) For j ∈ [k], denoting sj ∶= −sgn(Im zjIm zj+1), we define the (two-point) regularisation of Aj
from (2.4.7) or (2.4.8) w.r.t. the spectral parameters (zj , zj+1) as

Å
zj ,zj+1
j ∶= Aj − 1δ(zj , zj+1)

⟨M(Re zj + iIm zj)AjM(Re zj+1 + sj iIm zj+1)⟩

⟨M(Re zj + iIm zj)M(Re zj+1 + sj iIm zj+1)⟩
. (2.4.10)
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(b) Moreover, we call Aj regular w.r.t. (zj , zj+1) if and only if Åzj ,zj+1
j = Aj .

As already indicated above, the two-point regularisation generalises Definition 2.2.6 in the sense that

Å
e±iη,e±iη

Ð→ Å
e
, and Å

e±iη,e∓iη
Ð→ Å

e
, as η ↓ 0 , (2.4.11)

with a linear speed of convergence, for e ∈ Bκ and any bounded deterministic A ∈CN×N , where we
used that, by taking the imaginary part of (2.2.8), M(z)M(z)∗ = ImM(z)/(⟨ImM(z)⟩ + Im z).

Moreover, we point out, that the above Definition 2.4.2 of the regularisation is identical to Def-
initions 1.3.1 and 1.4.2 when dropping the summand with sτ = −1 in (1.3.7). In particular, for
spectral parameters zj , zj+1 satisfying 1δ(zj , zj+1) > 0 (for some δ > 0 small enough), it holds that
the denominator in (2.4.10) is bounded away from zero, which shows that the linear map A↦ Å is
bounded. Additionally, we have the following Lipschitz property (see Lemma 1.3.3):

Å
z1,z2
= Å

w1,w2
+O(∣z1 −w1∣ + ∣z2 −w2∣)I, (2.4.12)

for any z1, z2,w1,w2 ∈C ∖R such that Im ziImwi > 0. It is important that the error in (2.4.12) is
a constant times the identity matrix, indicated by O(⋅)I.

Next, we give bounds on the size of M(z1,A1, ...Ak−1, zk), the deterministic approximation to
the chain G1A1⋯Ak−1Gk introduced in Definition 2.4.1; the proof of this lemma is presented in
Appendix 2.A.

Lemma 2.4.3. Fix κ > 0. Let k ∈ [4] and z1, ..., zk+1 ∈ C∖R be spectral parameters with Re zj ∈ Bκ.
Set η ∶= minj ∣Im zj ∣. Then, for bounded regular deterministic matrices A1, ...,Ak (according to
Definition 2.4.2), we have the bounds

∥M(z1,A1, ...,Ak, zk+1)∥ ≲

⎧⎪⎪
⎨
⎪⎪⎩

1
η⌊k/2⌋

if η ≤ 1
1

ηk+1 if η > 1
, (2.4.13)

∣⟨M(z1,A1, ...,Ak−1, zk)Ak⟩∣ ≲

⎧⎪⎪
⎨
⎪⎪⎩

1
η⌊k/2⌋−1 ∨ 1 if η ≤ 1
1
ηk if η > 1

. (2.4.14)

For the presentation of Proposition 2.4.4, the main technical result underlying the proof of Theo-
rem 2.2.7, we would only need (2.4.13) and (2.4.14) for k ∈ [2] from the previous lemma. However,
the remaining bounds covered by Lemma 2.4.3 will be instrumental in several parts of our proofs
(see Section 2.6 and Appendix 2.A).

Proposition 2.4.4. Fix ϵ > 0, κ > 0, k ∈ [2], and consider z1, . . . , zk+1 ∈ C ∖R with Re zj ∈ Bκ.
Consider regular matrices A1, . . . ,Ak with ∥Ai∥ ≤ 1, deterministic vectors x,y with ∥x∥ + ∥y∥ ≲ 1,
and set Gi ∶= G(zi). Then, uniformly in η ∶=minj ∣Im zj ∣ ≥ N

−1+ϵ, we have the averaged local law

∣⟨(G1A1 . . .Gk −M(z1,A1, ..., zk))Ak⟩∣ ≺

⎧⎪⎪
⎨
⎪⎪⎩

Nk/2−1
√
Nη

if η ≤ 1
1

Nηk+1 if η > 1
(2.4.15a)

and the isotropic local law

∣⟨x, (G1A1 . . .Gk+1 −M(z1,A1, ..., zk+1))y⟩∣ ≺

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

N(k−1)/2
√
Nη2 if η ≤ 1
1√

Nηk+2 if η > 1
. (2.4.15b)

In Section 2.6, we will carry out the proof of Proposition 2.4.4 in the much more involved η ≤ 1
regime. For η > 1, the bound simply follows by induction on the number of resolvents in a chain by
invoking the trivial estimate ∥M(z)∥ ≲ 1/∣Im z∣. The detailed argument has been carried out in [168,
Appendix B] for the case of Wigner matrices. Having Proposition 2.4.4 at hand, we can now prove
Theorem 2.2.7.
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2.5. Dyson Brownian motion: Proof of Theorem 2.2.9

Proof of Theorem 2.2.7. By (2.4.15a) and (2.4.14) for k = 2 it follows that

∣⟨G1A1G2A2⟩∣ ≺ 1 , (2.4.16)

for arbitrary regular matrices A1 = Å
z1,z2
1 and A2 = Å

z2,z1
2 . Now, using that (see Lemma 1.3.6 for an

analogous statement; see also (2.4.11) and (2.4.12))

Å
γi
= Å

γi±iη,γj±2iη
+O(∣γi − γj ∣ + η)I = Å

γi±iη,γj∓2iη
+O(∣γi − γj ∣ + η)I ,

and analogously for (Å∗)γi , we obtain (cf. Section 1.3.3)

⟨ImG(γi + iη)ÅγiImG(γj + 2iη)(Å∗)γi⟩ ≺ 1 .

Moreover, by spectral decomposition, together with the rigidity of eigenvalues (see e.g. [17, 243]) it
follows that (cf. Lemma 1.3.5)

N ∣⟨ui, Å
γi

uj⟩∣
2
≺ (Nη)2⟨ImG(γi + iη)ÅγiImG(γj + 2iη)(Å∗)γi⟩ ≺ (Nη)2 . (2.4.17)

Choosing η = N−1+ξ/2 for some arbitrary small ξ > 0, we conclude the desired.

2.5 Dyson Brownian motion: Proof of Theorem 2.2.9
The main observation we used to prove Theorem 2.2.7 in Section 2.4 is the relation (2.4.2), i.e. we
related the eigenvector overlaps with a trace of the product of two resolvents and two deterministic
matrices. For Theorem 2.2.7 we only needed an upper bound on the size of the eigenvector overlaps,
however to prove Theorem 2.2.9 we need to identify their size. For this purpose the main input is
the relation

1
N2ϵ ∑

∣i−i0 ∣≤Nϵ

∣j−j0 ∣≤Nϵ

N ∣⟨ui, Å
γi

uj⟩∣
2
∼ ⟨ImG(γi0 + iη)Åγi0 ImG(γj0 + 2iη)(Å∗)γi0 ⟩, (2.5.1)

with η = N−1+ϵ, for some small fixed ϵ > 0, and i0, j0 being some fixed bulk indices. The relation
(2.5.1) is clearly not enough to identify the fluctuations of the individual eigenvector overlaps, but
it gives a hint on the expression of the variance of these overlaps. More precisely, to identify the
fluctuations of N ∣⟨ui, Å

γi
ui⟩∣

2 we will rely on a Dyson Brownian motion analysis which will reveal
that

N E[∣⟨ui, Å
γi

ui⟩∣
2
] ≈

1
⟨ImM(γi)⟩2

E⟨ImG(γi + iη)ÅγiImG(γi + 2iη)(Å∗)γi⟩, (2.5.2)

and a similar relation holds for higher moments as well. Finally, the rhs. of (2.5.2) is computed using
a multi–resolvent local law (see e.g. (2.4.15a) for k = 2), and after some algebraic manipulation (see
(2.5.52)–(2.5.55) below) this results in Varγi(A) as defined in (2.2.15).

Given the optimal a priori bound (2.2.13), the proof of Theorem 2.2.9 is very similar to the analysis
of the Stochastic Eigenstate Equation (SEE) in [167, Sections 3-4] and [169, Section 4]. Even if
very similar to those papers, to make the presentation clearer, here we write out the main steps of
the proof and explain the differences, but we do not write the details; we defer the interested reader
to [167]. We also remark that the proof in [167, 169] heavily relies on the analysis of SEE developed
in [112] and extend in [115, 435].

Similarly to [167, 169] we only consider the real case, the complex case is completely analogous and
so omitted. We prove Theorem 2.2.9 dynamically, i.e. we consider the flow

dWt =
dB̃t
√
N
, W0 =W , (2.5.3)
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2. Gaussian fluctuations in the equipartition principle

with B̃t a real symmetric matrix valued Brownian motion (see e.g. [112, Definition 2.1]). Note that
Wt has a Gaussian component of size

√
t, i.e.

Wt
d
=W0 +

√
tU ,

with U being a GOE matrix independent of W0. Denoting by λi(t) the eigenvalues of Wt (labeled
in increasing order) and by ui(t) the corresponding orthonormal eigenvectors, we will prove Theo-
rem 2.2.9 for the eigenvectors ui(T ), with T = N−1+ω, for some small fixed ω > 0. Since T is very
small, the Gaussian component added in the flow (2.5.3) can easily be removed by a standard Green
function comparison (GFT) argument as in [169, Appendix B].

By [112], it is known that the eigenvalues λi(t) and the eigenvectors ui(t) are the unique strong
solution of the following system of stochastic differential equations (SDEs):

dλi(t) =
dBii(t)
√
N
+

1
N
∑
j≠i

1
λi(t) − λj(t)

dt (2.5.4)

dui(t) =
1
√
N
∑
j≠i

dBij(t)
λi(t) − λj(t)

uj(t) −
1

2N ∑j≠i
ui

(λi(t) − λj(t))2
dt , (2.5.5)

where the matrix B(t) = (Bij(t))Ni,j=1 is a standard real symmetric Brownian motion (see e.g. [112,
Definition 2.1]).

Even if in Theorem 2.2.9 we want to prove a CLT only for diagonal overlaps ⟨ui,Aui⟩, by (2.5.5),
it follows that there is no closed equation for such quantities. For this reason, following [115,
Section 2.3], we study the evolution of the perfect matching observable (see (2.5.7) below) along
the flow (2.5.5).

2.5.1 Perfect matching observable and proof of Theorem 2.2.9
We introduce the notation

pij = pij(t) = ⟨ui,Auj⟩ − δijC0 , (2.5.6)

with A being a fixed real symmetric deterministic matrix A and C0 being a fixed constant independent
of i. Note that compared to [167, 169] in (2.5.6) we define the diagonal pii without subtracting their
expectation (see (2.2.13) above), but rather a generic constant C0 which we will choose later (see
(2.5.48) below). The reason behind this choice is that in the current setting, unlike in the Wigner
case [167, 169], the expectation of pii is now i–dependent, hence the flow (2.5.10) below would not
be satisfied if we had defined (2.5.7) with the centred pii’s.

To study moments of the pij ’s we use the particle representation introduced in [112] and further
developed in [115, 435].. A particle configuration, corresponding to a certain monomials of pij ’s,
can be encoded by a function η ∶ [N]→N0. The image ηj = η(j) denotes the number of particle
at the site j, and ∑j ηj = n denotes the total number of particles. Additionally, given a particle
configuration η, by ηij , with i ≠ j, we denote a new particle configuration in which a particle at the
site i moved to a new site j, if there is no particle in i then ηij = η. We denote the set of such
configuration by Ωn.

Fix a configuration η, then we define the perfect matching observable (see [115, Section 2.3]):

fλ,t,C0,C1(η) ∶=
Nn/2

[2C1]n/2
1

(n − 1)!!
1

M(η)
E
⎡
⎢
⎢
⎢
⎢
⎣

∑
G∈Gη

P (G)
RRRRRRRRRRR

λ

⎤
⎥
⎥
⎥
⎥
⎦

, M(η) ∶=
N

∏
i=1
(2ηi − 1)!! , (2.5.7)

with n being the total number of particles in the configuration η. The sum in (2.5.7) is taken over
Gη, which denotes the set of perfect matchings on the complete graph with vertex set

Vη ∶= {(i, a) ∶ 1 ≤ i ≤ n,1 ≤ a ≤ 2ηi} .
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2.5. Dyson Brownian motion: Proof of Theorem 2.2.9

We also introduced the short–hand notation

P (G) ∶= ∏
e∈E(G)

p(e), p(e) ∶= pi1i2 , (2.5.8)

where e = {(i1, a1), (i2, a2)} ∈ V
2
η, and E(G) denotes the edges of G. Note that in (2.5.7) we took

the conditional expectation with respect to the entire trajectories of the eigenvalues, λ = {λ(t)}t∈[0,T ]
for some fixed 0 < T ≪ 1. We also remark that the definition (2.5.7) differs slightly from [167, Eq.
(3.9)] and [169, Eq. (4.6)], since we now do not normalise by ⟨(A − ⟨A⟩)2⟩ but using a different
constant C1 which we will choose later in the proof (see (2.5.48) below); this is a consequence of the
fact that the diagonal overlaps pii are not correctly centred and normalised. Note that we did not
incorporate the factor 2 in (2.5.7) into the constant C1, since C1 will be chosen has a normalisation
constant to compensate the size of the matrix A, whilst the factor 2 represents the fact that diagonal
overlaps, after the proper centering and normalisation depending on A and i, would be centred
Gaussian random variable of variance two. Furthermore, we consider eigenvalues paths {λ(t)}t∈[0,T ]
which lie in the event

Ω̃ = Ω̃ξ, ∶= { sup
0≤t≤T

max
i∈[N]

ηf(γi(t))
−1
∣λi(t) − γi(t)∣ ≤ N

ξ
} (2.5.9)

for any ξ > 0, where ηf(γi(t)) is the local fluctuation scale defined as in [244, Definition 2.4]. In
most instances we will use this rigidity estimate in the bulk regime when ηf(γi(t)) ∼ N

−1; at the
edges ηf(γi(t)) ∼ N

−2/3. We recall that here γi(t) denote the quantiles of ρt defined as in (2.2.12).
The fact that the event Ω̃ holds with very high probability follows by [23, Corollary 2.9].

By [115, Theorem 2.6] it follows that fλ,t is a solution of the parabolic discrete partial differential
equation (PDE):

∂tfλ,t = B(t)fλ,t , (2.5.10)
B(t)fλ,t =∑

i≠j
cij(t)2ηi(1 + 2ηj)(fλ,t(η

ij
) − fλ,t(η)) . (2.5.11)

where
cij(t) ∶=

1
N(λi(t) − λj(t))2

. (2.5.12)

In the remainder of this section we may often omit λ from the notation since the paths of the
eigenvalues are fixed within this proof.

The main result of this section is the following Proposition 2.5.1, which will readily prove Theorem 2.2.9.
For this purpose we define a version of ft(η) with centred and rescaled pii:

qλ,t(η) ∶= (
N

∏
i=1

1
Varγi(A)

ηi/2
)

Nn/2

2n/2(n − 1)!!
1

M(η)
E
⎡
⎢
⎢
⎢
⎢
⎣

∑
G∈Gη

Q(G)
RRRRRRRRRRR

λ

⎤
⎥
⎥
⎥
⎥
⎦

(2.5.13)

with Åγi denoting the regular component of A defined as in (2.2.11):

Å
γi
∶= A −

⟨AImM(γi)⟩

⟨ImM(γi)⟩
,

and
Q(G) ∶= ∏

e∈E(G)
q(e), q(e) ∶= ⟨ui1 , Å

γi1 ui2⟩. (2.5.14)

Note that the definition in (2.5.14) is not asymmetric for i1 ≠ i2, since in this case ⟨ui1 , Å
γi1 ui2⟩ =

⟨ui1 , Å
γi2 ui2⟩.

127



2. Gaussian fluctuations in the equipartition principle

We now comment on the main difference between qt and ft from (2.5.13) and (2.5.7), respectively.
First of all we notice the q(e)’s in (2.5.14) are slightly different compared with the p(e)’s from
(2.5.6). In particular, we choose the q(e)’s in such a way that the diagonal overlaps have very small
expectation (i.e. much smaller than their fluctuations size). The price to pay for this choice is that
the centering is i–dependent, hence qt is not a solution of an equation of the form (2.5.10)–(2.5.11).
We also remark that later within the proof, C0 from (2.5.6) will be chosen as

C0 =
⟨AImM(γi0)⟩

⟨ImM(γi0)⟩

for some fixed i0 such that γi0 ∈Bκ is in the bulk (recall (2.2.10)). The idea behind this choice is
that the analysis of the flow (2.5.10)–(2.5.11) will be completely local, we can thus fix a base point
i0 and ensure that the corresponding overlap is exactly centred, then the nearby overlaps for indices
∣i − i0∣ ≤K, for some N–dependent K > 0, will not be exactly centred, but their expectation will be
very small compared to the size of their fluctuations:

⟨AImM(γi0)⟩

⟨ImM(γi0)⟩
−
⟨AImM(γi)⟩

⟨ImM(γi)⟩
= O (

K

N
) .

A consequence of this choice is also that the normalisation for qt and ft is different: for qt we chose
a normalisation that is i’s dependent, whilst for ft the normalisation C1 is i–independent and later,
consistently with the choice of C0, it will be chosen as

C1 = Varγi0
(A)n/2,

which is exactly the normalisation that makes ft(η) = 1 when η is such that ηi0 = n and zero
otherwise.

Proposition 2.5.1. For any n ∈ N there exists c(n) > 0 such that for any ϵ > 0, and for any
T ≥ N−1+ϵ it holds

sup
η
∣qT (η) − 1(n even)∣ ≲ N−c(n) , (2.5.15)

with very high probability. The supremum is taken over configurations η supported on bulk indices
and the implicit constant in (2.5.15) depends on n and ϵ.

Proof of Theorem 2.2.9. Fix n ∈ N, an index i such that γi ∈ Bκ is in the bulk, and choose a
configuration η such that ηi = n and ηj = 0 for any j ≠ i. Then by Proposition 2.5.1, we conclude
that

E
⎡
⎢
⎢
⎢
⎢
⎣

¿
Á
ÁÀ N

2Varγi(A)
⟨ui(T ), Å

γi
ui(T )⟩

⎤
⎥
⎥
⎥
⎥
⎦

n

= 1(n even)(n − 1)!! +O (N−c(n)) ,

with T = N−1+ϵ, for some very small fixed ϵ > 0, and c(n) > 0. Here Åγi is defined in (2.2.11) and
Varγi(A) is defined in (2.2.15). Then, by a standard GFT argument (see e.g. [169, Appendix B]),
we se that

E
⎡
⎢
⎢
⎢
⎢
⎣

¿
Á
ÁÀ N

2Varγi(A)
⟨ui(T ), Å

γi
ui(T )⟩

⎤
⎥
⎥
⎥
⎥
⎦

n

= E
⎡
⎢
⎢
⎢
⎢
⎣

¿
Á
ÁÀ N

2Varγi(A)
⟨ui(0), Å

γi
ui(0)⟩

⎤
⎥
⎥
⎥
⎥
⎦

n

+O (N−c(n)) .

This shows that the Gaussian component added by the dynamics (2.5.3) can be removed at the price
of a negligible error implying (2.2.14).

The lower bound on the variance (2.2.16) is an explicit calculation relying on the the definition of
M from (2.2.8). In particular, we use that

(i) A and hence Åγi are self-adjoint;
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2.5. Dyson Brownian motion: Proof of Theorem 2.2.9

(ii) ImM(γi) ≥ g for some g = g(κ, ∥D∥) > 0 since we are in the bulk;

(iii) ⟨ÅγiImM(γi)⟩ = 0 by definition of the regularisation;

(iv) [ReM(γi), ImM(γi)] = 0 from (2.2.8).

Then, after writing Varγi(A) as a sum of squares and abbreviating ImM = ImM(γi), we find

Varγi(A) ≥
⟨(
√

ImM[A −
⟨A(ImM)2⟩
⟨(ImM)2⟩ ]

√
ImM)

2
⟩

⟨(ImM)2⟩
≥ g2
⟨[A −

⟨A(ImM)2⟩
⟨(ImM)2⟩ ]

2
⟩

⟨(ImM)2⟩
≥

g2

⟨(ImM)2⟩
⟨(A−⟨A⟩)2⟩ ,

where in the last step we used the trivial variational principle ⟨(A − ⟨A⟩)2⟩ = inft∈R⟨(A − t)2⟩. This
completes the proof of Theorem 2.2.9.

2.5.2 DBM analysis
Similarly to [167, Section 4.1] and [169, Section 4.2] we introduce an equivalent particle representation
to encode moments of the pij ’s. In particular, here, and previously in [167, 169], we relied on the
particle representation (2.5.16)–(2.5.18) below since our arguments heavily builds on [435], which
use this latter representation.

Consider a particle configuration η ∈ Ωn, for some fixed n ∈N, i.e. η is such that ∑j ηj = n. We
now define the new configuration space

Λn ∶= {x ∈ [N]2n ∶ ni(x) is even for every i ∈ [N]}, (2.5.16)

where
ni(x) ∶= ∣{a ∈ [2n] ∶ xa = i}∣ (2.5.17)

for all i ∈N.

By the correspondence
η↔ x ηi =

ni(x)

2
. (2.5.18)

it is easy to see that these two representations are basically equivalent. The only difference is that
x uniquely determines η, but η determines only the coordinates of x as a multi-set and not its
ordering.

From now on, given a function f defined on Ωn, we will always consider functions g on Λn ⊂ [N]2n
defined by

f(η) = f(ϕ(x)) = g(x),

with ϕ∶Λn → Ωn, ϕ(x) = η being the projection from the x-configuration space to the η-configuration
space using (2.5.18). We thus defined the observable

gt(x) = gλ,t(x) ∶= fλ,t(ϕ(x)) , (2.5.19)

with fλ,t from (2.5.7). Note that gt(x) is equivariant under permutation of the arguments, i.e. it
depends on x only as a multi–set. Similarly we define

rt(x) = rλ,t(x) ∶= qλ,t(ϕ(x)) . (2.5.20)

We remark that gt and rt are the counterpart of ft and qt, respectively, in the x-configuration space.

We can thus now write the flow (2.5.10)–(2.5.11) in the x–configuration space:

∂tgt(x) = L(t)gt(x) (2.5.21)
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2. Gaussian fluctuations in the equipartition principle

L(t) ∶=∑
j≠i
Lij(t), Lij(t)g(x) ∶ = cij(t)

nj(x) + 1
ni(x) − 1 ∑

a≠b∈[2n]
(g(xijab) − g(x)), (2.5.22)

where
xijab ∶= x + δxaiδxbi(j − i)(ea + eb), (2.5.23)

with ea ∈R2n denoting the standard unit vector, i.e. ea(b) = δab. We remark that this flow is map
on functions defined on Λn ⊂ [N]2n which preserves equivariance.

For the following analysis it is convenient to define the scalar product and the natural measure on
Λn:

⟨f, g⟩Λn = ⟨f, g⟩Λn,π ∶= ∑
x∈Λn

π(x)f̄(x)g(x), π(x) ∶=
N

∏
i=1
((ni(x) − 1)!!)2, (2.5.24)

as well as the norm on Lp(Λn):

∥f∥p = ∥f∥Lp(Λn,π) ∶= ( ∑
x∈Λn

π(x)∣f(x)∣p)

1/p
. (2.5.25)

The operator L = L(t) is symmetric with respect to the measure π and it is a negative in L2(Λn),
with associated Dirichlet form (see [434, Appendix A.2]):

D(g) = ⟨g, (−L)g⟩Λn =
1
2 ∑x∈Λn

π(x)∑
i≠j
cij(t)

nj(x) + 1
ni(x) − 1 ∑

a≠b∈[2n]
∣g(xijab) − g(x)∣

2
.

Finally, by U(s, t) we denote the semigroup associated to L, i.e. for any 0 ≤ s ≤ t it holds

∂tU(s, t) = L(t)U(s, t), U(s, s) = I. (2.5.26)

2.5.3 Short range approximation
As a consequence of the singularity of the coefficients cij(t) in (2.5.22), the main contribution to
the flow (2.5.21) comes from nearby eigenvalues, hence its analysis will be completely local. For this
purpose we define the sets

J = Jκ ∶= {i ∈ [N] ∶ γi(0) ∈Bκ}, (2.5.27)

which correspond to indices with quantiles γi(0) (recall (2.2.12)) in the bulk.

Fix a point y ∈ J 2n, and an N -dependent parameter K such that 1≪K ≪
√
N . We remark that

y ∈ J 2n will be fixed for the rest of the analysis. Next, we define the averaging operator as a simple
multiplication operator by a “smooth” cut-off function:

Av(K,y)h(x) ∶= Av(x;K,y)h(x), Av(x;K,y) ∶= 1
K

2K−1
∑
j=K

1(∥x − y∥1 < j), (2.5.28)

with ∥x − y∥1 ∶= ∑
2n
a=1 ∣xa − ya∣. For notational simplicity we may often omit K,y from the notation

since they are fixed throughout the proof:

Av(x) = Av(x;K,y)h(x), Avh(x) = Av((x))h((x)). (2.5.29)

Additionally, fix an integer ℓ with 1≪ ℓ≪K, and define the short range coefficients

cSij(t) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

cij(t) if i, j ∈ J and ∣i − j∣ ≤ ℓ
0 otherwise,

(2.5.30)
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2.5. Dyson Brownian motion: Proof of Theorem 2.2.9

where cij(t) is defined in (2.5.12). The parameter ℓ is the length of the short range interaction.

We now define a short–range approximation of rt, with rt defined in (2.5.20). Note that in the
definition of the short–range flow (2.5.31) below there is a slight notational difference compared to
[167, Section 4.2] and [169, Section 4.2.1]: we now choose an initial condition h0 which depends on
r0 rather than g0. This minor difference is caused by the fact that in [167, 169] the observable gt
was already centred and rescaled, while in the current case the centred and rescaled version of gt is
given by rt, hence the definition in (2.5.31) is still conceptually the same as the one in [167, 169]
(see also the paragraph above (2.5.47) for a more detailed explanation). We point out that we make
this choice to ensure that the infinite norm of the short range approximation is always bounded by
N ξ (see below (2.5.32)). The short range approximation ht = ht(x) is defined as the unique solution
of the parabolic equation

∂tht(x; ℓ,K,y) = S(t)ht(x; ℓ,K,y)
h0(x; ℓ,K,y) = h0(x;K,y) ∶ = Av(x;K,y)(r0(x) − 1(n even)),

(2.5.31)

where

S(t) ∶=∑
j≠i
Sij(t), Sij(t)h(x) ∶= c

S
ij(t)

nj(x) + 1
ni(x) − 1 ∑

a≠b∈[2n]
(h(xijab) − h(x)). (2.5.32)

In the remainder of this section we may often omit K, y and ℓ from the notation, since they
are fixed for the rest of the proof. We conclude this section defining the transition semigroup
US(s, t) = US(s, t; ℓ) associated to the short range generator S(t). Note that ∥ht∥∞ ≤ N ξ, for
any t ≥ 0 and any small ξ > 0, since US(s, t) is a contraction and ∥h0∥∞ ≤ N

ξ by (2.2.13), as a
consequence of ht(x) being supported on x ∈ J 2n.

2.5.4 L2–estimates
To prove the L∞–bound in Proposition 2.5.1, we first prove an L2–bound in Proposition 2.5.3
below and then use an ultracontractivity argument for the parabolic PDE (2.5.21) (see [167, Section
4.4]) to get an L∞–bound. To get an L2–bound we will analyse ht, the short–range version of the
observable gt from (2.5.19), and then we will show that ht and gt are actually close to each other
using the following finite speed of propagation (see [167, Proposition 4.2, Lemmas 4.3–4.4]):

Lemma 2.5.2. Let 0 ≤ s1 ≤ s2 ≤ s1 + ℓN
−1, and f be a function on Λn, then for any x ∈ Λn

supported on J it holds

∣(U(s1, s2) − US(s1, s2; ℓ))f(x)∣ ≲ N1+nξ s2 − s1
ℓ
∥f∥∞ , (2.5.33)

for any small ξ > 0. The implicit constant in (2.5.15) depends on n, ϵ, δ.

To estimate several terms in the analysis of (2.5.31) we will rely on the multi–resolvent local laws from
Proposition 2.4.4 (in combination with the extensions in Lemma 2.A.1 in Lemma 2.A.2). For this
purpose, for a small ω > 2ξ > 0, we define the very high probability event (see Lemmas 2.A.1–2.A.2)

Ω̂ = Ω̂ω,ξ ∶=

⋂
ei∈Bκ,

∣Im zi∣≥N−1+ω

⎡
⎢
⎢
⎢
⎢
⎣

n

⋂
k=2
{ sup

0≤t≤T
∣⟨Gt(z1)Å1 . . .Gt(zk)Åk⟩ − 1(k = 2)⟨M(z1, Å1, z2)Å2⟩∣ ≤

N ξ+k/2−1
√
Nη

}

∩

⎧⎪⎪
⎨
⎪⎪⎩

sup
0≤t≤T

∣⟨Gt(z1)Å1⟩∣ ≤
N ξ

N
√
∣Im z1∣

⎫⎪⎪
⎬
⎪⎪⎭

⎤
⎥
⎥
⎥
⎥
⎦

⋂
z1,z2 ∶e1∈Bκ,

∣e1−e2 ∣≥c1,∣Im zi ∣≥N−1+ω

{ sup
0≤t≤T

∣⟨(Gt(z1)B1Gt(z2)B2⟩∣ ≤ N
ξ
} ,

(2.5.34)
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where Å1, . . . , Åk are regular matrices defined as in Definition 2.4.2 (here we used the short–hand
notation Åi = Å

zi,zi+1
i ),

⟨M(z1, Å1, z2)Å2⟩ = ⟨M(z1)Å1M(z2)Å2⟩ +
⟨M(z1)Å1M(z2)⟩⟨M(z2)Å2M(z1)⟩

1 − ⟨M(z1)M(z2)⟩
, (2.5.35)

η ∶=min{∣Im zi∣ ∶ i ∈ [k]}, c1 > 0 is a fixed small constant, and B1,B2 are norm bounded deterministic
matrices. We remark that for ∣e1 − e2∣ ≥ c1 we have the norm bound ∥M(z1,B1, z2)∥ ≲ 1, with
M(z1,B1, z2) being defined in (2.4.4). Then, by standard arguments (see e.g. [169, Eq. (4.30)]),
we conclude the bound (recall that Ω̃ξ from (2.5.9) denotes the rigidity event)

max
i,j∈J

∣⟨ui(t),Auj(t)⟩∣ ≤
Nω

√
N

on Ω̂ω,ξ ∩ Ω̃ξ , (2.5.36)

simultaneously for all i, j ∈ J and 0 ≤ t ≤ T . Additionally, using the notation ρi,t ∶= ∣Im ⟨Mt(zi)⟩∣, on
Ω̂ω,ξ ∩ Ω̃ξ it also holds that

∣⟨ui(t),Auj(t)⟩∣ ≤ N
ω

¿
Á
ÁÀ⟨ImG(γi(t) + iη)AImG(γj(t) + iη)A⟩

Nρi,tρj,t
≲
Nω

N1/4 , (2.5.37)

when one among i and j is in the bulk and ∣i − j∣ ≥ cN , for some small constant c depending on c1
from (2.5.34). Here we used that for the index in the bulk, say i, we have ρi,t ∼ 1 and for the other
index ρj,t ≳ N−1/2 as a consequence of η ≫ N−1. We point out that this non optimal bound N−1/4,
instead of the optimal N−1/2, follows from the fact that the bound from Lemma 2.A.2 is not optimal
when one of the two spectral parameters in close to an edge; this is exactly the same situation as in
[169, Eq. (4.31)] where we get an analogous non optimal bound for overlaps of eigenvectors that are
not in the bulk.

We are now ready to prove the main technical proposition of this section. Note the additional term
KN−1/2 in the error E in (2.5.39) compared to [167, Proposition 4.2] and [169, Proposition 4.4];
this is a consequence of the fact the pii’s in (2.5.6) are not correctly centred. We stress that the
base point y in Proposition 2.5.3 is fixed throughout the remainder of this section.

Proposition 2.5.3. For any parameters satisfying N−1 ≪ η ≪ T1 ≪ ℓN−1 ≪KN−1 ≪ N−1/2, and
any small ϵ, ξ > 0 it holds

∥hT1(⋅; ℓ,K,y)∥2 ≲K
n/2
E , (2.5.38)

with
E ∶= Nnξ

(
N ϵℓ

K
+
NT1
ℓ
+
Nη

ℓ
+

N ϵ

√
Nη
+

1
√
K
+

K
√
N
) , (2.5.39)

uniformly in particle configurations y such that ya = i0, for any a ∈ [2n] and i0 ∈ J , and eigenvalue
trajectory λ in the high probability event Ω̃ξ ∩ Ω̂ω,ξ.

Proof. The proof of this proposition is very similar to the one of [167, Proposition 4.2] and [169,
Proposition 4.4], we thus only explain the main differences here. In the following by the star over ∑
we denote that the summation runs over two n-tuples of fully distinct indices. The key idea in this
proof is that in order to rely on the multi–resolvent local laws (2.5.34) we replace the operator S(t)
in (2.5.31) with the new operator

A(t) ∶=
∗
∑

i,j∈[N]n
Aij(t), Aij(t)h(x) ∶=

1
η
(
n

∏
r=1

aSir,jr(t))
∗
∑

a,b∈[2n]n
(h(xij

ab) − h(x)), (2.5.40)

where
aij = aij(t) ∶=

η

N((λi(t) − λj(t))2 + η2)
, (2.5.41)
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and aSij are their short range version defined as in (2.5.30) with cij(t) replaced with aij(t), and

xij
ab
∶= x + (

n

∏
r=1

δxar irδxbr ir
)

n

∑
r=1
(jr − ir)(ear + ebr). (2.5.42)

The main idea behind this replacement is that infinitesimally S(t) averages only in one direction at
a time, whilst A(t) averages in all direction simultaneously. This is expressed by the fact that xijab
from (2.5.23) changes two entries of x per time, instead xij

ab changes all the coordinates of x at
the same time, i.e. let i ∶= (i1, . . . , in), j ∶= (j1, . . . , jn) ∈ [N]

n, with {i1, . . . , in} ∩ {j1, . . . , jn} = ∅,
then xij

ab ≠ x if and only if for all r ∈ [n] it holds that xar = xbr = ir. Technically, the replacement of
S(t) by A(t) can be performed at the level of Dirichlet forms.

Lemma 2.5.4 (Lemma 4.6 of [167]). Let S(t), A(t) be defined in (2.5.32) and (2.5.40), respectively,
and let µ denote the uniform measure on Λn for which A(t) is reversible. Then there exists a
constant C(n) > 0 such that

⟨h,S(t)h⟩Λn,π ≤ C(n)⟨h,A(t)h⟩Λn,µ ≤ 0, (2.5.43)

for any h ∈ L2(Λn), on the very high probability event Ω̃ξ ∩ Ω̂ω,ξ.

We start noticing the fact that by (2.5.31) it follows

∂t∥ht∥
2
2 = 2⟨ht,S(t)ht⟩Λn . (2.5.44)

Then, combining this with (2.5.43), and using that xij
ab = x unless xar = xbr = ir for all r ∈ [n], we

conclude that

∂t∥ht∥
2
2 ≤ C(n)⟨ht,A(t)ht⟩Λn,µ

=
C(n)

2η ∑
x∈Λn

∗
∑

i,j∈[N]n
(
n

∏
r=1

aSirjr(t))
∗
∑

a,b∈[2n]n
ht(x)(ht(x

ij
ab) − ht(x))(

n

∏
r=1

δxar irδxbr ir
) .

(2.5.45)

Then, proceeding as in the proof of [167, Proposition 4.5] (see also [169, Eq. (4.40)]), we conclude
that

∂t∥ht∥
2
2 ≤ −

C1(n)

2η
⟨ht⟩

2
2 +

C3(n)

η
E

2Kn, (2.5.46)

which implies ∥hT1∥
2
2 ≤ C(n)E

2Kn, by a simple Gronwall inequality, using that T1 ≫ η.

We point out that to go from (2.5.45) to (2.5.46) the proof is completely analogous to [167, Proof
of Proposition 4.5], with the only exception being the proof of [167, Eqs. (4.41), (4.43)]. We thus
now explain how to obtain the analog of [167, Eqs. (4.41), (4.43)] in the current case as well. The
fact that we now have the bound (2.5.37) rather than the stronger bound N−1/3 as in [169, Eq.
(4.31)] does not cause any difference in the final estimate. We thus focus on the main new difficulty
in the current analysis, i.e. that in (2.5.31) we choose the initial condition depending on r0 rather
than g0. We recall that the difference between r0 and g0 is that r0 is defined in such a way all the
eigenvector overlaps are precisely centred and normalised in an i–dependent way, whilst for g0 we can
choose the i–independent constant C0,C1 so that only the overlap corresponding to a certain base
point i0 is exactly centred and normalised, whilst the nearby overlaps are centred and normalised only
modulo a negligible error K/N (see also the paragraph below (2.5.14) for a detailed explanation).
This additional difficulty requires that to prove the analog of [167, Eqs. (4.41), (4.43)] we need to
estimate the error produced by this mismatch.
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Using that the function f(x) ≡ 1(n even) is in the kernel of L(t), for any fixed x ∈ Γ, and for any
fixed i, a, b, we conclude (recall the notation from (2.5.29))

ht(x
ij
ab)

= US(0, t)((Avr0)(x
ij
ab) − (Av1(n even))(xij

ab))

= Av(xij
ab)(US(0, t)r0(x

ij
ab) − 1(n even)) +O (N

ϵ+nξℓ

K
)

= (Av(x) +O ( ℓ
K
))(U(0, t)r0(x

ij
ab) − 1(n even) +O (N

1+nξt

ℓ
)) +O (

N ϵ+nξℓ

K
)

= Av(x)(gt(xij
ab) − 1(n even)) +O (N

ϵ+nξℓ

K
+
N1+nξt

ℓ
+
N ξK
√
N
) ,

(2.5.47)

where in the definition of gt from (2.5.7), (2.5.19) we chose

C0 ∶=
⟨AImM(γi0)⟩

⟨ImM(γi0)⟩
, C1 ∶= Varγi0

(A), (2.5.48)

and the error terms are uniform in x ∈ Γ. Here i0 is the index defined below (2.5.39). The first three
inequalities are completely analogous to [167, Eq. (4.41)]. We now explain how to obtain the last
inequality at the price of the additional negligible error KN−1/2. Recall the definition of rt from
(2.5.13), (2.5.20), then we now show that for any x supported in the bulk it holds

∥r0(x) − g0(x)∥∞ ≲
N ξK
√
N
, (2.5.49)

for C0,C1 chosen as in (2.5.48). Using (2.5.49), together with U(0, t)g0 = gt, this proves the last
equality in (2.5.47). The main input in the proof of (2.5.49) is the following approximation result

Å
γi0 − Å

γir
= O(∣γi0 − γir ∣)I = O(KN

−1
)I. (2.5.50)

We now explain the proof of (2.5.49); for simplicity we present the proof only in the case n = 2. To
prove (2.5.49) we see that

2∣⟨ui, Å
γi0 uj⟩∣

2
+⟨ui, Å

γi0 ui⟩⟨uj , Å
γi0 uj⟩ = 2∣⟨ui, Å

γi
uj⟩∣

2
+⟨ui, Å

γi
ui⟩⟨uj , Å

γj
uj⟩+O (

1
N
⋅
N ξK
√
N
) ,

where we used (2.5.50) to replace the "wrong" Åγi0 with the "correct" Åγi together with the a
priori a bound ⟨ui, Å

γi
uj⟩ ≤ N

ξN−1/2. Then multiplying this relation by N we obtain (2.5.49).
Additionally, since r0 and g0 contain a different rescaling in terms of Varγi0

(A) and Varγi(A), we
also used that by similar computations

Varγi0
(A) = Varγi(A) +O (

N ξK
√
N
) .

In particular, we used this approximation to compensate the mismatch that only the diagonal overlaps
corresponding to the index i0 are properly centred and normalised in the definition of g0, whilst for
nearby indices we use this approximation to replace the approximate centering C0 and normalisation
C1 from (2.5.48) with the correct one, which is the one in the definition of r0.

Then proceeding as in the proof of [169, Eq. (4.41)] we conclude the analog of [167, Eq. (4.43)]:
∗
∑
j

(
n

∏
r=1

aSirjr(t)) (gt(x
ij
ab) − 1(n even))

=∑
j

(
n

∏
r=1

airjr(t))
⎛
⎜
⎝

Nn/2

Varγi0
(A)n/22n/2(n − 1)!! ∑G∈G

ηj

P (G) − 1(n even)
⎞
⎟
⎠

+O (
Nnξ

Nη
+
N1+nξη

ℓ
+
N ξK
√
N
) .

(2.5.51)
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Given (2.5.51), the remaining part of the proof is completely analogous to [167, Eqs. (4.44)–(4.51)]
except for the slightly different computation

⟨ImG(λir1
+ iη)Åγi0 ImG(λir2

+ iη)Åγi0 ⟩

Varγi0
(A)

= −
1

4Varγi0
(A)

∑
σ,τ∈{+,−}

⟨G(λir1
+ σiη)Åγi0G(λir2

+ τ iη)Åγi0 ⟩

= −
1

4Varγi0
(A)

∑
σ,τ∈{+,−}

⟨G(λir1
+ iση)Åγir1+iση,γir2+iτη

G(λir2
+ iτη)Åγir2+iτη,γir1+iση

⟩

+O (
K

N2η3/2 +
K2

N2η
+

1
N
√
η
)

= ⟨ImM(γi0)⟩
2
+O (

K

N2η3/2 +
K2

N2η
+

1
√
Nη
) ,

(2.5.52)

which replaces [167, Eqs. (4.47)]. Here Åγir1±iη,γir2±iη is defined as in Definition 2.4.2. We also
point out that in the second equality we used the approximation (see (2.4.12))

Å
γi0 = Å

γir1±iη,γir2±iη
+O(∣γir1

− γi0 ∣ + ∣γir2
− γi0 ∣ + η)I = Å

γir1 ,γir2 +O (
K

N
+ η) I, (2.5.53)

together with (here we present the estimate only for one representative term, the other being
analogous)

⟨G(λir1
+ iη)G(λir2

+ iη)Åγi0 ⟩ = ⟨G(λir1
+ iη)G(λir2

+ iη)Åγir2+iη,γir2+iη
⟩ +O (1 + K

Nη
)

= ⟨M(γir2
+ iη, Åγir2+iη,γir1+iη

, γir1
+ iη)⟩ +O (1 + 1

Nη3/2 +
K

Nη
)

= O (1 + 1
Nη3/2 +

K

Nη
) ,

(2.5.54)

which follows by (2.5.34) and Lemma 2.4.3 to estimate the deterministic term, together with the
integral representation from Lemma 1.5.1 (see also (2.6.17) later), to bound the error terms arising
from the replacement (2.5.53). Additionally, in the third equality we used the local for two resolvents
from (2.5.34):

−
1
4 ∑
σ,τ∈{+,−}

⟨G(λir1
+ iση)Åγir1+iση,γir2+iτη

G(λir2
+ iτη)Åγir2+iτη,γir1+iση

⟩

= −
1
4 ∑
σ,τ∈{+,−}

⟨M(γir1
+ iση, Åγir1+iση,γir2+iτη

, γir2
+ iτη)Åγir2+iτη,γir1+iση

⟩ +O (
1
√
Nη
)

= ⟨ImM(γi0)⟩
2Varγi0

(A) +O (
1
√
Nη
+
K

N
) ,

(2.5.55)

with the deterministic term defined in (2.5.35), and in the second equality we used the approximation
(2.5.53) again. We remark that here we presented this slightly different (compared to [167, 169])
computation only for chain of length k = 2, the computation for longer chains is completely analogous
and so omitted. This concludes the proof of (2.5.38).
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We conclude this section with the proof of Proposition 2.5.1.

Proof of Proposition 2.5.1. Combining the L2–bound on ht from Proposition 2.5.3 and the finite
speed of propagation estimates in Lemma 2.5.2 we can enhance this L2–bound to an L∞–bound
completely analogously to the proof of [167, Proposition 3.2 ] presented in [167, Section 4.4].

2.6 Proof of Proposition 2.4.4
Our strategy for proving Proposition 2.4.4 (in the much more involved η ≤ 1 regime) is to derive
a system of master inequalities (Proposition 2.6.3) for the errors in the local laws by cumulant
expansion, then use an iterative scheme to gradually improve their estimates. The cumulant expansion
naturally introduces longer resolvent chains, potentially leading to an uncontrollable hierarchy, so our
master inequalities are complemented by a set of reduction inequalities (Lemma 2.6.4) to estimate
longer chain in terms of shorter ones. We have used a similar strategy in [168, 169] for Wigner
matrices, but now, analogously to Chapter 1, dealing with non-Hermitian i.i.d. matrices, many new
error terms due to several adjustments of the z-dependent two-point regularisations need to be
handled. By the strong analogy to Chapter 1, our proof of the master inequalities formulated in
Proposition 2.6.3 and given in Section 2.6.2 will be rather short and focus on the main differences
between Chapter 1 and the current setup.

As the basic control quantities, analogously to [168] and Chapter 1, in the sequel of the proof, we
introduce the normalised differences

Ψav
k (zk,Ak) ∶= Nη

k/2
∣⟨G1A1⋯GkAk −M(z1,A1, ..., zk)Ak⟩∣ , (2.6.1)

Ψiso
k (zk+1,Ak,x,y) ∶=

√
Nηk+1 ∣(G1A1⋯AkGk+1 −M(z1,A1, ...,Ak, zk+1))xy

∣ (2.6.2)

for k ∈N, where we used the short hand notations

Gi ∶= G(zi) , η ∶=min
i
∣Im zi∣ , zk ∶= (z1, ..., zk) , Ak ∶= (A1, ...,Ak) .

The deterministic matrices ∥Ai∥ ≤ 1, i ∈ [k], are assumed to be regular (i.e., Ai = Å
zi,zi+1 , see

Definition 2.4.2) and the deterministic counterparts used in (2.6.1) and (2.6.2) are given recursively
in Definition 2.4.1. For convenience, we extend the above definitions to k = 0 by

Ψav
0 (z) ∶= Nη∣⟨G(z) −M(z)⟩∣ , Ψiso

0 (z,x,y) ∶=
√
Nη∣(G(z) −M(z))

xy
∣

and observe that
Ψav

0 +Ψiso
0 ≺ 1 (2.6.3)

is the usual single-resolvent local law from (2.4.1), where here and in the following the arguments
of Ψav/iso

k shall occasionally be omitted. We remark that the index k counts the number of regular
matrices in the sense of Definition 2.4.2.

Throughout the entire argument, let ϵ > 0 and κ > 0 be arbitrary but fixed, and let

D(ϵ,κ) ∶= {z ∈C ∶ Re z ∈Bκ , N
100
≥ ∣Im z∣ ≥ N−1+ϵ} (2.6.4)

be the spectral domain, where the κ-bulk Bκ has been introduced in (2.2.10). Strictly speaking, we
would need to define an entire (finite) family of slightly enlarged spectral domains along which the
above mentioned iterative scheme for proving Proposition 2.4.4 is conducted. Since this has been
carried out in detail in Chapter 1 (see, in particular, Figure 1.4.1), we will neglect this technicality
and henceforth assume all bounds on Ψav/iso

k to be uniform on D(ϵ,κ) in the following sense.
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Definition 2.6.1 (Uniform bounds in the spectral domain). Let ϵ > 0 and κ > 0 as above and let
k ∈N. We say that the bounds

∣⟨G(z1)B1 ⋯ G(zk)Bk −M(z1,B1, ..., zk)Bk⟩∣ ≺ E
av ,

∣(G(z1)B1 ⋯ BkG(zk+1) −M(z1,B1, ...,Bk, zk+1))xy
∣ ≺ E

iso
(2.6.5)

hold (ϵ, κ)-uniformly (or simply uniformly) for some deterministic control parameters Eav/iso =
Eav/iso(N,η), depending only on N and η ∶= mini ∣Im zi∣, if the implicit constant in (2.6.5) are
uniform in bounded deterministic matrices ∥Bj∥ ≤ 1, deterministic vectors ∥x∥, ∥y∥ ≤ 1, and
admissible spectral parameters zj ∈D(ϵ,κ) satisfying 1 ≥ η ∶=minj ∣Im zj ∣.

Moreover, we may allow for additional restrictions on the deterministic matrices. For example, we
may talk about uniformity under the additional assumption that some (or all) of the matrices are
regular (in the sense of Definition 2.4.2).

Note that (2.6.5) is stated for a fixed choice of spectral parameters zj in the left hand side, but
it is in fact equivalent to an apparently stronger statement, when the same bound holds with a
supremum over the spectral parameters (with the same constraints). While one implication is trivial,
the other direction follows from (2.6.5) by a standard grid argument (see, e.g., the discussion after
[168, Definition 3.1]).

We can now formulate Proposition 2.4.4, in the language of our basic control quantities Ψav/iso
k .

Lemma 2.6.2 (Estimates on Ψav/iso
1 and Ψav/iso

2 ). For any ϵ > 0 and κ > 0 we have

Ψav
1 +Ψiso

1 ≺ 1 and Ψav
2 +Ψiso

2 ≺
√
Nη (2.6.6)

(ϵ, κ)-uniformly in regular matrices.

Proof of Proposition 2.4.4. The η ≥ 1 case was already explained right after Proposition 2.4.4. The
more critical η ≤ 1 case immediately follows from Lemma 2.6.2.

2.6.1 Master inequalities and reduction lemma: Proof of Lemma 2.6.2
We now state the relevant part of a non-linear infinite hierarchy of coupled master inequalities for
Ψav
k and Ψiso

k . In fact, for our purposes, it is sufficient to have only the inequalities for k ∈ [2].
Slightly simplified versions of this master inequalities will be used in Appendix 2.A for general k ∈N.
The proof of Proposition 2.6.3 is given in Section 2.6.2

Proposition 2.6.3 (Master inequalities, see Proposition 1.4.9). Assume that for some deterministic
control parameters ψav/iso

j we have that

Ψav/iso
j ≺ ψ

av/iso
j , j ∈ [4] , (2.6.7)

holds uniformly in regular matrices. Then we have

Ψav
1 ≺ 1 + ψ

av
1
Nη
+
ψiso

1 + (ψ
av
2 )

1/2

(Nη)1/2
+
(ψiso

2 )
1/2

(Nη)1/4
, (2.6.8a)

Ψiso
1 ≺ 1 + ψ

iso
1 + ψ

av
1

(Nη)1/2
+
(ψiso

2 )
1/2

(Nη)1/4
, (2.6.8b)

Ψav
2 ≺ 1 + (ψ

av
1 )

2 + (ψiso
1 )

2 + ψav
2

Nη
+
ψiso

2 + (ψ
av
4 )

1/2

(Nη)1/2
+
(ψiso

3 )
1/2 + (ψiso

4 )
1/2

(Nη)1/4
, (2.6.8c)
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Ψiso
2 ≺ 1 + ψiso

1 +
ψav

1 ψ
iso
1 + (ψ

iso
1 )

2

Nη
+
ψiso

2 + (ψ
iso
1 ψiso

3 )
1/2

(Nη)1/2
+
(ψiso

3 )
1/2 +(ψiso

4 )
1/2

(Nη)1/4
, (2.6.8d)

again uniformly in regular matrices.

As shown in the above proposition, resolvent chains of length k = 1,2 are estimated by resolvent
chains up to length 2k. In order to avoid the indicated infinite hierarchy of master inequalities with
higher and higher k indices, we will need the following reduction lemma.

Lemma 2.6.4 (Reduction inequalities, see Lemma 1.4.10). As in (2.6.7), assume that Ψav/iso
j ≺ ψ

av/iso
j

holds for 1 ≤ j ≤ 4 uniformly in regular matrices. Then we have

Ψav
4 ≺ (Nη)

2
+ (ψav

2 )
2 , (2.6.9)

uniformly in regular matrices, and

Ψiso
3 ≺ Nη (1 +

ψiso
2√
Nη
)(1 + ψ

av
2
Nη
)

1/2
,

Ψiso
4 ≺ (Nη)

3/2
(1 + ψiso

2√
Nη
)(1 + ψ

av
2
Nη
)

(2.6.10)

again uniformly in regular matrices.

Proof. This is completely analogous to Lemma 1.4.10 and hence omitted. The principal idea is to
write out the lhs. of (2.6.9) and (2.6.10) by spectral decomposition and tacitly employ a Schwarz
inequality. This leaves us with shortened chains, where certain resolvents G are replaced with
absolute values ∣G∣, which can be handled by means of a suitable integral representation (see
Lemma 1.6.1).

Now the estimates (2.6.6) follow by combining Proposition 2.6.3 and Lemma 2.6.4 in an iterative
scheme, which has been carried out in detail in Section 1.4.3. This completes the proof of Lemma 2.6.2.

2.6.2 Proof of the master inequalities in Proposition 2.6.3
The proof of Proposition 2.6.3 is very similar to the proof of the master inequalities in Proposition 1.4.9.
Therefore, we shall only elaborate on (2.6.8a) as a showcase in some detail and briefly discuss (2.6.8b)–
(2.6.8d) afterwards.

First, we notice that Lemma 1.5.2 also holds for deformed Wigner matrices (see Lemma 2.6.5 below).
In order to formulate it, recall the definition of the second order renormalisation, denoted by underline,
from [154, Equation (5.3)]. For a function f(W ) of the Wigner matrix W , we define

Wf(W ) ∶=Wf(W ) − Ẽ[W̃ (∂W̃ f)(W )] , (2.6.11)

where ∂W̃ denotes the directional derivative in the direction of W̃ , which is a GUE matrix that is
independent of W . The expectation is taken w.r.t. the matrix W̃ . Note that, if W itself a GUE
matrix, then EWf(W ) = 0, while for W with general single entry distributions, this expectation is
independent of the first two moments of W . In other words, the underline renormalises the product
Wf(W ) to second order.

We note that Ẽ W̃RW̃ = ⟨R⟩ and furthermore, that the directional derivative of the resolvent is
given by ∂W̃G = −GW̃G. For example, in the special case f(W ) = (W +D−z)−1 = G, we thus have

WG =WG + ⟨G⟩G

by definition of the underline in (2.6.11).
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Lemma 2.6.5. Under the assumption (2.6.7), for any regular matrix A = Å we have that

⟨(G −M)Å⟩ = −⟨WGÅ
′
⟩ +O≺ (E

av
1 ) , (2.6.12)

for some other regular matrix A′ = Å′, which linearly depends on A (see (2.6.21) for an explicit
formula). Here G = G(z) and η ∶= ∣Im z∣. For the error term we used the shorthand notation

E
av
1 ∶=

1
Nη1/2 (1 +

ψav
1
Nη
) . (2.6.13)

By simple complex conjugation of (2.6.12), we may henceforth assume that z = e + iη with η > 0.
The representation (2.6.12) will be verified later. Now, using (2.6.12) we compute the even moments
of ⟨(G −M)Å⟩ as

E ∣⟨(G −M)A⟩∣2p = ∣−E⟨WGA′⟩⟨(G −M)A⟩p−1
⟨(G −M)∗A∗⟩p∣ +O≺ ((E

av
1 )

2p
) (2.6.14)

and then apply a so-called cumulant expansion to the first summand. More precisely, we write out
the averaged traces and employ an integration by parts (see, e.g., [165, Eq. (4.14)])

Ewabf(W ) = E ∣wab∣2 E∂wba
f(W ) + ... with E ∣wab∣2 =

1
N
, (2.6.15)

indicating higher derivatives and an explicit error term, which can be made arbitrarily small, depending
on the number of involved derivatives (see, e.g., [243, Proposition 3.2]). We note that, if W were a
GUE matrix, the relation (2.6.15) would be exact without higher derivatives, which shall be discussed
below.

Considering the explicitly written Gaussian term in (2.6.15) for the main term in (2.6.14), we find
that it is bounded from above by (a p-dependent constant times)

E [ ∣⟨GGA
′GA⟩∣ + ∣⟨G∗GA′G∗A∗⟩∣

N2 ∣⟨(G −M)A⟩∣2p−2
] . (2.6.16)

The main technical tool to estimate (2.6.16) is the following contour integral representation for the
square of resolvent (see Lemma 1.5.1). This is given by

G(z)2 =
1

2πi ∫
Γ

G(ζ)

(ζ − z)2
dζ , (2.6.17)

where the contour Γ = Γ(z) is the boundary of a finite disjoint union of half bands J × [iη̃, i∞) which
are parametrised counter-clockwise. Here J is a finite disjoint union11 of closed intervals, which
we take as Bκ′ for a suitable κ′ ∈ (0, κ) – to be chosen below – and hence contains e = Re z; the
parameter η̃ is chosen to be smaller than, say, η/2. Applying the integral identity (2.6.17) to the
product GG in the term ⟨GGA′GA⟩ yields that

∣⟨GGA′GA⟩∣ ≲

RRRRRRRRRRRRR

∫

Γ

⟨G(ζ)A′GA⟩

(ζ − z)2
dζ
RRRRRRRRRRRRR

. (2.6.18)

Now, we split the contour Γ in three parts, i.e.

Γ = Γ1 + Γ2 + Γ3 . (2.6.19)
11Note that, for our concrete setting (2.6.17), one closed interval (i.e. half of Figure 2.6.1) would be sufficient.

However, we formulated it more generally here in order to ease the relevant modifications for the (omitted) proofs of
(2.6.8b)–(2.6.8d).
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iη̃

iN100

11

2

3

D(ϵ,κ)

Γz

ℜζ

ℑζ

Figure 2.6.1: The contour Γ is split into three parts (see (2.6.19)). Depicted is the situation, where
the bulk Bκ consists of two components. The boundary of the associated domain D(ϵ,κ) is indicated
by the two U-shaped dashed lines. Modified version of Figure 1.5.2.

As depicted in Figure 2.6.1, the first part, Γ1, of the contour consists of the entire horizontal part of
Γ. The second part, Γ2, covers the vertical components up to ∣Im ζ ∣ ≤ N100. Finally, Γ3 consists of
the remaining part with ∣Im ζ ∣ > N100. The contribution coming from Γ3 can be estimated with a
trivial norm bound on G. In order to estimate the integral over Γ2, we choose the parameter κ′ in
the definition of J = Bκ′ in such a way that the distance between z and Γ2 is greater than δ > 0
from Definition 2.4.2. Hence, for ζ ∈ Γ2, every matrix is considered regular w.r.t. (z, ζ).

Therefore, after splitting the contour and estimating each contribution as just described, we find,
with the aid of Lemma 2.4.3,

∣⟨GGA′GA⟩∣ ≺ (1 + ψ
av
2
Nη
) + ∫

J

∣⟨G(x + iη̃)A′G(e + iη)A⟩∣
(x − e)2 + η2 dx .

In this integral over J =Bκ′ , the horizontal part Γ1, we decompose A and A′ in accordance to the
spectral parameters of the adjacent resolvents and use the following regularity property:

A = Å
e+iη,e+iη

= Å
e+iη,x+iη̃

+O(∣x − e∣ + η)I ,

A′ = (A′)˚ e+iη,e+iη
= (A′)˚ x+iη̃,e+iη

+O(∣x − e∣ + η)I .

Now the integral over J is represented as a sum of four integrals: one of them contains two regular
matrices, the rest have at least one identity matrix with a small error factor. For the first one we
use the same estimates as for the integral over the vertical part Γ2. For the other terms, thanks
to the identity matrix, we use a resolvent identity, e.g. for G(x + iη̃)IG(e + iη) and note that
the(∣x− e∣+ η)-error improves the original 1/η-blow up of ∫J

1
(x−e)2+η2 dx to an only ∣ log η∣-divergent

singularity, which is incorporated into ‘≺’.

For the term ⟨G∗GA′G∗A∗⟩ from (2.6.16), we use a similar strategy: After an application of the
Ward identity G∗G = ImG/η, we decompose the deterministic matrices A,A′ according to the
spectral parameters of their neighbouring resolvents in the product. This argument gives us that
each of terms ⟨GGA′GA⟩ and ⟨G∗GA′G∗A∗⟩ is stochastically dominated by

1
η
(1 + ψ

av
2
Nη
) .

Contributions stemming from higher order cumulants in (2.6.16) are estimated exactly in the same
way as in Section 1.5.5. The proof of (2.6.8a) is concluded by applying Young inequalities to (2.6.16)
(see Section 1.5.1).

Finally we show that (2.6.12) holds:
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Proof of Lemma 2.6.5. The proof of this representation is simpler than the proof of its ana-
logue Lemma 1.5.2 because in the current setting all terms in Lemma 1.5.2 containing the particular
chiral symmetry matrix E− are absent. In the same way as in Chapter 1 we arrive at the identity

⟨(G −M)A⟩ = −⟨WGX [A]M⟩ + ⟨G −M⟩⟨(G −M)X [A]M⟩ , (2.6.20)

where we introduced the bounded linear operator X [B] ∶= (1− ⟨M ⋅M⟩)−1
[B]. Indeed, boundedness

follows from the explicit formula
X [B] = B +

⟨MBM⟩

1 − ⟨M2⟩

by means of the lower bound

∣1 − ⟨M2
⟩∣ = ∣(1 − ⟨MM∗

⟩) − 2i⟨M ImM⟩∣ ≥ 2⟨ImM⟩2 ≳ 1 ,

obtained by taking the imaginary part of the MDE (2.2.8), in combination with ∥M∥ ≲ 1.

Next, completely analogously to Lemma 1.5.4, we find the decomposition

X [A]M = (X [A]M)
○
+O(η)I = Å

′
+O(η)I , A′ ∶= X [A]M . (2.6.21)

Plugging this into (2.6.20), we thus infer

⟨(G −M)A⟩ = −⟨WGA′⟩ + ⟨G −M⟩⟨(G −M)Å
′
⟩ + (−⟨WG⟩ + ⟨G −M⟩2)O(η), (2.6.22)

The second term in the rhs. of (2.6.22) is obviously bounded by ψav
1 /(N

2η3/2) and in the third
term we use the usual local law (2.4.1) to estimate it by O≺(N−1). Combining these information
gives (2.6.12).

Notice that the above arguments leading to (2.6.8a) are completely identical to the ones required in
the proof of the analogous master inequality in Proposition 1.4.9 with one minor but key modification:
Every term involving the chiral symmetry matrix E− in Chapter 1 is simply absent and hence, with
the notation of Chapter 1, all sums over signs ∑σ=±⋯ collapse to a single summand with E+ ≡ I.
With this recipe, the proofs of (2.6.8b)–(2.6.8d) are completely analogous to the ones given in
Sections 1.5.2–1.5.4 and hence omitted.

2.A Additional technical Lemmas
In this appendix, we prove several technical lemmas underlying the proofs our main results.

2.A.1 Bounds on averaged multi-resolvent chains
For the proof of Theorem 2.2.9 we need to extend the key estimate ∣⟨G(z1)Å1G(z2)Å2⟩∣ ≺ 1 for
Re z1,Re z2 ∈ Bκ from (2.4.16), which underlies the proof of the ETH in Theorem 2.2.7, in two
directions. First, we need to consider chains with an arbitrary number of resolvents in Lemma 2.A.1,
but we will only need a quite weak suboptimal bound which makes its proof quite direct and short.
Second, in Lemma 2.A.2, we no longer restrict Re z1,Re z2 ∈ Bκ to the bulk, but assume that
∣Re z1 −Re z2∣ + ∣Im z1∣ + ∣Im z2∣ ≥ ν for some N -independent constant ν > 0 and additionally allow
for arbitrary (non-regular) matrices A1,A2. This second extension requires Assumption 2.2.8 on
the deformation D, i.e. the boundedness of M(z) also for Re z ∉ Bκ; this is a slightly stronger
requirement than just the boundedness of D assumed in Theorem 2.2.7. Both extensions are relevant
for constructing the high probability event Ω̂ in (2.5.34) for the DBM analysis. The proofs of
Lemma 2.A.1 and Lemma 2.A.2 are simple extensions and slight adjustments of the arguments used
in Proposition 2.4.4 and they will only be sketched.
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Lemma 2.A.1. Fix ϵ > 0, κ > 0, k ∈N, and consider z1, . . . , zk ∈C ∖R with Re zj ∈Bκ. Consider
regular matrices A1, . . . ,Ak with ∥Ai∥ ≤ 1, deterministic vectors x,y with ∥x∥ + ∥y∥ ≲ 1, and set
Gi ∶= G(zi). Define

Gk ∶= Ĝ1A1 . . .Ak−1ĜkAk, Ĝj ∈ {Gj , ∣Gj ∣} . (2.A.1)
Then, uniformly in η ∶=minj ∣Im zj ∣ ≥ N

−1+ϵ, we have

∣⟨Gk⟩∣ ≺
Nk/2−1
√
Nη

. (2.A.2)

Proof. We only consider the case when Gk = G1A1 . . .Ak−1GkAk, the general case when some Gj
is replaced with ∣Gj ∣ is completely analogous and so omitted. To keep the notation short with a
slight abuse of notation we will often denote (GA)k = G1A1 . . .Ak−1GkAk.

We split the proof into three steps. In Step (i) we first prove the slightly weaker bound ∣⟨Gk⟩∣ ≺ Nk/2−1

for any k ≥ 3 and a similar bound in isotropic sense; then, using Step (i) as an input, we will prove
the better estimate (2.A.2) for k = 3,4; finally we prove (2.A.2) for any k ≥ 3.
Step (i): Similarly to the proof of the reduction inequalities in Lemma 2.6.4 (see Lemma 1.4.10) we
readily see that for k = 2j (we omit the indices):

⟨(GA)2j
⟩ ≲ N

⎧⎪⎪
⎨
⎪⎪⎩

⟨∣G∣A(GA)j/2−1∣G∣A(G∗A)j/2−1⟩2 j even,
⟨∣G∣A(GA)(j−1)/2∣G∣A(G∗A)(j−1)/2⟩⟨∣G∣A(GA)(j−3)/2∣G∣A(G∗A)(j−3)/2⟩ j odd,

(2.A.3)
and for k = 2j − 1:

⟨(GA)2j−1
⟩ ≲ ⟨∣G∣A(GA)j−2

∣G∣A(G∗A)j−2
⟩
1/2
⟨∣G∣A(GA)j−1

∣G∣A(G∗A)j−1
⟩
1/2. (2.A.4)

We proceed by induction on the length of the chain. First we use (2.A.3) for j = 2, together with
⟨GAGA⟩ ≺ 1 from Proposition 2.4.4, to get the bound ⟨G4⟩ ≺ N , and then use this bound as an
input to obtain ⟨G3⟩ ≺ N

1/2 using (2.A.4). Then proceeding exactly in the same way we prove that
if ⟨Gl⟩ ≺ N l/2−1 holds for any l ≤ k, then the same bound holds for chains of length l = k + 1 and
k + 2 as well. Similarly, in the isotropic chains we prove ⟨x,Gky⟩ ≺ N (k−1)/2; this concludes Step (i).
Step (ii): Given the bounds ⟨Gk⟩ ≺ Nk/2−1, ⟨x,Gky⟩ ≺ N (k−1)/2, the estimate in (2.A.2) for k = 3, 4
immediately follows by writing the equation for Gk, performing cumulant expansion and using
the corresponding bounds on M(z1, ..., zk) from Lemma 2.4.3. This was done in [168, Proof of
Proposition 3.5], hence we omit the details.
Step (iii): The proof of (2.A.2) for k ≥ 5 proceeds by induction. We first show that it holds for
k = 5,6 and then we prove that if it holds for k − 2 and k − 1 then it holds for k and k + 1 as well.

By Step (ii), it follows that (2.A.2) holds for k = 3, 4, and for k = 2 we have ⟨GAGA⟩ ≺ 1. Then by
(2.A.3) we immediately conclude that the same bound is true for k = 6, which together with (2.A.4)
also imply the desired bound for k = 5. The key point is that (2.A.3) splits a longer k-chain (k even)
into a product of shorter chains of length k1, k2 with k1 + k2 = k. As long as k ≥ 5, at least one of
the shorter chain has already length at least three, so we gain the factor (Nη)−1/2. In fact chains of
length k = 2, from which we do not gain any extra factor, ∣⟨GAGA⟩∣ ≺ 1, appear only once when we
apply (2.A.3) for k = 6. But in this case the other factor is a chain of length four with a gain of a
(Nη)−1/2 factor. Similarly, (2.A.4) splits the long k chain (k odd) into the square root of two chains
of length k − 1, and k + 1, and for k ≥ 5 we have the (Nη)−1/2 factor from both. The induction step
then readily follows by using again (2.A.3)–(2.A.4) as explained above; this concludes the proof. In
fact, in most steps of the induction we gain more than one factor (Nη)−1/2; this would allow us
to improve the bound (2.A.2), but for the purpose of the present paper the suboptimal estimate
(2.A.2) is sufficient.

We now turn to the second extension of (2.4.16) allowing for arbitrary spectral parameters, i.e. not
necessarily in the bulk, but separated by a safe distance ν > 0.
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Lemma 2.A.2. Fix ϵ, ν > 0 and let the deformation D ∈ CN×N satisfy Assumption 2.2.8. Let z1, z2 ∈
C∖R be spectral parameters with ∆ ∶= ∣Re z1 −Re z2∣+ ∣Im z1∣+ ∣Im z2∣ ≥ ν > 0 and B1,B2 ∈ CN×N

bounded deterministic matrices. Then, uniformly in η ∶=min (∣Im z1∣, ∣Im z2∣) ≥ N
−1+ϵ, it holds that

∣⟨G(z1)B1G(z2)B2⟩∣ ≺ 1 . (2.A.5)

Proof. The proof is very similar to that of Proposition 2.4.4, relying on a system of master inequalities
(Proposition 2.6.3) complemented by the reduction inequalities (Lemma 2.6.4), we just comment on
the minor differences.

Recall that the naive size, in averaged sense, of a chain

G1B1G2B2 . . .Gk−1Bk−1Gk (2.A.6)

with k resolvents and arbitrary deterministic matrices in between is of order η−k+1; generically this
is the size of the corresponding deterministic term in the usual multi-resolvent local law (see [168,
Theorem 2.5] with a = 0 for the case of Wigner matrices)

∣⟨G1B1⋯GkBk −M(z1,B1, ..., zk)Bk⟩∣ ≺
1

Nηk

∣(G1B1⋯BkGk+1 −M(z1,B1, ...,Bk, zk+1))xy
∣ ≺

1
√
Nη ηk

(2.A.7)

with the customary short hand notations

Gi ∶= G(zi) , η ∶=min
i
∣Im zi∣ , zk ∶= (z1, ..., zk) , Bk ∶= (B1, ...,Bk) .

In the following, we will consider every deterministic matrix Bj together with its neighbouring
resolvents, GjBjGj+1, which we will call the unit of Bj . Two units are called distinct if they do
not share a common resolvent and we will count the number of such distinct units.12 The main
mechanism for the improvement over (2.A.7) in Proposition 2.4.4 for regular matrices was that for
every distinct unit GjBjGj+1 in the initial resolvent chain with a regular Bj , the naive size of M
gets reduced by an η-factor, yielding the bound η−⌊k/2⌋+1 in (2.4.14) when all matrices are regular.13

In the most relevant regime of small η ∼ N−1+ϵ this improvement in M is (almost) matched by the
corresponding improvement in the error term, see Nk/2−1 in (2.4.15a) (except that for odd k, the
error is bigger by an extra η−1/2 ∼ N1/2).

The key point is that if the spectral parameters zj and zj+1 are "far away" in the sense that

∆j ∶= ∣Re zj −Re zj+1∣ + ∣Im zj ∣ + ∣Im zj+1∣ ≥ ν > 0 , (2.A.8)

then any matrix Bj in the chain . . .GjBjGj+1 . . . behaves as if it were regular. The reason is that
the corresponding stability operator Bj,j+1 from (2.4.6) (explicitly given in (2.A.14) and (2.A.15)
below) has no singular direction, its inverse is bounded, i.e.

∥B
−1
j,j+1[R]∥ ≲ ∥R∥ for all j ∈ [k] , R ∈CN×N .

For example, using the definition (2.4.5), we have

∥M(z1,B, z2)∥ ≲ 1 (2.A.9)
12However, in the averaged case, one of the k resolvents can be “reused” in this counting.
13This improvement was also termed as the √η-rule, asserting that every regular matrix improves the M bound

and the error in the local law by a factor √η. This formulation is somewhat imprecise, the M bound always involves
integer 1/η-powers; the correct counting is that each distinct unit of regular matrices yields a factor η. However, the
√
η-rule applies to the error term.

143



2. Gaussian fluctuations in the equipartition principle

whenever ∆12 ≥ ν, hence B−1
12 is bounded. Therefore, when mimicking the proof of Proposition 2.4.4,

instead of counting regular matrices with distinct units, we need to count the distinct units within
the chain (2.A.6) for which the corresponding spectral parameters are far away; their overall effects
are the same – modulo a minor difference, that now the errors for odd k do not get increased by
η−1/2 when compared to the M -bound (see later).

To be more precise, in our new setup we introduce the modified14 normalised differences

Ψ̃av
k (zk,Bk) ∶= Nη

⌊k/2⌋
∣⟨G1B1⋯GkBk −M(z1,B1, ..., zk)Bk⟩∣ , (2.A.10)

Ψ̃iso
k (zk+1,Bk,x,y) ∶=

√
Nη η⌊k/2⌋ ∣(G1B1⋯BkGk+1 −M(z1,B1, ...,Bk, zk+1))xy

∣ (2.A.11)

for k ∈ N as a new set of basic control quantities (cf. (2.6.1) and (2.6.2)). The deterministic
counterparts M used in (2.A.10) and (2.A.11) are again given recursively in Definition 2.4.1.
Contrary to (2.6.1) and (2.6.2), the deterministic matrices ∥Bj∥ ≤ 1, j ∈ [k], are not assumed to
be regular. This “lack of regularity” is compensated by the requirement that consecutive spectral
parameters zj , zj+1 of the unit of Bj satisfy (2.A.8). Just as in Definition 2.4.2, in case of (2.A.10),
the indices in (2.A.8) are understood cyclically modulo k. Chains satisfying (2.A.8) for all j ∈ [k] are
called good. Hence, in a good chain one can potentially gain a factor η from every unit GjBjGj+1.
Therefore, analogous to the regularity requirement for all deterministic matrices in Definition 2.6.1,
the normalised differences Ψ̃av/iso

k in (2.A.10) and (2.A.11) will only be used for good chains.

As already indicated above, the analogy between our new setup and the setup of Proposition 2.4.4
is not perfect due to the following reason: For k = 1 the error bounds in (2.A.7) improve by √η
for B1 being a regular matrix, but for ∆1 ≥ ν > 0, the improvement is by a full power of η.15 This
discrepancy causes slightly different η-powers for odd k in all estimates (cf. (2.A.10) and (2.A.11)).

We now claim that for good chains, the requirement (2.A.8) for all j ∈ [k] reduces the naive sizes
of the errors in the usual multi-resolvent local laws (2.A.7) at least by a factor η⌈k/2⌉ for k = 1,2.
Previously, in the proof of Proposition 2.4.4, these sizes got reduced by a factor √η for every matrix
Bj which was regular in the sense of Definition 2.4.2. Now, compared to this regularity gain, the
main effect for our new, say, ν-gain for good chains is that for every j ∈ [k], the inverse of the
stability operator (2.4.6) (explicitly given in (2.A.14) and (2.A.15) below) is bounded, i.e.

∥B
−1
j,j+1[R]∥ ≲ ∥R∥ for all j ∈ [k] , R ∈CN×N . (2.A.12)

Armed with (2.A.12), completely analogously to Proposition 2.4.4, one then starts a proof of the
master inequalities (similar to those in Proposition 2.6.3): First, one establishes suitable underlined
lemmas (cf. Lemma 2.6.5 and Lemmas 1.5.2, 1.5.6, 1.5.8, and 1.5.9), where now no splitting of
observables into singular and regular parts (see, e.g., (2.6.21) and (1.5.35)) is necessary, since the
bounded matrices Bj are arbitrary. Afterwards, the proof proceeds by cumulant expansion (see
(2.6.16)), where resolvent chains of length k are estimated by resolvent chains of length up to 2k.
This potentially infinite hierarchy is truncated by suitable reduction inequalities, as in Lemma 2.6.4.
Along this procedure, we also create non-good chains, but a direct inspection16 shows that there are
always sufficiently many good chains left that provide the necessary improvements, exactly as in the
proof of Proposition 2.4.4.

Just to indicate this mechanism, consider, for example, the Gaussian term appearing in the cumulant
expansion of (2.A.10) for k = 2, analogous to (2.6.16). In this case we encounter the following term

14Notice that for odd k, the η-power in the prefactor is slightly different from those in (2.6.1) and (2.6.2).
15For the averaged case, this improvement is really artificial, since the ∆1 ≥ ν-requirement means that η ≳ 1.
16We spare the reader from presenting the case by case checking for the new setup, but we point out that this is

doable since Lemma 2.A.2, as well as Proposition 2.4.4, concern chains of length at most k ≤ 2. Extending these local
laws for general k is possible, but it would require a more systematic power-counting of good chains.
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with five resolvents that we immediately estimate in terms of chains with four resolvents:

∣⟨G2B2G1B1G2G1B1G2B2⟩∣

N2 ≺
∣⟨G2B2G1B1G2B1G2B2⟩∣ + ∣⟨G2B2G1B1G1B1G2B2⟩∣

N2 . (2.A.13)

Here we used that ∆ = ∣Re z1 − Re z2∣ + ∣Im z1∣ + ∣Im z2∣ ≥ ν > 0 to reduce G2G1 to a single G
term. Strictly speaking, the estimate (2.A.13) directly follows from the resolvent identity G2G1 =
(G2 −G1)/(z1 − z2) only when ∣z1 − z2∣ ∼ ∣Re z1 −Re z2∣ + ∣Im z1 − Im z2∣ ≳ ν; this latter condition
follows from ∆ ≥ ν only if Im z1 ⋅ Im z2 < 0. In the remaining case, when z1 ≈ z2 but both with a
large imaginary part (since ∆ ≥ ν), we can use an appropriate contour integral representation

G(z2)G(z1) =
1

2πi ∫Γ

G(ζ)

(ζ − z1)(ζ − z2)
dζ

similar to (2.6.17) with a contour well separated from z1, z2. Hence we obtain a four-resolvent
chain ⟨G2B2G1B1G(ζ)B1G2B2⟩ on the rhs. of (2.A.13), where the spectral parameter ζ of the
new G(ζ) resolvent is "far away" from the other spectral parameters, and it can be treated as
⟨G2B2G1B1GjB1G2B2⟩, j = 1,2. In fact, in our concrete application of Lemma 2.A.2 we always
know that not only ∆ ≥ ν, but already ∣Re z1 −Re z2∣ ≥ ν, hence the argument with the resolvent
identity is always sufficient.

Note that the two chains on the rhs. of (2.A.13) cannot be directly cast in the form (2.A.10), since
not every unit has well separated spectral parameters (e.g. we have G2B1G2), hence these chains
are not good. However, after application of a reduction inequality (see (2.A.3)), we find that

∣⟨G2B2G1B1G2B1G2B2⟩∣ ≺ N(⟨∣G2∣B2∣G1∣B
∗
2 ⟩⟨∣G1∣B1∣G2∣B

∗
1 ⟩⟨∣G2∣B1∣G2∣B

∗
1 ⟩⟨∣G2∣B2∣G2∣B

∗
2 ⟩)

1/2

and analogously for the second summand in (2.A.13). Estimating the two shorter non-good chains
involving only G2 by 1/η via a trivial Schwarz inequality, this yields that

∣⟨G2B2G1B1G2G1B1G2B2⟩∣

N2 ≺
(⟨∣G2∣B2∣G1∣B

∗
2 ⟩⟨∣G1∣B1∣G2∣B

∗
1 ⟩)

1/2

Nη
,

where the remaining shorter chains are good and can be estimated in terms of Ψ̃av
2 . A similar

mechanism works for any other term. This completes the discussion of the discrepancies between
the current setup and Proposition 2.4.4.

Notice that this argument always assumes that we have a single resolvent local law and that M ’s are
bounded. At potential cusps in the scDos ρ we do not have a single resolvent local law (see the
discussion below (2.4.1)) and the estimates on ∥M(z)∥ for Re z close to edges (and cusps) of ρ
may deteriorate for general deformation D. However, these two phenomena are simply excluded by
Assumption 2.2.8 on the deformation D (see also Remark 2.2.12). In particular, this assumption
allows us to show exactly same estimates on M(z1, ..., zk) as given in Lemma 2.4.3, which serve as
an input in the proof sketched above.

To conclude, similarly to Proposition 2.4.4, our method again shows that

∣⟨(G(z1)B1G(z2) −M(z1,B1, z2))B2⟩∣ ≺
1

(Nη)1/2

which, together with the corresponding bound (2.A.9), immediately yields the desired bound and
completes the proof of Lemma 2.A.2.
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2.A.2 Proof of Lemma 2.4.3
The proof is completely analogous to the proof of Lemma 1.4.3, hence we only show how the three
main technical aspects of the latter should be adjusted to our setup of deformed Wigner matrices.
In general, the setup of Chapter 1 is more complicated due to the chiral symmetry which involves
summations over signs σ = ±. As a rule of thumb, we can obtain the necessary M -formulas for our
current case just by mechanically using the corresponding formulas in Chapter 1 and drop the σ = −1
terms.
Recursive Relations: The principal idea is to derive several different recursive relations for M(z1, ..., zk)
(which itself is defined by one of those in Definition 2.4.1) by a so-called meta argument [181, 154].
These alternative recursions can then be employed to prove Lemma 2.4.3 iteratively in the number of
spectral parameters. These recursive relations are identical to those in Lemma 1.D.1 when dropping
the σ = −1 terms in Eqs. (D.1) and (D.2) therein and writing the N ×N identity instead of E+.
Stability Operator: The inverse of the stability operator (2.4.6) can be expressed in the following
explicit form

B
−1
12 [R] = R +

⟨R⟩

1 − ⟨M1M2⟩
M1M2 = R +

1
β12
⟨R⟩M1M2 , (2.A.14)

where β12 ∶= 1 − ⟨M1M2⟩ is the only non-trivial eigenvalue of B12. Completely analogously to
Lemma 1.B.5 (b), it holds that

∣β12∣ ≳ (∣Re z1 −Re z2∣ + ∣Im z1∣ + ∣Im z2∣) ∧ 1 , (2.A.15)

which, in combination with (2.A.14), in particular implies (2.4.13) for k = 1 and (2.4.14) for k = 2.
Longer Chains: In order to prove (2.4.13) for k = 3, similarly to Chapter 1 we verify at first (2.4.13)
for k = 2 in the case when exactly one observable is regular. For this purpose we again use the
recursive relation of the form (1.D.12):

M(z1,A1, z2,A2, z3) =M(z1,X12[A1]M2A2, z3) +M(z1,X12[A1]M2, z3)⟨M(z2,A2, z3)⟩ ,

where we denoted the linear operator Xmn as

Xmn[R] ∶= (1 − ⟨Mm ⋅Mn⟩)
−1
[R] for R ∈CN×N . (2.A.16)

Now, similarly to the arguments around (1.D.13), we observe a balancing cancellation in the last
term, which comes from the continuity with respect to one of spectral parameters of the regular part
of a deterministic matrix when another spectral parameter is fixed (see (2.4.12)).
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Chapter3
Eigenstate thermalisation at the edge

for Wigner matrices

This chapter contains the paper [150]:

G. Cipolloni, L. Erdős, and J. Henheik. Eigenstate thermalisation at the edge for Wigner matrices.
arXiv:2309.05488, 2023

Abstract. We prove the Eigenstate Thermalisation Hypothesis for Wigner matrices uniformly in
the entire spectrum, in particular near the spectral edges, with a bound on the fluctuation that is
optimal for any observable. This complements earlier works of Cipolloni et. al. [165, 169] and Benigni
et. al. [62, 60] that were restricted either to the bulk of the spectrum or to special observables. As
a main ingredient, we prove a new multi-resolvent local law that optimally accounts for the edge
scaling.
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3.1 Introduction

In the physics literature, the Eigenstate Thermalisation Hypothesis (ETH) asserts that each eigen-
function of a sufficiently chaotic quantum system is uniformly distributed in the phase space. This
concept was coined by Srednicki [535] after similar ideas appeared in the seminal paper of Deutsch
[221]. While the original physics setup concerns genuine many-body systems, especially a small
system in a heat bath described by standard statistical mechanics, Deutsch has also formulated a
phenomenological version of ETH for the simplest chaotic quantum system, the Wigner ensemble.
In this form, ETH asserts that for any deterministic observable (matrix) A and for any normalised
eigenvector u of a large N × N Wigner matrix, the quadratic form ⟨u,Au⟩ is very close to its
statistical average, which, in the Wigner case, is the normalized trace ⟨A⟩ ∶= 1

N TrA:

∣⟨u,Au⟩ − ⟨A⟩∣ ≲
∥A∥
√
N
. (3.1.1)

The 1/
√
N speed of convergence is optimal and it is in agreement with the earlier predictions of

Feingold and Peres [258], see also [234]. For more physics background and references, see the
introduction of [165].

In the mathematics literature the same phenomenon is known as the Quantum Unique Ergodicity
(QUE). In precise mathematical terms it was formulated by Rudnick and Sarnak [510] for standard
quantisations of ergodic classical dynamical systems and proved only in some special cases [424, 533,
349, 123], often as a purely limiting statement without optimizing the speed of convergence. The
key point is to control the behaviour of all eigenfunctions; a similar result for most eigenfunctions
(called Quantum Ergodicity) is much easier and has been earlier discovered by S̆nirel’man [528], see
also [177, 600].

Motivated by the paper of Deutsch [221] and the novel technical developments in random matrix theory,
the ETH for Wigner matrices in the form (3.1.1) has been the object of intense study in recent years.
An important question is the precise dependence of the error term in the right hand side on A. The
first proof of (3.1.1) given in [165] involved the operator norm ∥Å∥ of the traceless part Å ∶= A− ⟨A⟩
of A, but this estimate is far from optimal for low rank observables. For example, if A = ∣q⟩⟨q∣ is a
rank–one projection onto a normalised vector q ∈ CN , then ⟨u,Au⟩ = ∣⟨u,q⟩∣2 which is known to be
essentially of order 1/N by the complete delocalisation of eigenvectors, see [246, 249, 368, 88, 63].
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However the result in [165] gives only the suboptimal estimate ∣⟨u,q⟩∣2 ≲ 1/
√
N for this special

observable.

In the Gaussian (GUE/GOE) case, the eigenvectors are uniformly Haar distributed, hence explicit
moment calculations for ⟨u,Au⟩ are possible by Weingarten calculus. The result indicates the
following optimal form of (3.1.1):

∣⟨ui,Auj⟩ − δij⟨A⟩∣ ≲
⟨∣Å∣2⟩1/2
√
N

. (3.1.2)

Note that this estimate involves the (normalised) Hilbert-Schmidt norm ⟨∣Å∣2⟩1/2 instead of the
operator norm1, and it can also be extended to different eigenvectors ui,uj . In particular, (3.1.2)
recovers the optimal delocalisation bound for eigenvectors as a special case.

The optimal form of ETH (3.1.2) for any Wigner matrix was proved for the special case when A
is a projection in [62, 60], and for arbitrary A but only in the bulk of the spectrum2 in [169]. In
fact,

√
N[⟨ui,Auj⟩ − δij⟨A⟩] is asymptotically normal with variance proportional to ⟨∣Å∣2⟩1/2 (see

[167, 169]) in the bulk, showing that the Hilbert-Schmidt norm ⟨∣Å∣2⟩1/2 is indeed the optimal one. In
the main theorem of the current paper (see Theorem 3.2.2 below) we prove (3.1.2) for all observables
and all eigenfunctions, giving the optimal ETH for Wigner matrices in all spectral regimes.

We remark that ETH is expected to hold for much more general random matrix ensembles. For
example the approach in [165] could be directly generalized to a special class of generalized Wigner
matrices in [5]. Furthermore, ETH in the bulk has recently been extended to deformed random matrix
ensembles (see Chapters 1 and 2), where both the leading term δij⟨A⟩ and the correct replacement
for the traceless part of A in the right hand side of (3.1.2) became considerably more involved, in
particular they are energy dependent. The edge regime and the optimal norm of A in the error term
are still open questions for these ensembles, but we leave them to further works and for simplicity we
focus on the Wigner case here.

The key tool to achieve our ETH is a new multi–resolvent local law with traceless observables that is
optimal at the spectral edges. Multi–resolvent local laws in general refer to concentration results for
alternating products of resolvents of a random matrix and deterministic matrices (observables). Their
proofs are typically more difficult at the spectral edges since, besides correctly accounting for the
traceless observables, their optimal form also requires to exploit a delicate cancellation mechanism;
the smallness of the local density of eigenvalues must accurately compensate for the linear instability
of a nonlinear equation that governs the fluctuation. In contrast to the previous proofs of local
laws behind ETH results, here we apply a dynamical approach, the method characteristic flow
complemented with a Green function comparison argument. While this method has already been
extensively tested for single resolvent local laws [105, 353, 6, 392, 7, 394, 14], only two papers concern
the multi-resolvent situation [161, 111], neither of them focuses on the critical edge behaviour. On
top of the edge, we will need to track another key aspect of the local law; in order to obtain the
Hilbert-Schmidt norm in (3.1.2), the same norm must appear in the local law as well. Typically,
errors in the local laws involve the operator norm of the deterministic matrices between the resolvents,
the control in the much harder Hilbert-Schmidt sense was considered only very recently in [169].
However, this work did not track the optimal edge behaviour. Our new local law is simultaneously
optimal in both aspects. We will explain the strength of this new local law in the context of previous
works in Section 3.2.1.

1Note that ⟨∣Å∣2⟩1/2 is substantially smaller than ∥Å∥ for matrices Å of low rank; in fact, if rank(Å) = 1, then
∥Å∥ =

√
N⟨∣Å∣2⟩1/2, losing the entire

√
N factor in (3.1.1) compared with the optimal (3.1.2).

2We point out that the end of the proof of Theorem 2.2 in the published version of [169] contained a small error; a
correct and in fact simpler argument was given in the updated arXiv:2203.01861 version of the paper.
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Notations

By ⌈x⌉ ∶=min{m ∈ Z∶m ≥ x} and ⌊x⌋ ∶=max{m ∈ Z∶m ≤ x} we denote the upper and lower integer
part of a real number x ∈R. We set [k] ∶= {1, ..., k} for k ∈N and ⟨A⟩ ∶= d−1Tr(A), d ∈N, for the
normalised trace of a d × d-matrix A. For positive quantities A,B we write A ≲ B resp. A ≳ B and
mean that A ≤ CB resp. A ≥ cB for some N -independent constants c,C > 0 that depend only on
the basic control parameters of the model in Assumption 3.2.1 below. Moreover, for N -dependent
positive quantities A,B, we write A≪ B whenever A/B → 0 as N →∞.

We denote vectors by bold-faced lower case Roman letters x,y ∈CN , for some N ∈N, and define

⟨x,y⟩ ∶=∑
i

x̄iyi , Axy ∶= ⟨x,Ay⟩ .

Matrix entries are indexed by lower case Roman letters a, b, c, ..., i, j, k, ... from the beginning or the
middle of the alphabet and unrestricted sums over those are always understood to be over {1, ...,N}.

Finally, we will use the concept ’with very high probability’, meaning that for any fixed D > 0, the
probability of an N -dependent event is bigger than 1−N−D for all N ≥ N0(D). Also, we will use the
convention that ξ > 0 denotes an arbitrarily small positive exponent, independent of N . Moreover,
we introduce the common notion of stochastic domination (see, e.g., [241]): For two families

X = (X(N)(u) ∣ N ∈N, u ∈ U (N)) and Y = (Y (N)(u) ∣ N ∈N, u ∈ U (N))

of non-negative random variables indexed by N , and possibly a parameter u, we say that X is
stochastically dominated by Y , if for all ϵ,D > 0 we have

sup
u∈U(N)

P [X(N)(u) > N ϵY (N)(u)] ≤ N−D

for large enough N ≥ N0(ϵ,D). In this case we write X ≺ Y . If for some complex family of random
variables we have ∣X ∣ ≺ Y , we also write X = O≺(Y ).

Acknowledgment.

We thank Volodymyr Riabov for his help with creating Figure 3.3.1 and for pointing out the missing
condition ∣σ∣ < 1 in Assumption 3.2.1.

3.2 Main results
We consider N ×N Wigner matrices W , i.e. W is a random real symmetric or complex Hermitian
matrix W = W ∗ with independent entries (up to the Hermitian symmetry) and with single entry
distributions waa

d
= N−1/2χd, and wab

d
= N−1/2χod, for a > b. The random variables χd, χod satisfy

the following assumptions.3

Assumption 3.2.1. The off-diagonal distribution χod is a real or complex centered random variable,
Eχod = 0, with E ∣χod∣

2 = 1, and we have that σ ∶= Eχ2
od satisfies ∣σ∣ < 1. The diagonal distribution

is a real centered random variable, Eχd = 0. Furthermore, we assume the existence of high moments,
i.e. for any p ∈N there exists Cp > 0 such that

E [∣χd∣
p
+ ∣χod∣

p] ≤ Cp .

3By inspecting our proof, it is easy to see that actually we do not need to assume that the off-diagonal entries of
W are identically distributed. We only need that they all have the same second moments, but higher moments can be
different.
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Our main result is the optimal form of the eigenstate thermalization hypothesis (ETH) for Wigner
matrices uniformly in the spectrum, in particular, including the spectral edges. Its proof is given in
Section 3.2.2 and it is based on a new multi-resolvent local law, Theorem 3.2.4 below.

Theorem 3.2.2 (Eigenstate Thermalization Hypothesis). Let W be a Wigner matrix satisfying
Assumption 3.2.1 with orthonormalized eigenvectors u1, ...,uN and let A ∈CN×N be deterministic.
Then

max
i,j∈[N]

∣⟨ui,Auj⟩ − δij⟨A⟩∣ ≺
⟨∣Å∣2⟩1/2
√
N

(3.2.1)

where Å ∶= A − ⟨A⟩ denotes the traceless part of A.

3.2.1 Multi-resolvent local laws
Consider the resolvent G(z) ∶= (W − z)−1, with z ∈ C∖R. It is well known that in the limit N →∞
the resolvent becomes deterministic, with its deterministic approximation msc(z) ⋅ I, where msc is
the Stieltjes transform of the semicircular law:

m(z) ∶=msc(z) = ∫
R

1
x − z

ρsc(x)dx, ρsc(x) ∶=
1

2π
√
[4 − x2]+. (3.2.2)

This holds even in the local regime as long as ∣Im z∣≫ N−1; such concentration results are commonly
called local laws.

The single resolvent local law, in its simplest form4, asserts that

∣⟨(G(z) −m(z))A⟩∣ ≺
∥A∥

Nη
, η ∶= ∣Im z∣, (3.2.3)

holds for any deterministic matrix (observable) A. The 1/Nη error is optimal for A = I in the
relevant η ≲ 1 regime and Nη⟨G(z) −m(z)⟩ is approximately Gaussian with variance of order one
[329]. However, for traceless observables, i.e. ⟨A⟩ = 0, hence A = Å, the bound in (3.2.3) improves
to the optimal form,

∣⟨(G(z) −m(z))A⟩∣ = ∣⟨G(z)A⟩∣ ≺

√
ρ(z)

N
√
η
⟨∣A∣2⟩1/2, ρ(z) ∶=

1
π
∣Imm(z)∣.

The improvement in the η-power together and the additional density factor ρ(z) relevant near the
spectral edges were first observed in [165], while the optimal dependence on the Hilbert-Schmidt
norm of A was proved in [169]. Single resolvent local laws, however, are not sufficient to control
the eigenfunction overlaps as in (3.2.1). While the local law, via the spectral decomposition of
ImG = 1

2i(G −G
∗),

⟨ImG(z)A⟩ =
1
N
∑
i

η

(λi −E)2 + η2 ⟨ui,Aui⟩, z = E + iη, (3.2.4)

gives an effectively local average of approximately Nη diagonal overlaps ⟨ui,Aui⟩, inferring the size
of a single overlap is not possible just from this average since ⟨ui,Aui⟩ may change sign as i varies.

Two-resolvent local laws are much more powerful. In particular, using

⟨ImG(z1)AImG(z2)A
∗
⟩ =

1
N
∑
i,j

η

(λi −E1)2 + η2
η

(λj −E2)2 + η2 ∣⟨ui,Auj⟩∣
2, zl = El+iη, l = 1,2,

(3.2.5)
4Traditionally [249, 368, 88], local laws did not consider arbitrary test matrix A, but only A = I or special rank one

projections leading the isotropic local laws. General A was included later, e.g. in [243].

151



3. Eigenstate thermalisation at the edge for Wigner matrices

we see that for a traceless observable, ⟨A⟩ = 0, a bound of the form

⟨ImG(z1)AImG(z2)A
∗
⟩ ≺ ∥A∥2 (3.2.6)

at η ∼ N−1+ξ, ξ > 0, would imply that a local average (in both indices) of ∣⟨ui,Auj⟩∣
2 is bounded by

N−1+2ξ∥A∥2. Since ∣⟨ui,Auj⟩∣
2 is positive (unlike ⟨ui,Aui⟩ in (3.2.4)), we can deduce the optimal

bound ∣⟨ui,Auj⟩∣
2 ≺ 1

N ∥A∥
2 for each overlap. This argument in this form is valid only in the bulk;

near the spectral edges the right hand side of (3.2.6) needs to be improved to ρ(z1)ρ(z2)∥A∥
2;

this was already achieved in [165]. However, to obtain the optimal Hilbert-Schmidt norm of the
observable in (3.2.1) a second improvement to the form

⟨ImG(z1)AImG(z2)A
∗
⟩ ≺ ρ(z1)ρ(z2)⟨∣A∣

2
⟩, ⟨A⟩ = 0, (3.2.7)

is necessary. The main achievement of the current paper is to extract both types of improvement
simultaneously.

While Theorem 3.2.2 requires only the upper bound (3.2.7) for ImGAImGA, along its proof other
alternating products of resolvents (with or without Im ) and deterministic matrices emerge. More
precisely, setting Gi ∶= G(zi) and considering deterministic matrices Bi, the main object of interest is

G1B1G2B2G3 . . .Bk−1Gk (3.2.8)

for some fixed k. We will call expressions of the form (3.2.8) (resolvent) chains. We will show a
multi-resolvent local law, i.e. that any chain (3.2.8) concentrates around a deterministic object and
give an upper bound on the fluctuation. The interesting regime is the local one, i.e. when ∣Im zi∣≪ 1.
We will also consider the case when some of the Gi’s are replaced by their imaginary part ImGi,
and we will show that in this case the fluctuations are reduced close to the edge of the spectrum by
some factor of ∣Imm(zi)∣ which is essentially the density ρsc at Re zi.

It turns out [165] that the sizes of both the deterministic limit of (3.2.8) and its fluctuation are
substantially reduced if some of the matrices Bi are traceless. Therefore, in the main part of the
paper we study (3.2.8) when all the matrices Bi are traceless, ⟨Bi⟩ = 0, this will also imply a local
law for (3.2.8) for generic Bi’s using that any matrix B can be decomposed into a constant and a
traceless part as B = ⟨B⟩ ⋅ I + B̊.

We will prove local laws that are optimal simultaneously in the two different aspects mentioned above
in addition to account for the improvement owing to the traceless observables. The first aspect is
to trace the improvement near the spectral edges in terms of additional ρ-powers; in general the
presence of each ImG provides an additional ρ factor. Second, instead of the technically much
easier Euclidean matrix norm (operator norm) of the Bi’s, we need to use the more sophisticated
Hilbert-Schmidt norm. One additional advantage of using the Hilbert-Schmidt norm is that it
enables us to test the chain in (3.2.8) against rank one matrices and still get optimal bounds. In
particular, testing it against the projection ∣x⟩⟨y∣ immediately gives the so-called isotropic local laws,
i.e. concentration for the individual matrix elements ⟨x,G1B1 . . .Bk−1Gky⟩, for any deterministic
vectors x,y.

Our results also hold for the case when the spectral parameters zi’s are different, but we will not
explore the additional potential improvements from this fact since it is not needed for ETH. While in
some part of the argument we track the different values of ∣Im zi∣ precisely (instead of overestimating
them by the worst one), we will not exploit the additional gain from possibly different real parts
Re zi; this study is left for future investigations.

Multi-resolvent local laws for chains (3.2.8) with traceless deterministic matrices have been the
object of interest in several recent papers, however in each of these works only one aspect of the
fluctuations of (3.2.8) was taken into consideration: either the problem was optimal only in the bulk
of the spectrum [169], hence missing ρ factors were ignored, or the error term was estimated using
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the crude operator norm of the Bi [165, 168], or only chains of length one (k = 1) had an optimal
error term in both aspects [172]. Our new result (Theorem 3.2.4 below) does not have any of these
restriction: we give a bound on the fluctuation of (3.2.8) uniformly in the spectrum with optimal N -
and ρ-powers and with the Hilbert-Schmidt norm on the traceless Bi’s.

3.2.1.1 Preliminaries on the deterministic approximation

Before stating our main technical result we introduce some additional notation. Given a non-crossing
partition π of the set [k] ∶= {1, . . . , k } arranged in cyclic order, the partial trace pTrπ of an ordered
set of matrices B1, . . . ,Bk−1 is defined as

pTrπ(B1, . . . ,Bk−1) ∶= ∏
S∈π∖B(k)

⟨∏
j∈S

Bj⟩ ∏
j∈B(k)∖{k }

Bj , (3.2.9)

with B(k) ∈ π denoting the unique block containing k. Then, for generic Bi’s, the deterministic
approximation of (3.2.8) is given by [170, Theorem 3.4]:

M[1,k] =M(z1,B1, . . . ,Bk−1, zk) ∶= ∑
π∈NC([k])

pTrK(π)(B1, . . . ,Bk−1)∏
S∈π

m○[S], (3.2.10)

where NC([k]) denotes the non-crossing partitions of the set [k], and K(π) denotes the Kreweras
complement of π (see [170, Definition 2.4] and [384]). Furthermore, for any subset S ⊂ [k] we define
m[S] ∶=msc[zS] as the iterated divided difference of msc evaluated in zS ∶= {zi ∶ i ∈ S} which can
also be written as

m[S] =msc[zS] =msc[{ zi ∶ i ∈ S }] = ∫
2

−2
ρsc(x)∏

i∈S

1
x − zi

dx. (3.2.11)

We denote by m○[⋅] the free-cumulant transform of m[⋅] which is uniquely defined implicitly by the
relation

m[S] = ∑
π∈NC(S)

∏
S′∈π

m○[S
′
], ∀S ⊂ [k], (3.2.12)

e.g. m○[i, j] =m[{ i, j }] −m[{ i}]m[{ j }]. For example, for k = 2 we have

M(z1,B1, z2) = ⟨B1⟩(msc[z1, z2] −msc(z1)msc(z2)) +B1msc(z1)msc(z2)

=
⟨B1⟩

2π ∫
2

−2

√
4 − x2

(x − z1)(x − z2)
dx + (B1 − ⟨B1⟩)msc(z1)msc(z2).

(3.2.13)

The main objects of interest within this section are general resolvent chains

G1B1G2B2 . . .Bk−1Gk (3.2.14)

where Gi ∈ {Gi, ImGi}, and we denote by Ik ⊂ [k] the set of the indices for which Gi = ImGi. Note
that some resolvents may be replaced with their imaginary parts. In order to generalize (3.2.10), for
any subset Ik ⊂ [k] we define5

M[1,k] =M(z1,B1, . . . ,Bk−1, zk;Ik) ∶= ∑
π∈NC([k])

pTrK(π)(B1, . . . ,Bk−1)∏
S∈π

m(Ik)
○ [S], (3.2.15)

with m(Ik)
○ [S] implicitly defined as in (3.2.12) with m[S] replaced with m(Ik)[S], where

m(Ik)[S] =m(Ik)[{ zi ∶ i ∈ S }] ∶= ∫
2

−2
ρsc(x)

⎛

⎝
∏

i∈Ik∩S
Im 1

x − zi

⎞

⎠

⎛

⎝
∏

i∈S∖Ik

1
x − zi

⎞

⎠
dx. (3.2.16)

We now give some bounds on the deterministic approximations in the case where all matrices in
(3.2.15) are traceless, ⟨Bi⟩ = 0.6 The proof of the following lemma is presented in Appendix 3.A.

5Calligraphic letters like G,M indicate that we may consider ImG instead of some resolvents G in the chain.
6From now on we use the convention that traceless matrices are denoted by A, while general deterministic matrices

are denoted by B.
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3. Eigenstate thermalisation at the edge for Wigner matrices

Lemma 3.2.3 (M -bounds). Fix k ≥ 1. Consider spectral parameters z1, ..., zk+1 ∈ C ∖R and
traceless matrices A1, ...,Ak ∈CN×N . Moreover, let

ηj ∶= ∣Im zj ∣ , mj ∶=msc(zj) , ρj ∶=
1
π
∣Immj ∣ .

(a) Denoting ℓ ∶=minj∈[k] [ηj(ρj + 1(j ∉ Ik))] and assuming Nℓ ≥ 1, we have the average bound

∣⟨M(z1,A1, ...,Ak−1, zk;Ik)Ak⟩∣ ≲
⎛

⎝
∏
i∈Ik

ρi
⎞

⎠
Nk/2−1

∏
j∈[k]
⟨∣Aj ∣

2
⟩
1/2 . (3.2.17)

(b) Denoting ℓ ∶= minj∈[k+1] [ηj(ρj + 1(j ∉ Ik+1))] and assuming Nℓ ≥ 1, we have the isotropic
bound7

∣⟨x,M(z1,A1, ...,Ak, zk+1;Ik+1)y⟩∣ ≲
⎛

⎝
∏
i∈Ik+1

ρi
⎞

⎠
Nk/2

∏
j∈[k]
⟨∣Aj ∣

2
⟩
1/2 . (3.2.18)

for arbitrary bounded deterministic vectors ∥x∥ , ∥y∥ ≲ 1.

Note that (3.2.17) already reflects the different aspects of our local law: it correctly accounts for the
ρ-powers for each ImG, it involves the Hilbert-Schmidt norm of the observables and it is not hard
to see that the N -power is also optimal. Note that the isotropic bound (3.2.18) is stated separately
for convenience, although it will be a straightforward consequence of the average bound (3.2.17).

3.2.1.2 Multi-resolvent local law

As our main input for Theorem 3.2.2, we will prove the following multi-resolvent local law, optimally
accounting for the decay of the density at the edge.

Theorem 3.2.4 (Multi-resolvent local law with optimal edge dependence). Let W be a Wigner
matrix satisfying Assumption 3.2.1, and fix k ∈N. Consider spectral parameters z1, . . . , zk+1 ∈ C∖R,
the associated resolvents Gj = G(zj) ∶= (W − zj)−1 with Gj ∈ {Gj , ImGj}, and traceless matrices
A1, . . . ,Ak ∈CN×N . Finally, let

ηj ∶= ∣Im zj ∣ , mj ∶=msc(zj) , ρj ∶=
1
π
∣Immj ∣ , j ∈ [k + 1]. (3.2.19)

(a) Denote by Ik the set of indices j ∈ [k] where Gj = ImGj . Then, setting

ℓ ∶= min
j∈[k]
[ηj(ρj + 1(j ∉ Ik))],

we have the average law

∣⟨G1A1G2 . . .GkAk⟩ − ⟨M[1,k]Ak⟩∣ ≺

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝
∏
i∈Ik

ρi
⎞

⎠
∧max
i∈[k]

√
ρi

⎤
⎥
⎥
⎥
⎥
⎦

Nk/2−1
√
Nℓ

∏
j∈[k]
⟨∣Aj ∣

2
⟩
1/2 , (3.2.20)

uniformly in spectral parameters satisfying minjNηjρj ≥ N ϵ and maxj ∣zj ∣ ≤ N1/ϵ for some
ϵ > 0.

7The isotropic bound for ∣⟨x,My⟩∣ in (3.2.18) is the same as the norm bound ∥M∥.
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3.2. Main results

(b) Denote by Ik+1 the set of indices j ∈ [k + 1] where Gj = ImGj . Then, setting

ℓ ∶= min
j∈[k+1]

[ηj(ρj + 1(j ∉ Ik+1))],

we have the isotropic law

∣⟨x,G1A1G2 . . .AkGk+1y⟩ − ⟨x,M[1,k+1]y⟩∣ ≺

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝
∏
i∈Ik+1

ρi
⎞

⎠
∧ max
i∈[k+1]

√
ρi

⎤
⎥
⎥
⎥
⎥
⎦

Nk/2
√
Nℓ

∏
j∈[k]
⟨∣Aj ∣

2
⟩
1/2 ,

(3.2.21)
uniformly in bounded deterministic vectors ∥x∥ , ∥y∥ ≲ 1 and spectral parameters satisfying
minjNηjρj ≥ N ϵ and maxj ∣zj ∣ ≤ N1/ϵ for some ϵ > 0.

Observe that, in the regime Nℓ ≫ 1, the error terms in (3.2.20) and (3.2.21) are smaller by an
additional small (Nℓ)−1/2-factor compared to the size of the leading terms in (3.2.17) and (3.2.18),
respectively.

Remark 3.2.5 (Optimality). The bounds (3.2.20) and (3.2.21) are optimal (up to the N ξ factor
hidden in the ≺-relation) in the class of bounds that involve only the parameters N , ηi, ρi and the
Hilbert-Schmidt norm of Ai’s. This fact can be seen by computing the variance of the left hand
sides in the case when W is a GUE matrix. The resolvents can be written out by spectral theorem,
similarly to (3.2.5), and the variance with respect to the eigenvectors can be explicitly computed
by Weingarten calculus, while the variance with respect to the eigenvalues (that are independent
of the eigenvectors) can be identified from well-known central limit theorems for linear statistics of
eigenvalues. For example, for k = 2, A1 = A2 = A, z1 = z2 = z and Ik = ∅, in this way we obtain

√

E ∣⟨GAGA⟩ −m2⟨A2⟩∣
2
∼

1
Nη
⟨A2
⟩ +

√
ρ

N
√
η
⟨A4
⟩
1/2. (3.2.22)

After estimating ⟨A4⟩ ≤ N⟨A2⟩2, which may saturate for certain A, we see the optimality of (3.2.20)
for this case. The general case is a similar, albeit somewhat tedious calculation.

Remark 3.2.6 (Interpretations). We have two further comments on Theorem 3.2.4.

(i) For Ik = ∅ and Ik+1 = ∅ both bounds, (3.2.20) and (3.2.21), have already been proven in
[169, Theorem 2.2 and Corollary 2.4]. In the complementary cases Ik ≠ ∅ and Ik+1 ≠ ∅,
we point out that the minimum [... ∧ ...] in (3.2.20) and (3.2.21) is realized by the product
∏i∈I ρi since ρi ≲ 1. In particular, as a rule of thumb, every index j for which Gj = ImGj ,
decreases both the size of the deterministic approximation (3.2.17)–(3.2.18) and the size of
the error (3.2.20)–(3.2.21) by a factor ρj , with ρj ≤ 1, compared to the case when Gj = Gj .
An exception to this rule is (3.2.20) for k = 1; here the bounds for ⟨GA⟩ and ⟨ImGA⟩ are
identical.

(ii) The estimates in Theorem 3.2.4 remain valid if we replace

⟨M[1,k]Ak⟩Ð→
⎛

⎝
∏
i∈Ik

Immi
⎞

⎠

⎛

⎝
∏
i∉Ik

mi
⎞

⎠
⟨A1...Ak⟩

⟨x,M[1,k+1]y⟩Ð→
⎛

⎝
∏
i∈Ik+1

Immi
⎞

⎠

⎛

⎝
∏
i∉Ik+1

mi
⎞

⎠
⟨x,A1...Aky⟩

(3.2.23)

in (3.2.20) and (3.2.21), respectively, i.e., if we consider only the trivial partition into singletons
π in the definition (3.2.15) of M[1,k]. This is simply due to the fact that all other summands
in (3.2.15) are explicitly smaller than the error terms in (3.2.20)–(3.2.21). A proof of this fact
is given in Appendix 3.A.
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3. Eigenstate thermalisation at the edge for Wigner matrices

Remark 3.2.7 (Generalisations). We mention a few direct generalisations of Theorem 3.2.4 whose
proofs are omitted as they are straightforward.

(i) In Theorem 3.2.4 each G can be replaced by a product of G’s and an individual G may also
stand for ∣G∣, not only for G or ImG (see [168, Lemma 3.2], [169, Lemma 3.1], and also
Lemma 3.4.5 below). We refrain from stating these results explicitly as they are easily obtained
using appropriate integral representations of general products of such G’s in terms of a single
ImG.

(ii) We stated the multi–resolvent local laws in Theorem 3.2.4 only for Gj ∈ {Gj , ImGj},
however, inspecting the proof, one can easily see that it also leads to a local law for
Gj ∈ {Gj , ImGj ,G

t
j , ImGt

j}, where Gt stands for the transpose of G. In particular, this
implies that the ETH in Theorem 3.2.2 can also be extended to

max
i,j∈[N]

∣⟨ui,Auj⟩ − ⟨A⟩⟨ui,uj⟩∣ ≺
⟨∣Å∣2⟩1/2
√
N

. (3.2.24)

Furthermore, setting σ ∶= Eχ2
od, for ∣σ∣ < 1 we have (see [165, Theorem 2.3])

∣⟨ui,uj⟩∣ ≺
Cσ
√
N
.

In two extreme cases σ = ±1, we have ∣⟨ui,uj⟩∣ = δi,j if σ = 1 and ∣⟨ui,uj⟩∣ = δi,N−j+1 if σ = −1
and E(W 2

aa) = 0 (see [165, Remark 2.4]). We remark that here ui denotes the eigenvector
corresponding to the eigenvalue λi, with the λi’s labeled in increasing order.

3.2.2 Proof of Theorem 3.2.2

Fix ϵ > 0, pick E ∈ [−2,2] and define η(E) implicitly by

Nη(E)ρ(E + iη(E)) = N ϵ.

Let A be a traceless matrix ⟨A⟩ = 0, then by spectral decomposition (3.2.5) and the well-known
eigenvalue rigidity8 (see, e.g., [249]) it is easy to see that (see [165, Lemma 1] for more details)

max
i,j∈[N]

N ∣⟨ui,Auj⟩∣
2
≺ N2ϵ sup

E1,E2∈[−2,2]

∣⟨ImG(E1 + iη(E1))AImG(E2 + iη(E2))A
∗⟩∣

ρ(E1 + iη(E1))ρ(E2 + iη(E2))
≺ N2ϵ

⟨∣A∣2⟩ .

We point out that in the last inequality we used (3.2.20) for k = 2 and I2 = [2]:

∣⟨ImG1AImG2A
∗
⟩ − Imm1Imm2⟨∣A∣

2
⟩∣ ≺

ρ1ρ2
√
Nℓ
⟨∣A∣2⟩ .

The fact that this bound holds simultaneously for all E1 = Re z1 ∈ [−2,2] and E2 = Re z2 ∈ [−2,2]
follows by a simple grid argument together with the Lipschitz regularity of the resolvent (with
Lipschitz constant of order N at spectral parameters with imaginary part bigger than 1/N). This
completes the proof of Theorem 3.2.2.

The rest of the paper is devoted to the proof of the multi-resolvent local law, Theorem 3.2.4.
8Rigidity asserts that the increasingly ordered eigenvalues λi are very close to the i-th N -quantile γi of the

semicircle density ρsc in the sense ∣λi − γi∣ ≺ N
−2/3
[i ∧ (N + 1 − i)]−1/3, i.e. each eigenvalue is strongly concentrated

around the corresponding quantile essentially on the scale of the local eigenvalue spacing.
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3.3 Multi–resolvent local law: Proof of Theorem 3.2.4
In this section we prove the multi-resolvent local laws in Theorem 3.2.4 via the following three steps:

1. Global law. Prove a multi-resolvent global law, i.e. for spectral parameters “far away" from
the spectrum, minj dist(zj , [−2,2]) ≥ δ for some small δ > 0 (see Proposition 3.3.1).

2. Characteristic flow. Propagate the global law to a local law by considering the evolution
of the Wigner matrix W along the Ornstein-Uhlenbeck flow, thereby introducing an almost
order one Gaussian component (see Proposition 3.3.3). The spectral parameters evolve from
the global regime to the local regime according to the characteristic (semicircular) flow. The
simultaneous effect of these two evolutions is a key cancellation of two large terms.

3. Green function comparison. Remove the Gaussian component by a Green function comparison
(GFT) argument (see Proposition 3.3.4).

As the first step, we have the following global law. Its proof, which is analogous to the proofs
presented in [168, Appendix B] and [169, Appendix A], is given in Appendix 3.A.2 for completeness.
We point out that all these proofs do not use the system of master inequalities and the bootstrapped
error analysis that form the technical backbone of [168, 169], they use simple norm bounds on the
resolvents. In particular, Proposition 3.3.1 holds for general deterministic matrices since the traceless
condition plays no role in this case.

Proposition 3.3.1 (Step 1: Global law). Let W be a Wigner matrix satisfying Assumption 3.2.1, and
fix any k ∈N and δ > 0. Consider spectral parameters z1, ..., zk+1 ∈ C ∖R, the associated resolvents
Gj = G(zj) ∶= (W − zj)

−1, with Gj ∈ {Gj , ImGj}, and deterministic matrices B1, ...,Bk ∈ CN×N .
Denote ηi ∶= ∣Im zi∣ and ρi ∶= π−1∣Immsc(zi)∣. Then, uniformly in deterministic matrices Bi and in
spectral parameters satisfying dist(zj , [−2,2]) ≥ δ, the following holds.

(a) Let Ik be the set of indices j ∈ [k] where Gj = ImGj , and define ℓ ∶=minj∈[k] [ηj(ρj + 1(j ∉
Ik))]. Then we have the averaged bound

∣⟨G1B1...GkBk⟩ − ⟨M[1,k]Bk⟩∣ ≺

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝
∏
i∈Ik

ρi
⎞

⎠
∧max
i∈[k]

√
ρi

⎤
⎥
⎥
⎥
⎥
⎦

Nk/2−1
√
Nℓ

∏
j∈[k]
⟨∣Bj ∣

2
⟩

1
2 . (3.3.1)

(b) Let Ik+1 be the set of indices j ∈ [k + 1] where Gj = ImGj , and define ℓ ∶=minj∈[k+1] [ηj(ρj +

1(j ∉ Ik+1))]. Then, for deterministic unit vectors x,y, we have the isotropic bound

∣(G1B1...BkGk+1)xy − (M[1,k+1])xy ∣ ≺

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝
∏
i∈Ik+1

ρi
⎞

⎠
∧ max
i∈[k+1]

√
ρi

⎤
⎥
⎥
⎥
⎥
⎦

Nk/2
√
Nℓ
∏
j∈[k]
⟨∣Bj ∣

2
⟩

1
2 . (3.3.2)

In the next Proposition 3.3.3, using Proposition 3.3.1 as an input, we derive Theorem 3.2.4 for
Wigner matrices which have an order one Gaussian component. For this purpose we consider the
evolution of the Wigner matrix W along the Ornstein-Uhlenbeck flow

dWt = −
1
2
Wtdt +

dBt
√
N
, W0 =W, (3.3.3)

with Bt being real symmetric or complex Hermitian Brownian motion9 with entries having t times
the same first two moments of W , and define its resolvent Gt(z) ∶= (Wt − z)

−1 with z ∈ C ∖R.
9Strictly speaking, we use this Brownian motion only when σ ∶= Eχ2

od is real and Eχ2
d = 1 + σ, otherwise we need

a small modification, see later in Section 3.4.
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Figure 3.3.1: Several trajectories for solutions of (3.3.5) are depicted. We chose ten reference times,
indicated by dots, showing that the rate of change along the flow strongly depends on ρ. The solid
black line is the graph of E ↦ η(E) with η(E) implicitly defined via η(E)ρ(E + iη(E)) = const. for
a small positive constant. A similar picture also appeared in [105, Figure 1].

Even if not stated explicitly we will always consider this flow only for short times, i.e. for 0 ≤ t ≤ T ,
where the maximal time T is smaller than γ, for some small constant γ > 0. Note that along the
flow (3.3.3) the first two moments of Wt are preserved, and so the self-consistent density of states of
Wt is unchanged; it remains the standard semicircle law. We now want to compute the deterministic
approximation of product of resolvents and deterministic matrices with trace zero,

Gt(z1)A1Gt(z2)A2Gt(z3)A3 . . . , ⟨Ai⟩ = 0, (3.3.4)

and have a very precise estimate of the error term.

In fact, we also let the spectral parameters evolve with time with a carefully chosen equation that
conveniently cancels some leading error terms in the time evolution of (3.3.4). The corresponding
equation is the characteristic equation for the semicircular flow, i.e. given by the first order ODE
(see Figure 3.3.1):

∂tzi,t = −m(zi,t) −
zi,t

2
. (3.3.5)

Define ηi,t ∶= ∣Im zi,t∣ and ρi,t ∶= π−1∣Imm(zi,t)∣. Note that along the characteristics we have

∂tm(zi,t) = −∂zm(zi,t) (m(zi,t) +
zi,t

2
) = −∂zm(zi,t)(−

1
2m(zi,t)

+
m(zi,t)

2
) =

m(zi,t)

2
, (3.3.6)

where in the last two equalities we used the defining equation m(z)2 + zm(z) + 1 = 0 of the Stieltjes
transform of the semicircular law. In particular, taking the imaginary part of (3.3.6) we get ρi,s ∼ ρi,t
for any 0 ≤ s ≤ t, while the behavior of the ηi,t depends on the regime: in the bulk ηi,t decreases
linearly in time with a speed of order one, close to the edge ηi,t decreases still linearly, but with
a speed depending on ρ, i.e. it is slower near the edges. By standard ODE theory we obtain the
following lemma:

Lemma 3.3.2. Fix an N–independent γ > 0, fix 0 < T < γ, and pick z ∈ C∖R. Then there exists an
initial condition z0 such that the solution zt of (3.3.5) with this initial condition z0 satisfies zT = z.
Furthermore, there exists a constant C > 0 such that dist(z0, [−2,2]) ≥ CT .

The spectral parameters evolving by (3.3.3) will have the property that

Gt(z1,t)A1 . . .Ak−1Gt(zk,t) −M[1,k],t ≈ G0(z1,0)A1 . . .Ak−1G0(zk,0) −M[1,k],0, (3.3.7)

with M[1,k],t ∶=M(z1,t,A1, . . . ,Ak−1, zk,t), for any 0 ≤ t ≤ T . Note that the deterministic approxi-
mation M[1,k],t depends on time only through the time dependence of the spectral parameters. The
deterministic approximation of (3.3.4) with fixed spectral parameters is unchanged along the whole
flow (3.3.3) since the Wigner semicircular density is preserved under the OU flow (3.3.3).
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3.3. Multi–resolvent local law: Proof of Theorem 3.2.4

Proposition 3.3.3 (Step 2: Characteristic flow). Fix ϵ, γ > 0, 0 ≤ T ≤ γ, K ∈ N. Consider
z1,0, . . . , zK+1,0 ∈ C ∖R as initial conditions of the solution zj,t of (3.3.5) for 0 ≤ t ≤ T , define
Gj,t ∶= Gt(zj,t) and let Gj,t ∈ {Gj,t, ImGj,t}. Let ∥x∥ , ∥y∥ ≲ 1 be bounded deterministic vectors.

(a) For any k ≤ K let Ik be the set of indices j ∈ [k] where Gj,t = ImGj,t, and define ℓt ∶=
minj∈[k] [ηj,t(ρj,t + 1(j ∉ Ik))], the time dependent analogue10 of ℓ. Then, assuming that

∣⟨G1,0A1...Gk,0Ak⟩ − ⟨M[1,k],0Ak⟩∣ ≺

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝
∏
i∈Ik

ρi,0
⎞

⎠
∧max
i∈[k]

√
ρi,0

⎤
⎥
⎥
⎥
⎥
⎦

Nk/2−1
√
Nℓ0

∏
j∈[k]
⟨∣Aj ∣

2
⟩
1/2 (3.3.8)

holds uniformly for any k ≤K, any choice of A1, . . . ,Ak traceless deterministic matrices and
any choice of zi,0’s such that Nηi,0ρi,0 ≥ N ϵ and ∣zi,0∣ ≤ N1/ϵ, then we have

∣⟨G1,TA1...Gk,TAk⟩ − ⟨M[1,k],TAk⟩∣ ≺

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝
∏
i∈Ik

ρi,T
⎞

⎠
∧max
i∈[k]

√
ρi,T

⎤
⎥
⎥
⎥
⎥
⎦

Nk/2−1
√
NℓT

∏
j∈[k]
⟨∣Aj ∣

2
⟩
1/2 ,

(3.3.9)
for any k ≤K, again uniformly in traceless matrices Ai and in spectral parameters satisfying
Nηi,Tρi,T ≥ N

ϵ, ∣zi,T ∣ ≤ N1/ϵ.

(b) Let Ik+1 be the set of indices j ∈ [k+1] where Gj,t = ImGj,t, and define ℓj,t ∶=minj∈[k+1] [ηj,t(ρj,t+

1(j ∉ Ik+1))]. Then, assuming that

∣⟨x,G1,0A1...AkGk+1,0y⟩ − ⟨x,M[1,k+1],0y⟩∣ ≺

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝
∏
i∈Ik+1

ρi,0
⎞

⎠
∧ max
i∈[k+1]

√
ρi,0

⎤
⎥
⎥
⎥
⎥
⎦

Nk/2
√
Nℓ0

∏
j∈[k]
⟨∣Aj ∣

2
⟩
1/2

(3.3.10)
holds for any k ≤ K, uniformly in A’s and in the spectral parameters as in part (a), and in
deterministic vectors, then we have

∣⟨x,G1,TA1...AkGk+1,Ty⟩ − ⟨x,M[1,k+1],Ty⟩∣ ≺

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝
∏
i∈Ik+1

ρi,T
⎞

⎠
∧ max
i∈[k+1]

√
ρi,T

⎤
⎥
⎥
⎥
⎥
⎦

Nk/2
√
NℓT

∏
j∈[k]
⟨∣Aj ∣

2
⟩
1/2 ,

(3.3.11)
for any k ≤ K, again uniformly in A’s and in spectral parameters as in part (a), and in
deterministic vectors x,y.

Proposition 3.3.3 is proven in Section 3.4. As the third and final step, we show that the additional
Gaussian component introduced in Proposition 3.3.3 can be removed using a Green function
comparison (GFT) argument. The proof of this proposition is presented in Section 3.5.

Proposition 3.3.4 (Step 3: Green function comparison). Let H(v) and H(w) be two N ×N Wigner
matrices with matrix elements given by the random variables vab and wab, respectively, both satisfying
Assumption 3.2.1 and having matching moments up to third order,11 i.e.

E v̄uabv
s−u
ab = E w̄uabw

s−u
ab , s ∈ {0,1,2,3} , u ∈ {0, ..., s} . (3.3.12)

Fix K ∈N and consider spectral parameters z1, ..., zK+1 ∈ C ∖R satisfying minjNηjρj ≥ N ϵ and
maxj ∣zj ∣ ≤ N1/ϵ for some ϵ > 0 and the associated resolvents G(#)j = G(#)(zj) ∶= (H

(#) − zj)
−1

with G(#)j ∈ {G
(#)
j , ImG

(#)
j } and # = v,w. Pick traceless matrices A1, ...,AK ∈CN×N .

Assume that, for H(v), we have the following bounds (writing Gj ≡ G(v)j for brevity).
10We point out that the index j realizing the minimum may change along the time evolution. Additionally, by

(3.3.6) and the text below it, we note that if miniNηiρi ≥ N
ϵ then miniNηi,tρi,t ≥ N

ϵ for any 0 ≤ t ≤ T .
11This condition can easily be relaxed to being matching up to an error of size N−2 as done, e.g., in [248,

Theorem 16.1].

159



3. Eigenstate thermalisation at the edge for Wigner matrices

(a) For any k ≤ K, consider any subset of cardinality k of the K + 1 spectral parameters and,
similarly, consider any subset of cardinality k of the K traceless matrices. Relabel both
of them by [k], and denote the set of indices j ∈ [k] by Ik where Gj = ImGj . Setting
ℓ ∶=minj∈[k] [ηj(ρj + 1(j ∉ Ik))] we have that

∣⟨G1A1...GkAk⟩ − ⟨M[1,k]Ak⟩∣ ≺

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝
∏
i∈Ik

ρi
⎞

⎠
∧max
i∈[k]

√
ρi

⎤
⎥
⎥
⎥
⎥
⎦

Nk/2−1
√
Nℓ

∏
j∈[k]
⟨∣Aj ∣

2
⟩
1/2 , (3.3.13)

uniformly in all choices of subsets of z’s and A’s.

(b) For any k ≤K, consider any subset of cardinality k + 1 of the K + 1 spectral parameters and,
similarly, consider any subset of cardinality k of the K traceless matrices. Relabel them by
[k+1] and [k], respectively, and denote the set of indices j ∈ [k+1] by Ik+1 where Gj = ImGj .
Setting ℓ ∶=minj∈[k+1] [ηj(ρj + 1(j ∉ Ik+1))] we have that

∣⟨x,G1A1...AkGk+1y⟩ − ⟨x,M[1,k+1]y⟩∣ ≺

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝
∏
i∈Ik+1

ρi
⎞

⎠
∧ max
i∈[k+1]

√
ρi

⎤
⎥
⎥
⎥
⎥
⎦

Nk/2
√
Nℓ

∏
j∈[k]
⟨∣Aj ∣

2
⟩
1/2 ,

(3.3.14)

uniformly in all choices of subsets of z’s and A’s as in part (a) and in bounded deterministic
vectors ∥x∥ , ∥y∥ ≲ 1.

Then, (3.3.13)–(3.3.14) also hold for the ensemble H(w), uniformly all choices of subsets of z’s and
A’s and in bounded deterministic vectors.

We are now ready to finally conclude the proof of Theorem 3.2.4. Fix T > 0, and fix z1, . . . , zk+1 ∈
C ∖R such that miniNηiρi ≥ N ϵ, and let zi,0 be the initial conditions of the characteristics (3.3.5)
chosen so that zi,T = zi (this is possible thanks to Lemma 3.3.2). Then, the assumption (3.3.8) of
Proposition 3.3.3 is satisfied for those zi,0 by Proposition 3.3.1 with δ = CT , where C > 0 is the
constant from Lemma 3.3.2. We can thus use Proposition 3.3.3 to show that (3.3.9) and (3.3.11)
hold. Finally, the Gaussian component added in Proposition 3.3.3 is removed using Proposition 3.3.4
with the aid of a complex version of the standard moment-matching lemma [248, Lemma 16.2], see
Lemma 3.A.2 in Appendix 3.A.3 for more details.

3.4 Characteristic flow: Proof of Proposition 3.3.3
In this section we present the proof of Proposition 3.3.3. The argument is structured as follows:

(i) In Section 3.4.1 we begin by proving the average part, Proposition 3.3.3 (a), in the case
when Gj,t = ImGj,t for each j ∈ [k], i.e., we prove (3.3.9) for chains containing only ImG’s.
Along the flow (3.3.3) new resolvents without imaginary part arise, so the pure ImG structure
cannot be directly maintained. However, we can use the integral representation (see, e.g. [168,
Eq. (3.14)]),

m

∏
j=1

G(zj) =
1
π
∫

R
ImG(x + iη)

m

∏
j=1

1
x − zj + sgn(Im zj)iη

dx, (3.4.1)

(that is valid for any 0 < η <minj Im zj or maxj Im zj < −η < 0) to express each G in terms of
ImG, thus the flow for purely ImG chains will be self-contained.

(ii) Afterwards, in the very short Section 3.4.2, we prove the isotropic part, Proposition 3.3.3 (b)
again first in the case when Gj,t = ImGj,t for each j ∈ [k+1]. Due to the Hilbert-Schmidt error
terms, the isotropic bound (3.3.11) will directly follow from (3.3.9) proven in Section 3.4.1.
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3.4. Characteristic flow: Proof of Proposition 3.3.3

(iii) Finally, using the integral representation (3.4.1) in the special case m = 1, we derive the general
case of mixed chains from the purely ImG’s case in Section 3.4.3.

Without loss of generality, to keep the presentation simpler, throughout this section we will assume
that σ ∶= Eχ2

od is real and Eχ2
d = 1 + σ (recall that χd, χod are the distribution of the diagonal and

off-diagonal matrix elements of W , respectively). At the end, in Section 3.4.4, we will explain how
to lift these two restrictions.

We recall our choice of the characteristics

∂tzi,t = −m(zi,t) −
zi,t

2
. (3.4.2)

Additionally, we record the following trivially checkable integration rules for any α ≥ 1:

∫

t

0

1
ηαi,s

ds ≲ logN
ηα−1
i,t ρi,t

and ∫

t

0

1
ηαs

ds ≲ logN
ηα−2
t ℓ̂t

with ηt ∶=min
i
ηi,t , ℓ̂t ∶=min

i
ηi,tρi,t .

(3.4.3)
Note that, in general, ℓ̂ differs from ℓ, introduced in Theorem 3.2.4. However, in case that every
resolvent G in a given chain is an ImG, i.e. I is the full set of indices, then it holds that ℓ̂ = ℓ.
The notation ’hat’ will be consistently used to indicate that a chain contains only ImG’s (see
(3.4.6)–(3.4.7) below).

Using the short–hand notation Gi,t ∶= (Wt − zi,t)
−1 with Wt being the solution of (3.3.3), we now

compute the derivative (recall (3.2.15))

d⟨(ImG1,tA1...ImGk,t −M(z1,t,A1, ..., zk,t; [k]))Ak⟩ = ... (3.4.4)

along the characteristics with the aid of Itô’s formula. We point out that the following derivation
of the flow holds for any deterministic matrices Ai, i.e. in this derivation we do not assume that
⟨Ai⟩ = 0. We will assume again that Ai are traceless only later starting from the beginning of
Section 3.4.1.

The evolution for (3.4.4) (see (3.4.9) below) is obtained by multilinearity from the analogous formula
for the time derivative of a resolvent chain without any imaginary parts. So first we compute

d⟨(G[1,k],t −M[1,k],t)Ak⟩ =
1
√
N

N

∑
a,b=1

∂ab⟨G[1,k],tAk⟩dBab,t +
k

2
⟨G[1,k],tAk⟩dt +

k

∑
i,j=1
i<j

⟨G[i,j],t⟩⟨G[j,i],t⟩dt

+
k

∑
i=1
⟨Gi,t −mi,t⟩⟨G

(i)
[1,k],tAk⟩dt − ∂t⟨M[1,k],tAk⟩dt +

σ

N

k

∑
i,j=1
i≤j

⟨G[i,j],tG
t
[j,i],t⟩dt ,

(3.4.5)

where ∂ab ∶= ∂wab
denotes the direction derivative in the direction wab = wab(t) ∶= (Wt)ab. Here we

introduced the notation

G[i,j],t ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Gi,tAi . . .Aj−1Gj,t if i < j

Gi,t if i = j

Gi,tAi,t . . . ImGk,tAkG1,tA1 . . .Aj−1Gj,t if i > j ,

and analogously for the deterministic approximation M[i,j],t (cf. (3.2.10)). Furthermore, we define
G
(l)
[i,j],t exactly as G[i,j],t but with the l–th factor Gl,t being substituted by G2

l,t. For the last term in
(3.4.5) we used the convention that ⟨Gt

[i,j],tG[j,i],t⟩ = ⟨G
t
i,tGi,tAi+1G[i+1,i],t⟩ for j = i.
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3. Eigenstate thermalisation at the edge for Wigner matrices

In order to write the derivative (3.4.4) in a manageable form, we need to introduce some further
short–hand notations. Set

Ĝ[î,ĵ],t ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

ImGi,tAi . . .Aj−1ImGj,t if i < j

ImGi,t if i = j

ImGi,tAi,t . . . ImGk,tAkImG1,tA1 . . .Aj−1ImGj,t if i > j,

(3.4.6)

and define Ĝ(l)[î,ĵ],t exactly as Ĝ[î,ĵ],t except the l–th factor ImGl,t is substituted with Gl,tImGl,t. Sim-

ilarly, Ĝ(l
∗)
[î,ĵ],t is defined as Ĝ[î,ĵ],t but with the l–th ImGl,t is substituted by G∗l,tImGl,t. Furthermore,

we also define

Ĝ[î,j],t ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

ImGi,tAi . . .Aj−1Gj,t if i < j

Gi,t if i = j

ImGi,tAi,t . . . ImGk,tAkImG1,tA1 . . .Aj−1Gj,t if i > j;
(3.4.7)

note the absent hat on the j index indicates that the last resolvent Gj,t is without imaginary part. We
also define Ĝ[i∗,ĵ],t replacing ImGi,t with G∗i,t in (3.4.6) and similarly Ĝ[i∗,j],t is defined by replacing
ImGi,t with G∗i,t and ImGj,t with Gj,t in (3.4.6). In particular, the ‘decorations’ of i and j indicate,
whether Gi,t and Gj,t are really taken as plain resolvents (no decoration) or as adjoints (star) or with
imaginary part (hat). We point out that throughout this entire section ’hat’ on G indicates that
the chain contains only ImGi unless specified as in (3.4.7). Finally, we use similar notations for the
corresponding deterministic approximation M̂ [i#,j#],t whose ’undecorated’ version was defined in
(3.2.10). Here # indicates one of the possible ‘decorations’, i.e. star, hat or no decoration and the
corresponding change entails modifying the factor (x− zi)−1 in (3.2.11) to (x− z̄i)−1 in case of star,
and to Im (x − z̄i)−1 in case of hat (as in (3.2.15)–(3.2.16)).

The time derivative of the deterministic term in (3.4.4) is obtained by the following lemma, the proof
of which is given in Appendix 3.A.

Lemma 3.4.1. For any k ≥ 1 we have

∂t⟨M̂ [1̂,k̂],tAk⟩ =
k

2
⟨M̂ [1̂,k̂],tAk⟩ +

k

∑
i,j=1
i<j

⟨M̂ [î,j],t⟩⟨M̂ [ĵ,i],t⟩ +
k

∑
i,j=1
i<j

⟨M̂ [i∗,ĵ],t⟩⟨M̂ [j∗,î],t⟩ (3.4.8)

+
k

∑
i,j=1
i<j

⟨M̂ [î,ĵ],t⟩⟨M̂ [j∗,i],t⟩ +
k

∑
i,j=1
i<j

⟨M̂ [i∗,j],t⟩⟨M̂ [ĵ,î],t⟩.

Hence, by Itô’s formula, for any k ≥ 1, the evolution of Ĝ[1̂,k̂],t is given by (for brevity we omit the
dt differentials)

d⟨(Ĝ[1̂,k̂],t − M̂ [1̂,k̂],t)Ak⟩

=
1
√
N

N

∑
a,b=1

∂ab⟨Ĝ[1̂,k̂],tAk⟩dBab +
k

2
⟨(Ĝ[1̂,k̂],t − M̂ [1̂,k̂],t)Ak⟩ +Ω1 +Ω2 +Ω3 +Ω4 +Ωσ

+
k

∑
i=1
⟨Gi,t −mi,t⟩⟨Ĝ

(i)
[1̂,k̂],tAk⟩ +

k

∑
i=1
⟨G∗i,t −mi,t⟩⟨Ĝ

(i∗)
[1̂,k̂],tAk⟩ + ⟨Ĝ[1̂,k̂],tAk⟩

k

∑
i=1

⟨ImGi,t − Immi,t⟩

Im zi,t
,

(3.4.9)
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3.4. Characteristic flow: Proof of Proposition 3.3.3

where

Ω1 ∶ =
k

∑
i,j=1

i<j

[⟨Ĝ
[î,j],t − M̂ [î,j],t⟩⟨M̂ [ĵ,i],t⟩ + ⟨M̂ [î,j],t⟩⟨Ĝ[ĵ,i],t − M̂ [ĵ,i],t⟩ + ⟨Ĝ[î,j],t − M̂ [î,j],t⟩⟨Ĝ[ĵ,i],t − M̂ [ĵ,i],t⟩] ,

Ω2 ∶ =
k

∑
i,j=1

i<j

[⟨Ĝ
[i∗,ĵ],t − M̂ [i∗,ĵ],t⟩⟨M̂ [j∗,î],t⟩ + ⟨M̂ [i∗,ĵ],t⟩⟨Ĝ[j∗,î],t − M̂ [j∗,î],t⟩ + ⟨Ĝ[i∗,ĵ],t − M̂ [i∗,ĵ],t⟩⟨Ĝ[j∗,î],t − M̂ [j∗,î],t⟩] ,

Ω3 ∶ =
k

∑
i,j=1

i<j

[⟨Ĝ
[î,ĵ],t − M̂ [î,ĵ],t⟩⟨M̂ [j∗,i],t⟩ + ⟨M̂ [î,ĵ],t⟩⟨Ĝ[j∗,i],t − M̂ [j∗,i],t⟩ + ⟨Ĝ[î,ĵ],t − M̂ [î,ĵ],t⟩⟨Ĝ[j∗,i],t − M̂ [j∗,i],t⟩] ,

Ω4 ∶ =
k

∑
i,j=1

i<j

[⟨Ĝ[i∗,j],t − M̂ [i∗,j],t⟩⟨M̂ [ĵ,î],t⟩ + ⟨M̂ [i∗,j],t⟩⟨Ĝ[ĵ,î],t − M̂ [ĵ,î],t⟩ + ⟨Ĝ[i∗,j],t − M̂ [i∗,j],t⟩⟨Ĝ[ĵ,î],t − M̂ [ĵ,î],t] ,

Ωσ ∶ =
σ

N

k

∑
i,j=1

i≤j

[⟨G
[î,j],tG

t
[ĵ,i],t

⟩ + ⟨G
[i∗,ĵ],tG

t
[j∗,î],t

⟩ + ⟨G
[î,ĵ],tG

t
[j∗,i],t⟩ + ⟨G[i∗,j],tG

t
[ĵ,î],t

⟩] .

(3.4.10)

Observe that the flow (3.4.9) for imaginary parts ImG contains much more terms compared to a
flow for plain resolvents G (see (3.4.5)). This is a simple consequence of the fact that each time an
ImG is differentiated it creates two terms, i.e. ∂abImG = G∆abImG+ ImG∆abG∗, with ∆ab being
a matrix consisting of all zeroes except for the (a, b)–entry which is equal to one. Furthermore, the
novel last term in (3.4.9) comes from applying a Ward identity, GG∗ = ImG/Im z. We now write
out the random part d⟨Ĝ[1̂,k̂],tAk⟩ of the flow (3.4.9) for the simpler cases k = 1 and k = 2 to show
its main structure. Here we used that M̂ 1̂,t = Imm1,t with mi ∶=m(zi,t).

Example 3.4.2. For k = 1 we have the evolution

d⟨ImGA⟩ =
N

∑
a,b=1

∂ab⟨ImGA⟩
dBab
√
N
+ (

1
2
+
⟨ImG − Imm⟩

Im zt
) ⟨ImGA⟩ + ⟨G −m⟩⟨ImGAG⟩

+ ⟨G −m⟩⟨ImGAG∗⟩ +
σ

N
⟨ImGAGGt

⟩ +
σ

N
⟨(G∗)tG∗AImGA⟩ +

σ

N
⟨ImGtG∗AG⟩ ,

(3.4.11)
and for k = 2 we get (for keeping the formula somewhat short, we assume σ = 0)

d⟨ImG1A1ImG2A2⟩ =
N

∑
a,b=1

∂ab⟨ImG1A1ImG2A2⟩
dBab
√
N
+ ⟨ImG1A1ImG2A2⟩

+ (
⟨ImG1 − Imm1⟩

Im z1,t
+
⟨ImG2 − Imm2⟩

Im z2,t
) ⟨ImG1A1ImG2A2⟩ + ⟨G

∗
2A2G1⟩⟨ImG1A1ImG2⟩

+ ⟨G∗1A1G2⟩⟨ImG2A2ImG1⟩ + ⟨ImG1A1G2⟩⟨ImG2A2G1⟩ + ⟨G
∗
2A2ImG1⟩⟨G

∗
1A1ImG2⟩

+ ⟨G1 −m1⟩⟨ImG1A1ImG2A2G1⟩ + ⟨G2 −m2⟩⟨ImG2A2ImG1A1G2⟩

+ ⟨G∗1 −m1⟩⟨ImG1A1ImG2A2G
∗
1⟩ + ⟨G

∗
2 −m2⟩⟨ImG2A2ImG1A1G

∗
2⟩.

(3.4.12)
Note that (3.4.11)–(3.4.12) combined with (3.4.8) give (3.4.9) for the special cases k = 1,2.

3.4.1 Proof of Proposition 3.3.3 (a) for pure Im G-chains
The goal of this section is to prove

⟨Ĝ[1̂,k̂],TAk⟩− ⟨M̂ [1̂,k̂],TAk⟩ = ⟨Ĝ[1̂,k̂],0Ak⟩− ⟨M̂ [1̂,k̂],0Ak⟩+O≺
⎛

⎝
( ∏
i∈[k]

ρi,T )
Nk/2−1
√
NℓT

∏
j∈[k]
⟨∣Aj ∣

2
⟩
1/2⎞

⎠
,

(3.4.13)
uniformly in the spectrum and in the choice of traceless matrices Ai. We may assume that all the
Ai’s are Hermitian; the general case follows by multilinearity.
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3. Eigenstate thermalisation at the edge for Wigner matrices

3.4.1.1 Master inequalities

For the purpose of proving (3.4.13), recall the notation ℓ̂t =min ηi,tρi,t from (3.4.3) and define

Φ1(t) ∶=
N
√
ℓ̂t

ρt⟨∣A∣2⟩1/2
∣⟨GtA⟩∣; (3.4.14a)

and for k ≥ 2

Φk(t) ∶=

√
Nℓ̂t

Nk/2−1 (∏i∈[k] ρi,t)∏j∈[k]⟨∣Aj ∣
2⟩1/2

∣⟨(Ĝ[1̂,k̂],t − M̂ [1̂,k̂],t)Ak⟩∣ . (3.4.14b)

Note that we defined Φ1(t) in a slightly different way than Φk(t) for k ≥ 2, this is a consequence of
the fact that for k = 1 we have ∣⟨GA⟩∣ ∼ ∣⟨ImGA⟩∣, i.e. for this special case the imaginary part does
not reduce the fluctuation unlike for longer chains (see also Remark 3.2.6 (ii)). The prefactors in
(3.4.14) are chosen such that we expect Φk(t) to be an essentially order one quantity, see (3.4.13).
The goal is to show exactly this, i.e. that Φk(t) ≺ 1, uniformly in time t ≤ T for any k ≥ 1. Note
that by (3.3.8) it follows

Φk(0) ≺ 1, (3.4.15)

for any k ≥ 1.

To prove Φk(t) ≺ 1, we will derive a series of master inequalities for these quantities with the following
structure. We assume that

Φk(t) ≺ ϕk (3.4.16)

holds for some deterministic control parameter ϕk, uniformly in 0 ≤ t ≤ T , in spectral parameters
satisfying Nℓ̂t ≥ N ϵ and in traceless deterministic matrices Aj (we stress that ϕk’s depend neither
on time, nor on the spectral parameters zi,t, nor on the matrices Aj). Given this input, we will then
show that Φk(t)’s also satisfy a better upper bound in terms of ϕ’s. Iterating this procedure we will
arrive at the final bound Φk(t) ≺ 1. Furthermore, without loss of generality, we assume that ϕk ≥ 1.

Proposition 3.4.3 (Master inequalities). Fix k ∈N. Assume that Φl(t) ≺ ϕl for any 1 ≤ l ≤ k + 1
uniformly in t ∈ [0, T ], in spectral parameters with Nℓ̂t ≥ N ϵ and in traceless deterministic matrices
Aj . Set ϕ0 ∶= 1. Then we have the master inequalities

Φk(t) ≺ 1 + 1
(Nℓ̂T )1/4

k

∑
l=1
ϕ̃lϕ̃k−l , (3.4.17)

uniformly (in the sense explained below (3.4.16)) in t ∈ [0, T ], where we introduced the shorthand
notation

ϕ̃l ∶= ϕl + 1(l is odd)
√
ϕl+1ϕl−1 . (3.4.18)

Using the master inequalities, we conclude this section with the proof of (3.3.9) for pure ImG chains.

Proof of Proposition 3.3.3 (a) for pure ImG chains. We now consider the master inequalities (3.4.17)
for t = T , with T the time defined in the statement of Proposition 3.3.3.

We use a two-step induction. The base case consists of the cases k = 1,2:

Φ1(t) ≺ 1 + ϕ1 +
√
ϕ2

(Nℓ̂T )1/4
, Φ2(t) ≺ 1 + ϕ2

1 + ϕ2

(Nℓ̂T )1/4
, (3.4.19)

uniformly in t ∈ [0, T ].

The following abstract iteration lemma shows how to use the master inequalities for improving the
bound on Φ.
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3.4. Characteristic flow: Proof of Proposition 3.3.3

Lemma 3.4.4 (Iteration). Let X = XN(ℓ̂) be an N -dependent random variable depending also
on the parameter ℓ̂. Fix ϵ, δ > 0. Suppose that for any l ∈ N and any x > 0 the fact that X ≺ x
uniformly for ℓ̂ ≥ N−1+lϵ implies

X ≺ A +
x

B
+ x1−αCα, (3.4.20)

uniformly for ℓ̂ ≥ N−1+(l+l′)ϵ, for some constants l′ ∈N, B ≥ N δ > 0, A,C > 0, and α ∈ (0,1), and
suppose we also know that X ≺ ND uniformly12 in ℓ̂ ≥ N−1+ϵ. Then

X ≺ A +C,

uniformly for ℓ̂ ≥ N−1+(1+κl′)ϵ, for some κ = κ(α,D, δ).

Proof. The proof is a simple iteration of (3.4.20) κ times; it is immediate to see that κ depends
only on α,D, δ.

Notice that using Lemma 3.4.4 reduces the domain of parameters ηi, ρi for which the master
inequalities (3.4.17) hold, e.g. from ℓ̂t ≥ N

−1+lϵ to ℓ̂t ≥ N−1+(l+l′)ϵ, and so on. However, this can
happen only finitely many times, and so it does not affect the estimates in the sense of stochastic
domination that always allows for a small N -power tolerance that can be achieved by adjusting ϵ
small enough. For simplicity, we ignore this subtlety here, see Sections 1.4.1–1.4.3 for a more detailed
explanation.

Using iteration from Lemma 3.4.4 we obtain

Φ1(t) ≺ 1 +
√
ϕ2

(Nℓ̂T )1/4
and Φ2(t) ≺ 1 + ϕ2

1

(Nℓ̂T )1/4

uniformly in t ∈ [0, T ]. We can thus summarize what we proved so far as follows (all the following
statements hold uniformly in t ∈ [0, T ]):

⎧⎪⎪
⎨
⎪⎪⎩

Φ1(t) ≺ ϕ1

Φ2(t) ≺ ϕ2
Ô⇒

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Φ1(t) ≺ 1 +
√
ϕ2

(Nℓ̂T )1/4

Φ2(t) ≺ 1 + ϕ2
1

(Nℓ̂T )1/4
(3.4.21)

for any deterministic control parameters ϕ1, ϕ2.

Next, we use (3.4.21) again replacing the control parameters ϕ1, ϕ2 in the input with the new

ϕ′1 ∶= 1 + (ϕ2)
1/2

(Nℓ̂T )1/4
, ϕ′2 ∶= 1 + ϕ2

1

(Nℓ̂T )1/4
. (3.4.22)

We thus obtain
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Φ1(t) ≺ 1 + (ϕ′2)
1/2

(Nℓ̂T )1/4
≲ 1 + ϕ1

(Nℓ̂T )3/8

Φ2(t) ≺ 1 + (ϕ′1)
2

(Nℓ̂T )1/4
≲ 1 + ϕ2

(Nℓ̂T )3/4

(3.4.23)

where in the second inequalities we used the definitions (3.4.22).

Finally, using that Φi(t) ≺ ϕi by assumption and applying Lemma 3.4.4 once again, we obtain

Φ1(t) ≺ 1 and Φ2(t) ≺ 1 .

uniformly in t ∈ [0, T ]. To prove the same relation for Φl(t) with l ≥ 3, we use a step-two induction.
Fix an even k ≥ 4 and assume as our induction hypothesis that Φl(t) ≺ 1 for any 1 ≤ l ≤ k − 2,

12We remark that D,δ,α are N–independent constants, all the other quantities may depend on N .
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3. Eigenstate thermalisation at the edge for Wigner matrices

uniformly in t ∈ [0, T ]. We now prove that Φl(t) ≺ 1 also holds for l = k − 1, k, uniformly in t ∈ [0, T ].
From (3.4.17), using the induction hypothesis Φl(t) ≺ ϕl ∶= 1 for 1 ≤ l ≤ k − 2, we have

Φk−1(t) ≺ 1 + ϕk−1 +
√
ϕk

(Nℓ̂T )1/4
, Φk(t) ≺ 1 + ϕk + ϕk−1 +

√
ϕk

(Nℓ̂T )1/4

uniformly in t ∈ [0, T ]. Then using iteration from Lemma 3.4.4, we obtain

Φk−1(t) ≺ 1 +
√
ϕk

(Nℓ̂T )1/4
and Φk(t) ≺ 1 + ϕk−1

(Nℓ̂T )1/4

uniformly in t ∈ [0, T ]. Proceeding similarly to (3.4.21)–(3.4.23), we thus obtain

Φk−1(t) ≺ 1 and Φk(t) ≺ 1 .

This concludes the induction step and hence, by setting t = T , the proof of Proposition 3.3.3 (a)
modulo the proof of Proposition 3.4.3, which will be done next.

3.4.1.2 Proof of Proposition 3.4.3

As a preparation for the proof of the master inequalities (Proposition 3.4.3), we recall that t↦ ηi,t is
decreasing and ρi,s ∼ ρi,t for any 0 ≤ s ≤ t ≲ 1 (see (3.3.6), (3.4.2), and the paragraphs around).

Proof of Proposition 3.4.3. We begin with the case k = 1. Hence, for A1 = A, we start by rewriting
the flow (3.4.11) with ImG replaced by G = Gt(zt) (recall (3.4.14)):

d⟨GA⟩ =
N

∑
a,b=1

∂ab⟨GA⟩
dBab
√
N
+

1
2
⟨GA⟩dt + ⟨G −m⟩⟨G2A⟩dt + σ

N
⟨GAGGt

⟩dt . (3.4.24)

We point out that the additional term 1
2⟨GA⟩ in the rhs. of (3.4.24) can be incorporated into the lhs.

by differentiating e−t/2⟨GA⟩; the extra exponential factor is irrelevant since et/2 ∼ 1 for our times
t ≲ 1. Note that the same argument applies to the term

k

2
⟨(Ĝ[1̂,k̂],t − M̂ [1̂,k̂],t)Ak⟩

appearing in (3.4.9) for general k. We are now ready to obtain the master inequality for Φ1(t).

Assume Φk(t) ≺ ϕk for k = 1,2, in the sense of uniformity explained after (3.4.16) (recall that
Φ1(0) ≺ 1 by (3.4.15)), and we will prove improved bounds on Φ1(t). We first consider the third
summand in (3.4.24). Here, we use the integral representation (see also Lemma 1.5.1)

G2
(z) =

1
2πi ∮Γ

G(w)

(w − z)2
dw , (3.4.25)

which simply follows from residue calculus. Here, Γ is a tiny circle of radius ∣Im z∣/2 around z ∈ C∖R,
which ensures that ∣Imw∣∣Imm(w)∣ ∼ ∣Im z∣∣Imm(z)∣ as follows by elementary continuity properties
of m(w). In this way, applying (3.4.25) for every fixed time s ≤ t and using the fact that the
deterministic approximation of ⟨G2A⟩ vanishes as ⟨A⟩ = 0, we obtain (with the Gs ∶= Gs(zs),
ms ∶=m(zs) notation)

∣⟨G2
sA⟩∣ ≺

1
ηs

ρs⟨∣A∣
2⟩1/2

N
√
ℓ̂s

ϕ1 .

Hence, in combination with the single resolvent local law ∣⟨Gs −ms⟩∣ ≺ 1/(Nηs), we find

N
√
ℓ̂t

ρt⟨∣A∣2⟩1/2
∫

t

0
⟨Gs −ms⟩⟨G

2
sA⟩ds ≺

N
√
ℓ̂t

ρt⟨∣A∣2⟩1/2
∫

t

0
ϕ1

ρs⟨∣A∣
2⟩1/2

N2η2
s ℓ̂

1/2
s

ds ≲ ϕ1

Nℓ̂t
logN. (3.4.26)
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3.4. Characteristic flow: Proof of Proposition 3.3.3

In the last step we used the integration estimate (3.4.3) and the fact that along the characteristics
ℓ̂s ≳ ℓ̂t for 0 ≤ s ≤ t. The prefactor N

√
ℓ̂t/(ρt⟨∣A∣

2⟩1/2) is included in anticipation of the same
prefactor in the definition of Φ1 in (3.4.14).

Then we proceed with the estimate of the quadratic variation of the martingale term in (3.4.24):

1
N

N

∑
a,b=1
[∣∂ab⟨GsA⟩∣

2
+ σ∂ab⟨GsA⟩∂ba⟨GsA⟩]dt ≲

1
N3

N

∑
a,b=1
∣(GsAGs)ab∣

2dt

=
1
N2 ⟨GsAGsG

∗
sAG

∗
s ⟩dt =

1
N2η2

t

⟨ImGsAImGsA⟩dt,

where we used that d[Bab,Bcd] = δacδbd + σδadδbc and the Ward identity GG∗ = ImG
Im z . Then, we

write

⟨ImGsAImGsA⟩ = ⟨M̂ [1̂,2̂],sA⟩ + (⟨ImGsAImGsA⟩ − ⟨M̂ [1̂,2̂],sA⟩) ≺ ρ
2
s⟨∣A∣

2
⟩ +

ρ2
s⟨∣A∣

2⟩
√
Nℓ̂s

ϕ2 .

Here we used that the deterministic approximation ⟨M̂ [1̂,2̂],sA⟩ is bounded by ρ2
s⟨∣A∣

2⟩ and we used
(3.4.14) together with Φ2(s) ≺ ϕ2. For the time integration of the quadratic variation term, with
the appropriate prefactor, we obtain

N
√
ℓ̂t

ρt⟨∣A∣2⟩1/2
(∫

t

0

⟨ImGsAImGsA⟩

N2η2
s

ds)
1/2

≺
N
√
ℓ̂t

ρt⟨∣A∣2⟩1/2
(∫

t

0

ρ2
s⟨∣A∣

2⟩

N2η2
s

(1 + ϕ2

(Nℓ̂s)1/2
) ds)

1/2
≲ 1 +

√
ϕ2

(Nℓ̂t)1/4
.

(3.4.27)

Here in the last inequality we used that along the characteristics ℓ̂s ≳ ℓ̂t for 0 ≤ s ≤ t and the
integration rule (3.4.3). Using the Burkholder-Davis-Gundy (BDG) inequality we conclude exactly
the same estimate (3.4.27) for the stochastic term in (3.4.24) in high probability as in quadratic
variation.

Next, we estimate the last term in the rhs. of (3.4.24):

N
√
ℓ̂t

ρt⟨∣A∣2⟩1/2
∫

t

0

∣σ∣

N
∣⟨GsAGsG

t
s⟩∣ds ≤

N
√
ℓ̂t

ρt⟨∣A∣2⟩1/2
∫

t

0

1
Nη

3/2
s

⟨ImGsAImGsA⟩
1/2
⟨ImGs⟩

1/2 ds

≺
N
√
ℓ̂t

ρt⟨∣A∣2⟩1/2
∫

t

0

ρ
1/2
s

Nη
3/2
s

⎛

⎝
⟨∣A∣2⟩ρ2

s +
⟨∣A∣2⟩ρ2

sϕ2
√
Nℓ̂s

⎞

⎠

1/2

ds

≲ 1 +
√
ϕ2

(Nℓ̂t)1/4
,

(3.4.28)

where in the first inequality we used Schwarz inequality together with several Ward identities, and in
the second inequality the single resolvent local law ∣⟨Gs −ms⟩∣ ≺ 1/(Nηs) to show that ⟨ImGs⟩ ≺ ρs
(recall that we consider the regime Nηsρs ≥ N ϵ, so 1/(Nηs) ≤ ρs).

Putting all these estimates together, and using that Φ1(0) ≺ 1 by (3.4.15) to bound the initial
condition after integration, we obtain the first master inequality

Φ1(t) ≺ 1 + ϕ1

Nℓ̂t
+

√
ϕ2

(Nℓ̂t)1/4
, (3.4.29)

again in the sense of uniformity explained after (3.4.16). This gives (3.4.17) using Nℓ̂t ≥ 1 and
ℓ̂T ≲ ℓ̂t

13.
13This follows from the fact that by (3.3.5) we have ρi,s ∼ ρi,t and ηi,t ≲ ηi,s, for s ≤ t.
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For the proof of the master inequalities (3.4.17) with k ≥ 2, a fundamental input for the estimates
of the various terms in (3.4.9) is the following G2-Lemma. Recall that even if we are interested
only in pure ImG chains, their evolution equation (3.4.9) necessarily contains mixed chains as well.
The G2-Lemma turns them back to pure ImG chains. It expresses how to estimate not strictly
alternating purely ImG chains in terms of strictly alternating purely ImG chains based upon the
integral representation (3.4.1). Note that this formula involves the non-analytic function ImG hence
simple and flexible contour deformations are prohibited, contrary to the k = 1 case, where we did not
care about preserving ImG’s and the contour integral (3.4.25) with the analytic G(z) was applicable.

For brevity we will state the G2-Lemma for spectral parameters z1, ..., zk without time dependence,
but eventually we will use them for z1,t, ..., zk,t at any fixed time along the flow. The proof is given
in Section 3.4.1.3 below.

Lemma 3.4.5 (G2-Lemma). Fix k ≥ 2. Let i, j ∈ [k] with j − i ≥ 1 and assume that Φl ≺ ϕl holds
uniformly (in the sense explained after (3.4.16)) for some control parameters ϕl ≥ 1 for l = 1, 2, . . . , k.
Then, for all versions of Ĝ[i#,j#] and M̂ [i#,j#], i.e. for any choice of # indicating star (adjoint),
hat (imaginary part) or simply no ‘decoration’, we have the following:14

∣⟨M̂ [i#,j#]⟩∣ ≺ (
ρiρj

ηiηj
)

1/2
(

j−1
∏
n=i+1

ρn)N
j−i
2 −1
(

j−1
∏
m=i
⟨∣Am∣

2
⟩
1/2
) (3.4.30)

and (the decorations at the indices i and j on Ĝ and on M̂ have to be matching)

∣⟨Ĝ[i#,j#] − M̂ [i#,j#]⟩∣ ≺ (
ρiρj

ηiηj
)

1/2
(

j−1
∏
n=i+1

ρn)
N

j−i
2 −1
√

Nℓ̂
(

j−1
∏
m=i
⟨∣Am∣

2
⟩
1/2
)ϕ̃j−i , (3.4.31)

where we used the notation ϕ̃j−i = ϕj−i + 1(j − i odd)
√
ϕj−i−1ϕj−i+1 (as in (3.4.18)).

Moreover, it holds that (now # indicates star (adjoint) or no ‘decoration’)

∣⟨Ĝ
(i#)
[1̂,k̂]Ak⟩∣ ≺ (

ρi
ηi
)

1/2
∣⟨ImGi(AiImGi+1...Ai−1)ImGi(AiImGi+1...Ai−1)

∗
⟩∣

1/2
. (3.4.32)

Since all resolvent chains and their M -approximations are multi-linear in the A’s, by a simple scaling
we may assume, without loss of generality, that ⟨∣Aj ∣2⟩ = 1 for all j ∈ [k]. This shortens some
formulas.

We start our estimates on Φk(t) with bounding the quadratic variation of the martingale term in
(3.4.9):

1
N

N

∑
a,b=1
[∣∂ab⟨Ĝ[1̂,k̂]Ak⟩∣

2
+ σ∂ab⟨Ĝ[1̂,k̂]Ak⟩∂ba⟨Ĝ[1̂,k̂]Ak⟩]

≲
1
N2

k

∑
i=1
⟨(GiAiImGi+1...Ai−1Gi)(GiAiImGi+1...Ai−1Gi)

∗
⟩

=
k

∑
i=1

⟨ImGi(AiImGi+1...Ai−1)ImGi(AiImGi+1...Ai−1)
∗
⟩

N2η2
i

,

(3.4.33)

where we omitted the time dependence. Notice that the quadratic variation in (3.4.33) naturally
contains chains of length 2k. In order to get a closed system of inequalities containing only chains
up to length k we rely on the following reduction inequality ; its proof is given in Appendix 3.A.

14Note that we use the ≺-notation to purely deterministic quantities. The reason is that it conveniently absorbs
irrelevant ∣ log η∣ ≲ (logN)-factors coming from slightly singular integrals, see Footnote 15.
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Lemma 3.4.6 (Reduction inequality). Fix k ≥ 2, and assume that Φl(t) ≺ ϕl holds uniformly in
t ∈ [0, T ] for 0 ≤ l ≤ 2k. Then, uniformly in t ∈ [0, T ] we have

Φ2k(t) ≺

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(Nℓ̂t)
1/2 + 1

(Nℓ̂t)1/2
ϕ2
k k even

(Nℓ̂t)
1/2 + ϕk−1 + ϕk+1 +

1
(Nℓ̂t)1/2

ϕk+1ϕk−1 k odd.
(3.4.34)

In the remainder of the proof we will always use (3.4.34) in the following simplified form

Φ2k(t) ≺ (Nℓ̂t)
1/2
+ ϕ̃

2
k, (3.4.35)

with ϕ̃k being defined in (3.4.18). Note that (3.4.35) follows from (3.4.34) using that ϕl ≥ 1.
Furthermore, we remark that (3.4.35) holds for k being even and odd.

Adding the prefactor from the definition of Φ2k(s), we find that
√
Nℓ̂t

Nk/2−1 (∏i∈[k] ρi,t)

⎛

⎝
∫

t

0

⟨ImGi,s(...)ImGi,s(...)
∗
⟩

N2η2
i,s

ds
⎞

⎠

1/2

≺

√
Nℓ̂t

Nk/2−1 (∏i∈[k] ρi,t)

⎛
⎜
⎜
⎝
∫

t

0

Nk−2(∏i∈[k] ρi,s)
2

Nη2
s

(1 + Φ2k(s)

(Nℓ̂s)1/2
) ds
⎞
⎟
⎟
⎠

1/2

≲ 1 + ϕk̃

(Nℓ̂t)1/4
,

(3.4.36)

analogously to (3.4.27), where we again used that along the characteristics ℓ̂s ≳ ℓ̂t for 0 ≤ s ≤ t and
the integration rule (3.4.3). Additionally, in the last inequality we used (3.4.35) for Φ2k(s). Then,
using the BDG inequality we conclude the same estimate in high probability for the martingale term
in (3.4.9).

Next, we bound the first two terms in the last line of (3.4.9). We have
√
Nℓ̂t

Nk/2−1 (∏i∈[k] ρi,t)
∫

t

0
∣⟨Gi,s −mi,s⟩⟨Ĝ

(i)
[1̂,k̂],sAk⟩∣ds

≺

√
Nℓ̂t

Nk/2−1 (∏i∈[k] ρi,t)
∫

t

0

ρ
1/2
i,s

Nη
3/2
i,s

N (k−1)/2
( ∏
i∈[k]

ρi,s)(1 +
Φ2k(s)

(Nℓ̂s)1/2
)

1/2
ds ≲ 1 + ϕ̃k

(Nℓ̂t)1/4
,

(3.4.37)
where we used the bound in (3.4.32) together with a usual single resolvent local law ∣⟨Gi,s −mi,s⟩∣ ≺

(Nηi,s)
−1 and applied a similar reasoning as for (3.4.36), and in the last inequality we used (3.4.35).

Then, we estimate the terms in Ωσ of (3.4.9). For j ≠ i we have
√
Nℓ̂t

Nk/2−1 (∏i∈[k] ρi,t)
∫

t

0

1
N
∣⟨G[î,j],sG

t
[ĵ,i],s⟩∣ds

≤

√
Nℓ̂t

Nk/2−1 (∏i∈[k] ρi,t)
∫

t

0

1
N
⟨G[î,j],sG

∗
[î,j],s⟩

1/2
⟨G∗[ĵ,i],sG[ĵ,i],s⟩

1/2 ds

≺

√

Nℓ̂t∫
t

0

1
Nηi,sηj,s

⎛

⎝
1 +

Φ2(j−i)(s)
√
Nℓ̂t

⎞

⎠

1/2
⎛

⎝
1 +

Φ2(k−j+i)(s)
√
Nℓ̂t

⎞

⎠

1/2

ds

≲
1

√
Nℓ̂t
+

ϕ̃j−i

(Nℓ̂t)3/4
+

ϕ̃k−j+i

(Nℓ̂t)3/4
+
ϕ̃j−iϕ̃k−j+i

Nℓ̂t
,

≲
1

√
Nℓ̂t
+
ϕ̃j−iϕ̃k−j+i

(Nℓ̂t)3/4
,

(3.4.38)

169



3. Eigenstate thermalisation at the edge for Wigner matrices

where in the first inequality we used Schwarz,in the second inequality the Ward identity (see (3.4.28)
for similar computations in a simpler case), in the third inequality we used the reduction inequality
(3.4.35) for j − i ≥ 2 and that ϕ̃1 = ϕ1 +

√
ϕ2 for j − i = 1, and in the last inequality we used that

ϕ̃l ≥ 1 for any l ≥ 0. Similarly, for j = i we get a bound 1+ ϕ̃k/(Nℓ̂t)1/4. To combine these two cases
in a simpler bound we just estimate

√
Nℓ̂t

Nk/2−1 (∏i∈[k] ρi,t)
∫

t

0

1
N
∣⟨G[î,j],sG

t
[ĵ,i],s⟩∣ds ≲ 1 +

ϕ̃j−iϕ̃k−j+i

(Nℓ̂t)1/4
. (3.4.39)

We are now left with the terms Ω1,Ω2,Ω3,Ω4 of (3.4.9). We write out the estimates for Ω1 as all
the other Ωa, a = 2,3,4, are completely analogous. Using (3.4.30)–(3.4.31) for i < j we estimate

√
Nℓ̂t

Nk/2−1 (∏i∈[k] ρi,t)
∫

t

0
∣⟨Ĝ[î,j],s − M̂ [î,j],s⟩⟨M̂ [ĵ,i],s⟩∣ds

≺

√
Nℓ̂t

Nk/2−1 (∏i∈[k] ρi,t)
∫

t

0

N (j−i)/2−1
√
Nℓ̂s

( ∏
n∈[i+1,j−1]

ρn,s)
ρi,sρj,s

ηi,sηj,s
( ∏
n∈[i,j]c

ρn,s)N
(k−j+i)/2−1ϕ̃j−i ds

≲

√
Nℓ̂t

Nk/2−1 (∏i∈[k] ρi,t)
∫

t

0

ϕ̃j−i

Nη2
s

Nk/2−1
√
Nℓ̂s
( ∏
i∈[k]

ρi,s)ds ≲
ϕ̃j−i

Nℓ̂t
,

(3.4.40)

where [i, j]c ∶= [1, i − 1] ∪ [j + 1, k]. Similarly, we bound
√
Nℓ̂t

Nk/2−1 (∏i∈[k] ρi,t)
∫

t

0
∣⟨Ĝ[î,j],s − M̂ [î,j],s⟩⟨Ĝ[ĵ,i],s − M̂ [ĵ,i],s⟩∣ds ≺

ϕ̃j−iϕ̃k−j+i

(Nℓ̂t)3/2
. (3.4.41)

Finally, we estimate the last term in the last line of the rhs. of (3.4.9) as
√
Nℓ̂t

Nk/2−1 (∏i∈[k] ρi,t)
∫

t

0
∣⟨Ĝ[1̂,k̂],sAk⟩

⟨ImGi,s − Immi,s⟩

ηi,s
∣ ds ≺ 1

√
Nℓ̂t
+
ϕk

Nℓ̂t
, (3.4.42)

where we again used the usual single resolvent local law, the integration rule (3.4.3) and

∣⟨Ĝ[1̂,k̂],sAk⟩∣ ≺ N
k/2−1

( ∏
i∈[k]

ρi,s)
⎛

⎝
1 + ϕk
√
Nℓ̂s

⎞

⎠
.

Putting all these estimates (3.4.36)–(3.4.42) together, we thus obtain

Φk(t) ≺ 1 + 1
Nℓ̂t

k

∑
l=1
ϕ̃l +

1
(Nℓ̂t)3/2

k−1
∑
l=1

ϕ̃lϕ̃k−l +
∣σ∣

(Nℓ̂t)1/4

k

∑
l=1
ϕ̃lϕ̃k−l. (3.4.43)

Finally, using that ϕ̃l ≥ 1, ∣σ∣ ≤ 1, and that Nℓ̂t > 1, ℓ̂T ≲ ℓ̂t, we thus conclude (3.4.17). This finishes
the proof of Proposition 3.4.3, modulo the proof of Lemma 3.4.5 that will be done next.
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3.4.1.3 Proof of Lemma 3.4.5

As a preparation for our proof, we observe that the estimate (3.2.17) (modulo logarithmic corrections
in ℓ) even holds true if the condition Nℓ ≥ 1 with

ℓ =min
i
[ηi(ρi + 1(i ∉ Ik))] = ηimin(ρimin + 1(imin ∉ Ik))]

is violated, but the second smallest

ℓ2 ∶= min
i≠imin

[ηi(ρi + 1(i ∉ Ik))]

satisfies Nℓ2 ≥ 1. More precisely, under this weaker assumption, we still have that

∣⟨M(z1,A1, ...,Ak−1, zk;Ik)Ak⟩∣ ≲ (1 + 1(imin ∉ Ik)∣ log ℓ∣)
⎛

⎝
∏
i∈Ik

ρi
⎞

⎠
Nk/2−1

∏
j∈[k]
⟨∣Aj ∣

2
⟩
1/2 .

(3.4.44)
This simply follows by realizing that the key estimate within the proof of (3.2.17), namely (3.A.4) in
Appendix 3.A, can alternatively be estimated as

∣m(Ik)[S]∣ ≲ (1 + 1(imin ∉ Ik, imin ∈ S)∣ log ℓ∣)∏i∈S∩Ik
ρi

ℓ
∣S∣−1
2

,

and following the steps leading to the proof of Lemma 3.2.3 (a).15 We now turn to the actual proof
of Lemma 3.4.5 and again assume that, by simple scaling, ⟨∣Am∣2⟩ = 1 for all m ∈ [k].

We start with the proof of (3.4.30) for both #’s indicating no decoration and assuming, for
definiteness, that ηi = Im zi > 0 and ηj = Im zj > 0; all other cases can be treated similarly and
are hence omitted. In this case, we use the integral representation [168, Eq. (3.15)] (which simply
follows from (3.2.15)–(3.2.16) using multilinearity)16

⟨M̂ [i,j]⟩ =
1
π
∫

R

⟨M̂(x + iζ,Ai, zi+1, ..., zj−1)Aj−1⟩

(x − zi + iζ)(x − zj + iζ)
dx (3.4.45)

with ζ ∶= (ηi ∧ ηj)/2. To estimate the x-integration in (3.4.45), we will apply the following basic
lemma, which shall frequently be used in the sequel. Its proof is omitted as it is a simple Hölder’s
inequality and elementary calculus using basic properties of ρ(z).

Lemma 3.4.7. Under the setting and assumptions described above, for any α ∈ [0, 1], we have that

1
ζα
∫

R

(ρ(x + iζ))1−α

∣x − zi + iζ ∣∣x − zj + iζ ∣
dx ≺ 1

(ηiηj)1/2
⎛

⎝

ρiρj

((ηiρi)(ηjρj))
α

⎞

⎠

1/2

. (3.4.46)

Therefore, plugging in (3.4.44) with 1(...) = 0 for the numerator in (3.4.45) and then using (3.4.46),
we obtain

∣⟨M̂ [i,j]⟩∣ ≲
⎛

⎝

j−1
∏
n=i+1

ρn
⎞

⎠
N (j−i)/2−1

∫
R

ρ(x + iζ)
∣x − zi + iζ ∣∣x − zj + iζ ∣

dx ≺ (
ρiρj

ηiηj
)

1/2
⎛

⎝

j−1
∏
n=i+1

ρn
⎞

⎠
N (j−i)/2−1 ,

(3.4.47)

completing the proof of (3.4.30).
15 The logarithmic corrections are stemming from the estimate ∫R

ρ(x)
∣x−z∣dx ≲ 1 + ∣ log ∣Im z∣∣ (cf. (3.2.16)).

16Alternatively, this can also be obtained using (3.4.1) for m = 2: The resolvent chain, which is approximated by
⟨M̂ [i,j]⟩ contains a GjGi-factor after cyclicity of the trace. Applying (3.4.1) for m = 2 to this part of the chain and
using a meta argument like in Appendix 3.A.4, we can also conclude (3.4.45).
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3. Eigenstate thermalisation at the edge for Wigner matrices

We now turn to the proof of (3.4.31), again focusing on the case where both #’s indicate no
decoration and assuming that ηi = Im zi > 0 and ηj = Im zj > 0. As the first step, we apply the
integral representations (3.4.1) and (3.4.45) (see [168, Eqs. (3.14) and (3.15)]) to find

∣⟨Ĝ[i,j] − M̂ [i,j]⟩∣ ≲ ∫
R

∣⟨(ImG(x + iζ)AiĜ[ i+1̂, j−1̂ ] − M̂(x + iζ,Ai, ...))Aj−1⟩∣

∣x − zi + iζ ∣∣x − zj + iζ ∣
dx (3.4.48)

with ζ = (ηi ∧ ηj)/2 and split the integral into an above the scale and a below the scale part. This
concept refers to spectral regimes x ∈R where the typical eigenvalue spacing ρ(x + iζ)/N is larger
or smaller than the given ζ. More precisely, we fix an arbitrarily small ξ > 0 and decompose R into17

{x ∶ Nρ(x + iζ)ζ ≥ N ξ} ∪̇ {x ∶ Nρ(x + iζ)ζ < N ξ} =∶ Iabove ∪̇ Ibelow . (3.4.49)

For the above the scale part, we use that Φj−i ≺ ϕj−i and estimate this part of the integral (3.4.48)
by

∫
Iabove

ρ(x + iζ)
∣x − zi + iζ ∣∣x − zj + iζ ∣

⎛

⎝

j−1
∏
n=i+1

ρn
⎞

⎠

N (k−i)/2−1
√

Nℓ̂(x)
ϕj−idx , (3.4.50)

where we emphasized that now ℓ̂(x) = ζρ(x + iζ) ∧minn∈[i+1,j−1] ηnρn depends on the integration
variable x since the integrated chain in (3.4.48) contains a resolvent at spectral parameter x + iζ.
Next, we further split Iabove into two parts Iabove = Iabove,= ∪̇ Iabove,< with

Iabove,= ∶= {x ∶ ℓ̂(x) = ρ(x + iζ)ζ} and Iabove,< ∶= {x ∶ ℓ̂(x) < ρ(x + iζ)ζ}, (3.4.51)

depending on whether the minimum is attained at the special spectral argument x + iζ or not, and
estimate each of them separately. In this way, we obtain the contribution from Iabove,= to (3.4.50)
to equal

1
√
N

⎡
⎢
⎢
⎢
⎢
⎣

1
ζ1/2 ∫Iabove,=

(ρ(x + iζ))1/2

∣x − zi + iζ ∣∣x − zj + iζ ∣
dx
⎤
⎥
⎥
⎥
⎥
⎦

ρi+1 . . . ρj−1N
(j−i)/2−1ϕj−i . (3.4.52)

By means of Lemma 3.4.7 with α = 1/2 applied to the integral in [⋯], this can be bounded as

1
(ηiηj)1/2

1
√
N

j−i
∑
s=1

√
ρi ρi+1 . . . ρj−1

√
ρj

√
(ηiρi)1/2

√
(ηjρj)1/2

N (j−i)/2−1ϕj−i ≤ (
ρiρj

ηiηj
)

1/2
⎛

⎝

j−1
∏
n=i+1

ρn
⎞

⎠

N (j−i)/2−1
√

Nℓ̂
ϕj−i .

(3.4.53)

For Iabove,< the argument is completely analogous, yielding exactly the same bound as in (3.4.53).
This completes the bound for the above the scale part.

For the below the scale part, we estimate the two terms in the numerator in (3.4.48) separately; in
this regime the local law is anyway not effective in the sense that G −M is not smaller than G. For
the M̂ -term, we recall the bound (3.4.44), and estimate

∫
Ibelow

∣⟨M̂(x + iζ,Ai, ...)Aj−1⟩∣

∣x − zi + iζ ∣∣x − zj + iζ ∣
dx ≲ N (j−i)/2−1ρi+1 . . . ρj−1 [∫

Ibelow

ρ(x + iζ)
∣x − zi + iζ ∣∣x − zj + iζ ∣

dx]

≺
1

(ηiηj)1/2
1
N

√
ρi ρi+1 . . . ρj−1

√
ρj

(ηiρi)1/2(ηjρj)1/2
N (j−i)/2−1

≲ (
ρiρj

ηiηj
)

1/2
⎛

⎝

j−1
∏
n=i+1

ρn
⎞

⎠

N (j−i)/2−1

Nℓ̂
.

(3.4.54)
17To be precise, in the integral (3.4.48) we first need to cut-off the regime where ∣x∣ ≥ N100, say, and estimate this

contribution by a simple norm bound using that the spectrum of the Wigner matrix is contained in [−2 − ϵ, 2 + ϵ] with
very high probability [249]. Such technicality about the irrelevant, very far out x-regime will henceforth be ignored.
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To go from the second to the third line, we used that ρ(x + iζ)ζ ≺ N−1 for x ∈ Ibelow (recall that
ξ > 0 in the definition (3.4.49) may be chosen arbitrarily small) and employed Lemma 3.4.7 with
α = 1. In the ultimate step, we utilized ηiρi ∧ ηjρj ≥ ℓ̂ together with Nℓ̂ ≳ 1. This concludes the
discussion of the M̂ -term.

Next, we turn to the Ĝ-term in (3.4.48) in the regime x ∈ Ibelow and first focus on the case where
j − i is even. Here, we employ a Schwarz inequality in order to be able to exploit

∣⟨ImG(x + iζ)AiĜ[ i+1̂, j−1̂ ]Aj−1⟩∣

≤
ζx
ζ
∣⟨ImG(x + iζx)(Ai...ImGr−1Ar−1)ImGr(Ai...ImGr−1Ar−1)

∗⟩∣
1/2

× ∣⟨ImGr(Ar...ImGj−1Aj−1)ImG(x + iζx)(Ar...ImGj−1Aj−1)
∗⟩∣

1/2

(3.4.55)

where ζx > ζ is implicitly defined via Nρ(x + iζx)ζx = N ξ and we denoted r ∶= (i + j)/2. After
application of a Schwarz inequality, we find this part of (3.4.48) to be bounded by

⎛
⎜
⎝
∫
Ibelow

ζx
ζ

∣⟨ImG(x + iζx)(Ai...ImGr−1Ar−1)ImG j+i
2
(Ai...ImGr−1Ar−1)

∗⟩∣

∣x − zi + iζ ∣∣x − zj + iζ ∣
dx
⎞
⎟
⎠

1/2

×
⎛

⎝
∫
Ibelow

ζx
ζ

∣⟨ImGr(Ar...ImGj−1Aj−1)ImG(x + iζx)(Ar...ImGj−1Aj−1)
∗⟩∣

∣x − zi + iζ ∣∣x − zj + iζ ∣
dx
⎞

⎠

1/2
(3.4.56)

Adding and subtracting the respective M̂ -terms for both resolvent chains in (3.4.56), we are left
with two terms for each integral. For concreteness, we estimate the one in the first line in (3.4.56),
the second line the same. The first line in (3.4.56) is bounded by (the square root of)

1
ζ
∫
Ibelow

dx ζxρ(x + iζx)
∣x − zi + iζ ∣∣x − zj + iζ ∣

(
r−1
∏
n=i+1

ρn)

2

ρrN
j−i
2 −1
(1 + ϕj−i)

≺ (1 + ϕj−i)(
ρiρj

ηiηj
)

1/2
(
r−1
∏
n=i+1

ρn)

2

ρr
N

j−i
2 −1

Nℓ̂
.

Here, we used that Nρ(x + iζx)ζx = N ξ for arbitrarily small ξ > 0 and employed Lemma 3.4.7 (with
α = 1) in estimates analogous to (3.4.53) and (3.4.54). Combining this with the identical estimate
for the second line of (3.4.56) and using Nℓ̂ ≥ 1 and ϕj−i ≥ 1, we finally deduce that

(3.4.56) ≺ ϕj−i (
ρiρj

ηiηj
)

1/2
⎛

⎝

j−1
∏
n=i+1

ρn
⎞

⎠

N (j−i)/2−1
√

Nℓ̂
. (3.4.57)

For j − i being odd, only the monotonicity argument (3.4.55) is different:

∣⟨ImG(x + iζ)AiĜ[ i+1̂, j−1̂ ]Aj−1⟩∣

≤
ζx
ζ
∣⟨ImG(x + iζx)(Ai...ImGr−1Ar−1)ImGr(Ai...ImGr−1Ar−1)

∗⟩∣
1/2

× ∣⟨ImGr(Ar+1...ImGj−1Aj−1)ImG(x + iζx)(Ar+1...ImGj−1Aj−1)
∗⟩∣

1/2
,

where we now denoted r ∶= (i + j + 1)/2. This asymmetry in the lengths of the resolvent chains now
leads to the term

√
ϕj−i+1ϕj−i−1 in (3.4.31), the rest of the argument is identical.
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Finally, we turn to the proof of (3.4.32). Again, we focus on the case where # indicates no decoration.
By application of a Schwarz inequality, we find

∣⟨Ĝ
(i)
[1̂,k̂]Ak⟩∣ = ∣⟨ImG1A1...ImGi−1Ai−1ImGiGiAi...ImGkAk⟩∣

≤ ∣⟨GiG
∗
i ⟩∣

1/2 ∣⟨ImGi(AiImGi+1 . . .Ai−1)ImGi(AiImGi+1 . . .Ai−1)
∗⟩∣

1/2

≺ (
ρi
ηi
)

1/2
∣⟨ImGi(AiImGi+1 . . .Ai−1)ImGi(AiImGi+1 . . .Ai−1)

∗⟩∣
1/2

,

(3.4.58)

where in the last step we used the Ward identity GG∗ = ImG/η together with the usual single
resolvent local law applied to ImGi. This concludes the proof of Lemma 3.4.5 which was the last
missing piece for the proof of Proposition 3.3.3 (a) for pure ImG chains.

3.4.2 Proof of Proposition 3.3.3 (b) for pure Im G-chains
In this section, we briefly explain how to derive Proposition 3.3.3 (b) from Proposition 3.3.3 (a). For
fixed spectral parameters and bounded deterministic vectors ∥x∥ , ∥y∥ ≲ 1, we have

∣⟨x, (Ĝ[1̂,k+1̂] − M̂ [1̂,k+1̂])y⟩∣ ≲ ∣⟨(Ĝ[1̂,k+1̂] − M̂ [1̂,k+1̂])Ak+1⟩∣ + ∣⟨Ĝ[1̂,k+1̂] − M̂ [1̂,k+1̂]⟩∣ (3.4.59)

with the special choice Ak+1 ∶= Nyx∗ − ⟨x,y⟩. Next, using that ⟨∣Ak+1∣
2⟩1/2 ≲ N1/2 we find from

Proposition 3.3.3 (a) for pure ImG chains the first term in (3.4.59) to be bounded as

∣⟨(Ĝ[1̂,k+1̂] − M̂ [1̂,k+1̂])Ak+1⟩∣ ≺ ( ∏
i∈[k+1]

ρi)
Nk/2
√

Nℓ̂
∏
j∈[k]
⟨∣Aj ∣

2
⟩
1/2 .

For the second term, we apply (3.4.31) from Lemma 3.4.5 (note that by Proposition 3.3.3 (a) for
pure ImG chains, we have Φk ≺ ϕk ∶= 1 and hence also ϕ̃k = 1) and obtain

∣⟨Ĝ[1̂,k+1̂] − M̂ [1̂,k+1̂]⟩∣ ≺ (
ρ1ρk+1
η1ηk+1

)
1/2
(
k

∏
i=2
ρi)

Nk/2−1
√

Nℓ̂
∏
j∈[k]
⟨∣Aj ∣

2
⟩
1/2
≤ ( ∏

i∈[k+1]
ρi)

Nk/2
√

Nℓ̂
∏
j∈[k]
⟨∣Aj ∣

2
⟩
1/2 ,

where in the last step we used η1ρ1 ∧ ηk+1ρk+1 ≥ ℓ̂ and Nℓ̂ ≥ 1. This concludes the proof of
Proposition 3.3.3 (b) for pure ImG chains.

3.4.3 Proof of Proposition 3.3.3 (b) for mixed chains
We consider mixed resolvent chains

G1A1...GkAk

with Gj ∈ {Gj , ImGj} and traceless matrices A1, ...,Ak ∈ CN×N , and explain how the respective
bounds in (3.2.20)–(3.2.21) are obtained from the multi-resolvent local law for pure ImG-chains
derived in Sections 3.4.1–3.4.2. We will henceforth focus on the average case, the isotropic bounds
can immediately be obtained from those by following Section 3.4.2.

Recalling
ℓ = min

j∈[k]
[ηj(ρj + 1(j ∉ Ik))]

where Ik denotes the set of indices j ∈ [k] where Gj = ImGj , the goal of this section is to prove
that

∣⟨G1A1...GkAk⟩ − ⟨M[1,k]Ak⟩∣ ≺

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝
∏
i∈Ik

ρi
⎞

⎠
∧max
i∈[k]

√
ρi

⎤
⎥
⎥
⎥
⎥
⎦

Nk/2−1
√
Nℓ

∏
j∈[k]
⟨∣Aj ∣

2
⟩
1/2 . (3.4.60)
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In order to do so, we iteratively apply the integral representation (3.4.1) with m = 1 for every Gj
such that j ∉ Ik. In Section 3.4.3.1, this procedure will immediately yield the claimed bound (3.4.60)
for Ik ≠ ∅ (recall from Remark 3.2.6 (ii), that in this case the minimum in (3.4.60) is always realized
by the product). In the complementary case, Ik = ∅, which has already been studied in [169], the
outcome of iteratively applying (3.4.1) is the natural continuation of the pattern obtained for Ik ≠ ∅.
However, in this way we only find the weaker bound, where in (3.4.60) the minimum [... ∧ ...]
replaced by one. The improvement to include the small factor maxi∈[k]

√
ρi requires a short separate

argument, which we provide in Section 3.4.3.2.

3.4.3.1 The case Ik ≠ ∅

For concreteness, we consider the case where Ik = [k−1], i.e. Gk = Gk with Im zk > 0 w.l.o.g. and all
other G’s are ImG’s. Then, using the integral representation (3.4.1) with m = 1 and η = ζ = Im zk/2,
and its analog for the deterministic approximation (see [168, Eqs. (3.14) and (3.15)] and (3.4.48)
above), we find that

∣⟨ImG1A1...GkAk⟩ − ⟨M(z1,A1, ..., zk; [k − 1])Ak⟩∣

≲ ∫
R

∣⟨ImG1A1...ImG(x + iζ)Ak⟩ − ⟨M(z1,A1, ..., x + iζ; [k])Ak⟩∣
∣x − zk + iζ ∣

dx

We then follow the steps in the proof of Lemma 3.4.5 starting from (3.4.48) in order to estimate the
integral. In particular, we split the integration region into Iabove and Ibelow, just as in (3.4.49). In
the treatment of these regimes, the two main differences compared to the proof of Lemma 3.4.5 are
the following:

(i) We use the M -bound in (3.4.44) with logarithmic corrections, which can be absorbed into ≺.

(ii) Lemma 3.4.7 gets replaced by the bound

∫
R

(ρ(x + iζ))α

∣x − zk + iζ ∣
dx ≺ 1 for all α > 0 ,

which can easily be seen using that Im zk ≥ N
−1 and ρ(w) decays polynomially as ∣w∣→∞.

For example, instead of (3.4.52) we estimate (recall that Iabove is further split into Iabove,= and
Iabove,< in (3.4.51))

1
√
N

⎡
⎢
⎢
⎢
⎢
⎣

1
ζ1/2 ∫Iabove,=

(ρ(x + iζ))1/2

∣x − zk + iζ ∣
dx
⎤
⎥
⎥
⎥
⎥
⎦

ρ1 . . . ρk−1N
k/2−1

≺
⎛

⎝
∏

i∈[k−1]
ρi
⎞

⎠

Nk/2−1
√
Nℓ

,

neglecting the product of Hilbert-Schmidt norms. We point out that, compared to the estimates in
the pure ImG-case, now ℓ ∶=minj∈[k] [ηj(ρj+1(j ≠ k))] and ρk disappeared from the rhs. Therefore,
as a result, we find the claimed bound (3.4.60) for Ik = [k − 1]. All other cases with Ik ≠ ∅ follow
by iteratively applying this strategy. This completes the proof of Proposition 3.3.3 (b) if Ik ≠ ∅.

3.4.3.2 The case Ik = ∅

As mentioned above, in order to obtain the improvement by maxi∈[k]
√
ρi, we now give a separate

argument. We thereby closely follow the steps in Section 3.4.1 and point out only the main
differences. In particular, we now use the flow (3.4.5), together with the following lemma proven
in Appendix 3.A.4, instead of (3.4.9). Here, similarly to (3.4.5), the absence of hats indicates that
none of the resolvents G in the chain approximated by M is an ImG.
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Lemma 3.4.8. We have

∂t⟨M[1,k],tAk⟩ =
k

2
⟨M[1,k],tAk⟩ +

k

∑
i,j=1,

i<j

⟨M[i,j],t⟩⟨M[j,i],t⟩.

Moreover, using the shorthand notations

ηt ∶=min
i∈[k]

ηi,t and ρt ∶=max
i∈[k]

ρi,t ,

we introduce the new normalized differences

Ψk(t) ∶=

√
Nηt

Nk/2−1√ρt∏j∈[k]⟨∣Aj ∣
2⟩1/2

∣⟨(G[1,k],t −M[1,k],t)Ak⟩∣ (3.4.61)

for every k ∈N. The Ψk’s introduced here are the no-ImG-analogs of the Φk’s defined in (3.4.14),
i.e. all hats are removed and we replaced ℓ̂t → ηt as well as ∏i ρi,t →

√
ρt.

In the following, we will derive master inequalities for the Ψk’s, analogously to Proposition 3.4.3.
However, compared to the proof in Section 3.4.1, we now have two major simplifications:

(i) Since the bound (3.4.60) for Ik ≠ ∅ is already proven, the contribution of the quadratic
variation term in (3.4.5), which automatically carries two ImG’s, is easily estimated as (again
assuming ⟨∣Aj ∣2⟩ = 1 for all j ∈ [k] henceforth)

√
Nηt

Nk/2−1√ρt

⎛

⎝
∫

t

0

⟨ImGi,s(AiGi+1,s...Ai−1)ImGi,s(AiGi+1,s...Ai−1)
∗
⟩

N2η2
i,s

ds
⎞

⎠

1/2

≺

√
Nηt

Nk/2−1√ρt

⎛

⎝
∫

t

0

Nk−2ρ2
i,s

Nη2
i,s

ds
⎞

⎠

1/2

≲

√
ρi,tηt

ρtηi,t
≤ 1 ,

analogously to (3.4.36). Note that in the first step, we did not use the overestimate 1/ηi,s ≤ 1/ηs
inside the integral as done in (3.4.36). The same reasoning applies to the analog of the first
two terms in the last line of (3.4.9) and the terms contained in Ωσ (cf. the estimates in
(3.4.37)–(3.4.39)). We point out that, in this section, the already proven bounds for resolvent
chains containing at least one ImG make the usage of reduction inequalities as in Lemma 3.4.6
obsolete.

(ii) For treating the analogues of Ω1,Ω2,Ω3,Ω4 in (3.4.9), it is not necessary to "restore" ImG’s
via the integral representation (3.4.1) as in the proof of the G2-Lemma 3.4.5. Instead, in the
course of proving an analog of Lemma 3.4.5 (again suppressing the time dependence of the z’s
as well as η and ρ) it is sufficient to apply resolvent identities for ∣zi − zj ∣ ≥ η and the integral
representation

G(zi)G(zj) =
1

2πi ∫Γ

G(w)

(w − zi)(w − zj)
dw ,

for ∣zi − zj ∣ ≤ η. In this case zi and zj are necessarily on the same halfplane (Im ziIm zj > 0)
and, just as in (3.4.25), Γ is a tiny contour encircling zi, zj ∈ C ∖R in such a way that
dist(Γ,{zi, zj}) ∼ η, which ensures that ∣Imm(w)∣ ≲maxi∈[k] ρi on Γ as follows by elementary
continuity properties of m(w).
As a consequence, for fixed k ∈ N, we find, assuming Ψl ≺ ψl for some control parameters
ψl ≥ 1 for l = 1,2, . . . , k in the usual sense of uniformity explained below (3.4.16), that

∣⟨M[i,j]⟩∣ ≺
1
η
N

j−i
2 −1
(

j−1
∏
m=i
⟨∣Am∣

2
⟩
1/2
) ,
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as an analog of (3.4.30) and

∣⟨G[i,j] −M[i,j]⟩∣ ≺
1
η
N

j−i
2 −1
√

ρ

Nη
(

j−1
∏
m=i
⟨∣Am∣

2
⟩
1/2
)ψj−i ,

as an analog of (3.4.31), for all i, j ∈ [k] with j − i ≥ 1.

Overall, using the above two simplifications and following the arguments in (3.4.36)–(3.4.42), we
arrive at the following new set of master inequalities.

Proposition 3.4.9 (Master inequalities II). Fix k ∈ N. Assume that Ψl(t) ≺ ψl for any 1 ≤ l ≤ k
uniformly in t ∈ [0, T ], in spectral parameters with Nℓ̂t ≥ N ϵ (recall ℓ̂t =mini∈[k] ηi,tρi,t from (3.4.3);
not to be confused with the ℓ used around (3.4.60)!) and in traceless deterministic matrices Aj for
some ψl ≥ 1 and set ψ0 ∶= 1. Then we have the master inequalities

Ψk(t) ≺ 1 + 1
(Nℓ̂T )1/4

k

∑
l=1
ψlψk−l (3.4.62)

uniformly (in the sense explained below (3.4.16)) in t ∈ [0, T ].

Using that Nℓ̂T ≥ N ϵ and iteration (Lemma 3.4.4), analogously to Section 3.4.1.1, we can immediately
deduce that Ψk(T ) ≺ 1 where T is the time defined in the statement of Proposition 3.3.3. This
concludes the proof of Proposition 3.3.3 (b) for the remaining case Ik = ∅.

3.4.4 Modifications for general σ = E χ2
od.

The proof of Proposition 3.3.3 presented so far assumed for simplicity that σ = Eχ2
od is real and

Eχ2
d = 1 + σ. We now explain how to prove the general case, when these two restrictions are

lifted. The only changes concern the choice of the initial condition and of the evolution Bt in the
flow (3.3.3).

If σ is not real, we modify the evolution in (3.3.3) in such a way the entries of Bt are
√
t times a

standard complex Gaussian, and we modify the initial condition in (3.3.3) from W0 =W to W0 = W̃ T ,
with another Wigner matrix W̃ T prepared such that

e−T /2W̃ T +
√

1 − e−TU d
=W. (3.4.63)

Here U is a GUE matrix, which is independent of W̃ T (here we used that ∣σ∣ < 1). We point out
that the limiting eigenvalue density of W̃ T does not change along the flow (3.3.3) as a consequence
of the fact that E ∣(Wt)ab∣

2, for a > b, is preserved, and only

E(Wt)
2
ab = e

−tE(W̃ T )
2
ab, E(Wt)

2
aa = e

−t/2 E(W̃ T )
2
aa +

1
N

√
1 − e−t , t ∈ [0, T ] ,

change. The fact that E(Wt)
2
ab and E(Wt)

2
aa do change along the flow contributes to a change of

order 1/N in the averaged Stieltjes transform of Wt; such change is easily seen to be negligible for
the precision of the local laws we are considering here. If σ ∈R but Eχ2

d ≠ 1+σ, similarly to (3.4.63),
we choose Bt so that its entries have variance t times the variance of W for the off–diagonal entries
and E(Bt)2aa = (1 + σ)t, and we can prepare yet another Wigner matrix Ŵ T such that

e−T /2Ŵ T +
√

1 − e−T Û d
=W, (3.4.64)

with Û being independent of Ŵ T and having the same entries distribution as W except for the
diagonal entries having variance E Û

2
aa =

1
N (1 + σ). The second moments of (Ŵ t)ab are preserved

and only the diagonal changes

E(Ŵ t)
2
aa = e

−t/2 E(Ŵ T )
2
aa +

1
N

√
1 − e−t(1 + σ);

hence the limiting eigenvalue distribution is still given by the semicircular law.
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3.5 Green function comparison: Proof of Proposition 3.3.4
In this section, we remove the Gaussian component introduced in Propositions 3.3.3 by a Green
function comparison (GFT) argument, i.e. we prove Proposition 3.3.4. For simplicity, we will write
the detailed proof only in the case of no imaginary parts, i.e. Ik = ∅ and Ik+1 = ∅ in the average
and isotropic case, respectively. The minor modifications needed for handling the other cases will be
briefly discussed in Section 3.5.4 below.

Before entering the proof, we point out that typical GFT arguments (starting from [551]) are
used to compare the distribution of a genuinely fluctuating observable under two different matrix
ensembles whose single entry distributions have matching first few moments. Technically, a family of
interpolating ensembles is constructed which may be finite (e.g. Lindeberg replacement strategy) or
continuous (e.g. along an Ornstein-Uhlenbeck flow) and the change of the distribution in question is
closely monitored along the interpolation. In this standard setup for GFT, however, local laws serve
as a priori bounds obtained by independent methods and they assumed to hold for all interpolating
ensembles in between. In other words, concentration–type information about resolvents G(z) with
Im z well above the eigenvalue spacing are turned into information on the distribution of G(z) with
Im z at, or even slightly below the eigenvalue spacing. Our application of GFT is different in spirit,
since we aim to prove local laws for one ensemble knowing them for the other one. Thus GFT
needs to be done self-consistently with monitoring a carefully designed quantity that satisfies a
Gronwall-type inequality along the interpolation.

We remark that more than ten years ago Knowles and Yin in [370] used GFT in a similar spirit to
prove single resolvent local law for ensembles where the deterministic approximation M to G is not
a multiple of identity matrix (for example deformed Wigner matrices). Later a much more direct
and generally applicable alternative method based upon the matrix Dyson equation [17, 23] has
been developed to prove such local laws without GFT. Our current dynamical approach revives the
idea of a self-consistent GFT, since it naturally serves as a counterpart of the characteristic flow to
remove the Gaussian component added along that flow. In fact, the approach of [370] also used
a tandem of gradual reduction of η = Im z (called bootstrapping steps) and a self-consistent GFT
(called interpolation steps), see Fig. 1.1 in [370]. However, the bootstrapping step in [370] was much
less effective than the characteristic flow which does the η-reduction in one step even for a much
more complex multi-resolvent chain. In the GFT step, we use the simple entry-by-entry Lindeberg
replacement strategy that is better adjustable to our complicated resolvent chains instead of a special
continuous interpolation as in [370], but the core of both techniques is a self-consistent Gronwall
argument. The main technical challenge in our proof is that the error in one step of the Lindeberg
replacement is not always sufficiently small, but by carefully monitoring the errors in each step, we
gain from summing them up explicitly. We will explain this mechanism in Example 3.5.11.

Now we turn to the actual proof. Recalling the notations

η ∶=min
i
∣Im zi∣ and ρ ∶= π−1 max

i
∣Immi∣ , (3.5.1)

we begin by distinguishing the averaged and isotropic control quantities

Ψav
k ∶=

√
Nη

Nk/2−1√ρ
∣⟨(G1A1...Gk −M[1,k])Ak⟩∣ (3.5.2)

Ψiso
k (x,y) ∶=

√
Nη

Nk/2√ρ
∣(G1A1...AkGk+1 −M[1,k+1])xy

∣ , (3.5.3)

where x,y ∈CN are unit deterministic vectors and the traceless matrices Ai ∈CN×N are assumed
to have normalized Hilbert-Schmidt norms, ⟨∣Ai∣2⟩1/2 = 1. Recall that, in (3.5.2)–(3.5.3), we only
consider chains without ImG’s, the more general cases will be discussed later in Section 3.5.4.
Finally, we point out that our notation in (3.5.2)–(3.5.3) already suppressed the dependence on the
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spectral parameters and deterministic matrices, since the sets of these are considered fixed along the
argument. In the following, we will often say that an estimate on Ψ holds uniformly, by which we
will always mean uniformity in all unit deterministic vectors and all choices of subsets of spectral
parameters and deterministic matrices as explained in Proposition 3.3.4 (a).

Now, the goal of this section is to prove Proposition 3.3.4. More precisely, we will show that, if the
optimal multi-resolvent local laws

Ψav
k +Ψiso

k ≺ 1, for all fixed k ∈N, (3.5.4)

hold uniformly for a Wigner matrix with some given single entry distributions, then they also hold
for every other Wigner matrix with different single entry distributions, again uniformly, provided
that the first three moments of the entries of these two ensembles match. A fundamental input
for our proof is that the corresponding single resolvent local laws hold for every Wigner matrix
ensemble [249, 369, 88], i.e. the following Green function comparison argument is not needed for
them.

Theorem 3.5.1. For fixed ϵ > 0, we have

∣⟨G −m⟩∣ ≺
1
Nη

, ∣(G −m)
xy
∣ ≺

√
ρ

Nη
+

1
Nη

(3.5.5)

uniformly in unit deterministic vectors x,y and at spectral parameter z ∈ C∖R with η = ∣Im z∣ ≥ N−1+ϵ

and Re z ∈R, where ρ = π−1∣Imm(z)∣.

For convenience, these single resolvent laws will be expressed in the compact form

Ψav
0 +Ψiso

0 ≺ 1 ,

which extends (3.5.2)–(3.5.3) when no traceless matrices A are present (see, e.g., [168, 169]).

Before starting the proof, we recall some notation which has already been used in the statement of
Proposition 3.3.4. We will distinguish between the two ensembles compared in the GFT argument
by using different letters, vab and wab, for their matrix elements, and we shall occasionally use
the notation H(v) and H(w) to indicate the difference. Alternatively, one could denote the matrix
elements by a universal letter hab and distinguish the two ensembles in the underlying measure,
especially in the expectations Ev and Ew. However, since the proof of Proposition 3.3.4 works by
replacing the matrix elements one-by-one in N(N + 1)/2 steps, we use the first notation, analogously
to [248, Section 16].

3.5.1 Preliminaries
The principal idea of the proof is as follows: First, we fix a bijective ordering

ϕ ∶ {(i, j) ∈ [N]2 ∶ i ≤ j}→ [γ(N)] , γ(N) ∶=
N(N + 1)

2
(3.5.6)

on the index set of independent entries of a Wigner matrix. Then, according to the induced ordering,
the matrix elements are swapped one-by-one from the distribution vab to wab in γ(N) ∼ N2 steps.
In particular, at step γ ∈ {0} ∪ [γ(N)] in this replacement procedure, the resulting matrix H(γ) has
entries which are distributed according to wij whenever ϕ((i, j)) ≤ γ and according to vij whenever
ϕ((i, j)) > γ, i.e. H(0) = H(v) and H(γ(N)) = H(w). This one-by-one replacement of the matrix
elements naturally requires understanding the isotropic law (3.3.14), as already indicated in (3.5.3).

In order to derive (3.5.4) also for H(w), we compute high moments of Ψav/iso
k for H(γ) and H(γ−1)

for general γ ∈ [γ(N)] and compare the results. Given sufficiently good one-step bounds, a telescopic
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argument will yield the estimate (3.5.4) also for H(w). These "sufficiently good" one-step bounds are
essentially required to accommodate the large number O(N2) of necessary replacements in order to
arrive at H(γ(N)). A key feature of our proof, in contrast to previous applications of the replacement
strategy, is that the error will not always be o(N−2) in each step, but their cumulative size after
summation is still o(1).

The proof of Proposition 3.3.4 is divided in two main parts: At first, in Part (a), Section 3.5.2, we
show the isotropic part of (3.5.4), that is Ψiso

k ≺ 1, via a double induction on the number k ∈N of
traceless matrices and the moment p ∈N taken of Ψiso

k , i.e. E ∣Ψiso
k ∣

p. Thereby, we crucially use that
the ≺-bound is (essentially) equivalent to controlling arbitrarily high moments up to an N ξ-error with
arbitrarily small ξ > 0. Afterwards, in Part (b), Section 3.5.3, using Part (a) as an input, we will
demonstrate Ψav

k ≺ 1 (and thus conclude the proof of Proposition 3.3.4 for Ik+1 = ∅ resp. Ik = ∅) for
every fixed k via a single induction on the moment p. The main reason for this order of the argument
is that the one-by-one replacement in step γ is conducted via resolvent expansion focusing on the
differing matrix entries at positions (i, j) = ϕ−1(γ) and (j, i), and thereby it naturally produces
isotropic quantities (see Lemma 3.5.3 below). Hence, the argument for Ψav

k cannot be self-contained
and must rely on Ψiso

k , which in fact will not involve the averaged local laws at all.

We fix some further notation. We have an initial Wigner matrix H(0) ∶=H(v) and iteratively define

H(γ) ∶=H(γ−1)
−

1
√
N

∆(γ)V +
1
√
N

∆(γ)W , (3.5.7)

a sequence of Wigner matrices for γ ∈ [γ(N)], where we denoted18

∆(γ)V ∶=
√
N
E(ij)(H(v))ij +E

(ji)(H(v))ji

1 + δij
and ∆(γ)W ∶=

√
N
E(ij)(H(w))ij +E

(ji)(H(w))ji

1 + δij
.

(3.5.8)

Here, ϕ((i, j)) = γ and E(ij) denotes the matrix whose matrix elements are zero everywhere except
at position (i, j), i.e. (E(ij))kℓ = δikδjℓ. The denominator 1 + δij is introduced to account for the
factor of two in the numerator occurring for diagonal indices. Note that H(γ) and H(γ−1) differ only
in the (i, j) and (j, i) matrix elements, and they can be written as

H(γ−1)
=Hq

(γ)
+

1
√
N

∆(γ)V and H(γ) =Hq
(γ)
+

1
√
N

∆(γ)W (3.5.9)

with a matrix Hq
(γ)

whose matrix element is zero at the (i, j) and (j, i) positions. Similarly, we
denote the corresponding resolvents at spectral parameter zj ∈C ∖R by

G
(γ)
j ∶= (H(γ) − zj)

−1 , G
(γ−1)
j ∶= (H(γ−1)

− zj)
−1 , and Gq

(γ)
j ∶= (Hq

(γ)
− zj)

−1 . (3.5.10)

Observe that, at each step γ in the replacement procedure, the deterministic approximation to
a resolvent chain involving G(γ) is the same. This is because only the first two moments of the
matrix elements of H(γ) determine this approximation, symbolically denoted by M , via the Matrix
Dyson Equation (MDE), see, e.g., [236]. For a chain in the checked resolvents Gq , the approximating
M is in principle differing from the non-checked ones, simply because the self-energy operator
Sq
(γ)
[R] = E[Hq

(γ)
RHq

(γ)
] associated with Hq

(γ)
is no longer exactly the averaged trace ⟨⋅⟩. However,

since this discrepancy introduces an error of size 1/N in the MDE, which is a stable equation, this
will not be visible in the local laws (3.5.4). Therefore, we shall henceforth ignore this minor point
and shall just define the normalized differences

Ψav,(γ)
k , Ψq

av,(γ)
k , Ψiso,(γ)

k (x,y) , and Ψq
iso,(γ)
k (x,y) ,

18Observe that in this normalization, the non-zero entries of ∆(γ)V and ∆(γ)W are of order one random variables.
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exactly as in (3.5.2)–(3.5.3), but with Gj replaced by G(γ)j and Gq
(γ)
j , respectively. We emphasize

again that the deterministic counterparts in all of the normalized differences are the same.

We can now turn to the actual proof.

3.5.2 Part (a): Proof of the isotropic law
In this first part, we exclusively work with isotropic quantities and we shall hence drop the superscript
iso in the entire Section 3.5.2. As already mentioned above, we shall prove the claim by a double
induction on k and the moment p taken of Ψk, i.e. E ∣Ψk∣

p.

Thereby, the primary induction parameter is k and our goal is to show that, if for some k ∈N we
have

max
γ≤γ(N)

Ψ(γ)k′ + max
γ≤γ(N)

Ψq
(γ)
k′ ≺ 1 , ∀k′ ∈ {0, ..., k − 1} , (3.5.11)

then also
max
γ≤γ(N)

Ψ(γ)k + max
γ≤γ(N)

Ψq
(γ)
k ≺ 1 . (3.5.12)

Within the proof of (3.5.12), for a fixed k, we will then crucially use that the ≺-bound is equivalent
to controlling arbitrarily high moments E ∣Ψk∣

p up to an N ξ-error for an arbitrarily small ξ > 0.
Therefore, we use another secondary induction on the moment p. More precisely, in order to establish
(3.5.12) from (3.5.11), our goal is to show that, for any fixed k ∈N, if for some p ∈N we have that

max
γ≤γ(N)

∥Ψ(γ)k ∥p−1 + max
γ≤γ(N)

∥Ψq
(γ)
k ∥p−1 ≲ N

ξ

for any ξ > 0, then also
max
γ≤γ(N)

∥Ψ(γ)k ∥p + max
γ≤γ(N)

∥Ψq
(γ)
k ∥p ≲ N

ξ (3.5.13)

holds for any ξ > 0, where implicit constants depend on k, p and ξ. Here for a random variable X we
used the definition ∥X∥

p
∶= [E ∣X ∣p]1/p.

To summarize, as the induction hypothesis, given some arbitrary fixed p, k ∈N, we will assume that

max
γ≤γ(N)

Ψ(γ)k′ + max
γ≤γ(N)

Ψq
(γ)
k′ ≺ 1 and max

γ≤γ(N)
∥Ψ(γ)k ∥p−1 + max

γ≤γ(N)
∥Ψq
(γ)
k ∥p−1 ≤ Ck,p,ξN

ξ (3.5.14)

hold uniformly for all k′ ∈ {0, ..., k − 1} and ξ > 0 with an appropriate N -independent constant. Then
we will conclude (3.5.13).

The overall base case (k = 1, p = 1) is easy to verify: it solely consists of the usual isotropic law
(the first estimate in (3.5.14) for k′ = 0) and the trivial bound E ∣Ψ1∣

0 = 1 (the second estimate in
(3.5.14) for k = 1 and p = 1).

We start with two arbitrary but fixed bounded deterministic vectors ∥x∥, ∥y∥ ≲ 1 and introduce the
set

Ixy ∶= {x,y} ∪ {ea ∶ a ∈ [N]} ⊂CN (3.5.15)

of vectors, which will naturally arise along the argument (see (3.5.32) below), where ea denotes the
standard basis vector in the coordinate direction a. Note that the cardinality of Ixy is N + 2. After
defining19

Ωp
k(γ) ∶= max

u,v∈Ixy

∥Ψ(γ)k (u,v)∥
p
p (3.5.16)

(we omitted the dependence on x,y in the notation, as they are considered fixed along the whole
argument), the principal goal of the induction step is to prove the following proposition.

19Here, p is a superscript, not a power.
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3. Eigenstate thermalisation at the edge for Wigner matrices

Proposition 3.5.2 (Gronwall estimate). Fix p, k ∈ N and assume (3.5.14) holds. Then, for any
ξ > 0, there exist some constants C1,C2 > 0 (depending on p, k, and ξ, but independent of N , x,
and y) such that

Ωp
k(γ0) ≤ C1

1
N2 ∑

γ<γ0

Ωp
k(γ) +C2N

ξ (3.5.17)

for every γ0 ∈ [γ(N)].

Note that (3.5.17) is a discrete Gronwall inequality for Ωp
k(γ). Hence, having Proposition 3.5.2 at

hand (note that, in particular, Ωp
k(0) ≤ C2N

ξ), we obtain

max
γ≤γ(N)

Ωp
k(γ) ≤ C2eC1N ξ

≤ C3(k, p, ξ)N
ξ , (3.5.18)

uniformly in x and y and all choices of spectral parameters and traceless deterministic matrices,
which then implies the Ψ-part of (3.5.13). In the next subsections we present auxiliary results
necessary for the proof of Proposition 3.5.2 which will then be concluded in Section 3.5.2.5. The
Ψq -part of (3.5.13) and thus the induction step will finally be completed in Section 3.5.2.6.

In order to simplify notation, we shall henceforth drop the subscripts for all resolvents and deterministic
matrices, i.e. write Gj = G and Aj = A instead.

3.5.2.1 Preliminaries

The fundamental building block of our proof is the following elementary lemma on resolvent expansion.
Note that we need to express G(γ−1),G(γ) in terms of the "unperturbed" resolvent Gq

(γ)
of Hq

(γ)

that has zero elements in the γ-th position, and conversely, we need to express Gq
(γ)

in terms of
both "perturbed" resolvents using ∆(γ)V and ∆(γ)W from (3.5.8) as perturbations, see (3.5.10). We
work with finite resolvent expansions up to some order m, independent of N , to be determined later.
The last term therefore always contains the original resolvent as well and it will have to be estimated
deterministically by its norm but if m is large enough this will be affordable.

Lemma 3.5.3 (Resolvent expansions). For every fixed m ∈N, it holds that

Gq
(γ)
=
m

∑
ℓ=0
N−ℓ/2(G(γ)∆(γ)W )

ℓ
G(γ) +N−(m+1)/2(G(γ)∆(γ)W )

m+1
Gq
(γ)

(3.5.19a)

and

G(γ) =
m

∑
ℓ=0
(−1)ℓN−ℓ/2(Gq

(γ)
∆(γ)W )

ℓ
Gq
(γ)
+ (−1)(m+1)N−(m+1)/2(Gq

(γ)
∆(γ)W )

m+1
G(γ) . (3.5.19b)

These relations also hold verbatim when replacing G(γ) → G(γ−1) and ∆(γ)W →∆(γ)V .

We now expand each G(γ) in

∣Ψ(γ)k (x,y)∣
p
= (

Nη

ρ
)

p/2
N−pk/2∣((G(γ)A)kG(γ) −M[1,k+1])xy

∣
p (3.5.20)

and each G(γ−1) in

∣Ψ(γ−1)
k (x,y)∣

p
= (

Nη

ρ
)

p/2
N−pk/2∣((G(γ−1)A)kG(γ−1)

−M[1,k+1])xy
∣
p (3.5.21)

according to (3.5.19b) (for some m ≥ 4 to be determined below, depending on p and k; see (3.5.49))
and sort the resulting terms by their power r = 0,1,2, ... of N−1/2. Then we take the expectation
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with respect to wij and vij , respectively (recall that ϕ((i, j)) = γ), and use the moment matching
condition (3.3.12). As a result, we find that the terms with a prefactor N−r/2 for r = 0,1,2,3 are
algebraically exactly the same for both (3.5.20) and (3.5.21). The conclusion of this argument is
formalized in the following lemma.

Lemma 3.5.4. For any fixed (i, j) ∈ [N]2 with i ≤ j and γ = ϕ(i, j) we have that

Ewij
∣Ψ(γ)k (x,y)∣

p
=

3
∑
r=0

N−r/2α
(γ)
k,r (x,y)∣Ψq

(γ)
k (x,y)∣

p−r
+ higher order terms (3.5.22)

Evij
∣Ψ(γ−1)
k (x,y)∣

p
=

3
∑
r=0

N−r/2α
(γ)
k,r (x,y)∣Ψq

(γ)
k (x,y)∣

p−r
+ higher order terms (3.5.23)

for some identical coefficients α(γ)k,r (x,y) independent of vij and wij whose precise values are (mostly)
irrelevant. Here "higher order terms" denote terms with prefactor N−r/2 with r ≥ 4.

In the following Sections 3.5.2.2–3.5.2.4, preparing the conclusion of the proof of Proposition 3.5.2
in Section 3.5.2.5, we will discuss the higher order terms in (3.5.22) and (3.5.23). These have to be
estimated individually by size when we will consider the difference of (3.5.22) and (3.5.23). Recall
that, we will eventually compare Ψ(0)k (x,y) and Ψ(γ(N))k (x,y) in γ(N) = O(N2) many steps, which
is why the higher order terms must all be bounded by 1/N2, roughly said. More precisely, we will
use the following telescopic summation: For every γ0 ∈ [γ(N)], it holds that

∣∥Ψ(γ0)
k (x,y)∥pp − ∥Ψ

(0)
k (x,y)∥

p
p∣ ≤ ∑

1≤γ≤γ0

∣∥Ψ(γ)k (x,y)∥
p
p − ∥Ψ

(γ−1)
k (x,y)∥pp∣ . (3.5.24)

In the next Section 3.5.2.2, we will explain the term with r = 4 in Lemma 3.5.4, i.e. with N−2-
prefactor, in detail. All other higher order terms with r ≥ 5 but still involving only the resolvent Gq

(γ)

are completely analogous, in fact easier (see Section 3.5.2.3 later for some detail). Afterwards, in
Section 3.5.2.4, we will discuss, how the maximal order m of the resolvent expansion (3.5.19b) has
to be chosen in order to accommodate the remainder term involving a non-checked resolvent G(γ)
(resp. G(γ−1)).

Throughout the following argument we shall focus on the higher order terms in (3.5.22), the treatment
of (3.5.23) is exactly the same. Whenever it does not lead to confusion, we shall henceforth drop
the superscript γ.

3.5.2.2 Fourth order terms in Lemma 3.5.4

The goal of the current Section 3.5.2.2 is to show that the terms of order r = 4 arising in the
telescopic summation (3.5.24) can be bounded by the rhs. of (3.5.17).

In the following, we denote (cf. (3.5.8))

∆ =∆(γ) = E
(ij) +E(ji)

1 + δij
(3.5.25)

and find, similarly to (3.5.8), after taking the full expectation, the r = 4 (i.e. 1/N2) prefactor of the
higher order terms in (3.5.22) to be bounded by (a constant times)

E
4∧p
∑
d=1
∣Ψqk(x,y)∣

p−d
(
Nη

ρ
)

d/2
N−dk/2 ∑

4∆↝d
∣ (...∆...∆...)

xy
. . . (...∆...)

xy
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

four ∆ in a total d chains

∣ . (3.5.26)
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3. Eigenstate thermalisation at the edge for Wigner matrices

Here d counts the number of formerly "intact" resolvent chains ((GqA)kGq)
xy

, which have been
‘destroyed’ by at least one replacement Gq → Gq∆Gq due to the expansion (3.5.19b). The symbol

∑
4∆↝d

(3.5.27)

indicates that we sum over all possibilities to destroy exactly d chains by four ∆’s. Note that a chain
may be "destroyed" by more than one ∆, therefore d may be less than four. After using the explicit
form of ∆, altogether we arrive at a finite sum of 4 + d chains.

Example 3.5.5. For example, for d = 1 we have that

∑
4∆↝1

∣(...∆...∆...∆...∆...)
xy
∣

= ∑
k1,...,k5≥0∶
∑l kl=k

∣((GqA)k1Gq∆(GqA)k2Gq∆(GqA)k3Gq∆(GqA)k4Gq∆(GqA)k5Gq)
xy
∣

= ∑
k1,...,k5≥0∶
∑l kl=k

[∣((GqA)k1Gq)
xei
((GqA)k2Gq)

ejej
((GqA)k3Gq)

eiei
((GqA)k4Gq)

ejej
((GqA)k5Gq)

eiy
∣ + ...]

(3.5.28)

with the neglected summands being analogous, only having different distributions of ei and ej
occurring, which can be produced by the structure of ∆.

For general d, in each of the 4 + d resolvent chains in the rhs. of (3.5.26), we now add and subtract
the corresponding deterministic M -term, (GqA)kGq = ((GqA)kGq −Mk+1) +Mk+1 (see also (3.5.33)
below), schematically written as G = (G −M) +M . In the sequel, we will distinguish the following
two complementary cases:

Case (i): At least d of the d + 4 resolvent chains are replaced by their fluctuating part, G −M .

Case (ii): At least five of the d + 4 resolvent chains are replaced by their deterministic counterpart, M .

Case (i): In case (i), we first separate those possibilities from (3.5.27), where the destruction of the
d chains ((GqA)kGq)

xy
in fact preserves d resolvent chains each with k traceless matrices A, but

with deterministic vectors, which are not x and y. This happens when all four ∆’s are placed at the
ends of the chains. For example, if d = 1, we separate these possibilities as

Gq xeiG
q

ejejG
q

eieiG
q

ejej
((GqA)kGq)

eiy
+ ... or

Gq xeiG
q

ejej
((GqA)kGq)

eiei
Gq ejejG

q

eiy + ... .
(3.5.29)

In the following, we shall focus on the first exemplary term in (3.5.29). Its fluctuating part

((GqA)kGq −M[1,k+1])eiy
(3.5.30)

can then be paired with the leftover (Nη/ρ)1/2N−k/2 in (3.5.26) and thereby produces a further full
∣Ψq
(γ)
k (ej ,y)∣; the remaining terms coming from a single resolvent in (3.5.29) are simply estimated

by one,
∣Gq uv ∣ ≺ 1 , u,v ∈ Ixy cf. (3.5.15) , (3.5.31)
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by the usual isotropic law (3.5.5). All these terms stemming from (3.5.26) and constituting a full
∣Ψq
(γ)
k ∣ (or ∣Ψq

(γ)
k ∣

d for general d ∈ [4 ∧ p]) can then be estimated by

Ωq
p

k(γ) ∶= max
u,v∈Ixy

∥Ψq
(γ)
k (u,v)∥

p
p . (3.5.32)

Now, after having separated the possibilities from (3.5.27), where the destruction preserves d resolvent
chains with k deterministic matrices in between, we are left with those which solely create strictly
shorter chains by the procedure 4∆ ↝ d. These terms can entirely be treated by our induction
hypothesis (3.5.14): The power of Ψq

(γ)
k has been reduced by (at least) one (cf. the second estimate

in (3.5.14)) and Ψq
(γ)
k′ +Ψ(γ)k′ ≺ 1 uniformly in γ for strictly shorter chains, k′ < k, has already been

shown (first estimate in (3.5.14)).

Example 3.5.6. Writing
Mj−i+1 ≡M[i,j] for 1 ≤ i < j ≤ k + 1 , (3.5.33)

with a slight abuse of notation, we estimate the d = 1 term in (3.5.26) (after having split off the
cases when one of the kl’s equals k and all others are zero in (3.5.29)) as

E∣Ψqk(x,y)∣
p−1
(
Nη

ρ
)

1/2
N−k/2×

× ∑
0≤kl≤k−1∶
∑l kl=k

[∣((GqA)k1Gq −Mk1+1)xei
(Mk2+1)ejej

(Mk3+1)eiei
(Mk4+1)ejej

(Mk5+1)eiy
∣

+ ∣((GqA)k1Gq −Mk1+1)xei
((GqA)k2Gq −Mk2+1)ejej

(Mk3+1)eiei
(Mk4+1)ejej

(Mk5+1)eiy
∣ + ...]

≲N ξ
(
Nη

ρ
)

1/2
N−k/2 ∑

0≤kl≤k−1∶
∑l kl=k

[(
ρ

Nη
)

1/2
N∑l kl/2 + (

ρ

Nη
)N∑l kl/2 + ...] ≲ N ξ ,

(3.5.34)

where analogous summands (i.e. having further G −M factors instead of M , or other arrangements
of standard basis vectors ei,ej stemming from (3.5.25)) are again indicated by dots. In the first
estimate, we used that ∣(Mj+1)uv ∣ ≲ N

j/2 for all u,v ∈ Ix,y from Lemma 3.2.3 (b) together with the
induction hypothesis (3.5.14).

In the general case, d ≥ 1, the argument works analogously to the above example: The minimal
number of d fluctuating terms carrying an (ρ/Nη)1/2-factor cancel the leftover (Nη/ρ)d/2-factor in
(3.5.26). The remaining Nkl/2-factors can then be handled by a simple power counting.

Overall, we find that, all the terms in (3.5.26) summarized in Case (i), can be bounded by

C1Ωq
p

k(γ) +C2N
ξ (3.5.35)

for some positive constants C1,C2 > 0, which shall henceforth be used generically, i.e. their value
might change from line to line (but remain uniformly bounded in γ).

Case (ii): For the second case, we recall that all the purely deterministic terms are independent
of γ, i.e., as emphasized above, at each replacement step the deterministic approximation to a
resolvent chain is the same. However, it is not sufficient to just estimate every M -term blindly via
∣(Mj+1)uv ∣ ≲ N

j/2, as done in (3.5.34). Instead, we need to gain from the summation in (3.5.24)
over all replacement positions. This is the main new element of our proof compared with previous
GFT arguments.
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Example 3.5.7. We again look at our d = 1 example. Using the notation (3.5.33), we find the trivial
estimate

E ∣Ψqk(x,y)∣
p−1
(
Nη

ρ
)

1/2
N−k/2 ∑

0≤kl≤k∶
∑l kl=k

[∣(Mk1+1)xei
(Mk2+1)ejej

(Mk3+1)eiei
(Mk4+1)ejej

(Mk5+1)eiy
∣ + ...]

≲N ξ
(
Nη

ρ
)

1/2
N−k/2 ∑

0≤kl≤k∶
∑l kl=k

[N∑l kl/2 + ...] ≲ N ξ
(
Nη

ρ
)

1/2
,

(3.5.36)

where we again used the induction hypothesis (3.5.14) and ∣(Mj+1)uv ∣ ≲ N
j/2. This bound is off by

a factor (Nη/ρ)1/2, which we will now improve on.

Indeed, the point in gaining from the summation is that, although at each individual step γ, the
deterministic terms in (3.5.36) might be large, on average over γ their contribution is bounded.
More precisely, fixing one constellation of kl’s in (3.5.36) and using E ∣Ψqk∣

p−1
≲ N ξ , we find the

average of the first line in (3.5.36) over all i, j ∈ [N] to be bounded by (a constant times)

N ξ
(
Nη

ρ
)

1/2
N−k/2

1
N2 ∑

i,j

[∣(Mk1+1)xei
(Mk2+1)ejej

(Mk3+1)eiei
(Mk4+1)ejej

(Mk5+1)eiy
∣ + ...]

≲N ξ
(
Nη

ρ
)

1/2 1
N2 ∑

i,j

⎡
⎢
⎢
⎢
⎣

∣(Mk1+1)xei
∣

Nk1/2
+ ...
⎤
⎥
⎥
⎥
⎦

≲N ξ
(
Nη

ρ
)

1/2 1
N

√
N

⎡
⎢
⎢
⎢
⎢
⎢
⎣

√
(∣Mk1+1∣2)xx

Nk1/2
+ ...

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≲ N ξ
(
η

ρ
)

1/2
≲ N ξ .

(3.5.37)

To go from the first to the second line, we used ∣(Mj+1)uv ∣ ≲ N
j/2 for all but the first M factor. Next,

we used a Schwarz inequality for the i-summation, which involves the off-diagonal term (Mk1+1)xei :

∑
i

∣(Mk1+1)xei
∣ ≤
√
N (∑

i

∣(Mk1+1)xei
∣
2
)

1/2
≤
√
N
√

(∣Mk1+1∣2)xx
. (3.5.38)

In the penultimate estimate, we used that
√

(∣Mj+1∣2)uu
≲ N j/2 , (3.5.39)

as follows from the fact that N j/2 is in fact the operator norm bound for Mj+1, and the final estimate
in (3.5.37) simply used the general fact η/ρ ≲ 1.

We point out that we even could have gained another 1/
√
N -factor from the i-summation by not

estimating (Mk5+1)eiy
trivially by Nk5/2 but using

∑
i

∣(Mk1+1)xei
(Mk5+1)eiy

∣ ≤ (∑
i

∣(Mk1+1)xei
∣
2
)

1/2
(∑
i

∣(Mk5+1)eiy ∣
2
)

1/2

≤

√

(∣Mk1+1∣2)xx

√

(∣Mk5+1∣2)yy
.

(3.5.40)

instead of (3.5.38). However, we do not need this additional factor 1/
√
N here. Finally, note that

the j-summation in (3.5.37) would have been useless, since the j-terms are diagonal. The summation
gain is effective only for off-diagonal terms as in (3.5.38).
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The above example indicates the following general mechanism: After estimating all the G −M -type
terms with the aid of the induction hypothesis (3.5.14), and estimating the M -factors just trivially
by their size, we are left with an excess (Nη/ρ)u/2-factor, for some u ∈ [4]. In order to remove this
leftover factor, we need at least u (collectively) summable bounded M -terms like

∣(Mk1+1)xei
∣

Nk1/2
(3.5.41)

in (3.5.37) (see also (3.5.39)). In fact, each of these collectively summable factors will gain one
1/
√
N compared to the trivial estimate, like the one in (3.5.36). Here, the notion "collective" refers

to particular index structures, which allow an effective summation. Denoting terms like (3.5.41)
symbolically by Mxei for brevity, by (collectively) summable bounded M -terms we mean the following
possible index structures

u = 1 ∶ ∑
i,j

∣Mxei ∣ or ∑
i,j

∣Mejy ∣ or ...

u = 2 ∶ ∑
i,j

∣Mxei ∣∣Mejy ∣ or ∑
i,j

∣Mxei ∣∣Meiy ∣ or ...

u = 3 ∶ ∑
i,j

∣Mxei ∣∣Meiy ∣∣Mejy ∣ or ∑
i,j

∣Mxei ∣∣Mejy ∣
2 or ...

u = 4 ∶ ∑
i,j

∣Mxei ∣∣Mxej ∣∣Meiy ∣∣Mejy ∣ or ∑
i,j

∣Mxei ∣
2
∣Mejy ∣

2 or ...

(3.5.42)

where dots are always indicating other similar terms, obtained from trivial exchanges x↔ y or i↔ j.

In principle, every summation over i and j potentially gains a full 1/N -factor each – provided that
there are enough M ’s with suitable indices as in (3.5.42). The existence of u collectively summable
bounded M -terms then ensures that of this potential 1/N2-improvement at least a 1/Nu/2-gain is
effective. More precisely, as an example, for the first column of terms in (3.5.42) we have that

u = 1 ∶ ∑
i,j

∣Mxei ∣ ≤ N
3/2
(∑
i

∣Mxei ∣
2
)

1/2
≲ N2−1/2

u = 2 ∶ ∑
i,j

∣Mxei ∣∣Mejy ∣ ≤ N (∑
i

∣Mxei ∣
2
)

1/2
⎛

⎝
∑
j

∣Mejy ∣
2⎞

⎠

1/2

≲ N2−2/2

u = 3 ∶ ∑
i,j

∣Mxei ∣∣Meiy ∣∣Mejy ∣

≤ N1/2
(∑
i

∣Mxei ∣
2
)

1/2
(∑
i

∣Meiy ∣
2
)

1/2
⎛

⎝
∑
j

∣Mejy ∣
2⎞

⎠

1/2

≲ N2−3/2

u = 4 ∶ ∑
i,j

∣Mxei ∣∣Mxej ∣∣Meiy ∣∣Mejy ∣

≤ (∑
i

∣Mxei ∣
2
)

1/2
(∑
i

∣Meiy ∣
2
)

1/2
⎛

⎝
∑
j

∣Mejy ∣
2⎞

⎠

1/2
⎛

⎝
∑
j

∣Mxej ∣
2⎞

⎠

1/2

≲ N2−4/2

(3.5.43)

by application of Schwarz inequalities like in (3.5.38)–(3.5.40) and using that ∥M∥ ≲ 1. We point
out that the η/ρ ≤ 1 factor within each excess (Nη/ρ)1/2 would not be able to compensate for excess
N -factors; but the gains from the summation are obtained solely on the level of N ’s.

It follows from a simple counting argument (or simply by considering all cases directly), that for any
u ∈ [4], we find an appropriately summable index structure within the at least five purely deterministic
terms, as in (3.5.42)–(3.5.43). Hence, we deduce that

(3.5.26) ≤ C1Ωq
p

k(γ) +C2N
ξ
(1 +

4
∑
u=1
(
Nη

ρ
)

u/2
∣[u sum. bdd.M -terms](γ)

x,y
∣ ) , (3.5.44)
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where
[u sum. bdd.M -terms](γ)

x,y
(3.5.45)

stands symbolically for a product of u collectively summable bounded deterministic terms, like
(3.5.41), for which we have just shown the following.

Lemma 3.5.8. It holds that

∑
γ∈[γ(N)]

∣[u sum. bdd.M -terms](γ)
x,y
∣ ≲ N2−u/2 . (3.5.46)

Combining (3.5.44) with (3.5.46), this concludes the argument for the fourth order terms in (3.5.22).

3.5.2.3 Further higher order terms in Lemma 3.5.4

Just as in the previous Section 3.5.2.2, the goal of the current Section 3.5.2.3 is to show that the
terms of order r ≥ 5 arising in the telescopic summation (3.5.24) can be bounded by the rhs. of
(3.5.17).

For these other higher order terms in (3.5.22) with r ≥ 5 and involving only Gq (and not G), the two
cases distinguished above for r = 4 generalize to the following.

Case (i’): At least d of the d + r resolvent chains are replaced by their fluctuating part, G −M .

Case (ii’): At least r + 1 of the d + r resolvent chains are replaced by their deterministic counterpart, M .

For Case (i’), we separate a 1/N2-prefactor and find that the remaining part can be estimated by

C1N
−(r−4)/2Ωq

p

k(γ) +C2N
ξN−(r−4)/2 , (3.5.47)

completely analogously to (3.5.35). In fact, we gain an additional N−(r−4)/2 ≪ 1 factor in both
terms. This reflects the idea that more G−M terms are better because their presumed bounds carry
a factor (ρ/Nη)1/2 (encoded in the prefactor (Nη/ρ)1/2 in the definition of Ψiso

k in (3.5.3)).

For Case (ii’), we include the additional N−(r−4)/2 (after having separated a 1/N2-prefactor) into
our counting of the leftover (Nη/ρ)u/2-factor (recall the discussion below (3.5.41)). In this way, we
find that the maximal number of such leftover factors is r − (r − 4) = 4. Hence, for every u ∈ [4], we
find an appropriately summable index structure, completely analogously to (3.5.42), and deduce that
(leaving out the separated 1/N2-prefactor)

rth order term in (3.5.22)

≤ C1N
−(r−4)/2Ωq

p

k(γ) +C2N
ξ
(N−(r−4)/2

+
4
∑
u=1
(
Nη

ρ
)

u/2
∣[u sum. bdd.M -terms](γ)

x,y
∣ ) ,

(3.5.48)

which can be directly incorporated into (3.5.44) after adjusting the constants. Note that while the
contributions form Case (i’) improve by larger r, the terms from Case (ii’) that carry many M -factors,
do not.

Combining (3.5.48) with (3.5.46), this concludes the argument for the higher order terms in (3.5.22).
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3.5.2.4 Truncation of the resolvent expansion

It remains to discuss the truncation terms, which involve not only Gq , but also G, i.e. the order
m ∈N for the truncation of the resolvent expansion (3.5.19b). Also here, our goal is to show that
the contribution of these terms arising in the telescopic summation (3.5.24) can be bounded by
the rhs. of (3.5.17). After expanding each resolvent in (3.5.20) via (3.5.19b), for every fixed q ≥ 1,
we collect those terms which contain the final summand in (3.5.19b) (the truncation term), and
hence G exactly q times. For these terms with q ≥ 1 fixed, we then proceed as follows: Estimate
those chains within the truncation term in which G appears trivially by norm, ∥G∥ ≤ 1/η (note that
there are at most k + 1 resolvents in such chains and we can afford estimating all of them by 1/η
not just the last one G) and use ∥A∥ ≤

√
N⟨∣A∣2⟩1/2 (recall that we assumed ⟨∣A∣2⟩1/2 = 1 around

(3.5.2)–(3.5.3)), and treat the other factors by our induction hypothesis (3.5.14) (resulting in an
N ξ factor).

In this way, we conclude the estimate

[q truncation terms] ≲ N ξ (Nη/ρ)
p/2

(N
m+1

2 )
q (

Nk/2

ηk+1 )

q

=
N ξ

N2q
1

Np(q−1)/2 (
η

ρ
)
p/2 1
(Nη)(k+1)q ≲

N ξ

N2

(3.5.49)
when choosing m = p + 3k + 5, where in the last step we used that η/ρ ≲ 1 and Nη ≫ 1. We remark
that (Nη/ρ)p/2 in (3.5.49) comes from the prefactor of Ψk, (N

m+1
2 )
−q from the cumulant order of

the truncation terms and (Nk/2/ηk+1)
q from the trivial bounds.

3.5.2.5 Proof of Proposition 3.5.2

As mentioned above (3.5.25), the treatment of the higher order terms in (3.5.23) is identical to our
discussion above. Therefore, summarizing Sections 3.5.2.2–3.5.2.4, we have proven the following.

Lemma 3.5.9. Fix p, k ∈ N and assume that the induction hypothesis (3.5.14) holds. Then, for
every γ ∈ [γ(N)], we have that

∣∥Ψ(γ)k (x,y)∥
p
p − ∥Ψ

(γ−1)
k (x,y)∥pp∣ ≤

C1
N2 Ωq

p

k(γ)+C2
N ξ

N2(1+
4
∑
u=1
(
Nη

ρ
)

u/2
∣[u sum. bdd.M -terms](γ)

x,y
∣ ) ,

where [u sum. bdd.M -terms](γ)
x,y

is understood as explained below (3.5.45).

Next, employing the telescopic summation from (3.5.24) we find that

∥Ψ(γ0)
k (x,y)∥pp ≤ C1

1
N2 ∑

γ<γ0

Ωq
p

k(γ) +C2N
ξ
+
N ξ

N2 ∑
γ<γ0

(
4
∑
u=1
(
Nη

ρ
)

u/2
∣[u sum. bdd.M -terms](γ)

x,y
∣ )

(3.5.50)
after having absorbed ∥Ψ(0)k (x,y)∥

p
p into C2N

ξ by our initial assumption that we have multi-resolvent
local laws (3.5.4) for the Wigner matrix H(v) =H(0). We are left with discussing the first and last
term on the rhs. of (3.5.50).

For the first term, we rely on the following lemma, which says that, in particular, we can replace
each Ωq

p

k(γ) in (3.5.50) by Ωp
k(γ), absorbing the additional error into C2.

Lemma 3.5.10. Fix p, k ∈N. Then, for every fixed γ ∈ [γ(N)], the expressions (recall (3.5.32))

Ωp
k(γ) , Ωp

k(γ − 1) , and Ωq
p

k(γ)

are comparable up to an additive error of order N ξ for arbitrarily small ξ > 0.
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Proof. We give a sketch of the simple argument based on Lemma 3.5.9 in combination with
Lemma 3.5.4: Similarly to the proof of Lemma 3.5.9, we first expand G(γ) (resp. G(γ−1)) in
∥Ψ(γ)k (x,y)∥

p
p (resp. ∥Ψ(γ−1)

k (x,y)∥pp) by means of (3.5.19b) and realize that α(γ)k,0 (x,y) = 1 in
(3.5.22)–(3.5.23). The various terms arising in the expansion (now for all r ≥ 1 and not only for
r ≥ 4) are dealt with as explained in Sections 3.5.2.2–3.5.2.4.

However, there is a major simplification, since we do not need to gain from the summation as in
Case (ii) in Section 3.5.2.2: The maximal excess power u of the leftover (Nη/ρ)1/2-factor is bounded
by the order r of the expansions in (3.5.22)–(3.5.23) (simply because at order r, there are at most
d = r destroyed resolvent chains), such that the characteristic 1/N r/2-factor at order r balances this
excess. Finally, we take a maximum over all u,v ∈ Ix,y for all ∥Ψq

(γ)
k (u,v)∥

p
p arising through the

expansion (see (3.5.32)).

This finishes the sketch of the proof of Lemma 3.5.10.

For the last term in (3.5.50), we extend the summation ∑γ<γ0 to all indices i, j ∈ [N]; it is an upper
bound as we only sum positive terms. Then, for every fixed u ∈ [4], we need to gain from this
summation of [u sum. bdd.M -terms](γ)

x,y
over all γ ∈ [γ(N)] precisely N−u/2 compared to the naive

N2-size of the summation. This was achieved in Lemma 3.5.8 by the index structure (3.5.42) of the
factors and application of several Schwarz inequalities (3.5.43).

Hence, combining (3.5.50) with Lemma 3.5.10 and Lemma 3.5.8, we find that

∥Ψ(γ0)
k (x,y)∥pp ≤ C1

1
N2 ∑

γ<γ0

Ωp
k(γ) +C2N

ξ .

Since the rhs. is independent of the elements in Ixy (recall (3.5.32)), we can as well maximize over
those on the lhs. and arrive at Proposition 3.5.2.

3.5.2.6 Conclusion of the induction step

Having Proposition 3.5.2 and hence (3.5.18) at hand, we can immediately deduce

max
γ≤γ(N)

Ωq
p

k(γ) ≲ N
ξ

from Lemma 3.5.10 above. This proves the Ψq -part of (3.5.13) and thus finishes the induction step.

Therefore, using uniformity of this bound, we conclude the proof of the isotropic multi-resolvent
local laws (3.3.14).

3.5.3 Part (b): Proof of the averaged law.
The general idea of the proof of the averaged law is exactly the same as in the previous section:
We replace all matrix elements one-by-one in γ(N) ∼ N2 steps and sum up the changes over all
positions γ ∈ [γ(N)] (cf. (3.5.24)). However, there are a several (minor) differences in the averaged
case compared to Section 3.5.2, which we will explain in the following.

Since both, averaged and isotropic normalized differences, (3.5.2) and (3.5.3), appear, we shall
henceforth reintroduce the superscripts av and iso. Moreover, contrary to the isotropic proof, in
this part it is sufficient to consider an arbitrary fixed k ∈N and perform a single induction on the
moment p taken of Ψav

k , i.e. E ∣Ψav
k ∣

p = ∥Ψav
k ∥

p
p. We point out that the induction on k used in the

previous section is not needed, because the proof of the isotropic laws has already been concluded
(see (3.5.53) later). Hence, as the induction hypothesis, we will assume that

max
γ≤γ(N)

∥Ψav,(γ)
k ∥p−1 + max

γ≤γ(N)
∥Ψq

av,(γ)
k ∥p−1 ≲ N

ξ (3.5.51)
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holds uniformly in traceless matrices for all ξ > 0, and our goal is to prove the same relation with p
replacing p − 1. The base case is thus simply the trivial bound (p = 1) given by E ∣Ψav

k ∣
0 = 1. To

ease notation, just as in Section 3.5.2, we will drop the subscripts for all resolvents and deterministic
matrices, i.e. write Gj = G and Aj = A instead. Moreover, whenever it does not lead to confusion,
we will drop all further sub- and superscripts.

Completely analogously to Section 3.5.2, we use resolvent expansions from Lemma 3.5.3 to prove
the exact agreement of the orders r ∈ {0,1,2,3} as in Lemma 3.5.4. For the higher order terms
(again focusing on the most critical fourth order ones, see Section 3.5.2.2), we argue completely
analogously to (3.5.26), but now we have an additional effect: Whenever an intact averaged chain
gets destroyed by a replacement G→ G∆G from a derivative, we obtain (a sum of) isotropic chains
with a 1/N prefactor from the normalization of the trace, i.e.

⟨(GA)k⟩Ð→ ⟨G∆(GA)k⟩ = 1
N
((GA)kG)

eiej
+

1
N
((GA)kG)

ejei
. (3.5.52)

In this way, the analogue of (3.5.26) reads

E
4∧p
∑
d=1
∣Ψq

av
k (x,y)∣

p−d
(
Nη

ρ
)

d/2
N−d(k/2−1) 1

Nd ∑
(4−d)∆↝d

∣ (...∆...∆...)
eiej
⋅ ... ⋅ (...∆...)

ejei

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(4−d)∆ in a total d iso chains

∣ ,

(3.5.53)
where the isotropic chains referred to in (3.5.53), are precisely those obtained in (3.5.52). In particular,
one ∆ has already been "used" for each destroyed averaged chain, hence only (4 − d) ∆’s are placed
in the isotropic chains (recall (3.5.27)). Observe that, after writing N−d(k/2−1)/Nd = N−dk/2, beside
from the unit vectors in the isotropic chains, the structure of (3.5.53) is exactly the same for (3.5.26).

Next, in each of the resulting four resolvent chains in the rhs. of (3.5.53), as before we add and
subtract the corresponding M -term, again schematically written as G = (G−M)+M . Exactly as in
the previous section, we have to distinguish two cases.

Case (i): At least d of the 4 resolvent chains are replaced by their fluctuating part, G −M .

Case (ii): At least 5 − d of the 4 resolvent chains are replaced by their deterministic counterpart, M .

Case (i): First, we note that, since there are only strictly lower moments of Ψav
k appearing in (3.5.53)

after the resolvent expansion, we can directly employ the induction hypothesis (3.5.51), i.e. there is no
possibility of preserving the destroyed chains unlike in (3.5.29). Therefore, by additionally applying the
already established isotropic laws from the previous section in combination with ∣(Mj+1)uv ∣ ≲ N

j/2

(recall also (3.5.33)), we find that

Case (i) terms of (3.5.53) ≲ N ξ
4∧p
∑
d=1
(
Nη

ρ
)

d/2
N−dk/2 [Ndk/2

(
ρ

Nη
)
d/2
+ ...] ≲ N ξ , (3.5.54)

indicating terms with more than d factors of G −M by dots. This concludes the discussion of Case
(i).

Case (ii): For the second case, we again recall that all purely deterministic terms are independent of
the replacement step γ. Moreover, completely analogously to Case (ii) in Section 3.5.2.2, it is not
sufficient to just estimate every isotropic M -term blindly – instead we again need to gain from the
summation over all replacement positions. We again illustrate this by an example.
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Example 3.5.11. We first consider d = 1 and use the notation (3.5.33). Then, by means of the
induction hypothesis (3.5.51), we have the trivial estimate

E ∣Ψq
av
k (x,y)∣

p−1
(
Nη

ρ
)

1/2
N−k/2 ∑

0≤kl≤k∶
∑l kl=k

[∣(Mk1+1)eiei
(Mk2+1)ejej

(Mk3+1)eiei
(Mk4+1)ejej

∣ + ...]

≲N ξ
(
Nη

ρ
)

1/2
N−k/2 ∑

0≤kl≤k∶
∑l kl=k

[N∑l kl/2 + ...] ≲ N ξ
(
Nη

ρ
)

1/2
,

(3.5.55)

analogously to (3.5.36). Again, this bound is off by a factor (Nη/ρ)1/2, which can be improved on
by averaging over all replacement position.
Compared to the isotropic case, we can no longer gain from summing over off-diagonal terms of the
form Mxei . Instead, now we sum over squares of terms of the form Meiei and estimate it by

∑
i

∣Meiei
∣
2
≤∑
i,j

∣Meiej
∣
2
≤∑

i

(∣M ∣2)
eiei
= N⟨∣M ∣2⟩ , (3.5.56)

similarly to (3.5.38)–(3.5.40). Note that (3.5.56) is better than the trivial bound, which would give
N∥M∥2. The key for exploiting this improvement is the following lemma, the proof of which is given
in Appendix 3.A.

Lemma 3.5.12. Using the assumptions and notations from Lemma 3.2.3 and the normalization
⟨∣Ai∣

2⟩ = 1, we have that

⟨∣M(z1,A1, ...,Ak, zk+1; Ik+1)∣
2
⟩ ≲ Nk ⎛

⎝
∏
i∈Ik+1

ρi
⎞

⎠

2 ⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝

maxi∈[k+1] (ρi + 1(i ∉ Ik+1))

Nℓ

⎞

⎠

2

∨
1
N

⎤
⎥
⎥
⎥
⎥
⎦

.

(3.5.57)

Applying (3.5.57) for k = kl and Ikl+1 = ∅ (recall (3.2.10), (3.2.15), and (3.5.33)), we see the
bound

⟨∣Mkl+1∣
2
⟩ ≲ Nkl [(

ρ

Nη
)

2
∨

1
N
] . (3.5.58)

We remark that this estimate is better by the factor [(Nη/ρ)−2
∨N−1]≪ 1 compared to the naive

norm bound ∣(Mkl+1)uv ∣
2 ≤ ∥Mkl+1∥

2 ≲ Nkl from Lemma 3.2.3 (b) employed in (3.5.55). Hence,
fixing one constellation of kl’s in (3.5.55), we find the average of the first line in (3.5.55) over all
i, j ∈ [N] to be bounded by

N ξ
(
Nη

ρ
)

1/2
N−k/2

1
N2 ∑

i,j

[∣(Mk1+1)eiei
(Mk2+1)ejej

(Mk3+1)eiei
(Mk4+1)ejej

∣ + ...]

≲N ξ
(
Nη

ρ
)

1/2
N−k/2

1
N2

⎡
⎢
⎢
⎢
⎢
⎣

∏
l∈[4]
(∑
i

∣(Mkl+1)eiei
∣
2
)

1/2
+ ...

⎤
⎥
⎥
⎥
⎥
⎦

≲N ξ
(
Nη

ρ
)

1/2
N−k/2

1
N2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎛

⎝
∏
l∈[4]

Nkl+1
[(

ρ

Nη
)

2
∨

1
N
]
⎞

⎠

1/2

+ ...

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≲N ξ
[(

ρ

Nη
)

7/2
∨ (

η

ρ
)

1/2 1
N3/2 ] ≲ N

ξ .

(3.5.59)

To go from the first to the second line, we employed a trivial Schwarz inequality. To go to
the penultimate line, we used (3.5.56) with M = Mkl+1. For the final estimate, we employed
(∏l∈[4]N

kl+1)1/2 = Nk/2+2.
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Next, we consider one example for d = 4, where all four resolvent chains are replaced by their
deterministic counterpart. In this case, the analog of (3.5.59) reads

N ξ
(
Nη

ρ
)

2
N−2k 1

N2 ∑
i,j

[∣(Mk+1)eiej
(Mk+1)ejei

(Mk+1)eiej
(Mk+1)ejei

∣ + ...]

≲N ξ
(
Nη

ρ
)

2
N−k

1
N2

⎡
⎢
⎢
⎢
⎢
⎣

∑
i,j

∣(Mk+1)eiej
∣
2
+ ...

⎤
⎥
⎥
⎥
⎥
⎦

≲N ξ
(
Nη

ρ
)

2
N−k

1
N2 [N

k+1
[(

ρ

Nη
)

2
∨

1
N
] + ...] ≲ N ξ

[
1
N
∨ (

η

ρ
)

2
] ≲ N ξ .

To go from the first to the second line, we estimated two factors of Mk+1 by their norm, ∣(Mk+1)uv ∣ ≲

Nk/2. Next, to go to the third line, we employed (3.5.56) and Lemma 3.5.12. The final estimate
used η/ρ ≲ 1.

The above examples showcase the general mechanism for the terms in Case (ii): After estimating all
the (G−M)-type terms with the aid of the induction hypothesis (3.5.51), we are left with an excess
(Nη/ρ)u/2-factor, for some u ∈ [4]. Analogously to (3.5.41)–(3.5.42), this leftover factor is then
controlled by gaining from the summation like in (3.5.57). We skip the simple counting argument
ensuring this gain.

The treatment of the further higher order terms and the truncation of the resolvent expansion
is completely analogous to Sections 3.5.2.3 and 3.5.2.4, respectively. Therefore, by telescopic
summation like in (3.5.24), we find that

max
γ≤γ(N)

∥Ψav,(γ)
k ∥

p
p + max

γ≤γ(N)
∥Ψq

av,(γ)
k ∥

p
p ≲ ∥Ψ

av,(0)
k ∥

p
p +N

ξ
≲ N ξ

where in the last step we absorbed ∥Ψav,(0)
k ∥

p
p into N ξ by our initial assumption that we have

multi-resolvent local laws (3.5.4) for the matrix H(v) = H(0). The checked version is obtained
completely analogously to Lemma 3.5.10.

This completes the proof of the induction step. We have thus finished the argument for the averaged
case and hence the proof of Proposition 3.3.4.

3.5.4 The case Ik ≠ ∅ (resp. Ik+1 ≠ ∅)

In this section, we explain how to adjust the above argument for proving Proposition 3.3.4 in the
case that at least one of the resolvents in the chains of interests

⟨G1A1...GkAk⟩ and (G1A1...GkAkGk+1)xy

is an imaginary part, i.e. Gi = ImGi for at least one index i ∈ [k] (resp. i ∈ [k + 1]). Recall the
local laws for the average and isotropic chain from (3.3.13) and (3.3.14), respectively. Compared
to the case of no imaginary parts, handled in the previous Sections 3.5.2–3.5.3, there are now two
changes: First, the bound contains the product ∏i∈I ρi (instead of one). Second, the smallness
factor (Nη/ρ)−1/2 from before is now replaced by (Nℓ)−1/2

For adjusting the first change, the simple but key insight is, that when applying the resolvent
expansion from Lemma 3.5.3 to both G and G∗ in ImG = 1

2i(G −G
∗), we can always "restore"

exactly one ImG on the rhs. More precisely, taking (3.5.19b) for concreteness and using ∆ =∆∗,
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we have that

ImG =
1
2i
[G −G∗] =

1
2i
[ (Gq −N−1/2Gq∆Gq +N−1Gq∆Gq∆Gq + ...)

− (Gq
∗
−N−1/2Gq

∗
∆Gq

∗
+N−1Gq

∗
∆Gq

∗
∆Gq

∗
+ ...) ]

= ImGq −N−1/2(ImGq∆Gq +Gq
∗
∆ImGq)

+N−1(ImGq∆Gq∆Gq +Gq
∗
∆ImGq∆Gq +Gq

∗
∆Gq

∗
∆ImGq) + ...

In this way, the imaginary parts in the original chain are "preserved" by the resolvent expansion. Recall
that ∣ImGq uv(z)∣ ≺ ρ(z) (as a consequence of (3.5.5) for N ∣Im z∣ρ(z)≫ 1; recall Nℓ̂≫ 1), which
improves (3.5.31). In particular, using Lemma 3.2.3, we find that the factor (∏i∈I ρi)

−d stemming
from the correct normalisation of the analog of Ψav/iso

k in (3.5.2)–(3.5.3) and thus appearing in the
expression analogous to (3.5.26) is naturally compensated by a product of ρ’s stemming from the
destroyed chains.

For adjusting to the second change, it suffices to replace every η/ρ appearing in Sections 3.5.2–3.5.3
by ℓ and realize that the complement of the interesting regime, i.e. the regime ℓ ≥ 1 is already proven
in Proposition 3.3.1.

3.A Additional technical results
In this section we prove several additional technical results which are used in the main sections.

3.A.1 Bounds on the deterministic approximations
Proofs of Lemma 3.2.3 and the claim in Remark 3.2.6 (ii). We will first proof the following stronger
bound in Lemma 3.A.1, from which we immediately deduce Lemma 3.2.3 and the claim in Re-
mark 3.2.6 (ii). The proof of the following lemma is given at the end of the current section.

Lemma 3.A.1. Fix k ≥ 1. Consider spectral parameters z1, ..., zk ∈ C ∖R and traceless matrices
A1, ...,Ak ∈CN×N , and define for every j ∈ [k]

ηj ∶= ∣Im zj ∣, ρj ∶=
1
π
∣Immsc(zj)∣, ℓ ∶=min

j
[ηj(ρj + 1(j ∉ Ik))] .

Then, for every 1 ≤ s ≤ ⌊k/2⌋ and π ∈ NC([k]) with ∣π∣ = k + 1 − s , it holds that

∣⟨pTrK(π)(A1, . . . ,Ak−1)Ak⟩∏
S∈π

m(Ik)
○ [S]∣ ≲

⎛

⎝
∏
j∈Ik

ρj
⎞

⎠

1
ℓs−1 ∏

S∈K(π)
∣S∣≥2

∏
j∈S
⟨∣Aj ∣

∣S∣
⟩

1
∣S∣
. (3.A.1)

with m(I)○ [S] being defined above (3.2.16). For s > ⌊k/2⌋ the lhs. of (3.A.1) equals zero.

For the proof of Lemma 3.2.3 (a) and the claim in Remark 3.2.6 (ii) concerning (3.2.20) we use that
⟨∣A∣p⟩1/p ≤ N

p−2
2p ⟨∣A∣2⟩1/2 for any p ≥ 2, and hence

rhs. of (3.A.1) ≲ Nk/2−1 ⎛

⎝
∏
j∈Ik

ρj
⎞

⎠

⎛

⎝

k

∏
j=1
⟨∣Aj ∣

2
⟩
1/2⎞

⎠

1
(Nℓ)s−1 .

This shows that, in particular, all terms with s > 1 in (3.A.1) are explicitly smaller than the error
term in (3.2.20), where we used that Nℓ≫ 1. The s = 1 term exactly constitutes the deterministic
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approximation in (3.2.23), i.e. the sum in (3.A.1) contains exactly one term

∑
π∈NC([k])∶
∣π∣=k

⟨pTrK(π)(A1, . . . ,Ak−1)Ak⟩∏
S∈π

m(Ik)
○ [S] = (∏

j∈Ik

Immj)(∏
j∉Ik

mj)⟨A1...Ak⟩ .

Here we used that ∣π∣ = k implies that the Kreweras complement consists of the full set, K(π) = [k].

Finally, for the proof of Lemma 3.2.3 (b) and the claim in Remark 3.2.6 (ii) concerning (3.2.21)
(i.e. the corresponding isotropic bounds) we argue completely analogously to Section 3.4.2.

It remains to prove Lemma 3.A.1.

Proof of Lemma 3.A.1. Fix an arbitrary non-crossing partition π ∈ NC([k]) consisting of ∣π∣ = k+1−s
blocks.

First, note that, in order to get a non-vanishing partial trace

⟨pTrK(π)(A1, . . . ,Ak−1)Ak⟩ = ∏
S∈K(π)

⟨∏
j∈S

Aj⟩

the minimal size of a block S ∈ K(π) is two (using that the Ai’s are traceless). Therefore, by
application of Hölder’s inequality,

∣⟨pTrK(π)(A1, . . . ,Ak−1)Ak⟩∣ ≤ ∏
S∈K(π)
∣S∣≥2

∏
j∈S
⟨∣Aj ∣

∣S∣
⟩

1
∣S∣
. (3.A.2)

In order to estimate ∏S∈πm
(Ik)
○ [S], we recall the Möbius inversion formula [170, Lemma 2.16]

m(Ik)
○ [S] =m(Ik)[S] + ∑

π∈NC(S)
∣π∣≥2

(−1)∣π∣−1 ⎛

⎝
∏

T ∈K(π)
C∣T ∣−1

⎞

⎠
∏
U∈π

m(Ik)[U] (3.A.3)

where Cn is the nth Catalan number. Hence, it suffices to bound the iterated divided differences
m(Ik)[S] for a subset S ⊂ [k] as

∣m(Ik)[S]∣ ≲
∏i∈Ik∩S ρi

ℓ∣S∣−1 (3.A.4)

which is a direct consequence of the integral representation (3.2.16). Indeed, combining (3.A.3) with
(3.A.4) and using that the sum in (3.A.3) is restricted to partitions of S with at least two blocks, we
obtain

∣∏
S∈π

m(Ik)
○ [S] ∣ ≲

⎛

⎝
∏
i∈Ik

ρi
⎞

⎠

1
ℓs−1 (3.A.5)

where we additionally used that the original non-crossing partition π ∈ NC([k]) consists of exactly
k + 1 − s blocks. Combining (3.A.5) with (3.A.2), we conclude the proof of (3.A.1).

For s > ⌊k/2⌋, we note that the Kreweras complement K(π) necessary contains singletons, and
hence the lhs. of (3.A.1) vanishes since ⟨Ai⟩ = 0.

We conclude this section by giving the proof of Lemma 3.5.12.
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Proof of Lemma 3.5.12. The principal idea of the proof is very similar to the previous ones given in
this section, hence we provide only a brief argument.

Recalling (3.2.15)–(3.2.16), we have that

⟨∣M(z1,A1, . . . ,Ak, zk+1;Ik+1)∣
2
⟩ ≲ ∑

π∈NC([k+1])
⟨∣pTrK(π)(A1, . . . ,Ak)∣

2
⟩ ∣∏
S∈π

m(Ik+1)
○ [S]∣

2
.

(3.A.6)

Next, analogously to Lemma 3.A.1 above, we decompose the summation over all partitions π into
groups, where ∣π∣ = k + 2 − s with 1 ≤ s ≤ ⌈(k + 1)/2⌉ is fixed (note that ⌊⋅⌋ got replaced by ⌈⋅⌉
due to the presence of a non-traceless identity matrix). Moreover, for fixed s we distinguish two
cases in (3.A.6) (recall (3.2.9)): For Case (i), we assume that the unique block B(k + 1) ∈ K(π)
containing k + 1 contains no other elements, i.e. B(k + 1) ∖ {k + 1} = ∅. For Case (ii), we assume
that B(k + 1) ∖ {k + 1} ≠ ∅.

Case (i). First, we note that necessarily s ≥ 2 in this case. Then, we have that

⟨∣pTrK(π)(A1, . . . ,Ak)∣
2
⟩ ≤

⎛
⎜
⎜
⎜
⎝

∏
S∈K(π)∖B(k+1)

∣S∣≥2

∏
j∈S
⟨∣Aj ∣

∣S∣
⟩

1
∣S∣

⎞
⎟
⎟
⎟
⎠

2

≤ (
Nk/2

N s−1)

2

,

analogously to (3.A.2). Since in Case (i), z1 and zk+1 are always together in one block S ∈ π with
∣π∣ = k + 2 − s, we obtain

∣∏
S∈π

m(Ik+1)
○ [S] ∣

2
≲
⎡
⎢
⎢
⎢
⎣

(∏i∈Ik+1 ρi) ∧maxi∈[k+1] ρi

ℓs−1

⎤
⎥
⎥
⎥
⎦

2

analogously to (3.A.5) by means of (3.A.3) and the integral representation (3.2.16). The additional
∧maxi∈[k+1] ρi, which is effective only for Ik+1 = ∅, comes from the estimate

∫
R

ρ(x)

∣x − z1∣ ∣x − zk+1∣
dx ≲ ρ1 ∨ ρk+1

ℓ
,

easily obtained by a Schwarz inequality.

Case (ii). In this case, the above estimates of the two factors in (3.A.6) modify to

⟨∣pTrK(π)(A1, . . . ,Ak)∣
2
⟩ ≤

⎛
⎜
⎜
⎜
⎝

∏
S∈K(π)
∣S∣≥2

⎛

⎝
∏
j∈S1

⟨∣Aj ∣
2(∣S1∣−1)

⟩

1
2(∣S1 ∣−1)⎞

⎠

⎛

⎝

s

∏
i=2
∏
j∈Si

⟨∣Aj ∣
∣Si∣⟩

1
∣Si ∣
⎞

⎠

⎞
⎟
⎟
⎟
⎠

2

,

assuming that S1 =B(k + 1), and

∣∏
S∈π

m(Ik+1)
○ [S] ∣

2
≲ [
∏i∈Ik+1 ρi

ℓs−1 ]

2
.

Putting the two cases together and using ⟨∣A∣p⟩1/p ≤ N
p−2
2p ⟨∣A∣2⟩1/2 for any p ≥ 2 together with

Nℓ > 1 and the normalization ⟨∣Aj ∣2⟩ = 1, we find that

⟨∣M(z1,A1, . . . ,Ak, zk+1; Ik+1)∣
2
⟩ ≲ Nk ⎛

⎝
∏
i∈Ik+1

ρi
⎞

⎠

2 ⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝

maxi∈[k+1] (ρi + 1(i ∉ Ik+1))

Nℓ

⎞

⎠

2

+
1
N

⎤
⎥
⎥
⎥
⎥
⎦

.
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3.A.2 Proof of the global law in Proposition 3.3.1
We only discuss the proof of the average case (3.3.1), the isotropic case (3.3.2) is analogous and
hence omitted. Set d ∶=mini dist(zi, [−2,2]) and recall that d ≥ δ ≳ 1.

The case of no ImG’s, i.e. Ik = ∅, has already been dealt with in [169, Appendix A] and yielded the
bound (3.3.1) with a factor d−(k+1) instead of

√
maxi ρi/ℓ. In the d ≳ 1 regime, this bound is in fact

stronger, d−(k+1) ≲ d−1 ≲
√

maxi ρi/ℓ, since ∣ρ(z)∣ ∼ ∣Im z∣/dist(z, [−2,2])2 and ℓ ∼mini ∣Im zi∣.

In case of Ik ≠ ∅ we need to gain from the fact that the original chain contained ImG’s. The
principal idea is analogous to [168, Appendix B] and [169, Appendix A], as we employ a cumulant
expansion and argue by induction on the length k of the initial chain. However, in order to gain from
the imaginary parts, the key observation is that within the cumulant expansion, the total number of
Im ’s is preserved, as becomes apparent from the formula

∂abImG = G∆abImG + ImG∆abG∗

for the derivative of an ImG factor. Here, ∂ab denotes the partial derivative w.r.t. the matrix
entry wab of the Wigner matrix W and ∆ab is a matrix consisting of all zeroes except for the
(a, b)–entry which is equal to one. Using the norm bounds ∥ImGj∥ ≤ ∣Im zj ∣/dist(zj , [−2, 2])2 ∼ ρj
and ∥Gj∥ ≤ 1/d by spectral decomposition, we obtain (3.3.1) but with a factor dk+1−∣Ik ∣ instead of√
ℓ, analogously to [169, Eq. (A.2)]. Finally, since

√
ℓ ≲ d ≲ dk+1−∣Ik ∣, this concludes the proof.

3.A.3 Complex moment matching
In order to conduct the third step of our proof, the Green function comparison (GFT) of Propo-
sition 3.3.4, we need to guarantee the moment matching condition (3.3.12) of the single entry
distributions. For real random variables (or complex ones with independent real and imaginary parts),
the argument ensuring this (and even an approximately matching fourth moment) is standard (see,
e.g., [248, Lemma 16.2]) and based on an explicit construction of a distribution supported on three
points in R. However, for general complex random variables, this construction is not sufficient; we
now present its complex variant.

Let Z be a complex random variable and denote its moments by

mi,j =mi,j(Z) ∶= E [ZiZj] for i, j ∈N0 , (3.A.7)

and call i+ j the order of mi,j . Clearly m0,0 = 1 and mi,j =mj,i, so we can focus on mi,j with i ≤ j.

Lemma 3.A.2. Let m0,2,m0,3,m1,2 ∈ C with ∣m0,2∣ ≤ 1. Then there exists a complex random
variable Z supported on at most eleven points z1, ..., z11 ∈ C, such that its moments (3.A.7) are
given by

m0,1(Z) = 0 , m1,1(Z) = 1 , m0,2(Z) =m0,2 , m0,3(Z) =m0,3 , and m1,2(Z) =m1,2 .
(3.A.8)

Remark 3.A.3. A generalized version of this problem (constructing an atomic measure with arbitrary
number of prescribed moments), known as the truncated complex K-moment problem, has been
solved by Curto and Fialkow in [187]. To keep our result self-contained, we give a simple independent
proof for the special case of three moments that we need here.

Having Lemma 3.A.2 at hand, one can easily see that there exists a random variable that has the
prescribed first three moments and it has an independent Gaussian component of given variance
γ > 0. More precisely, given m0,1 = 0, m1,1 = 1, m0,2, m0,3, and m1,2 with ∣m0,2∣ ≤ 1 as the set of
moments of χod, we look for a representation of Z in the form

Z ∶= (1 − γ)1/2Z ′ + γ1/2ξG with γ ∈ (0,1) fixed
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with some random variable Z ′ to be constructed, where ξG is a centered complex Gaussian random
variable having second moments m0,2(ξG) =m0,2 and m1,1(ξG) = 1. The moments of Z ′ thus satisfy
the relations

mi,j = (1 − γ)(i+j)/2mi,j(Z
′
) + γ(i+j)/2mi,j(ξG) with 1 ≤ i + j ≤ 3. (3.A.9)

In particular, ∣m0,2(Z
′)∣ = ∣m0,2∣ ≤ 1, so the moment sequence mi,j(Z

′) from (3.A.9) satisfy the only
nontrivial condition of Lemma 3.A.2. Therefore, by Lemma 3.A.2, we can construct the random
variable Z ′. Finally, we remark that all random variables involved have arbitrarily high moments
(cf. Assumption 3.2.1). This moment matching argument shows how to choose the distribution of
the initial condition W0 of the Ornstein-Uhlenbeck flow (3.3.3) so that after time T = γ it will match
with the distribution of the original matrix W up to three moments.

Proof of Lemma 3.A.2. We only outline the construction of the points z1, ..., z11 ∈ C, the precise
computations are a simple exercise in calculus and linear algebra and hence omitted.

We set z11 = 0 to be the origin. The remaining ten points are then placed on five lines through the
origin, carrying two points each, i.e. we put

zj = rjeiφj and z11−j = ẑj ∶= −r̂jeiφj with rj , r̂j ≥ 0 , φj ∈ [0,2π) for j ∈ [5] .

For simplicity, we can even prescribe four of the five angular variables in such a way that the
corresponding points lie on the real and imaginary axis and the two diagonals, i.e. set φj ∶= jπ/4 for
j ∈ [4].

We then take the law of Z to be of the form

∑
j∈[5]
(pjδzj + p̂jδẑj

) + (1 − ∑
j∈[5]
(pj + p̂j))δ0

for weights pj , p̂j ≥ 0 satisfying ∑j∈[5](pj + p̂j) ≤ 1. As mentioned above, it is a simple exercise to
show that the remaining parameters rj , r̂j , pj , p̂j ≥ 0 for j ∈ [5] and φ5 ∈ [0,2π) can be chosen in
such a way to accommodate (3.A.8). More precisely, taking Aj ∶= pjrj = p̂j r̂j ≥ 0 for j ∈ [5] (this
ensures m0,1(Z) = 0), r5 = r̂5, and using our choices of φj = jπ/4 for j ∈ [4], the two complex
conditions m0,3(Z) =m0,3 and m1,2(Z) =m1,2 turn into four real linear equations for the variables
Cj ∶= Bj(rj − r̂j) ∈R for j ∈ [4] with Bj ∶= Aj(rj + r̂j) ≥ 0. The determinant of this linear systems
can easily seen to be non-vanishing and it thus determines the difference variables rj − r̂j ∈R for
j ∈ [4]. Finally, the independent variables φ5 ∈ [0,2π) and Bj ∶= Aj(rj + r̂j) ≥ 0 for j ∈ [5] can
easily be chosen to satisfy m1,1(Z) = 1 and m0,2(Z) =m0,2.

3.A.4 Additional proofs for Section 3.4
Proofs of Lemmas 3.4.1 and 3.4.8. The claim of Lemma 3.4.1 follows by multi-linearity from Lemma 3.4.8.

For the proof of Lemma 3.4.8, we will use a tensorization argument (or meta argument) similar to
[181] and the proof of Lemma 1.D.1. Throughout this proof the size N of W is fixed. For d ∈N
consider the (Nd)× (Nd) Wigner matrix W (d), i.e. the entries of W (d) have variance 1/(Nd). Let
W
(d)
t be the Ornstein-Uhlenbeck flow as in (3.3.3) with initial condition W

(d)
0 =W (d), and define

its resolvent G
(d)
i,t ∶= (W

(d)
t − zi,t)

−1, then the deterministic approximation of the resolvent is still
given by m1, the Stieltjes transform of the semicircular law.

We now explain that also the deterministic approximation of products of resolvents and deterministic
matrices is unchanged. For 1 ≤ i ≤ k, define A

(d)
i ∶= Ai ⊗ Id, with Id denoting the d–dimensional

identity, then for M
(d)
[1,k],t defined as in (3.2.10) with M

(d)
i,t and A

(d)
i we have

M
(d)
[1,k],t ∶=M (d)

(z1,t,A
(d)
1 , . . . ,A

(d)
k−1, zk,t) =M(z1,t,A1, . . . ,Ak−1, zk,t)⊗ Id. (3.A.10)
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Fix 0 < s < t, then integrating (3.4.5) for the bold faced resolvent and deterministic matrices, in time
from s to t and taking the expectation we obtain

⟨M
(d)
[1,k],tAk⟩ − ⟨M

(d)
[1,k],sAk⟩

= −E⟨(G[1,k],t −M
(d)
[1,k],t)Ak⟩ +E⟨(G[1,k],s −M

(d)
[1,k],s)Ak⟩ +

k

2 ∫
t

s
E⟨G[1,k],rAk⟩dr

+
k

∑
i,j=1
i<j

∫

t

s
E⟨G[i,j],r⟩⟨G[j,i],r⟩dr +

k

∑
i=1
∫

t

s
E⟨Gi,r −mi,r⟩⟨G

(i)
[1,k],rAk⟩dr +

σ

Nd

k

∑
i,j=1
i≤j

∫

t

s
E⟨G[i,j],rG

t
[j,i],r⟩dr .

(3.A.11)

Using the global law in Proposition 3.3.1 and (3.A.10), and taking the limit d→∞, this implies that
for ∣Im zi∣ ≳ 1 we have

⟨M[1,k],tAk⟩ − ⟨M[1,k],sAk⟩ =
k

2 ∫
t

s
⟨M[1,k],rAk⟩dr +

k−1
∑

i,j=1,
i<j

∫

t

s
⟨M[i,j],r⟩⟨M[j,i],r⟩dr. (3.A.12)

Finally, dividing (3.A.12) by t−s and taking the limit s→ t, we conclude the proof of Lemma 3.4.8.

Proof of Lemma 3.4.6. The proof of this lemma is very similar to [169, Lemma 3.3]. Hence we
give the argument only for the case where k is even, if k is odd the proof is completely analogous.
Moreover, for notational simplicity we henceforth drop the time dependence and the precise indices
of Gs’s and A’s, i.e. write ImGs ≡ ImGi,s, A ≡ Aj , ρ ≡ ρi and so on. Then, by application of the
general bound

∣⟨B1B2B3B4⟩∣ ≤ N
4
∏
i=1
⟨∣Bi∣

2
⟩
1/2 for all Bi ∈CN×N

applied to Bi =
√
∣ImGs∣A(ImGsA)

k/2−1√∣ImGs∣ and with the aid of (3.2.17), we find that

Φ2k(s) =

√
Nℓ̂s

Nk−1 ρ2k
s ⟨∣A∣

2⟩k
∣⟨(ImGsA)

2k
− M̂ [1̂,2k̂],sA⟩∣

≲

√

Nℓ̂s +

√
Nℓ̂s

Nk−1 ρ2k
s ⟨∣A∣

2⟩k
N ∣⟨(ImGsA)

k⟩∣
2

≺

√

Nℓ̂s +

√
Nℓ̂s

Nk−1 ρ2k
s ⟨∣A∣

2⟩k
N

⎡
⎢
⎢
⎢
⎢
⎣

Nk/2−1ρks⟨∣A∣
2
⟩
k/2 ⎛

⎝
1 + ϕk
√
Nℓ̂s

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

2

≲

√

Nℓ̂s +
ϕ2
k√
Nℓ̂s

.

We remark that, in order to bound ⟨(ImGsA)
k⟩ in terms of ϕk, we added and subtracted the

corresponding M -term and used the assumption that Φk(s) ≺ ϕk.
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Chapter4
Out-of-time-ordered correlators for

Wigner matrices

This chapter contains the paper [151]:

G. Cipolloni, L. Erdős, and J. Henheik. Out-of-time-ordered correlators for Wigner matrices. Adv.
Theor. Math. Phys., 2024. Accepted, arXiv: 2402.17609

Abstract. We consider the time evolution of the out-of-time-ordered correlator (OTOC) of two
general observables A and B in a mean field chaotic quantum system described by a random Wigner
matrix as its Hamiltonian. We rigorously identify three time regimes separated by the physically
relevant scrambling and relaxation times. The main feature of our analysis is that we express the
error terms in the optimal Schatten (tracial) norms of the observables, allowing us to track the
exact dependence of the errors on their rank. In particular, for significantly overlapping observables
with low rank the OTOC is shown to exhibit a significant local maximum at the scrambling time, a
feature that may not have been noticed in the physics literature before. Our main tool is a novel
multi-resolvent local law with Schatten norms that unifies and improves previous local laws involving
either the much cruder operator norm (cf. [168]) or the Hilbert-Schmidt norm (cf. [169]).
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4.1 Introduction
A basic feature of a strongly interacting quantum system is that local initial states become non-local
along the unitary time evolution, in particular they become increasingly harder to distinguish by local
observables. The simplest way to detect this chaotic behavior is to monitor the overlap ⟨A(t)B⟩ of
the Heisenberg time evolution A(t) ∶= eitHAe−itH of an observable A with another static observable
B, where H is the Hamiltonian and A,B are Hermitian operators. Here ⟨M⟩ ∶= 1

N TrM denotes
the normalized trace of an N ×N matrix, N is the dimension of the quantum state space. As time
goes on, the overlap between two local observables converges to its stationary value in a process
called quantum thermalisation. Since this stationary value is practically1 factorized, ⟨A⟩⟨B⟩, the
original observable A becomes hardly detectable from its time evolution by local observables B.

A more refined measure of the dynamically evolving quantum chaos is the out-of-time-ordered
correlator (OTOC) of two observables, defined as2

CA,B(t) ∶=
1
2
⟨∣[A(t),B]∣

2
⟩ (4.1.1)

measuring the evolution of the commutator of A(t) and B. Starting with commuting observables,
[A,B] = 0, this quantity initially grows, expressing how the time evolution A(t) of a local observable
spreads (or scrambles) to non-local degrees of freedom expressed by B. The moment when this
growth stops is called3 the scrambling time t∗. Scrambling is closely related to thermalisation, but it
typically involves non-local observables B. Thus in a quantum system with local interactions, the
thermalisation time is smaller than t∗ and it is independent of the system size, while the scrambling
takes place on a longer time scale until local information is shared with all degrees of freedom in the
system. Beyond the scrambling time, the OTOC settles to a constant value at a larger time scale
called the relaxation time, and then it remains essentially unchanged.

The fine distinction between thermalisation and scrambling became very popular in physics about 15
years ago motivated by the fundamental papers by Hayden and Preskill [328] and Sekino and Susskind
[516] related to the black hole information paradox. The concept of the OTOC in quantum chaos

1In a closed quantum system with finitely many degrees of freedom the initial state is never fully lost as the
stationary value still slightly depends on the original overlap ⟨AB⟩, but it is suppressed by N ; e.g. it follows from
(4.1.2) that

lim
t→∞

EGUE⟨A(t)B⟩ = (1 −
1

N + 1
)⟨A⟩⟨B⟩ +

1
N + 1

⟨AB⟩.

2In the physics literature, the OTOC is usually defined without the factor 1/2. We chose it, however, for convenience.
3We remark that some papers use slightly different definition, here we follow the terminology of [279], [183,

Section 3.3].
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research was introduced in Kitaev’s lectures [366] on the connection between the Sachdev-Ye-Kitaev
(SYK) model and black holes. Owing to these fascinating connections, the physics literature on
OTOC in various interacting quantum systems has become enormous; we refer the reader to the
reviews [588, 279] and extensive references therein. In contrast, OTOC has basically not been
considered in the mathematical literature apart from [413] that studies a very different model than
our current random matrix setup.

Besides the OTOC, quantum chaos has several other signatures: the conventional one is the spectral
statistics of the Hamiltonian. Following E. Wigner’s groundbreaking observation, in a sufficiently
chaotic quantum system the local eigenvalue statistics are given by the universal Wigner-Dyson
distribution that depends only on the basic symmetries of the system. In the physics literature
the spectral statistics are often described by the spectral form factor (SFF), or two point spectral
correlator, defined as r2(t) ∶= E ∣⟨eitH⟩∣2, where E indicates a statistical averaging over an ensemble
of Hamiltonians. It is well known that the SFF tends to become universal for large times4, while
it still reflects properties of the actual quantum system (especially its density of states) for shorter
times. A good physics summary is found in [183], while a recent mathematical analysis of the SFF for
general Wigner matrices was given in [158]; more precise formulas are available for exactly solvable
ensembles [265, 266, 267].

The OTOC is a more refined description of quantum chaos than the SFF, as it also involves
observables. In particular, the SFF misses important features like the sensitivity of chaos to the
locality of the observables or early time chaos, i.e. the exponential growth of the OTOC for certain
strongly interacting systems like SYK (called fast scramblers [516]) versus the polynomial growth for
slow scramblers like certain weakly chaotic systems (see, e.g. [268, Section II] and references therein).
Note that the SFF can be recovered from the OTOC by averaging, either over the observables or
over the unitary group in case of unitarily invariant Hamiltonians, see [183]. For example, if H is a
GUE random matrix, then [183, Eq. (57)-(58)])

EGUE⟨A(t)B⟩ = ⟨A⟩⟨B⟩ +
N2r2(t) − 1
N2 − 1

[⟨AB⟩ − ⟨A⟩⟨B⟩], (4.1.2)

with
r2(t) = (

J1(2t)
t
)

2
+

1
N
−

1
N
(1 − t

2N
)1(t ≤ 2N),

where J1 is the Bessel function of the first kind of order one. Thus r2(t) can be expressed from
⟨A(t)B⟩. A similar relation holds between the OTOC and the four point spectral correlator.

The main goal of the current paper is to give a comprehensive mathematical analysis of the OTOC with
general observables A,B, when the Hamiltonian H is a Wigner matrix. Wigner matrices represent
the Hamiltonian of the most chaotic quantum systems with matrix elements being independent,
identically distributed (i.i.d.) random variables. In the physics literature, random matrix theory
(RMT) is often used as a test case to see to what extent this relatively simple model mimics the
physics of more complicated systems such as interacting many-body models (like SYK) or even
models with nontrivial spatial structure (like spin chains). Spectral statistics are remarkably robust,
especially the universality of the large time (so-called plateau) regime of the SFF has proved to be
ubiquitous in many different chaotic quantum systems, in accordance with the celebrated Bohigas-
Giannoni-Schmit conjecture [89]. The OTOC is a more delicate quantity and, admittedly, its several
interesting features that appear in more realistic strongly coupled systems are not captured by RMT.
For example, the early time exponential growth of the OTOC is not present in RMT and there is no
qualitative difference between the thermalisation and scrambling times since H is mean field (see
[183, Section 3.3] for a detailed analysis). The difference between chaotic and integrable systems
or the effect of their possible coexistence on the OTOC (studied e.g. in [268]) are also not visible
in RMT since Wigner matrices are fully chaotic. Nevertheless, RMT becomes a good description

4See the celebrated slope-dip-ramp-plateau picture, e.g. in [414].
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beyond the scrambling time as claimed in [183, Section 3.3] and demonstrated in [183, Section 6].
The calculations are performed under the unitary invariance assumption and without controlling the
error terms.

In the main Theorem 4.2.2 of the current work, using very different methods, we rigorously describe
the behaviour of CA,B(t) up to very long times for general Wigner matrices (no unitary invariance
assumed). We mimic the locality of the observables by considering matrices A,B that are far from
being full rank and track this effect throughout all error terms by using tracial norms that are sensitive
to the rank. We distinguish three time regimes (see Figure 4.1.1 and Section 4.2.1); for short times
(before the scrambling time t∗) we find a quadratic growth in t; for intermediate times we find that
CA,B(t) heavily depends on the ranks of A,B and their overlap AB. In particular, we detect a
remarkable high peak of CA,B(t) when the ranks of A and B are small but their overlap ⟨AB⟩ is
still relatively large. To our knowledge, this observation may be new even in the physics literature.
We then identify the relaxation time, t∗∗, when the OTOC saturates, i.e. it becomes essentially
constant (equal its thermal limiting value) with small oscillations. As expected, in the last regime,
after t∗∗, our model behaves universally; a qualitatively similar behaviour has been demonstrated for
several more complicated systems in the physics literature both theoretically and numerically, see e.g.
[183, 268, 588, 436, 279]. While for technical reasons we cannot consider infinite times, our analysis
is valid for sufficiently long times to see all physically relevant features. For brevity we carry out the
proofs at infinite temperature, but our methods can easily be extended to any finite temperature and
we will give the corresponding formulas (see Section 4.2.2 below).

Figure 4.1.1: The two curves show the behaviour of CA,B(t) in two different scenarios for two
commuting traceless observables A,B normalized to ⟨A2⟩ = ⟨B2⟩ = 1. The black curve represents
the case A = B with rank(A) = Na, a ∈ [0,1] where the OTOC exhibits a large peak of size N1−a

around the scrambling time t∗ ∼ 1. Afterwards, it decays to its thermal limiting value (normalized
to one) around the relaxation time t∗∗ ∼ N

1−a
3 . The red curve represents the case where AB = 0.

Here, both t∗ and t∗∗ are of order one, independent of the ranks of A and B. For more details see
Section 4.2.1.

From the mathematical point of view, our work is the closest to [170, 168], where the deterministic
leading term of traces of products of observables at different times, ⟨A1(t1)A2(t2)A3(t3)....⟩, were
computed (see also [499, 498], where even the Gaussian fluctuations of such chains were proven).
Clearly the OTOC is a special case of (the difference of two) such chains. The main novelty is that
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now we use only Schatten (tracial) norms5 of the observables in the estimates, while [170, 499, 498]
used the much cruder operator norm. In particular, we can extend the time scale for the validity of
our description. More importantly, note that the interesting features of the OTOC are manifested
for small rank observables for which the operator norm is a major overestimate and conceptually is
an overkill.

The main tool is a concentration result, called multi-resolvent local law, for alternating products of
resolvents of random matrices and deterministic matrices. More precisely, setting Gi ∶= G(zi) and
considering deterministic matrices Ai, the main object of interest is

G1A1G2A2G3 . . .Ak−1Gk (4.1.3)

for some fixed k. We will show that (4.1.3) concentrates around a deterministic object and gives
an upper bound on the fluctuation. The interesting regime is the local one, i.e. when ∣Im zi∣≪ 1.
Resolvents can then be converted to unitary time evolution eitH by standard contour integration.

Local laws in general assert that resolvents G(z) tend to become deterministic (with high probability)
in the large N limit even if the spectral parameter z is very close to the real axis (typically for any
∣Im z∣ ≫ N−1 in the bulk spectrum). For example, typical single resolvent local laws for Wigner
matrices assert that, for any fixed ξ > 0,6

∣⟨(G(z) −m(z))A⟩∣ ≤
N ξ∥A∥

Nη
, ∣⟨x, (G(z) −m(z))y⟩∣ ≤

N ξ∥x∥∥y∥
√
Nη

, (4.1.4)

with η ∶= ∣Im z∣ for a deterministic matrix A ∈CN×N and deterministic vectors x,y ∈CN with very
high probability as N becomes large. Here, m(z) is the Stieltjes-transform of the Wigner semicircle
law:

m(z) =msc(z) ∶= ∫
R

1
(x − z)

ρsc(x)dx, ρsc(x) ∶=
1

2π
√
[4 − x2]+. (4.1.5)

However, the deterministic limit of a multi-resolvent chain (4.1.3) is not simply m(z1)m(z2)A1A2 . . . ,
i.e, one cannot mechanically replace each G by a scalar m, the actual formula is much more
complicated, see (4.3.2) below. As to the accuracy of this deterministic approximation, besides N
and the imaginary part of the spectral parameter, η = Im z, the error term crucially depends on the
appropriate norms of Ai as well as on the distinction whether Ai is traceless or not. The fact that
traceless observables substantially reduce both the size of the deterministic limit of (4.1.3) and of
its fluctuation has first been observed and exploited in [165], see also [168] for a comprehensive
analysis of arbitrary long chains. The results in [168] were optimal both in N and η, but they all
used the simplest operator norm of Ai’s in the error term which is far from being optimal for low
rank observables.

Concerning the more accurate norms, only very recent papers [169] and the one in Chapter 3 started
deviating from the operator norm in the error terms. The main purpose of these papers was to
prove the Eigenstate Thermalisation Hypothesis (ETH) for random matrices (originally posed by
Deutsch in [221]) in its most optimal form, including low rank observables. Moreover, the key point
in Chapter 3 was to obtain ETH also uniformly in the spectrum, including the critical edge regime.
This required to focus on a local law for ⟨ImGAImGA⟩ and to extract the smallness of order ρ2 at
the spectral edge owing to the imaginary part of the resolvents (here ρ = π−1∣Immsc∣ is the local
density of states). However, [169] and Chapter 3 exclusively used the Hilbert-Schmidt (HS) norm,
⟨∣A∣2⟩1/2, which caused suboptimal (Nη)-dependence. For the purpose of [169] and Chapter 3, this
suboptimality in (Nη) was irrelevant since the proof of ETH relies on local laws in the η–regime
when Nη is practically order one.

5The (normalized) p-th Schatten norm of a matrix A ∈ CN×N is defined as ⟨∣A∣p⟩1/p for p ∈ [1,∞), where
∣A∣ ∶= (AA∗)1/2.

6Traditionally [249, 369, 88], local laws did not consider arbitrary test matrix A, but only A = I or special rank one
projections A = yx∗ leading to the isotropic local law in (4.1.4). General A were included later, e.g. in [243].
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In contrast to [169] and Chapter 3, for studying the OTOC at shorter times, we need local laws in
the regime where Nη is large (since η ∼ 1/t dictated by the contour integration and t≪ N). In the
current paper we prove local laws that are optimal both in N and η and use the optimal Schatten
norms of the observables. Especially, this allows for a more accurate description of the OTOC in
the physically relevant regime of small rank observables.7 We, however, do not need to track the
ρ-dependence or pay attention to the imaginary parts. Therefore, the current work and Chapter 3 are
complementary; they effectively handle very different aspects of the local law. While the fundamental
idea of these two works is similar, both use the Zigzag strategy described in Section 4.4, the actual
proofs are quite different. The main focus in Chapter 3 was to design and handle contour integral
representations that allowed us to reduce every estimate to resolvent chains involving only ImG’s. In
the current paper ImG plays no role, but we need to track the precise Schatten norms very carefully.

To illustrate the strength of our new result in comparison with the previous bounds, we present the
following three estimates for the simplest case k = 2, with A1 = A2 = A, z1 = z2 in the bulk, and
ignoring N ξ-factors for some arbitrarily small ξ > 0:

∣⟨GAGA⟩ −m2
⟨A2
⟩∣ ≲

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∥A∥2

Nη
from [168, Theorem 2.5];

√
Nη
⟨∣A∣2⟩

Nη
from [169, Theorem 2.2];

⟨∣A∣2⟩

Nη
+
⟨∣A∣4⟩1/2

N
√
η

from Theorem 4.3.3.

(4.1.6)

Note that our current result in the last line of (4.1.6) implies both previous results since ⟨∣A∣4⟩1/2 ≤√
N⟨∣A∣2⟩ and ⟨∣A∣p⟩1/p ≤ ∥A∥. While the former bound saturates for low rank observables, the latter

saturates for high rank ones. Therefore, our new result with Schatten norms optimally interpolates
between these two, at least in the bulk regime.

Notations
By ⌈x⌉ ∶=min{m ∈ Z∶m ≥ x} and ⌊x⌋ ∶=max{m ∈ Z∶m ≤ x} we denote the upper and lower integer
part of a real number x ∈R. For k ∈N we set [k] ∶= {1, ..., k}, and ⟨A⟩ ∶= d−1Tr(A), d ∈N, for the
normalised trace of a d × d-matrix A, while rkA ≡ rankA denotes its rank. For positive quantities
f, g we write f ≲ g resp. f ≳ g and mean that f ≤ Cg resp. f ≥ cg for some N -independent constants
c,C > 0 that may depend only on the basic control parameters Cp, see (4.2.1) in Assumption 4.2.1
below. Moreover, we will also write f ∼ g in case that f ≲ g and g ≲ f .

We denote vectors by bold-faced lower case Roman letters x,y ∈CN , for some N ∈N, and define

⟨x,y⟩ ∶=∑
i

x̄iyi , Axy ∶= ⟨x,Ay⟩ .

Matrix entries are indexed by lower case Roman letters a, b, c, ..., i, j, k, ... from the beginning or the
middle of the alphabet and unrestricted sums over those are always understood to be over {1, ...,N}.

We will use the concept ’with very high probability’, meaning that for any fixed D > 0, the probability
of an N -dependent event is bigger than 1−N−D for all N ≥ N0(D). Also, we will use the convention
that ξ > 0 denotes an arbitrarily small positive exponent, independent of N . Moreover, we introduce
the common notion of stochastic domination (see, e.g., [241]): For two families

X = (X(N)(u) ∣ N ∈N, u ∈ U (N)) and Y = (Y (N)(u) ∣ N ∈N, u ∈ U (N))

7We point out that, in principle, also the multi-resolvent local laws in the earlier papers [168, 169] and the one in
Chapter 3 allow studying the OTOC. However, since these papers exclusively use crude operator norms or HS norms in
the error terms, the accessible times and/or observables are strongly restricted compared to the current paper. See
Section 4.2.1 for a more detailed comparison in the context of two examples.
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of non-negative random variables indexed by N , and possibly an additional parameter u from a
parameter space U (N), we say that X is stochastically dominated by Y , if for all ϵ,D > 0 we have

sup
u∈U(N)

P [X(N)(u) > N ϵY (N)(u)] ≤ N−D

for large enough N ≥ N0(ϵ,D). In this case we write X ≺ Y . If for some complex family of random
variables we have ∣X ∣ ≺ Y , we write X = O≺(Y ).

4.2 Main results
We consider N ×N Wigner matrices W , i.e. W is a random real symmetric or complex Hermitian
matrix W = W ∗ with independent entries (up to the Hermitian symmetry) and with single entry
distributions waa

d
= N−1/2χd, and wab

d
= N−1/2χod, for a > b. The random variables χd, χod satisfy

the following assumptions.8

Assumption 4.2.1. The off-diagonal distribution χod is a real or complex centered random variable,
Eχod = 0, satisfying E ∣χod∣

2 = 1. The diagonal distribution is a real centered random variable,
Eχd = 0. Furthermore, we assume the existence of high moments, i.e. for any p ∈N there exists
Cp > 0 such that

E [∣χd∣
p
+ ∣χod∣

p] ≤ Cp . (4.2.1)

Our main result, Theorem 4.2.2 below, concerns the Heisenberg time evolution A(t) ∶= eiWtAe−iWt

of a fixed deterministic self-adjoint observable A = A∗ ∈CN×N governed by the Wigner matrix W .
More precisely, we consider the out-of-time-ordered correlator (OTOC)

CA,B(t) ∶=
1
2
⟨∣[A(t),B]∣

2
⟩ = ⟨A(t)2B2⟩ − ⟨A(t)BA(t)B⟩ (4.2.2)

with another self-adjoint observable B = B∗ ∈ CN×N , consisting of a two-point and a four-point9

part,
DA,B(t) ∶= ⟨A(t)

2B2⟩ , FA,B(t) ∶= ⟨A(t)BA(t)B⟩ , respectively. (4.2.3)

In the formulation of Theorem 4.2.2, a key role is played by the Fourier transform of the semicircular
density (4.1.5),

φ(t) ∶= ρsĉ(t) = ∫
2

−2
dxρsc(x)eixt

=
J1(2t)
t

, t ∈ R, (4.2.4)

where we recall that J1 is the Bessel function of the first kind of order one. We note that by standard
asymptotics of the Bessel functions on the real line, it holds that

J1(s) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

− sgn(s) cos(∣s∣ + π
4
)

√
2
π∣s∣
+O (

1
∣s∣3/2

) s→ ±∞ ,

s

2
−

1
2
(
s

2
)

3
+O(∣s∣5) s→ 0 .

(4.2.5)

For simplicity, we formulate our main result only for traceless matrices, ⟨A⟩ = ⟨B⟩ = 0 and at infinite
temperature. For general observables, see Remark 4.2.3 and for finite temperature, see Section 4.2.2.

8By inspecting our proof, it is easy to see that actually we do not need to assume that the off-diagonal entries of
W are identically distributed. We only need that they all have the same second moments, but higher moments can be
different.

9We remark that some papers (see, e.g., [485]) refer to the four-point part FA,B(t) alone as the OTOC.
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Theorem 4.2.2 (OTOC for Wigner matrices). Let W be a Wigner matrix satisfying Assumption 4.2.1
and let A,B ∈CN×N be self-adjoint deterministic matrices which are traceless, ⟨A⟩ = ⟨B⟩ = 0. Fix
any ϵ > 0. Then, the OTOC (4.2.2) satisfies

CA,B(t) =⟨A
2
⟩⟨B2

⟩[1 − φ(t)2] + 2⟨AB⟩2φ(t)2 [φ(2t) − φ(t)2]

+ ⟨A2B2
⟩φ(t)2 − ⟨ABAB⟩φ(t)4 +O≺(EA,B(t,N))

(4.2.6)

with an error term E ≡ EA,B(t,N) given by

E ∶= et/N
1/2−ϵ

(
∣t∣4⟨A2⟩2

N
+
∣t∣⟨A8⟩1/2

N
)

1/2

(
∣t∣4⟨B2⟩2

N
+
∣t∣⟨B8⟩1/2

N
)

1/2

. (4.2.7)

The proof of Theorem 4.2.2 is given in Section 4.3.3 below. It is based on a novel multi-resolvent
local law with error terms involving optimal Schatten norms, see Theorem 4.3.3.

Remark 4.2.3. We have several comments on Theorem 4.2.2:

(i) [Non-traceless observables] For general observables A,B, we can decompose them into a tracial
and traceless part, A =∶ ⟨A⟩ + Å, and similarly for B. The tracial parts, ⟨A⟩ and ⟨B⟩, then
commute with the unitary time evolution eitW and one straightforwardly obtains a result similar
to Theorem 4.2.2 (see also Remark 4.3.5).

(ii) [Variance of fluctuations] The size of the fluctuations around the deterministic leading term in
(4.2.6), i.e. the variance of CA,B(t), is explicitly computable, following the arguments leading
to [499, Lemma 2.5]. The result is expressible purely in terms of Schatten norms of A and B
(cf. [499, Lemma 2.5 and Definition 3.4]), however in [499, 498] the error terms are still in
terms of crude operator norms.

(iii) [Gaussianity] It is also possible to prove Gaussianity of the fluctuations of CA,B(t) (cf. [499,
Theorem 2.7 and Corollary 2.12]) by showing an approximate Wick theorem for resolvent
chains, similarly to [499, Theorem 3.6]. However, we refrain from doing so for brevity of this
paper.

4.2.1 Physical interpretation of Theorem 4.2.2 by two examples
We will now discuss the behavior of CA,B(t) in two exemplary and extreme situations of observables
A,B. In the first example we will set the two observables identical, in the second we will assume
that their product vanishes. More concretely, we define

A = N
1−a

2 diag(1,−1, ..., 1,−1,0, ..., 0) , a ∈ [0,1) ,

B = N
1−b

2 diag(0, ..., 0,1,−1, ..., 1,−1) , b ∈ [0,1) ,
(4.2.8)

in such a way that AB = BA = 0, and ⟨A⟩ = ⟨B⟩ = 0 as well as ⟨A2⟩ = ⟨B2⟩ = 1, i.e. A (resp. B)
contains Na-many (resp. N b-many) non-zero entries on the diagonal.

Example 1. For the first example, we have, using ⟨A2⟩ = 1,

CA,A(t) =1 − φ(t)2{1 − 2φ(2t) + 2φ(t)2}

+ ⟨A4
⟩ [φ(t)2 − φ(t)4] +O≺(EA,A(t,N)) .

(4.2.9)

Example 2. For the second example, we have, using ⟨A2⟩ = ⟨B2⟩ = 1,

CA,B(t) = 1 − φ(t)2 +O≺(EA,B(t,N)) . (4.2.10)
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The key features of these two examples (4.2.9)–(4.2.10) are briefly summarized in Table 4.1. Ignoring
the respective error terms, CA,A(t) and CA,B(t) are schematically depicted in Figure 4.1.1. Now we
comment on each time regime.

(i) [Short-time regime] By the asymptotics in (4.2.5), we have the short-time asymptotic

CA,A(t) = t
2 (⟨A4

⟩ − 1) +O(∣t∣4⟨A4
⟩) +O≺(E) (Example 1) ,

CA,B(t) = t
2
+O(∣t∣4) +O≺(E) (Example 2) .

Note that φ(t) in (4.2.9)–(4.2.10) depends polynomially on t (cf. (4.2.4)–(4.2.5)) up to the
scrambling time t∗. This shows that the OTOC for Wigner matrices does not exhibit the
exponential increase ∼ e2λt between the perturbative regime and t∗, observed for quantum
systems with a classically chaotic analogue, where λ is the Lyapunov exponent of the classical
system. In fact, the indicated polynomial dependence of the OTOC (4.2.2) up to t∗ has already
been observed for certain quantum chaotic systems without a classical analogue (e.g. for some
spin−1

2 chains [268]).

(ii) [Scrambling time] The monotonous growth of both CA,A(t) and CA,B(t) stops at a time
of order one (using elementary properties of φ from (4.2.4)), hence the scrambling time is
t∗ ∼ 1. However, the maximally attained value strongly differs for the two examples: While
CA,A(t∗) ∼ N

1−a heavily depends on a (i.e. the rank of A), the peak of CA,B(t∗) ∼ 1 is
independent of the ranks of A and B.

(iii) [Intermediate regime up to the relaxation time] The following interval of intermediate
times is characterized by a decay of the OTOC (4.2.6) towards its thermal limiting value
⟨A2⟩⟨B2⟩ = 1 up to the relaxation time t∗∗. This regime is also quite different for the two
examples (4.2.9)–(4.2.10): While for Example 1 the interval of intermediate times is given by
t ∈ [t∗, t∗∗] where t∗∗ ∼ N (1−a)/3, in Example 2 the relaxation time t∗∗ ∼ 1 is comparable with
the scrambling time. However, for technical reasons, the entire interval of intermediate times is
only accessible if a > 5/11 for Example 1, and a + b > 2/3 for Example 2, otherwise the leading
terms in (4.2.9)–(4.2.10) become smaller than their respective error term. In comparison,
computing the OTOC with the operator norm in the error terms [168, Corollary 2.7], would
lead to the (more restrictive) conditions a > 5/8 for Example 1, and a + b > 1 for Example 2.

(iv) [Long-time regime] In the consecutive long-time regime, i.e. t≫ N (1−a)/3 for Example 1 and
t ≫ 1 for Example 2, we find the OTOC (4.2.6) to concentrate around its thermal limiting
value ⟨A2⟩⟨B2⟩ = 1 with small oscillations. This confirms the expectation, that the OTOC in
strongly chaotic systems exhibits only small fluctuations for long times. These are accessible
up to

t ≤ Nmin{ 1
4 ,

3a−1
2 }−ϵ and t ≤ N

min{ 1
4 ,

3a+1
10 , 3b+1

10 ,
3(a+b)−2

4 }−ϵ

for Example 1 and 2, respectively. Again, in comparison with Theorem 4.2.2, the operator
norm error terms from [168, Cor. 2.7] would lead to the constraints t ≤ N

2a−1
2 −ϵ for Example 1,

and t ≤ N
a+b−1

2 −ϵ for Example 2.

4.2.2 Finite temperature case

Theorem 4.2.2 can easily be extended to the case of finite temperature, β = 1/T > 0. The OTOC
(4.2.2) now is given by

C
(β)
A,B(t) ∶=

1
2

Tr [∣[A(t),B]∣2e−βW ]
Z

(4.2.11)
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Ex. 1: A = B, rkA = Na Ex. 2: AB = 0, rkA = Na, rkB = N b

CA,A(t) ∼ t
2 (⟨A4⟩ − ⟨A2⟩2) CA,B(t) ∼ t

2 ⟨A2⟩⟨B2⟩

t∗ ∼ 1 and CA,A(t∗) ∼ N1−a t∗ ∼ 1 and CA,B(t∗) ∼ 1

full access if a > 5/11 full access if a + b > 2/3

t∗∗ ∼ N
1−a

3 and CA,A(t∗∗) ∼ ⟨A2⟩2 t∗∗ ∼ 1 and CA,B(t∗∗) ∼ ⟨A2⟩⟨B2⟩

up to t ≤ Nmin{ 1
4 ,

3a−1
2 }−ϵ up to t ≤ Nmin{ 1

4 ,
3a+1

10 , 3b+1
10 ,

3(a+b)−2
4 }−ϵ

Table 4.1: Overview of the two examples (4.2.9) and (4.2.10).

with partition function Z = Tr [e−βW ]. In this case, the analog of (4.2.6) in the regime10 β ≪ logN
reads

C
(β)
A,B(t) = ⟨A

2
⟩⟨B2

⟩[1 − φ(t)2] + ⟨A2B2
⟩φ(t)2 − ⟨ABAB⟩

φ(t)3Re [φ(t + iβ)]
φ(iβ)

+ ⟨AB⟩2
φ(t)

φ(iβ)
Re [φ(2t)φ(t + iβ) + φ(t)φ(2t + iβ) − 2φ(t)2φ(t + iβ)] +O≺ (E) ,

(4.2.12)

where E is from (4.2.7). Here φ(z) is the complex extension of φ(t) for z ∈ C; note that φ(z) is
generically complex but φ(iβ) is real.

Figure 4.2.1: Depicted are four curves illustrating the influence of β = 1/T on the OTOC C(β)A,A(t)

up to intermediate times for Example 1 from Section 4.2.1 (i.e. normalized to ⟨A2⟩ = 1 with
rankA = N

1−a
2 and a ∈ [0, 1]). As β increases, the characteristic rank-dependent peak of size ∼ N1−a

around the scrambling time t∗ ∼ 1 becomes more pronounced and very slightly shifted to the left.

Moreover, using the asymptotics of the Bessel function in the complex plane, we have, as ∣z∣→∞
with ∣arg z∣ < π,

φ(z) = −

√
1
πz3 (cos(2z + π

4
) + e2∣Im z∣

O (∣z∣−1)) .

10We restrict to this regime for simplicity, as all the error terms can be absorbed into ≺.
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In particular, the thermal limiting value of C(β)A,B(t) is independent of β at least in our regime
β ≪ logN . Note that for much larger β ≳

√
N physics calculations predict a temperature dependence

of the thermal limiting value of the OTOC , see [436, Eqs. (3.8)–(3.9)].

However, before the long-time regime and neglecting the error term in (4.2.12), we find a strong
dependence of the OTOC on temperature for Example 1 from Section 4.2.1 (cf. (4.2.8)–(4.2.9)) as
illustrated in Figure 4.2.1. In contrast to that, for Example 2 from Section 4.2.1 (cf. (4.2.8) and
(4.2.10)), the whole OTOC curve (as depicted in Figure 4.1.1) is independent of temperature at any
time. This is because all the β dependent terms in (4.2.12) drop out since AB = BA = 0.

4.3 Proof of Theorem 4.2.2: Multi-resolvent local law with
Schatten norms

Theorem 4.2.2 relies on a new multi-resolvent local law for alternating chains (4.1.3) with deterministic
matrices via simple contour integration (see Section 4.3.3). Its main novelty, using Schatten norms
for the observables and still keeping optimality in N and η, has already been explained in the
Introduction. After collecting some preliminary information, in Section 4.3.2 we present our new
local law, Theorem 4.3.3, then in Section 4.3.3 we quickly complete the proof of Theorem 4.2.2.
Starting from Section 4.4 we will focus on the proof of Theorem 4.3.3.

4.3.1 Preliminaries on the deterministic approximation
Before stating our main technical result, we introduce some additional notation. Given a non-crossing
partition π of the set [k] ∶= {1, . . . , k } arranged in cyclic order, the partial trace pTrπ is defined as

pTrπ(B1, . . . ,Bk−1) ∶= ∏
S∈π∖B(k)

⟨∏
j∈S

Bj⟩ ∏
j∈B(k)∖{k }

Bj , (4.3.1)

with B(k) ∈ π denoting the unique block containing k. Then, for generic Bi’s, the deterministic
approximation of (4.1.3) is given by (see [170, Theorem 3.4])

M[1,k] =M(z1,B1, . . . ,Bk−1, zk) ∶= ∑
π∈NC([k])

pTrK(π)(B1, . . . ,Bk−1)∏
S∈π

m○[S], (4.3.2)

where NC([k]) denotes the non-crossing partitions of the set [k], and K(π) denotes the Kreweras
complement of π (see [170, Definition 2.4] and [384]). Furthermore, for any subset S ⊂ [k] we define
m[S] ∶= msc[zS] as the iterated divided difference of msc evaluated in zS ∶= {zi ∶ i ∈ S}, and by
m○[⋅] denote the free-cumulant transform of m[⋅] which is uniquely defined implicitly by the relation

m[S] = ∑
π∈NC(S)

∏
S′∈π

m○[S
′
], ∀S ⊂ [k], (4.3.3)

e.g. m○[i, j] =m[{ i, j }] −m[{ i}]m[{ j }]. Throughout the paper, we will often use the fact that
msc[zS] can be written as follows

msc[{ zi ∶ i ∈ S }] = ∫
2

−2
ρsc(x)∏

i∈S

1
(x − zi)

dx. (4.3.4)

In order to formulate bounds on the deterministic approximation M as well as the local law bounds
in a concise way, we introduce the following weighted Schatten norms.

Definition 4.3.1 (ℓ-weighted Schatten norms). For B ∈CN×N , ℓ > 0 and p ∈ [2,∞], we define the
ℓ-weighted (2, p)-Schatten norm as

∣∣∣B∣∣∣p,ℓ ∶=
⟨∣B∣2⟩1/2

ℓ1/2
+
⟨∣B∣p⟩1/p

ℓ1/p
, p <∞ , ∣∣∣B∣∣∣∞,ℓ ∶=

⟨∣B∣2⟩1/2

ℓ1/2
+ ∥B∥ . (4.3.5)
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By elementary inequalities, we have, for 2 ≤ p ≤ q ≤∞,

∣∣∣B∣∣∣p,ℓ ≲ ∣∣∣B∣∣∣q,ℓ , ∣∣∣B∣∣∣q,ℓ ≲ [1 + (Nℓ)
q−p
pq ] ∣∣∣B∣∣∣p,ℓ . (4.3.6)

The next lemma gives a bound on the deterministic approximation M[1,k] with traceless observables;
its proof is given in Appendix 4.A. We will henceforth follow the convention that the letter B is used
for generic matrices, while A is reserved for traceless ones.

Lemma 4.3.2 (M -bound). Fix k ≥ 1. Consider spectral parameters z1, ..., zk ∈C ∖R and traceless
matrices A1, ...,Ak ∈CN×N . Denoting ℓ ∶=minj∈[k] ηjρj with ηj ∶= ∣Im zj ∣ and ρj ∶= π−1∣Imm(zj)∣,
it holds that11

∣⟨M[1,k](z1,A1, ..., zk)Ak⟩∣ ≲ 1(k ≥ 2) ℓ ∏
i∈[k]
∣∣∣Ai∣∣∣k,ℓ , (4.3.7)

where ∣∣∣Ai∣∣∣k,ℓ was defined in (4.3.5).

It is easy to see that the bound (4.3.7) is optimal for k even (cf. Footnote 11) and in case that
Ai = A for all i ∈ [k] and zi ∈ {z, z̄} for some z ∈ C ∖R in the bulk, i.e. Re z ∈ [−2 + δ,2 − δ] for
some δ > 0.

4.3.2 Multi-resolvent local law
We now formulate our main technical result, an averaged multi-resolvent local law with Schatten
norms, in Theorem 4.3.3; its proof is given in Section 4.4. The corresponding isotropic multi-resolvent
local law will be formulated in Theorem 4.6.2 later.

Theorem 4.3.3 (Averaged multi-resolvent local law with Schatten norms). Let W be a Wigner
matrix satisfying Assumption 4.2.1, and fix k ∈N. Consider spectral parameters z1, ..., zk ∈C ∖R,
the associated resolvents Gj = G(zj) ∶= (W − zj)−1, and traceless deterministic matrices A1, ...,Ak ∈
CN×N . Denote

ηj ∶= ∣Im zj ∣ , ρj ∶= π
−1
∣Imm(zj)∣ , ℓ ∶= min

j∈[k]
ηjρj ,

and let M[1,k] be given in (4.3.2). Then, for any fixed ϵ > 0 and recalling (4.3.5), we have

∣⟨G1A1...GkAk⟩ − ⟨M[1,k]Ak⟩∣ ≺
1
N
∏
i∈[k]
∣∣∣Ai∣∣∣2k,ℓ , (4.3.8)

uniformly in spectral parameters satisfying Nℓ ≥ N ϵ and maxj ∣zj ∣ ≤ N1/ϵ.

Notice that, in the bulk regime, ℓ essentially agrees with η ∶=mini∈[k] ∣Im zi∣, since ρi ∼ 1. However,
for (4.3.8) to be valid in any regime, the standard condition Nη ≫ 1 for the local law in the bulk
needs to be replaced by Nℓ≫ 1. This ensures that we are at the mesoscopic scale, i.e. there are
many eigenvalues in a local window of size ηi around each Re zi.

As already mentioned in the Introduction around (4.1.6), Theorem 4.3.3 unifies and improves the
previous local laws (in the bulk spectrum) with an error term involving either the operator norm (see
[168, Eq. (2.11a) in Theorem 2.5]) or Hilbert-Schmidt norm (see [169, Theorem 2.2]). This follows
by estimating (in the relevant ℓ ≲ 1 regime)

∣∣∣Ai∣∣∣2k,ℓ ≲

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

∥Ai∥

ℓ1/2
for [168, Eq. (2.11a), Thm. 2.5]

(Nℓ)
k−1
2k
⟨∣Ai∣

2⟩1/2

ℓ1/2
for [169, Theorem 2.2]

(4.3.9)

in (4.3.8) for Nℓ > 1 and every i ∈ [k] by means of elementary inequalities.
11We point out that the bound can be improved to ℓ∏i∈[k] (ℓ

(1−k)/(2k)
⟨∣Ai∣

3
⟩

1/k
⟨∣Ai∣

2
⟩
(k−3)/(2k)

+ ℓ−1/k
⟨∣Ai∣

k
⟩

1/k
)

in case of odd k ≥ 3, but we do not follow this improvement for brevity and ease of notation.
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Remark 4.3.4 (Optimality). The bound (4.3.8) is optimal in case that Ai = A for all i ∈ [k] and
zi ∈ {z, z̄} for some z ∈ C ∖R with ∣Im z∣ ≥ N−1+ϵ in the bulk. For W being GUE, this can easily
be checked by spectral decomposition of the resolvents and using Weingarten calculus [179] for the
Haar-distributed eigenvectors. The so-called “ladder diagram" gives the (first) Hilbert-Schmidt term
in the estimate

∣⟨(GA)k⟩ − ⟨M[1,k]A⟩∣ ≺
∣∣∣A∣∣∣k2k,ℓ

N
∼
⟨∣A∣2⟩k/2

Nℓk/2
+
⟨∣A∣2k⟩1/2

Nℓ1/2
. (4.3.10)

Interestingly, in some regimes the second term in (4.3.10) (non ladder diagram) gives the main
contribution, defying the general belief that always the ladder diagrams are the leading terms.

Remark 4.3.5 (Extensions). In Theorem 4.3.3, each G may also be replaced by a product of G’s or
even ∣G∣’s (absolute value). We refrain from stating these results explicitly, as they can be easily
obtained from appropriate integral representations (see (4.5.23) and (4.5.27) below). We formulate
only the following example for k = 2 and identical observables B1 = B2 for illustration. Let B ∈ CN×N

be an arbitrary (i.e. not necessarily traceless) deterministic matrix. Then, decomposing B = B̊ + ⟨B⟩,
we have

⟨G1BG2B⟩ =
m1m2⟨B⟩

2

1 −m1m2
+m1m2⟨B̊

2
⟩

+O≺ (
∣⟨B⟩∣2

Nℓ2
+
∣⟨B⟩∣⟨∣B̊∣2⟩1/2

Nℓ3/2
+
⟨∣B̊∣2⟩

Nℓ
+
⟨∣B̊∣4⟩1/2

Nℓ1/2
) .

(4.3.11)

The statement for different observables B1,B2 is analogous.

4.3.3 Out-of-time-ordered correlators: Proof of Theorem 4.2.2
In order to prove Theorem 4.2.2, we distinguish the following three time regimes,

(i) ∣t∣ < 1 , (ii) 1 ≤ ∣t∣ ≤ N (1−ϵ)/2 , and (iii) ∣t∣ > N (1−ϵ)/2 (4.3.12)

for some small fixed ϵ > 0 from Theorem 4.2.2. In the following, we focus on the most complicated
case (ii) and discuss the other two cases briefly at the end of this section. Since the arguments in
this section are fairly standard, we will leave some irrelevant technical details to the reader.

For 1 ≤ ∣t∣ ≤ N (1−ϵ)/2, we employ the integral representation

e±itW
=

1
2πi ∮Γ

e±itzG(z)dz (4.3.13)

with the contour
Γ ≡ Γt,R ∶= ∂([−R,R] × i[−∣t∣−1, ∣t∣−1

]) (4.3.14)

parametrized counterclockwise and the parameter R chosen as R = Nκ for some arbitrarily small
(but fixed) κ > 0. In this way, we can write the four-point part FA,B(t) in (4.2.3) of the OTOC
(4.2.2) as

FA,B(t) =
⎛

⎝
∏
i∈[4]
∮Γ

dzi
2πi
⎞

⎠
eit(z1+z3−z2−z4)⟨G(z1)AG(z2)BG(z3)AG(z4)B⟩ . (4.3.15)

For the part, where all zi’s, i ∈ [4], run on the horizontal parts of the contour Γ, we can replace
⟨G(z1)A...G(z4)B⟩ by ⟨M(z1,A, ..., z4)B⟩ at the price of an error O≺(E) with E = EA,B(t) from
(4.2.7) by means of Theorem 4.3.3 for k = 4. Here, we used ℓ ≳ N−2κ∣t∣−2, which follows by
ρ(zi) ≳ ∣Im zi∣(1 + dist(zi, [−2,2])2)−1, and that κ > 0 is arbitrarily small and hence Nκ can be
absorbed into ≺.
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If all the zi’s run on the vertical parts of Γ, we employ the global law version of our main result,
Proposition 4.4.1 below, to replace ⟨G(z1)A...G(z4)B⟩ by ⟨M(z1,A, ..., z4)B⟩, now at the price
of an error O≺(⟨A8⟩1/4⟨B8⟩1/4/N), which can easily be included in O≺(E). We point out that
Theorem 4.3.3 cannot be used in this regime, since ℓ = 0 when one of the zi’s crosses the real axis.

In the remaining cases, where some of the zi’s run on the horizontal parts and others run on the
vertical parts, we can no longer cleanly apply either the local or global law (Theorem 4.3.3 and
Proposition 4.4.1, respectively). Instead, we treat this situation by expanding around the case
where all zi are on the horizontal parts. More precisely, in case that, say, z1 runs on the right
vertical part of the contour Γ and z2, ...., z4 are fixed on the horizontal parts, we employ analyticity
of G(z1) away from [−3,3] (since ∥W ∥ ≤ 2 + ϵ with very high probability). This enables us to
write g(z1) ∶= ⟨G(z1)A...G(z4)B⟩ at z1 = R + iq with q ∈ [−∣t∣−1, ∣t∣−1], by Taylor expansion around
ζ ∶= R + i∣t∣−1, as

g(R + iq) =
K

∑
j=0

(q − ∣t∣−1)j

2πi ∮
C1/(2∣t∣)

g(w)

(w − ζ)j+1 dw +O(Ẽ) (4.3.16)

with Ẽ ∶= ⟨A4⟩1/2⟨B4⟩1/2/(RK+1∣t∣K−2) for any K ∈ N to be chosen below, where C1/(2∣t∣) is the
circle of radius 1/(2∣t∣) centered around ζ. In (4.3.16), we used that the (K + 1)th derivative of
g(z1) on the vertical part of the contour is (deterministically) bounded as

∣g(K+1)
(z1)∣ ≲ ∣⟨(G(z1))

K+1
AG(z2)BG(z3)AG(z4)B⟩∣ ≲

⟨A4⟩1/2⟨B4⟩1/2∣t∣3

RK+1 ,

since ∥G(zi)∥ ≤ ∣t∣ for i ∈ {2,3,4}. Using the representation (4.3.16), we can now replace g(w) by
h(w) ∶= ⟨M(w,A, ..., z4)B⟩, again at the expense of an error O≺(E) by means of Theorem 4.3.3.
As one can easily see that h is also analytic around R + iq and satisfies the same relation as g in
(4.3.16), we find that ∣g(R + iq) − h(R + iq)∣ ≺ E + Ẽ . Hence, in order to absorb Ẽ into E , it remains
to choose K in (4.3.16) as K ∶= ⌈κ−1⌉.

Therefore, since integrating the O≺(E)-bound in (4.3.15) only adds some Nκ-factors from the length
of Γ (note that ∣eit(z1+z3−z2−z4)∣ ≲ 1), which can easily be absorbed into ≺, we find that

FA,B(t) =
⎛

⎝
∏
i∈[4]
∮Γ

dzi
2πi
⎞

⎠
eit(z1+z3−z2−z4)⟨M(z1,A, z2,B, z3,A, z4)B⟩ +O≺(E) . (4.3.17)

Similarly, decomposing A2 = (A2 − ⟨A2⟩) + ⟨A2⟩ and analogously for B, the two-point part DA,B(t)
from (4.2.3) is given by, again for times 1 ≤ ∣t∣ ≤ N (1−ϵ)/2,

DA,B(t) = ⟨A
2
⟩⟨B2

⟩ +
⎛

⎝
∏
i∈[2]
∮Γ

dzi
2πi
⎞

⎠
eit(z1−z2)⟨M(z1, (A

2
)

˚ , z2)(B
2
)

˚
⟩ +O≺(E) , (4.3.18)

where (A2)˚ = A2 − ⟨A2⟩ and analogously for B.

In the other two regimes, ∣t∣ < 1 and ∣t∣ > N (1−ϵ)/2, we follow the above arguments for 1 ≤ ∣t∣ ≤ N1/2−ϵ,
but replace the contour Γ from (4.3.14) by12

{z ∈C ∶ dist(z, [−2,2]) = ∣t∣−1
} and ∂([−R,R] × i[−N (1−ϵ)/2,N (1−ϵ)/2]) ,

respectively. This results in error terms in identities analogous to (4.3.17)–(4.3.18), that can easily be
seen to be bounded by O≺(E), just as before, by application of Proposition 4.4.1 and Theorem 4.3.3,
respectively.

It remains to explicitly compute the deterministic terms in (4.3.17)–(4.3.18), which, by using the
formulas (4.3.1)–(4.3.4), straightforwardly results in the expression given in (4.2.6). This concludes
the proof of Theorem 4.2.2.

12We choose the first contour only for t ≠ 0. If t = 0, the lhs. of (4.2.6) carries no randomness, and we find
CA,B(0) = ⟨A2B2

⟩ − ⟨ABAB⟩.
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4.4 Zigzag strategy: Proof of Theorem 4.3.3
In this section we prove our main technical result from Section 4.3, the multi-resolvent local law in
Theorem 4.3.3. Its proof is conducted via the characteristic flow method [7, 105, 353, 6, 394, 14]
followed by a Green function comparison (GFT) argument. A combination of these tools, which we
coin the Zigzag strategy, has first been used in [161, 162] and Chapter 3. It consists of the following
three steps:

1. Global law. Proof of a multi-resolvent global law, i.e. for spectral parameters “far away" from
the spectrum, minj dist(zj , [−2,2]) ≥ δ for some small δ > 0 (see Proposition 4.4.1 below).

2. Characteristic flow. Propagate the global law to a local law by considering the evolution of
the Wigner matrix W along the Ornstein-Uhlenbeck flow

dWt = −
1
2
Wtdt +

dBt
√
N
, W0 =W , (4.4.1)

with Bt a standard real symmetric or complex Hermitian Brownian motion, thereby introducing
an order one Gaussian component (see Proposition 4.4.3). The spectral parameters of the
resolvents evolve from the global regime to the local regime according to the characteristic
(semicircular) flow

∂tzi,t = −m(zi,t) −
zi,t

2
. (4.4.2)

The simultaneous effect of these two evolutions is a key cancellation of two large terms.

3. Green function comparison. Remove the Gaussian component by a Green function comparison
(GFT) argument (see Proposition 4.4.4).

As the first step, we have the following global law, the proof of which is completely analogous to
the proofs presented in [168, Appendix B], [169, Appendix A], and Appendix 3.A.2, and so omitted.
Proposition 4.4.1 is stated for a general deterministic matrix B since the traceless condition plays no
role in this case.

Proposition 4.4.1 (Step 1: Global law). Let W be a Wigner matrix satisfying Assumption 4.2.1,
and fix k ∈N and δ > 0. Consider spectral parameters z1, ..., zk ∈C ∖R, the associated resolvents
Gj = G(zj) ∶= (W − zj)

−1, and deterministic matrices B1, ...,Bk ∈ CN×N . Then, uniformly in
spectral parameters satisfying d ∶=minj∈[k] dist(zj , [−2, 2]) ≥ δ and deterministic matrices B1, ...,Bk,
it holds that

∣⟨G1B1...GkBk⟩ − ⟨M[1,k]Bk⟩∣ ≺
1
N
∏
i∈[k]
∣∣∣Bi∣∣∣2k,d . (4.4.3)

Next, using Proposition 4.4.1 as an input, we derive Theorem 4.3.3 for Wigner matrices which have
an order one Gaussian component, as formulated in Proposition 4.4.3. For this purpose we consider
the evolution of the Wigner matrix W along the Ornstein-Uhlenbeck flow (4.4.1) and define its
resolvent Gt(z) ∶= (Wt − z)

−1 with zi ∈C ∖R. Even if not stated explicitly we will always consider
this flow only for short times, i.e. for 0 ≤ t ≤ T , where the maximal time T is smaller than some
γ > 0. Note that the first two moments of Wt are preserved along the flow (4.4.1), and hence the
self-consistent density of states of Wt is unchanged; it remains the standard semicircle law. We
now want to compute the deterministic approximation to an alternating product of resolvents and
deterministic matrices A1,A2, ... with trace zero

Gt(z1)A1Gt(z2)A2Gt(z3)A3 . . . , (4.4.4)

and have a very precise estimate of the error term.
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4. OTOCs for Wigner matrices

In fact, we will let the spectral parameters evolve with time with a carefully chosen equation that will
conveniently cancel some error terms in the time evolution of (4.4.4). The corresponding equation
will be the characteristic equation for the semicircular flow, i.e. given by the first order ODE (4.4.2)
(see Figure 3.3.1 for an illustration of this flow). We remark that, along the characteristics we have

∂tm(zi,t) = −∂zm(zi,t) (m(zi,t) +
zi,t

2
)

= −∂zm(zi,t)(−
1

2m(zi,t)
+
m(zi,t)

2
) =

m(zi,t)

2
,

(4.4.5)

where in the last two equalities we used the defining equation m(z)2 + zm(z) + 1 = 0 of the Stieltjes
transform of the semicircular law. In particular, this implies that ρi,s ∼ ρi,t for any 0 ≤ s ≤ t, where
we denoted ρi,t ∶= π−1∣Imm(zi,t)∣. In contrast to that, the behavior of the ηi,t ∶= ∣Im zi,t∣ depends
on the regime: in the bulk ηi,t decreases linearly in time with a speed of order one, at the edge the
decay is still linear but with a speed depending on the size of the local density of states. By standard
ODE theory we obtain the following lemma:

Lemma 4.4.2 (see Lemma 3.3.2). Fix an N–independent γ > 0, fix 0 < T < γ, and pick z ∈C ∖R.
Then there exists an initial condition z0 such that the solution zt of (4.4.2) with this initial condition
z0 satisfies zT = z. Furthermore, there exists a constant C > 0 such that dist(z0, [−2,2]) ≥ CT .

The spectral parameters evolving by (4.4.1) will have the property that

Gt(z1,t)A1 . . .Gt(zk,t) −M[1,k],t ≈ G0(z1,0)A1 . . .G0(zk,0) −M[1,k],0, (4.4.6)

with M[1,k],t ∶=M(z1,t,A1, . . . ,Ak−1, zk,t), for any 0 ≤ t ≤ T . Note that the deterministic approxi-
mation M[1,k],t depends on time only through the time dependence of the spectral parameters, the
deterministic approximation of (4.4.4) with fixed spectral parameters does not depend on time, i.e.
it is unchanged along the whole flow (4.4.1).

Proposition 4.4.3 (Step 2: Characteristic flow). Fix any ϵ, γ > 0, a time 0 ≤ T ≤ γ, and K ∈ N.
Consider z1,0, . . . , zK,0 ∈C ∖R as initial conditions to the solution zj,t of (4.4.2) for 0 ≤ t ≤ T and
define Gj,t ∶= Gt(zj,t) as well as ηj,t ∶= ∣Im zj,t∣ and ρj,t ∶= π−1∣Imm(zj,t)∣.

Let k ≤K, define ℓt ∶=minj∈[k] ηj,tρj,t and recall (4.3.5). Then, assuming that

∣⟨G1,0A1...Gk,0Ak⟩ − ⟨M[1,k],0Ak⟩∣ ≺
1
N
∏
i∈[k]
∣∣∣Ai∣∣∣2k,ℓ0 , (4.4.7)

holds uniformly for any k ≤ K, any choice of deterministic traceless A1, ...,Ak and any choice of
zi,0’s such that Nℓ0 ≥ N ϵ and maxj∈[k] ∣zj,0∣ ≤ N1/ϵ, then we have

∣⟨G1,TA1...Gk,TAk⟩ − ⟨M[1,k],TAk⟩∣ ≺
1
N
∏
i∈[k]
∣∣∣Ai∣∣∣2k,ℓT (4.4.8)

for any k ≤ K, again uniformly in traceless matrices Ai and in spectral parameters satisfying
NℓT ≥ N

ϵ and maxj∈[k] ∣zj,T ∣ ≤ N1/ϵ.

The proof of Proposition 4.4.3 is given in Section 4.5. As the third and final step, we show that
the additional Gaussian component introduced in Proposition 4.4.3 can be removed using a Green
function comparison (GFT) argument at the price of a negligible error. The proof of this proposition
is presented in Section 4.6.
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4.5. Characteristic flow: Proof of Proposition 4.4.3

Proposition 4.4.4 (Step 3: Green function comparison). Let H(v) and H(w) be two N ×N Wigner
matrices with matrix elements given by the random variables vab and wab, respectively, both satisfying
Assumption 4.2.1 and having matching moments up to third order,13 i.e.

E v̄uabv
s−u
ab = E w̄uabw

s−u
ab , s ∈ {0,1,2,3} , u ∈ {0, ..., s} . (4.4.9)

Fix K ∈N and consider spectral parameters z1, ..., zK ∈ C ∖R that satisfy minjNηjρj ≥ N ϵ and
maxj ∣zj ∣ ≤ N1/ϵ for some ϵ > 0 and the associated resolvents G(#)j = G(#)(zj) ∶= (H

(#) − zj)
−1

with # = v,w. Pick traceless matrices A1, ...,AK ∈CN×N .

Assume that, for H(v), we have the following bounds (writing Gj ≡ G
(#)
j for brevity): For any

k ≤ K, consider any subset of cardinality k of the K spectral parameters, and similarly, consider
any subset of cardinality k of the deterministic matrices. Relabeling both of them by [k], setting
ℓ ∶=minj∈[k] ηjρj and recalling (4.3.5), we have that

∣⟨G1A1...GkAk⟩ − ⟨M[1,k]Ak⟩∣ ≺
1
N
∏
i∈[k]
∣∣∣Ai∣∣∣2k,ℓ (4.4.10)

uniformly in all choices of subsets of z’s and A’s.

Then, (4.4.10) also holds for the ensemble H(w), uniformly all choices of subsets of z’s and A’s.

We are now ready to finally conclude the proof of Theorem 4.3.3. Fix T > 0, and fix z1, . . . , zk ∈ C∖R
such that miniNηiρi ≥ N ϵ, and let zi,0 be the initial conditions of the characteristics (4.4.2) chosen
so that zi,T = zi (this is possible thanks to Lemma 4.4.2). Then, the assumption (4.4.7) of
Proposition 4.4.3 is satisfied for those zi,0 by Proposition 4.4.1 with δ = CT , since d ≳ ℓ0 and where
C > 0 is the constant from Lemma 4.4.2. We can thus use Proposition 4.4.3 to show that (4.4.8)
holds. Finally, the Gaussian component added in Proposition 4.4.3 is removed using Proposition 4.4.4
with the aid of a complex version (see Lemma 3.A.2) of the standard moment-matching lemma [248,
Lemma 16.2].

4.5 Characteristic flow: Proof of Proposition 4.4.3
In this section, we give the proof of Proposition 4.4.3. The argument is divided into three parts.

(i) We begin by introducing several deterministic and stochastic control quantities, which play
a fundamental role throughout the rest of this paper. The stochastic control quantities
(some normalized differences between a resolvent chain and the corresponding M -term, see
(4.5.11)–(4.5.12) below) satisfy a system of master inequalities (see Propositions 4.5.2–4.5.3).

(ii) Taking these master inequalities together with Proposition 4.4.1 as inputs, we will prove
Proposition 4.4.3 in Section 4.5.1, thus concluding Step 2 of the argument in Section 4.4.

(iii) Afterwards, based on Proposition 4.4.1 and several relations among the deterministic control
quantities (see Lemma 4.5.1), we will prove the master inequalities in Section 4.5.2.

To keep the presentation simpler, within this section we assume that Eχ2
od = 0 and that Eχ2

d = 1,
i.e. we consider only complex Wigner matrices. The modifications for the general case are analogous
to Section 3.4, and so omitted.

We recall our choice of the characteristics ∂tzi,t = −m(zi,t) − zi,t

2 from (4.4.2) and note that t↦ ηi,t
is decreasing and that ρi,t ∼ ρi,s for any 0 ≤ s ≤ t (see (4.4.5) and the paragraph below it for more

13This condition can easily be relaxed to being matching up to an error of size N−2 as done, e.g., in [248,
Theorem 16.1].
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4. OTOCs for Wigner matrices

details). Additionally, we record the following, trivially checkable, simple integration rule which will
be used many times in this section:

∫

t

0

1
ηαs

ds ≲ logN
ηα−2
t ℓt

with ηs ∶=min
i
ηi,s , ℓs ∶=min

i
ηi,sρi,s . (4.5.1)

Along the characteristics, using the short–hand notation Gi,t = (Wt − zi,t)
−1, with Wt being the

solution of (4.4.1), by Itô’s formula, we have14

d⟨(G[1,k],t −M[1,k],t)A⟩ =
1
√
N

N

∑
a,b=1

∂ab⟨G[1,k],tA⟩dBab,t

+
k

2
⟨G[1,k],tA⟩dt +

k

∑
i,j=1
i<j

⟨G[i,j],t⟩⟨G[j,i],t⟩dt (4.5.2)

+
k

∑
i=1
⟨Gi,t −mi,t⟩⟨G

(i)
[1,k],tA⟩dt − ∂t⟨M[1,k],tA⟩dt,

where ∂ab denotes the directional derivative ∂wab
. We also set

G[i,j],t ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Gi,tAi . . .Aj−1Gj,t if i < j

Gi,t if i = j

Gi,tAi,t . . .Gk,tAkG1,tA1 . . .Aj−1Gj,t if i > j,

(4.5.3)

and defined G
(l)
[i,j],t as G[i,j],t but with the l–th resolvent substituted by G2

l,t. The last definition
for i > j reflects the cyclicity of the trace, since G[i,j],t will be needed in a tracial situation. For
any i, j ∈ [k], we denote the deterministic approximation of G[i,j],t by M[i,j],t, with M[i,j],t being
defined as in (4.3.2) with [1, k] replaced by [i, j] if i < j and by [1, j] ∪ [i, k] if i > j.

Deterministic control quantities: mean and standard deviation size. We now introduce two
deterministic control quantities that measure the size of the mean of long chains ⟨G1A1...GkAk⟩
and their standard deviation, respectively, in terms of the ℓ-weighted Schatten norms of A1, ...,Ak
(recall Definition 4.3.1) and the spectral parameters of the resolvents Gi = G(zi). These are given by

mk(ℓ; AJk
) ∶= 1(k ≥ 2) ∏

α∈Jk

∣∣∣Aα∣∣∣k,ℓ , sk(ℓ; AJk
) ∶= ∏

α∈Jk

∣∣∣Aα∣∣∣2k,ℓ , (4.5.4)

and will be called the mean size and the standard deviation size, respectively. They are functions of
a positive number ℓ (usually given by ℓ =mini ηiρi) and a multiset AJk

= (Aα)α∈Jk
of deterministic

matrices of cardinality ∣Jk∣ = k.

In the following, we shall frequently drop the symbol A from the definitions in (4.5.4), i.e. write
mk(ℓ;Jk) and sk(ℓ;Jk) instead of mk(ℓ; AJk

) and sk(ℓ; AJk
), respectively. Moreover, for time

dependent spectral parameters, we will also use the notation mk(t) = mk(t;Jk) = mk(ℓt; AJk
), with

ℓt =mini ηi,tρi,t, and a similar notation for the standard deviation size. In particular, we may often
omit the dependence on the deterministic matrix A. (More generally, we will omit every argument of
(4.5.4), whenever it is clear what they are and it does not lead to confusion.) For example, for i < j,
we have, with ηt ∶=mini ηi,t,

∣⟨M[i,j],tAj⟩∣ ≲ ℓtmj−i+1(t), ∣⟨M[i,j],t⟩∣ ≲ (ℓt/ηt)mj−i(t). (4.5.5)

The first bound follows from (4.3.7); the second bound in (4.5.5) can easily be obtained by arguments
entirely analogous to the ones leading to Lemma 4.A.1 in Appendix 4.A. The bounds (4.5.5) justify the

14We point out that (4.5.2) holds for any matrix Ai ∈CN×N , i.e. we did not use that the Ai’s are traceless.
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4.5. Characteristic flow: Proof of Proposition 4.4.3

terminology that mk is the mean size of a resolvent chain ⟨G1A1...GkAk⟩, which is well approximated
by ⟨M[1,k]Ak⟩. The additional ℓt factor was introduced to simplify formulas later.

In the remainder of this section we will often use the following lemma about some relations among
the sizes mk(t), s(t) from (4.5.4). The proofs are immediate consequences of (4.3.6) and ℓs ≳ ℓt
for s ≤ t (recall the discussion below (4.4.5)) and hence omitted.

Lemma 4.5.1 (m/s-relations). Let k ≥ 1 and consider time-dependent spectral parameters z1,t, ..., zk,t
and a multiset of traceless matrices AJk

as above. Then, the mean size mk and the standard variation
size sk satisfy the following inequalities.

(i) Super-multiplicativity, i.e. for any 1 ≤ j ≤ k − 1 we have

mj(t;Jj)mk−j(t;Jk−j) ≲ mk(t;Jk) , sj(t;Jj) sk−j(t;Jk−j) ≲ sk(t;Jk) (4.5.6)

for all disjoint decompositions Jk = Jj ∪̇ Jk−j .

(ii) The mean size can be upper bounded by the standard deviation size as

mk(t;Jk) ≲ sk(t;Jk) and
√
m2k(t;Jk ∪ Jk) ≲ sk(t;Jk) , (4.5.7)

where Jk ∪ Jk denotes the union of the multiset Jk with itself.

(iii) The standard deviation size satisfies the doubling inequality (recall ℓt =minj∈[k] ηj,tρj,t)

s2k(t;Jk ∪ Jk) ≲ [1 +
√
Nℓt](sk(t;Jk))

2
. (4.5.8)

(iv) Monotonicity in time: for any 0 ≤ s ≤ t we have

mk(s;Jk) ℓαs ≲ mk(t;Jk) ℓαt sk(s;Jk) ℓβs ≲ sk(t;Jk) ℓ
β
t (4.5.9)

for all α ∈ [0,1] and β ∈ [0,1/2].

Stochastic control quantities: Master and reduction inequalities. Using the notation from
(4.5.4), the goal is thus to prove that

⟨G[1,k],TAk⟩ − ⟨M[1,k],TAk⟩ = ⟨G[1,k],0Ak⟩ − ⟨M[1,k],0Ak⟩ +O≺(
sk(T )

N
) , (4.5.10)

uniformly in the spectrum and uniformly in traceless deterministic matrices Ai, for some fixed T ≲ 1.
We may henceforth assume that all the Ai’s are Hermitian; the general case follows by multilinearity.

For the purpose of proving (4.5.10), recall the notation ℓt ∶=mini ηi,tρi,t from (4.5.1) and define

Φk(t) = Φk(t; z[1,k]; A[1,k]) ∶=
N

sk(ℓt; A[1,k])
∣⟨(G[1,k],t −M[1,k],t)Ak⟩∣ (4.5.11)

for all k ≥ 1. Here, A[1,k] = (A1, . . . ,Ak) and z[1,k] = (z1, ..., zk) with zi = zi,0 (initial condition)
denote multisets of deterministic matrices and spectral parameters, respectively. We now briefly
comment on the definition (4.5.11). We chose the pre–factor in the definition of Φk(t) so that
eventually Φk(t) will be of order one with high probability (cf. (4.5.10)). However, we will not be
able to prove this directly, we first prove that Φk(t) ≺

√
Nℓt and then, using this bound as an input,

we prove the desired bound Φk(t) ≺ 1. To implement this technically we introduce another quantity

Ψk(t) = Ψk(t; z[1,k]; A[1,k]) ∶=
N

sk(ℓt; A[1,k])
√
Nℓt
∣⟨(G[1,k],t −M[1,k],t)Ak⟩∣ (4.5.12)
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for all k ≥ 1, which we will show to be bounded by one (note Ψk(t) ≺ 1 implies Φk(t) ≺
√
Nℓt), and

then show that Ψk(t) ≺ 1 in fact implies Φk(t) ≺ 1.

We start considering Ψk(t); note that by (4.4.7) it follows

Ψk(0) ≲ Φk(0) ≺ 1, (4.5.13)

for any k ≥ 1. For this purpose we will derive a series of master inequalities for these quantities with
the following structure. We assume that

Ψk(t) ≺ ψk (4.5.14)

holds for some deterministic control parameter ψk ≥ 1, uniformly in deterministic matrices Ai, times
0 ≤ t ≤ T and in spectral parameters with ℓt ≥ N

−1+ϵ for some small fixed ϵ > 0 (we stress that
the ψk’s depend neither on time, nor on the spectral parameters zi,t, nor on the deterministic
matrix A). Starting from (4.5.14) we derive an improved upper bound for Ψk(t) and show that,
by iterating these inequalities, we indeed obtain the desired Ψk(t) ≺ 1. The main inputs to prove
this fact are the master inequalities in (4.5.15), which informally states that if Ψl(t) ≺ ψl for any
l = 1, . . . , k + 1(k odd), then this actually implies the improved bound (4.5.15).

Proposition 4.5.2 (Master inequalities). Fix k ∈N. Assume that Ψl(t) ≺ ψl for some deterministic
control parameters ψl, for any 1 ≤ l ≤ k + 1(k odd), uniformly in t ∈ [0, T ]. Then

Ψk(t) ≺ 1 +
k−2
∑
j=1

ψj +
1

(NℓT )1/4

k

∑
j=1

ψ̃jψ̃k−j , (4.5.15)

uniformly in t ∈ [0, T ]. Here we set ψ̃l ∶= ψl + 1(l odd)
√
ψl−1ψl+1, ψ0 ∶= 1.

Using (4.5.15), in the next section we show that Ψk(t) ≺ 1 by an iterative procedure. Then, to
conclude Φk(t) ≺ 1, we rely on the following proposition, which will eventually prove Proposition 4.4.3.

Proposition 4.5.3. Fix k ∈N, assume that Φl(t) ≺ 1, for l ≤ k − 2 uniformly in t ∈ [0, T ], and that
Φl(t) ≺

√
Nℓt for 1 ≤ l ≤ 2k and t ∈ [0, T ]. Then, uniformly in t ∈ [0, T ],

Φk(t) ≺ 1 . (4.5.16)

4.5.1 Closing the hierarchy: Proof of Proposition 4.4.3
To show that Proposition 4.5.2 in fact implies Ψk(t) ≺ 1 we rely on the following procedure, which
we refer to as iteration (see, e.g., Lemma 1.4.11).

Lemma 4.5.4 (Iteration). Fix k ∈N, T > 0, and N -independent constants ϵ, δ > 0, α ∈ (0,1) and
D > 0. Let X be a random variable depending on k time dependent spectral parameters z1,t, ..., zk,t,
t ∈ [0, T ], and recall that ℓt = minj∈[k] ηj,tρj,t. Assume that the a-priori bound X ≺ ND holds
uniformly in t ∈ [0, T ], ℓt ≥ N−1+ϵ. Suppose that there is a deterministic quantity x (may depend on
ℓT and N) such that for any fixed l ∈N the fact that X ≺ x uniformly for t ∈ [0, T ] and ℓt ≥ N−1+lϵ

implies15

X ≺ A +
x

B
+ x1−αCα, (4.5.17)

uniformly for t ∈ [0, T ] and ℓt ≥ N−1+(l+l′)ϵ, for some constants16 l′ ∈N, B ≥ δ > 0, A,C > 0. Then,
iterating (4.5.17) finitely many times, we obtain

X ≺ A +C,

uniformly for t ∈ [0, T ] and ℓt ≥ N−1+(1+Kl′)ϵ, for some K =K(α,D, δ).
15Here the scalar A > 0 should not be confused with the matrices Ai which appear throughout the proof.
16The constants A,B,C may depend on N , while l and l′ are independent of N .
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We are now ready to present the proof of Proposition 4.4.3.

Proof of Proposition 4.4.3. The proof of this proposition is divided into two steps: we first prove
that Ψk(t) ≺ 1 for any k and then use this information as an input to conclude that Φk(t) ≺ 1
for any k. These two bounds are quite different in spirit. The first one is an a-priori bound so
the iterative procedure behind its proof must be self-improving. This is reflected in the triangular
structure of (4.5.15): the right hand side contains quantities with index at most k (or k + 1 when k
is odd) and terms with the highest index come with a small prefactor (recall that NℓT is large). This
makes the system (4.5.15) closable. The iteration is done essentially for each fixed k and then we use
an induction on k. Owing to the parity issue in the definition of ψ̃, we use a step-two induction, but
this is just a small technicality. The second bound Φk(t) ≺ 1 is quite different, since its proof relies
on the a-priori bound obtained in the first step. The key point is that in order to prove Φk(t) ≺ 1 for
some fixed k, we need to know the a-priori bound Φl(t) ≺

√
Nℓt for any l ≤ 2k, i.e. without the

a-priori bound the system of inequalities behind the proof of Φk(t) ≺ 1 would not be closable. This
explains why we need to proceed in two stages.

We now start we the proof of Ψk(t) ≺ 1. We first prove this for k = 1, 2 and then, using an inductive
argument, we show that the same bound holds for any k ≥ 3. By (4.5.15) for k = 1,2 we have

Ψ1(t) ≺ 1 + ψ1 +
√
ψ2

(NℓT )1/4
, Ψ2(t) ≺ 1 + ψ2

1 + ψ2

(NℓT )1/4
(4.5.18)

Using iteration we then obtain (all estimates are uniform in t ∈ [0, T ])

Ψ1(t) ≺ 1 +
√
ψ2

(NℓT )1/4
, Ψ2(t) ≺ 1 + ψ2

1
(NℓT )1/4

. (4.5.19)

Plugging the first inequality into the second one and using iteration, this immediately gives that
Ψ1(t) +Ψ2(t) ≺ 1.

Next, we proceed with the induction step. Fix an even k ∈N, and assume that Ψl(t) ≺ 1, for l ≤ k−2,
then by (4.5.15) we have

Ψk−1(t) ≺ 1 + ψk−1 +
√
ψk

(NℓT )1/4
, Ψ2(t) ≺ 1 + ψk−1 +

ψk +
√
ψk

(NℓT )1/4
(4.5.20)

By iteration, we have

Ψk−1(t) ≺ 1 +
√
ψk

(NℓT )1/4
, Ψ2(t) ≺ 1 + ψk−1, (4.5.21)

which concludes Ψl(t) ≺ 1, for l ≤ k, by plugging the first inequality into the second one and using
iteration once again.

Finally, to conclude Φk(t) ≺ 1, we proceed by a step-two induction on k. For k = 1, 2, the assumption
Φl(t) ≺

√
Nℓt, for l ≤ 4, of Proposition 4.5.3 is satisfied, and so we have Φ1(t) +Φ2(t) ≺ 1. Then

we proceed with the induction step, i.e. for a fixed even k ∈N we assume that Φl(t) ≺
√
Nℓt, for

l ≤ 2k, and Φl(t) ≺ 1, for l ≤ k − 2. Then, by Proposition 4.5.3, we have Φl(t) ≺ 1 for l ≤ k; this
concludes the induction step, hence the proof.

4.5.2 Master and reduction inequalities: Proofs of Propositions 4.5.2–4.5.3

We first present the proof of Proposition 4.5.2 in detail and then at the end of this section we explain
the minor changes to obtain Proposition 4.5.3.
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4. OTOCs for Wigner matrices

Proof of Proposition 4.5.2. To keep the notation simple, from now on we often omit the t–dependence
from the resolvents Gi = Gi,t and from their deterministic approximations M[i,j] =M[i,j],t, but we
will still keep the t–dependence in the spectral parameters, in Ψk(t) and in the quantities (4.5.4);
additionally, we stress that ψk does not depend on time. All estimates are uniform in the time
parameters t, s ∈ [0, T ].

Note that in (4.5.12) we defined Ψk(t) only for alternating chains of single resolvents and deterministic
A’s, i.e. no Gki appears. However, in (4.5.2) we naturally get chains involving G2

i . For these terms
we use the estimate (recall the estimate for ⟨M[i,j]⟩ from (4.5.5)):

∣⟨G[i,j] −M[i,j]⟩∣ ≺
ψj−isj−i(t)

Nηt
. (4.5.22)

For Im zi,tIm zj,t > 0 this trivially follows by integral representation

GjGi =
1

2πi ∫Γ

G(z)

(z − zi,t)(z − zj,t)
dz, (4.5.23)

for "linearizing" the product of the first and last G’s in ⟨G[i,j]⟩ = ⟨GiAi . . .Aj−iGj⟩ after using
cyclicity of the trace. Here Γ is a contour which lies in the region {z ∈C ∶ ∣Im z∣ρ(z) ≥ ℓt/2}. For
Im zi,tIm zj,t < 0 we "linearize" by the resolvent identity. Using (4.5.23) will change the value of
the imaginary part of the spectral parameters, so the domain on which the inequalities below hold
(characterized by Nℓ ≥ N ϵ) may change from time to time, i.e., say ϵ → ϵ/2. However, this can
happen only finitely many times as it does not affect the ≺–bound (see Figure 1.4.1 for a detailed
discussion of this minor technicality).

To describe the evolution of M[1,k],t in (4.5.2) we rely on the following lemma.

Lemma 4.5.5 (Lemma 3.4.8). For any deterministic matrices Ai ∈ CN×N (i.e. not necessarily
traceless), we have

∂t⟨M[1,k],tAk⟩ =
k

2
⟨M[1,k],tAk⟩ +

k

∑
i,j=1,

i<j

⟨M[i,j],t⟩⟨M[j,i],t⟩. (4.5.24)

Adding and subtracting the deterministic approximation of each term in (4.5.2) and using Lemma 4.5.5
we thus obtain

d⟨(G[1,k],t −M[1,k],t)Ak⟩ =
1
√
N

N

∑
a,b=1

∂ab⟨G[1,k],tAk⟩dBab,t

+
k

2
⟨(G[1,k],t −M[1,k],t)Ak⟩dt

+
k

∑
i,j=1
i<j

⟨G[i,j],t −M[i,j],t⟩⟨M[j,i],t⟩dt

+
k

∑
i,j=1
i<j

⟨M[i,j],t⟩⟨G[j,i],t −M[j,i],t⟩dt (4.5.25)

+
k

∑
i,j=1
i<j

⟨G[i,j],t −M[i,j],t⟩⟨G[j,i],t −M[j,i],t⟩dt

+
k

∑
i=1
⟨Gi,t −mi,t⟩⟨G

(i)
[1,k],tAk⟩dt .
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We point out that, using a simple change of variables, the term ⟨(G[1,k] −M[1,k])Ak⟩ amounts to a
simple rescaling ekt/2, so we will ignore it. The quadratic variation of the martingale term in (4.5.25)
is given by

1
N

N

∑
a,b=1
∣∂ab⟨G[1,k]Ak⟩∣

2

≲
k

∑
i=1

⟨ImGi(AiImGi+1 . . .Ai−1)ImGi(AiImGi+1 . . .Ai−1)
∗⟩

N2η2
i,t

,

(4.5.26)

where we also used the Ward-identity GiG∗i = η−1
i ImGi. Notice that the rhs. of (4.5.26) naturally

contains chains of 2k resolvents. However, to have a closed system of master inequalities for products
of resolvents of length k, we split the chain of length 2k into the product of two chains of length k.
For this purpose we use the following reduction inequality which will be proven at the end of this
section. For any fixed matrices R,Q ∈CN×N , and spectral parameters z,w ∈C ∖R, we have17

⟨ImG(z)QG(w)RImG(z)R∗G(w)∗Q∗⟩

≲ N⟨ImG(z)Q∣G(w)∣Q∗⟩⟨ImG(z)R∗∣G(w)∣R⟩.
(4.5.28)

We now focus on the case k being even for notational simplicity. Combining (4.5.26) with (4.5.28)
used for z = z1,w = zk/2 and

Q = A1G2 . . .Gk/2−1Ak/2−1 , R = Ak/2Gk/2+1 . . .GkAk,

together with Ψk(t) ≺ ψk, we obtain the following bound for the quadratic variation

1
N

N

∑
a,b=1
∣∂ab⟨G[1,k],sAk⟩∣

2
≺
mk(s)

2

Nη2
s

+
Nℓts(s)

2ψ2
k

N3η2
s

. (4.5.29)

Then, using the Burkholder–Davis–Gundy (BDG) inequality, we conclude that the martingale term in
(4.5.25) is bounded by

N

sk(t)
√
Nℓt
[∫

t

0
(
ℓsmk(s)

2

Nη2
s

+
Nℓssk(s)

2ψ2
k

N3η2
s

) ds]
1/2

≲
mk(t)

sk(t)
+
ψk
√
N
(∫

t

0

1
η2
s

ds)
1/2
≲ 1 + ψk

√
Nℓt

,

(4.5.30)

with very high probability. Here in the first inequality we used (4.5.9), and in the second inequality
we used (4.5.7) for the first term and (4.5.1) for the second term.

Similarly, for odd k, using (4.5.28) for z = z1,w = z(k−1)/2 and

Q = A1G2 . . .G(k−3)/2A(k−3)/2 , R = A(k−1)/2G(k+1)/2 . . .GkAk

we get a bound 1 +
√
ψk−1ψk+1/(Nℓt)

1/4 for the martingale term.
17We point out that the bound Ψk(t) ≤ ψk holds also for chains when some resolvents G’s are replaced by their

absolute value ∣G∣. This can be easily seen using the integral representation

∣G(E + iη)∣ = 2
π ∫

∞

0

ImG(E + i
√
η2 + v2)

√
η2 + v2

dv , (4.5.27)

together with the bound (4.5.12) for chains containing only resolvents (see e.g. [168, Lemma 5.1]).
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Next, using (4.5.22), we estimate the contribution of the last line in (4.5.25)
N

sk(t)
√
Nℓt
∫

t

0
⟨Gi,s −mi,s⟩⟨G

(i)
[1,k],sAk⟩ds

≺
N

sk(t)
√
Nℓt
∫

t

0

1
Nη2

s

(ℓsmk(s) +
ψksk(s)

√
Nℓs

N
) ds ≲ 1

√
Nℓt
+
ψk
Nℓt

,

(4.5.31)

where in the first inequality we used ∣⟨Gi,s −mi,s⟩∣ ≺ (Nηs)
−1 from (4.1.4), and in the second

inequality we used (4.5.7), (4.5.9) and (4.5.1).

Using again (4.5.22), we estimate the third and fourth line of (4.5.25) as follows:

N

sk(t)
√
Nℓt
∫

t

0

k−1
∑

i,j=1
i<j

⟨M[i,j],s⟩⟨G[j,i],s −M[j,i],s⟩ds

≺
N

sk(t)
√
Nℓt
∫

t

0

k−1
∑

i,j=1
i+1<j

ℓsmj−i(s)

ηs

ψk−(j−i)sk−j+i(s)
√
Nℓs

Nηs
ds ≲

k−2
∑
j=1

ψj ,

(4.5.32)

where in the first inequality we used that ⟨M[i,i+1],s⟩ = 0 and (4.5.5) to estimate ⟨M[i,j],s⟩, and in
the second inequality we used (4.5.6)–(4.5.7), (4.5.9) and (4.5.1).

Finally, for the fifth line of (4.5.25) we estimate:

N

sk(t)
√
Nℓt
∫

t

0

k−1
∑

i,j=1
i<j

⟨G[i,j],s −M[i,j],s⟩⟨G[j,i],s −M[j,i],s⟩ds

≺
N

sk(t)
√
Nℓt

k−1
∑

i,j=1
i<j

∫

t

0

ψj−isj−i(s)
√
Nℓs

Nηs

ψk−(j−i)sk−j+i(s)
√
Nℓs

Nηs
ds

≲
1

√
Nℓt

k−1
∑
j=1

ψjψk−j ,

(4.5.33)

where in the second inequality we used (4.5.6), (4.5.9) and (4.5.1). Collecting all these bounds,
using that ℓt ≳ ℓT and NℓT ≥ 1, we obtain

Ψk(t) ≺ 1 + ψk + 1(k odd)
√
ψk−1ψk+1

(NℓT )1/4
+
k−2
∑
j=1

ψj +
1

(NℓT )1/2

k−1
∑
j=1

ψjψk−j .

Finally, using that ψl ≥ 1 and NℓT ≥ 1, we conclude (4.5.15).

Proof of Proposition 4.5.3. The proof of (4.5.16) is very similar to the one of (4.5.15), for this
reason we only explain the minor differences. All the terms in (4.5.25) are estimated exactly in the
same way as in the proof of Proposition 4.5.2 with the exception of the martingale term. In fact, this
is the only step where the estimate for Ψk (first step) differs from the estimate on Φk (second step).
Estimating a longer chain by two smaller ones loses a certain Nℓ factor; this loss is unavoidable in
the first step, but it can be avoided in the second one, once the a-priori bound is available.

More precisely, the estimates in (4.5.31), (4.5.33), after multiplying them by a factor
√
Nℓt, are the

same with the only minor difference that we can now use ψl = 1. The estimate (4.5.32) becomes
(recall that ⟨M[i,i+1],s⟩ = 0)

N

sk(t)
∫

t

0

k−1
∑

i,j=1
i+1<j

⟨M[i,j],s⟩⟨G[j,i],s −M[j,i],s⟩ds

≺
N

sk(t)
∫

t

0

k−1
∑

i,j=1
i+1<j

ℓsmj−i(s)

ηs

Φk−(j−i)sk−j+i(s)

Nηs
ds ≲ 1,
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where the only difference with (4.5.32) is that now in the second inequality we used that Φl(t) ≺ 1,
for l ≤ k − 2, by the induction assumption. Instead of the bound for the quadratic variation (4.5.26),
using that Φ2k(t) ≺

√
Nℓt, the estimate in (4.5.30) is replaced by

N

sk(t)
[∫

t

0

⟨ImG1,s(A1 . . .Ak)ImG1,s(Ak . . .A1)
∗⟩

N2η2
s

ds]
1/2

≺
N

sk(t)
[∫

t

0
(
m2k(s)ℓs
N2η2

s

+
Φ2k(s)s2k(s)

N3η2
s

) ds]
1/2
≲ [∫

t

0
(
ℓt
η2
s

+

√
Nℓt
Nη2

s

) ds]
1/2

≲ 1 ,

where in the second inequality we used (4.5.7), (4.5.9) and in the last inequality we used (4.5.1).
This concludes the proof of Proposition 4.5.3.

We conclude this section with the proof of (4.5.28).

Proof of (4.5.28). By spectral decomposition of W (λi,ui being its eigenvalues and eigenvectors)
we have

⟨ImG(z)QG(w)RImG(z)R∗G(w)∗Q∗⟩

=
∣Im z∣2

N

N

∑
i,j,k,l=1

⟨ui,Quj⟩⟨uj ,Ruk⟩⟨uk,R
∗ul⟩⟨ul,Q

∗ui⟩

∣λi − z∣2(λj −w)∣λk − z∣2(λl −w)

≲ N⟨ImG(z)Q∣G(w)∣Q∗⟩⟨ImG(z)R∗∣G(w)∣R⟩,

where in the last step we used the Schwarz inequality

∣⟨ui,Quj⟩⟨uj ,Ruk⟩⟨uk,R
∗ul⟩⟨ul,Q

∗ui⟩∣

≲ ∣⟨ui,Quj⟩⟨uk,R
∗ul⟩∣

2
+ ∣⟨uj ,Ruk⟩⟨ul,Q

∗ui⟩∣
2
.

4.6 Green function comparison: Proof of Proposition 4.4.4
In this section, we remove the Gaussian component introduced in Proposition 4.4.3 using a Green
function comparison (GFT) argument, i.e. we prove Proposition 4.4.4. The basic idea is the same as
in Section 3.5: We perform a self-consistent GFT (i.e., given a local law for one ensemble, we aim to
prove it for a different one) using an entry-by-entry Lindeberg replacement strategy in O(N2) many
steps. Note that, unlike here, in typical applications of GFT to answer universality questions, the
local law is given as an a-priori input. Prior to Chapter 3 the GFT has been used in a similar spirit
by Knowles and Yin [369] in order to prove a single resolvent local law for ensembles, where the
deterministic approximation M to G is no longer a multiple of the identity (e.g. deformed Wigner
matrices). In contrast to our approach, they used a continuous interpolation between ensembles, but
we stick with the entrywise Lindeberg replacement, which is easier to adjust to multiple resolvents,
similarly as in Chapter 3.

A characteristic property of the Lindeberg strategy, is that along the replacement procedure isotropic
resolvent chains naturally arise. In particular, we have to consider the isotropic analog of Theo-
rem 4.3.3, the average local law, as well, and need to show that also

(G1A1...GkAkGk+1)xy
(4.6.1)

concentrates around a deterministic value (M(z1,A1, ..., zk,Ak, zk+1))xy
with M given by (4.3.2).

This will also be done via the Zigzag strategy (recall the outline in the beginning of Section 4.4) in
Section 4.6.1.
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First, analogously to Lemma 4.3.2, we have the following bound on the deterministic approximation
of (4.6.1), the proof of which is deferred to Appendix 4.A.

Lemma 4.6.1 (Isotropic M -bounds). Assume the setting of Lemma 4.3.2 but with k + 1 (instead
of k) spectral parameters z1, ..., zk+1 ∈ C ∖R. Then, for deterministic vectors x,y ∈ CN with
∥x∥, ∥y∥ ≲ 1, it holds that18

∣⟨x,M[1,k+1](z1,A1, ...,Ak, zk+1)y⟩∣ ≲ ∏
i∈[k]
∣∣∣Ai∣∣∣∞,ℓ , (4.6.2)

where ∣∣∣Ai∣∣∣∞,ℓ has been introduced in Definition 4.3.1.

The analog of Theorem 4.3.3 is the following isotropic multi-resolvent local law. The proof is given
in Section 4.6.1.

Theorem 4.6.2 (Isotropic multi-resolvent local laws). Assume the setting and notations of Theo-
rem 4.3.3 but with k + 1 (instead of k) spectral parameters z1, ..., zk+1 ∈ C∖R and let x,y ∈ CN be
deterministic vectors with ∥x∥, ∥y∥ ≲ 1. Then it holds that

∣⟨x,G1A1...AkGk+1y⟩ − ⟨x,M[1,k+1]y⟩∣ ≺
1
√
Nℓ
∏
i∈[k]
∣∣∣Ai∣∣∣∞,ℓ , (4.6.3)

where ∣∣∣Ai∣∣∣∞,ℓ has been introduced in Definition 4.3.1.

Analogously to Theorem 4.3.3 and (4.3.9), this unifies and improves the previous local laws with oper-
ator norm (see [168, Eq. (2.11b) in Theorem 2.5]) and Hilbert-Schmidt norm (see [169, Corollary 2.4])
in the bulk of the spectrum. This follows by estimating (in the relevant ℓ ≲ 1 regime)

∣∣∣Ai∣∣∣∞,ℓ ≲

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

∥Ai∥

ℓ1/2
for [168, Eq. (2.11b), Thm. 2.5]

(Nℓ)1/2
⟨∣Ai∣

2⟩1/2

ℓ1/2
for [169, Corollary 2.4]

(4.6.4)

in (4.6.3) for Nℓ > 1 and every i ∈ [k] by means of elementary inequalities.

Note that in the isotropic law (4.6.3) we use the ∣∣∣Ai∣∣∣∞,ℓ norm instead of the ∣∣∣Ai∣∣∣2k,ℓ norm in the
corresponding averaged law (4.3.8). By taking Ak+1 ∶= Nyx∗ (assume for simplicity that ⟨x,y⟩ = 0)
in (4.3.8) for k → k + 1, it would in fact be possible to obtain an isotropic law immediately from
Theorem 4.3.3. However, the bound provided in (4.6.3) is stronger than that, as can be seen by
means of (4.3.6) and ∣∣∣Ak+1∣∣∣2(k+1),ℓ ∼ N/(Nℓ)

1
2(k+1) , which yield

1
√
Nℓ
∏
i∈[k]
∣∣∣Ai∣∣∣∞,ℓ ≲

1
N
∏

i∈[k+1]
∣∣∣Ai∣∣∣2(k+1),ℓ . (4.6.5)

In case that all Ai for i ∈ [k] have large rank, the lhs. of (4.6.5) is in fact much smaller (by some
inverse (Nℓ)-power) than the rhs. of (4.6.5).

As for Theorem 4.3.3, we now give a concrete example how to use Theorem 4.6.2 for general (i.e. not
necessarily traceless) matrices.

Example 4.6.3. For k = 1, by (4.6.3), we have

∣⟨x,G1BG2y⟩ −m1m2Bxy −
m1m2⟨B⟩⟨x,y⟩

1 −m1m2
∣ ≺
∣⟨B⟩∣
√
Nℓ3

+
⟨∣B̊∣2⟩1/2
√
Nℓ2

+
∥B̊∥
√
Nℓ

,

for a general matrix B = B̊ + ⟨B⟩, completely analogously to (4.3.11).
18Analogously to Footnote 11, we point out that the case of k odd admits an improved bound by∏i∈[k] ∥Ai∥

1
k ∣∣∣A∣∣∣

1− 1
k

∞,ℓ ,
but we do not follow this improvement for simplicity.
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4.6.1 Isotropic law: Proof of Theorem 4.6.2
Analogously to the proof of the averaged law, Theorem 4.3.3, the proof of the isotropic law,
Theorem 4.6.2, is also conducted via the Zigzag strategy with natural modifications, so we will
be very brief. The initial step, the global law, has already been proven in [168, Theorem 2.5] (see
Eq. (2.11b) in the d ≥ 1 regime, which is even stronger than (4.6.6) below).

Proposition 4.6.4 (Step 1: Isotropic global law). Let W be a Wigner matrix satisfying Assump-
tion 4.2.1, and fix k ∈N and δ > 0. Consider spectral parameters z1, ..., zk+1 ∈ C∖R, the associated
resolvents Gj = G(zj) ∶= (W − zj)−1, and deterministic matrices B1, ...,Bk ∈ CN×N . Then, uni-
formly in spectral parameters satisfying d ∶=minj∈[k+1] dist(zj , [−2,2]) ≥ δ, deterministic matrices
B1, ...,Bk and deterministic vectors x,y with ∥x∥, ∥y∥ ≲ 1, it holds that

∣(G1B1...BkGk+1)xy
− (M[1,k+1])xy

∣ ≺
∏i∈[k] ∣∣∣Bi∣∣∣∞,d
√
Nd

. (4.6.6)

In the second step, the global law is propagated to a local law through the characteristic flow (4.4.1)–
(4.4.2), thereby introducing an order one Gaussian component. The proof of Proposition 4.6.5 is
postponed to Appendix 4.A.2.1.

Proposition 4.6.5 (Step 2: Isotropic characteristic flow). Fix any ϵ, γ > 0, a time 0 ≤ T ≤ γ, and
K ∈ N. Consider z1,0, . . . , zK+1,0 ∈ C ∖R as initial conditions to the solution zj,t of (4.4.2) for
0 ≤ t ≤ T and define Gj,t ∶= Gt(zj,t) as well as ηj,t ∶= ∣Im zj,t∣ and ρj,t ∶= π−1∣Imm(zj,t)∣.
Let k ≤K, define ℓt ∶=minj∈[k+1] ηj,tρj,t and recall (4.3.5). Assuming that

∣(G1,0A1...AkGk+1,0)xy
− (M[1,k+1],0)xy

∣ ≺
1

√
Nℓ0

∏
i∈[k]
∣∣∣Ai∣∣∣∞,ℓ0 (4.6.7)

holds uniformly for any k ≤K, any choice of deterministic traceless A1, ...,Ak, any choice of zi,0’s
such that Nℓ0 ≥ N ϵ and maxj∈[k] ∣zj,0∣ ≤ N1/ϵ, and all deterministic vectors ∥x∥, ∥y∥ ≲ 1, then we
have

∣(G1,TA1...AkGk+1,T )xy
− (M[1,k+1],T )xy

∣ ≺
1

√
NℓT

∏
i∈[k]
∣∣∣Ai∣∣∣∞,ℓT (4.6.8)

for any k ≤K, again uniformly in traceless matrices Ai, in deterministic vectors x,y with ∥x∥, ∥y∥ ≲ 1
and in spectral parameters satisfying NℓT ≥ N ϵ and maxj∈[k] ∣zj,T ∣ ≤ N1/ϵ.

In the third and final step, we remove the Gaussian component introduced in Proposition 4.6.5 by a
GFT argument. The proof of Proposition 4.6.6 is given in Section 4.6.2.1 below.

Proposition 4.6.6 (Step 3: Isotropic Green function comparison). Let H(v) and H(w) be two N ×N
Wigner matrices with matrix elements given by the random variables vab and wab, respectively, both
satisfying Assumption 4.2.1 and having matching moments up to third order, i.e.

E v̄uabv
s−u
ab = E w̄uabw

s−u
ab , s ∈ {0,1,2,3} , u ∈ {0, ..., s} . (4.6.9)

Fix K ∈N and consider spectral parameters z1, ..., zK+1 ∈ C ∖R satisfying minjNηjρj ≥ N ϵ and
maxj ∣zj ∣ ≤ N1/ϵ for some ϵ > 0 and the associated resolvents G(#)j = G(#)(zj) ∶= (H

(#) − zj)
−1

with # = v,w. Pick traceless matrices A1, ...,AK ∈CN×N .
For any k ≤K, consider any subset of cardinality k+1 of the K +1 spectral parameters, and similarly,
consider any subset of cardinality k of the deterministic matrices. Relabeling them by [k+1] and [k],
respectively, setting ℓ ∶=minj∈[k+1] ηjρj and recalling (4.3.5), we assume that for Gj = G(v)j we have

∣(G1A1...AkGk+1)xy
− (M[1,k+1])xy

∣ ≺
1
√
Nℓ
∏
i∈[k]
∣∣∣Ai∣∣∣∞,ℓ , (4.6.10)
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4. OTOCs for Wigner matrices

uniformly in all choices of subsets of z’s and A’s and in bounded deterministic vectors ∥x∥, ∥y∥ ≲ 1.

Then, (4.6.10) also holds for the ensemble H(w), i.e. for Gj = G(w)j , uniformly in all choices of
subsets of z’s and A’s and in bounded deterministic vectors ∥x∥, ∥y∥ ≲ 1.

Based on Propositions 4.6.4–4.6.6, the proof of Theorem 4.6.2 is concluded in the same way as the
proof of Theorem 4.3.3 in the end of Section 4.4.

4.6.2 GFT argument: Proof of Propositions 4.4.4 and 4.6.6
The principal idea of the GFT argument is the same as in Section 3.5 and even the detailed argument
almost directly translates to our case. The main difference is that we now use the conceptual mean
and standard deviation sizes m/s (recall (4.5.4)) and miso/siso (see (4.6.12) and (4.A.5) below) as
basic deterministic control quantities; while in Section 3.5 they were not introduced explicitly as they
essentially boiled down to simple N -powers. More precisely, in view of the bounds (3.2.17)–(3.2.18)
and (3.2.20)–(3.2.21), we simply replace (ignoring all the ρ-factors and using the normalization
⟨∣Ai∣

2⟩ = 1 for the just mentioned terms in Chapter 3)

Nk/2

Nℓ
Ð→ mk ,

Nk/2

(Nℓ)1/2
Ð→ sk , N

k/2
Ð→ miso

k ,
Nk/2

ℓ1/2
Ð→ siso

k . (4.6.11)

Given this similarity (4.6.11) we will henceforth be very brief and only point out a few minor adaptions
of the proof in Section 3.5 to our new conceptual notations in Sections 4.6.2.1–4.6.2.2, discussing the
isotropic and averaged case, respectively. For further simplicity of notation, we shall drop all irrelevant
sub-scripts of resolvents and deterministic matrices, i.e. write G = Gj and A = Aj . Additionally, we
will also drop the Gq - and G(γ)-notations (see (3.5.10)), indicating the precise step in the replacement
procedure, as it will be irrelevant for the modifications discussed below.

4.6.2.1 Part (a): Proof of the isotropic law, Proposition 4.6.6 (cf. Section 3.5.2)

We start with some preliminaries. In order to express the bounds in (4.6.2) and (4.6.3) concisely,
we employ the miso/siso-notation (the isotropic mean and standard deviation sizes, analogously to
(4.5.4) in the average case) to write (4.6.2) and (4.6.3) as

∣(M[1,k+1])xy ∣ ≲ (∣∣∣A∣∣∣∞,ℓ)
k
=∶ miso

k ,

∣((GA)kG)
xy
− (M[1,k+1])xy

∣ ≺
(∣∣∣A∣∣∣∞,ℓ)

k

√
Nℓ

=∶
siso
k

N1/2 ,

(4.6.12)

respectively (the general definition of miso/siso is given in (4.A.5)). Moreover, we also write
Mj−i+1 ≡M[i,j] for all 1 ≤ i < j ≤ k + 1 with a slight abuse of notation (see (3.5.33)). Lastly, we will
heavily use the following relations, proven in parts (i)–(ii) of Lemma 4.A.2,

miso
j miso

k−j ≲ m
iso
k , siso

j siso
k−j ≲ ℓ

−1/2siso
k , and miso

k ≲ ℓ
1/2 siso

k (4.6.13)

for all k ∈ N and 0 ≤ j ≤ k using the conventions miso
0 ∶= 1 and siso

0 ∶= ℓ
−1/2 (recall ℓ = mini ηiρi).

With (4.6.12)–(4.6.13) at hand, we can now discuss the two bits of the argument in Section 3.5.2,
which are not completely straightforward to adapt to our current setting (cf. Case (i) and Case (ii) in
Section 3.5.2.2). We will refer to explicit equation numbers within a longer proof in Chapter 3 that
we do not repeat here, hence the reader needs to be familiar with Section 3.5.2 to follow the details.
However, to facilitate a high level understanding without going into details, we recall the novel
idea in Chapter 3. Traditional GFT proofs via the Lindeberg strategy estimated the change of, say,
E ∣((GA)kG)

xy
∣
p after each replacement vab →wab and showed that it is bounded by o(N−2)-times
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its natural target size, so N2 replacements were affordable. In other words the telescopic summation
over (a, b) ∈ [N]2 was done trivially. This does not hold for the self-consistent GFT argument
in Chapter 3: the replacement for some (a, b) pairs may be too large, but their sum is still affordable.
We will refer to it as the gain from the summation idea. This is related to our efforts to control the
observables in tracial norms; the simplest toy example is the estimate

1
N2 ∑

ab

∣Aab∣ ≤ N
−1/2
⟨∣A∣2⟩1/2 (4.6.14)

which is optimal. However, if we use the best available bound ∣Aab∣ ≤ ∥A∥ for each summand
individually, then the lhs. of (4.6.14) is overestimated by ∥A∥ which is much bigger than the rhs.
With keeping this idea in mind, we now return to the detailed modifications in Section 3.5.2.2.

The terms considered in Case (i) are the ones for which there are enough (G −M)-type terms to
balance the N -prefactor (cf. (4.6.15) and (4.6.16)) by solely using (4.6.13). The terms in Case (ii)
require to gain from the summation over all steps in the replacement procedure.

Case (i): First, the analog of (3.5.34) becomes (neglecting the irrelevant ∣Ψk∣
p−1- and N ξ-factors)

N1/2

siso
k

∑
0≤kl≤k−1∶
∑l kl=k

E [∣((GA)k1G −Mk1+1)xei
(Mk2+1)ej ej

...(Mk5+1)eiy
∣

+ ∣((GA)k1G −Mk1+1)xei
((GA)k2G −Mk2+1)ej ej

(Mk3+1)eiei
...(Mk5+1)eiy

∣ + ...]

≲
N1/2

siso
k

∑
0≤kl≤k−1∶
∑l kl=k

[
siso

k1

N1/2 (
5
∏
l=2

miso
kl
) +

siso
k1 s

iso
k2

N
(

5
∏
l=3

miso
kl
) + ...] ≲ [1 + 1

(Nℓ)1/2
+ ...] ≲ 1 .

(4.6.15)

In the penultimate step we used the relations in (4.6.13) multiple times to estimate siso
k1 ∏

5
l=2 m

iso
kl
≲

siso
k and siso

k1
siso
kl
∏

5
l=3 m

iso
kl
≲ ℓ−1/2siso

k , and similarly for the other analogous terms indicated by
dots. The last step in (4.6.15) is due to Nℓ > 1.

Case (ii): Second, the key trick in Section 3.5.2.2, the gain from summations described in Example
3.5.7, turns into the following. The trivial estimate, cf. (3.5.36), reads (again neglecting the
irrelevant ∣Ψk∣

p−1- and N ξ-factors)
N1/2

siso
k

∑
0≤kl≤k∶
∑l kl=k

[∣(Mk1+1)xei
(Mk2+1)ej ej

...(Mk5+1)eiy
∣ + ...]

≲
N1/2

siso
k

∑
0≤kl≤k∶
∑l kl=k

[(
5
∏
l=1

miso
kl
) + ...] ≲ (Nℓ)1/2 ,

(4.6.16)

where we again used (4.6.13) multiple times. Analogously to (3.5.37), this can be improved
on by averaging over all replacement steps: Fixing one constellation of kl’s in (4.6.16), we find

N1/2

siso
k

1
N2 ∑

i,j

[∣(Mk1+1)xei
(Mk2+1)ej ej

...(Mk5+1)eiy
∣ + ...]

≲ (Nℓ)1/2
1
N2 ∑

i,j

⎡
⎢
⎢
⎢
⎣

∣(Mk1+1)xei ∣

miso
k1

+ ...
⎤
⎥
⎥
⎥
⎦
≲ (Nℓ)1/2

1
N1/2 ≲ 1

(4.6.17)

in the relevant ℓ ≤ 1 regime (the opposite regime being covered by Proposition 4.6.4). To go
to the second line, we employed (4.6.13). In the penultimate step, we used

∑
i

∣(Mk1+1)xei
∣ ≤
√
N
√

(∣Mk1+1∣2)xx
≲
√
N miso

k1 , (4.6.18)

which follows by a Schwarz inequality, completely analogously to (3.5.38)–(3.5.39).

With these two slight adjustments, which rest on the estimates in (4.6.13), the proof in Section
3.5.2 can entirely be translated to our current setting in a straightforward way, so we omit further
details. This concludes the proof of Proposition 4.6.6.
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4.6.2.2 Part (b): Proof of the averaged law, Proposition 4.4.4 (cf. Section 3.5.3)

For the averaged law, in addition to the bounds in (4.6.12)–(4.6.13), we will also use the relations

mk ≲ m
iso
k , sk ≲ ℓ

1/2 siso
k , and siso

k ≲ N [1 + (Nℓ)−1/2] sk (4.6.19)

from (4.A.11)–(4.A.12) in Lemma 4.A.3 for all k ∈N. Just as in the case of Section 4.6.2.1, there
are two bits of the argument in Section 3.5.3, that are not entirely straightforward to adjust to the
setting of the current paper (cf. Case (i) and Case (ii) in Section 3.5.3).

Analogously to the isotropic case in Section 4.6.2.1, while the terms considered in Case (i) solely use
(4.6.13) and (4.6.19), the terms in Case (ii) require to gain from the summation over all steps in the
replacement procedure.

Case (i): First, consider (3.5.54) with d = 2 (for concreteness). Then, the estimate turns into (neglecting
the irrelevant N ξ-factor)

(
N

sk
)

2 1
N2 ∑

k1+k2=k
k′1+k′2=k

⎡
⎢
⎢
⎢
⎢
⎣

miso
k1

siso
k2

N1/2 m
iso
k′1

siso
k′2

N1/2 +m
iso
k1 m

iso
k2

siso
k′1

N1/2

siso
k′2

N1/2 + ...

⎤
⎥
⎥
⎥
⎥
⎦

≲ [1 + 1
Nℓ
] ≲ 1 ,

where we used (4.6.13) and (4.6.19) to bound miso
k1
siso
k2
≲ ℓ−1/2[1 + (Nℓ)1/2]sk as well as

miso
k1
miso
k2
≲ [1 + (Nℓ)1/2]sk and siso

k′1
siso
k′2
≲ ℓ−1[1 + (Nℓ)1/2]sk in the penultimate step, and the

last step used Nℓ > 1.

Case (ii): Second, we again discuss how to gain from the summation, as originally explained in Example
3.5.11. The trivial estimate from [150, Eq. (5.55)], again neglecting the irrelevant ∣Ψk∣

p−1

factor and fixing one constellation of kl’s summing up to k, becomes (neglecting the irrelevant
N ξ-factor)

(sk)
−1
[∣(Mk1+1)eiei

(Mk2+1)ejej
(Mk3+1)eiei

(Mk4+1)ejej
∣ + ...]

≲ (sk)
−1
[∏
l

miso
kl
+ ...] ≲ (Nℓ)1/2 ,

(4.6.20)

where we used (4.6.13) and (4.6.19). Analogously to (3.5.59), we can again improve upon
this by averaging over all replacement positions. The key for this gain from the summation is
the bound

⟨∣Mk+1∣
2
⟩ ≲ (sk)

2
∀k ∈N , (4.6.21)

which can be obtained completely analogously to Lemma 3.5.12. Armed with (4.6.21), the
analog of the improved bound (3.5.59) now reads (again neglecting the irrelevant N ξ-factor)

(sk)
−1 1
N2 ∑

i,j

[∣(Mk1+1)eiei
(Mk2+1)ej ej

(Mk3+1)eiei
(Mk4+1)ej ej

∣ + ...]

≲(sk)
−1
⎡
⎢
⎢
⎢
⎢
⎣

∏
l∈[4]
(

1
N
∑

i

∣(Mkl+1)eiei
∣
2
)

1/2

+ ...

⎤
⎥
⎥
⎥
⎥
⎦

≲ (sk)
−1
⎡
⎢
⎢
⎢
⎢
⎣

∏
l∈[4]

skl
+ ...

⎤
⎥
⎥
⎥
⎥
⎦

≲ 1 ,
(4.6.22)

where in the first step we employed a trivial Schwarz inequality.

With the above two slight adjustments at hand, which basically rest on the estimates in (4.6.13),
(4.6.19) and (4.6.21), we can straightforwardly translate the entire proof of the averaged part in
Section 3.5.3 to our current setting. This finishes our discussion of the adjustments of the arguments
from Section 3.5 and thus the proof of Proposition 4.4.4.
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4.A Additional technical results
In this section we prove several additional technical results which were used in the main sections.

4.A.1 Bound on the deterministic approximation: Proofs of Lemmas 4.3.2 and
4.6.1

We will deduce Lemmas 4.3.2 and 4.6.1 from the following stronger bound. Part (a) of Lemma 4.A.1
is already proven in Lemma 3.A.1 applied to the special case Ik = ∅. The proof of part (b) is
analogous to that and hence omitted.

Lemma 4.A.1 (cf. Lemma 3.A.1). Fix k ≥ 1 and let A1, ...,Ak ∈CN×N be traceless deterministic
matrices.

(a) Consider spectral parameters z1, ..., zk ∈ C∖R and define η ∶=minj∈[k] ∣Im zj ∣. Then, for every
1 ≤ s ≤ ⌊k/2⌋ and π ∈ NC([k]) with ∣π∣ = k + 1 − s, it holds that

∣⟨pTrK(π)(A1, . . . ,Ak−1)Ak⟩∏
S∈π

m○[S]∣ ≲
1
ηs−1

⎛
⎜
⎜
⎜
⎝

∏
S∈K(π)
∣S∣≥2

∏
j∈S
⟨∣Aj ∣

∣S∣
⟩

1
∣S∣

⎞
⎟
⎟
⎟
⎠

. (4.A.1)

with m○[S] being defined in (4.3.3). For s > ⌊k/2⌋ the lhs. of (4.A.1) equals zero.

(b) Consider spectral parameters z1, ..., zk+1 ∈C ∖R and define η ∶=minj∈[k+1] ∣Im zj ∣. Then, for
every 1 ≤ s ≤ ⌈(k + 1)/2⌉ and π ∈ NC([k + 1]) with ∣π∣ = k + 1 − s, it holds that

∥pTrK(π)(A1, . . . ,Ak)∏
S∈π

m○[S]∥ ≲
1
ηs−1

⎛
⎜
⎜
⎜
⎝

∏
S∈K(π)∖B∶
∣S∣≥2

∏
j∈S
⟨∣Aj ∣

∣S∣
⟩

1
∣S∣

⎞
⎟
⎟
⎟
⎠

⎛

⎝
∏

j∈B∖{k+1}
∥Aj∥

⎞

⎠
.

(4.A.2)
where B ≡ B(k + 1) ∈ K(π) being the unique block containing k + 1 (recall (4.3.1)). For
s > ⌈(k + 1)/2⌉ the lhs. of (4.A.2) equals zero.

Given Lemma 4.A.1, analogously to Appendix 3.A.1, the proofs of Lemmas 4.3.2 and 4.6.1 immediately
follow after realizing that η ≳ ℓ and applying Hölder’s and Young’s inequality. To show this mechanism,
consider (4.A.1) for an example where k = 6 and s = 2, and focus on the non-crossing partition
π = {15∣2∣3∣4∣6} for which K(π) = {1234∣56}. In this case, the rhs. of (4.A.1) can be estimated as

η−1
(

4
∏
i=1
⟨∣Ai∣

4
⟩

1/4
)(

6
∏
i=5
⟨∣Ai∣

2
⟩

1/2
)

≲ ℓ(
4
∏
i=1
[⟨∣Ai∣

6
⟩

1/8ℓ−1/8
] [⟨∣Ai∣

2
⟩

1/8ℓ−1/8
])(

6
∏
i=5
⟨∣Ai∣

2
⟩

1/2ℓ−1/2
)

≲ ℓ ∏
i∈[6]
(
⟨∣Ai∣

6
⟩

1/6

ℓ1/6 +
⟨∣Ai∣

2
⟩

1/2

ℓ1/2 ) .

In the first step, we employed η ≳ ℓ and Hölder’s inequality in the form ⟨∣Ai∣4⟩1/4 ≤ ⟨∣Ai∣6⟩1/8⟨∣Ai∣2⟩1/8
for i ∈ [4]. In the second step, we then used Young’s inequality for i ∈ [4] and added ⟨∣Ai∣6⟩1/6ℓ−1/6

for i = 5,6 to complete the ∣∣∣Ai∣∣∣6,ℓ norm for all i ∈ [6] (recall (4.3.5) and (4.3.7)).

4.A.2 GFT and isotropic local law: Additional proofs for Section 4.6
4.A.2.1 Isotropic law: Proof of Theorem 4.6.2

In this section we want to study chains of the form

(G1A1 . . .AkGk+1)xy ∶= ⟨x,G1A1 . . .AkGk+1y⟩, (4.A.3)

231



4. OTOCs for Wigner matrices

for unit deterministic vectors x,y.
Following the notation (4.5.3), by G[1,k+1],t we denote the evolution of the quantity in (4.A.3) along
the Ornstein-Uhlenbeck flow (4.4.1) with the characteristic equation (4.4.2). Then, by (4.5.2) and
Lemma 4.5.5 (used for k → k + 1), choosing Ak+1 = Nyx∗, we obtain the flow

d(G[1,k+1],t −M[1,k+1],t)xy =
1
√
N

N

∑
a,b=1

∂ab(G[1,k+1],t)xydBab,t +
k

2
(G[1,k+1],t −M[1,k+1],t)xydt

+
k+1
∑

i,j=1
i<j

⟨G[i,j],t −M[i,j],t⟩(M[1,i]∪[j,k+1],t)xydt

+
k+1
∑

i,j=1
i<j

⟨M[i,j],t⟩(G[1,i]∪[j,k+1],t −M[1,i]∪[j,k+1],t)xydt (4.A.4)

+
k+1
∑

i,j=1
i<j

⟨G[i,j],t −M[i,j],t⟩(G[1,i]∪[j,k+1],t −M[1,i]∪[j,k+1],t)xydt

+
k+1
∑
i=1
⟨Gi,t −mi,t⟩(G

(i)
[1,k+1],t)xyd ,

where we used the notation

(G[1,i]∪[j,k+1],t)xy ∶= (G1,tA1 . . .Ai−1Gi,tGj,tAj . . .Ak−1Gk+1,t)xy

and similarly for M[1,i]∪[j,k+1],t.

Deterministic control quantities. Next, we introduce the new isotropic control quantities, the
analogues of the averaged quantities defined in (4.5.4) (recall (4.3.5) for the definition of ∣∣∣Aα∣∣∣∞,ℓ):

miso
k (ℓ; AJk

) ∶= ∏
α∈Jk

∣∣∣Aα∣∣∣∞,ℓ , siso
k (ℓ; AJk

) ∶= ℓ−1/2
∏
α∈Jk

∣∣∣Aα∣∣∣∞,ℓ , (4.A.5)

which will be called the isotropic mean size and isotropic standard deviation size, respectively. They
are functions of a positive number ℓ (usually given by ℓ =mini ηiρi for some spectral parameters zi)
and a multiset AJk

= (Aα)α∈Jk
of deterministic matrices of cardinality ∣Jk∣ = k.

Similarly to the paragraph below (4.5.4), we may often omit the arguments of miso
k and siso

k , write
Jk instead of AJk

, and for time dependent spectral parameters we use the short–hand notations
miso
k (t) = m

iso
k (t;Jk) = miso

k (ℓt; AJk
) and siso

k (t) = s
iso
k (t;Jk) = siso

k (ℓt; AJk
). Note that with this

definitions, by (4.6.2), we have (analogously to (4.5.5)), with ηt ∶=mini ηi,t,

∣(M[i,j],t)xy ∣ ≲ m
iso
j−i(t) and ∣(M[1,i]∪[j,k+1],t)xy ∣ ≲ η

−1
t miso

k−(j−i)(t) . (4.A.6)

We now record the following relations about miso
k /s

iso
k , analogously to Lemma 4.5.1. The proof is

again an immediate consequence of (4.3.6) and ℓs ≳ ℓt for s ≤ t (recall the discussion below (4.4.5))
and hence omitted.

Lemma 4.A.2 (miso/siso-relations). Let k ≥ 1 and consider time-dependent spectral parameters
z1,t, ..., zk+1,t and a multiset of traceless matrices AJk

as above. Set ℓt ∶=minj∈[k+1] ηj,tρj,t. Then,
the mean size miso

k and the standard deviation size siso
k satisfy the following inequalities (using the

conventions miso
0 (t) ∶= 1 and siso

0 (t) ∶= ℓ
−1/2
t ).

(i) Super-multiplicativity; i.e. for any 0 ≤ j ≤ k it holds that

miso
j (t;Jj)miso

k−j(t;Jk−j) ≲ miso
k (t;Jk) , siso

j (t;Jj) siso
k−j(t;Jk−j) ≲ ℓ

−1/2
t siso

k (t;Jk) (4.A.7)

for all disjoint decompositions Jk = Jj ∪̇ Jk−j .
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(ii) The mean size can be upper bounded by the standard deviation size as

miso
k (t;Jk) ≲ ℓ

1/2
t siso

k (t;Jk) . (4.A.8)

(iii) The standard deviation size satisfies the doubling inequality

siso
2k (t;Jk ∪ Jk) ≲ ℓ

1/2
t (siso

k (t;Jk))
2
, (4.A.9)

where Jk ∪ Jk denotes the union of the multiset Jk with itself.

(iv) Monotonicity in time: for any 0 ≤ s ≤ t and α ∈ [0,1/2], we have

miso
k (s;Jk) ≲ miso

k (t;Jk) and siso
k (s;Jk) ℓαs ≲ siso

k (t;Jk) ℓαt . (4.A.10)

Moreover, we have the following relations among miso/siso and m/s from (4.5.4), whose proofs are
again immediate from (4.3.6) and hence omitted.

Lemma 4.A.3 (miso/siso-m/s-relations). Let k ≥ 1, consider a multiset AJk
of traceless matrices as

above and fix ℓ > 0. Then, the mean sizes miso
k and mk, and the standard deviation sizes siso

k and sk,
satisfy the following inequalities.

(i) The average sizes m/s are bounded by the isotropic sizes miso/siso:

mk(ℓ;Jk) ≲ miso
k (ℓ;Jk) , sk(ℓ;Jk) ≲ ℓ1/2 siso

k (ℓ;Jk) . (4.A.11)

(ii) The isotropic standard deviation size can be upper bounded by the average standard deviation
size

siso
k (ℓ;Jk) ≲ N [1 + (Nℓ)−1/2] sk(ℓ;Jk) . (4.A.12)

Stochastic control quantities. Consider deterministic vectors x,y ∈ CN with ∥x∥, ∥y∥ ≲ 1,
traceless matrices A1, . . . ,Ak, and for k ≥ 1 define, analogously to (4.5.11)–(4.5.12), Ψiso

k (t) ≡
Ψiso
k (t; x,y; z[1,k+1]; A[1,k]) and Φiso

k (t) ≡ Φiso
k (t; x,y; z[1,k+1]; A[1,k]) as

Ψiso
k (t) ∶=

N1/2

siso
k (ℓt; A[1,k])(Nℓt)1/4

∣(G[1,k+1],t −M[1,k+1],t)xy ∣ ,

Φiso
k (t) ∶=

N1/2

siso
k (ℓt; A[1,k])

∣(G[1,k+1],t −M[1,k+1],t)xy ∣ ,

(4.A.13)

where we denoted the multisets of deterministic matrices by A[1,k] and z[1,k+1] = (z1, ..., zk+1) with
zi = zi,0 (initial condition), respectively. Note that by (4.1.4), using the convention siso

0 (t) ∶= ℓ
−1/2
t ,

we have Φ0(t) ≺ 1, and that by (4.6.6) it follows

Φiso
k (0) ≺ 1, (4.A.14)

for any k ≥ 1. Similarly to the averaged case (see the two paragraphs around (4.5.11)–(4.5.12)),
also in the isotropic case we introduced the two quantities in (4.A.13) as we will first prove
Ψiso
k (t) = Φiso

k (t)/(Nℓt)
1/4 ≺ 1 using the master inequalities in Proposition 4.A.4, and then use this

as an input to prove Φiso
k (t) ≺ 1 in Proposition 4.A.5.
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Proposition 4.A.4 (Isotropic master inequalities). Fix k ∈ N, assume that Ψiso
l (t) ≺ ψ

iso
l , with

ψiso
0 ∶= 1 and Φl(t) ≺ 1 (with Φl(t) from (4.5.12)), for any 0 ≤ l ≤ k+1(k odd) uniformly in t ∈ [0, T ].

Then

Ψiso
k (t) ≺ 1 +

ψiso
k + ψ

iso
k+1(k odd)

(NℓT )1/8
+
k−1
∑
l=1

ψiso
l (4.A.15)

uniformly in t ∈ [0, T ].

Analogously to Section 4.5, using Proposition 4.A.4 we show that Ψiso
k (t) ≺ 1 and then use this

information as input to conclude Φiso
k (t) ≺ 1:

Proposition 4.A.5. Fix k ∈ N, assume that Φiso
l (t) ≺ 1, for 0 ≤ l ≤ k − 2, Φl(t) ≺ 1 for 0 ≤ l ≤ k

(with Φl(t) from (4.5.11)), and Φk(t) ≺ (Nℓt)
1/4 for l ≤ 2k, uniformly in t ∈ [0, T ]. Then

Φiso
k (t) ≺ 1 (4.A.16)

uniformly in t ∈ [0, T ].

Closing the hierarchy. We start showing that (4.A.15), using iteration as in Lemma 4.5.4, in fact
implies Ψk(t) ≺ 1. We start with k = 1,2. By (4.A.15), we have

Ψiso
1 (t) ≺ 1 + ψ

iso
1 + ψ

iso
2

(NℓT )1/8
, Ψiso

2 (t) ≺ 1 + ψiso
2

(NℓT )1/8
+ ψiso

1 . (4.A.17)

Then, by iteration, we obtain

Ψiso
1 (t) ≺ 1 + ψiso

2
(NℓT )1/8

, Ψiso
2 (t) ≺ 1 + ψiso

1 . (4.A.18)

Finally, plugging the first inequality into the second one and using iteration once again we obtain
Ψiso

1 (t) +Ψiso
2 (t) ≺ 1.

Next, we proceed by induction. Fix an even k ∈N, and assume that Ψiso
l (t) ≺ 1 for l ≤ k − 2, then by

(4.A.15) we have

Ψiso
k−1(t) ≺ 1 +

ψiso
k−1 + ψ

iso
k

(NℓT )1/8
, Ψiso

k (t) ≺ 1 +
ψiso
k

(NℓT )1/8
+ ψiso

k−1. (4.A.19)

Proceeding exactly as in (4.A.17)–(4.A.18), by (4.A.19), we conclude that Ψiso
l (t) ≺ 1 for any

l ≤ k. Finally, using that as a consequence of (Nℓt)1/4Φiso
k (t) = Ψiso

l (t) ≺ 1 the hypothesis of
Proposition 4.A.5 are satisfied, we conclude that Φiso

k (t) ≺ 1 and so the proof of Theorem 4.6.2.

4.A.2.2 Isotropic master inequalities: Proofs of Props. 4.A.4–4.A.5

Proof of Proposition 4.A.4. Note that the second term in the first line of (4.A.4) can be incorporated
into the lhs. by differentiating e−kt/2(G[1,k+1,t] −M[1,k+1,t])xy. The exponential factor ekt/2 ∼ 1 is
irrelevant, we thus neglect this term from the analysis. In the following we will often use the simple
bound (4.5.1) even if not stated explicitly. Additionally, every time that two resolvents get next to
each other in a chain we use the integral representation (4.5.23) to reduce their number by one at
the price of an additional 1/η–factor (see e.g. (4.5.22)).

We now start with the computation of the quadratic variation of the martingale term in (4.A.4):

1
N

k+1
∑
i=1
[G[1,i],t(G[1,i],t)

∗]
xx
[(G[i,k+1],t)

∗G[i,k+1],t]yy
dt. (4.A.20)

234



4.A. Additional technical results

Similarly to the averaged case (see (4.5.26)–(4.5.30)), to estimate the quadratic variation of the
martingale term in (4.A.4) we rely on the following reduction inequality for k ∈N even and j ≤ k
(here for simplicity we drop the indices of G’s and A’s):

∣(G[1,k+j+1])xy ∣ ≲
√
N⟨∣G∣A(GA)j−1

∣G∣(AG∗)j−1A⟩1/2 ∏
v∈{x,y}

[(GA)k/2∣G∣(AG∗)k/2]
1/2
vv . (4.A.21)

The proof of (4.A.21) is postponed to the end of this section. Recall the conventions ψiso
0 = 1

and siso
0 (t) = ℓ

−1/2
t , then using (4.A.21) for j = k − 2i + 2, i ≤ k/2 for even k (and j = k − 2i + 1,

i ≤ (k + 1)/2 for odd k) and then (4.A.8), (4.5.7), to bound (recall (4.5.27) in Footnote 17)

[(G[i,k+1],s)
∗G[i,k+1],s]yy

≺
√
N (miso

k (s) +
siso
k (s)(Nℓs)

1/4
√
N

)(ℓsm2(k−2i+2)(s) +
s2(k−2i+2)(s)

N
)

1/2

≲siso
k (s)

√
s2(k−2i+2)(s)ℓ

1/2
s (
√
Nℓt + (Nℓt)

1/4ψiso
k ),

(4.A.22)

we estimate each term of (4.A.20) by
√
N

siso
k (t)(Nℓt)1/4

(
1
N

k+1
∑
i=1
∫

t

0
[G[1,i],s(G[1,i],s)

∗
]

xx
[(G[i,k+1],s)

∗G[i,k+1],s]yy
ds)

1/2

(4.A.23)

≺

√
N

siso
k (t)(Nℓt)1/4

⎛

⎝

⌈k/2⌉

∑
i=1
∫

t

0

siso
k (s)

Nη2
s

⎛

⎝
miso

2(i−1)(s) +
ψiso

2(i−1)s
iso
2(i−1)(s)(Nℓs)

1/4

√
N

⎞

⎠

× (
√
Nℓs +ψ

iso
k+1(k odd)(Nℓs)

1/4
)

√

ℓss2(k−i+1)(s)ds
⎞

⎠

1/2

≲

√
N

siso
k (t)(Nℓt)1/4

⎛

⎝

⌈k/2⌉

∑
i=1
∫

t

0

siso
k (s)s

iso
k−i+1(s)s

iso
i−1(s)

Nη2
s

ℓ3/2
s

×
⎛

⎝
1 +

ψiso
2(i−1)

(Nℓs)1/4

⎞

⎠
(
√
Nℓs +ψ

iso
k+1(k odd)(Nℓs)

1/4
)ds
⎞

⎠

1/2

≲ 1 +
⌈k/2⌉

∑
i=1

√
ψiso

2(i−1)

(Nℓs)1/8
+

√
ψiso

k+1(k odd)

(Nℓt)1/8
+

⌈k/2⌉

∑
i=1

√
ψiso

2(i−1)ψ
iso
k+1(k odd)

(Nℓt)1/4
.

Here in the second inequality (4.A.8)–(4.A.9), (4.A.11), and in the last inequality we used (4.A.7),
(4.A.10).

In the following computations, when two G’s, with spectral parameters having imaginary parts of the
same sign appear next to each other (i.e. without a A in between), we use the integral representation
(4.5.23) to reduce the number of G’s by one at the price of an additional 1/η. If the imaginary
parts of the spectral parameters have different signs, we use resolvent identity (see e.g. around
(4.5.22)–(4.5.23) in the averaged case). For the terms in the second line of (4.A.4) we estimate

√
N

siso
k (t)(Nℓt)

1/4 ∫
t

0
⟨G[i,j],s −M[i,j],s⟩(M[1,i]∪[j,k+1],s)xy ds

≺

√
N

siso
k (t)(Nℓt)

1/4 ∫
t

0

sj−i(s)

Nηs

miso
k−j+i(s)

ηs
ds ≲ 1

(Nℓt)3/4
,

(4.A.24)

where we used (4.A.6)–(4.A.8), the second inequality in (4.A.11), and (4.A.10).

For the terms in the third line of (4.A.4) we estimate
√
N

siso
k (t)(Nℓt)

1/4 ∫
t

0
⟨M[i,j],s⟩(G[1,i]∪[j,k+1],s −M[1,i]∪[j,k+1],s)xy ds

≺

√
N

siso
k (t)(Nℓt)

1/4 ∫
t

0

mj−i(s)

ηs

siso
k−j+i(s)ψ

iso
k−j+i(Nℓs)

1/4
√
Nηs

ds ≲ ψiso
k−j+i,

(4.A.25)
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where in the last inequality we used the first estimate of (4.A.11), (4.A.7)–(4.A.8).

For the terms in the fourth line of (4.A.4) we estimate
√
N

siso
k (t)(Nℓt)

1/4 ∫
t

0
⟨G[i,j],s −M[i,j],s⟩(G[1,i]∪[j,k+1],s −M[1,i]∪[j,k+1],s)xy ds

≺

√
N

siso
k (t)(Nℓt)

1/4 ∫
t

0

sj−i(s)

Nηs

siso
k−j+i(s)ψ

iso
k−j+i(Nℓs)

1/4
√
Nηs

ds ≲ 1
Nℓt

ψiso
k−j+i,

where in the last step we used the second inequality of (4.A.11) and the second inequality of (4.A.7).

Finally, for the term in the last line of (4.A.4) we estimate
√
N

siso
k (t)(Nℓt)

1/4 ∫
t

0
⟨Gi,s −mi,s⟩(G

(i)
[1,k+1],s)xy ds

≺

√
N

siso
k (t)(Nℓt)

1/4 ∫
t

0

1
Nηs

(
miso
k (s)

ηs
+
siso
k (s)ψ

iso
k (Nℓs)

1/4
√
Nηs

) ds

≲
1

(Nℓt)3/4
+
ψiso
k

Nℓt
,

(4.A.26)

where we used (4.A.6) and (4.A.8) together with (4.A.8). Combining (4.A.23)–(4.A.26), recalling
that ⟨M[i,i+1],s⟩ = 0 in (4.A.25), using (4.A.14) to bound Ψiso

k (0) ≺ 1 and NℓT ≥ 1, ψiso
l ≥ 1, ℓt ≳ ℓT

, we conclude (4.A.15).

Proof of Proposition 4.A.5. The proof of this proposition is analogous to the proof of Proposi-
tion 4.A.5. All the terms except for the martingale one are estimated as in the proof of Propo-
sition 4.A.5 after multiplying each line by (Nℓt)1/4 and setting ψiso

l = 1. We conclude the proof
pointing out that the only difference is in the estimate of the quadratic variation of the martingale
term, i.e. (4.A.23) has to be replaced by

√
N

siso
k (t)

(
1
N

k+1
∑
i=1
∫

t

0
[G[1,i],s(G[1,i],s)

∗]
xx
[(G[i,k+1],s)

∗G[i,k+1],s]yy
ds)

1/2

≺

√
N

siso
k (t)

⎛

⎝
∫

t

0

ℓss
iso
2(i−1)(s)s

iso
2k−2(i−1)(s)

Nη2
s

ds
⎞

⎠

1/2

≲ 1,

where in the first inequality we used the definition (4.A.13) together with (4.A.6), (4.A.8), and in
the second inequality we used (4.A.7), (4.A.9)–(4.A.10).

Proof of (4.A.21). By spectral decomposition we estimate

∣(Q1G(z)Q2G(w)Q3)xy ∣ =

RRRRRRRRRRR

∑
ij

⟨x,Q1ui⟩⟨ui,Q2uj⟩⟨uj ,Q3uj⟩

(λi − z)(λj −w)

RRRRRRRRRRR

≲
√
N(Q1∣G(z)∣Q

∗
1)xx(Q

∗
3 ∣G(w)∣Q3)yy⟨∣G(z)∣Q2∣G(w)∣Q

∗
2⟩

1/2,

(4.A.27)

where in the last inequality we used Schwarz inequality to separate Q2 from Q1,Q3. Choosing
z = zk/2+1, w = zk/2+j+1, and

Q1 = G1A1 . . .Ak/2, Q2 = Ak/2+1Gk/2+2 . . .Ak/2+j , Q3 = Ak/2+j+1Gk/2+j+2 . . .Gk+1,

this concludes the proof.
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Chapter5
Eigenvector decorrelation for random

matrices

This chapter contains the paper [153]:

G. Cipolloni, L. Erdős, J. Henheik, and O. Kolupaiev. Eigenvector decorelation for random matrices.
arXiv:2410.10718, 2024

Abstract. We study the sensitivity of the eigenvectors of random matrices, showing that even small
perturbations make the eigenvectors almost orthogonal. More precisely, we consider two deformed
Wigner matrices W +D1, W +D2 and show that their bulk eigenvectors become asymptotically
orthogonal as soon as Tr(D1 −D2)

2 ≫ 1, or their respective energies are separated on a scale much
bigger than the local eigenvalue spacing. Furthermore, we show that quadratic forms of eigenvectors
of W +D1, W +D2 with any deterministic matrix A ∈ CN×N in a specific subspace of codimension
one are of size N−1/2. This proves a generalization of the Eigenstate Thermalization Hypothesis to
eigenvectors belonging to two different spectral families.
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5.1 Introduction

5.1.1 Main result

The behavior of the eigenvectors of a Hermitian matrix under perturbations is known to be quite
subtle: even a small change in the matrix may lead to a significant rotation of the eigenvectors
due to resonances. This phenomenon is ubiquitous in a broad range of numerical and statistical
applications, see, e.g., [146, 200, 202, 253, 471, 598]. For example, in the classical paper [200]
Davis and Kahan give a deterministic upper bound for the deviation of the eigenvectors from the
unperturbed ones in terms of the spectral gap, while in [471, Theorem 2] the authors show that
there always exists a perturbation causing a big change in the eigenvectors. When the magnitude of
the perturbation exceeds the local eigenvalue spacing of the initial matrix, standard perturbation
theory does not control the eigenbasis of the perturbed matrix any more and the behavior of the
eigenvectors is highly sensitive to the properties of the original matrix. While in some rare cases
even such larger perturbations still cause only a small change, typically the perturbed eigenbasis is
completely decoupled from the initial one. In this paper, we show that indeed this typical scenario
occurs for random matrices with very high probability.

More precisely, we consider two deformed Wigner matrices of the form H1 =W +D1, H2 =W +D2,
where W is a Wigner matrix1 and D1,D2 are Hermitian deterministic deformations, which we assume
to be traceless without loss of generality. Denote the eigenvalues (energies) of Hl in increasing

1A Wigner matrix is a Hermitian N ×N matrix W =W ∗ with independent, identically distributed centered entries
(up to the Hermitian symmetry) with E ∣Wab∣

2
= 1/N ; see also Assumption 5.2.1.
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5.1. Introduction

order2 by λl1 ≤ λl2 ≤ . . . ≤ λlN , l = 1,2, and let ul1,u
l
2, . . . ,u

l
N be the corresponding orthonormal

eigenvectors. We measure the distance between the families {u1
i }
N
i=1 and {u2

j}
N
j=1 by looking at the

eigenvector overlaps ⟨u1
i ,Au2

j ⟩ for a deterministic observable matrix A.

Our first main result (Theorem 5.2.4) is the decomposition

⟨u1
i ,Au2

j ⟩ = ⟨V A⟩⟨u
1
i ,u

2
j ⟩ +O (

∥A∥
√
N
) , (5.1.1)

for bulk indices3 i, j, where ⟨X⟩ ∶= 1
NTrX denotes the averaged trace of X ∈CN×N . Here V is an

appropriately chosen deterministic matrix depending on the deformations D1,D2 and the (typical
locations of the) energies λ1

i , λ
2
j with ∥V ∥ ≲ 1 (see (5.2.11) for its definition). The N−1/2 error term

in (5.1.1) is optimal.

As our second main result (Theorem 5.2.6), we give an upper bound on the overlap ⟨u1
i ,u

2
j ⟩ in (5.1.1).

In the special case D1 = D2 we trivially have ⟨u1
i ,u

2
j ⟩ = δij , hence (5.1.1) is just the Eigenstate

Thermalization Hypothesis (ETH) for deformed Wigner matrices proven in Chapter 2. However, in
general, when we consider two different deformations, the overlap ⟨u1

i ,u
2
j ⟩ is non-trivial. In fact, it

subtly depends on two effects; the difference in deformations, D1 −D2, and the difference in energy
λ1
i −λ

2
j . In order to study the decorrelation properties of ⟨u1

i ,Au2
j ⟩ we thus need to give an estimate

on this eigenvector overlap in terms of these two differences. More precisely, in Theorem 5.2.6, we
prove the optimal bound

∣⟨u1
i ,u

2
j ⟩∣

2
≲

1
N
⋅

1
⟨(D1 −D2)2⟩ + LT + ∣λ1

i − λ
2
j ∣

2 , (5.1.2)

where the so-called linear term LT is (the absolute value of) a specific linear combination of D1 −D2
and λ1

i − λ
2
j and its precise definition will be given in (5.2.17). The estimate (5.1.2) manifests the

interplay of the two decay effects in three different terms, which can make the eigenvectors u1
i ,u

2
j

almost orthogonal. The identification of the decay in D1 −D2 is the main new result in this paper.
It captures the effect that the spectral resolutions of W +D1,W +D2 become more and more
independent as ⟨(D1 −D2)

2⟩ grows. We describe the relation between the three terms in (5.1.2) in
more details below Theorem 5.2.6. Here we only comment on the optimality of our proven decay
in terms of ⟨(D1 −D2)

2⟩. Standard second order perturbation theory (outlined in Remark 5.2.7)
indicates that ⟨u1

i ,u
2
i ⟩ ≈ 1 in the regime ⟨(D1 −D2)

2⟩ ≪ 1/N . Our bound (5.1.2) shows that
⟨u1

i ,u
2
i ⟩ ≈ 0 in the opposite regime ⟨(D1 −D2)

2⟩≫ 1/N .

Putting together our two main results, (5.1.1) and (5.1.2), we see that the overlap ⟨u1
i ,Au2

j ⟩ can
be small on two different grounds: Either the observable matrix A is (nearly) orthogonal to V ,
i.e. ⟨V A⟩ ≈ 0, or the overlap ⟨u1

i ,u
2
j ⟩ is small as estimated in (5.1.2). We coin the first the regularity

effect and the second the overlap decay effect. All results hold with very large probability.

5.1.2 Previous related results
To put our results (5.1.1)–(5.1.2) into context we now describe several related results, which partially
explored only one of the two smallness effects at a time. We stress that our results (5.1.1)–(5.1.2)
manage to catch both these effects in a unified and optimal manner. In fact, prior to this work,
the regularity effect (5.1.1) was only studied in the context of the same matrix H, i.e. D1 = D2
(and possibly both equal to zero), to prove the ETH in the setting of random matrices. The ETH,
posed by Deutsch in [221] as a signature of chaos in quantum systems, states that quadratic forms
of eigenfunctions of chaotic Hamiltonians can be described purely by macroscopic quantitites and

2The upper index l = 1,2 of the eigenvalues λ and other related quantities should not be confused with a power.
3We say that an index i is in the bulk of the spectrum if the density of states around λl

i is strictly positive; see
(5.2.7) for the precise definition.
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that the (pseudo-random) fluctuations are entropically suppressed. In the context of a single random
matrix ensemble the ETH reads as

⟨ui,Auj⟩ = ⟨V A⟩δij +O (
∥A∥
√
N
) , (5.1.3)

where ui are the orthonormal eigenvectors of an N ×N random matrix H. The ETH in the form
(5.1.3) was first proven for Wigner matrices (i.e. D1 =D2 = 0, in which case V = I) in [165] (see also
[112, 115] for previous partial results). We point out that even the Gaussianity of the fluctuations
in the N−1/2-term is known for Wigner matrices for special observables [112, 115], for general
observables [167, 61, 60], and for deformed Wigner matrices (see Chapter 2). The result (5.1.3) was
extended in several directions: to more general random matrix ensembles [5, 538, 245] (see also
Chapter 2), where V becomes energy dependent, to d–regular graphs [52, 51] and to improvement
of the error term in (5.1.3) from ∥A∥ to ⟨A2⟩1/2 [61, 169] (see also Chapter 3). Related to (5.1.3),
we also mention that in the past few years there has been great interest in studying eigenvector
overlaps of different nature in several other contexts, including tensor principal component analysis
(PCA) [482], shrinkage estimators [224, 423], noise detection [21, 129], minors [31], the equipartition
principle [45], and many body physics [192].

On the other hand, estimates of the form (5.1.2), focusing on the D1 −D2 behavior, were previously
studied only for Hermitian matrices in the very special case when Di = xiD, for a scalar xi, in
[159], and in the context of decorrelation estimates for the Hermitization of non–Hermitian matrices
in [157, 156, 161, 162], where the deformation has a very special 2 × 2 block structure with zero
diagonal blocks and off–diagonal blocks being constant multiples of the identity. As a related problem,
sensitivity of the top eigenvector for a Wigner matrix to resampling of a small portion of the matrix
elements was studied in [100] and extended to sparse matrices in [99].

5.1.3 Multi–resolvent local laws
Local laws in general are concentration estimates for a single resolvent G of a random matrix,
or alternating chains of resolvents and deterministic matrices A, i.e. GAGAGA.... The main
technical tool that we use to prove the decorrelation estimates for eigenvectors in (5.1.1)–(5.1.2) is
a two-resolvent local law, which is stated in Theorem 5.3.2 below.

We now first describe our new multi-resolvent local law and then relate it to previous results. Let us
denote the resolvent of W +Dj at zj ∈ C∖R by Gj ∶= (W +Dj − zj)

−1 and let A be a deterministic
N ×N matrix. Then our new multi–resolvent local law asserts that, as N tends to infinity, the
matrix product G1AG2 concentrates around its deterministic approximation, denoted by MA

12, which
is explicitly given by4

MA
12 =M1AM2 +

⟨M1AM2⟩

1 − ⟨M1M2⟩
M1M2.

Here Mi denotes the deterministic approximation of the single resolvent Gi obtained as the unique
solution Mi =M

Di(zi) to the Matrix Dyson Equation (MDE)

−M−1
i = zi −Di + ⟨Mi⟩ (5.1.4)

under the constraint ImMi Im zi > 0. We optimally control the fluctuation of G1AG2 around MA
12

in terms of D1 −D2 and z1 − z2, showing that typically the size of the fluctuation around MA
12 is

smaller than the size of MA
12 itself. For this reason, in Proposition 5.3.1 below, we give the following

bound on MA
12:

∥MA
12∥ ≲

1
γ
, γ ∶= ⟨(D1 −D2)

2
⟩ + ∣Re z1 −Re z2∣

2
+ LT + ∣Im z1∣ + ∣Im z2∣, (5.1.5)

4Note that G1AG2 is not close to M1AM2, indicating that multi-resolvent local laws are not simple consequences
of the single resolvent local law.
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where the LT ≥ 0 behaves as (the absolute value of) a linear combination of D1 −D2 and z1 − z2 (a
precise definition will be given in (5.2.17) later). The interesting regime is when γ ≪ 1. However,
when A ∈ CN×N lies in a specific subspace of codimension one, the bound in (5.1.5) improves to
∥MA

12∥ ≲ 1. We call such matrices regular and establish an improved local law for G1AG2 in this
case. When one deals with Wigner matrices, i.e. D1 = D2 = 0, then A is regular if and only if
TrA = 0. However, when the deformations D1,D2 are non–zero, the notion of regularity depends on
D1,D2, as well as on the spectral parameters z1, z2, in a nontrivial way; see Definition 5.2.2 for the
precise definition.

We now informally discuss the structure of the bounds in the multi–resolvent local laws in Theo-
rem 5.3.2 and Proposition 5.4.16 with a concrete example. Let x,y ∈ CN be deterministic unit
vectors. When D1 =D2, it was shown in Proposition 2.4.4 that for ∥A∥ ≲ 1 we have5

∣⟨x, (G1AG2 −M
A
12)y⟩∣ ≲

⎧⎪⎪
⎨
⎪⎪⎩

1√
Nη
⋅ 1
η = (Nη

3)−1/2, A is general,
1√
Nη
⋅ 1
η ⋅
√
η = (Nη2)−1/2, A is regular

(5.1.6)

for Nη ≫ 1, where η ∶= ∣Im z1∣∧ ∣Im z2∣ is small in the interesting local regime. Note that the bound
in the case of regular A is √η times better than in the general case. This improvement is known as
a √η–rule and was initially observed in [168] in the context of Wigner matrices. This rule correctly
predicts the size of an arbitrarily long resolvent chain G1A1G2⋯Ak−1Gk: each regular Ai accounts
for an additional √η improvement compared with the bound uniform in Re z1,Re z2 and all bounded
observables.

In this paper we make a step further and show how (5.1.6) improves once we start taking into
account the distance between spectral parameters and between deformations. We also show how
this decay effect can be combined with the effect that the matrix A is regular. Namely, we prove
that (see Proposition 5.4.16 below)

∣⟨x, (G1AG2 −M
A
12)y⟩∣ ≲

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1√
Nη
⋅ 1
η ⋅
√

η
γ = (Nη

2γ)−1/2, A is general,
1√
Nη
⋅ 1
η ⋅
√

η
γ ⋅
√
γ = (Nη2)−1/2, A is regular.

(5.1.7)

Note that for the control parameter γ from (5.1.5) we have
√
η/γ ≲ 1, showing that in fact this

additional factor in (5.1.7), compared to (5.1.6), gives additional smallness.

From (5.1.7), we can thus draw the following two rules of thumb, refining the previous √η-rule.
√

η/γ–rule (Decay effect): For each pair of neighboring resolvents with different indices, G1, G2,
we gain an additional (small) factor

√
η/γ.

√
γ–rule (Regularity effect): For each regular matrix we gain an additional (small) factor √γ.

Note that when both effects are present, we gain back the
√
η/γ
√
γ =
√
η-rule. Thus with the

proper definition of regularity no additional gain can be obtained from the decay effect; this is natural
since the

√
η/γ-rule comes from the unique unstable direction of the two-body stability operator

(5.2.12), while the concept of regularity exactly removes this worst direction.

In (5.1.6)–(5.1.7) we presented the example of the two-resolvent isotropic law for clarity of presenta-
tion, but in Theorem 5.3.2 and Proposition 5.4.16 we prove analogous results also in the averaged
case and for isotropic chains containing three resolvents, respectively. Longer chains can also be
handled by our method and our two new rules correctly predict their size, but we refrain from doing
so, since they are not needed for the eigenvector overlap. In fact, on a heuristic level one could
deduce the results in Theorem 5.3.2, Proposition 5.4.16 by using the √γ– and

√
η/γ–rules for each

5By ⟨⋅, ⋅⟩ we denote the inner product in CN .

241



5. Eigenvector decorrelation for random matrices

unit G1AG2 and multiplying the gains from them. In particular, in the averaged case ⟨G1AG2A⟩
one can extract the gain from both units G1AG2 and G2AG1 because of the cyclicity of the trace.

Our paper is the first instance when both the decay and the regularity effects are considered together,
previously only at most one of them was identified at a time. In fact, the study of multi-resolvent local
laws started in the context of Wigner matrices where none of these two effects were exploited [170];
see also [330, 329] for concrete cases when some decay in ∣Re z1−Re z2∣ was identified in the context
of central limit theorems for linear eigenvalue statistics. After [170], there has been great progress
in proving multi-resolvent local laws either for regular observables [165, 168, 169, 5, 538, 245, 480]
(see also the previous Chapters 1–4) or for different deformations of a specific form for Hermitian
matrices [159] and for the Hermitization of non–Hermitian matrices [157, 161, 162].

We conclude this section by pointing out that the multi-resolvent local laws mentioned above have
also been used in several other important problems in random matrix theory; we now name some
of them. They played a key role in the recent solution of the bulk universality conjecture for
non–Hermitian random matrices [431, 481, 226], as well as in proving universality of the distribution
of diagonal overlaps of left/right non–Hermitian eigenvectors [480] and of their entries [227, 479].
Two–resolvents local laws have also been used to prove decorrelation estimates for the resolvent of the
Hermitization of non–Hermitian matrices in the context of space–time correlation of linear statistics of
non–Hermitian eigenvalues [106], and to compute the leading order asymptotic of the log-determinant
of non–Hermitian matrices [173]. Lastly we point out that similar decorrelation estimates, proven in
[159], have been used in [466] to study random hives associated to the eigenvalues of GUE matrices.

5.1.4 The method of characteristics
We prove multi-resolvent local laws in Theorem 5.3.2 using the so–called zigzag strategy [150, 161],
which involves three key steps. First, we prove a concentration bound on the global scale (global
law), i.e. when the spectral parameters are at a distance of order one from the spectrum. Then we
propagate this bound down to the real line by evolving the matrix W along the Ornstein–Uhlenbeck
flow, while the spectral parameters z1, z2 and the deformations D1,D2 evolve according to a certain
deterministic evolution, called characteristic equations (see (5.4.8) below for the definition). Along
this flow the imaginary part of the spectral parameters is reduced (zig step). This second step
establishes local laws for spectral parameters with small imaginary parts, though only for matrices
with a Gaussian component, added by the Ornstein-Uhlenbeck flow. Finally, the last step of the zigzag
strategy eliminates this Gaussian component, again dynamically, via a Green function comparison
argument (zag step). We point out that zig and zag steps are used many times in tandem to decrease
the distance of the spectral parameters to the spectrum step by step.

While the zigzag strategy is a well–established method which has been worked out in many instances,
there are several important novelties in our current approach. The first novelty is that we perform
the proof for an abstract control parameter satisfying certain general conditions which we precisely
describe in Definition 5.4.4. We do this since the structure of the upper bounds in Theorem 5.2.6
is fairly complicated and we thus need to keep track of different effects at the same time. The
second novelty is the self–improving estimates in the zag step stated in Lemmas 5.4.11 and 5.4.12.
In fact, we need to perform several zigzag steps to prove the optimal 1/√γ decay, instead of the
1/√η in (5.1.7). We do this gradually: We first prove (5.1.7) with 1/√γ replaced by 1/

√
η1−bγb

for some b ∈ (0,1) and then, using this bound as an input, we improve it to 1/
√
η1−b′γb′ for some

b′ > b. Iterating this procedure finitely many times we finally obtain the desired 1/√γ in (5.1.7). As
an additional third novelty, we extend the delicate analysis of the two-body stability from [237] to
include the new linear term LT.

We conclude this section with a brief historical discussion of the use of the method of characteristics
(zig step) in random matrix theory6. The idea to study the evolution of the resolvent along the

6We point out that, even if we do not mention it, some of the following references also use a comparison step
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characteristic flow was first introduced in [488, 353, 582, 6, 105] to prove local laws for single
resolvents in the bulk and the edge of the spectrum, though only for matrices which have a Gaussian
component. In the edge regime a similar version of the characteristics was used before to prove
Tracy–Widom universality for the largest eigenvalue of deformed Wigner matrices [407]. In the
context of single resolvent local laws, this method was later extended to cover also the cusp regime
[7, 136, 239]. All the results mentioned above concern single resolvent local laws. Only more recently
the method of characteristics was used to prove local laws for products of two or more resolvents.
The first instances of multi–resolvent local laws proven with this method are for the unitary Brownian
motion [111] and for the product of resolvents of the Hermitization of non–Hermitian matrices at
different spectral parameters [161]. Since then this method has been very successful in proving a
multitude of multi–resolvent local laws for regular matrices or for matrices with specific different
deformations [538, 162, 245, 480, 163] (see also Chapters 3 and 4). In the current work we show
that this method is also effective to optimally catch both the decay and the regularity effect at the
same time. Finally, we mention that the method of characteristics was also useful to prove central
limit theorems for linear eigenvalues statistics [353, 6, 393, 392, 394], to study their time correlations
[106], as well as to study certain extremal statistics [173].

Notations and conventions
We set [k] ∶= {1, ..., k} for k ∈ N and ⟨A⟩ ∶= N−1Tr(A), N ∈ N, for the normalized trace of an
N ×N -matrix A. For positive quantities f, g we write f ≲ g, f ≳ g, to denote that f ≤ Cg and
f ≥ cg, respectively, for some N -independent constants c,C > 0 that depend only on the basic
control parameters of the model in Assumption 5.2.1 below. We denote the complex upper–half
plane by H ∶= {z ∈C ∶ Im z > 0}

We denote vectors by bold-faced lower case Roman letters x,y ∈CN , for some N ∈N. Moreover,
for vectors x,y ∈CN and a matrix A ∈CN×N we define

⟨x,y⟩ ∶=∑
i

x̄iyi , Axy ∶= ⟨x,Ay⟩ .

Matrix entries are indexed by lower case Roman letters a, b, c, ..., i, j, k, ... from the beginning or the
middle of the alphabet and unrestricted sums over those are always understood to be over {1, ...,N}.

Finally, we will use the concept with very high probability, meaning that for any fixed D > 0, the
probability of an N -dependent event is bigger than 1 −N−D for all N ≥ N0(D). We will use the
convention that ξ > 0 denotes an arbitrarily small positive exponent, independent of N . Moreover,
we introduce the common notion of stochastic domination (see, e.g., [241]): For two families

X = (X(N)(u) ∣ N ∈N, u ∈ U (N)) and Y = (Y (N)(u) ∣ N ∈N, u ∈ U (N))

of non-negative random variables indexed by N , and possibly a parameter u, we say that X is
stochastically dominated by Y , if for all ϵ,D > 0 we have

sup
u∈U(N)

P [X(N)(u) > N ϵY (N)(u)] ≤ N−D

for large enough N ≥ N0(ϵ,D). In this case we write X ≺ Y . If for some complex family of random
variables we have ∣X ∣ ≺ Y , we also write X = O≺(Y ).

5.2 Main results
We consider an N × N deformed Wigner matrix of the form H = D +W , where D = D∗ is a
deterministic deformation and W is a Wigner matrix, i.e. real symmetric or complex Hermitian
similar to the zag step to remove the additional Gaussian component added via the zig step.

243



5. Eigenvector decorrelation for random matrices

matrix W =W ∗ with independent entries (up to the symmetry constraint) having distribution

Waa
d
=

1
√
N
χd, Wab

d
=

1
√
N
χod, a > b. (5.2.1)

On the (N -independent) random variables χd ∈R, χod ∈C we formulate the following assumptions:

Assumption 5.2.1. Both χd, χod are centered Eχd = Eχod = 0 and have unit variance Eχ2
d =

E ∣χod∣
2 = 1. In the complex case we also assume7 that Eχ2

od = 0. Furthermore, we assume the
existence of high moments, i.e. for any p ∈N there exists a constant Cp > 0 such that

E [∣χd∣
p
+ ∣χod∣

p] ≤ Cp. (5.2.2)

Our main goal is to study the decorrelation of the eigenvectors of W +D1, W +D2 for two different
Hermitian deformations D1,D2 ∈ CN×N . For simplicity, we will always assume that the deformations
D1, D2 are traceless, i.e. that ⟨D1⟩ = ⟨D2⟩ = 0. This is not restrictive, since the spectrum of W +Dl,
for l = 1, 2, differs from the spectrum of W + (Dl − ⟨Dl⟩) only by a shift of size ⟨Dl⟩ to the right. In
particular, all the results presented below also hold without the restriction to traceless deformations,
one just needs to shift the spectral parameters properly.

Before stating our main result we introduce some useful notations and definitions. Let D =D∗ ∈ CN×N

with ∥D∥ ≲ 1, denote its empirical eigenvalue density by

µ(D) ∶=
1
N

N

∑
i=1
δdi
, (5.2.3)

with d1, . . . , dN denoting the eigenvalues of D. Let µsc be the semicircular distribution with density
ρsc(x) ∶= (2π)−1√(4 − x2)+; we recall that ρsc is the limiting density of the eigenvalues of a Wigner
matrix W . Then the limiting eigenvalue density of W +D is given by the free convolution (see [81]
for a detailed discussion)

µD = µsc ⊞ µ(D), (5.2.4)

which is a probability distribution on R. Let mD be the Stieltjes transform of µD, i.e. for z ∈ C ∖R
we have

mD(z) ∶= ∫
R

µD(dx)
x − z

, (5.2.5)

and define the corresponding density by

ρD(x) ∶= lim
η→0+

ρD(x + iη), ρD(z) ∶=
1
π
∣ImmD(z)∣. (5.2.6)

Next, fix a small κ > 0, and define the κ-bulk of the density ρD by

Bκ(D) ∶= {x ∈R ∶ ρD(x) ≥ κ}. (5.2.7)

Furthermore, we define the quantiles γDi of ρD implicitly via

∫

γD
i

−∞
ρD(x)dx =

i

N
, i ∈ [N]. (5.2.8)

From the eigenvalue rigidity it is known [17, 243] that γDi very well approximates the ith eigenvalue
λi of W +D.

We are now ready to state our two main results.
7We make this further assumption just to keep the presentation cleaner and shorter. In fact, inspecting the proof of

Sections 5.5 and 5.6 it is clear that this assumption can easily be removed. This was explained in detail in Section 3.4.4.
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5.2.1 First main result: Regular observables and eigenstate thermalization
(Theorem 5.2.4)

In order to prove the decomposition in (5.1.1) with such a precise estimate of the error term, we need
to find the appropriate one-codimensional set of observables, A = A(D1,D2, γ

D1
i , γD2

j ), depending
both on D1,D2 as well as on the approximate eigenvalues so that ⟨u1

i ,Au2
j ⟩ can be bounded by

N−1/2. In Definition 5.2.2 we characterize the family of such matrices. This result can be thought
as a generalization of the ETH for eigenvectors belonging to two different spectral families.

We start by introducing the notion of regular observables, a concept, which in this generality was
first introduced in Definition 1.3.1 and later in Definition 2.4.2.

Definition 5.2.2 (Regular observables). Let A ∈ CN×N be a deterministic matrix, let z1, z2 ∈ C ∖R
be spectral parameters, and let D1,D2 ∈ CN×N be deterministic deformations. Fix a small constant8

δ > 0 depending on κ from (5.2.7) and ∥D1∥, ∥D2∥. Introduce the short–hand notation νl ∶= (zl,Dl),
l = 1,2, we will call νl a spectral pair. Set

ϕ(ν1, ν2) = ϕδ(ν1, ν2) ∶= χδ(Re z1 −Re z2)χδ(⟨(D1 −D2)
2
⟩)χδ(Im z1)χδ(Im z2), (5.2.9)

where 0 ≤ χδ(x) ≤ 1 is a symmetric bump function such that it is equal to one for ∣x∣ ≤ δ/2 and
equal to zero for ∣x∣ ≥ δ.

We define the (ν1, ν2)–regular component of A by

Å
ν1,ν2

∶= A − ϕ(ν1, ν2)⟨V A⟩I, (5.2.10)

where we used the short–hand notation

V = V (ν1, ν2) ∶=
MD2(Re z2 + isIm z2)M

D1(Re z1 + iIm z1)

⟨MD1(Re z1 + iIm z1)MD2(Re z2 + isIm z2)⟩
. (5.2.11)

In (5.2.11) the relative sign of the imaginary parts is defined as

s = s(z1, z2) ∶= −sgn(Im z1Im z2).

We say that A is a regular observable with respect to (ν1, ν2) if A = Åν1,ν2 .

Note that our definition of regularity is asymmetric in the two spectral pairs. In particular, while
Å
ν1,ν2

= Å
ν1,ν̄2 , it does not necessarily hold that Åν1,ν2 equals Åν̄1,ν2 . The way of regularization

presented in Definition 5.2.2 is not the only possible one. Alternatively, one could exchange the
indices 1 and 2, or put s on the other argument. It is also possible to define a regularization which is
symmetric in ν1, ν2, hence may look more canonical, however we do not proceed in this direction
since the definition (5.2.10) which we use is technically more manageable.

Remark 5.2.3 (On the choice of V ). The convenience of our choice of V and thus the definition
of regular observables in (5.2.10) lies in the fact that V is the right eigenvector R12 = R(ν1, ν2)
corresponding to the smallest (in absolute value) eigenvalue of the operator X12, which is defined by

X12[⋅] ∶= [([B12]
−1
)
∗
[⋅
∗
]]
∗
, B12[⋅] ∶= 1 −MD1(z1)⟨⋅⟩M

D2(z2) = 1 −M1⟨⋅⟩M2, (5.2.12)

with Ml from (5.1.4). Here B12 denotes the two–body stability operator that naturally appears
when solving the analog of the Dyson equation for the deterministic approximation MA

12 of the
two-resolvent chain G1AG2. With the above choice Åν1,ν2 is defined so that ⟨Åν1,ν2

R12⟩ = 0, i.e.
V = R12.

8The precise dependence of δ on κ and ∥D1∥, ∥D2∥ is discussed in the last paragraph of the proof of Theorem 5.2.6.
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The operator X12 has a single very large eigenvalue if and only if D1 ≈D2, z1 ≈ z̄2 and ∣Im z1∣, ∣Im z2∣
are small. Regular observables are defined precisely such that the action of X12 (and also X12̄)
remain bounded on them. This also explains the role of the cutoff function ϕ in (5.2.9): regularity is
a nontrivial concept only when ϕ ≠ 0; in the complementary regime ϕ = 0 every matrix A is regular.

We are now ready to state our first main result.

Theorem 5.2.4 (Generalized Eigenstate Thermalization). Fix any κ > 0 and fix D1,D2 ∈ CN×N

with ∥Dl∥ ≲ 1. Let W be a Wigner matrix satisfying Assumption 5.2.1, and, for l = 1,2, denote
by ul1, . . . ,u

l
N the orthonormal eigenvectors of W +Dl. Fix indices i, j such that the quantiles

γD1
i ∈ Bκ(D1) and γD2

j ∈ Bκ(D2) are in the κ–bulk of the corresponding densities. Let A ∈ CN×N be
a deterministic matrix which is regular with respect to (ν1, ν2) ∶= ((γ

D1
i + i0+,D1), (γ

D2
j + i0+,D2)).

Then,
∣⟨u1

i ,Au2
j ⟩∣ ≺

∥A∥
√
N
. (5.2.13)

More generally, for arbitrary observables A ∈CN×N , we have

∣⟨u1
i ,Au2

j ⟩ − ⟨V A⟩ϕij⟨u
1
i ,u

2
j ⟩∣ ≺

∥A∥
√
N
, (5.2.14)

where V = V (ν1, ν2) is defined in (5.2.11) and satisfies ∥V ∥ ≲ 1. Here, for a fixed small δ = δ(κ) > 0,
we defined

ϕij = ϕij(δ) ∶= 1(∣γD1
i − γ

D2
j ∣ ≤ δ)1(⟨(D1 −D2)

2
⟩ ≤ δ). (5.2.15)

The bounds (5.2.13) and (5.2.14) are uniform in the indices i, j such that γD1
i ∈ Bκ(D1) and

γD2
j ∈Bκ(D2).

Example 5.2.5 (Eigenstate Thermalization). Some special cases of (5.2.14) recover previously
known results:

(i) For D1 = D2 = 0 (5.2.14) is the ETH bound for Wigner matrices [165, Theorem 2.2], as in
this case V = I, yielding

∣⟨ui,Auj⟩ − ⟨A⟩δij ∣ ≺
∥A∥
√
N
. (5.2.16)

Here {ui}Ni=1 denote the orthonormal eigenvectors of W . Though (5.2.14) implies (5.2.16)
only for bulk indices, in [165], (5.2.16) was proven for all i, j ∈ [N].

(ii) More generally, when D1 =D2 =D ∈CN×N , we have

V =
M(γi)M

∗(γj)

⟨M(γi)M∗(γj)⟩
,

with γi ∶= γDi . In this case, (5.2.14) is the ETH bound for deformed Wigner matrices as given
in Theorem 2.2.7:

∣⟨ui,Auj⟩ −
⟨ImM(γi)A⟩

⟨ImM(γi)⟩
δij∣ ≺

∥A∥
√
N

for bulk indices, where we used that V = ImM(γi)/⟨ImM(γi)⟩. Here {ui}Ni=1 denote the
orthonormal eigenvectors of W +D.

In the next section, we will estimate the overlap ⟨u1
i ,u

2
j ⟩ appearing in (5.2.14).
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5.2.2 Second main result: Optimal eigenvector decorrelation (Theorem 5.2.6)
In (5.2.14) we showed that for general observables (matrices) A the overlap ⟨u1

i ,Au2
j ⟩ can be

decomposed as ⟨V A⟩⟨u1
i ,u

2
j ⟩ plus a very small error. However, while ∥V ∥ ≲ 1 is deterministic,

the overlap ⟨u1
i ,u

2
j ⟩ is in general still random. This naturally raises the question if we can give a

non-trivial bound on the overlap ⟨u1
i ,u

2
j ⟩. We positively answer this question in Theorem 5.2.6 below.

In particular, we show that the size of the overlaps ⟨u1
i ,u

2
j ⟩ is typically smaller when D1,D2 are

more separated. Another effect is that the overlap becomes smaller when we consider eigenvectors
corresponding to well separated eigenvalues. To quantify these types of decay we introduce the linear
term, defined as

LT(z1, z2) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∣z1 − z2 −
⟨M1(D1−D2)M2⟩

⟨M1M2⟩ ∣ ∧ 1, if Im z1Im z2 < 0,

∣z1 − z̄2 −
⟨M1(D1−D2)M∗

2 ⟩
⟨M1M∗

2 ⟩
∣ ∧ 1, if Im z1Im z2 > 0.

(5.2.17)

Here, Ml = M
Dl(zl), for l = 1,2, is the unique solution [332, Theorem 2.1] of the MDE (5.1.4)

under the constraint ImMlIm zl > 0. We also mention that from (5.1.4) one can recover (5.2.5) by
mDl
(zl) = ⟨Ml(zl)⟩. From the definition (5.2.17) and the fact that Ml and Dl commute it follows

that LT(z1, z2) = LT(z1, z̄2) and LT(z1, z2) = LT(z̄1, z2) for any z1, z2 ∈ C∖R. Therefore, (5.2.17)
extends continuously to the real line, i.e. LT(z1, z2) is well-defined for z1, z2 ∈R.

We are now ready to state our second main result.

Theorem 5.2.6 (Optimal eigenvector decorrelation). Fix any κ > 0 and fix D1,D2 ∈ CN×N Hermitian
with ∥Dl∥ ≲ 1. Let W be a Wigner matrix satisfying Assumption 5.2.1, and, for l = 1,2, denote by
ul1, . . . ,u

l
N the orthonormal eigenvectors of W +Dl. Then,

∣⟨u1
i ,u

2
j ⟩∣

2
≺

1
N
⋅

1
⟨(D1 −D2)2⟩ + LT(γD1

i , γD2
j ) + ∣γ

D1
i − γ

D2
j ∣

2
∧ 1, (5.2.18)

uniformly over indices i, j such the quantiles γDl
i ∈ Bκ(Dl), for l = 1,2, are in the κ–bulk of the

density ρDl
.

We now briefly comment on (5.2.18). There are several effects that make the eigenvectors almost
orthogonal; these are manifested by the various terms in the denominator on the rhs. of (5.2.18).
The main novel effect is expressed by the term ⟨(D1 −D2)

2⟩ that measures the decay due to the fact
that the spectra of W +D1, W +D2 become more and more independent as ⟨(D1 −D2)

2⟩ increases.
Focusing on this effect only, (5.2.18) simplifies to

∣⟨u1
i ,u

2
j ⟩∣

2
≺

1
N⟨(D1 −D2)2⟩

, (5.2.19)

uniformly for bulk indices. The second effect appears when the corresponding eigenvalues (energies),
which are well approximated by the quantiles γD, are far away. This effect is trivially present even
for a single deformation, D1 = D2 = D, in which case ⟨uDi ,uDj ⟩ = δij . Finally, the combination of
these two effects is more delicate. The last term in (5.2.18) shows that the square of the energy
difference, ∣γD1

i − γ
D2
j ∣, is always present in the estimate. This is improved to linear decay, contained

in the term LT, but for the difference of the renormalized energies that are the energies γDl
i shifted

with ⟨M1DlM
(∗)
2 ⟩/⟨M1M

(∗)
2 ⟩.

Remark 5.2.7 (Eigenvector correlation in perturbative regime). As discussed above, we showed that
the overlaps ⟨u1

i ,u
2
j ⟩ are much smaller than ∥u1

i ∥ ⋅ ∥u
2
j∥ = 1 when ⟨(D1 −D2)

2⟩≫ 1/N . Here, for
simplicity, we only consider diagonal overlaps, i.e. i = j. We point out that the smallness of (5.2.18)
may be due also to the other two terms in the denominator of the right–hand side of (5.2.18),
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5. Eigenvector decorrelation for random matrices

however we do not consider these effects in this remark to keep the presentation simpler. We now
show that this condition is necessary, in fact we claim that for ⟨(D1 −D2)

2⟩≪ 1/N we have

⟨u1
i ,u

2
i ⟩ = 1 + o(1). (5.2.20)

We now describe how to obtain (5.2.20). By second order perturbation theory we have

⟨u1
i ,u

2
i ⟩ = ⟨u

1
i ,u

1
i ⟩ +∑

j≠i

∣⟨u1
i , (D1 −D2)u

1
j ⟩∣

2

(λ1
i − λ

1
j)

2 + . . . . (5.2.21)

Since ⟨u1
i ,u

1
i ⟩ = 1, we only need to estimate the second term in the right–hand side of (5.2.21).

Higher order terms in the perturbation series (5.2.21) can be estimated similarly but we omit them
for simplicity. In order to deduce (5.2.20), we need to give a lower bound on the denominator and
an upper bound on the numerator in the rhs. of (5.2.21).

For the lower bound we have
(λ1

i − λ
1
j)

2
≳
∣i − j∣2

N2 (5.2.22)

with high probability. To see this, in case of ∣i − j∣ ≥ N ξ with an arbitrary small ξ > 0, we employ the
rigidity estimate [17, 243]. For nearby indices, say i < j ≤ i +N ξ, we use

P(∣λ1
i − λ

1
j ∣ ≤ N

−1−ω) ≤ P(∣λ1
i − λ

1
i+1∣ ≤ N

−1−ω) ≤ N−cω,

for some small fixed c, ω > 0. In the last step we used the universality of the eigenvalue gaps for
deformed Wigner matrices9 and the explicit level repulsion bound for GOE/GUE matrix:

PGOE/GUE(∣λ1
i − λ

1
i+1∣ ≤ N

−1−ω) ≤ N−cω.

For the upper bound, we employ ETH for deformed Wigner matrix W +D1 in the Hilbert-Schmidt
norm form:

∣⟨u1
i , (D1 −D2)u

1
j ⟩ −
⟨(D1 −D2)ImMD1(γ1

i )⟩

⟨ImMD1(γ1
i )⟩

δij∣ ≲
⟨(D1 −D2)

2⟩1/2
√
N

, (5.2.23)

with MD1 from (5.1.4) and γ1
i ∶= γ

D1
i being the quantiles from (5.2.8). In Chapter 2 we proved

ETH for deformed Wigner matrices in the form

∣⟨u1
i , (D1 −D2)u

1
j ⟩ −
⟨(D1 −D2)ImMD1(γ1

i )⟩

⟨ImMD1(γ1
i )⟩

δij∣ ≲
∥D1 −D2∥
√
N

, (5.2.24)

i.e with the operator norm ∥D1 −D2∥ instead of the Hilbert-Schmidt norm of D1 −D2. Strictly
speaking, the improved bound (5.2.23) is nowhere proven for the eigenvectors of deformed Wigner
matrix W +D1, D1 ≠ 0, however this can be easily obtained using a similar (in fact much simpler)
zigzag approach as the one presented in Sections 5.5–5.6 of this paper. We also point out that a
bound similar to (5.2.23) has already been obtained, using similar arguments, for Wigner matrices
(D1 = 0) in Chapter 3 and for Wigner–type matrices with a diagonal deformation in [245].

Finally, combining (5.2.22) with (5.2.23), from (5.2.21) we obtain

⟨u1
i ,u

2
i ⟩ = 1 +O (N⟨(D1 −D2)

2
⟩)

which directly implies the desired claim (5.2.20). Every step of this argument can easily be made
rigorous but we omit details for brevity.

9The first bulk universality result in terms of correlation functions for deformed Wigner matrices with diagonal
deformations was given in [409]. The gap universality in full generality was given, e.g., in Corollary 2.6 of [243].
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Remark 5.2.8 (Independence of eigenvalue gaps). We point out that using the eigenvector overlap
bound (5.2.18) we can prove that the eigenvalue gaps in the bulk of the spectrum of W +D1,
W +D2 are independent as long as ⟨(D1−D2)

2⟩≫ 1/N . In fact, following verbatim [157, Section 7]
and its adaptation to the Hermitian case in [159], we can prove the desired independence via the
study of weakly correlated Dyson Brownian motions. The only input required for this proof is the
overlap bound ∣⟨u1

i ,u
2
j ⟩∣≪ 1.

We point out that the bounds (5.2.14) and (5.2.18) are optimal except for the N ϵ-factor (for any
ϵ > 0) coming from the ≺ bound. This can be seen by the fact that a local N δ-average of eigenvectors

1
N2δ ∑

∣i−i0 ∣≤Nδ

∣j−j0 ∣≤Nδ

N ∣⟨u1
i ,Au2

j ⟩∣
2

for some small δ > 0 is proportional to products of resolvents, as shown in the rhs. of (5.3.15) below,
for which we precisely compute the deterministic approximation in Theorem 5.3.2.

We stated our main results Theorems 5.2.4 and 5.2.6 only for indices in the bulk of the spectra of
W +D1, W +D2 and estimated the error in Theorem 5.2.4 in terms of the operator norm ∥A∥. In
Section 5.3.3 below, we comment on possible extensions and improvements.

5.3 Proofs of the Main Results: Multi-resolvent local laws
In this section we present several technical tools and preliminary results that will be often used in
this paper. More precisely, in Section 5.3.1 we study lower bounds on the stability operator, which
are one of the fundamental input to obtain the decay in the rhs. of (5.2.18). Then, in Section 5.3.2,
we state our main technical result (Theorem 5.3.2 below), which is a multi–resolvent local law for
the product of the resolvents of W +D1 and W +D2, with D1,D2 ∈ CN×N . Lastly, in Section 5.3.3
we comment on the optimality and discuss some possible extension of Theorem 5.3.2.

5.3.1 Preliminaries on the stability operator
Recall the definition of the stability operator from (5.2.12). One can easily see that its smallest
(in absolute value) eigenvalue is 1 − ⟨M1M2⟩ with associated eigenvector M1M2; the only other
eigenvalue, trivially equal to one, is highly degenerate. Here, M1 =M

D1(z1), M2 =M
D2(z2) are

the solutions of the MDE (5.1.4). In this section we give a lower bound on its absolute value

β(z1, z2) ∶= ∣1 − ⟨M1M2⟩∣. (5.3.1)

The main control parameters in the following statements are ⟨(D1 −D2)
2⟩ and the linear term

LT(z1, z2) which is defined as in (5.2.17), for z1, z2 ∈ C ∖R. The proof of the following proposition
and comments about its optimality are postponed to Section 5.A.1.

Proposition 5.3.1 (Stability bound). Fix a (large) constant L > 0. Let D1,D2 ∈ CN×N be Hermitian
matrices with ⟨Dl⟩ = 0 and ∥Dl∥ ≤ L for l = 1,2. For zl = El + iηl ∈H, l = 1,2, recall the notation
ρl ∶= π

−1⟨ImMDl(zl)⟩ and denote

β∗ ∶= β∗(z1, z2) = β(z1, z2) ∧ β(z1, z̄2), (5.3.2)

γ̂ ∶= γ̂(z1, z2) = ⟨(D1 −D2)
2
⟩ + LT + ∣E1 −E2∣

2
∧ 1 + η1

ρ1
∧ 1 + η2

ρ2
∧ 1. (5.3.3)

Then uniformly in z1, z2 ∈H it holds that

(ρ1 + ρ2)
2
≲ β(z1, z2). (5.3.4)
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Moreover, fix a (large) constant C0 > 0 and assume that for some intervals I1, I2 ⊂R we have

sup
Re zl∈Il

∥MDl(zl)∥ ≤ C0, l = 1,2. (5.3.5)

Then uniformly in zl = El + iηl ∈H with El ∈ Il, l = 1,2, it holds that

γ̂ ≲ β∗ ≲ γ̂
1/4, (5.3.6)

where the implicit constants depend only on L and C0.

Note that (5.3.5) is automatically satisfied for Il = Bκ(Dl) with the constant C0 depending only on
κ. This follows from the bound

∥MD
l (zl)∥ ≤ (∣Im zl∣ + ∣⟨ImMDl(zl)⟩∣)

−1
≤ Cκ−1 .

We point out that, even if not highlighted in the notation, the quantities β, β∗ and γ̂ also depend on
the deformations D1,D2. We will often omit this dependence in notations when it is clear what the
arguments are.

The most relevant part of Proposition 5.3.1 is the lower bound β∗ ≳ γ̂. This bound in a weaker
form (more precisely, without LT included in γ̂) has already appeared in [237, Proposition 4.2]. It
should be viewed as an upper bound on the two–body stability operator in terms of simpler control
parameters collected in γ̂. In the inequality β∗ ≲ γ̂1/4 we do not pursue getting the optimal power
for γ̂. In fact, any positive exponent would work for our purpose.

5.3.2 Multi–resolvent local law: Proofs of Theorems 5.2.6 and 5.2.4
The main idea to give a bound on single eigenvector overlaps as in Theorems 5.2.6–5.2.4 is to
upper bound the overlaps by traces of products of two resolvents, and then prove a bound for these
quantities (see e.g. (5.3.15) below). For this reason in this section we first recall the traditional
single resolvent local law, and then state our new multi–resolvent local laws, which are our main
technical result.

Let D ∈ CN×N , with ∥D∥ ≲ 1, and let W be a Wigner matrix satisfying Assumption 5.2.1. Then, for
z ∈C ∖R we define the resolvent of W +D by G(z) = GD(z) ∶= (W +D − z)−1. It is well known
that in the limit N → ∞ the resolvent becomes approximately deterministic G(z) ≈ M(z), with
M(z) =MD(z) being the solution of (5.1.4). This is expressed by the following single resolvent
local law [243, Theorem 2.1]

∣⟨(G(z) −M(z))A⟩∣ ≺
1

N ∣Im z∣
, ∣⟨x, (G(z) −M(z))y⟩∣ ≺

1
√
N ∣Im z∣

, (5.3.7)

uniformly in deterministic matrices A ∈ CN×N with ∥A∥ ≤ 1, unit vectors x,y ∈ CN , and spectral
parameters z in the bulk regime, i.e. Re z ∈Bκ(D) for some fixed κ > 0.

The main topic of this section, however, is to compute the deterministic approximation of the
products of two resolvents G1AG2, with Gl ∶= GDl(zl) for l = 1, 2 and a deterministic observable in
between. While GDl(zl) ≈M

Dl(zl), the deterministic approximation of G1AG2 is not given by the
product of the deterministic approximations M1AM2, but, as we will see from our result, rather by

MA
ν1,ν2 ∶= B

−1
12 [M1AM2], (5.3.8)

with νl = (zl,Dl), Ml =M
Dl(zl) and with B12 being the stability operator defined in (5.2.12). We

will stick to the following notational convention. In most cases we will simplify the notation MA
ν1,ν2

to MA
12 when it is clear from the context what the arguments are. Moreover, if ν1, ν2 depend on an
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additional parameter t, i.e. ν1 = ν1(t), ν2 = ν2(t), we will denote the dependence of (5.3.8) on t in
two equivalent ways:

MA
ν1(t),ν2(t) =M

A
12,t. (5.3.9)

On the deterministic approximation defined in (5.3.8) we have the bound (see Proposition 5.4.6
below)

∥MA
ν1,ν2∥ ≲

∥A∥

β∗
, (5.3.10)

with β∗ from (5.3.2). In the case when A is (ν1, ν2)-regular, i.e. A = Åν1,ν2 , (5.3.10) improves to
∥MA

ν1,ν2∥ ≲ ∥A∥. For precise statement see Proposition 5.4.6. We are now ready to state our main
technical result.

Theorem 5.3.2 (Average two-resolvent local laws in the bulk). Fix L, ϵ, κ > 0. Let W be a
Wigner matrix satisfying Assumption 5.2.1, and let D1,D2 ∈ CN×N be Hermitian matrices such that
⟨Dl⟩ = 0 and ∥Dl∥ ≤ L for l = 1,2. For spectral parameters z1, z2 ∈C ∖R, denote ηl ∶= ∣Im zl∣ and
η∗ ∶= η1 ∧ η2 ∧ 1. Finally, let γ̂ = γ̂(z1, z2) be defined as in (5.3.3). Then, the following holds:

Part 1. [General case] For deterministic B1,B2 ∈CN×N we have

∣⟨(GD1(z1)B1G
D2(z2) −M

B1
ν1,ν2)B2⟩∣ ≺ (

1
Nη1η2

∧
1

√
Nη∗γ̂

)∥B1∥∥B2∥ (5.3.11)

uniformly in B1,B2, spectral parameters satisfying Re zl ∈ Bκ(Dl), ∣zl∣ ≤ N100, for l = 1,2,
and η∗ ≥ N−1+ϵ.

Part 2. [Regular case] Consider deterministic A1,A2,B ∈CN×N . Moreover, recalling (5.2.10), let A1
be (ν1, ν2)-regular and A2 be (ν2, ν1)-regular. Then,

∣⟨(GD1(z1)A1G
D2(z2) −M

A1
ν1,ν2)B⟩∣ ≺ (

1
Nη1η2

∧
1

√
Nη∗γ̂

)∥A1∥∥B∥, (5.3.12)

∣⟨(GD1(z1)A1G
D2(z2) −M

A1
ν1,ν2)A2⟩∣ ≺ (

1
Nη1η2

∧
1

√
Nη∗
)∥A1∥∥A2∥, (5.3.13)

uniformly in A1,A2,B, spectral parameters satisfying Re zl ∈ Bκ(Dl), ∣zl∣ ≤ N100, for l = 1,2,
and η∗ ≥ N−1+ϵ.

One important technical tool needed for the proof of Part 2 Theorem 5.2.4 is the content of the
following lemma, which compares regularizations of a deterministic matrix with respect to different
pairs of spectral pairs. We point out that this is not a type of continuity statement about the
dependence of Åν1,ν2 on (ν1, ν2) like in Lemma 1.3.3. We postpone the proof of Lemma 5.3.3 to
Appendix 5.A.4.

Lemma 5.3.3 (Comparison of different regularizations). Fix (large) L > 0 and (small) κ > 0.
Let D1,D2 ∈ CN×N be Hermitian deformations. Moreover, assume that ⟨D1⟩ = ⟨D2⟩ = 0 and
∥D1∥ ≤ L, ∥D2∥ ≤ L. Take spectral parameters z1, z2 ∈H such that min{ρ1(z1), ρ2(z2)} ≥ κ, where
ρl(zl) ∶= ⟨ImMDl(zl)⟩π

−1, l = 1,2. For y1, y2 ≥ 0 denote z′l ∶= zl + iyl ∈H, l = 1,2. Additionally we
use notations νl ∶= (zl,Dl), ν′l ∶= (z′l ,Dl) and ν̄′l ∶= (z̄

′
l,Dl) for l = 1,2. Then for any observable

A ∈CN×N we have

∥Å
ν′1,ν

′
2
− Å

ν1,ν2
∥ ≲ ∥A∥

√

γ̂(z′1, z
′
2), ∥Å

ν̄′1,ν
′
2
− Å

ν1,ν2
∥ ≲ ∥A∥

√

γ̂(z′1, z
′
2),

∥Å
ν′2,ν

′
1
− Å

ν1,ν2
∥ ≲ ∥A∥

√

γ̂(z′1, z
′
2), ∥Å

ν̄′2,ν
′
1
− Å

ν1,ν2
∥ ≲ ∥A∥

√

γ̂(z′1, z
′
2).

(5.3.14)

The implicit constants in (5.3.14) depend only on L and κ. Recall that when the complex conjugation
falls on the second spectral pair, we have Åν

′
1,ν̄
′
2
= Å

ν′1,ν
′
2 by definition.
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In the rhs. of (5.3.14) we do not aim to get the optimal power of γ̂, but rather formulate Lemma 5.3.3
minimalistically and collect only those bounds which will be used later.

Given Theorem 5.3.2 and Lemma 5.3.3 we immediately conclude the proof of Theorems 5.2.6
and 5.2.4.

Proof of Theorems 5.2.4 and 5.2.6. We first prove Theorem 5.2.6. Consider i, j ∈ [N] such that
γD1
i ∈ Bκ(D1) and γD2

j ∈ Bκ(D2), and let η = N−1+ϵ for a small fixed ϵ > 0. Then, by spectral
decomposition we readily obtain

N ∣⟨u1
i ,u

2
j ⟩∣

2
≺ (Nη)2∣⟨ImGD1(γD1

i + iη)ImGD2(γD2
j + iη)⟩∣. (5.3.15)

We point out that to prove (5.3.15) we also use the standard rigidity bound from [17, 243]:

∣λDi − γ
D
i ∣ ≺

1
N
, γDi ∈Bκ(D). (5.3.16)

Finally, combining (5.3.15) with (5.3.11), using (5.3.10) and

∥MDl(zl)∥ = ∥
1

Dl − zl − ⟨MDl(zl)⟩
∥ ≤ ∣⟨ImMDl(zl)⟩∣

−1
≤ Cκ (5.3.17)

in the κ–bulk of the spectrum, and the definition of γ̂ from (5.3.3), we immediately conclude (5.2.18).

Now we discuss how to adjust the argument above to prove Theorem 5.2.4. The fact that ∥V ∥ ≲ 1
in the regime when ϕij ≠ 0 follows by simple perturbation theory if δ is chosen sufficiently small in
terms of κ from (5.2.7) and in terms of ∥D1∥, ∥D2∥. In the complementary regime this bound is
trivial. One more input which is needed for the proof of Theorem 5.2.4 is Lemma 5.3.3 specialized
to the case y1 = y2 = 0. In fact, Lemma 5.3.3 implies that if A is (ν1, ν2)–regular, then it is close in
operator norm to Åν2,ν1 . The rest of the details are omitted for the sake of brevity (see the proof of
Theorem 1.2.2 for the details of a very similar proof).

We conclude this section commenting on the optimality of Theorem 5.3.2.

5.3.3 Optimality and possible extensions of Theorem 5.3.2
In this section explain in what sense Theorem 5.3.2 is optimal and that it can be extended to
energies where the limiting eigenvalue density is small. We also comment on the possibility of
replacing the operator norm in the rhs. of the estimates in Theorem 5.3.2 with the typically smaller
Hilbert–Schmidt norm. All these improvements and extensions can be achieved following our zigzag
strategy of first proving the desired result for matrices with a fairly large Gaussian component, as in
Section 5.5 (zig step), and then prove it for general matrices using a dynamical comparison argument,
as in Section 5.6 (zag step). We omit the details of these proofs to keep the presentation simple and
short, in fact, the main focus of this paper is to develop techniques to handle different deformations
D1,D2 and we do it in the simpler cases of the bulk of the spectrum proving estimates in terms of
the operator norm. In the following we give more precise references to papers where similar analyses
were already performed in detail.

We first consider the bound (5.3.11). In the bulk of the spectrum, this bound is optimal except for
the fact that 1/(

√
Nη∗γ̂) should be replaced by 1/(Nη∗γ̂). Notice, that once the bound 1/(Nη∗γ̂)

is achieved, the term 1/(Nη1η2) in (5.3.11) is obsolete, as it is always bigger. This improvement can
be achieved by proving (weaker) local laws also for products of longer resolvents; see, e.g., [168] and
Chapters 3 and 4 for similar arguments. In fact, this overestimate is due to the fact that the four
resolvents chains, appearing e.g. in the quadratic variation of the stochastic term in (5.5.2) below
are currently estimated in terms of products of traces of two resolvents using certain crude reduction
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inequalities (see e.g. (5.5.27)). Following the evolution of these longer chains more carefully would
give the improvement 1/(Nη∗γ̂).

We also believe that assuming that MDl(zl) are bounded throughout the spectrum (see e.g. condition
(5.3.5) with I = R and Remark 5.A.2 below) one can extend the local laws (5.3.11)–(5.3.13) to
hold uniformly in the spectrum with the similar zigzag strategy. In fact, in this case we expect an
additional gain √ρ1 + ρ2 in their rhs.; see Theorem 3.2.4 for a similar argument. We postpone the
details to future work.

Finally, the operator norm in (5.3.11)–(5.3.13) can be replaced by the typically smaller Hilbert–
Schmidt norm. Again, this can be achieved following our proof in Sections 5.5–5.6, but we omit a
detailed proof of brevity. A similar proof was carried out in full detail in Chapter 3 in the simpler
setting of Wigner matrices using the Lindeberg swapping technique, but it can be readily adapted
to the current case. Additionally, we expect that the Lindeberg technique can be replaced by a
dynamical argument similar to Section 5.6.

5.4 Zigzag strategy: Proof of Theorem 5.3.2
To prove the multi–resolvent local law in Theorem 5.3.2 we follow the zigzag strategy, similarly to
[161] and Chapters 3–4. That is, we prove Theorem 5.3.2 by running in tandem the characteristic
flow associated to a matrix valued Ornstein–Uhlenbeck process, and a Green’s function comparison
theorem (GFT).

More precisely, the zigzag strategy consists of the following three steps:

1. Global law: Prove a global law for spectral parameters zj that are "far away" from the
self-consistent spectrum, minj dist(zj , supp(ρDj)) ≥ δ (see Section 5.4.1).

2. Characteristic flow: Propagate the bound from large distances to a smaller one by considering
the evolution of the Wigner matrix W along an Ornstein-Uhlenbeck flow, thereby introducing
a Gaussian component (see Section 5.4.2). The spectral parameters evolve according to the
characteristic flow defined in (5.4.8). The simultaneous effect of these two evolutions is a key
cancellation of two large terms.

3. Green function comparison: Remove the Gaussian component by a Green function comparison
(GFT) argument (see Section 5.4.3).

In order to reduce the distance of the spectral parameters down to the optimal scale for the local
law, Steps 2 and 3 will be applied many times in tandem. This inductive argument is carried out in
Proposition 5.4.17 in Section 5.4.4.

While Theorem 5.3.2 states local laws only for average quantities, within the GFT, isotropic resolvent
chains of the form

(GBG)xy or (GBGBG)xy (5.4.1)

naturally arise, which requires to analyze them as well. That is, we necessarily need to perform the
zigzag strategy for such quantities in an analogous way.

Throughout the entire argument, all process will run for times t in a fixed interval [0, T ] for some
terminal time T > 0 of order one, which we will choose below in (5.4.48).

5.4.1 Input global laws
Here we state the necessary global laws that will be used as an input to prove Theorem 5.3.2. Note
that in the global regime no restriction to the bulk is necessary.
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Proposition 5.4.1 (Global law). Fix L, ϵ, δ > 0. Let W be a Wigner matrix satisfying Assump-
tion 5.2.1, and let D1,D2 ∈ CN×N be bounded Hermitian matrices, i.e. ∥Dl∥ ≤ L for l = 1,2. For
spectral parameters z1, z2 ∈ C ∖R with minj dist(zj , supp(ρDj)) ≥ δ, deterministic unit vectors
x,y ∈CN and matrices B1,B2 ∈CN×N , we have (recall Gj ∶= (W +Dj − zj)

−1)

∣⟨(G1B1G2 −M
B1
ν1,ν2)B2⟩∣ ≺

∥B1∥∥B2∥

N
, (5.4.2)

∣⟨x, (G1B1G2 −M
B1
ν1,ν2)y⟩∣ ≺

∥B1∥
√
N

, (5.4.3)

∣⟨x,G1B1G2B2G
(∗)
1,s y⟩∣ ≺ ∥B1∥∥B2∥ . (5.4.4)

Proof. The proof of these global laws is very similar to the one presented in [168, Appendix B], we
thus omit several details and just present the main steps. To keep the presentation short and simple
we only present the proof in the averaged case.

In the following we will often use the fact that

∥Gj∥ ≲
1

minj dist(zj , supp(ρDj))
≤

1
δ
≲ 1. (5.4.5)

By explicit computations it is easy to see that

(1 −M1⟨⋅⟩M2)(G1B1G2 −M
B1
12 ) =M1B1(G2 −M2) −M1WG1B1G2

+M1⟨G1B1G2⟩(G2 −M2) +M1⟨G1 −M1⟩G1B1G2,
(5.4.6)

where
WG1B1G2 ∶=WG1G2 + ⟨G1⟩G1B1G2 + ⟨G1B1G2⟩G2.

Taking the trace in (5.4.6) against B2, by the single resolvent local law (5.3.7), the norm bound
(5.4.5), and the fact that (1 −M1⟨⋅⟩M2)

−1 is bounded in the regime minj dist(zj , supp(ρDj)) ≥ δ,
we have

⟨(G1B1G2 −M
B1
12 )B2⟩ = −⟨M1WG1B1G2B2⟩ +O≺ (

∥B1∥∥B2∥

N
) . (5.4.7)

Finally, using a minimalistic cumulant expansion as in [168, (B.4)–(B.8)], we conclude ∣⟨M1WG1B1G2B2⟩∣ ≺
N−1∥B1∥∥B2∥ and so (5.4.2).

5.4.2 Zig step: Propagating bounds via the characteristic flow
For Hermitian Dj ∈CN×N with ⟨Dj⟩ = 0, spectral parameters zj ∈C ∖R, j = 1,2, and fixed T > 0
the characteristic flow is defined by the following ODEs (see also [161, (5.3)]):

∂tDj,t ∶= −
1
2
Dj,t, ∂tzj,t = −⟨M

Dj,t(zj,t)⟩ −
zj,t

2
, j = 1,2 , (5.4.8)

with terminal conditions Dj,T =Dj and zj,T = zj .

We will often use the following short–hand notations:

Mj,t ∶=M
Dj,t(zj,t), ρj,t = ρj,t(zj,t) ∶=

1
π
∣⟨ImMDj,t(zj,t)⟩∣, ηj,t ∶= ∣Im zj,t∣, j = 1,2.

Even if our main results in Sections 5.2 and 5.3.2 are presented only in the bulk of the spectrum, in
the case of general observables we study the zig step uniformly in the spectrum, since this does not
present significant additional difficulties (see Part 1 of Proposition 5.4.8 below). For this reason,
several definition in the remainder of this section will be presented uniformly in the spectrum. In the
zig step for regular observables and in the zag step for both types of observables we still restrict
ourselves to the bulk.
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5.4.2.1 Preliminaries on the characteristic flow and admissible control parameters

Before formulating the fundamental building blocks for Step 2 of the zigzag strategy in Section 5.4.2.2
below, we collect a few preliminaries concerning the characteristic flow and introduce admissible
control parameters γ, generalizing the concretely chosen γ̂ in (5.3.3).

First, we define a time–dependent version of the spectral domains on which we prove the local law
from Theorem 5.3.2 along the flow.

Definition 5.4.2 (Spectral domains). We define the time dependent spectral domains as follows:

(i) [Unrestricted domains] Fix a (small) ϵ > 0. For j ∈ [2] define

Ωj
T ∶= {z ∈C ∖R ∶ ∣Im z ⋅ ρj,T (z)∣ ≥ N

−1+ϵ, ∣Im z∣ ≤ N100, ∣Re z∣ ≤ N200} . (5.4.9)

For s, t ∈ [0, T ] denote by Fjt,s the evolution operator along the flow (5.4.8), i.e. Fjt,s(zj,s) = zj,t.
Then we construct the family of unrestricted spectral domains {Ωj

t}t∈[0,T ], j ∈ [2], by
Ωj
t ∶= F

j
t,T (Ω

j
T ).

(ii) [Bulk-restricted domains] Fix additionally a (small) κ > 0 and recall (5.2.7) for the definition
of the κ-bulk Bκ(D) = ∪

m
r=1Ir. Here Ir = [ar, br] ⊂R are closed non-intersecting intervals and

br < ar+1 for r ∈ [1,m − 1]. We also denote b0 ∶= −∞ and am+1 ∶= +∞. Then we define the
family of bulk-restricted spectral domains as

Ωj
κ,T ∶= Ωj

T ∖ (
m

⋃
r=0
{z ∈C ∖R ∶ Re z ∈ [br, ar+1], ∣Im z∣ ≤ ∣Re z − ar+1∣ ∧ ∣Re z − br ∣}) (5.4.10)

and Ωj
κ,t ∶= F

j
t,T (Ω

j
κ,T ) for t ∈ [0, T ].

The bulk-restricted spectral domains Ωj
κ,t are depicted in Figure 5.4.1.

Next, we state some trivially checkable properties of the characteristics flow (5.4.8). Since
Lemma 5.4.3 (i) holds for j = 1 and j = 2, we drop the index j in zj , Dj , Ωj

t and related
quantities. In particular, we use the notation zt for zj,t.

Lemma 5.4.3 (Elementary properties of the characteristic flow). We have the following.

(i) Let z0 ∈ Ω0 be given. Then we have

(1) Mt(zt) = et/2M0(z0).
(2) The map t↦ ηt is monotone decreasing.
(3) The solution to the second equation in (5.4.8) is explicitly given by

zt = e−t/2z0 − 2⟨M0(z0)⟩ sinh t

2
. (5.4.11)

(4) For any m > 1 and t ∈ [0, T ] we have

∫

t

0

ρs
ηms

ds ≤ 1
(m − 1)ηm−1

t

, ∫

t

0

ρs
ηs

ds ≤ log (η0
ηt
) . (5.4.12)

(5) We have
ηt
ρt
= es−t

ηs
ρs
− π(1 − es−t). (5.4.13)
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Figure 5.4.1: In gray, we illustrated the Im z > 0 part of the bulk-restricted spectral domains Ωκ,t

for three times, t = 0, t ∈ (0, T ), and t = T (the Im z < 0 part is obtained by reflection). On each
of the panels, the graph of the density ρt is superimposed in a dash-dotted style. The solid curve
in the t = T panel represents the implicitly defined curve ∣Im z∣ρ(z) = N−1+ϵ, above which one has
the unrestricted domain ΩT ⊃ Ωκ,T . On the same t = T panel, the region below the dashed curve is
removed in the rhs. of (5.4.10). For t < T the solid and the dashed curves are the images of the
corresponding curves at t = T under the flow Ft,T .

(ii) Let zj ∈ Ωj
0 and Dj =D

∗
j ∈CN×N be given for j ∈ [2]. Denote νj,t ∶= (zj,t,Dj,t) for t ∈ [0, T ]

and assume that ϕ(ν1,T , ν2,T ) = 1 (recall (5.2.9) for its definition). Let A ∈ CN×N be a regular
observable with respect to (ν1,T , ν2,T ). Then A is regular with respect to (ν1,t, ν2,t) for any
t ∈ [0, T ].

Notice that the error terms in Theorem 5.3.2 are expressed in terms of the control parameter γ̂.
In Theorem 5.3.2, γ̂ is explicitly given, however, in order to make the argument more transparent,
we collect in Definition 5.4.4 all properties of γ̂ which are needed for the proof of Theorem 5.3.2,
arriving to the definition of an admissible control parameter. In Proposition 5.4.5 we show that γ̂
on its own is an admissible control parameter. Further in Section 5.5 we work in this more general
framework using a general admissible parameter γ instead of γ̂.

Definition 5.4.4 (Admissible control parameter). Let γ ∶ (C ∖R)2 × (CN×N)
2
→ (0,+∞) be

uniformly bounded in N and assume that γ(z1, z2,D1,D2) = γ(z̄1, z2,D1,D2) and the same for
z2 → z̄2. Moreover, for t ∈ [0, T ], let γt ∶ Ω1

0 ×Ω2
0 × (CN×N)

2
→ (0,∞) with

γt(z1, z2,D1,D2) ∶= γ(z1,t, z2,t,D1,t,D2,t) (5.4.14)

be the time-dependent version of γ, and β∗,t ∶ Ω1
0 ×Ω2

0 × (CN×N)
2
→ (0,∞) with

β∗,t(z1, z2,D1,D2) ∶= β∗(z1,t, z2,t,D1,t,D2,t). (5.4.15)

the time-dependent version of β∗ (recall (5.3.2) and (5.3.1)). In (5.4.14) and (5.4.15), zj,t and Dj,t

are the solutions to (5.4.8) with zj,0 = zj and Dj,0 =Dj for j ∈ [2].
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Let D1,D2 ⊂ CN×N be N -dependent families of N ×N Hermitian matrices. We say that γ is a
(D1,D2)-admissible control parameter if the following conditions hold uniformly in Dj ∈Dj , zj ∈ Ωj

0,
j ∈ [2], t ∈ [0, T ] and N :

(1) [γ is a lower bound on the stability operator] It holds that

(∣Im z1,t∣/ρ1,t(z1,t) + ∣Im z2,t∣/ρ2,t(z2,t)) ∧ 1 ≲ γt ≲ β∗,t , (5.4.16)

where both γt and β∗,t are evaluated at (z1, z2,D1,D2).

(2) [Monotonicity in time] Uniformly in 0 ≤ s ≤ t ≤ T , we have

γs(z1, z2,D1,D2) ∼ γt(z1, z2,D1,D2) + t − s. (5.4.17)

(3) [Vague monotonicity in imaginary part] Uniformly in z1, z2 ∈H and x ∈ [0,∞) it holds that

γ(z1, z2,D1,t,D2,t) ≲ γ(z1, z2 + ix,D1,t,D2,t) ∧ γ(z1 + ix, z2,D1,t,D2,t). (5.4.18)

We now verify that γ̂ is an admissible control parameter in the sense of Definition 5.4.4.

Proposition 5.4.5 (Admissibility of γ̂). Fix L,C0 > 0. Let D be a set of all traceless N × N
Hermitian matrices such that any D ∈D satisfies (5.3.5) for I =R with constant C0 and ∥D∥ ≤ L.
Then γ̂ defined in (5.3.3) is a (D,D)-admissible control parameter.

The proof of Proposition 5.4.5 and a sufficient condition for D to satisfy (5.3.5) for I =R are given
in Appendix 5.A.2.

As discussed around (5.4.1), during the proof of Theorem 5.3.2 we need to handle resolvent products
of the form GBGBG. More precisely, let Dl ∈ CN×N be Hermitian deformations and zl ∈ C ∖R for
l ∈ [3]. Denote Gl ∶= (W +Dl − zl)

−1, νl ∶= (zl,Dl) and Ml ∶=M
Dl(zl). We define the deterministic

approximation of G1B1G2B2G3 by (see Definition 2.4.1)

MB1,B2
ν1,ν2,ν3 ∶= B

−1
13 [M1B1M

B2
ν2,ν3 + ⟨M

B1
ν1,ν2⟩M1M

B2
ν2,ν3] , (5.4.19)

where B13 is defined in (5.2.12), i.e. B13[⋅] = 1−M1⟨⋅⟩M3. In the case when νl depend on additional
parameter t, i.e. νl = νl(t), l ∈ [3], we adhere the analogue of the convention (5.3.9) for MB1,B2

ν1,ν2,ν3 .
Namely, we use the shorthand notation

MB1,B2
123,t ∶=M

B1,B2
ν1(t),ν2(t),ν3(t). (5.4.20)

We are now ready to state bounds on the deterministic approximation of products of two and three
resolvents:

Proposition 5.4.6 (Bounds on M). Fix L > 0. Let D1,D2 ∈ CN×N be Hermitian deformations with
⟨Dj⟩ = 0 and ∥Dj∥ ≤ L for j = 1, 2. For spectral parameters z1, z2 ∈ C ∖R denote the corresponding
spectral pairs by νj = (zj ,Dj). Additionally we denote ν̄j ∶= (z̄j ,Dj) and

ℓ(z1, z2) ∶= η1ρ1(z1) ∧ η1ρ2(z2), where ηj = ∣Im zj ∣, ρj(zj) = π
−1
∣⟨ImMDj(zj)⟩∣, j = 1,2.

Part 1: [General case] Fix additionally C0 > 0 and assume that D1,D2 satisfy (5.3.5) for I =R with
constant C0. Then uniformly in z1, z2 ∈C ∖R and deterministic matrices B1,B2 ∈CN×N it
holds that

∥MB1
ν1,ν2∥ ≲

∥B1∥

β∗(z1, z2)
, (5.4.21a)
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∥MB1,B2
ν1,ν2,ν1∥ + ∥M

B1,B2
ν1,ν2,ν̄1

∥ ≲
∥B1∥∥B2∥

ℓ(z1, z2)β∗(z1, z2)
. (5.4.21b)

Here the implicit constants depend only on C0 and L.

Part 2: [Regular case] Fix κ > 0. Uniformly in z1, z2 ∈ C ∖ R with ρj(zj) ≥ κ for j = 1,2, in
(ν1, ν2)-regular A1 ∈CN×N and general B2 ∈CN×N we have

∥MA1
ν1,ν2∥ ≲ ∥A1∥, (5.4.22a)

∥MA1,B2
ν1,ν2,ν1∥ + ∥M

A1,B2
ν1,ν2,ν̄1

∥ ≲
∥A1∥∥B2∥

ℓ(z1, z2)
√
β∗(z1, z2)

, (5.4.22b)

∥MA1,A2
ν1,ν2,ν1∥ + ∥M

A1,A2
ν1,ν2,ν̄1

∥ ≲
∥A1∥∥A2∥

ℓ(z1, z2)
. (5.4.22c)

We point out that ℓ ∼ η∗, since z1, z2 satisfy ρi(zi) ≥ κ. The implicit constants in (5.4.22a)-
(5.4.22c) depend only on L and κ, (5.4.22b) also holds when the second observable is
(ν2, ν1)-regular and the first one is general.

The proof of Proposition 5.4.6 is given in Appendix 5.A.3.

5.4.2.2 Propagating local law bounds

The general setting for propagating local law bounds is the following:

Setting 5.4.7 (Zig step). Fix large constant L > 0 and let D1,D2 be sets of N × N traceless
Hermitian matrices such that ∥D∥ ≤ L for any D ∈ Dj , j ∈ [2]. Let γ be a (D1,D2)-admissible
control parameter as in Definition 5.4.4.

Fix a terminal time T > 0, let zj,0 ∈ Ωj
0, Dj,0 ∈ Dj for j ∈ [2], and denote their time evolutions

(5.4.8) by zj,t ∈ Ωj
t and Dj,t ∈ Dj , respectively. Moreover, let s ∈ [0, T ] be an initial time for the

Ornstein-Uhlenbeck process. That is, for t ∈ [s, T ], let Wt be the solution to (5.4.23),

dWt = −
1
2
Wtdt +

dBt−s
√
N

with initial condition Ws =W . (5.4.23)

Here, Bt−s is a real symmetric (β = 1) or complex Hermitian (β = 2) matrix-valued Brownian motion
with entries having variance equal to (t − s) times those of a GOE/GUE matrix. Finally, we denote
the resolvent of Wt +Dj,t at zj,t by

Gj,t ∶= (Wt +Dj,t − zj,t)
−1 (5.4.24)

and introduce the abbreviations γt from Definition 5.4.4, and

η∗,t ∶= η1,t ∧ η2,t ∧ 1 and ℓt ∶= (η1,tρ1,t) ∧ (η2,tρ2,t) . (5.4.25)

The following proposition formalizes the propagation of local laws along the evolution from Set-
ting 5.4.7.

Proposition 5.4.8 (Average and isotropic zig step for two and three resolvents). In the Setting 5.4.7,
we have the following.
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Part 1: [General case] Consider Setting 5.4.7 with D1,D2 such that (5.3.5) is satisfied for I =R with
some constant C0 for any matrix D ∈D1 ∪D2. Assume that, for fixed initial time s ∈ [0, T ],
we have10

∣⟨(G1,sB1G2,s −M
B1
12,s)B2⟩∣ ≺ (

1
Nη1,sη2,s

∧
1

√
Nℓsγs

)∥B1∥∥B2∥ , (5.4.26a)

∣⟨x, (G1,sB1G2,s −M
B1
12,s)y⟩∣ ≺

1
√
Nℓs

⋅
1

√
η∗,sγs

∥B1∥ , (5.4.26b)

∣⟨x,G1,sB1G2,sB2G
(∗)
1,s y⟩∣ ≺

1
ℓs
⋅

1
γs
∥B1∥∥B2∥ , (5.4.26c)

uniformly in zj,s ∈ Ωj
s, j ∈ [2], deterministic matrices B1,B2 and unit vectors x,y ∈ CN . Then

it holds that

∣⟨(G1,tB1G2,t −M
B1
12,t)B2⟩∣ ≺ (

1
Nη1,tη2,t

∧
1

√
Nℓtγt

)∥B1∥∥B2∥ , (5.4.27a)

∣⟨x, (G1,tB1G2,t −M
B1
12,t)y⟩∣ ≺

1
√
Nℓt
⋅

1
√
η∗,tγt

∥B1∥ , (5.4.27b)

∣⟨x,G1,tB1G2,tB2G
(∗)
1,t y⟩∣ ≺

1
ℓt
⋅

1
γt
∥B1∥∥B2∥ , (5.4.27c)

uniformly in t ∈ [s, T ], zj,t ∈ Ωj
t , j ∈ [2], matrices B1,B2 and unit vectors x,y ∈CN .

Part 2: [Regular case] Assume that the result of Part 1 holds in [0, T ] and consider the slightly modified
Setting 5.4.7 with zj,0 ∈ Ωj

κ,0 for some bulk parameter κ > 0. Assume that for fixed initial time
s ∈ [0, T ], we have

∣⟨(G1,sA1G2,s −M
A
12,s)B⟩∣ ≺ (

1
Nη1,sη2,s

∧
1

√
Nℓsγs

)∥A1∥∥B∥ , (5.4.28a)

∣⟨(G1,sA1G2,s −M
A1
12,s)A2⟩∣ ≺ (

1
Nη1,sη2,s

∧
1

√
Nℓs
)∥A1∥∥A2∥ , (5.4.28b)

∣⟨x, (G1,sA1G2,s −M
A1
12,s)y⟩∣ ≺

1
√
Nℓs

⋅
1
√
η∗,s
∥A1∥ , (5.4.28c)

∣⟨x,G1,sA1G2,sBG
(∗)
1,s y⟩∣ ≺

1
ℓs
⋅

1
√
γs
∥A1∥∥B∥ , (5.4.28d)

∣⟨x,G1,sA1G2,sA2G
(∗)
1,s y⟩∣ ≺

1
ℓs
∥A1∥∥A2∥ , (5.4.28e)

uniformly in zj,s ∈ Ωj
κ,s, j ∈ [2], deterministic B ∈ CN×N , (ν1, ν2)-regular A1 and (ν2, ν1)-

regular A2 and unit vectors x,y ∈CN . Then it holds that

∣⟨(G1,tA1G2,t −M
A
12,t)B⟩∣ ≺ (

1
Nη1,tη2,t

∧
1

√
Nℓtγt

)∥A1∥∥B∥ , (5.4.29a)

∣⟨(G1,tA1G2,t −M
A1
12,t)A2⟩∣ ≺ (

1
Nη1,tη2,t

∧
1

√
Nℓt
)∥A1∥∥A2∥ , (5.4.29b)

∣⟨x, (G1,tA1G2,t −M
A1
12,t)y⟩∣ ≺

1
√
Nℓt
⋅

1
√
η∗,t
∥A1∥ , (5.4.29c)

∣⟨x,G1,tA1G2,tBG
(∗)
1,t y⟩∣ ≺

1
ℓt
⋅

1
√
γt
∥A1∥∥B∥ , (5.4.29d)

∣⟨x,G1,tA1G2,tA2G
(∗)
1,t y⟩∣ ≺

1
ℓt
∥A1∥∥A2∥ , (5.4.29e)

10The notation G(∗) indicates both choices of adjoint G∗ and no adjoint G.
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uniformly in t ∈ [s, T ], zj,t ∈ Ωj
κ,t, j ∈ [2], deterministic B ∈ CN×N , (ν1, ν2)-regular A1 and

(ν2, ν1)-regular A2 and unit vectors x,y ∈CN .

Note that while the case of general observables is self–contained (i.e. it does not require any
information about regular observables), the cases of one or two regular observables have to be done
in tandem. In fact, when computing the quadratic variation for the stochastic term in (5.5.6) for
traces with only one regular observable one gets a trace with two regular observables. On the other
hand, the case of two regular observables is not self–contained either, because of the Lint term
in (5.5.6).

5.4.3 Zag step: Removing Gaussian components via a GFT

As already explained below (5.4.8), from now on we constrain the argument to the bulk, i.e. we
assume the spectral parameters to be in bulk-restricted domains Ωj

κ,t, where it holds that ℓ ∼ η∗. For
ease of notation, we shall also write η ≡ η∗.

The general setting for removing a Gaussian component in Lemmas 5.4.10–5.4.14 is the following.

Setting 5.4.9 (Zag step). Fix a large constant L > 0 and let D1,D2 be sets of N ×N traceless
Hermitian matrices such that any D ∈Dj , j ∈ [2], satisfies ∥D∥ ≤ L. Let γ be a (D1,D2)-admissible
control parameter as in Definition 5.4.4.

Fix some κ > 0 (bulk parameter) and a terminal time T > 0, let zj,0 ∈ Ωj
κ,0, Dj,0 ∈ Dj for j ∈ [2],

and denote their time evolutions (5.4.8) by zj,t ∈ Ωj
κ,t and Dj,t ∈ Dj , respectively. Now, take two

fixed times s, t ∈ [0, T ] with s ≤ t and consider the Ornstein-Uhlenbeck process

dWr = −
1
2
Wrdr +

dBr−s
√
N

with initial condition Ws =W (5.4.30)

for times r ∈ [s, t]. Finally, we denote the resolvent of Wr +Dj,t at zj,t (note that the t index is
fixed!) by

Gj,r ∶= (Wr +Dj,t − zj,t)
−1 . (5.4.31)

The times s, t and hence, in particular, the spectral parameters zj,t ∈ Ωj
κ,t remain fixed through

the Lemmas 5.4.10–5.4.14 below. Thus, dropping the time arguments, we denote ηj = ∣Im zj,t∣,
η ∶=minj ηj , and γ = γt(z1, z2,D1,D2).

Contrary to the the zig step in Section 5.4.2, where all three local law bounds (two resolvent
average, two and three resolvent isotropic) are propagated together (cf. Proposition 5.4.8), the
Gronwall estimates needed to remove the Gaussian component will be done separately in a carefully
chosen order. More precisely, we begin with an unconditional Gronwall estimate for isotropic two
resolvents, see Lemma 5.4.10. We call it unconditional, because the differential inequality obtained
in (5.4.33) does not require any input. The differential inequalities (5.4.35), (5.4.39), and (5.4.43)
in Lemmas 5.4.11–5.4.13, however, require certain inputs, which are obtained from integrating the
differential inequalities in time. Since Lemmas 5.4.11–5.4.13 require inputs, we call them conditional
Gronwall estimates. Moreover, we point out that the proof of the two resolvent and three resolvent
isotropic bounds contain an internal recursion. In fact, Lemmas 5.4.11–5.4.12 are used several times
to gradually improve the bound (the exponent b is improved to b′). Finally, in Lemma 5.4.14 we
explain how the conditional Gronwall estimates change in case of regular observables.

All estimates in Lemmas 5.4.10–5.4.14 hold uniformly in all spectral parameters zj,t ∈ Ωj
κ,t for the

fixed time t.
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5.4. Zigzag strategy: Proof of Theorem 5.3.2

5.4.3.1 Unconditional Gronwall estimate for isotropic two-resolvent chains

We begin with an unconditional Gronwall estimate for isotropic two resolvents.

Lemma 5.4.10 (Unconditional Gronwall estimate for isotropic two resolvents). Let x,y ∈CN be
bounded and set

Rr ∶= ∣(G1,rB1G2,r −M
B1
12 )xy

∣ and E0 ∶=
1
√
Nη

1
η
, (5.4.32)

Then, for p ∈N and any ξ > 0, we have that

d
dr

E ∣Rr ∣2p ≲ (1 +
1

√
Nη η

) (E ∣Rr ∣2p +N ξ
E

2p
0 ) . (5.4.33)

The proof of Lemma 5.4.10 is given in Section 5.6.

5.4.3.2 Conditional Gronwall estimates: general case

In this section, we collect our conditional Gronwall estimates for general observables. The initial
input, i.e. (5.4.34) for b = 0, will be obtained from integrating (5.4.33) in time. A similar approach
was introduced in parallel in [163].

Lemma 5.4.11 (Conditional Gronwall estimate for isotropic two resolvents). Assume that for some
fixed b ∈ [0,1] it holds that

Rr ∶= ∣(G1,rB1G2,r −M
B1
12 )xy

∣ ≺ E0 with E0 ∶=
1
√
Nη

1
η1−b/2γb/2

, (5.4.34)

uniformly in bounded x,y ∈CN and r ∈ [s, t]. Then, for p ∈N and any ξ > 0, we have that

d
dr

E ∣Rr ∣2p ≲ (1 +
1

√
Nη η

) (E ∣Rt∣2p +N ξ
E

2p
1 ) , (5.4.35)

where we denoted
E1 ∶=

1
√
Nη

1
η1−b′/2γb′/2

with b′ ∶= (b + 1/3) ∧ 1 . (5.4.36)

The proof of Lemma 5.4.11 is given in Section 5.6. The conditional Gronwall estimate concerning
isotropic three resolvents is given in the following lemma.

Lemma 5.4.12 (Conditional Gronwall estimate for isotropic three resolvents). Assume that for some
fixed b ∈ [0,1] it holds that

Rr ∶= ∣(G1,rB1G2,rB2G1,r)xy
∣ ≺ E0 with E0 ∶=

1
η

1
η1−bγb

, (5.4.37)

uniformly bounded x,y ∈CN and r ∈ [s, t]. Moreover, suppose that

∣(G1,rB1G2,r −M
B1
12 )xy

∣ ≺
1

√
Nη η1−b′/2γb′/2

with b′ ∶= (b + 1/3) ∧ 1 , (5.4.38)

uniformly in r ∈ [s, t], bounded x,y ∈ CN , and B1 ∈ CN×N (and the same for indices 1 and 2
interchanged). Then, for p ∈N and any ξ > 0, we have that

d
dr

E ∣Rt∣2p ≲ (1 +
1

√
Nη η

) (E ∣Rr ∣2p +N ξ
E

2p
1 ) , (5.4.39)

where we denoted
E1 ∶=

1
η

1
η1−b′γb′

. (5.4.40)
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The proof of Lemma 5.4.12 is completely analogous to that of Lemma 5.4.11 and so omitted.

We point out that the input bound (5.4.37) with b = 0 is trivially satisfied since (neglecting the time
dependence)

∣(G1B1G2B2G1)xy
∣ ≤
∥B2∥

η

√

(G1B2ImG2B∗1G
∗
1)xx
(ImG1)yy

≺
1
η2 (5.4.41)

by a simple Schwarz inequality together with Ward identities, the trivial bound ∥G∥ ≤ η−1, and a
single resolvent local law giving ∣Guv ∣ ≺ 1 for u,v of bounded norm. The other input (5.4.37) will
be obtained by integrating the differential inequality (5.4.35) from Lemma 5.4.11.

The time integrated versions of the differential inequalities from Lemmas 5.4.11–5.4.12 both serve as
inputs for the following lemma concerning average two resolvents.

Lemma 5.4.13 (Conditional Gronwall estimate for average two resolvents). Assume that

∣(G1,rB1G2,r −M
B1
12 )xy

∣ ≺
1

√
Nη η1/2γ1/2 and ∣(G1,rB1G2,rB2G1,r)xy

∣ ≺
1
η γ

(5.4.42)

uniformly in r ∈ [s, t], bounded x,y ∈CN , and B1,B2 ∈CN×N . Then, defining
Rt ∶= ∣⟨(G1,tB1G2,t −M

B1
12 )B2⟩∣ ,

for p ∈N and any ξ > 0, we have that
d
dr

E ∣Rr ∣2p ≲ (1 +
1
√
N η
) (E ∣Rr ∣2p +N ξ

E
2p
1 ) , where E1 ∶=

1
Nη1η2

∧
1

√
Nη γ

. (5.4.43)

The proof of Lemma 5.4.13 is given in Section 5.6.

5.4.3.3 Conditional Gronwall estimates: regular case

For regular observables, the desired local law enjoys a further improvement in accordance with the
√
γ-rule (see the discussion in Section 5.1) for such observables. In order to remove the Gaussian

component introduced in the characteristic flow step, we again employ conditional Gronwall estimates.

Lemma 5.4.14 (Conditional Gronwall estimates for regular observables). Let A1,A2 ∈ CN×N be
bounded matrices and assume that A1 is (ν1, ν2)-regular and A2 is (ν2, ν1)-regular. Then we have
the following:

(i) Upon replacing B1 → A1 and γ → 1, Lemma 5.4.11 holds verbatim.

(ii) Upon replacing Bi → Ai, for i ∈ [2], and γ → 1, Lemma 5.4.12 holds verbatim.
Moreover, in case that only one of the general observables Bi is replaced by a regular one Ai,
and the assumption (5.4.38) is suitably adjusted (namely replacing γ → 1 only for the case
with a regular observable), Lemma 5.4.12 holds with γ →√γ in the definition of E0 and E1 in
(5.4.37) and (5.4.40), respectively.

(iii) Upon replacing Bi → Ai, for i ∈ [2], and γ → 1, Lemma 5.4.13 holds verbatim.
Moreover, in case that only one of the general observables Bi is replaced by a regular one
Ai, and the assumption (5.4.42) is suitably adjusted (as described in item (iii) above), the
conclusion (5.4.43) holds with γ →√γ.

Proof. The proof of Lemma 5.4.14 works in the exact same way as the proofs of Lemmas 5.4.11–
5.4.13, with the only difference that the bound (5.6.6) gets complemented by the improved estimates

∥MA1
12 ∥ ≲ ∥A1∥ and ∥MA2

21 ∥ ≲ ∥A2∥ (5.4.44)

from Proposition 5.4.6 (note that there is no γ−1 on the rhs. of (5.4.44)). The rest of the argument
is identical.
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5.4.4 Conclusion of the zigzag strategy: Proof of Theorem 5.3.2
We start with the following trivially checkable lemma, which follows by standard ODE theory
and (5.4.13).

Lemma 5.4.15 (Initial conditions). Fix 0 ≤ T < 1, and pick a spectral parameter ∣z∣ ≲ 1 and a matrix
∥D∥ ≲ 1. Then there exist initial conditions z0,D0 such that the solutions zt,Dt of (5.4.8), with initial
conditions z0,D0, satisfies zT = z and DT =D. Additionally, we have dist(z0, supp(ρD0)) ≥ cT , for
some universal constant c > 0.

Along the proof of Theorem 5.3.2, we will also prove the following proposition.

Proposition 5.4.16 (Isotropic two- and three-resolvent local laws). Fix L,C0, ϵ > 0. Let W be a
Wigner matrix satisfying Assumption 5.2.1, and let D1,D2 ∈ CN×N be bounded Hermitian matrices.
For spectral parameters z1, z2 ∈ C ∖R, denote ηl ∶= ∣Im zl∣, ρl ∶= π−1∣⟨ImMl⟩∣, and ℓ ∶=minl∈[2] ηlρl.
Finally, let γ̂ = γ̂(z1, z2) be defined as in (5.3.3). Then, the following holds:

Part 1: [General case] For bounded B1,B2 ∈CN×N and unit x,y ∈CN , we have

∣⟨x, (G1B1G2 −M
B1
z1,z2)y⟩∣ ≺

1
√
Nℓ
⋅

1
√
η∗γ

, (5.4.45a)

∣⟨x,G1B1G2B2G
(∗)
1 y⟩∣ ≺

1
ℓγ
, (5.4.45b)

uniformly in spectral parameters satisfying ∣z1∣, ∣z2∣ ≤ N
100 and Nℓ ≥ N ϵ.

Part 2: [Regular case] Recall (5.2.10), let A1 ∈ CN×N be (ν1, ν2)–regular and let A2 ∈ CN×N be
(ν2, ν1)–regular. Then, for bounded A1,A2,B ∈CN×N and unit x,y ∈CN , we have

∣⟨x, (G1A1G2 −M
A1
z1,z2)y⟩∣ ≺

1
√
Nℓ
⋅

1
√
η∗
, (5.4.46a)

∣⟨x,G1A1G2BG
(∗)
1 y⟩∣ ≺

1
ℓ
√
γ
, (5.4.46b)

∣⟨x,G1A1G2A2G
(∗)
1 y⟩∣ ≺

1
ℓ
, (5.4.46c)

uniformly in spectral parameters satisfying ∣z1∣, ∣z2∣ ≤ N
100 and Nℓ ≥ N ϵ.

5.4.4.1 General case: Proof of Part 1 of Theorem 5.3.2 and Proposition 5.4.16

Fix a bulk parameter κ > 0 and ϵ > 0. For j ∈ [2], we now define sequences of domains in the
following way: Consider the monotonically increasing sequence (ak)k∈N0 ⊂ [0,1] defined recursively
as

ak+1 ∶=
2
3
ak +

1
3

with a0 = 0 . (5.4.47)

Moreover, set
ηk ∶= N

−ak

and let K ∈N be the smallest integer satisfying ηK < N−1+ϵ (note that K = O(∣ log ϵ∣) is independent
of N). By Lemma 5.4.15, choose the terminal time T > 0 in such a way that

Ωj
κ,0 ⊂ {z ∈C ∶ ∣Im z∣ ≥ c} for j ∈ [2] . (5.4.48)

Here, c > 0 depends only on L and κ via Lemma 5.5.4 (ii). Next, let (tk)Kk=0 ⊂ [0, T ] be monotonically
increasing sequence of times with t0 = 0, tK = T and, for k ∈ [K − 1], we define tk as the largest
time in [0, T ] satisfying

Ωj
k
∶= Ωκ,tk ⊂ {z ∈C ∶ ∣Im z∣ ≥ ηk} for j ∈ [2] . (5.4.49)
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After having set up these sequences of domains, the key for proving the target local laws is the
following induction argument, which we prove below.

Proposition 5.4.17 (Induction on scales). Assume that the local laws (5.3.11) and (5.4.45a)–
(5.4.45b) hold uniformly on Ωj

k for the deformed Wigner matrices W +Dj,tk . Then they also hold
uniformly on Ωj

k+1 for the deformed Wigner matrices W +Dj,tk+1 .

The input for k = 0 is ensured by the global law in Proposition 5.4.1. Then, applying Proposition 5.4.17
in total K times, we arrive at Part 1 of Theorem 5.3.2 and Proposition 5.4.16.

Proof of Proposition 5.4.17. Given the assumption in Proposition 5.4.17, we find from Proposi-
tion 5.4.8 with s = tk and t = tk+1, the local laws to hold on Ωj

k+1 at the cost of having introduced a
Gaussian component of order tk+1 − tk. We now remove this Gaussian component in several steps.
Here, we will frequently employ Gronwall’s Lemma to integrate the differential inequalities (5.4.33),
(5.4.35), (5.4.39), and (5.4.43), and thereby use that (by construction)

tk+1 − tk ≲ 1 and tk+1 − tk
√
N ∣Im z∣3/2

≲ 1 uniformly for z ∈ Ωj
k+1 , j ∈ [2] . (5.4.50)

The steps are as follows:

1. With the aid of Lemma 5.4.10, integrating (5.4.33) ending at t = tk+1, we infer (5.4.34) with
b = 0 and s = tk.

2. By Lemma 5.4.11, integrating (5.4.35) ending at t = tk+1, we infer (5.4.38) for b = 0 (i.e. b′ =
1/3) and s = tk.

3. By Lemma 5.4.12 (and using (5.4.41)), integrating (5.4.39) ending at t = tk+1, we obtain
(5.4.37) with b = 1/3.

4. In order to improve the exponent b, repeat steps 2 and 3 for two more times, giving us
(5.4.37)–(5.4.38) for b = 1 and s = tk, t = tk+1. That, is we proved (5.4.45a)–(5.4.45b) to hold
on Ωj

k+1.

5. Finally, by application of Lemma 5.4.13 (note that (5.4.42) is obtained in Step 4), we integrate
(5.4.43) ending at t = tk+1 to infer (5.3.11) to hold on Ωj

k+1.

This concludes the proof of Proposition 5.4.17.

5.4.4.2 Regular case: Proof of Part 2 of Theorem 5.3.2 and Proposition 5.4.16

The proof of Theorem 5.3.2 for regular observables (Part 2) follows very similar steps to those in
the proof of Part 1, with the only exception that the local laws for chains with one and two regular
observables have to be propagated together. We thus omit this proof for the sake of brevity.

5.5 Zig step: Proof of Proposition 5.4.8
In the current section we present the proof of Proposition 5.4.8. Firstly we do the zig step for average
two-resolvent chains in Section 5.5.1. This is done self-consistently, i.e. without involving isotropic
quantities or longer chains. However the single resolvent local law is used, which states that for any
fixed ζ > 0 and for any z ∈C ∖R such that N ∣Im z∣ρ(z) ≥ N ζ , it holds that

∣⟨(G(z) −M(z))A⟩∣ ≺
1

N ∣Im z∣
, ∣⟨x, (G(z) −M(z))y⟩∣ ≺

√
ρ

N ∣Im z∣
. (5.5.1)

264



5.5. Zig step: Proof of Proposition 5.4.8

Note that (5.5.1) coincides with (5.3.7) when Re z is in the bulk, however (5.5.1) is more general
since it is uniform in the spectrum. The local law (5.5.1) was proven near the edge in [243] and was
later extended to the cusp regime in [239]. In fact, for the proof of Proposition 5.4.8 we do not need
(5.5.1) itself, but just a weaker statement that (5.5.1) propagates along the zig flow, which can be
directly proven by the methods described below in Section 5.5.1. Thus our proof can be easily made
independent of [243, 239], but for simplicity in the current presentation we will rely on them as they
are already available.

Later in Section 5.5.2 we work with isotropic two- and three-resolvent chains and prove (5.4.27b),
(5.4.27c) relying on the result of Section 5.5.1. Finally, in Section 5.5.3 we explain how the proofs of
(5.4.27a)–(5.4.27c) should be modified in the setting when one or several of observables are regular
in the sense of Definition 5.2.2.

Throughout the entire section we will assume without loss of generality that all matrices Aj ,Bj ,
j = 1,2 are bounded in operator norm by 1, i.e. ∥Aj∥ ≤ 1, ∥Bj∥ ≤ 1. Also by x,y ∈ CN we will
mean unit vectors. Moreover, for simplicity we present the proof for s = 0 and t = T . To keep the
presentation short we often omit the time dependence in Gj,s and simply write Gj . That is, we use
the shorthand notation

Gj = (Ws +Dj,s − zj,s)
−1, j ∈ [1,2],

whenever the time s is clear from the context. For all other time dependent variables, such as zj,s,
Dj,s, and ℓs, we keep the time dependence explicitly.

5.5.1 Average two-resolvent chains: Proof of (5.4.27a) in Proposition 5.4.8
By Itô calculus, for any deterministic observables R1,R2 ∈ CN×N , recalling (5.4.24), (5.4.8) and
(5.4.23), we have take the real case. Probably the Setting(5.4.7) should also include the real case
and introduce β = 1,2 and then very soon in this proof we focus only on the complex case.]

d⟨G1,tR1G2,tR2⟩ = dEt + ⟨G1,tR1G2,tR2⟩dt + ⟨G1,tR1G2,t⟩⟨G2,tR2G1,t⟩dt
+ ⟨G1,t −M1,t⟩⟨G

2
1,tR1G2,tR2⟩dt + ⟨G2,t −M2,t⟩⟨G1,tR1G

2
2,tR2⟩dt,

+
1(β = 1)

N
[⟨Gt

1,tG1,tR1G2,tR2G1,t⟩dt + ⟨Gt
2,tG2,tR2G1,tR1G2,t⟩dt

+ ⟨(G1,tR1G2,t)
tG2,tR2G1,t⟩dt] ,

(5.5.2)

where the martingale term in the first line of (5.5.2) is given by

dEt =
1
√
N

N

∑
a,b=1

∂ab⟨G1,tR1G2,tR2⟩dBab. (5.5.3)

Here ∂ab = ∂wab(t) stands for the directional derivative in the direction of wab(t) (here wab(t) denote
the entries of Wt), β = 1, β = 2 denote the real and complex case, respectively, and t denotes the
transposition. From now on to keep the presentation short and simple we only consider the complex
case β = 2, since the real case β = 1 is very similar, it only requires to estimate a few more terms
in (5.5.2), whose estimate does not require any new idea. We refer to Chapter 3 for a similar case
when the additional terms present in the real case were estimated carefully.

The differential in (5.5.2) is complemented by the time derivative of the corresponding deterministic
approximation (recall the shorthand notation MR

12,t from (5.3.9)) given in the next lemma. Its proof
is completely analogous to [161, Lemma 5.5] and hence omitted.

Lemma 5.5.1 (Time derivative of M12). For any t ∈ [0, T ] it holds that

∂t⟨M
R1
12,tR2⟩ = ⟨M

R1
12,tR2⟩ + ⟨M

R1
12,t⟩⟨M

R2
21,t⟩. (5.5.4)
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Then, using the shorthand notation

gR1,R2
t ∶= ⟨(G1,tR1G2,t −M

R1
12,t)R2⟩ , (5.5.5)

we find, subtracting (5.5.4) from (5.5.2), that

dgR1,R2
t = (1 + (2 − k(R1,R2))⟨M

I
12,t⟩) g

R1,R2
t dt + dEt +Ftdt . (5.5.6)

Here, we introduced the notation Ft = Lint +Errt for the forcing term, where the linear term and
error term are given by

Lint = k(R1)⟨M
R1
12,t⟩g

I,R2
t + k(R2)⟨M

R2
21,t⟩g

R1,I
t ,

Errt = gI,R2
t gR1,I

t + ⟨G1,t −M1,t⟩⟨G
2
1,tR1G2,tR2⟩ + ⟨G2,t −M2,t⟩⟨G1,tR1G

2
2,tR2⟩ ,

(5.5.7)

respectively. Moreover, we denoted

k(R1, . . . ,Rm) ∶=#{j ∈ [1,m] ∶ Rj ≠ I} (5.5.8)

for deterministic R1, . . . ,Rm ∈ CN×N .

Recall the exponent ϵ > 0 which is fixed in Theorem 5.3.2. The current Setting 5.4.7 depends
on ϵ through the definition of spectral domains (5.4.9). Take any ξ0, ξ1, ξ2 ∈ (0, ϵ/10) such that
ξ0 < ξ1/2 < ξ2/4 and define the stopping time

τR1,R2 ∶= sup{t ∈ [0, T ] ∶ max
s∈[0,t]

max
zj,0∈Ωj

0

α−1
s ∣g

R1,R2
s ∣ ≤ N2ξk(R1,R2)},

τ ∶=min{τR1,R2 ∶ R1,R2 ∈S} , with S ∶= {I,B1,B
∗
1 ,B2,B

∗
2} ,

(5.5.9)

where we introduced the shorthand notation

αt ∶=
1

Nη1,tη2,t
∧

1
√
Nℓtγt

.

We point out that both gs and αs in (5.5.9) depend on the zj,s’s and thus on the zj,0’s via the flow
as its initial condition.

In the analysis of (5.5.6) the following two quantities play significant role

fr ∶= 2Re ⟨M I
12,r⟩ ∧ 0, (5.5.10) βr ∶= ∣1 − ⟨M1,rM2,r⟩∣. (5.5.11)

These functions depend on time r ∈ [0, T ] and initial conditions zj,0 ∈ Ωj
0, Dj,0 ∈ CN×N , j ∈ [1,2],

but we will omit the dependence on initial conditions in notations when this does not cause an
ambiguity. Also note that (5.5.11) is the time-dependent version of (5.3.1) where β(z1, z2) is defined.
Clearly ft is essentially the coefficient of gR1,R2

t in the linear ODE (5.5.6) with forcing terms, so its
exponential plays the role of the propagator. We stress that the notation k(R1, . . . ,Rm) introduced
in (5.5.8) serves only the purpose of covering all possible cases R1,R2 ∈S in one formula (5.5.6).
We do not exploit the fact that for k(R1,R2) > 0 the propagator with 1 + (1 − k(R1,R2)/2)ft in
the rhs. of (5.5.6) becomes smaller than 1 + ft, but rather estimate the propagator from above by
the exponential of 1 + ft in all cases.

We now state two important technical lemmas whose proofs are postponed to Section 5.A.5 and after
concluding the proof of (5.4.27a), respectively. Lemma 5.5.2 controls the propagator of (5.5.6).

Lemma 5.5.2 (Bound on the propagator). We have the following:

1. For any spectral pairs ν1, ν2 it holds that

2∣⟨M I
ν1,ν2⟩∣ ≤ πρ1/η1 + πρ2/η2, with ρj(z) = π

−1
∣⟨ImMj(z)⟩∣, j ∈ [1,2]. (5.5.12)
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2. For any zj,0 ∈ Ωj
0, j ∈ [1,2], there exists s0 = s0(z1,0, z2,0) ∈ [0, T ] such that fr > 0 for all

r < s0 and fr = 0 for all r > s0. Note that s0 may be an endpoint of [0, T ].

3. For any s, t ∈ [0, T ], s < t, we have

∫

t

s
frdr ≤ log

η1,sη2,s

η1,tη2,t
, (5.5.13a)

∫

t

s
frdr = 2 log βs∧s0

βt∧s0

. (5.5.13b)

4. For any s, t ∈ [0, T ], s ≤ t, it holds βs ∼ βt + (t − s).

The following lemma controls the forcing terms of (5.5.6), i.e. the martingale term, the linear term
and error term.

Lemma 5.5.3 (Bound on the forcing terms). Consider R1,R2 ∈S. Denote the quadratic variation
of the martingale term dEt (5.5.3) by

QV[gR1,R2
t ] ∶=

1
N

N

∑
a,b=1
∣∂ab⟨G1,tR1G2,tR2⟩∣

2 . (5.5.14)

Then for any ζ > 0 it holds, with very high probability, that

(∫

t∧τ

0
QV[gR1,R2

s ]ds)
1/2
+ ∫

t∧τ

0
∣Fs∣ds

≲ αt∧τ (k(R1)N
2ξk(R2) + k(R2)N

2ξk(R1) +N ζ) logN
(5.5.15)

uniformly in t ∈ [0, T ], zj,0 ∈ Ωj
0 and ∥Bj∥ ≤ 1, j ∈ [1,2].

In the following, we will consider (5.5.6) as a system of equations for gR1,R2
t , R1,R2 ∈S. For each

choice of R1,R2 ∈S, we use the stochastic Gronwall argument from [162, Lemma 5.6] with (5.5.15)
as an input to show that τR1,R2 > τ unless τR1,R2 = T . This would readily imply that τ = T with
very high probability, i.e. (5.4.27a) holds.

Take any R1,R2 ∈S and denote gs ∶= gR1,R2
s , ξ ∶= ξk(R1,R2). Consider (5.5.15) for some ζ < ξ. Due

to the choice of ξj , j ∈ [0,2] the rhs. of (5.5.15) is upper bounded by αt∧τN ξ, where we ignored
the irrelevant logN factor. Then [162, Lemma 5.6] with d = 1 applied for the scalar equation (5.5.6)
asserts that for any arbitrary small ζ > 0 and for any t ≥ 0 we have

sup
0≤s≤t∧τ

∣gs∣
2
≲ ∣g0∣

2
+N2ξ+3ζα2

t∧τ + ∫
t∧τ

0
(∣g0∣

2
+N2ξ+3ζα2

s) fs exp(2 (1 +N−ζ)∫
t∧τ

s
frdr)ds.

(5.5.16)
It follows from (5.4.26a) that ∣g0∣

2 ≲ N3ζα2
0 ≤ N

3ζα2
s with very high probability. Also (5.5.13a)

implies that
exp(2N−ζ ∫

t∧τ

s
frdr) ≤ exp (CN−ζ logN) ≲ 1.

Therefore, (5.5.16) simplifies to

sup
0≤s≤t∧τ

∣gs∣
2
≲ N2ξ+3ζα2

t∧τ +N
2ξ+3ζ

∫

t∧τ

0
α2
sfs exp(2∫

t∧τ

s
frdr)ds. (5.5.17)

Take ζ < ξ/3. Then for the purpose of showing that τ = T with very high probability it suffices to
verify the inequality

∫

t∧τ

0
α2
sfs exp(2∫

t∧τ

s
frdr)ds ≲ α2

t∧τ logN. (5.5.18)
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We first check that the lhs. of (5.5.18) has an upper bound of order logN/(Nη1,t∧τη2,t∧τ)
2. In

order to see this, we employ (5.5.12) and (5.5.13a) along with αs ≤ 1/(Nη1,sη2,s) and find that

∫

t∧τ

0
α2
sfs exp(2∫

t∧τ

s
frdr)ds ≤ ( 1

Nη1,t∧τη2,t∧τ
)

2

∫

t∧τ

0
(
ρ1,s

η1,s
+
ρ2,s

η2,s
)ds ≲ logN

(Nη1,t∧τη2,t∧τ)2
.

(5.5.19)
To establish the upper bound of order logN/(Nℓt∧τγ2

t∧τ) for the lhs. of (5.5.18) we split the region
of integration into two parts [0, s∗] and [s∗, t ∧ τ], where s∗ is defined as

s∗ ∶= inf {s ∈ [0, t ∧ τ] ∶ min{η1,s/ρ1,s, η2,s/ρ2,s} ≤ γt∧τ} . (5.5.20)

Since ηj,s/ρj,s, j ∈ [2], are monotonically decreasing functions in s, it holds that ηj,s/ρj,s ≤ γt∧τ ,
j ∈ [2], for s ∈ [s∗, t ∧ τ]. Another property of s∗ which will be used is that

t ∧ τ − s∗ ≲ γt∧τ . (5.5.21)

We postpone the proof of (5.5.21) until the end of the proof of Part 1 of Proposition 5.4.8. In
combination with (5.4.16) and the fourth statement of Lemma 5.5.2, (5.5.21) gives that

βs ∼ βt∧τ , ∀s ∈ [s∗, t ∧ τ]. (5.5.22)

Armed with (5.5.22), we are now ready to complete the proof of (5.5.18). We may assume
w.l.o.g. that t ≤ s0, since fs = 0 for s > s0 (recall Lemma 5.5.2 (2)). First, in the regime s ∈ [0, s∗]
we use that exp ( ∫

t∧τ
s∗

frdr) ∼ 1 by means of (5.5.13b) and (5.5.22), and thus an estimate similar
to (5.5.19) yields

∫

s∗

0
α2
sfs exp(2∫

t∧τ

s
frdr)ds ≲ logN

(Nη1,s∗η2,s∗)
2 ≲

logN
Nℓs∗γ

2
s∗

≲
logN

Nℓt∧τγ2
t∧τ

. (5.5.23)

Second, in the regime s ∈ [s∗, t ∧ τ] use (5.5.13b), αs ≤ 1/(
√
Nlsγs) and the bound fs ≲ β−1

s to get

∫

t∧τ

s∗
α2
sfse

2 ∫
t∧τ

s frdrds ≲ 1
Nℓt∧τγ2

t∧τ
⋅

1
β4
t∧τ
∫

t∧τ

s∗
β3
sds ∼ β

3
t∧τ(t ∧ τ − s∗)

Nℓt∧τγ2
t∧τβ

4
t∧τ
≲

1
Nℓt∧τγ2

t∧τ
. (5.5.24)

Here we used (5.5.22) in the last but one inequality and (5.5.21) in the last one. This finishes the
proof of (5.5.18).

Now we verify (5.5.21). For any r, s ∈ [0, T ] from the definition of the characteristic flow we have
that

erηj,r/ρj,r − esηj,s/ρj,s = −(er − es)π/2. (5.5.25)

For r = t ∧ τ , s = s∗ and j such that γt∧τ ≥ ηj,s∗/ρj,s∗ we find that

∣t ∧ τ − s∗ ∧ τ ∣ ∼ ∣e
t∧τ
− es∗ ∣ ≲ ∣ηj,t∧τ /ρj,t∧τ ∣ + ∣ηj,s∗/ρj,s∗ ∣ ≲ γt∧τ .

This concludes the proof of the average part (5.4.27a) of Part 1 of Proposition 5.4.8.

To prepare for the proof of Lemma 5.5.3 in the next proposition we show that the spectral domains
Ωj
t and Ωj

κ,t (see (5.4.9) and (5.4.10)) for t ∈ [0, T ] and j ∈ [2] satisfy the ray property. Informally
this means that for every z in these domains with Im z > 0 (resp. Im z < 0) the vertical ray going off
toward Re z + i∞ (resp. Re z − i∞) is essentially contained in the domain. Since the result holds both
for j = 1,2, we will neglect j in notations. The proof of Lemma 5.5.4 is given in Appendix 5.A.5.

Lemma 5.5.4 (Ray property for time dependent spectral domains). Fix a (large) L > 0 and let
D ∈CN×N be a self-adjoint deformation with ∥D∥ ≤ L. Then we have the following.

268



5.5. Zig step: Proof of Proposition 5.4.8

(i) [Unrestricted spectral domains] For any t ∈ [0, T ], z ∈ Ωt and x ≥ 0 such that ∣Im z∣+x ≤ N100

it holds that z + sgn(Im z)ix ∈ Ωt. That is, for Im z > 0 (Im z < 0) the vertical ray which starts
at z, goes up (down) and leaves Ωt only after reaching points with imaginary part larger than
N100 (smaller than −N100).

(ii) [Bulk-restricted spectral domains] Fix a (small) κ > 0. Then there exists t∗ ∈ [0, T ] such that
the previous part of the statement holds for Ωκ,t for any t ∈ [t∗, T ]. Namely, For any t ∈ [t∗, T ],
z ∈ Ωκ,t and x ≥ 0 such that ∣Im z∣ + x ≤ N100 it holds that z + sgn(Im z)ix ∈ Ωκ,t. Moreover,
T − t∗ ∼ 1 with implicit constants which depend only on κ and L.

Proof of Lemma 5.5.3. Recall that the target bound in (5.5.15) consists of three parts: The quadratic
variation QV of the martingale term and the two contributions Lin and Err to F . We will discuss
each part separately.

Before going into the proof, we point out that all bounds below hold with very high probability and
for times s ∈ [0, t ∧ τ]. We often omit in notations the dependence of resolvent chains and their
deterministic approximations on time when this does not lead to an ambiguity.

Bound on QV: By computing the derivatives ∂ab in (5.5.14), using Schwarz inequality and Ward
identity, we get

QV[gR1,R2
s ] ≲

1
N2
⎛

⎝

1
η2

1,s
⟨ImG1R1G2R2ImG1R

∗
2G
∗
2R
∗
1⟩ +

1
η2

2,s
⟨ImG2R2G1R1ImG2R

∗
1G
∗
1R
∗
2⟩
⎞

⎠
.

(5.5.26)
In the following, we will focus on the first of the two terms in (5.5.26), since the estimates for the
second one are identical. Firstly we give an upper bound which does not depend on γ:

⟨ImG1R1G2R2ImG1R
∗
2G
∗
2R
∗
1⟩ ≤ ⟨ImG1⟩∥R1G2R2ImG1R

∗
2G
∗
2R
∗
1∥ ≲ ρ1,s/(η1,sη

2
2,s),

where we used the averaged version of the single–resolvent local law from (5.5.1). We thus conclude
the bound

1
N2 ∫

t∧τ

0

1
η2

1,s
⟨ImG1R1G2R2ImG1R

∗
2G
∗
2R
∗
1⟩ds ≲

1
N2 ∫

t∧τ

0

ρ1,s

η3
1,sη

2
2,s

ds ≲ ( 1
Nη1,t∧τη2,t∧τ

)

2
.

Next, we aim to reduce the average four resolvent chain from (5.5.26) to a product of average
two resolvent chains. In order to do so, we introduce the shorthand notations S ∶= R2ImG1R

∗
2 ,

T ∶= R∗1ImG1R1 and note that S,T ≥ 0. Let {λ(2)i }i∈[N] be the eigenvalues of W +D2 and u2
i the

corresponding normalized eigenvectors. By spectral decomposition of G2 we can write

∣⟨G2SG
∗
2T ⟩∣ =

1
N

RRRRRRRRRRRRR

∑
i,j∈[N]

⟨u2
i , Su2

j ⟩⟨u
2
j , Tu2

i ⟩

(λ
(2)
i − z2)(λ

(2)
j − z̄2)

RRRRRRRRRRRRR

≲
1
N
∑

i,j∈[N]

⟨u2
i , Su2

i ⟩⟨u
2
j , Tu2

j ⟩

∣λ
(2)
i − z2∣ ⋅ ∣λ

(2)
j − z2∣

= N⟨∣G2∣S⟩⟨∣G2∣T ⟩ = N⟨ImG1R
∗
2 ∣G2∣R2⟩⟨ImG1R1∣G2∣R

∗
1⟩.

(5.5.27)

In the end of the first line we used the positive definiteness of S,T and the elementary estimate

⟨u2
i , Su2

j ⟩⟨u
2
j , Tu2

i ⟩ ≤ (⟨u
2
i , Su2

i ⟩⟨u
2
j , Su2

j ⟩⟨u
2
i , Tu2

i ⟩⟨u
2
j , Tu2

j ⟩)
1/2

≲ ⟨u2
i , Su2

i ⟩⟨u
2
j , Tu2

j ⟩ + ⟨u
2
j , Su2

j ⟩⟨u
2
i , Tu2

i ⟩.

In order to deal with absolute values of resolvents we employ the integral representation [168,
Eq. (5.4)]:

∣G(E + iη)∣ = 2
π
∫

∞

0

ImG(E + i
√
η2 + x2)

√
η2 + x2

dx. (5.5.28)

269



5. Eigenvector decorrelation for random matrices

of ∣G∣ in terms of ImG along the ray z+ i sgn(z)x for x ≥ 0 (cf. Lemma 5.5.4). Hence, using (5.5.28)
for the first factor on the rhs. of (5.5.27) we get

⟨ImG1R
∗
2 ∣G2∣R2⟩ =

2
π
∫

∞

0
⟨ImG1R

∗
2ImG2(E2,s + iζ2,s,x)R2⟩ζ

−1
2,s,xdx, (5.5.29)

where we abbreviated ζ2,s,x ∶= (η
2
2,s + x

2)1/2. We now split the region of integration [0,∞) into
two parts: S1 corresponds to the regime ζ2,s,x ≤ N

100 and S2 is the complementary regime,
i.e. S2 ∶= [0,∞) ∖ S1. Now, for any x ∈ S1, by Lemma 5.5.4 it holds that E2,s + iζ2,s,x ∈ Ω2

s. Thus
we conclude

⟨ImG1R
∗
2ImG2(E2,s + iζ2,s,x)R2⟩ ≲

1
γ(z1,s,E2,s + iζ2,s,x)

⎛

⎝
1 + N2ξ2

√
Nℓ(z1,s,E2,s + iζ2,s,x)

⎞

⎠
(5.5.30)

where we abbreviated ℓ(z, z′) ∶= ∣Im z∣ρ1,s(z) ∧ ∣Im z′∣ρ2,s(z
′) for z, z′ ∈ C ∖R. Along with the

vague monotonicity of γ in imaginary part (5.4.18) this inequality implies that

∫
S1
⟨ImG1R

∗
2ImG2(E2,s + iζ2,s,x)R2⟩ζ

−1
2,s,xdx ≲ logN

γ(z1,s, z2,s)
. (5.5.31)

In the complementary regime we simply bound the integrand of (5.5.29) by the product of operator
norms of resolvents. This gives an upper bound of order η−1

1,sN
−100 for the integral over S2. In

particular, this is smaller than γ−1
s since γ is a bounded function of (z1, z2,D,D2) ∈ (C ∖R)2 ×

(CN×N)
2 (see Setting 5.4.7 and Definition 5.4.4).

Arguing similarly for the second factor in (5.5.27) we get

1
N2 ∫

t∧τ

0

1
η2

1,s
⟨ImG1R1G2R2ImG1R

∗
2G
∗
2R
∗
1⟩ds ≲

1
N
∫

t∧τ

0

1
η2

1,sγ
2
s

ds ≲ 1
Nℓt∧τγt∧τ

.

This concludes the desired bound on the quadratic variation.

Bound on Lint. Recalling the definition from (5.5.7), in order to verify

∫

t∧τ

0
Linsds ≲ αt∧τ (k(R1)N

2ξk(R2) + k(R2)N
2ξk(R1)) logN

it is sufficient to notice that αs decreases along the flow and that by (5.3.6) and (5.4.12) we have

∫

t∧τ

0
∣⟨M

Rj

12,s⟩∣ds ≲ ∫
t∧τ

0
(
ρ1,s

η1,s
∧ 1)ds ≲ logN, j ∈ [1,2].

Bound on Errt. For the first term in Errt in (5.5.7) by means of (5.4.12) we easily find

∫

t∧τ

0
∣gI,R2
s gR1,I

s ∣ds ≲ N
2ξk(R1)+2ξk(R2)

N
∫

t∧τ

0

αs
η1,sη2,s

ds ≲ N
2ξk(R1)+2ξk(R2)

Nℓt∧τ
αt∧τ ≲ αt∧τ .

The remaining two terms in Errt can be treated completely analogously, hence we focus on the first
of the two for concreteness.

As the first step, we separate the first G1 from the rest of the factors in ⟨G2
1R1G2R2⟩ via a

Cauchy-Schwarz inequality followed by a Ward identity:

∣⟨G2
1R1G2R2⟩∣ ≤

⟨ImG1⟩
1/2⟨ImG1R1G2R2R

∗
2G
∗
2R
∗
1⟩

1/2

η1,s
≤
⟨ImG1⟩∥R1G2R2R

∗
2G
∗
2R
∗
1∥

1/2

η1,s
≤

ρ1,s

η1,sη2,s
.

(5.5.32)
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The last estimate follows from the usual averaged single-resolvent local law for ImG1 (5.5.1) and
holds with very high probability. In order to get an upper bound for ⟨G2

1R1G2R2⟩ in terms of γ we
use the reduction bound

∣⟨G2
1R1G2R2⟩∣ ≤ ⟨∣G1∣R1∣G2∣R

∗
1⟩

1/2
⟨∣G1∣G

∗
1R
∗
2 ∣G2∣R2G1⟩

1/2
≤ ⟨∣G1∣R

∗
2 ∣G2∣R2⟩η

−1
1,s, (5.5.33)

obtained analogously to (5.5.27), where in the final estimate we additionally used the commutativity
of ∣G1∣

1/2, G1 and G∗1 together with ∥G1G
∗
1∥ ≤ η

−2
1,s. By means of (5.5.28), using similar arguments

as around (5.5.31) we hence find

⟨∣G1∣R1∣G2∣R
∗
1⟩ ≲ γ

−1
s logN, ⟨∣G1∣R

∗
2 ∣G2∣R2⟩ ≲ γ

−1
s logN , (5.5.34)

and thus
∣⟨G2

1R1G2R2⟩∣ ≲ (η1,sγs)
−1 logN. (5.5.35)

Finally, combining (5.5.32) and (5.5.35) with the single-resolvent local law ∣⟨G1,s − M1,s⟩∣ ≲
N ζ/(Nη1,s) we find, with very high probability that

∫

t∧τ

0
∣⟨G1,s −M1,s⟩⟨G

2
1,sR1G2,sR2⟩∣ds ≲ ∫

t∧τ

0

N ζ

Nη1,s
(

ρ1,s

η1,sη2,s
∧

1
η1,sγs

)ds ≲ N ζαt∧τ . (5.5.36)

This finishes the proof of Lemma 5.5.3.

5.5.2 Isotropic two- and three-resolvent chains: Proof of (5.4.27b)–(5.4.27c) in
Proposition 5.4.8

Consider deterministic matrices B1,B2 ∈ CN×N and unit vectors x,y ∈ CN . The argument
below proves (5.4.27b), (5.4.27c) uniformly in B1,B2, x,y. For notational simplicity we omit the
dependence of zj and Gj on t. Furthermore, to keep the presentation simple, we give the proof
only in the complex case (β = 2) just as in Section 5.5.1 and again refer to Chapter 3 for a detailed
treatment of the case β = 1.

To start with, the analog of (5.5.6) for isotropic two resolvents is (recall (5.5.8) for the definition of
k(R1))

d(G1,tR1G2,t −M
R1
12,t)vw

= (1 + (1 − k(R1))⟨M
I
12,t⟩) (G1,tR1G2,t −M

R1
12,t)vw

dt + dE(2)t +F
(2)
t dt,

(5.5.37)
for any deterministic vectors v,w, where dE(2)t is the martingale term

dE(2)t =
1
√
N

N

∑
a,b=1

∂ab (G1,tR1G2,t)vw dBab,

and the forcing term F(2)t = Lin(2)t +Err(2)t is the sum of the linear term Lin(2)t and the error term
Err(2)t ,

Lin(2)t ∶= k(R1)⟨M
R1
12,t⟩(G1,tG2,t −M

I
12,t)vw

,

Err(2)t ∶= ⟨G1,tR1G2,t −M
R1
12,t⟩ (G1,tG2,t)vw + ⟨G1,t −M1,t⟩ (G

2
1,tR1G2,t)vw

+ ⟨G2,t −M2,t⟩ (G1,tR1G
2
2,t)vw

,

(5.5.38)

respectively. Recalling the short notation MR1,R2
121,t from (5.4.20) we similarly get that

d(G1,tR1G2,tR2G1,t −M
R1,R2
121,t )vw

= (3
2 + (2 − k(R1,R2))⟨M

I
12,t⟩)(G1,tR1G2,tR2G1,t −M

R1,R2
121,t )vw

dt + dE(3)t +F
(3)
t dt ,

(5.5.39)
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where now the martingale term is given by

dE(3)t =
1
√
N

N

∑
a,b=1

∂ab (G1,tR1G2,tR2G1,t)vw dBab

and the summands of F(3)t = Lin(3)t +
3
∑
i=1

Err(3)i,t read

Lin(3)t = k(R1)⟨M
R1
12,t⟩(G1,tG2,tR2G1,t −M

I,R2
121,t)vw + k(R2)⟨M

R2
21,t⟩(G1,tR1G2,tG1,t −M

R1,I
121,t)vw

,

Err(3)1,t = ⟨G1,tR1G2,tR2G1,t −M
R1,R2
121,t ⟩ (G

2
1,t)vw

+ ⟨MR1,R2
121,t ⟩ (G

2
1,t −M

I
11,t)vw

,

Err(3)2,t = ⟨G1,tR1G2,t −M
R1
12,t⟩(G1,tG2,tR2G1,t)vw + ⟨G2,tR2G1,t −M

R2
21,t⟩(G1,tR1G2,tG1,t)vw,

Err(3)3,t = ⟨G1,t −M1,t⟩(G
2
1,tR1G2,tR2G1,t)vw + ⟨G2,t −M2,t⟩(G1,tR1G

2
2,tR2G1,t)vw

+ ⟨G1,t −M1,t⟩(G1,tR1G2,tR2G
2
1,t)vw .

In the following analysis, we will need several tolerance exponents θ0, θ1, ξ0, ξ1, ξ2 ∈ (0, ϵ/10), which
we required to satisfy the relations

ξ0 < ξ1 < ξ2 < 2ξ1 < θ0 < θ1 . (5.5.40)

We then define the stopping times

τR1 ∶= sup
⎧⎪⎪
⎨
⎪⎪⎩

t ∈ [0, T ] ∶ max
s∈[0,t]

max
v,w∈{x,y}

max
zj,0∈Ωj

0

√
Nℓsη∗,sγs ∣(G1,sR1G2,s −M

R1
12,s)vw

∣ ≤ N2θk(R1)

⎫⎪⎪
⎬
⎪⎪⎭

,

τR1,R2 ∶= sup
⎧⎪⎪
⎨
⎪⎪⎩

t ∈ [0, T ] ∶ max
s∈[0,t]

max
v,w∈{x,y}

max
zj,0∈Ωj

0

ℓsγs ∣(G1,sR1G2,sR2G
(∗)
1,s )vw

∣ ≤ N2ξk(R1,R2)

⎫⎪⎪
⎬
⎪⎪⎭

,

τ ∶=min {τR1 , τR1,R2 ∶ R1,R2 ∈S} , recalling S = {I,B1,B
∗
1 ,B2,B

∗
2}

from (5.5.9). As in Section 5.5.1, the goal is to show that τ = T . First note that τ > 0 by initial
conditions (5.4.26b), (5.4.26c).

To prove our goal, we control the terms on the rhs. of (5.5.37) and (5.5.39). In particular we claim
that uniformly in t ∈ [0, T ] we have

(∫

t∧τ

0
QV(2)s ds)

1/2
+ ∫

t∧τ

0
∣F
(2)
s ∣ds ≲

N ξ2k(R1) + k(R1)N
2θ0

√
Nℓt∧τη∗,t∧τγt∧τ

logN, (5.5.41a)

(∫

t∧τ

0
QV(3)s ds)

1/2
+ ∫

t∧τ

0
∣F
(3)
s ∣ds ≲

∑j=1,2 k(Rj)N
2ξk(R3−j) +N ξ0 + k(R1,R2)N

ξ2

ℓt∧τγt∧τ
logN (5.5.41b)

with very high probability, where QV(2)s and QV(3)s are quadratic variations of dE(2)s and dE(3)s

respectively.

For brevity, we omit the proof of (5.5.41a). From the proof of (5.5.41b), we discuss only the
quadratic variation term (first term in the lhs. of (5.5.41b)) and Err(3)3 (part of the second term
in the lhs. of (5.5.41b)). Along the way, the relations in (5.5.40) are used several times in order
to accommodate error terms originating from the quadratic variation and the error terms Lin(2)t
and Lin(3)t . We leave the rest of the technicalities to the reader and refer to [163] where they are
carefully carried out. However we point out that there are no new methods needed for analysis of
the terms which we do not discuss here.
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Firstly, for QV(3)s we have

N ⋅QV(3)s =
N

∑
a,b=1
∣∂ab (G1R1G2R2G1)vw ∣

2

≲ η−2
1,s (ImG1)vv (G

∗
1R
∗
2G
∗
2R
∗
1ImG1R1G2R2G1)ww

+ η−2
2,s (G1R1ImG2R

∗
1G
∗
1)vv (G

∗
1R
∗
2ImG2R2G1)ww

+ η−2
1,s (G1R1G2R2ImG1R

∗
2G
∗
2R
∗
1G
∗
1)vv (ImG1)ww .

(5.5.42)

The long resolvent chains in the first and third term on the rhs. of (5.5.42) have to be reduced to
shorter ones via a suitable reduction inequality. In the first term on the rhs. of (5.5.42), we employ
the polar decomposition of G2, i.e. represent G2 as ∣G2∣U , where U is a unitary matrix. Denoting

x ∶= U ∣G2∣
1/2R2G1w and S ∶= ∣G1∣

1/2R∗1ImG1R1∣G1∣
1/2

and using that S ≥ 0 we get

(G∗1R
∗
2G
∗
2R
∗
1ImG1R1G2R2G1)ww = (S)xx

≤ N⟨S⟩∥x∥2 = N⟨ImG1R1∣G2∣R
∗
1⟩(G

∗
1R
∗
2 ∣G2∣R2G1)ww .

(5.5.43)

By using the integral representation (5.5.28) for ∣G2∣ in both factors in the rhs. of (5.5.43) we then
find

⟨ImG1R1∣G2∣R
∗
1⟩ ≲

logN
γs

and (G∗1R
∗
2 ∣G2∣R2G1)ww ≲

N2ξ2 logN
ℓsγs

(5.5.44)

with very high probability. Here, to obtain the upper bound for ⟨ImG1R1∣G2∣R
∗
1⟩ we employed

(5.4.27a), which was already proven in Section 5.5.1. Note that in the proof of the second part of
(5.5.44) we encounter the resolvent chains of the form

(G∗1R
∗
2 ∣G̃2∣R2G1)ww, where G̃2 = G̃2,s ∶= (Ws −D2,s − z2,s − ix)

−1, x ⋅ sgn(Im z) ≥ 0.

These chains are bounded by (ℓγ)−1 with very high probability, where ℓ and γ are evaluated
at (z1,s, z2,s + ix). So in order to argue similarly to (5.5.29)-(5.5.30) we need to know that
ℓ(z1,s, z2,s) ≲ ℓ(z1,s, z2,s + ix). This indeed holds since η ↦ ηρ(E + iη) is an increasing function,
which can be easily seen from the Stieltjes representation of ρ(E + iη).

For the third term in the rhs. of (5.5.42) the argument is the same, while for the second term we
use Proposition 5.4.6 in combination with the bound on the fluctuation of 3G isotropic chain which
is available for s ≤ τ . Thus using (5.4.12) we have

∫

t∧τ

0
QV(3)s ds ≲ ∫

t∧τ

0

⎛

⎝

max{N2ξ2k(R1) ,N2ξ2k(R2)}

η2
1,sℓsγ

2
s

(logN)2 + N
−1+2ξ2k(R1)+2ξ2k(R2)

η2
2,sℓ

2
sγ

2
s

⎞

⎠
ds

≲
N2ξ0 + k(R1,R2)N

2ξ2

(ℓt∧τγt∧τ)
2 ((logN)2 + N2ξ2

Nη2,t∧τρ2,t∧τ
)

≲
⎛

⎝

(N ξ0 + k(R1,R2)N
ξ2) logN

ℓt∧τγt∧τ

⎞

⎠

2

.

Next we give the upper bound for Err(3)3,t providing the argument for the last term, for the other
terms in Err(3)3,t the proof is similar. Use the usual averaged single resolvent local law from (5.5.1)
for the first factor ⟨G1 −M1⟩. In the second factor we employ the reduction estimate

∣(G1R1G2R2G
2
1)vw

∣ ≤
N

η1,s
(⟨∣G1∣R1∣G2∣R

∗
1⟩⟨ImG1R

∗
2 ∣G2∣R2⟩∣G1∣vv (ImG1)ww)

1/2
.
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Applying (5.5.28) to the absolute values of resolvents and arguing similarly to (5.5.29) we get that

∫

t∧τ

0
∣⟨G1,s −M1,s⟩(G

2
1,sR1G2,sR2G1,s)vw∣ds ≲ ∫

t∧τ

0

N ζ

Nη1,s
⋅
N(logN)2

η1,sγs
ds ≲ N2ζ

ℓt∧τγt∧τ

for any ζ > 0.

Once we have (5.5.41a),(5.5.41b) in hand, we argue similarly to (5.5.16) – (5.5.17).Thus in order to
complete the proof of (5.4.27b)-(5.4.27c) it suffices to verify the inequalities (recall (5.5.10) for the
definition of fr)

∫

t∧τ

0

1
Nℓsη∗,sγs

fs exp(∫
t∧τ

s
frdr)ds ≲

logN
Nℓt∧τη∗,t∧τγt∧τ

, (5.5.45a)

∫

t∧τ

0

1
(ℓsγs)

2 fs exp(2∫
t∧τ

s
frdr)ds ≲

logN
(ℓt∧τγt∧τ)

2 , (5.5.45b)

where (5.5.45a) corresponds to the propagation of the upper bound on the lhs. of (5.4.27b) and
(5.5.45b) is the analog of (5.4.27c). The proof of (5.5.45a), (5.5.45b) is analogous to the proof of
(5.5.18) and is based on splitting of the interval of integration into [0, s∗] and [s∗, t ∧ τ], where
s∗ is defined in (5.5.20). The only difference is that in the regime s ∈ [0, s∗] one needs to use the
bound γs ≥ ηj,s/ρj,s, j ∈ [2].

This concludes the proof of the isotropic parts (5.4.27b)–(5.4.27c) of Part 1 of Proposition 5.4.8.

5.5.3 Modifications for the regular case: Proof of Part 2 of Proposition 5.4.8
Several steps in this proof are very similar to the ones presented in Sections 5.5.1–5.5.2 we thus omit
several details and present the proof only in the averaged case to illustrate the main differences in
the simplest possible setting. Moreover, we work in the bulk-restricted spectral domains (5.4.10)
unlike in Sections 5.5.1–5.5.2 where the proof is presented uniformly in the spectrum. In particular,
it holds that ℓt ∼ η1,t ∧ η2,t ∧ 1.

Fix matrices A1,A2 ∈ CN×N and take any R1,R2 ∈ {I,A1,A
∗
1 ,A2,A

∗
2}. For initial conditions

zj,0 ∈ Ωj
κ,0, Dj,0 ∈Dj , j = 1, 2, we will use the shorthand notation R̊12

j = R̊
ν1,t,ν2,t

j and R̊21
j = R̊

ν2,t,ν1,t

j

whenever the time t can be unambiguously determined from the context. Here we denoted νj,t ∶=
(zj,t,Dj,t) where zj,t,Dj,t is the solution to the characteristic flow equation (5.4.8) with initial
conditions zj,0,Dj,0.

We first consider the case when one observable is regularized and compute the differential dgR̊
12
1 ,R2

t .
Similarly to (5.5.6) we have

dgR̊
12
1 ,R2

t = g
R̊

12
1 ,R2

t dt + ⟨M R̊
12
1

12,t ⟩g
I,R2
t dt + ⟨MR2

21,t⟩g
R̊

12
1 ,I

t dt + dEt +Errtdt +Reg(1)t dt,

dEt =
1
√
N

N

∑
a,b=1

∂ab⟨G1,tR̊
12
1 G2,tR2⟩dBab,

Errt = gI,R2
t g

R̊
12
1 ,I

t + ⟨G1,t −M1,t⟩⟨G
2
1,tR̊

12
1 G2,tR2⟩ + ⟨G2,t −M2,t⟩⟨G1,tR̊

12
1 G

2
2,tR2⟩,

Reg(1)t = −∂t [ϕ(ν1,t, ν2,t)]
⟨M1,tR1M

(∗)
2,t ⟩

⟨M1,tM
(∗)
2,t ⟩

⟨G1,tG2,tR2⟩,

(5.5.46)

for the definition of ϕ see (5.2.9). In the third line in (5.5.46) the star above M2,t is present if and
only if Im z1,tIm z2,t > 0. The only difference of (5.5.46) from (5.5.6) is the additional error term
Reg(1)t which comes from the differentiation of R̊ν1,t,ν2,t

1 in t. We point out that only the artificial
cutoff gives a contribution to Reg(1)t . If the regular component (5.2.10) was defined without ϕ,
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then R̊ν1,t,ν2,t

1 would be independent of t (see also Lemma 5.4.3(ii)). Note that Reg(1)t = 0 when
ϕ(ν1,t, ν2,t) ∈ {0,1} and in the complementary regime γ̂(z1,t, z2,t) ∼ 1. Employing (5.4.26a) which
is already proven in Sec. 5.5.1 we get

∫

t

0
∣Reg(1)s ∣ds ≲

1
√
Nℓt

, ∀t ∈ [0, T ]. (5.5.47)

Beside (5.5.46) we also consider the case when both observables are regularized according to
Definition 5.2.2. These two cases have to be considered together since their equations are coupled.
The differential dgR̊

12
1 ,R̊

21
2

t is completely analogous to (5.5.46) except for the term Reg(1)t which
should be replaced by

Reg(2)t ∶= −∂t [ϕ(ν1,t, ν2,t)]
⎛
⎜
⎝

⟨M1,tR1M
(∗)
2,t ⟩

⟨M1,tM
(∗)
2,t ⟩

⟨G1,tG2,tR̊
21
2 ⟩ +

⟨M2,tR2M
(∗)
1,t ⟩

⟨M2,tM
(∗)
1,t ⟩

⟨G1,tR̊
12
1 G2,t⟩

⎞
⎟
⎠

with the same notational convention about (∗) as in (5.5.46). It is easy to see that Reg(2) satisfies
the bound (5.5.47).

From now on, to further simplify the presentation, in the case when only one among R1,R2 is
regularized we assume that the matrix which is not regularized equals to identity. If this is not the
case, then one can proceed as in Section 5.5.1 where k(R1,R2) was introduced in (5.5.8) in order
to distinguish between identity and non-identity observables.

Introduce the stopping time

τR1 ∶= sup
⎧⎪⎪
⎨
⎪⎪⎩

t ∈ [0, T ] ∶ max
s∈[0,t]

max
zj,0∈Ωj

κ,0

α−1
1,s (∣g

R̊
12
1 ,I

s ∣ + ∣gI,R̊
21
1

s ∣) ≤ N2ξ1
⎫⎪⎪
⎬
⎪⎪⎭

,

τR1,R2 ∶= sup
⎧⎪⎪
⎨
⎪⎪⎩

t ∈ [0, T ] ∶ max
s∈[0,t]

max
zj,0∈Ωj

κ,0

α−1
2,s∣g

R̊
12
1 ,R̊

21
2

s ∣ ≤ N2ξ2
⎫⎪⎪
⎬
⎪⎪⎭

,

τ ∶=min {τR1 , τR1,R2 ∶ R1,R2 ∈ {A1,A
∗
1 ,A2,A

∗
2}}

(5.5.48)

for some small 0 < ξ1 < ξ2 < ϵ/10, where

α1,s ∶=
1

Nη1,sη2,s
∧

1
√
Nℓsγs

, α2,s ∶=
1

Nη1,sη2,s
∧

1
√
Nℓs

. (5.5.49)

The estimates for gI,R̊
21
1

t and gR̊
12
1 ,I

t are completely analogous, in the following we thus consider only
g
R̊

12
1 ,I

t . Note that in the definition of the stopping time τ in (5.5.48) we only consider quantities
with at least one regular observable, since the case of no regular observables already follows by the
results of Part 1 of this proof.

The argument around (5.5.47) shows that whenever ϕ ≠ 1, it contributes with controllable and
irrelevant error terms Reg(1)t and Reg(2)t to (5.5.46) and to the analogue of (5.5.46) in the case
of two regularized observables, respectively. Hence, for simplicity we may assume that for initial
conditions νj,0 = (zj,0,Dj,0), j = 1,2, it holds that

ϕ(ν1,t, ν2,t) = 1, ∀t ∈ [0, T ]. (5.5.50)

The main advantage of this simplification is that in this way the concept of regularization becomes
time independent. More precisely, recalling the definition of the regular component (5.2.10) and
using Lemma 5.4.3(i) along with (5.5.50) we see that the regularization with respect to (ν1,t, ν2,t)
does not depend on t, i.e.

R̊
ν1,t,ν2,t

1 = R
ν1,T ,ν2,T

1 and R̊
ν2,t,ν1,t

2 = R
ν2,T ,ν1,T

2
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for all t ∈ [0, T ]. We will further assume that in (5.5.48) R1 is (ν1,T , ν2,T )-regular and R2 is
(ν2,T , ν1,T )-regular.

The fact that we can achieve the bound 1/(Nη1,tη2,t) for gA1,I
t follows directly by the arguments

in Section 5.5.1 for any general observable A1. In the remainder of the proof we thus focus on
proving the bounds 1/

√
Nℓtγt and 1/

√
Nℓt in the case of one or two regular observables, respectively.

Throughout this section we use the properties of the characteristic flow from Lemma 5.4.3 even if
we do not mention it explicitly.

First, we notice that the first term in the rhs. of the differential equation in (5.5.46) can be neglected
as it only amounts to a negligible rescaling e−tgR̊

12
1 ,R2

t . Then, we consider the stochastic term in
(5.5.46). To estimate this term we first bound its quadratic variation, denoted by QV[⋅] as follows
(we only write one representative term):

QV[gA1,I
t ] ≲

1
N2η1,t

⟨ImG1A1G2ImG1A1G
∗
2⟩ ≲

1
Nη2

1,t
⟨ImG1A1∣G2∣A1⟩⟨ImG1∣G2∣⟩,

QV[gA1,A2
t ] ≲

1
N2η1,t

⟨ImG1A1G2A2ImG1A2G
∗
2A1⟩ ≲

1
Nη2

1,t
⟨ImG1A1∣G2∣A1⟩⟨ImG1A2∣G2∣A2⟩,

(5.5.51)

where we used the reduction inequalities from (5.5.27). Here we restricted the argument to the case
R1 = A1 when one observable is regularized and R1 = A1, R2 = A2 when both are regularized. In
general, one needs to consider R1,R2 ∈ {A1,A

∗
1 ,A2,A

∗
2}, but all these cases are analogous to the

one considered in (5.5.51) and thus omitted. Notice that in the rhs. of (5.5.51) also ∣G∣ appeared.
Products of traces with some G’s replaced by ∣G∣ were already handled in (5.5.29) using the integral
representation (5.5.28), however, the situation here is more delicate as we need to ensure that it is still
possible to gain the additional smallness coming from A1,A2 being regular along the whole vertical
line (5.5.29). This analysis was already performed in full detail in (1.6.3)–(1.6.10), we thus not repeat
it here. We point out that in Chapter 1 this was done for fixed spectral parameters, however, given
Lemma 5.3.3, the fact that zt now changes in time does not cause any complication as assuming
(5.5.50) the notion of regularity does not depend on time. Proceeding as in (1.6.3)–(1.6.10), using
(5.3.10), (5.4.22a), and (5.4.27a), we thus conclude

QV[gA1,I
t ] ≲

1
Nη2

1,tγt
, QV[gA1,A2

t ] ≲
1

Nη2
1,t
. (5.5.52)

By the path-wise Burkholder-Davis-Gundy inequality (see [523, Appendix B.6, Eq. (18)] with c = 0
for continuous martingale) we thus obtain

sup
0≤t≤T

∣∫

t∧τ

0
dEs∣ ≲ N ξjαj,t∧τ , (5.5.53)

with j = 1 in the case of one regularized observable and j = 2 when both R1,R2 are regularized.
This convention will be used throughout this proof even if not mentioned explicitly.

Next, proceeding as in (5.5.32)–(5.5.36), using the bound (5.4.22a) for the deterministic terms, it is
easy to see that

∫

t∧τ

0
Errs ds ≺ N ξj

Nℓt∧τ
αj,t∧τ +

N4ξj

Nγt∧τ
. (5.5.54)

We point out that also in the proof of (5.5.54) we need to use the integral representation (5.5.29)
as discussed above (see, e.g., (5.5.31)); we omit the details for brevity.
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5.6. Zag step: Proof of (un)conditional Gronwall estimates in Lemmas 5.4.10–5.4.13

Combining (5.5.49) and (5.5.53), for any 0 ≤ s ≤ t, by integrating the differential equation (5.5.46)
from s to t ∧ τ , we thus obtain

gA1,I
t∧τ = g

A1,I
s + ∫

t∧τ

s
⟨MA1

12,r⟩g
I,I
r dr + ∫

t∧τ

s
⟨M I

12,r⟩g
A1,I
r dr +O (N ξ1α1,t∧τ) ,

gA1,A2
t∧τ = gA1,A2

s + ∫

t∧τ

s
⟨MA1

12,r⟩g
I,A2
r dr + ∫

t∧τ

s
⟨MA2

12,r⟩g
A1,I
r dr +O (N ξ2α2,t∧τ) .

(5.5.55)

The terms in (5.5.55) evaluated at time s are estimated using (5.4.28a) and (5.4.28b), respectively.
Using (5.4.22a) for the first integral in the first line of (5.5.55) and for both integrals in the second
line of (5.5.55), we thus obtain

gA1,I
t∧τ = ∫

t∧τ

s
⟨M I

12,r⟩g
A1,I
r dr +O (N ξ1α1,t∧τ) , gA1,A2

t∧τ = O (N ξ2α2,t∧τ) . (5.5.56)

To conclude the estimate of gA1,I
t∧τ we apply Gronwall inequality and obtain

gA1,I
t∧τ ≲ N

ξ1α1,t∧τ +N
ξ1
∫

t∧τ

s
α1,r

1
γr

βr
βt∧τ

dr ≲ N ξ1α1,t∧τ , (5.5.57)

where in the first inequality we used (5.5.10)–(5.5.13b) and the second inequality follows by compu-
tations similar to (5.5.23)–(5.5.24). This shows that τ = T and thus it concludes the proof.

5.6 Zag step: Proof of (un)conditional Gronwall estimates in
Lemmas 5.4.10–5.4.13

In this section, we prove the Gronwall estimates from Section 5.4.3. Throughout their proofs, we will
extensively use that, for a smooth function f and Wt solving (5.4.30), by Itô’s formula, it holds that

d
dt

E f(Wt) = −
1
2∑a,b

Ewab(r)(∂abf)(Wt) +
1
2∑a,b

∑
α∈{ab,ba}

κ(ab,α)E(∂ab∂αf)(Wt) , (5.6.1)

and hence by a cumulant expansion (see, e.g., [243, Prop. 3.2])

d
dt

E f(Wt) =
K−1
∑
k=2
∑
a,b

∑
α∈{ab,ba}k

κ(ab,α)

k!
E(∂ab∂αf)(Wt) +ΩK (5.6.2)

with some explicit error term ΩK . Here, for a k-tuple of double indices α = (α1, ..., αk) we
used the shorthand notation κ(ab, (α1, ..., αk)) = κ(wab,wα1 , ...,wαk

) for the joint cumulant of
wab,wα1 , ...,wαk

and set ∂α = ∂wα1
...∂wαk

and ∂ab = ∂wab
.

In order to simplify the following presentation, we will henceforth assume that there is no difference
for off-diagonal (a ≠ b) and diagonal (a = b) cumulants κ(ab,α) in (1.A.5). The general case can be
handled with straightforward minor modifications and is thus left to the reader.

5.6.1 Conditional Gronwall estimates: Proof of Lemmas 5.4.11 and 5.4.13
We begin by proving the conditional Gronwall estimates in Lemmas 5.4.11 and 5.4.13.

Proof of Lemma 5.4.11. By Ito’s formula and a cumulant expansion, we find that

d
dt

E ∣Rt∣2p ≲
K

∑
k=3

1
Nk/2

k

∑
l=0

RRRRRRRRRRR

∑
a,b

E(∂lab∂
k−l
ba ∣Rt∣

2p
)

RRRRRRRRRRR

+O(N−100p
) (5.6.3)

where we truncated the expansion at K = O(p) and used the trivial bound ∥G∥ ≤ η−1 to estimate
the error term in (5.6.3).
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Throughtout the proof, we will frequently use that

1
√
Nηη1/2γ1/2 ≲ E1 ≲ E0 ≲

1
√
Nηη

, E0/E1 ≲ η
−1/6 , and η ≲ γ

as well as η ≲ 1 and Nη ≥ 1, without further mentioning.

Third order terms: We begin by estimating the term of order k = 3 in (5.6.3), as these are the most
delicate ones. Distributing the derivatives according to the Leibniz rule, we see that there are three
types of terms, namely (i) (∂3R)∣R∣2p−1, (ii) (∂2R)(∂R)∣R∣2p−2, and (iii) (∂R)3∣R∣2p−3. For ease
of notation, we shall henceforth drop the subscript t of Rt as well as the index of Gi, whenever it
does not lead to confusion, or is irrelevant. Moreover, we will not distinguish between R and R (and
hence G and G∗) as their treatment is exactly the same.

For terms of type (i), we focus on two exemplary constellations of indices; other terms are estimated
analogously and are hence omitted. First, we consider

N−3/2
RRRRRRRRRRR

∑
a,b

GxaGbbGaa(G1B1G2)by

RRRRRRRRRRR

∣R∣2p−1 . (5.6.4)

For each of the four factors within the sum in (5.6.4), we now employ either the the isotropic single
resolvent law Guv =Muv +O≺((Nη)

−1/2) or (5.4.34). The resulting eight terms are then estimated
by application of Schwarz inequalities (for the off-diagonal terms Mxa and (MB1

12 )by) and isotropic
resummation, e.g. as

N−3/2
RRRRRRRRRRR

∑
a,b

MxaMbbMaa(M
B1
12 )by

RRRRRRRRRRR

≲ N−1/2
√
∑
a

∣Mxa∣
2
√

∑
b

∣(MB1
12 )by ∣

2
≲

1
√
N γ

(5.6.5)

or, now using isotropic resummation for (G −M)xa,

N−3/2
RRRRRRRRRRR

∑
a,b

(G −M)xaMbbMaa(M
B1
12 )by

RRRRRRRRRRR

≺ N−1∣(G −M)xm∣

√

∑
b

∣(MB1
12 )by ∣

2
≲

1
N
√
η γ

,

where we denoted m = (Maa)a∈[N] and used that ∥m∥ ≲
√
N , or

N−3/2
RRRRRRRRRRR

∑
a,b

Mxa(G −M)bbMaa(G1B1G2 −M
B1
12 )by

RRRRRRRRRRR

≺
√
∑
a

∣Mxa∣
2 E0
√
Nη
≲
E0
√
Nη

.

In the above estimates we frequently used the bound

∥MB1
12 ∥ ≲ ∥B1∥γ

−1 (5.6.6)

from Proposition 5.4.6.

Collecting all the terms, we thus find by application of Young’s inequality and using η ≲ 1, that

E [(5.6.4)] ≲ N ξ/2p
(

1
√
Nη γ

+
E0
√
Nη
)E ∣R∣2p−1

≲ (1 + 1
√
Nη3/2

)(E ∣R∣2p +N ξ
E

2p
1 )

for any ξ > 0. Secondly, we consider

N−3/2
RRRRRRRRRRR

∑
a,b

GxaGab(G1B1G2)bbGay

RRRRRRRRRRR

∣R∣2p−1 . (5.6.7)

Following the strategy explained below (5.6.4), we estimate, e.g.,

N−3/2
RRRRRRRRRRR

∑
a,b

Mxa(G −M)ab(M
B1
12 )bb(G −M)ay

RRRRRRRRRRR

≺
1

Nηγ

√
∑
a

∣Mxa∣
2 ≲ E1
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or

N−3/2
RRRRRRRRRRR

∑
a,b

(G −M)xa(G −M)ab(G1B1G2 −M
B1
12 )bb(G −M)ay

RRRRRRRRRRR

≺ N1/2 E0

(Nη)3/2
≲

E1
√
Nη7/6

,

such that we conclude for any ξ > 0, just as above,

E [(5.6.7)] ≲ (1 + 1
√
Nη3/2

)(E ∣R∣2p +N ξ
E

2p
1 ) .

For terms of type (ii), we again focus on two exemplary constellations of indices and omit the other
ones, as they can be treated analogously. First, we consider

N−3/2
RRRRRRRRRRR

∑
a,b

Gxa(G1B1G2)byGxaGbb(G1B1G2)ay

RRRRRRRRRRR

∣R∣2p−2 , (5.6.8)

which we estimate as described below (5.6.4). An exemplary term (ignoring ∣R∣2p−2) is bounded as

N−3/2
RRRRRRRRRRR

∑
a,b

Mxa(M
B1
12 )by(G −M)xaMbb(G1B1G2 −M

B1
12 )ay

RRRRRRRRRRR

≺ N−1
√
∑
a

∣Mxa∣
2 ∣(MB1

12 )my ∣
E0
√
Nη
≲ N−1/2 E0

√
Nηγ

≲ E
2
1 ,

(5.6.9)

where we used ∥m∥ ≲
√
N and (5.6.6). Secondly, we consider

N−3/2
RRRRRRRRRRR

∑
a,b

Gxa(G1B1G2)byGxb(G1B1G2)aaGby

RRRRRRRRRRR

∣R∣2p−2 . (5.6.10)

Again, an exemplary term (following the strategy below (5.6.4)) can be estimated as

N−3/2
RRRRRRRRRRR

∑
a,b

(G −M)xa(G1B1G2 −M
B1
12 )byMxb(G1B1G2 −M

B1
12 )aa(G −M)ay

RRRRRRRRRRR

≺

√

∑
b

∣Mxb∣
2 E

2
0

Nη
≲
E2

1
Nη4/3 .

In total, for terms of type (ii) we find, by means of Young’s inequality, that, for any ξ > 0,

E [(5.6.8) + (5.6.10)] ≲ (1 + 1
√
Nη3/2

)(E ∣R∣2p +N ξ
E

2p
1 ) .

Lastly, for third order terms in (5.6.3), we turn to terms of type (iii). One exemplary and representative
index constellation is given by

N−3/2
RRRRRRRRRRR

∑
a,b

Gxa(G1B1G2)byGxa(G1B1G2)byGxb(G1B1G2)ay

RRRRRRRRRRR

∣R∣2p−3 , (5.6.11)

which we again estimate as described below (5.6.4), e.g., as (neglecting ∣R∣2p−3)

N−3/2
RRRRRRRRRRR

∑
a,b

(G −M)xa(G1B1G2 −M
B1
12 )byMxa(M

B1
12 )by(G −M)xb(M

B1
12 )ay

RRRRRRRRRRR

≺ N−1 E0
Nηγ2 ≲ E

3
1 .
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In total, for terms of type (iii) we find, by means of Young’s inequality, that, for any ξ > 0,

E[(5.6.11)] ≲ (1 + 1
√
Nη3/2

)(E ∣R∣2p +N ξ
E

2p
1 ) .

Therefore, collecting all the estimates for terms of type (i), (ii), and (iii), we have

N−3/2
3
∑
l=0

RRRRRRRRRRR

∑
a,b

E(∂lab∂
k−l
ba ∣R∣

2p
)

RRRRRRRRRRR

≲ (1 + 1
√
Nη3/2

)(∣R∣2p +N ξ
E

2p
1 ) .

Higher order terms: We now discuss the higher order terms in (5.6.3) with k ≥ 4 and distinguish
two cases: First, we consider the case where the k derivatives hit m ≤ k − 2 different factors of R’s.
Afterwards, we discuss the remaining case m ∈ {k − 1, k} (note that necessarily m ≤ k).

Indeed, for m ≤ k − 2 different R factors that are hit by a derivative, we employ the estimates (u,v
are arbitrary vectors of bounded norm)

∣Guv ∣ ≺ 1 and ∣(G1B1G2)uv ∣ ≺ γ
−1
+ E0 (5.6.12)

for all but two off-diagonal terms. In this way, modulo changing one or more of the a, b or x,y
indices to b, a or y,x, respectively (which are all treated completely analogously), and ignoring the
“untouched" ∣R∣2p−m factor, we arrive at

N−k/2∑
ab

∣Gxa∣∣Gby ∣(γ
−1
+ E0)

m (5.6.13)

for m ≥ 2, or, for m = 1,
N−k/2∑

ab

∣Gxa∣∣(G1B1G2)by ∣ . (5.6.14)

Following the strategy explained below (5.6.4), we then find

(5.6.13) + (5.6.14) ≺ ( 1
N (k−2)/2γ

+
E0

N (k−3)/2η1/2)1(m = 1) + 1
N (k−2)/2η

(γ−1
+ E0)

m1(m ≥ 2)

≲
1

N (k−2)/2ηγm
+
E0 1(m = 1)
N (k−3)/2η1/2 +

Em0
N (k−3)/2η1/2 ≲ (1 +

1
√
Nη
)E

m
1 .

Next, for m ∈ {k − 1, k}, we note that (by simple combinatorics) there are at least two R’s, which
are hit by a derivative exactly once. Therefore, using (5.6.12) for all the terms originating from the
other m − 2 differentiated R’s, and ignoring the “untouched" ∣R∣2p−m factor, we arrive at

N−k/2∑
ab

∣Gxa∣∣(G1B1G2)by ∣∣Gxa∣∣(G1B1G2)by ∣(γ
−1
+ E0)

m−2 (5.6.15)

or with a, b in the last two terms interchanged. Similarly to above, we now estimate

(5.6.15) ≺ ( 1
Nk/2ηγ2 +

E0

N (k−1)/2ηγ
+

E2
0

N (k−2)/2η
) (γ−1

+ E0)
m−2
≲ (1 + 1

√
Nη7/6

)E
m
1 .

Therefore, collecting all the terms of order k ≥ 4, we have, by means of Young’s inequality and using
η ≲ 1,

N−k/2∑
a,b

k

∑
l=0
∣E(∂lab∂

k−l
ba ∣R∣

2p
)∣ ≲ (1 + 1

√
Nη3/2

)(E ∣R∣2p +N ξ
E

2p
1 ) ,

for any ξ > 0. This concludes the proof of (5.4.35).
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Proof of Lemma 5.4.13. Just as in (5.6.3), we compute by Ito’s formula and a cumulant expansion
(truncated at order K = O(p))

d
dt

E ∣Rt∣2p ≲
K

∑
k=3

1
Nk/2

k

∑
l=0

RRRRRRRRRRR

∑
a,b

E(∂lab∂
k−l
ba ∣Rt∣

2p
)

RRRRRRRRRRR

+O(N−100p
) . (5.6.16)

Just as in the proof of Lemma 5.4.11, for ease of notation, we shall henceforth drop the subscript t
of Rt as well as the index of Gi, whenever it does not lead to confusion, or is irrelevant. Moreover,
we will not distinguish between R and R (and hence G and G∗) as their treatment is exactly the
same. We will first focus on the case where E1 = 1/(

√
Nηγ) (recall (5.4.43)).

By direct computation, using (5.4.42) and η ≲ γ, we find that (the N−1 comes from the normalized
trace in the definition of R)

∣∂lab∂
k−l
ba R∣ ≺

1
Nηγ

(5.6.17)

for all k ∈N, l ∈ [k] ∪ {0}.

Let m ≤ k be the number of R-factors in (5.6.16), that are hit by a derivative. For k = 3 and m ≥ 2,
as well as k ≥ 4 and m ∈ [k] in (5.6.16), the estimate (5.6.17) allows to bound these terms as (recall
E1 from (5.4.43))

N−(k−4)/2
(

1
Nηγ

)
m

∣R∣2p−m ≲
1
√
Nη
(∣R∣2p + E2p

1 ) (5.6.18)

where we bounded the a, b summations in (5.6.16) trivially, employed Young’s inequality and used
Nη ≥ 1.

The remaining case with k = 3 and m = 1 is now discussed separately. Note that, by explicit
computation, in this case there is at least one off-diagonal term, i.e. of the form Gab, (GBG)ab,
or (GBGBG)ab, resulting from three derivatives hitting a single R factor. In the first case, using
(5.4.42) together with a Schwarz inequality, a Ward identity, and Young’s inequality, we can bound
these terms as

N−5/2 1
ηγ
∑
ab

∣Gab∣∣R∣
2p−1
≺

1
Nη3/2γ

∣R∣2p−1
≲

1
√
Nη
(∣R∣2p + E2p

1 ) .

In the second case, the bound works completely analogously, using

N−5/2γ−1
∑
ab

∣(G1BG2)ab∣ ≲
1

Nη1/2γ

√

(G1BImG2B∗G∗1)aa ≺
1

Nηγ3/2 ≲
1
√
Nη
E1

instead. In third case, however, we need to use isotropic resummation: Since (GBGBG)ab is the
only off-diagonal term (otherwise one could apply one of the first two cases), we necessarily deal
with a term having the following index structure (ignoring the untouched ∣R∣2p−1)

N−5/2
∑
ab

(G1B1G2B2G1)abGaaGbb . (5.6.19)

We now write Gaa = Maa +O≺((Nη)
−1/2), and similarly for Gbb, and estimate the resulting four

terms separately. For the MaaMbb-term, we can isotropically sum up both indices a, b as

N−5/2
∣∑
ab

(G1B1G2B2G1)abMaaMbb∣ ≲ N
−5/2
∣(G1B1G2B2G1)mm∣ ≺

1
N3/2ηγ

≲ E1

where we denoted m = (Maa)a∈[N] and used that ∥m∥ ≲
√
N . For the other three terms, we use

(5.4.42) and estimate the a, b summations trivially such that we find them to be bounded by

(Nη3/2γ)−1
≲ E1/(

√
Nη) .
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Thus, collecting all the terms and employing Young’s inequality, we conclude (5.4.43) for the case
E1 = 1/(

√
Nηγ).

In the other case, when E1 = 1/(Nη1η2), we only need to estimate the terms with k = 3 slightly more
carefully. In fact, for k ≥ 4 the bound (5.6.18) is sufficient, since, by definition of γ in Definition 5.4.4,
it holds that γ ≳ η1 ∨ η2. Now, the main difference compared to the discussion above is that since
E1 = 1/(Nη1η2) has N (instead of

√
N as in the first case) in the denominator, the summations

over a and b have to be carried out more effectively, i.e. by exploiting as many off-diagonal terms as
possible and by isotropic resummation. In order to do this, we schematically decompose a diagonal
resolvent chain as Gaa =Maa + fluctuation, similarly to (5.6.19). This is sufficient to treat all the
terms arising for k = 3 and m = 1.

For m = 2,3, however, there is an additional twist if the only off-diagonal terms are of the form
(G1B1G2B2G1)ab, since we have no effective decomposition for longer isotropic chains. In this case,
for m = 3, we estimate

N−9/2
RRRRRRRRRRR

∑
a,b

((G1B1G2B2G1)ab)
3
RRRRRRRRRRR

≺N−7/2 1
ηγ

max
a
(G1B1G2B2G1G

∗
1B
∗
2G
∗
2B
∗
1G
∗
1)aa

≲
1

N7/2η3
1η

2
2

max
a
(G1B1ImG2B

∗
1G
∗
1)aa ≲

1
√
Nη

1
(Nη1η2)3

=
E3

1√
Nη

.

(5.6.20)

To go to the second line, we estimate one of the three factors (G1B1G2B2G1)ab by (5.4.42). Next,
we used the operator norm bound ∥B2G1G

∗
1B
∗
2 ∥ ≲ η

−2
1 and a Ward identity. In the penultimate

step, we used (5.4.42) and the fact that γ ≳ η1 ∨ η2. Similar terms arising for m = 2 are treated
analogously to (5.6.20) and are hence left to the reader.

This concludes the proof of Lemma 5.4.13.

5.6.2 Unconditional Gronwall estimate: Proof of Lemma 5.4.10
The proof of Lemma 5.4.10 is very similar to that of Lemma 5.4.11 and we freely use the simplified
notations introduced there. The only difference compared to Lemma 5.4.11 is the following: In that
proof we used the input estimate

(G1B1G2)uv
= (MB1

12 )uv
+O≺(E0) (5.6.21)

from (5.4.34) and effectively summed up the M -term (see, e.g., (5.6.5)). In the current proof, we
not use the splitting in (5.6.21) but instead employ the trivial estimate ∣(G1B1G2)uv ∣ ≺ η

−1 (as
follows by a Schwarz inequality together with a Ward identity and a single resolvent local law) or
sum it up, e.g., as

∑
a

∣(G1B1G2)xa∣ ≤ N
1/2
√
∑
a

∣(G1B1G2)xa∣2 ≺
N1/2

η3/2 , (5.6.22)

where the final estimate follows from a Ward identity and (5.4.41).

To illustrate the changes in a more concrete example, we consider (5.6.8), and estimate it as

N−3/2
RRRRRRRRRRR

∑
a,b

Gxa(G1B1G2)byMxaGbb(G1B1G2)ay

RRRRRRRRRRR

≺ N−3/2 1
η
∑
a

∣Gxa∣
2
∑
b

∣(G1B1G2)by ∣ ≺
1

Nη3 = E
2
0

by using a Schwarz inequality together with a Ward identity, the bound ∣Guv ∣ ≺ 1, and (5.6.22).

All the other terms can be treated with completely analogous simple modifications, hence we omit
their detailed discussion.
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5.A Proofs of additional technical results
In this appendix, we collect several results of technical results, that were used in the main text.

5.A.1 Proof of Proposition 5.3.1 and about its optimality
In this section we first demonstrate the optimality of the lower bound on β∗ from (5.3.6) given in
Proposition 5.3.1 and then present the proof of Proposition 5.3.1 itself. Throughout this section, we
will use the shorthand notation

∆2 ∶= ⟨(D1 −D2)
2
⟩ .

Proposition 5.A.1 (Optimality of the stability bound in the bulk). Fix a (small) κ > 0 and a (large)
L > 0. Let D1,D2 ∈CN×N be traceless Hermitian matrices with ∥Dl∥ ≤ L, l = 1,2. Then uniformly
in E1,E2 ∈R with max{ρ1(E1), ρ2(E2)} ≥ κ it holds that

β∗(E1 + i0,E2 + i0) ∼ γ̂(E1 + i0,E2 + i0). (5.A.1)

In (5.A.1) implicit constants depend only on κ and L.

Proof. In the regime ∆2 + ∣E1 − E2∣ ≤ c, the estimate (5.A.1) follows from a straightforward
perturbative calculation for β(E1 + i0,E2 − i0). Here, the implicit constant c > 0 depends only on κ
and L. In the complementary regime, we have γ̂ ∼ 1 and also β∗ ∼ 1 by Proposition 5.3.1. Therefore,
it holds that β∗ ∼ γ̂. The rest of the proof of Proposition 5.A.1 is elementary and thus omitted.

Proof of Proposition 5.3.1: Assume for simplicity that I1 = I2 = R. Since ∥Dj∥ ≤ L, we have
that suppρj ⊂ [−L − 2, L + 2] for j = 1,2. In the following, we will distinguish the two cases (i)
max{∣z1∣, ∣z2∣} ≥ L + 3 and (ii) max{∣z1∣, ∣z2∣} ≤ L + 3.

Case (i): We will show that β∗(z1, z2) ∼ 1 and γ̂(z1, z2) ∼ 1, which imply, in particular (5.3.6) and
(5.3.4). Assume w.l.o.g. that ∣z1∣ ≥ L + 3. Denote

d1 ∶= dist(z1, suppρ1) =min{∣z1 − x∣ ∶ x ∈ suppρ1}.

Using the integral representation

⟨ImM1⟩ = ∫
R

η1
∣x − z1∣2

ρ1(x)dx, (5.A.2)

we find that ⟨ImM1(z1)⟩ ≤ η1/d
2
1. Therefore,

⟨M1M
∗
1 ⟩ =

⟨ImM1⟩

η1 + ⟨ImM1⟩
≤

1
1 + d2 .

This allows us to show that β∗(z1, z2) ∼ 1, as follows from

1 ≳ β∗(z1, z2) ≥ 1 −max{∣⟨M1M2⟩∣, ∣⟨M1M
∗
2 ⟩} ≥ 1 − ⟨M1M

∗
1 ⟩

1/2
⟨M2M

∗
2 ⟩

1/2
≥

d2

1 + d2 ≳ 1.

Here we used that ⟨M2M
∗
2 ⟩ ≤ 1 and d ≥ 1. Moreover, η1/ρ1 ≳ d

2, which implies γ̂(z1, z2) ∼ 1. Thus
β∗(z1, z2) ∼ γ̂(z1, z2).

Case (ii): For ∣zj ∣ ≤ L + 3, j = 1,2, we split the proof in two parts: the lower bound on β∗, and the
upper bound on β∗.
Lower bound on β∗. Taking into account [237, Proposition 4.2] it is sufficient to show that LT ≲ β∗.
Subtracting (5.1.4) for M1 from (5.1.4) for M∗

2 we get that

z1 − z̄2 −
⟨M1(D1 −D2)M

∗
2 ⟩

⟨M1M∗
2 ⟩

=
(1 − ⟨M1M

∗
2 ⟩)(⟨M1⟩ − ⟨M

∗
2 ⟩)

⟨M1M∗
2 ⟩

.
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Therefore, we can rewrite LT as

LT = ∣(1 − ⟨M1M
∗
2 ⟩)(⟨M1⟩ − ⟨M

∗
2 ⟩)

⟨M1M∗
2 ⟩

∣ ∧ 1. (5.A.3)

If ∣⟨M1M
∗
2 ⟩∣ ≥ 1/2, (5.A.3) implies the bound LT ≲ ∣1−⟨M1M

∗
2 ⟩∣, where we used that ∣⟨M1⟩−⟨M

∗
2 ⟩∣ ≲

1. In the complementary regime, i.e. when ∣⟨M1M
∗
2 ⟩∣ < 1/2 we have β(z1, z̄2) > 1/2 ≳ LT.

Now we prove that LT ≲ β(z1, z2). First, consider the case ∣⟨M1M
∗
2 ⟩∣ ≥ 1/2. Again it is convenient

to work with LT represented in the form (5.A.3). For the first factor in the numerator of (5.A.3) it
holds that

∣1 − ⟨M1M
∗
2 ⟩∣ ≤ ∣1 − ⟨M1M2⟩∣ + 2∥M1∥ ⋅ ∣⟨ImM2⟩∣ ≲ ∣1 − ⟨M1M2⟩∣

1/2. (5.A.4)

In the last step we used (5.3.4) which is proven in [237, Proposition 4.2]. For the second factor we
use the bound

∣⟨M1⟩ − ⟨M
∗
2 ⟩∣

2
≤ ⟨(M1 −M

∗
2 )(M

∗
1 −M2)⟩

= ⟨M1M
∗
1 ⟩ + ⟨M2M

∗
2 ⟩ − 2Re ⟨M1M2⟩ ≲ ∣1 − ⟨M1M2⟩∣.

(5.A.5)

Therefore, (5.A.3) along with (5.A.4) and (5.A.5) implies LT ≲ β(z1, z2).

Second, we consider the case ∣⟨M1M
∗
2 ⟩∣ < 1/2. Then

∣1 − ⟨M1M2⟩∣ ≥ ∣1 − ⟨M1M
∗
2 ⟩∣ − 2∣⟨M1ImM2⟩∣ ≥ 1/2 − 2C0∣⟨ImM1⟩∣ (5.A.6)

for some constant C0. In case that ∣⟨ImM1⟩∣ < 1/(8C0), (5.A.6) shows that β(z1, z2) ≥ 1/4 ≳ LT.
If ∣⟨ImM1⟩∣ ≥ 1/(8C0), we use (5.3.4) to get β(z1, z2) ≥ ∣⟨ImM1⟩∣

2 ≳ 1 ≳ LT.
Upper bound on β∗. Firstly we have

β∗ ≤ ∣1 − ⟨M1M
∗
2 ⟩∣ ≤ ∣1 − ⟨M1M

∗
1 ⟩∣ + ∣⟨M

∗
1 (M1 −M2)⟩∣. (5.A.7)

The first term on the rhs. of (5.A.7) has an upper bound of order γ̂, as follows from

∣1 − ⟨M1M
∗
1 ⟩∣ =

η1
η1 + ⟨ImM1⟩

≲
η1
ρ1
∧ 1 ≤ γ̂. (5.A.8)

The second term on the rhs. of (5.A.7) can be rewritten as

∣
(z1 − z2 − ⟨M1(D1 −D2)M2⟩)⟨M

∗
1M1M2⟩

1 − ⟨M1M2⟩
∣ ≲
∣E1 −E2∣ + η1 + η2 +∆

β∗
≲
γ̂1/2

β∗
. (5.A.9)

Now, combining (5.A.7) with (5.A.8) and (5.A.9) we get that β∗ ≲ γ̂1/4.

This concludes the proof of Proposition 5.3.1.

5.A.2 Proof of Proposition 5.4.5
Before we turn to the proof of Proposition 5.4.5, we explain some sufficient condition for M being
bounded on the whole complex plane.

Remark 5.A.2 (Sufficient condition for (5.3.5) with I =R). As pointed out below Proposition 5.3.1,
the bound (5.3.5) holds trivially in the bulk of the spectrum. We now give some sufficient conditions
to ensure that (5.3.5) holds uniformly in the spectrum. Denote the eigenvalues of any self-adjoint
deformation D by {dj}Nj=1 labeled in increasing order, dj ≤ dk for j < k. Fix a large positive
constant L > 0. The set ML of admissible self-adjoint deformations D is defined as follows: we
say that D ∈ML if ∥D∥ ≤ L and there exists an N -independent partition {Is}ms=1 of [0,1] in at
most L segments such that for any s ∈ [1,m] and any j, k ∈ [1,N] with j/N,k/N ∈ Is we have
∣dj − dk∣ ≤ L∣j/N − k/N ∣

1/2. Since the operator S = ⟨⋅⟩ is flat, condition D ∈ML implies that D
satisfies (5.3.5) for I =R with some C0 <∞ by means of [22, Lemma 9.3].
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Proof of Proposition 5.4.5. In order to prove Proposition 5.4.5, we need to verify the properties of an
admissible control parameter from Definition 5.4.4. Note that in Proposition 5.3.1 we have already
shown that γ̂ satisfies (5.4.16), i.e. γ̂ is a lower bound on the stability operator. It thus remains to
check items (2) and (3) of Definition 5.4.4, i.e. monotonicity in time and vague monotonicity in
imaginary part. In the rest of the proof, let z1, z2 ∈H and w2 ∶= z2 + ix with x ≥ 0.

Monotonicity in time: In order to prove monotonicity in time, we claim that

⟨(D1,s −D2,s)
2
⟩ ∼ ⟨(D1,t −D2,t)

2
⟩, (5.A.10a)

LTs ≲ LTt + t − s, LTt ≲ LTs + t − s, (5.A.10b)

∣E1,s −E2,s∣
2
≲ ∣E1,t −E2,t∣

2
+ (t − s)2, ∣E1,t −E2,t∣

2
≲ ∣E1,s −E2,s∣

2
+ (t − s)2, (5.A.10c)

ηj,s

ρj,s
∧ 1 ∼

ηj,t

ρj,t
∧ 1 + t − s, j ∈ [2], (5.A.10d)

uniformly in s, t ∈ [0, T ], s ≤ t.

The first assertion (5.A.10a) is a direct consequence of (5.4.8), (5.A.10c) follows from (5.4.11) and
(5.A.10d) follows from (5.5.25). To verify (5.A.10b), we again use (5.4.11) for z1,s, z2,s ∈H to get

z1,t − z̄2,t −
⟨M1,t(D1,t −D2,t)M

∗
2,t⟩

⟨M1,tM∗
2,t⟩

= e−
t−s

2
⎛

⎝
z1,s − z̄2,s −

⟨M1,s(D1,s −D2,s)M
∗
2,s⟩

⟨M1,sM∗
2,s⟩

⎞

⎠

− 2 (⟨M1,s⟩ − ⟨M
∗
2,s⟩) sinh t − s

2
.

Armed with (5.A.10a)-(5.A.10d) we obtain γ̂s + t − s ∼ γ̂t + t − s. Moreover, by (5.A.10d) it holds
that γ̂s ≳ t − s, and thus γ̂s ∼ γ̂t + t − s.

Vague monotonicity in space: Note that γ̂ has the symmetry γ̂(z1, z2,D1,D2) = γ̂(z2, z1,D2,D1).
Thus it is sufficient to prove the first part of (5.4.18). In the following, we will distinguish between
the two cases (i) ∣⟨M1(z1)M

∗
2 (z2)⟩∣ ≥ 1/2 and (ii) ∣⟨M1(z1)M

∗
2 (z2)⟩∣ < 1/2. The exact choice of

the threshold separating this two cases is not important, 1/2 may be replaced by any c ∈ (0, 1). The
proof in case (ii) is much simpler, since it corresponds to the situation when β∗(z1, z2) ≳ 1 and one
only needs to show that β∗(z1,w2) ≳ 1. The proof in case (i), however, is much more involved.

Case (i): For ∣⟨M1(z1)M
∗
2 (z2)⟩∣ ≥ 1/2, we first note that the integral representation (5.A.2) implies

Im z2/ρ2(z2) ≤ Imw2/ρ2(w2), i.e. we have monotonicity of this summand in the definition of (5.3.3).

It is thus left to show that
LT(z1, z2) ≲ γ̂(z1,w2). (5.A.11)

First, suppose that ∣⟨M1(z1)M
∗
2 (w2)⟩∣ ≥ 1/2. If LT(z1, z2) ≤ ∆2, then (5.A.11) obviously holds.

Thus we may assume that LT(z1, z2) >∆2. Using the shorthand notations Mj ∶=Mj(zj), j ∈ [2],
M̃2 ∶=M2(w2) and Σ ∶=D1 −D2, it is easy to see that

∣LT(z1, z2) − LT(z1,w2)∣

≤ ∣z2 −w2∣ +
RRRRRRRRRRR

⟨M1Σ(M∗
2 − M̃

∗
2)⟩

⟨M1M∗
2 ⟩

RRRRRRRRRRR

+

RRRRRRRRRRR

⟨M1ΣM∗
2 ⟩⟨M1(M

∗
2 − M̃

∗
2)⟩

⟨M1M∗
2 ⟩⟨M1M̃

∗
2⟩

RRRRRRRRRRR

= ∣z2 −w2∣ +
RRRRRRRRRRR

⟨M1ΣM∗
2 M̃

∗
2⟩(z2 −w2)

⟨M1M∗
2 ⟩(1 − ⟨M∗

2 M̃
∗
2⟩)

RRRRRRRRRRR

+

RRRRRRRRRRR

⟨M1ΣM∗
2 ⟩⟨M1M

∗
2 M̃

∗
2⟩(z2 −w2)

⟨M1M∗
2 ⟩⟨M1M̃

∗
2⟩(1 − ⟨M∗

2 M̃
∗
2⟩)

RRRRRRRRRRR

≤ ∣z2 −w2∣ + (2L3
+ 4L5

)∆ ∣ z2 −w2

1 − ⟨M2M̃2⟩
∣ .

(5.A.12)
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If ∣⟨M2M̃2⟩∣ > 1/2, then ∣(z2 −w2)(1 − ⟨M2M̃2⟩)
−1∣ ∼ ∣z2 − w2∣. In the complementary case,

∣⟨M2M̃2⟩∣ ≤ 1/2, note that

∣
z2 −w2

1 − ⟨M2M̃2⟩
∣ = ∣
⟨M2⟩ − ⟨M̃2⟩

⟨M2M̃2⟩
∣ .

Since D2 satisfies (5.3.5) with I =R, there exists C ′0 > 0 which depends only on L such that

∣⟨M2(ξ)⟩ − ⟨M2(ζ)⟩∣ ≤ C
′
0∣ξ − ζ ∣

1/3 (5.A.13)

for any ξ, ζ ∈H with ∣ξ∣, ∣ζ ∣ < L. Therefore, in both cases, ∣⟨M2M̃2⟩∣ > 1/2 and ∣⟨M2M̃2⟩∣ ≤ 1/2, we
have

∣LT(z1, z2) − LT(z1,w2)∣ ≤ ∣z2 −w2∣ +C1∆∣z2 −w2∣
1/3 (5.A.14)

for some constant C1 which only depends on L. Next we distinguish between several regimes based
on the relation of ∣z2 −w2∣, ∆ and ρ2(w2).

(1) First, assume that ∣z2 −w2∣ ≥∆3/2. Then, as a consequence of (5.A.14), we have

∣LT(z1, z2) − LT(z1,w2)∣ ≤ (C1 + 1)∣z2 −w2∣.

This immediately implies (5.A.11) in the case ∣z2−w2∣ < LT(z1, z2)/(2(C1+1)). In the complementary
regime we have

Imw2/ρ2(w2) ≥ Imw2 ≥ ∣w2 − z2∣ ≥ (2(C1 + 1))−1LT(z1, z2),

which allows to conclude (5.A.11) as well.

(2) Next, assume that ∣z2−w2∣ <∆3/2 and ρ2(w2) < C2(Imw)1/3, where C2 > 2C0 is a large positive
constant depending only on L. From (5.A.14) we have

∣LT(z1, z2) − LT(z1,w2)∣ ≤ (C1 + 1)∆∣z2 −w2∣
1/3

which gives (5.A.11) for ∣z2−w2∣ ≤ (LT(z1, z2)/(2(C1+1)∆))3. If w2 does not satisfy this inequality,
then it holds that

LT(z1, z2)/2 < (C1 + 1)∆∣z2 −w2∣
1/3
≤ (C1 + 1)LT1/2

(z1, z2)∣z2 −w2∣
1/3. (5.A.15)

Therefore,
(Imw2)

2/3
≥ ∣w2 − z2∣

2/3
≥ (2(C1 + 1))−2LT(z1, z2).

In combination with the bound ρ2(w2) < C2(Imw2)
1/3 this implies (5.A.11).

(3) Finally, assume that ∣z2 −w2∣ <∆3/2 and ρ2(w2) ≥ C2(Imw)1/3. It follows from (5.A.13) that
for any ζ from the segment I connecting z2 and w2 we have ρ2(ζ) ≥ ρ2(w2)/2. Hence

∣⟨M2(z2)⟩ − ⟨M2(w2)⟩∣ = ∣∫
I

⟨M2
2 (ζ)⟩

1 − ⟨M2
2 (ζ)⟩

dζ∣ ≤ ∣z2 −w2∣

minζ∈I ∣1 − ⟨M2
2 (ζ)⟩∣

≤
C3∣z2 −w2∣

ρ2(w)2
,

where C3 depends only on L. Combine this bound with (5.A.12). The case when the lhs. of (5.A.12)
has an upper bound of order ∣z2 −w2∣ was already considered above. Thus we may assume that

∣LT(z1, z2) − LT(z1,w2)∣ ≤ C4∆ ∣z2 −w2∣

ρ2(w)2
, (5.A.16)

where C4 > 0 depends only on L. If the rhs. of (5.A.16) is bounded from above by LT(z1, z2)/2, we
conclude the desired (5.A.11). Otherwise, similarly to (5.A.15) we get

LT(z1, z2) < (2C4
∣z2 −w2∣

ρ2
2(w2)

)

2
≤ (2C4)

2 Imw2
ρ2

2(w2)
⋅
Imw2
ρ(w2)

≲
Imw2
ρ(w2)
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since ρ2(w2) ≥ C2(Imw)1/3.

After having treated the case ∣⟨M1(z1)M
∗
2 (w2)⟩∣ ≥ 1/2, we may assume that ∣⟨M1(z1)M

∗
2 (w2)⟩∣ <

1/2. In this case, we have β(z1, w̄2) ≥ 1/2. Notice that

∣β(z1, w̄2) − β(z1,w2)∣ ≤ 2Lρ2(w2). (5.A.17)

If ρ2(w2) < 1/(8L), then (5.A.17) gives β(z1,w2) ≥ 1/4. Otherwise by [237, Proposition 4.2] it
holds that β(z1,w2) ≳ ρ2(w2)

2 ≳ 1. This means that β∗(z1,w2) ∼ 1. Therefore, by Proposition
5.3.1 γ0(z1,w2) ∼ 1, which immediately implies (5.A.11).

Case (ii): In order to verify (5.4.18) in the case ∣⟨M1(z1)M
∗
2 (z2)⟩∣ < 1/2, it is sufficient to show that

β∗(z1,w2) ∼ 1. Indeed, once we have this, the bound β∗(z1,w2) ≲ γ̂
1/4(z1,w2) from Proposition

5.3.1 gives that γ̂(z1,w2) ∼ 1, i.e. (5.4.18) holds. Using the Hölder 1/3-regularity (5.A.13) of ⟨M2⟩
in a similar way as in the argument above (5.A.13) we get that β(z1, w̄2) ∼ 1 for ∣z2 −w2∣ ≤ c for
some small positive constant c ∼ 1 which depends only on L. For ∣z2 −w2∣ > c by (5.3.6) we have

β(z1, w̄2) ≳ Imw2/ρ2(w2) ≥ Imw2 ≳ 1.

Thus we have shown the existence of a (small) constant c0 > 0 which depends only on L such that
β(z1, w̄2) ≥ c0. Similarly to the proof around (5.A.17) we argue that β(z1,w2) ∼ 1.

This concludes the proof of Proposition 5.4.5.

5.A.3 Proof of Proposition 5.4.6:

The proof is split in two parts.

Part 1: The bound (5.4.21a) is the direct consequence of (5.3.8). In order to verify (5.4.21b) note
that

∥MB1,B2
ν1,ν2,ν1∥ ≲

∥B1∥ ⋅ ∥B2∥

∣1 − ⟨M1M2⟩∣2∣1 − ⟨M2
1 ⟩∣
.

Then use the lower bounds ∣1 − ⟨M1M2⟩∣ ≳ η1/ρ1 from Proposition 5.3.1 and ∣1 − ⟨M2
1 ⟩∣ ≳ ρ

2
1 from

(5.3.4) to get the desired result. For the upper bound on ∥MB1,B2
ν1,ν2,ν̄1

∥ the argument is similar,
but one needs to use instead ∣1 − ⟨M1M2⟩∣ ∨ ∣1 − ⟨M1M

∗
2 ⟩∣ ≳ ρ

2
1 and ∣1 − ⟨M1M

∗
1 ⟩∣ ≳ η1/ρ1 from

Proposition 5.3.1.

Part 2: At first we prove (5.4.22a). Inverting B12 defined in (5.2.12) and using (5.3.8) we get that

MA1
ν1,ν2 =M1A1M2 +

⟨M1A1M2⟩

1 − ⟨M1M2⟩
M1M2.

If Im z1Im z2 > 0, then by (5.3.4) β(z1, z2) ≳ κ2, so (5.4.22a) holds. Assume further that
Im z1Im z2 < 0. Since A1 is (ν1, ν2)-regular, either ϕ(ν1, ν2) defined in (5.2.9) vanishes or
⟨M1A1M2⟩ = 0. In the first case γ̂ ∼ 1, so by Proposition 5.3.1 β(z1, z2) ∼ 1. In the second
case MA1

ν1,ν2 =M1A1M2. In both cases ∥MA1
ν1,ν2∥ ≲ ∥A1∥, i.e. (5.4.22a) holds.

The proofs of (5.4.22c) and of the part of (5.4.22b) which addresses ∥MA1,B2
ν1,ν2,ν1∥ go along the

same lines. The only non-trivial bound is an upper bound (5.4.22b) on ∥MA1,B2
ν1,ν2,ν̄1

∥ in the case
when Im z1Im z2 > 0 and ⟨M1A1M

∗
2 ⟩ = 0. Using explicit formulas for B−1

13 and for two-resolvent
deterministic approximations we see that it is sufficient to verify the following cancellation between
two terms:

∣
⟨M1M

∗
1A1M2⟩

1 − ⟨M∗
1M2⟩

+
⟨M1A1M2⟩⟨M1M

∗
1M2⟩

(1 − ⟨M∗
1M2⟩)(1 − ⟨M1M2⟩)

∣ ≲
1

√
∣1 − ⟨M∗

1M2⟩∣
. (5.A.18)

287



5. Eigenvector decorrelation for random matrices

By (5.3.4) ∣1 − ⟨M1M2⟩∣ ∼ 1. We further rewrite (5.A.18) as

∣⟨M1A1M2⟩(1 − ⟨M∗
1M2⟩) − ⟨M

∗
1A1M2⟩(1 − ⟨M1M2⟩)∣ ≲

√

∣1 − ⟨M∗
1M2⟩∣,

which immediately follows from Lemma 5.3.3 applied to y1 = y2 = 0. This finishes the verification of
(5.4.22b). ◻

5.A.4 Proof of Lemma 5.3.3:

Let w1,w2 ∈ C ∖R be any spectral parameters and denote ν#
j ∶= (wj ,Dj), j = 1, 2, and A ∶= Åν1,ν2 .

We have
Å
ν#

1 ,ν
#
2 = Å

ν#
1 ,ν

#
2 + (A −A)(1 − ϕ(ν#

1 , ν
#
2 )).

Using the fact that γ̂(w1,w2) ∼ 1 when ϕ(ν#
1 , ν

#
2 ) ≠ 1 we get

∥Å
ν#

1 ,ν
#
2 − Å

ν#
1 ,ν

#
2 ∥ ≲ ∥A∥γ̂(w1,w2).

Thus we may assume that A = A, i.e. that A is (ν1, ν2)-regular.

As usual we will denote Ml(z) ∶= M
Dl(z) for l = 1,2. Since A is (ν1, ν2)-regular, either (i)

ϕ(ν1, ν2) = 0 or (ii) ⟨M1(z1)AM
∗
2 (z2)⟩ = 0. In case (i), it is a direct consequence of the definition

(5.2.9) of ϕ that ϕ(ν′1, ν′2) = 0. Therefore, since the lhs. of (5.3.14) vanishes, (5.3.14) trivially holds.
Thus, we will henceforth assume that ⟨M1(z1)AM

∗
2 (z2)⟩ = 0.

In the following, we will focus on showing that

∥Å
ν′2,ν

′
1
−A∥ ≲ ∥A∥

√

γ̂(z′1, z
′
2) (5.A.19)

since the argument for the other bounds claimed in Lemma 5.3.3 are similar and thus are omitted.
Firstly note that (5.A.19) is trivial in the case ϕ(ν′1, ν′2) = 0. In the complementary regime, where
ϕ(ν′1, ν

′
2) ≠ 0, we have ∣⟨M2(z

′
2)M

∗
1 (z

′
1)⟩∣ ∼ 1 and it is sufficient to prove that

∣⟨M2(z
′
2)AM

∗
1 (z

′
1)⟩∣ ≲ ∥A∥

√

γ̂(z′1, z
′
2). (5.A.20)

Using the (ν1, ν2)-regularity of A we rewrite the lhs. of (5.A.20) as

⟨M2(z
′
2)AM

∗
1 (z

′
1)⟩ = ⟨M2(z

′
2)A(M1(z

′
1) −M2(z2))

∗
⟩ − ⟨(M1(z1) −M2(z

′
2))AM

∗
2 (z2)⟩. (5.A.21)

Subtracting (5.1.4) for M2(z2) from (5.1.4) for M1(z
′
1) we get

M1(z
′
1)−M2(z2) =

(z′1 − z2) − ⟨M1(z
′
1)(D1 −D2)M2(z2)⟩

1 − ⟨M1(z′1)M2(z2)⟩
M1(z

′
1)M2(z2)−M1(z

′
1)(D1−D2)M2(z2).

(5.A.22)
Since ρ2(z2) ≥ κ, the denominator in (5.A.22) has a lower bound of order one by the means of
(5.3.4). Plugging (5.A.22) into the first term on the rhs. of (5.A.21) we arrive at

∣⟨M2(z
′
2)A(M1(z

′
1)−M2(z2))

∗
⟩∣ ≲ ∥A∥ (∣z′1 − z2∣ + ⟨(D1 −D2)

2
⟩
1/2
) ≲ ∥A∥γ̂(z′1, z2) ≲ ∥A∥γ̂(z

′
1, z
′
2).

In the last step we used that γ̂ is an admissible control parameter (cf. Proposition 5.4.5) and hence
satisfies the monotonicity property (5.4.18). By a similar argument for the second term on the rhs. of
(5.A.21) we conclude (5.A.20) and thus the proof of Lemma 5.3.3.
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5.A.5 Proofs of technical results in the proof of Proposition 5.4.8
In this section we present the proofs of Lemma 5.5.2 and Lemma 5.5.4.

Proof of Lemma 5.5.2. We will verify each item in Lemma 5.5.2 separately.
Item (1): In order to prove (5.5.12) it is sufficient to show that

⟨M1M
∗
1 ⟩

1/2⟨M2M
∗
2 ⟩

1/2

1 − ⟨M1M∗
1 ⟩

1/2⟨M2M∗
2 ⟩

1/2 ≤
π

2
(
ρ1
η1
+
ρ2
η2
) (5.A.23)

since ∣⟨M1M2⟩∣ ≤ ⟨M1M
∗
1 ⟩

1/2⟨M2M
∗
2 ⟩

1/2. Using the shorthand notations x ∶= πρ1/η1 > 0 and
y ∶= πρ2/η2 > 0, we have

⟨M1M
∗
1 ⟩⟨M2M

∗
2 ⟩ = xy(x + 1)−1

(y + 1)−1.

Then (5.A.23) is equivalent to

((1 + 1/x)1/2 (1 + 1/y)1/2 − 1)
−1
≤ (x + y)/2 ,

which can be rewritten as

(x + y)2 + (x + y)2 (1/x + 1/y) + (x + y)2/(xy) ≥ (x + y)2 + 4(x + y) + 4.

This inequality holds true since (x + y)(1/x + 1/y) ≥ 4 and (x + y)2 ≥ 4xy. Thus, (5.5.12) holds.
Item (2): Under the characteristic flow, Mj,t evolves as Mj,t = et/2Mj,0, cf. Lemma 5.4.3 (i). Thus

Re ⟨M I
12,r⟩ = er

Re [⟨M1,0M2,0⟩] − er ∣⟨M1,0M2,0⟩∣
2

∣1 − ⟨M1,rM2,r⟩∣2
.

Since Re [⟨M1,0M2,0⟩] − er ∣⟨M1,0M2,0⟩∣
2 is monotonically decreasing in r and the denominator is

positive, the second statement of Lemma 5.5.2 holds.
Item (3): In order to conclude (5.5.13a), we integrate (5.5.12) to get

∫

t

s
frdr ≤ 2∫

t

s
∣⟨M I

12,r⟩∣dr ≤ ∫
r

s
(
πρ1,r

η1,r
+
πρ2,r

η2,r
)dr ≤ log

η1,sη2,s

η1,tη2,t
.

Here we used that πρj,r ≤ −∂rηj,r, j = 1,2. To derive (5.5.13b), assume for notational simplicity
that s0 ≥ t. Then

1
2 ∫

t

s
frdr = Re ∫

t

s

er⟨M1,0M2,0⟩

1 − er⟨M1,0M2,0⟩
dr = Re log

1 − ⟨M1,sM2,s⟩

1 − ⟨M1,tM2,t⟩
= log βs

βt
.

Item (4): For any 0 ≤ s ≤ t ≤ T it holds that

βs = ∣1 − ⟨M1,sM2,s⟩∣ = ∣1 − es−t⟨M1,tM2,t⟩∣ = ∣es−t(1 − ⟨M1,tM2,t⟩) + (1 − es−t)∣ ∼ βt + t − s,

where in the last implication we used that 1 − es−t ≥ 0 and Re (1 − ⟨M1,tM2,t⟩) ≥ 0.

Proof of Lemma 5.5.4. We prove the two parts of Lemma 5.5.4 separately.
Part (i): At first we show that the constraint ∣Re z∣ ≤ N200 may be removed from the definition
(5.4.9) of ΩT . More precisely, we prove that if

∣Im z∣ρT (z) ≥ N
−1+ϵ and ∣Im z∣ ≤ N100, (5.A.24)
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then ∣Re z∣ ≤ N200. Assume the opposite, i.e. that there exists z = E + iη ∈ C ∖R as in (5.A.24)
such that ∣Re z∣ > N200. We have

N−1+ϵ
≲ ∣Im z∣ρT (z) =

1
π
∫

R

η2

(x −E)2 + η2 ρ(x)dx ∼
η2

η2 +E2 .

In the last step we used that (x −E)2 + η2 ∼ E2 + η2 for any x ∈ suppρT once the distance from E
to the support of ρ has a lower bound of order 1. Therefore it holds that

∣E∣ ≲ ∣η∣N (1−ϵ)/2 ≤ N200,

which contradicts to the assumption ∣E∣ > N200.

Now we are ready to prove the first part of Lemma 5.5.4. The ray property of ΩT follows from the
monotonicity of the function

[0,∞) ∋ η ↦ ηρT (E + iη) = 1
π
∫

R

η2

(x −E)2 + η2 ρT (x)dx

for any fixed E. Moreover, since this function increases from 0 at η = 0 to 1 at η → +∞, for any
E ∈R there exists a unique η = η(E) > 0 such that

η(E)ρT (E + iη(E)) = N−1+ϵ. (5.A.25)

In particular, the part of the boundary of ΩT ∩ H which is not introduced by the constraint
∣Im z∣ ≤ N100 is a graph of a function E ↦ η(E). Differentiating the defining equation (5.A.25) for
η(E) in E, we get that

η′(E) = ∫
R

η(E − x)

((x −E)2 + η2)2
ρT (x)dx(∫

R

(x −E)2

((x −E)2 + η2)2
ρT (x)dx)

−1
. (5.A.26)

Armed with these preliminaries, we will obtain Lemma 5.5.4 (i) by contradiction, so assume that for
some t ∈ [0, T ) the ray property is violated. Then there exist two points z1,t, z2,t with Im zj,t < N

100,
j = 1,2, on the boundary of Ωt ∩H such that the vertical ray which enters Ωt through one of this
points leaves it through the other one. Denote zj,T ∶= FT,tzj,t and Ej ∶= Re zj,T , j = 1,2. Without
loss of generality assume that E1 < E2. Then we have

Re [Ft,T z1,T ] = Re [Ft,T z2,T ]. (5.A.27)

Since zj,t ∈ ∂Ωt, Im zj,t < N
100 and Im zj,T < Im zj,t by Lemma 5.4.3, it holds that Im zj,T = η(Ej),

where η(E) is defined in (5.A.25). Combining (5.A.27) with (5.4.11) we see that

e(T−t)/2E1 + 2Re ⟨MT (z1,T )⟩ sinh T − t
2
= e(T−t)/2E2 + 2Re ⟨MT (z2,T )⟩ sinh T − t

2
. (5.A.28)

This is equivalent to

Re ⟨MT (z1,T )⟩ −Re ⟨MT (z2,T )⟩

E1 −E2
= −

1
(1 − e−(T−t))

. (5.A.29)

While the rhs. of (5.A.29) is strictly smaller than −1, the lhs. equals

(E2 −E1)
−1
∫

E2

E1
∂ERe ⟨M(E + iη(E))⟩dE. (5.A.30)

Further, denoting z ∶= E + iη(E) we have

∂ERe ⟨M(E + iη(E))⟩ = ∂ERe ⟨M(z)⟩ + ∂ηRe ⟨M(z)⟩η′(E)

= ∂ERe ⟨M(z)⟩ + 2∫
R

(E − x)η

((x −E)2 + η2)2
ρT (x)dxη′(E) ≥ ∂ERe ⟨M(z)⟩.

290



5.A. Proofs of additional technical results

In the last inequality we used (5.A.26) to show that the second term is positive. Since

∂ERe ⟨M(z)⟩ = Re ⟨M2⟩

1 − ⟨M2⟩
= −1 + 1 −Re ⟨M2⟩

∣1 − ⟨M2⟩∣2
≥ −1,

the lhs. of (5.A.29) is lower bounded by −1. Hence, we arrive at a contraction and hence
Lemma 5.5.4 (i) holds.

Part (ii): Now we prove the second part of Lemma 5.5.4 concerning the bulk-restricted domains Ωκ,t.
We aim to prove that there exists t∗ ∈ [0, T ) with T − t∗ ∼ 1 such that Ωκ,t has the ray property
for all t ∈ [t∗, T ]. By construction (5.4.10) Ωκ,T satisfies the ray property. As in the argument
above assume that Ωκ,t does not satisfy the ray property for some t ∈ [0, T ). However, unlike in the
previous part of the proof we do not argue by contradiction, but rather prove that T − t ≳ 1.

Similarly to (5.A.28), we find z1,T , z2,T on the boundary of Ωκ,T ∩H such that (5.A.29) holds, where
we denoted Ej ∶= Re zj,T , j ∈ [2]. Moreover, by choosing the time t, for which the ray property of
Ωκ,t is violated, sufficiently close to T , one can find such z1,T , z2,T meeting the following additional
condition: Either E1,E2 ∈ [br, (br + ar+1)/2] or E1,E2 ∈ [(br + ar+1)/2, ar+1] for some r ∈ [m − 1],
where we freely used the notations ar, br from Definition 5.4.2. Without loss of generality we may
assume that the first of these two options holds and that E1 < E2. Then (5.A.29) reads

1
E2 −E1

∫

E2−E1

0
∂xRe ⟨MT (z1,T + x + ix)⟩dx = − 1

1 − eT−t
.

Therefore, we have

sup
x∈[E1,E2]

∣
⟨M2

T ⟩

1 − ⟨M2
T ⟩
∣ ≳ (T − t)−1, (5.A.31)

where MT is evaluated at z1,T + x + ix. We view (5.A.31) as a lower bound on T − t and are hence
left to show that the lhs. of (5.A.31) has an upper bound of order one.

For the numerator it holds that ∣⟨M2
T ⟩∣ ≤ 1, while Proposition 5.3.1 applied to the denominator gives

that
∣1 − ⟨M2

T (z)⟩∣ ≳ Im z + ρ2
T (z), z = z1,T + x + ix, x ∈ [0,E2 −E1]. (5.A.32)

Recall that br ∈Bκ, i.e. ρT (br) ≥ κ. Then there exists c0 > 0 which depends only on κ and L such
that for any y ∈ [0, c0] we have ρT (br + y + iy) ≥ κ/2. This is a simple consequence of the differential
inequality

∂yρT (br + y + iy) ≲ 1
∣1 − ⟨M2

T (br + y + iy)⟩∣
≲

1
ρ2
T (br + y + iy)

,

where in the last step we again used Proposition 5.3.1. Take x ∈ [0,E2−E1] and choose y ∶= E1−br+x,
which guarantees that z ∶= br + y + iy = z1,T + x + ix. If y ∈ [0, c0], then ρT (z) ≥ κ/2 and (5.A.32)
shows that ∣1 − ⟨M2

T (z)⟩∣ ≳ 1. In the case y > c0 we have Im z ≳ 1 and derive the same conclusion
∣1 − ⟨M2

T (z)⟩∣ ≳ 1 from (5.A.32).

This finishes the proof of Lemma 5.5.4.
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Chapter6
Cusp universality for correlated random

matrices

This chapter contains the paper [239]:

L. Erdős, J. Henheik, and V. Riabov. Cusp universality for correlated random matrices. arXiv:2410.06813,
2024

Abstract. For correlated real symmetric or complex Hermitian random matrices, we prove that the
local eigenvalue statistics at any cusp singularity are universal. Since the density of states typically
exhibits only square root edge or cubic root cusp singularities, our result completes the proof of the
Wigner-Dyson-Mehta universality conjecture in all spectral regimes for a very general class of random
matrices. Previously only the bulk and the edge universality were established in this generality [23],
while cusp universality was proven only for Wigner-type matrices with independent entries [244, 155].
As our main technical input, we prove an optimal local law at the cusp using the Zigzag strategy,
a recursive tandem of the characteristic flow method and a Green function comparison argument.
Moreover, our proof of the optimal local law holds uniformly in the spectrum, thus we also provide a
significantly simplified alternative proof of the local eigenvalue universality in the previously studied
bulk [243] and edge [23] regimes.
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6.1 Introduction

The celebrated Wigner-Dyson-Mehta (WDM) conjecture asserts that the local eigenvalue statistics of
large random matrices become universal : they depend only on the symmetry class of the matrix and
not on the precise details of its distribution. This remarkable effect is extremely robust and manifests
in all spectral regimes. The correlation functions of the eigenvalues are governed by one of three
universal determinantal processes, whose kernel functions depend on the local shape of the eigenvalue
density. As proven by Dyson, Gaudin and Mehta [446] for the Gaussian GOE/GUE ensembles, the
local statistics of the eigenvalues in the bulk of the spectrum are driven by the sine kernel. At the
spectral edges, where the density of states vanishes like a square root, Tracy and Widom [562, 563]
computed that the correlation functions for GOE/GUE are given by the Airy kernel. As was first
observed by Wigner [586], and formalized as a conjecture for standard Wigner matrices by Dyson
and Mehta in the 1960’s, these statistics hold well beyond the Gaussian ensembles. After the first
proofs for standard Wigner matrices [109, 251, 252, 531, 551, 550], these universality results in the
bulk and at the edge saw rapid development and were gradually extended1 to ensembles of ever
greater generality: for Wigner matrices with diagonal [406, 409] and non-diagonal deformations [370],
Wigner-type ensembles with not necessarily identically distributed but still independent entries [15],
and even to random matrices allowing for substantial correlations among the entries [17, 243, 23].

The third and final class of universal local statistics emerges at the cusp-like singularities of the density
with cubic-root behavior. There, the eigenvalues form a Pearcey process, which was first identified
by Brézin and Hikami for a Gaussian unitary (GUE) matrix with a special deterministic deformation
[120, 121]. Compared to the bulk and edge, the cusp regime is less understood and universality
in this most delicate spectral regime was established only recently in [244, 155], however only for
a special class of random matrices. More precisely, these proofs were restricted to Wigner-type
ensembles with independent entries and diagonal deformations, and did not cover the broadest class
of correlated ensembles, for which bulk and edge universality had already been proven.

1In another direction of generalization, sparse matrices [9, 250, 354, 408], adjacency matrices of regular graphs
[50], band matrices [110, 115, 529], and dynamically defined matrices [8] have also been considered. In parallel
to that, universal statistics in the bulk and at the edge have been established for invariant β-ensembles (see, e.g.,
[25, 54, 109, 108, 209, 208, 385, 486, 487, 520, 521, 575]) and their discrete analogs [41, 104, 304, 360], although
often using very different methods.
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6.1. Introduction

Our main result completes the picture by proving the universality of the local eigenvalues statistics at
the cusp for random matrices with correlated entries and an arbitrary deformation, as stated in our
main result, Theorem 6.2.13. The proof follows the three-step strategy, a general method for proving
universality of local spectral statistics, summarized in [248]. The first step in this strategy is the
local law, which asserts that the resolvent G(z) = (H − z)−1 at z = E + iη ∈ H of the random matrix
H concentrates around a deterministic matrix M(z) as the dimension of the matrix tends to infinity.
This concentration estimate holds for η just above the local eigenvalue spacing at E, resolving the
empirical distribution of eigenvalues at this scale. The second step is to establish universality for
ensembles with a tiny Gaussian component, and the third step is a perturbative argument that
removes the Gaussian component. Crucially, the optimal local law is used as a key input for both the
second and third steps. These latter two steps have proven to be extremely robust and essentially
model-independent tools [243, 23, 244, 155]. Nevertheless, the critical first step, the proof of the
local law, remains highly model-dependent.

As our main technical result, Theorem 6.2.8, we prove the optimal average and isotropic local laws
for correlated random matrices. These local laws assert that for any fixed ξ > 0, any deterministic
matrix B and test vectors x,y, the bounds

∣⟨(G(z) −M(z))B⟩∣ ≲ N ξ ∥B∥hs
Nη

and ∣(G(z) −M(z))
xy
∣ ≲ N ξ

√
ρ(z)

Nη
∥x∥ ∥y∥ (6.1.1)

hold with very high probability. Here N is the dimension of the random matrix H, ⟨⋅⟩ ∶= N−1 Tr[⋅]
denotes the normalized trace, and ρ(z) ∶= π−1⟨ImM(z)⟩ > 0 is the self consistent density of states.
Moreover, Theorem 6.2.8 provides further optimal improvements to the right-hand sides of (6.1.1) for
spectral parameters z = E + iη with energy E outside of the self-consistent spectrum. We point out
that the local laws in (6.1.1) are optimal in terms of their dependence on ρ(z) and the (normalized)
Hilbert–Schmidt norm of the observable matrix B. In many cases, such as for low-rank observables,
the Hilbert–Schmidt norm ∥B∥hs ∶= ⟨BB

∗⟩1/2 is much smaller than the operator norm ∥B∥, which
has traditionally been used in previous single-resolvent local laws [243, 23, 244]. Thus, our local law
(6.1.1) unifies and improves upon the previous local laws, even in the Wigner-type case.

Traditional proofs of the local laws relied on solving an approximate self-consistent equation for the
difference G −M . They consisted of two parts: a stability analysis of the underlying deterministic
Dyson equation and a probabilistic estimate on the fluctuations. Both steps become quite cumbersome
beyond the simple Wigner matrices. In particular, for general Wigner-type [15, 244] and correlated
random matrices [243, 23], the stability analysis became intricate [16, 22], and the probabilistic part
relied on sophisticated Feynman graph expansions. Recently, a completely new approach, the Zigzag
strategy [161, 150, 162, 151, 245, 136] (see also Chapters 3–5), has been developed. This approach
consists of an iterated application of two steps in tandem (cf. Figure 6.3.3 below): the characteristic
flow method [105, 6, 353, 392, 7, 394, 14], coined the zig-step, and a Green function comparison
(GFT) argument driven by an Ornstein-Uhlenbeck flow, called the zag-step. Remarkably, the Zigzag
strategy circumvents many of the difficulties that arise along the more traditional local law proofs. It
even removes the key obstacles that previously hindered the proof of the optimal local law at the
cusp for the most general correlated matrices. We now explain this crucial aspect in more detail.

For traditional proofs of the local laws, the bulk regime is the easiest since the underlying Dyson
equation is stable when ρ(z) is separated away from zero. In the regime where the density ρ(z)
vanishes, this stability deteriorates – specifically, the corresponding stability factor behaves like ρ(z)−1

at a square-root edge and as ρ(z)−2 at a cubic-root cusp. This blow-up had to be compensated
by a fine control on the error term in the approximate Dyson equation. On the probabilistic side,
obtaining the optimal very-high-probability estimate on the fluctuation error required a high moment
calculation that exploited various fluctuation averaging mechanisms, even in the simplest bulk regime.
In the edge regime, an additional factor ρ(z) needed to be extracted, which essentially relied on the
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emergence of the imaginary part of the resolvent via the Ward identity, GG∗ = ImG/η. However, for
cusp singularities, an additional second order cancellation effect was necessary. This delicate effect,
coined the cusp fluctuation averaging [244], arises from a finite set of critical Feynman subdiagrams,
called the σ-cells. Roughly speaking, a σ-cell consists of four resolvents interconnected through
the deterministic approximation M and the correlation four-tensor of the matrix elements. In the
case of Wigner-type matrices with diagonal deformations, M becomes a diagonal matrix, leading
to a simplification of the original matrix Dyson equation into a vector equation. Moreover, since
the entries of a Wigner-type matrix are independent, the correlation tensor is reduced to a matrix
acting on the diagonal. These substantial simplifications facilitated the intricate extraction of σ-cells,
effectively capturing the second order cancellation effect. Identifying the analog of the σ-cells for
correlated matrices, when M is no longer diagonal and the correlation is a full-fledged four-tensor
remains out of reach.

In this paper, we leverage the Zigzag strategy to conveniently avoid the complicated graphical
expansions and, more importantly, circumvent the extraction of σ-cells. The only stability input
required is a trivial bound of the form ρ(z)/η, that is precisely tracked by the Ward identity. The
characteristic flow at the heart of the Zigzag strategy has previously proved itself to be effective in
dealing with a first order blow-up of the stability factor, such as at the edge of Wigner matrices (see
Chapter 3), and in capturing the z1 − z2 decorrelation effect for the Hermitizations of non-Hermitian
i.i.d. matrices [162, 163]. The current work demonstrates that the Zigzag strategy is even capable of
circumnavigating general second order instabilities arising at the cusp. Evidence of this feature of
the characteristic flow has already been observed for unitary Brownian motion [8] and in a special
non-Hermitian setting [136], where an additional symmetry was available.

Besides unraveling this remarkable power of the Zigzag approach in full generality, our paper is the first
to implement the method in a correlated setting, which requires adjustments to the Zigzag dynamics.
The GFT argument at the core of the zag step requires an a-priori bound on the resolvent as an input,
which typically stems from a single resolvent local law. This, however, would render our argument
circular. Hence, to remedy the situation, we augment the zag step with an internal induction2

(bootstrap) in η. Furthermore, our result has two additional features: (i) for the averaged law in
(6.1.1), we obtain the optimal estimate on the observable B in terms of its Hilbert–Schmidt norm,
and (ii) we extend the Zigzag approach beyond the typical above the scale regime of Nηρ(z) ≥ N ε

(see Section 6.6). We emphasize that, in addition to covering the missing cusp regime, our proof
also provides a unified approach to optimal local laws for the most general class of random matrices
with correlated entries, completely eliminating any dependence of the proof on the specific spectral
regime. The price we pay for our simple and self-contained Zigzag proof of the local law is assuming
fullness of the correlated random matrix (cf. Assumption 6.2.4), rather than the slightly weaker
flatness condition (cf. [243, Assumption (E)]). However, this stronger assumption is justified because
fullness is necessary for deducing universality using the three-step strategy, regardless of how the
local law is proven.

Notations and conventions

We use the notation [N] to represent the index set {1, . . . ,N}. The letters a, b, j, and k are used to
denote integer indices, while α (with various subscripts) denotes elements of [N]2. All unrestricted
summations of the form ∑a and ∑α are understood to run over a ∈ [N] and α ∈ [N]2, respectively.

We denote vectors in CN×N using boldface letters, e.g., x. The scalar product on CN is defined by
⟨x,y⟩ ∶= ∑Nj=1 xjyj , and the corresponding Euclidean norm is denoted by ∥x∥ ∶= ⟨x,x⟩1/2.

Matrices are denoted by capital letters. Unless explicitly stated otherwise, all matrices we consider
are N ×N . For a matrix A ∈ CN×N , the angle brackets ⟨A⟩ ∶= N−1 Tr[A] denote its normalized

2This argument is reminiscent of [370] and we also refer to [553] for an alternative approach.
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trace. We use the following notations for the matrix norms:

∥A∥max ∶=max
a,b
∣Aab∣, ∥A∥ ∶= sup

∥x∥=1
∥Ax∥ , ∥A∥hs ∶= ⟨∣A∣

2⟩
1/2
,

where ∣A∣2 ∶= AA∗. Furthermore, for any a ∈ [N] and vectors x and y, we use the following notation:

Axy ∶= ⟨x,Ay⟩, Axa ∶= ⟨x,Aea⟩, Aay ∶= ⟨ea,Ay⟩,

where ea is the standard a-th basis vector of CN . We denote the complex upper half-plane by H,
that is, H ∶= {z ∈ C ∶ Im z > 0}, and its closure by H ∶= H ∪R. For a complex number z ∈ C, we use
the notation ⟨z⟩ ∶= 1 + ∣z∣.

We use c and C to denote unspecified, positive constants—small and large, respectively—that are
independent of N and may change from line to line. Various tolerance exponents are denoted by
Greek letters such as ε, ξ, δ, ζ, µ, ν. The notation ξ ≪ ε means that there exists a small absolute
constant c > 0 such that ξ ≤ cε. We use ν > 0 to denote arbitrary small tolerance exponents.

For two positive quantities X and Y , we write X ≲ Y if there exists a constant C > 0 that depends
only on the model parameters in Assumptions 6.2.1–6.2.5 (unless explicitly stated otherwise), such
that X ≤ CY . We use the notation X ∼ Y if both X ≲ Y and Y ≲ X hold. For an arbitrary quantity
X and a positive quantity Y , we use the notation X = O(Y) to indicate that ∣X ∣ ≲ Y .

Let Ω ∶= {Ω(N)(u) ∣N ∈ N, u ∈ U(N)} be a family of events depending on N and possibly on a
parameter u that varies over some parameter set U(N). We say that Ω holds with very high probability
(w.v.h.p.) uniformly in u ∈ U(N) if, for any D > 0,

sup
u∈U(N)

P[Ω(N)(u)] ≥ 1 −N−D,

for any N ≥ N0(D). We often discard the explicit dependence of Ω(N) and U(N) on N , and
simply refer to Ω as a very-high-probability event. A bound is said to hold w.v.h.p. if it holds on a
very-high-probability event.

6.2 Main results
We consider real symmetric or complex Hermitian random matrices H of the form

H = A +W , EW = 0 , (6.2.1)

where A ∈ CN×N is a bounded deterministic matrix (cf. Assumption 6.2.1 below) and W has
sufficiently fast decaying correlations between its matrix elements (cf. Assumption 6.2.3 below).

For any random matrix H, we define the self-energy operator SH corresponding to H by its action
on any deterministic matrix X ∈ CN×N ,

SH[X] ∶= E[(H −EH)X(H −EH)]. (6.2.2)

The Matrix Dyson Equation (MDE) with a data pair (A,S) is given by

−M(z)−1
= z −A + S[M(z)] (6.2.3)

for the unknown matrix valued function M(z), z ∈ C∖R. It is well known (Theorem 2.1 [16]) that the
MDE has a unique solution under the constraint that (Im z)ImM(z) > 0, where ImM = 1

2i(M−M
∗).

The corresponding self-consistent density of states (scDOS) ρ is a probability density function on
the real line defined via the Stieltjes inversion formula,

ρ(x) ∶= lim
η→+0

1
π
⟨ImM(x + iη)⟩. (6.2.4)
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We define ρ(z) ∶= π−1⟨ImM(z)⟩ to be the harmonic extension of the scDOS to the complex upper-
half plane. With a slight abuse of notation, we also refer to ρ(z) as scDOS. As shown in [22], under
suitable assumptions (which are formulated precisely in Section 6.2.1 below) on the data pair (A,S)
and the solution M of the MDE (6.2.3), the scDOS ρ is 1/3-Hölder continuous. Furthermore, the
set where the scDOS is positive, {x ∈R ∶ ρ(x) > 0}, splits into finitely many connected components,
that are called bands. Inside the bands, the density is real-analytic with a square root growth behavior
at the edges. If two bands touch, however, a cubic root cusp emerges. These are the only two
possible types of singularities. Precise universal asymptotic formulas in the almost cusp regime are
given, e.g., in [244, Eqs. (2.4a)–(2.4e)].

As the main result of this paper, Theorem 6.2.13, we show the universality of the local eigenvalue
statistics of correlated real symmetric and complex Hermitian random matrices at cusp-like singularities.
As mentioned in the introduction, the proof of cusp universality follows the three-step strategy
[248], the first step of which is a local law (see Theorem 6.2.8) identifying the empirical eigenvalue
distribution on a scale slightly above the typical eigenvalue spacing, with very high probability. After
precisely formulating the assumptions that we impose on the random matrix (6.2.1) in Section 6.2.1,
we present our novel local law in Section 6.2.2. Afterwards, in Section 6.2.3, we formulate our main
result on cusp universality and other consequences of the local law, such as eigenvector delocalization
and eigenvalue rigidity.

6.2.1 Assumptions

In this section, we precisely formulate the assumptions, under which our main result, Theorem 6.2.8,
holds, and comment on them.

Assumption 6.2.1 (Bounded expectation). There exists a constant CA > 0 such that ∥A∥ ≤ CA,
uniformly in N .

Assumption 6.2.2 (Finite moments). For every p ∈ N, there exists a constant µp such that
E ∣
√
Nwα∣

p ≤ µp for all α ∈ [N]2.

Before formulating our assumption on the correlation structure of the random matrix W , we introduce
some custom notation to keep the definition of the norms of the (normalized) cumulants3,

κ(α1, ..., αk) ≡ κ(
√
Nwα1 , ...,

√
Nwαk

) , (6.2.5)

relatively compact. If, instead of an index a ∈ [N], we write a dot (⋅) in a scalar quantity, then we
consider it as an N -vector indexed by the coordinate in place of the dot. As an example, κ(a1⋅, a2b2)
is an N -vector, whose i-entry is κ(a1i, a2b2) and ∥κ(a1⋅, a2b2)∥ is its Euclidean (vector) norm.
Similarly, ∥X(∗,∗)∥ refers to the operator norm of the N2 ×N2 matrix with entries X(α1, α2). We
also introduce a combination of these conventions. In particular, ∥∥κ(x∗, ⋅∗)∥∥ denotes the operator
norm ∥Y ∥ of the matrix Y with entries Y (i, j) = ∥κ(xi, ⋅j)∥ = ∥∑a xaκ(ai, ⋅j)∥. Since the operator
norm is invariant under transposition of the matrix, this does not lead to ambiguity regarding the
order of i and j. Note that we use dot (⋅) as a placeholder for the variable related to the inner norm,
and star (∗) for the outer norm.

3Let w = (w1, ...,wk) be a random vector. Recall that its joint cumulants, κm with m ∈ Nk
0 , are traditionally

given as the coefficients of the log-characteristic function

log E eiw⋅t
=∑

m

κm
(it)m

m!
.

For w = (
√
Nwα1 , ...,

√
Nwαk) we use the notation κ(α1, ..., αk) ≡ κ(

√
Nwα1 , ...,

√
Nwαk) ∶= κ(1,...,1) and note

that, by construction, κ(α1, ..., αk) is invariant under permutations of its arguments. For example, for k = 2,
κ(α1, α2) = N E[wα1wα2].
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The following assumption on the correlation structure of W is formulated in the real symmetric
case. For complex Hermitian matrices, we require the cumulant norms introduced below to be
bounded for all choices of real and imaginary in each of the arguments of a cumulant, i.e. for
κ(αX1

1 , ..., αXk

k ) = κ(
√
NX1wα1 , ...,

√
NXkwαk

) and all choices of Xi ∈ {Re , Im } (see [243, Appendix
C] for a more detailed discussion).

Assumption 6.2.3 (Correlation structure). The correlations among the matrix entries (wα)α of W
satisfy the following.

(i) The cumulants κ(α1, ..., αk) have bounded matrix norms (viewed as an N2 ×N2 matrix),
i.e. for all k ≥ 2 there exists a constant Ck > 0 such that4

∣∣∣κ∣∣∣k ∶= ∥ ∑
α1,...,αk−2

∣κ(α1, ..., αk−2,∗,∗)∣∥ ≤ Ck . (6.2.6)

Moreover, we suppose that

∣∣∣κ∣∣∣iso2 ∶= inf
κ=κc+κd

(∣∣∣κc∣∣∣c + ∣∣∣κd∣∣∣d) ≤ C2 , (6.2.7)

where the infimum is taken over all decompositions of κ in two functions κc, κd, where the
subscripts stand for “direct" and “cross" (see [243, Remark 2.8] for an explanation of this
terminology) and the corresponding norms are defined as

∣∣∣κ∣∣∣d ∶= sup
∥x∥≤1
∥ ∥κ(x∗, ⋅∗)∥ ∥, and ∣∣∣κ∣∣∣c ∶= sup

∥x∥≤1
∥ ∥κ(x∗,∗⋅)∥ ∥ .

Finally, we assume that

∣∣∣κ∣∣∣av
3 ∶= N

−3/2 sup
X,Y,Z∈CN×N ∶

∥X∥,∥Y ∥≤1 , ∥Z∥hs≤1

∑
ab

∑
a1b1

∑
a2b2

∣κ(ab, a1b1, a2b2)∣∣Xb1a2 ∣ ∣Yb2a3 ∣ ∣Zb3a1 ∣ ≤ C3 .

(6.2.8)

(ii) There exists a positive µ > 0, such that for every α there exists an index set N (α) of cardinality
∣N (α)∣ ≤ N1/2−µ with the property that wα ⊥ wβ for all β ∉ N (α). That is, every element is
correlated with at most N1/2−µ other matrix elements and is independent of the rest.

The first part of Assumption 6.2.3 is needed to control every finite order term in a cumulant expansion
in Proposition 6.5.2, analogously to Assumption (C) in [243]. The condition in (6.2.8) is needed only
since we are dealing with Hilbert–Schmidt norm error terms and thus did not appear in [243], where
the observables were bounded in terms of their operator norm. In Example 6.2.6 below, we present
a prototypical class of models with a polynomially decaying metric correlation structure satisfying
Assumption 6.2.3 (i). Complementary to Assumption 6.2.3 (i), the only purpose of the second part
of Assumption 6.2.3 is to ensure that the cumulant expansion can be truncated. In [243], this was
guaranteed by a more complicated and slightly more general condition on the correlation decay
(cf. [243, Assumption (D)]). We believe, however, that our proof of Theorem 6.2.8 works under this
condition as well, but we refrain from doing so for brevity.

Assumption 6.2.4 (Fullness). We say that a random matrix H satisfies the fullness condition with
a constant c > 0 if

N E[∣Tr[(H −EH)X]∣2] ≥ c Tr[X2
], (6.2.9)

for any deterministic matrix X of the same symmetry class as H (real symmetric or complex
Hermitian).
We assume that there exists a constant cfull > 0 such that the random matrix H satisfies the fullness
condition as in (6.2.9) with the constant c ∶= cfull.

4We remark that the constants Ck in the bounds (6.2.6)–(6.2.8) could also be replaced by Ck,νN
ν for any ν > 0,

where Ck,ν is a positive constant. All our proofs hold under this more general condition, but we omit it for simplicity.
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Assumption 6.2.5 (Bounded self-consistent Green function). Fix CM , cM > 0 and define the set of
admissible energies as

I ≡ ICM ,cM
∶= {e ∈R ∶ ∥M(z)∥ ≤ CM ⟨z⟩−1 for all z ∈C with Re z ∈ [e − cM , e + cM ]} .

(6.2.10)
We assume that I ≠ ∅.

Recall that we refer to the constants in Assumptions 6.2.1–6.2.5 as model parameters.

Example 6.2.6 (Polynomially Decaying Metric Correlation Structure). A prime example of correlated
random matrix satisfying the Assumption 6.2.3 (i) is the polynomially decaying model. For second
order cumulants, we assume that

∣κ(a1b1, a2b2)∣ ≤
C2

1 + d(a1b1, a2b2)s
, (6.2.11a)

for some s > 2, where we define the distance d on the set of labels [N]2 as

d(a1b1, a2b2) ∶=min{∣a1 − a2∣ + ∣b1 − b2∣, ∣a1 − b2∣ + ∣b1 − a2∣}. (6.2.11b)

For cumulants of order k ≥ 3, we assume the following decay condition

∣κ(α1, . . . , αk)∣ ≤ Ck ∏
e∈Tmin

1
1 + d(e)s

, (6.2.11c)

where Tmin is a minimal spanning tree, i.e., a spanning tree for which the sum of the edge weights is
minimal, in a complete graph with vertices α1, α2, . . . , αk and edge weights induced by the distance
d, defined in (6.2.11b). The validity of (6.2.6)–(6.2.7) was asserted in Example 2.10 of [243], and
we verify the new condition (6.2.8) in Appendix 6.B.

6.2.2 Local law

In this section, we formulate our main technical result, the optimal local laws in Theorem 6.2.8.
These show that G(z) = (H − z)−1 is very well approximated by M(z) in the N →∞ limit, with
optimal convergence rate even at all singular points of the scDOS down to the typical eigenvalue
spacing. We now define the scale on which the eigenvalues are predicted to fluctuate around a given
energy e0.

Definition 6.2.7 (Local fluctuation scale). Let e0 ∈ I be an admissible energy. We define the
self-consistent fluctuation scale ηf = ηf(e0) > 0 (indicated by subscript f) at energy e0 via

∫

ηf

−ηf
ρ(e0 + x)dx =

1
N
, (6.2.12)

if e0 ∈ suppρ. In case that e0 ∉ suppρ, we define ηf as the fluctuation scale at a nearby edge. More
precisely, let I be the largest interval with e0 ∈ I ⊂ R ∖ suppρ and set ∆ ∶= min{∣I ∣,1}. Then, ηf
satisfies the scaling relation

ηf ∼

⎧⎪⎪
⎨
⎪⎪⎩

N−2/3∆1/9 if ∆ > N−3/4

N−3/4 if ∆ ≤ N−3/4 .
(6.2.13)

While for e0 in the bulk, where the scDOS satisfies ρ ∼ 1, we have ηf ∼ N−1, it holds that ηf ∼ N−2/3

at a regular edge and ηf ∼ N−3/4 at an exact cusp.
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Theorem 6.2.8 (Optimal Local Laws). Fix small N -independent constants ε0, ξ0 > 0. Let H ∈ CN×N

be a real symmetric or complex Hermitian correlated random matrix. Suppose that Assumptions 6.2.1–
6.2.5 are satisfied, and let I be the set of admissible energies from (6.2.10). Then, uniformly for
all z ∈ H with Re z ∈ I and dist(z, suppρ) ∈ [N ε0ηf(Re z),ND], the resolvent G(z) ∶= (H − z)−1

satisfies the optimal isotropic local law,

∣(G(z) −M(z))
xy
∣ ≤ N ξ0

¿
Á
ÁÀ ρ(z)

⟨z⟩2Nη
∥x∥ ∥y∥ , (6.2.14a)

for any deterministic vectors x,y ∈CN , and the optimal average local law,

∣⟨(G(z) −M(z))B⟩∣ ≤
N ξ0

⟨z⟩N dist(z, suppρ)
∥B∥hs , (6.2.14b)

for any deterministic matrix B ∈CN×N , both with very high probability.

6.2.3 Delocalization, rigidity, and universality
The local law in Theorem 6.2.8 is the main input for eigenvector delocalization, eigenvalue rigidity,
and universality, as stated below. While Corollaries 6.2.10–6.2.11 and Theorem 6.2.13 are proven
as corollaries to Theorem 6.2.8 in Section 6.3.3, the exclusion of eigenvalues outside the support
of the scDOS in Theorem 6.2.9 is obtained alongside the proof of Theorem 6.2.8 and presented in
Section 6.6.

Theorem 6.2.9 (No eigenvalues outside the support of the scDOS). Under the assumptions of
Theorem 6.2.8 we have the following: Let e0 ∈ I ∖ suppρ. There exists a constant c > 0 such that
for any fixed small N -independent constant θ0 > 0

dist ( specH ∩ [e0 − c, e0 + c], suppρ) ≤ N θ0ηf(e0), (6.2.15)

with very high probability. Here we use the convention that dist(∅, ...) = 0.

Corollary 6.2.10 (Eigenvector delocalization). Let ui ∈ CN with ∥ui∥ = 1 be a normalized eigenvector
of H corresponding to the eigenvalue λi. Then, under the assumptions of Theorem 6.2.8, for any
small N -independent constant ω0 > 0, the estimate

max
i∈[N]∶
λi∈I

∣⟨x,ui⟩∣ ≤
Nω0

√
N

(6.2.16)

holds with very high probability, uniformly in deterministic vectors x ∈CN with ∥x∥ = 1.

Corollary 6.2.11 (Band rigidity and eigenvalue rigidity). Assume the conditions of Theorem 6.2.8
with I =R in Assumption 6.2.5. Then, the following holds.

(a) For any θ > 0, whenever e0 ∈ R ∖ suppρ with dist(e0, suppρ) ≥ N θηf(e0), the number of
eigenvalues less than e0 is deterministic with high probability. More precisely,

∣ specH ∩ (−∞, e0)∣ = N ∫
e0

−∞
ρ(x)dx, w.v.h.p. (6.2.17)

(b) Let λ1 ≤ ... ≤ λN denote the ordered eigenvalues of H and assume that e0 ∈ int(suppρ). Then,
for any small N -independent constant χ0 > 0, it holds that

∣λk(e0) − e0∣ ≤ N
χ0ηf(e0) , (6.2.18)

with very high probability, where we defined the (self-consistent) eigenvalue index as k(e0) ∶=
⌈N ∫

e0
−∞ ρ(x)dx⌉.
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Remark 6.2.12 (Integer mass). We point out that (6.2.17) entails the nontrivial fact that, whenever
e0 ∉ suppρ satisfies dist(e0, suppρ) ≥ N θηf(e0) for some θ > 0, the integral N ∫ e0

−∞ ρ(x)dx is always
an integer. An immediate consequence is that, for each connected component [a, b] of suppρ,
it holds that N ∫ ba ρ(x)dx is an integer. That is, each spectral band contains that number of
eigenvalues with very high probability. For spectral bands which are separated by a distance of order
one, this was previously shown in [23, Corollary 2.9]. Our Corollary 6.2.11 improves this to the
optimal minimal distance N ϵηf(e0).

As our last consequence to the optimal local laws in Theorem 6.2.8, we prove cusp universality in
Theorem 6.2.13 below. Since universality is already known in the bulk [243] as well as the edge
regime [23], we will henceforth focus on the (approximate) cubic-root cusp. However, the optimal
local laws of Theorem 6.2.8 can be used as an input for the three-step strategy to yield bulk and edge
universality as well. From the in-depth analysis of the MDE (6.2.3) and its solution in [22], we know
that the scDOS ρ is described by explicit universal shape functions in the vicinity of local minima
with a small value of ρ and near small gaps in the support of ρ; see, e.g., [244, Eqs. (2.4a)–(2.4e)]
for precise formulas.

Whenever the local length scale of such an almost cusp shape around a point b matches (or is
smaller than) the local eigenvalue spacing, i.e. if b is a small local minimum, satisfying ρ(b) ≲ N−1/4,
or a midpoint of a gap with width ∆ ≲ N−3/4, then we call the local shape around b a physical
cusp – reflecting the fact that it becomes indistinguishable from an exact cusp when resolved with a
precision (slightly) above the local eigenvalue spacing ∼ N−3/4. In this case, b is called a physical
cusp point. Besides the local length scale of a physical cusp point b, the specific shape of the scDOS
around b is characterized by a single additional parameter γ > 0, called the slope parameter.

In order to formulate our result on cusp universality in Theorem 6.2.13, it is natural to consider the
rescaled k-point function p(N)k , which is implicitly defined as

E (N
k
)

−1
∑

{j1,...,jk}⊂[N]
f(λj1 , ..., λjk) =∶ ∫Rk

f(x)p
(N)
k (x)dx , (6.2.19)

for any test function f . Here, the summation is over all distinct subsets of k integers from [N].

Theorem 6.2.13 (Cusp universality for correlated random matrices). Let H ∈ CN×N be a real
symmetric or complex Hermitian correlated random matrix as in (6.2.1). Suppose that Assump-
tions 6.2.1–6.2.5 are satisfied, assume that a physical cusp point b ∈ I lies in the set of admissible
energies (6.2.10), and let γ > 0 be the appropriate slope parameter at b. Then, the local k-point
correlation function at b is universal. That is, for every k ∈ N there exists a k-point correlation
function pGOE/GUE

k,α such that for any test function F ∈ C1
c (Ω) on a bounded open set Ω ⊂Rk, it

holds that5

∫
Rk
F (x) [

Nk/4

γk
p
(N)
k (b +

x

γN3/4) − p
GOE/GUE
k,α (x)] dx = Ok,Ω(N

−c(k)
∥F ∥C1) , (6.2.20)

where the parameter α depends on γ, the local length scale and the specific shape of the scDOS
around b, i.e., whether it is an exact cusp, a small gap, or a small minimum (see [244, Eq. (2.6)] or
[155, Eq. (2.5)]). The constant c(k) > 0 in (6.2.20) depends only on k, and the implicit constant in
the error term depends on k and the diameter of the set Ω.

Remark 6.2.14 (On pGUE/GOE
k,α ). For the universal k-point correlation function pGOE/GUE

k,α , we have
the following.

5Here, b is identified with the vector (b, ..., b) ∈Rk.
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(i) In the complex Hermitian symmetry class, the k-point function takes the determinantal form

pGUE
k,α (x) = det (Kα(xi, xj))

k

i,j=1 , (6.2.21)

where the extended Pearcey kernel with parameter α ∈R is given by

Kα(x, y) =
1

(2πi)2 ∫Ξ
dz ∫Φ

dw
exp ( −w4/4 + αw2/2 − yw + z4/4 − αz2/2 + xz)

w − z
. (6.2.22)

Here, Ξ is a contour consisting of rays from ±eiπ/4 to 0 and rays from 0 to ±e−iπ/4, and Φ is
the ray from −i∞ to i∞. See [10, 121, 564] and the references in [244] for more details.

(ii) In the real symmetric case, the k-point correlation function pGOE
k,α (possibly only a distribution)

is not known explicitly, not even if it is Pfaffian. However, pGOE
k,α exists in the dual of C1 as

the limit of correlation functions of a suitable one-parameter family of Gaussian comparison
models (see Sec. 3 and in particular Eq. (3.5) of [155]).

6.3 Zigzag strategy: Proof of the main results

To streamline the presentation, we assume that the set of admissible energies I, defined in (6.2.10) of
Assumption 6.2.5, is the entire real line, that is, I = R. We discuss the straightforward modifications
for general I in Remark 6.3.8.

Definition 6.3.1 (Local Laws). Let Hu be a random matrix depending on a parameter6 u ∈ U , and
let Mu be the solution to the MDE (6.2.3) with the data pair (EHu,SHu), where SHu is defined
in (6.2.2). For all u ∈ U , let Du ⊂ H and let ξ > 0. We say that the resolvent Gu(z) ∶= (Hu − z)

−1

satisfies the averaged local law and the isotropic local law, respectively, with data (Du, ξ) uniformly
in u ∈ U , if and only if the bounds

∣⟨(Gu(z) −Mu(z))B⟩∣ ≤
N3ξ

Nη
, and ∣(Gu(z) −Mu(z))xy

∣ ≤ N ξ
(

√
ρu(z)

Nη
+

1
Nη
), (6.3.1)

hold uniformly in z ∶= E + iη ∈ Du and in u ∈ U , with very high probability, for any deterministic
vectors x,y ∈ CN with ∥x∥ = ∥y∥ = 1, and any deterministic matrices B with ∥B∥hs = 1. Here
ρu(z) ∶=

1
π ⟨ImMu(z)⟩.

The goal of the present section is to prove the local laws in the above the scale regime, where
ρ(z)N ∣Im z∣ is large. Fix a (small) N -independent constant ε > 0, a large constant CL > 0, and
define the spectral domain Dabv as

D
abv
≡ D

abv
(ε,CL) ∶= {z ∶= E + iη ∈ H ∶ ρ(z)Nη ≥ N ε, ∣E∣ ≤ CL, η ≤ CL}. (6.3.2)

The regime ρ(z)Nη ≥ N ε is natural for studying the local laws, since ρ(E + iη)Nη is the typical
number of eigenvalues in the interval of size η around the energy E.

Theorem 6.3.2 (Local Laws above the Scale). Fix a (small) N -independent constant ε > 0, a
large constant CL > 0. Let H be a random matrix satisfying the Assumptions 6.2.1–6.2.5, then
the resolvent G(z) ∶= (H − z)−1 satisfies the local laws (6.3.1) with data (Dabv,2ξ), for any fixed
tolerance exponent 0 < ξ ≤ 1

100ε, where Dabv = Dabv(ε,CL).
6In applications, the parameter u will typically be time and the set U will be a bounded subinterval of R.
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6. Cusp universality for correlated random matrices

To prove Theorem 6.2.8 in the below the scale regime, that is, to handle the case when ρ(z)N ∣Im z∣
is small, we proceed in two steps. In the key first step we use the local laws above the scale of
Theorem 6.3.2 to prove Theorem 6.2.9 that asserts the absence of spectrum outside of the support
of the scDOS ρ. Then the second step is a routine derivation of (6.2.14b) and (6.2.14a) from
(6.2.15) and (6.3.1). Both steps are presented in Section 6.6. In the main part of the proof, we
only consider spectral parameters z satisfying dist(z, suppρ) ≲ 1. The easy extension to the regime
dist(z, suppρ) ≳ 1 and the resulting ⟨z⟩−2-decay are briefly addressed in Remark 6.6.8.

In the sequel, we treat the constants ε,CL in (6.3.2) as additional model parameters and omit them
from the arguments of Dabv.

Throughout the paper, we consistently use the notation ε, ξ, ζ, δ to represent positive N -independent
tolerance exponents, each playing a particular role in the proof. Specifically, ε denotes the tolerance
exponent from the definition of the domain Dabv (see (6.3.2) and (6.3.21) below); ξ and its multiples
represent the target tolerance exponents for the local laws above the scale in (6.3.1). The exponent
ζ appears in the below-the-scale part of the proof (Section 6.6). Multiples of −ζ are used in the
exclusion estimate (6.6.9) and in the lower bound on ρNη in (6.6.8). The exponent δ refers to the
step size used in various inductive arguments. In the sequel, we adhere to the following conventions:

δ ≪ ξ ≪ ε, ζ ≪ ξ, δ < µ, (6.3.3)

where µ > 0 is the constant from Assumption 6.2.3 (ii). We also assume that the arbitrary exponent
ν > 0 is much smaller than the other tolerance exponents, that is, ν ≪ δ and ν ≪ ζ.

6.3.1 Input: Global Laws

Let ρ(z) be the harmonic extension to H of the scDOS corresponding to a solution of (6.2.3). Given
small positive constants ε, ξ > 0, and a large constant D > 0, we define the global domain as

D
glob
≡ D

glob
(D,ε, ξ, ρ) ∶= {z ∶= E + iη ∈ H ∶ ∣E∣ ≤ ND, N−1+ε

≤ η ≤ ND, ρ(z)−1η ≥ N−ξ/4}.
(6.3.4)

Effectively, the function ρ(z)−1η in (6.3.4) controls the proximity of the spectral parameter z to the
support ρ.

Proposition 6.3.3. Let H be a random matrix satisfying the Assumptions 6.2.1–6.2.5, and let
ρ(z) be the scDOS arising from the solution to the MDE (6.2.3) corresponding to H. Let Dbdd ∶=
I + [−cM , cM ] + iR ⊂ C, where I is defined in (6.2.10). Fix a large constant D > 0 and a tolerance
exponent 0 < ξ < 1

10ε. Then the resolvent G(z) ∶= (H − z)−1 satisfies

∣(G(z) −M(z))
xy
∣ ≤ N ξΨ(z)∥x∥∥y∥, (6.3.5a)

∣⟨(G(z) −M(z))B⟩∣ ≤ N3ξΨ(z)
√
⟨z⟩

Nη
∥B∥hs, (6.3.5b)

with very high probability, uniformly in z ∶= E + iη ∈ Dglob(D,ε, ξ, ρ) ∩Dbdd, for any deterministic
vectors x, y and matrices B. Here the control parameter Ψ(z) is defined as

Ψ(z) ∶=

¿
Á
ÁÀ ρ(z)

⟨z⟩2Nη
+

1
⟨z⟩2Nη

, η ∶= Im z. (6.3.6)

We prove Proposition 6.3.3 in Section 6.7.
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6.3. Zigzag strategy: Proof of the main results

6.3.2 Local law via Zigzag strategy: Proof of Theorem 6.3.2
6.3.2.1 Preliminaries: Two Random Matrix Flows

For any random matrix H, we define the covariance tensor ΣH corresponding to H by its action on
any deterministic matrix X ∈ CN×N ,

ΣH[X] ∶= E[Tr[(H −EH)X](H −EH)]. (6.3.7)

Note that ΣH is different from the self-energy operator (6.2.2), but they both carry equivalent
information. Moreover, it is positive definite on the space of matrices equipped with the usual scalar
product (X,Y ) = ⟨X∗Y ⟩ and we will denote by Σ1/2 its square root.

Along the proof, we use two distinct flows in the space of N ×N random matrices: the zig-flow
(standard Ornstein–Uhlenbeck process), defined as

dHt = −
1
2
Htdt +

dBt
√
N
, t ≥ 0; (6.3.8)

and the zag-flow (modified Ornstein–Uhlenbeck process), distinguished by the superscript t,

dHt
= −

1
2
(Ht
−EHt) +Σ1/2

H0[dBt], t ≥ 0, (6.3.9)

where ΣH0 is the covariance tensor of H0, defined according to (6.3.7). In both (6.3.8) and (6.3.9),
Bt denotes the real symmetric or complex Hermitian Brownian motion, depending on the symmetry
class of H.

Note that along the zig-flow (6.3.8), the covariance tensor Σt ∶= ΣHt , corresponding to Ht via
(6.3.7), satisfies the ordinary differential equation

dΣt = (−Σt +ΣG)dt, (6.3.10)

where ΣG is the covariance tensor of a GOE/GUE matrix in the same symmetry class as H . That is
ΣG[X] = N

−1X in the complex Hermitian case, and ΣG[X] = N
−1(X +X t) in the real-symmetric

case, where X t denotes the transpose of X. On the other hand, along the zag-flow (6.3.9), the
expectation and the covariance tensor of Ht (and hence the self-energy SHt) are preserved. Therefore,
the deterministic approximation M remains unchanged along the zag-flow.

For any t ≥ 0, we define the flow maps Ftzig and Ftzag on the space of probability distribution P(CN×N)
by

Ftzig[H] ∶=Ht, where Ht solves (6.3.8) with the initial condition H0 =H. (6.3.11)

Ftzag[H] ∶=H
t, where Ht solves (6.3.9) with the initial condition H0

=H. (6.3.12)

The key relation between the flow maps Ftzig and Ftzag is captured by the following lemma.

Lemma 6.3.4 (Flow Distribution Surjectivity). Let H be a random matrix satisfying the fullness
condition (6.2.9) with a constant 0 < c < 1, then there exists a random matrix Hc,t(H) such that

Ftzig[Hc,t(H)]
d
= Fs(t)zag [H], 0 ≤ t ≤ − log(1 − c), (6.3.13)

where the function s(t) ≡ sc(t) is defined as

s(t) ≡ sc(t) ∶= log c − log(c − 1 + e−t), (6.3.14)

and satisfies
s(t) ≤ 2c−1t, 0 ≤ t ≤ c/2. (6.3.15)

We defer the proof of Lemma 6.3.4 to the Appendix 6.A.

305



6. Cusp universality for correlated random matrices

6.3.2.2 Zigzag approach: Iterative application of the characteristic flow and GFT

We consider the time-dependent matrix Dyson equation (MDE),

−Mt(z)
−1
= z −At + St[Mt(z)], z ∈ C/R, (Im z)ImMt(z) > 0, (6.3.16)

where the data pair (At,St) is given as the unique solutions to the differential equations

dAt = −
1
2
Atdt , dSt = (−St + ⟨⋅⟩)dt . (6.3.17)

with the terminal conditions AT = A = EH and ST = S = E[(H −A)( ⋅ )(H −A)], respectively.

Given Mt(z), we consider the characteristic ODE for the time dependent spectral parameter zt ∈C
(see Figure 6.3.1),

dzt = −
1
2
ztdt − ⟨Mt(zt)⟩dt. (6.3.18)
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Figure 6.3.1: The left panel depicts several trajectories of the flow (6.3.18) that terminate at the
scale curve ρT (z)N Im z = c (solid black line), while the the graph of scDOS ρT is superimposed
in light blue. The right panel depicts trajectories up to an intermediate time t ∈ (0, T ) with their
continuations beyond t shown as thin dotted lines. The pre-image of the scale curve at the time t is
depicted as a solid black line, and the scale curve itself is depicted as a dashed black line. The graph
of scDOS ρt is superimposed in light blue. In both panels, the black markers along the trajectories
of (6.3.18) are evenly spaced in time.

By trivial ODE arguments, for all 0 ≤ s ≤ t, the corresponding (inverse) flow map φs,t ∶ H → H is
defined uniquely by

φs,t(zt) ∶= zs, where zs solves (6.3.18). (6.3.19)

It can be directly checked that along the trajectories of (6.3.18), the solution to the time-dependent
MDE (6.3.16) satisfies

dMt(zt) =
1
2
Mt(zt)dt. (6.3.20)

Lemma 6.3.5 (Time-Dependent Domains). There exist a constant C ′ ∼ 1 such that for any constant
0 < c′ ≤ π and any terminal time 0 < T ≲ 1, the time-dependent domains Dabv

t , t ∈ [0, T ], (see
Figure 6.3.2), defined as

D
abv
t ≡ D

abv
t (ε,CL, c

′, T ) ∶= {z ∶= E + iη ∈ H ∶ ρt(z)Nη ≥ N ε, ∣E∣ ∨ η ≤ CL +C
′
⋅ (T − t),

ρt(z)
−1η ≥ c′ ⋅ (N−1+ε

+ T − t)},
(6.3.21)

satisfy φs,t(Dabv
t ) ⊂ D

abv
s for all 0 ≤ s ≤ t ≤ T , where φs,t is the flow map defined in (6.3.19).
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ρ0

t = 0

Dabv
0

ρt

0 < t < T

Dabv
t

ρT

t = T

Dabv
T

Figure 6.3.2: The time-dependent domain Dabv
t , defined in (6.3.21), is illustrated in blue at three

distinct times: the initial time t = 0 (left), an intermediate time 0 < t < T (center), and the terminal
time t = T (right). The graph of the scDOS ρt is superimposed in black on each panel (not to scale).

We defer the proof of Lemma 6.3.5 to Appendix 6.A.

As in (6.3.4), the function ρt(z)−1η in the definition (6.3.21) effectively controls the distance between
z and the support of ρt. Therefore the time-dependent family of domains Dabv

t effectively interpolates
between the global regime Dglob and the final target domain Dabv. Indeed, since ρ(z) ≲ 1, by
choosing the constant c′ ∼ 1 in (6.3.21) small enough, we can guarantee that Dabv ⊂ Dabv

T , where
we recall that Dabv is defined in (6.3.2). On the other hand, it follows from (6.3.4) that by choosing

T ∶= CN−ξ/4, (6.3.22)

with a sufficiently large constant C ≳ 1, we can guarantee that Dabv
0 ⊂ Dglob, where Dglob is defined

in (6.3.4).

We conduct the proof inductively. Fix a tolerance exponent 0 < ξ ≪ ε, a step size 0 < δ ≪ ξ (recall
(6.3.3)). For the terminal time T chosen as in (6.3.22), let K be the smallest integer such that
N−KδT ≤ N−1+ε, and define a sequence of times {tk}Kk=0 as

t0 ∶= 0, tk ∶= T −N
−kδT, k ∈ {1, . . . ,K − 1}, tK ∶= T. (6.3.23)

Let {∆tk}
K
k=1 denote the difference sequence of {tk}Kk=0, that is

∆tk ∶= tk − tk−1, k ∈ {1, . . . ,K}. (6.3.24)

Let Σt solve the equation (6.3.10) with the terminal condition ΣT = Σ, where Σ, defined via (6.3.7),
is the covariance tensor of the target matrix H, for which we eventually prove the local laws in
Theorem 6.2.8. Observe that for all 0 ≤ t ≤ T , the solution Σt satisfies

Σt ≥ c̃ΣG, c̃ ∶=
cflat
2
∧ 1, (6.3.25)

where cflat is the constant in Assumption 6.2.4. Given the target random matrix ensemble H, we
construct two sequences of random matrices, {Hk}

K
k=0 and {Hk}Kk=1 recursively by

HK ∶=H, Hk ∶= Fs(∆tk)zag [Hk], Hk−1 ∶= Hc̃,∆tk(H
k), k ∈ {1, . . . ,K}, (6.3.26)

where s(t) ∶= sα̃(t) and Hc̃,∆tk are given by Lemma 6.3.4, and c̃ is the constant in (6.3.25). It follows
by a simple backward inductive argument starting at k =K that the covariance tensor of both Hk

and Hk is given by Σtk , hence by (6.3.25), Hk−1 is well-defined.

Proposition 6.3.6 (Zig Step). Fix k ∈ {1, . . . ,K}, and denote

Gt(z) ∶= (F
t−tk−1
zig [Hk−1] − z)

−1
, tk−1 ≤ t ≤ tk. (6.3.27)

Assume that for some ξ, ν > 0 with ξ +Kν ≪ ε , and ℓ ≤ 2k, the resolvent Gt satisfies the local
laws (6.3.1) with data (Dabv

t , ξ + ℓν) at time t = tk−1, then the resolvent Gt satisfies the local laws
(6.3.1) with data (Dabv

t , ξ + (ℓ + 1)ν) uniformly in t ∈ [tk−1, tk].
7Note that the zag-flow (6.3.9) acts in the direction opposite to the dashed arrows, i.e., the size of the Gaussian

components increases along both zig- and zag- matrix flows, (6.3.8) and (6.3.9), respectively.
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ρ−1η

size of GUE/GOE component
|

0
−0

�H
d
= HK �HK

�HK−1 �HK−1

�HK−2

�
Hk �Hk

�
Hk−1

�
H1 �H1

�H0

−N−1+ε

−

−

−N−kδT

−N−(k−1)δT

−

−T ∼ N−ξ/ 

−
−

−
−

−
−

−
−

Zig

Zag

Figure 6.3.3: Schematic represen-
tation of the Zigzag induction.
The random matrices Hk,H

k, as
defined in (6.3.26), are situated
within an abstract coordinate sys-
tem. The horizontal axis repre-
sents the size of the Gaussian com-
ponent, while the vertical axis indi-
cates the lower bound on ρ(z)−1η
in the domains, c.f. (6.3.21),
where we prove the local laws
(6.3.1). Solid arrows denote ap-
plications of Proposition 6.3.6 (re-
ferred to as Zig steps), and dashed
arrows7 indicate applications of
Proposition 6.3.7 (Zag steps).

Proposition 6.3.7 (Zag Step). Fix k ∈ {1, . . . ,K}. Let sk ∶= s(∆tk) be the time defined in (6.3.14),
let Hk be the random matrix defined in (6.3.26), and denote

Gs(z) ∶= (Fszag[Hk] − z)
−1
, 0 ≤ s ≤ sk. (6.3.28)

Assume that for some ξ, ν > 0 with ξ +Kν ≪ ε, and ℓ ≤ 2k, the resolvent Gs satisfies the local laws
(6.3.1) with data (Dabv

tk
, ξ + ℓν) at time s = sk, then Gs satisfies the local laws (6.3.1) with data

(Dabv
tk
, ξ + (ℓ + 1)ν) uniformly in s ∈ [0, sk].

Having formulated the cardinal steps of the Zigzag strategy, we now put them together to prove our
key theorem on the local laws above the scale. Note that in the above the scale regime ρ(z)Nη ≥ N ε,
the term 1/(Nη) in the isotropic bound is (6.3.1) is dominated by

√
ρ/(Nη), and hence will be

ignored in Sections 6.4 and 6.5.

Proof of Theorem 6.3.2. Recall our choice of the constant c′ ∼ 1 in (6.3.21) and the terminal time
T ∼ N−ξ/4 in (6.3.22) that guarantees the inclusions Dabv

0 ⊂ Dglob and Dabv ⊂ Dabv
T . Therefore,

Proposition 6.3.3 implies that the resolvent G0(z) ∶= (H0 − z)
−1 of a random matrix H0, defined

in (6.3.26), satisfies the local laws (6.3.1) with data (Dabv
0 , ξ). Using Propositions 6.3.6 and 6.3.7

in tandem K times, we prove by forward induction on k that for any ν > 0, the resolvent Gk(z) ∶=
(Hk − z)

−1 satisfies the local laws (6.3.1) with data (Dabv
tk
, ξ + 2kν), for all k ∈ {1, . . . ,K}. Since

HK =H and Dabv
tK
= Dabv

T ⊃ Dabv, this concludes the proof of Theorem 6.3.2.

Remark 6.3.8 (On Locality of Assumption 6.2.5). In the case of a general set of admissible energies
I, defined in (6.2.10), our proof holds verbatim, except the spectral domains Dglob,Dabv,Dabv

t used
along the proof have to be restricted. More precisely, we need the following modifications:

(i) we restrict the domain Dabv
t , defined in (6.3.21), by intersecting it with the region

D
bdd
t ∶= {z ∈ C ∶ dist(Re z,I) ≤ cM/2 +C ′ ⋅ (T − t)}, 0 ≤ t ≤ T ; (6.3.29)

(ii) we restrict the domain Dabv, defined in (6.3.2), by intersecting it with Dbdd
T ;

(iii) we restrict the global domain Dglob, defined in (6.3.4) by intersecting it with {z ∈ C ∶
dist(Re z,I) ≤ 3

4cM}.

308



6.4. Characteristic flow: Proof of Proposition 6.3.6

6.3.3 Proofs of Corollaries 6.2.10–6.2.11 and Theorem 6.2.13

In this section, we deduce eigenvector delocalization, band rigidity and eigenvalue rigidity, as well as
cusp universality from the local law in Theorem 6.2.8. These arguments are essentially independent
of the correlation structure of the random matrix, so we only refer to analogous proofs, which can
easily be adjusted to our case with straightforward modifications.

Proof of Corollary 6.2.10 on eigenvector delocalization. As usual, eigenvector delocalization is an
immediate consequence of the optimal isotropic local law from Theorem 6.2.8 for ImG; see [243,
Proof of Corollary 2.4] or [15, Proof of Corollary 1.14] for this argument.

Proof of Corollary 6.2.11 on band rigidity and eigenvalue rigidity. The proof of band rigidity was
first done for correlated matrices in [23, Proof of Corollary 2.5 in Section 5] but with dist(e0, suppρ) ≳
1. The adjustments for dist(e0, suppρ) ≥ N θηf(e0) are carried out in [244, Proof of Corollary 2.6] for
the case of Wigner-type matrices (i.e. without correlations). This argument immediately translates
to our setting, hence we omit the details for brevity.

Armed with band rigidity as in (6.2.17), the proof of Corollary 6.2.11 (b) is conducted in the same
way as in [15, Proofs of Corollaries 1.10 and 1.11] or [244, Proof of Corollary 2.6].

Proof of Theorem 6.2.13 on cusp universality. Given the optimal local law in Theorem 6.2.8, uni-
versality at the cusp follows by the three-step strategy. This has already been worked out in the
general correlated case in both the complex Hermitian [244] and real symmetric [155] symmetry
class. More precisely, in [155, Section 3] it is spelled out that only the local law in this paper (as the
first step of the three-step strategy) required restricting to Wigner-type matrices with independent
entries. Our Theorem 6.2.8 provides the necessary local law for correlated matrices.

6.4 Characteristic flow: Proof of Proposition 6.3.6
First, we collect the necessary properties of the solution Mt to the time-dependent MDE (6.3.16).

Lemma 6.4.1 (Preliminary bounds on Mt). Let (A,S) be a data-pair satisfying the Assump-
tions 6.2.1, 6.2.4, and 6.2.5. Then there exists a threshold T∗ ∼ 1 such that for any terminal time
0 < T < T∗, the solution Mt to the time-dependent MDE (6.3.16), with the terminal condition on
the data pair (AT ,ST ) = (A,S), satisfies

∥Mt(z)∥ ≲ 1, cρt(z) ≤ ImMt(z) ≤ Cρt(z), (6.4.1)

uniformly in z with Re z ∈ I, where I is the set of admissible energies from (6.2.10). Here the
second inequality holds in the sense of quadratic forms, with 1 ≲ c ≤ C ≲ 1.

Essentially, at the terminal time t = T , the bounds (6.4.1) follow from the assumptions of the
lemma, while at all other times 0 ≤ t < T , the equations (6.3.17) guarantee that the data pair
(At,St) constitutes only a small perturbation around (AT ,ST ). We give a more detailed proof of
Lemma 6.4.1 in Appendix 6.A.

Equipped with Lemma 6.4.1, we are ready to prove Proposition 6.3.6. We conduct the proof in
the complex Hermitian case, the obvious modifications in the real symmetric case8 are left to the
reader. Throughout the proof we consider the step index k to be fixed, and hence omit it from the
subscripts.

8For a detailed treatment of the real symmetric case in the setting of standard Wigner matrices, we refer the reader
to Section 3.4.4. The modifications for more general ensembles are analogous.
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It suffices to prove that the resolvent Gt satisfies the local laws (6.3.1) with data (Dabv
t , ξ + (ℓ+1)ν)

for any fixed t ∶= tfinal ∈ [tk−1, tk] and z ∈ Dabv
tfinal , since uniformity in t and z can be obtained by a

simple grid argument9. Let tinit ∶= tk−1, and for all t ∈ [tinit, tfinal], let zt ∶= φt,tfinal(z), where the
map φ is defined in (6.3.19). It follows from Lemma 6.3.5 that zt ∈ Dabv

t for all t ∈ [tinit, tfinal]. We
denote Gt ∶= (Ht − zt)

−1, and Mt ∶=Mt(zt), where Mt is the solution to (6.3.16).

Using Itô’s formula, we deduce that for any deterministic N ×N matrix B,

d⟨(Gt −Mt)B⟩ = (
1
2
⟨(Gt −Mt)B⟩ + ⟨Gt −Mt⟩⟨G

2
tB⟩)dt +

1
√
N
∑
ab

∂ab⟨GtB⟩d(Bt)ab, (6.4.2)

where ∂ab ∶= ∂Hab,t
denotes the partial derivative with respect to the matrix entry Hab,t. In particular,

for a fixed pair of deterministic vectors x,y ∈ CN with ∥x∥ = ∥y∥ = 1, setting B ∶= Nyx∗ we obtain

d(Gt −Mt)xy
= (

1
2
(Gt −Mt)xy

+ ⟨Gt −Mt⟩(G
2
t )xy
)dt + 1

√
N
∑
ab

∂ab(Gt)xy
d(Bt)ab. (6.4.3)

First, we prove that the resolvent Gtfinal satisfies the isotropic local law and averaged local law in
(6.3.1) for B ∶= I with data (Dabv

tfinal , ξ + (ℓ +
1
2)ν). Define a set of deterministic vectors V ∶= {x,y}.

Define the stopping time τ

τ ∶= sup{tinit ≤ t ≤ tfinal ∶ sup
tinit≤s≤t

max
u,v∈V

∣
√
ρs(zs)−1Nηs(Gs −Ms)uv

∣ ≤ N ξ+(ℓ+1
2 )ν}

∧ sup{tinit ≤ t ≤ tfinal ∶ sup
tinit≤s≤t

∣Nηs⟨Gs −Ms⟩∣ ≤ N
3ξ+3(ℓ+1

2 )ν},

(6.4.4)

where we denote ηt ∶= Im zt > 0.

Computing the quadratic variation of the martingale term in (6.4.2), we obtain

[∫

⋅

tinit

1
√
N
∑
ab

∂ab⟨Gs⟩d(Bs)ab]
t∧τ
≤ ∫

t∧τ

tinit

⟨(ImGs)
2⟩

N2η2
s

ds ≤ ∫
t∧τ

tinit

⟨ImGs⟩

N2η3
s

ds

≤ ∫

t∧τ

tinit

⟨ImMs⟩ +
1
2ηs

N2η3
s

ds + ∫
t∧τ

tinit

⟨ImGs − ImMs⟩

N2η3
s

ds,
(6.4.5)

where in the penultimate step we used the norm bound ∥ImGs∥ ≤ η
−1
s , and in the ultimate step

we used the fact that ηs > 0 in Dabv
s . We now estimate the two integrals in the last line of (6.4.5)

separately. For the first integral, we use the imaginary part of (6.3.18) to obtain

∫

t∧τ

tinit

⟨ImMs⟩ +
1
2ηs

N2η3
s

ds = ∫
t∧τ

tinit

−dηs
N2η3

s

≤
1

N2η2
t∧τ

. (6.4.6)

For the second integral, we use the definition (6.4.4) of the stopping time τ , and the imaginary part
of (6.3.20) to deduce that

∣∫

t∧τ

tinit

⟨ImGs − ImMs⟩

N2η3
s

ds∣ ≲ ∣∫
t∧τ

tinit

N3ξ+3(ℓ+1
2ν)

N3η4
s

ds∣ ≲ ∣∫
t∧τ

tinit

N3ξ+3(ℓ+1
2ν)

N3η4
s⟨ImMs⟩

dηs∣ ≲
N−ε+3ξ+3(ℓ+1

2ν)

N2η2
t∧τ

,

(6.4.7)
9The grid argument relies on two straightforward observations: First, the resolvent Gt(z) with ∣Im z∣ ≥ N−1 – and,

therefore, all quantities we consider – are Lipschitz continuous with a Lipschitz constant ≲ NC for some C > 0 both in
z and in t. Second, for any C > 0, the intersection of NC -many very-high-probability events also occurs with very high
probability. Therefore, a uniform very-high probability bounds are first established over a sufficiently fine N−C grid in
the domain of z or t, and then extended to the entire domain by Lipschitz continuity.
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6.4. Characteristic flow: Proof of Proposition 6.3.6

where in the last inequality we used that ⟨ImMs⟩Nηs ∼ ρs(zs)Nηs ≳ N
ε for all tinit ≤ s ≤ tfinal by

(6.3.21).

Therefore, using the path-wise Burkholder-Davis-Gundy inequality (see Lemma 5.6 in [162] and
Appendix B.6, Eq. (18) in [523]) and the fact that ξ +Kν ≪ ε, we deduce that, with very high
probability

max
tinit≤s≤t

∣∫

s∧τ

tinit

1
√
N
∑
ab

∂ab⟨Gs⟩d(Bs)ab∣ ≤
Nν

Nηt∧τ
. (6.4.8)

Next, using the Ward identity and the definition (6.4.4) of the stopping time τ , we obtain

∣
1
2
+ ⟨G2

s⟩∣ ≤
1
2
+
⟨ImGs⟩

ηs
≤ −

1
ηs

dηs
ds
+
N3ξ+3(ℓ+1

2 )ν

Nη2
s

≤ −
1
ηs

dηs
ds
(1 +CN−ε+3ξ+3(ℓ+1

2 )ν), (6.4.9)

where in the last inequality we used the imaginary part of (6.3.18) and the bound ⟨ImMs⟩Nηs ∼
ρs(zs)Nηs ≳ N

ε from (6.3.21). By integrating (6.4.2), it follows from the assumption of Proposi-
tion 6.3.6 at t = tk−1 = tinit and (6.4.8) that the bound

∣⟨Gt∧τ −Mt∧τ ⟩∣ ≤ −(1 +CN−ε+ξ+(ℓ+
1
2 )ν)(∫

t∧τ

tinit

∣⟨Gs −Ms⟩∣

ηs

dηs
ds

ds + N
3ξ+3ℓν

Nηt∧τ
), (6.4.10)

holds with very high probability. Here we used that ξ ≪ ε from (6.3.3), and the assumption that
ℓν ≤ 2Kν ≪ ε. Applying the Gronwall inequality yields the very-high-probability bound,

∣⟨Gt∧τ −Mt∧τ ⟩∣ ≤
N3ξ+3(ℓ+1

4 )ν

Nηt∧τ
, (6.4.11)

uniformly in tinit ≤ t ≤ tfinal.

Similarly, computing the quadratic variation of the martingale term in (6.4.3), we obtain

[∫

⋅

tinit

1
√
N
∑
ab

∂ab(Gs)uv
d(Bs)ab]

t∧τ
≤ ∫

t∧τ

tinit

(ImGs)uu
(ImGs)vv

Nη2
s

ds

≲ ∫

t∧τ

tinit

ρs(zs)
2

Nη2
s

(1 + N ξ+(ℓ+1)ν
√
ρs(zs)Nηs

)

2
ds ≲ ρt∧τ(zt∧τ)

Nηt∧τ
,

(6.4.12)

where we used the imaginary part of (6.3.20) to obtain ρs(zs) ∼ ρt∧τ(zt∧τ). Therefore, using the
path-wise Burkholder-Davis-Gundy inequality, we deduce the very-high-probability bound

max
tinit≤s≤t

∣∫

s∧τ

tinit

1
√
N
∑
ab

∂ab(Gs)uv
d(Bs)ab∣ ≤ N

ν

√
ρt∧τ(zt∧τ)

Nηt∧τ
. (6.4.13)

Moreover, using the Ward identity within the Schwarz estimate ∣(G2
s)uv
∣ ≤
√
(∣Gs∣2)uu(∣Gs∣2)vv,

together with (6.4.1), (6.4.4), and the relations ξ +Kν ≪ ε, we deduce that

∣(G2
s)uv
∣ ≲ ρs(zs)(1 +

N ξ+(ℓ+1
2 )ν

√
ρs(zs)Nηs

) ≲ ρs(zs). (6.4.14)

Therefore, from (6.3.21) and the bound (6.4.11), we conclude that

∣∫

t∧τ

tinit
⟨Gs −Ms⟩(G

2
s)uv

ds∣ ≲ ∫
t∧τ

tinit

N3ξ+3(ℓ+1
2 )ν

Nηs

ρs(zs)

ηs
ds ≤ N

3ξ+3(ℓ+1)ν

N ε/2

√
ρt∧τ(zt∧τ)

Nηt∧τ
. (6.4.15)
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Integrating (6.4.3), and combining the assumption of Proposition 6.3.6 at time t = tk−1 = tinit,
(6.4.13) and (6.4.15) yields

∣(Gt∧τ −Mt∧τ)uv
∣ ≤ N ξ+(ℓ+1

2 )ν
√

ρt∧τ(z)

Nηt∧τ
, (6.4.16)

uniformly in tinit ≤ t ≤ tfinal, with very high probability, for all u,v ∈ V. Note that the term
1
2(Gt−Mt)uv on the right-hand side of (6.4.3) and can be removed by differentiating e−t/2(Gt−Mt)uv

with the harmless prefactor e−t/2 = 1 +O(T ).

Hence, using (6.4.11) and (6.4.16), we conclude that τ = tfinal with very high probability, therefore
establishing the isotropic local law and averaged local law in (6.3.1) for B ∶= I with data (Dabv

tfinal , ξ +

(ℓ + 1
2)ν).

For a general observable B ∈ CN×N , we use the bound (6.4.11) as input to obtain the very-high-
probability estimate

∣⟨Gs −Ms⟩⟨G
2
sB⟩∣ ≤

N3ξ+3(ℓ+1
4 )ν

Nηs

⟨ImGs⟩
1/2
⟨ImGsBB

∗⟩
1/2

ηs
≲
N3ξ+3(ℓ+1

4 )ν

Nηs

ρs(zs)

ηs
∥B∥hs .

(6.4.17)
uniformly in tinit ≤ s ≤ tfinal. Here, in the last step we used the isotropic bound (6.4.16) for the
eigenvectors vj of BB∗, corresponding to the eigenvalues ∣σj ∣2, to conclude that, with very high
probability,

⟨ImGBB∗⟩ =
1
N
∑
j

∣σj ∣
2
(ImG)vjvj ≲ ρs(zs)∥B∥

2
hs. (6.4.18)

Similarly, using (6.4.18), we estimate the quadratic variation of the corresponding martingale term
in (6.4.2) for general B,

[∫

⋅

tinit

1
√
N
∑
ab

∂ab⟨GsB⟩d(Bs)ab]
t∧τ
≲

Nν

N2η2
t∧τ
∥B∥hs . (6.4.19)

Combining (6.4.2), (6.4.17), and (6.4.19), we conclude that the resolvent Gtfinal satisfies the averaged
local law in (6.3.1) with data (Dabv

tfinal , ξ + (ℓ + 1)ν) for any B ∈ CN×N . This concludes the proof of
Proposition 6.3.6.

6.5 Green function comparison: Proof of Proposition 6.3.7
The goal of this section is to prove Proposition 6.3.7 and thereby conclude the argument for the zag
step of our proof. For simplicity, we will carry out the proof only in the real symmetric case; the
complex Hermitian case can be dealt with minor modifications and is thus omitted. Moreover, since
throughout the argument the time tk defined in (6.3.23) remains fixed, for the remainder of this
section, we drop the superscript tk from Dabv

tk
, ρtk , and Mtk . To further condense the notation, we

abbreviate D ∶= Dabv
tk

and sfinal ∶= s(∆tk).

The proof will be conducted iteratively along vertical truncations of the domain D, defined as

Dγ ≡ D
abv
tk,γ
∶= {z ∶= E + iη ∈ D ≡ Dabv

tk
∶ η ≥ N−1+γ

}, 0 < γ ≤ 1. (6.5.1)

This is formalized in the following proposition, which we prove in Section 6.5.2.

Proposition 6.5.1 (Zag Bootstrap). Fix a constant 0 < γ0 ≤ 1 and assume that the very-high-
probability bounds on the matrix elements of the resolvent (6.3.28)

∣(Gs(z))
uv
∣ ≲ 1, ∣(ImGs(z))

uu
∣ ≲ ρ(z), (6.5.2)
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hold uniformly in z ∈ Dγ0 and s ∈ [0, sfinal], for any deterministic u,v ∈ CN with ∥u∥ = ∥v∥ = 1.
Fix γ1 ≥ γ0 − δ with δ < µ satisfying δ ≪ ξ, and assume that for some ν > 0 and ℓ ∈ N, the resolvent
Gs satisfies the local laws (6.3.1) with data (Dγ1 , ξ + ℓν) at time s = sfinal. Then the resolvent Gs
satisfies the local laws (6.3.1) with data (Dγ1 , ξ + (ℓ + 1)ν) uniformly in s ∈ [0, sfinal].

Armed with Proposition 6.5.1, we can easily conclude Proposition 6.3.7.

Proof of Proposition 6.3.7. The proof goes via induction in γ(k) ∶= 1 − kδ by iteratively applying
Proposition 6.5.1. As the base case, clearly, the estimates (6.5.2) hold for γ0 = γ(0) = 1 as a
direct consequence of the bounds ∥Gs(E + iη)∥ ≤ η−1 and ρ(E + iη) ∼ 1 for η ∼ 1. Moreover, the
resolvent Gs satisfies the local laws (6.3.1) with data (Dγ1 , ξ + ℓν) with γ1 = γ(1) at time s = sfinal
by assumption. Hence, the resolvent Gs satisfies the local laws (6.3.1) with data (Dγ(1), ξ+(ℓ+1)ν)
uniformly in s ∈ [0, sfinal] by Proposition 6.5.1. As a consequence, since ξ + (ℓ + 1)ν ≪ ε, we have
that the resolvent Gs satisfies the bounds (6.5.2) uniformly in z ∈ Dγ(1) and s ∈ [0, sfinal]

As the induction step, assume now that for an integer k ≥ 1 the resolvent Gs satisfies the bounds
(6.5.2) uniformly in z ∈ Dγ(k) and s ∈ [0, sfinal]. (Recall that, as above, Gs satisfies the local
laws (6.3.1) with data (Dγ(k), ξ + ℓν) at time s = sfinal by assumption.) Therefore, the resolvent
Gs satisfies the local laws (6.3.1) with data (Dγ(k+1), ξ + (ℓ + 1)ν) uniformly in s ∈ [0, sfinal] by
Proposition 6.5.1. Note that after K ′ ∶= ⌈(1+ ε)/δ⌉ ∼ 1 steps, Dγ(K′) = D and we have hence proven
Proposition 6.3.7.

It thus remains to prove Proposition 6.5.1. We begin by collecting several preliminaries in Section 6.5.1.
Afterwards, in Section 6.5.2 we give the proof of Proposition 6.5.1 based on average and isotropic
Gronwall estimates. These bounds are proven in Sections 6.5.3.1 and 6.5.3.2, respectively.

6.5.1 Preliminaries
In order to perform the GFT, i.e., compare initial and final W ’s, given by W t = Ht −A with Ht

being the solution to (6.3.9), we employ Itô’s formula: For a C2-function f(W t), it holds that

d
dt

E f(W t
) = −

1
2

E∑
α

wα(t)(∂αf)(W
t
) +

1
2N ∑α,β

κt(α,β)E(∂α∂βf)(W t
) , (6.5.3)

where κt(α,β) denotes the (normalized, recall (6.2.5)) second order cumulant of wα(t) and wβ(t),
the matrix entries of W t. The first summand on the rhs. of (6.5.3) can now be further treated by
cumulant expansion, which is first key ingredient for our proof.

Proposition 6.5.2 (Multivariate cumulant expansion; cf. Proposition 3.2 in [243] and Lemma 3.1 in
[329]). Let f ∶RN×N → C be a L times differentiable function with bounded derivatives. Let W
be a random matrix, whose normalized cumulants satisfy Assumption 6.2.3. Then, for any index
α0 ∈ [N]

2 it holds that

Ewα0f(W ) =
L−1
∑
k=0

∑
α∈N (α0)k

κ(α0,α)

N (k+1)/2k!
E(∂αf)(W ) +ΩL(f,α0), (6.5.4)

where α = (α1, ..., αk) and ∂α = ∂wα1
...∂wαk

for k ≥ 1, and for k = 0 is considered as the function f
itself. Moreover, the error term in (6.5.4) satisfies

∣ΩL(f,α0)∣ ≲
CL

N (L+1)/2 ∑
α∈N (α0)L

sup
λ∈[0,1]

(E ∣(∂αf)(λW ∣N (α0) +W ∣[N]2∖N (α0))∣
2
)

1/2
, (6.5.5)

for some constant CL > 0 depending only on L. The notation W ∣N for N ⊂ [N]2 in (6.5.5) refers
to the matrix which equals W at all entries α ∈N and is zero otherwise.
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Note that the k = 1 term in the expansion of the first summand on the rhs. of (6.5.3) exactly cancels
the second summand on the rhs. of (6.5.3). For Proposition 6.5.2 being practically applicable we
need to control (i) every order of the expansion, and (ii) the truncation term Ω. These will be
guaranteed by Assumption 6.2.3 above.

The second key input required for the GFT argument is the following monotonicitiy estimate on
resolvents.

Lemma 6.5.3 (Monotonicity estimate). Fix a constant 0 < γ0 ≤ 1 and assume that the very-high-
probability bounds (6.5.2) hold uniformly in z ∈ Dγ0 and s ∈ [0, sfinal], for any deterministic u,v ∈ CN
with ∥u∥ = ∥v∥ = 1.

Fix γ1 ≥ γ0 − δ. Then, we have

∣Gs(E + iη1)uv ∣ ≲
η0
η1
, ∣ImGs(E + iη1)uu∣ ≲ ρ(E + iη0)

η0
η1
, (6.5.6)

with very high probability, uniformly in z ∶= E + iη1 ∈ Dγ1 for any η0 ≥ N
−1+γ0 ∨η1, time s ∈ [0, sfinal],

and for any deterministic vectors u,v ∈CN with ∥u∥ = ∥v∥ = 1.

We defer the proof of Lemma 6.5.3 to Appendix 6.A.

6.5.2 Gronwall estimates: Proof of Proposition 6.5.1

In this section, we provide the proof of Proposition 6.5.1 based on two Gronwall estimates, formulated
in Propositions 6.5.4–6.5.5 below that will be proven in the next subsection. The isotropic part of
Proposition 6.5.1 will be concluded in a self contained way, based entirely on the isotropic Gronwall
estimate in Proposition 6.5.4. Its conclusion in (6.5.11) then serves as an input for the average
Gronwall estimate in Proposition 6.5.5.

Proposition 6.5.4 (Isotropic Gronwall estimate). Assume the conditions of Proposition 6.5.1. Fix
x,y ∈ CN of bounded norm, z ∶= E + iη1 ∈ Dγ1 and η0 ≥ N

−1+γ0 ∨ η1 such that η0/η1 ≤ N
δ. For

s ∈ [0, sfinal], define
Ss ∶= (G

s
(E + iη1) −M(E + iη1))xy

. (6.5.7)

Then, for any (large) even p ∈N, it holds that

∣
d
ds

E ∣Ss∣p∣ ≲
⎛

⎝
1 +N10δ

√
ρ(E + iη0)

η0

⎞

⎠
[E ∣Ss∣p + (Ψ(η1))

p
], (6.5.8)

uniformly in s ∈ [0, sfinal], bounded x,y ∈CN , and z ∈ Dγ1 . Here, for η ∈ [η0, η1], we denoted

Ψ(η) ∶=
√

ρ(E + iη)
Nη

. (6.5.9)

By Gronwall’s lemma, uniformly in s ∈ [0, sfinal], from (6.5.8) we find that

E ∣Ss∣p ≲ exp
⎛

⎝

⎛

⎝
1 +N10δ

√
ρ(E + iη0)

η0

⎞

⎠
(sfinal − s)

⎞

⎠
[E ∣Ssfinal ∣

p
+ (Ψ(η1))

p
]

≲ exp(N−ξ/10
) [E ∣Ssfinal ∣

p
+ (Ψ(η1))

p
] ≲ E ∣Ssfinal ∣

p
+ (Ψ(η1))

p .

(6.5.10)

Here we used that ρ(E + iη0)/η0 ≲ N
kδ/T by (6.3.21), sfinal ≲ N

−(k−1)δT by (6.3.15), T ∼ N−ξ/4
from (6.3.22), and δ ≪ ξ by (6.3.3).
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To estimate E ∣Ssfinal ∣
p, recall that the resolvent Gs satisfies the isotropic local law in (6.3.1) with

data (Dγ1 , ξ + ℓν) at s = sfinal. Therefore, since p in (6.5.10) was arbitrary, we find that

∣(Gs(z) −M(z))
xy
∣ ≤ N ξ+(ℓ+1)ν

√
ρ(z)

Nη1
, (6.5.11)

uniformly in z ∶= E + iη1 ∈ Dγ1 , s ∈ [0, sfinal], and bounded x,y ∈CN , with very high probability.

This proves the isotropic part of Proposition 6.5.1 and we are left with the average part.

Proposition 6.5.5 (Average Gronwall estimate). Fix B ∈CN×N of bounded Hilbert–Schmidt norm,
∥B∥hs ≤ 1, z ∶= E + iη ∈ Dγ1 , and η0 ≥ N

−1+γ0 ∨ η1 such that η0/η1 ≤ N
δ. For s ∈ [0, sfinal], define

Rs ∶= ⟨(G
s
(E + iη1) −M(E + iη1))B⟩ . (6.5.12)

Moreover, suppose that (6.5.11) holds uniformly in z ∶= E + iη1 ∈ Dγ1 , s ∈ [0, sfinal], and bounded
x,y ∈CN . Then, for any (large) even p ∈N it holds that

∣
d
ds

E ∣Rs∣p∣ ≲ (1 +N−2δ ρ(E + iη0)

η0
) [E ∣Rs∣p + (

N3ξ

Nη1
)

p

] , (6.5.13)

uniformly in s ∈ [0, sfinal], bounded B ∈CN×N , and z ∈ Dγ1 .

Analogously to (6.5.10), by Gronwall’s lemma, uniformly in s ∈ [0, sfinal], we find that

E ∣Rs∣p ≲ exp((1 +N−2δ ρ(E + iη0)

η0
) (sfinal − s)) [E ∣Rsfinal ∣

p
+ (

N3ξ

Nη1
)

p

]

≲ exp(N−δ) [E ∣Rsfinal ∣
p
+ (Ψ(η1))

p
] ≲ E ∣Rsfinal ∣

p
+ (

N3ξ

Nη1
)

p

.

(6.5.14)

Here we used that ρ(E + iη0)/η0 ≲ N
kδ/T by (6.3.21), sfinal ≲ N

−(k−1)δT by (6.3.15), T ∼ N−ξ/4 by
(6.3.22), and δ ≪ ξ by (6.3.3). Note that the small prefactor N−2δ in (6.5.13) is absolutely essential,
unlike in the isotropic case (6.5.10), where a large prefactor N10δ is affordable thanks to the square
root. The linear appearance of ρ/η in (6.5.13) is only due to fact that we estimate B in terms of its
Hilbert–Schmidt norm ∥B∥hs; cf. the estimate in (6.5.21). For observables with ∥B∥ ∼ ∥B∥hs, such
as the identity matrix B = 1, the linear dependence on ρ/η can be improved to a

√
ρ/η. We exploit

this fact in (6.6.22) below.

Recall that the resolvent Gs satisfies the average local law in (6.3.1) with data (Dγ1 , ξ + ℓν) at
s = sfinal. Therefore, since p in (6.5.14) was arbitrary, we find that

∣⟨(Gs(z) −M(z))B⟩∣ ≤
N3(ξ+(ℓ+1)ν)

Nη1
,

uniformly in z ∶= E + iη1 ∈ Dγ1 , s ∈ [0, sfinal], and B ∈ CN×N with ∥B∥hs ≤ 1, with very high
probability.

This concludes the proof of Proposition 6.5.1.

6.5.3 Cumulant expansion: Proofs of Propositions 6.5.5 and 6.5.4
The proofs of Propositions 6.5.4–6.5.5 are based on the multivariate cumulant expansion from
Proposition 6.5.2 and the monotonicity estimate from Lemma 6.5.3. We begin by proving the average
Gronwall estimate in Proposition 6.5.5. Moreover, we will henceforth omit the superscript s from the
resolvent Gs.
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6. Cusp universality for correlated random matrices

6.5.3.1 Average case: Proof of Proposition 6.5.5

Throughout the proof, we will assume that ∥B∥hs ≲ 1. By (6.5.3) for Rs we have

d
ds

E ∣Rs∣p = −
1
2

E∑
α1

wα1(s)(∂α1 ∣Rs∣
p
) +

1
2 ∑α1,α2

κs(α1, α2)E[∂α1∂α2 ∣Rs∣
p], (6.5.15)

where wαi(s) is the αi-th entry ofWs, κs(α1, α2, ...) is a joint normalized cumulant of wα1(s),wα2(s), ...
and ∂αi = ∂wαi(s) denotes the partial derivative in the direction of wαi(s).

The first term on the rhs. of (6.5.15) can now be expanded by means of Proposition 6.5.2:

E[wα1(s)(∂α1 ∣Rs∣
p
)] =

L−1
∑
k=0

∑
α∈N (α1)k

κs(α1,α)

N (k+1)/2 k!
E[∂α1∂α∣Rs∣

p] +ΩL . (6.5.16)

Since L derivatives of ∣Rs∣p create L additional resolvent matrix elements (where each of them is
bounded with the aid of Lemma 6.5.3) and using that ∣N (α1)∣ ≲ N

1/2−µ by Assumption 6.2.3 (ii),
the error term ΩL can be estimated as10

∣ΩL∣ ≲ N
−L+1

2 NL(1/2−µ)N (p+L)δ ≲ N2pδ+L(δ−µ). (6.5.17)

Using the relation µ > δ from (6.3.3) and L ∶= ⌈((1+δ)p+2)/(µ−δ)⌉, we see that ∣ΩL∣ ≤ N
−2(Nη1)

−p

(the factor N−2 is needed to bound the summation over α1 in (6.5.15)). With this choice of L, the
error term ΩL will henceforth be ignored.

Plugging (6.5.16) into (6.5.15) and using that the k = 0 term is zero by κs(α1) = Ewα1(s) = 0, and
that the k = 1 term in (6.5.16) cancels the second term on the rhs. of (6.5.15), we obtain

∣
d
ds

E ∣Rs∣p∣ ≲
RRRRRRRRRRRR

L−1
∑
k=2
∑
α1

∑
α∈N (α1)k

κs(α1,α)

N (k+1)/2 k!
E(∂α1∂α∣Rs∣

p
)

RRRRRRRRRRRR

+ (
1

Nη1
)
p

. (6.5.18)

We will now first estimate the third order cumulant terms (i.e. those with k = 2 in (6.5.18)), as
these are the most delicate, and afterwards turn to the higher order ones that can be handled by
simple power counting with a little twist due to the Hilbert–Schmidt norm of the observable B.
Moreover, we drop the time dependence of Rs and κs whenever it does not lead to confusion. We
point out that Assumption 6.2.3 also holds for W s from (6.3.9), uniformly in s ∈ [0,∞). Indeed,
adding an independent Gaussian random matrix to W0 has no effect on cumulants of order k ≥ 3
(by Gaussianity) and leaves the first two joint moments as well as the independence property of
Assumption 6.2.3 (ii) invariant (the covariance tensor Σ is trivial beyond the range N (α1)) by
construction (6.3.9). In particular, we can freely extend the summation over α ∈N (α1)

k in (6.5.18)
to α ∈ ([N]2)k and combine the latter two summations in (6.5.18) into ∑α1,α.

Now, for the third order cumulant terms, we aim to control
RRRRRRRRRRR

N−3/2
∑

α1,α2,α3

κ(α1, α2, α3)E(∂α1∂α2∂α3 ∣R∣
p
)

RRRRRRRRRRR

,

10To be precise, note some of the p+L resolvents in the error term ΩL are actually resolvents of the random matrix
W (λ) ∶= λW ∣N(α0) +W ∣[N]2∖N(α0) (recall (6.5.5)) and we need to guarantee their boundedness as well, uniformly in
λ ∈ [0, 1]. We perform a resolvent expansion of G(λ) ∶= (A +W (λ)

− z)−1 up to some order m̃ ∈N around G(1) whose
boundedness is known. For each G(λ), the mth order term in this expansion can be bounded by NδNm(δ−µ+ν) with
the aid of Lemma 6.5.3 (to bound G(1) isotropically) and using the norm estimate ∥W ∣N(α0)∥ ≤ N

−µ+ν , w.v.h.p. for
any ν > 0, which is a consequence of Assumption 6.2.3 (ii). By a simple norm bound ∥G(λ)∥ ≤ η−1, the last truncation
term in the resolvent expansion admits the bound NδNm̃(δ−µ+ν)η−1. Therefore, since η depends at most polynomially
on N and µ > δ + ν for some ν > 0 small enough, the resolvent expansion can be truncated at finite order, leaving us
with the bound Nδ for every matrix element of G(λ) employed in (6.5.17), uniformly in λ ∈ [0,1].
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6.5. Green function comparison: Proof of Proposition 6.3.7

which, after employing the Leibniz rule, can be broken up into terms of the form (∂3
αR)∣R∣

p−1,
(∂αR)(∂

2
αR)∣R∣

p−2, and (∂αR)3∣R∣p−3. To further ease the notation, here and in the following, we
neglect the difference between R and R, as these will be estimated in a completely analogous way.

We begin with the terms of the form (∂3
αR)∣R∣

p−1, which requires the bound (6.2.8) in Assump-
tion 6.2.3 (i). Writing ⟨GB⟩ = N−1

∑j(GB)jj and identifying αi ≡ (ai, bi) ∈ [N]
2, we aim to

estimate (ignoring the ∣R∣p−1-factor)

N−5/2
RRRRRRRRRRR

∑
j,α1,α2,α3

κ(α1, α2, α3)Gja1Gb1a2Gb2a3(GB)b3j

RRRRRRRRRRR

= N−5/2
RRRRRRRRRRR

∑
α1,α2,α3

κ(α1, α2, α3)Gb1a2Gb2a3(GBG)b3a1

RRRRRRRRRRR

.

For both Gb1a2 and Gb2a3 we write Gba =Mba + (G −M)ba and use ∥M∥ ≲ 1 for the M -term and
the bound (6.5.11) for the (G −M)-term. In particular (recalling the notation (6.5.9)),

N−5/2
RRRRRRRRRRR

∑
α1,α2,α3

κ(α1, α2, α3)Mb1a2(G −M)b2a3(GBG)b3a1

RRRRRRRRRRR

≲ N−5/2N ξ+(ℓ+1)ν Ψ(η1) ∑
α1,α2,α3

∣κ(α1, α2, α3)∣ ∣(GBG)b3a1 ∣

≲ N−5/2N ξ+(ℓ+1)ν Ψ(η1) ∑
α1,α2,α3

∣κ(α1, α2, α3)∣ ∣(GBB
∗G∗)b3b3 ∣

1/2
∣(GG∗)a1a1 ∣

1/2

≲ N ξ+(ℓ+1)ν Ψ(η1)
2
∥∑
α2

∣κ(∗, α2,∗)∣∥ ⟨GG
∗BB∗⟩1/2 ≲ N−δ

√
ρ(E + iη0)

η0

N3ξ

Nη1
,

(6.5.19)

with very high probability. In the second step, we used the Schwarz inequality. In the ultimate step,
similarly to (6.4.18), we used (6.2.6), the Ward identity, the spectral decomposition of BB∗, and
(6.5.11) together with (ImM)vv ≲ ρ(E + iη1) by (6.4.1), to obtain

⟨ImGBB∗⟩ =
1
N
∑
j

∣σj ∣
2
(ImG)vjvj ≲ ρ(E + iη1)∥B∥

2
hs , (6.5.20)

and used δ ≪ ξ by (6.3.3), and the fact that ν > 0 is arbitrarily small. Note that the small factor N−δ
in the last line of (6.5.19) is balanced by an additional N ξ. The terms with (G −M)b1a2Gb2a3 and
(G −M)b1a2(G −M)b2a3 are treated analogously and we are thus left with the Mb1a2Mb2a3-term.
Here, using the ∣∣∣κ∣∣∣av

3 norm from (6.2.8), we estimate

N−5/2
RRRRRRRRRRR

∑
α1,α2,α3

κ(α1, α2, α3)Mb1a2Mb2a3(GBG)b3a1

RRRRRRRRRRR

≤ N−1
∣∣∣κ∣∣∣av

3 ∥M∥
2
∥GBG∥hs ≲ η

−1/2
1

1
Nη1
⟨ImGBB∗⟩1/2 ≲ N−δ

√
ρ(E + iη0)

η0

N3ξ

Nη1
,

(6.5.21)

with very high probability. In the penultimate step we used the definition of ∥ ⋅ ∥hs together with a
Ward identity and the trivial bound ∥G∥ ≤ η−1

1 ; in the last step we employed (6.5.20) and η0/η1 ≤ N
δ

together with monotonicity of η ↦ ηρ(E + iη) and δ ≪ ξ. Hence, by two Young inequalities , we
thus find

RRRRRRRRRRR

N−3/2
∑

α1,α2,α3

κ(α1, α2, α3)E[(∂α1∂α2∂α3R)∣R∣
p−1]
RRRRRRRRRRR

≲ (1 +N−2δ ρ(E + iη0)

η0
) [E ∣R∣p + (N

3ξ

Nη1
)

p

] ,

(6.5.22)
where we overestimated N−δ

√
ρ/η0 ≲ 1 +N−2δρ/η0.
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Next, we turn to terms of the form (∂αR)(∂2
αR)∣R∣

p−2. Similarly to (6.5.19), using (6.2.6) for k = 3,
we find

N−7/2
RRRRRRRRRRR

∑
j,k,α1,α2,α3

κ(α1, α2, α3)Gja1Gb1a2(GB)b2jGka3(GB)b3k

RRRRRRRRRRR

≲ N−7/2
∑

α1,α2,α3

∣κ(α1, α2, α3)∣ ∣(GBG)b3a3 ∣ ∣(GBG)b2a1 ∣

≲ N−7/2
√

ρ(E + iη1)

η1
∑

α1,α2,α3

∣κ(α1, α2, α3)∣ ∣(GBG)b3a3 ∣
√
(GBB∗G∗)b2b2

≲ N−7/2
√

ρ(E + iη1)

η1
∣∣∣κ∣∣∣3

√

∑
b3,a3

∣(GBG)b3a3 ∣
2
√

∑
b2a2

(GBB∗G∗)b2b2

≲
ρ(E + iη1)

1/2

N2η2
1

⟨ImGBImGB∗⟩1/2⟨ImGBB∗⟩1/2 ≲ N−δ
√

ρ(E + iη0)

η0
(
N3ξ

Nη1
)

2

,

(6.5.23)

with very high probability. To go to the third line, we used a Schwarz inequality and the estimate
(GG∗)a1a1 ≲ ρ/η1 w.v.h.p. (as follows by a Ward identity and (6.5.11)). In the penultimate step, we
again used several Ward identities. In the last step we used ⟨ImGBImGB∗⟩ ≤ ⟨ImGBB∗⟩/η1 and
(6.5.20) together with η0/η1 ≤ N

δ, monotonicity of η ↦ ηρ(E + iη), and δ ≪ ξ by (6.3.3). Hence,
again by Young’s inequality and overestimating N−δ

√
ρ/η0 ≲ 1 +N−2δρ/η0, we find

RRRRRRRRRRR

N−3/2
∑

α1,α2,α3

κ(α1, α2, α3)E[(∂α1∂α2R)(∂α3R)∣R∣
p−2]
RRRRRRRRRRR

≲ (1 +N−2δ ρ(E + iη0)

η0
)[E ∣R∣p +N ξ

(
N δ

Nη1
)

p

] .

(6.5.24)

Finally, we estimate terms of the form (∂αR)3∣R∣p−3, which are the most critical ones, since they
necessarily contribute the N−2δρ/η factor as we estimate B by its Hilbert–Schmidt norm ∥B∥hs .
For terms of the form (∂αR)3∣R∣p−3, similarly to (6.5.19) and (6.5.23), we find

N−9/2
RRRRRRRRRRR

∑
j,k,ℓ,α1,α2,α3

κ(α1, α2, α3)Gja1(GB)b1jGka2(GB)b2kGℓa3(GB)b3ℓ

RRRRRRRRRRR

≲ N−9/2 ρ(E + iη1)

η1
∥B∥ ∑

α1,α2,α3

∣κ(α1, α2, α3)∣ ∣(GBG)b2a2 ∣ ∣(GBG)b3a3 ∣

≲ N−9/2 ρ(E + iη1)

η1
∥B∥∣∣∣κ∣∣∣3∑

a,b

∣(GBG)ab∣
2
≲ N−7/2 ρ(E + iη1)

2

η4
1

∥B∥∥B∥2hs

≲ N−2δ ρ(E + iη0)

η0
(
N3ξ

Nη1
)

3

.

(6.5.25)

To go to the second line, we used that

∣(GBG)ab∣ ≤ ∥B∥
√
(GG∗)aa(GG∗)bb ≲ ∥B∥

ρ(E + iη1)

η1
, (6.5.26)

by a Schwarz inequality, a Ward identity and (6.5.11). In the third line we estimated

∑
a,b

∣(GBG)ab∣
2
=
N

η2
1
⟨ImGBImGB∗⟩ ≲

Nρ(E + iη1)

η3
1

∥B∥2hs , (6.5.27)

with very high probability, by means of Ward identities and (6.5.20). To go to the fourth line, we used
∥B∥ ≤

√
N∥B∥hs and the fact that δ ≪ ξ by (6.3.3), together with η0/η1 ≤ N

δ and monotonicity of
η ↦ ηρ(E + iη). Hence, (6.5.25) together with Young’s inequality implies that

N−3/2
RRRRRRRRRRR

∑
α1,α2,α3

E[(∂α1R)(∂α2R)(∂α3R)∣R∣
p−3]
RRRRRRRRRRR

≲ (1 +N−2δ ρ(E + iη0)

η0
)[E ∣R∣p + (N

3ξ

Nη1
)

p

] .

(6.5.28)
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For the higher order terms in (6.5.18) with n = k + 1 ≥ 4 we aim to estimate
RRRRRRRRRRR

N−n/2 ∑
α1,...,αn

κ(α1, ..., αn)E[∂α1 ...∂αn ∣R∣
p]

RRRRRRRRRRR

.

In case that the n derivatives are distributed on k ∈ [n] factors of R, we find that, for nℓ ∈N with
∑
k
ℓ=1 nℓ = n and identifying (αi)i∈[n] ≡ ((aℓi , bℓi))i∈[nℓ],ℓ∈[k]

,

RRRRRRRRRRR

N−n/2N−k ∑
j1,...,jk

∑
α1,...,αn

κ(α1, ..., αn)
k

∏
ℓ=1
(Gjℓaℓ1

Gbℓ1aℓ2
...Gbℓnℓ−1aℓnℓ

(GB)bℓnℓ
jℓ)

RRRRRRRRRRR

≲ N−n/2N−k ∑
α1,...,αn

∣κ(α1, ..., αn)∣
k

∏
ℓ=1
∣(GBG)bℓnℓ

aℓ1
∣

≲ N−n/2N−k (
ρ(E + iη1)

η1
)

k−2
∥B∥k−2

∑
α1,...,αn

∣κ(α1, ..., αn)∣ ∣(GBG)b̃1ã1
∣ ∣(GBG)b̃2ã2

∣

(6.5.29)

To go to the second line, we performed all the j summations and estimated all the other resolvents
without a j index by (6.5.11); to go to the third line, we used (6.5.26) for k − 2 of the k factors and
used a simplified notation for the indices ã, b̃, which agree with some aℓi , bℓj . The two factors of
GBG are kept separately, since we aim for an estimate in terms of Hilbert–Schmidt norm ∥B∥hs of
the observable B; otherwise the whole argument for the higher order terms would be a simple power
counting. However, now we distinguish two cases: (i) k ≤ n − 2, and (ii) k ∈ {n − 1, n}.

In the less critical case (i), we use a Schwarz inequality to estimate ∣(GBG)b̃ã∣ ≲
√
(GBB∗G∗)b̃b̃

√
ρ/η1,

similarly to (6.5.26). Then, we continue to estimate (6.5.29) as

N−n/2N−k (
ρ(E + iη1)

η1
)

k−1
∥B∥k−2

∑
α1,...,αn

∣κ(α1, ..., αn)∣
√
(GBB∗G∗)b̃1b̃1

√
(GBB∗G∗)b̃2b̃2

≤ N−n/2N−k (
ρ(E + iη1)

η1
)

k−1
∥B∥k−2

∣∣∣κ∣∣∣n∑
ab

(GBB∗G∗)aa

≲ N2−n/2
(
ρ(E + iη1)

Nη1
)

k

∥B∥k−2
∥B∥2hs ≲ (

ρ(E + iη1)

Nη1
)

k

.

(6.5.30)

While in the second step, we used (6.5.20), the final step follows from ∥B∥ ≤
√
N∥B∥hs ≲

√
N and

k ≤ n − 2.

For case (ii), we first note that necessarily (ã1, b̃1) = (a1, b1) = α1, and similarly for index 2, up to
permutation of the arguments of κ in (6.5.29). This simply follows, since n ≥ 4 derivatives hitting
each of k ∈ {n − 1, n} factors at least once, means that at least two of them are hit exactly once.
Therefore, we can continue estimating (6.5.29) as

N−n/2N−k (
ρ(E + iη1)

η1
)

k−2
∥B∥k−2

∑
α1,...,αn

∣κ(α1, ..., αn)∣ ∣(GBG)b1a1 ∣ ∣(GBG)b2a2 ∣

≤ N−n/2N−k (
ρ(E + iη1)

η1
)

k−2
∥B∥k−2

∣∣∣κ∣∣∣n∑
ab

∣(GBG)ba∣
2

≲ N (k−n)/2 (
1

Nη1
)
k ρ(E + iη1)

η1
≲ N−2δ ρ(E + iη0)

η0
(
N3ξ

Nη1
)

k

.

(6.5.31)

Note that for k = n this estimate truly contributes the critical N−2δρ(E + iη0)/η0 factor. Here, in
the second step, we used (6.5.27) together with ∥B∥ ≤

√
N∥B∥hs ≲

√
N ; the final step follows from

η0/η1 ≤ N
δ together with monotonicity of η ↦ ηρ(E + iη) and δ ≪ ξ by (6.3.3).
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Hence, by Young’s inequality we deduce
RRRRRRRRRRR

N−n/2 ∑
α1,...,αn

κ(α1, ..., αn)E(∂α1 ...∂αn ∣R∣
p
)

RRRRRRRRRRR

≲ (1 +N−2δ ρ(E + iη0)

η0
) [E ∣R∣p + (N

3ξ

Nη1
)

p

] .

(6.5.32)

Therefore, combining (6.5.18) with (6.5.22), (6.5.24), (6.5.28), and (6.5.32), we obtain (6.5.13).
This finishes the proof of Proposition 6.5.5.

6.5.3.2 Isotropic case: Proof of Proposition 6.5.4

Similarly to the proof of Proposition 6.5.5, after applying Itô’s Lemma and a cumulant expansion,
we find

∣
d
ds

E ∣Ss∣p∣ ≲
RRRRRRRRRRRR

L−1
∑
k=2
∑
α1

∑
α∈N (α1)k

κs(α1,α)

N (k+1)/2 k!
E[∂α1∂α∣Ss∣

p]

RRRRRRRRRRRR

+Ψ(η1)
p . (6.5.33)

for some large enough L.

Employing the same notational simplifications as explained below (6.5.18), we again first estimate
the third order cumulant terms, given by

RRRRRRRRRRR

N−3/2
∑

α1,α2,α3

κ(α1, α2, α3)E[∂α1∂α2∂α3 ∣S∣
p]

RRRRRRRRRRR

.

Distributing the derivatives according to the Leibniz rule, we need to estimate various terms of the
forms (∂3

αS)∣S∣
p−1, (∂αS)(∂2

αS)∣S∣
p−2, and (∂αS)3∣S∣p−3. In contrast to the average case treated

in the proof of Proposition 6.5.5, there is no term in the cumulant expansion producing the most
critical N−2δρ/η factor; instead we get N8δ√ρ/η = N1/2+8δΨ.

We start with estimating the first type of terms. In this case, identifying αi ≡ (ai, bi) ∈ [N]
2 and

using Lemma 6.5.3 together with a Ward identity and Assumption 6.2.3 (i), we find

N−3/2
RRRRRRRRRRR

∑
α1,α2,α3

κ(α1, α2, α3)Gxa1Gb1a2Gb2a3Gb3y

RRRRRRRRRRR

≲ N−3/2N2δ
∑

α1,α2,α3

∣κ(α1, α2, α3)∣ ∣Gxa1 ∣ ∣Gb3y ∣

≲ N−3/2N2δ
∣∣∣κ∣∣∣3 ( ∑

a1,b1

∣Gxa1 ∣
2
)

1/2
( ∑
a3,b3

∣Gb3y ∣
2
)

1/2
≲ N1/2+3δ ρ(E + iη0)

Nη1

(6.5.34)

with very high probability. Completely analogously we obtain

N−3/2
RRRRRRRRRRR

∑
α1,α2,α3

κ(α1, α2, α3)Gxa1Gb1yGxa2Gb2a3Gb3y

RRRRRRRRRRR

≲ N1/2+4δ
(
ρ(E + iη0)

Nη1
)

3/2
(6.5.35)

and

N−3/2
RRRRRRRRRRR

∑
α1,α2,α3

κ(α1, α2, α3)Gxa1Gb1yGxa2Gb2yGxa3Gb3y

RRRRRRRRRRR

≲ N1/2+4δ
(
ρ(E + iη0)

Nη1
)

2
, (6.5.36)

again with very high probability. Hence, combining (6.5.34), (6.5.35), and (6.5.36) with Young’s
inequality and additionally using that η ↦ ρ(E + iη)/η is monotonically decreasing, we infer
RRRRRRRRRRR

N−3/2
∑

α1,α2,α3

κ(α1, α2, α3)E[∂α1∂α2∂α3 ∣S∣
p]

RRRRRRRRRRR

≲ N1/2+8δΨ(η0)[E ∣S∣p +Ψ(η1)
p] w.v.h.p.
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Next, we turn to the higher order terms, where we aim to estimate
RRRRRRRRRRR

N−n/2 ∑
α1,...,αn

κ(α1, ..., αn)E[∂α1 ...∂αn ∣S∣
p]

RRRRRRRRRRR

. (6.5.37)

Distributing the n derivatives on k ∈ [n] factors of S, we find that, for nℓ ∈ N with ∑kℓ=1 nℓ = n
and (w.l.o.g.) n1 ≤ n2 ≤ ... ≤ nk, and identifying (αi)i∈[n] ≡ ((aℓi , bℓi))i∈[nℓ],ℓ∈[k]

, (6.5.37) can be
rewritten as (ignoring the factor ∣S∣p−k)

RRRRRRRRRRR

N−n/2 ∑
α1,...,αn

κ(α1, ..., αn)
k

∏
ℓ=1
(Gxaℓ1

Gbℓ1aℓ2
...Gbℓnℓ−1aℓnℓ

Gbℓnℓ
y)

RRRRRRRRRRR

. (6.5.38)

If n2 = 1, since there are now at least two factors of S hit by a single derivative, we find that (similarly
to (6.5.31) in the proof of Proposition 6.5.5, cf. also [136, Eqs. (8.82)–(8.85)])

(6.5.38) ≲ N−n/2N (n+k−4)δ
∣∣∣κ∣∣∣n∑

a,b

∣GxaGby ∣
2

≲ N2−n/2N (n+k−2)δΨ(η1)
4
≤ [N1/2+8δΨ(η0)]Ψ(η1)

k,

with very high probability. If n2 > 1, we find, analogously to (6.5.30) in the proof of Proposition 6.5.5
(cf. also [136, Eqs. (8.86)–(8.87)])

(6.5.38) ≲ N−n/2N (n+k−2)δ
∣∣∣κ∣∣∣n∑

a,b

∣Gxa∣
2
≲ N2−n/2N (n+k)δΨ(η1)

2

≲ N1/2N (n+k)δ−(n−4)ξ/2Ψ(η0)Ψ(η1)
n−2
≲ [N1/2+8δΨ(η0)]Ψ(η1)

k,

with very high probability. Here, to go to the second line, we used that N−1/2+ξ/2 ≤ Ψ(η0) ≤ Ψ(η1).
In the ultimate step, we used Ψ(η1) ≤ 1 and that, since n2 > 1 and n1 ≤ n2 ≤ ... ≤ nk, we have
n ≥ k + 2. Therefore, using Young’s inequality, we infer

RRRRRRRRRRR

N−n/2 ∑
α1,...,αn

κ(α1, ..., αn)E[∂α1 ...∂αn ∣S∣
p]

RRRRRRRRRRR

≲ N1/2+8δΨ(η0)[E ∣S∣p +Ψ(η1)
p], (6.5.39)

with very high probability, and thus, combining (6.5.34), (6.5.35), and (6.5.36) with (6.5.39), and
including the Ψ(η1)

p term from (6.5.33), we obtain (6.5.8). This finishes the proof of Proposi-
tion 6.5.4.

6.6 Local law outside the support of the scDOS
In this section, we prove Theorem 6.2.9, that is, the absence of spectrum inside the gaps in the
support of ρT of size ∆T ≥ N

−3/4+5ε, where ε > 0 is the exponent from (6.3.2). Recall our choice of
the terminal time T ∼ N−ξ/4 from (6.3.22).

The characteristic flow was used to exclude outliers near a regular square-root edge for Dyson Brownian
motion with general β and potential in [6, Section 4]. In [136, Section 8.1], the approach was used
at the edge of non-Hermitian i.i.d. matrices, which corresponds to a cusp-like singularity of the
hermitization. We present a modified version of the proof that allows us to avoid moment-matching
arguments, used in [136] to remove the order one Gaussian component.

6.6.1 Time-Evolution of the Gaps
First, we analyze the dynamics of the gaps in the support the scDOS corresponding to the time-
dependent MDE (6.3.16). For all t ∈ [0, T ], define the density ρt ∶ R→ R+ via the Stieltjes inversion
formula, ρt(x) ∶= π−1 lim

η→+0
⟨ImMt(x + iη)⟩.
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6. Cusp universality for correlated random matrices

Definition 6.6.1 (Endpoints of a Gap). For a continuous probability density function ρ on R, we
say that e−, e+ are left and right end-points of a gap in the support of ρ if and only if e−, e+ ∈ ∂{x ∈
R ∶ ρ(x) > 0} and ρ(x) = 0 for all x ∈ [e−, e+].

Once Theorem 6.3.2 is established, the proof of Theorems 6.2.8 and 6.2.9 reduces to considering gaps
in the support of ρT with at least one end point satisfying dist(eT ,I) ≤ cM/4, where eT ∈ {e

−
T , e
+
T }, I

is the set of admissible energies defined in (6.2.10), and cM > 0 is the constant from Assumption 6.2.5.
We then distinguish between two relevant cases:

(i) The final gap size ∆T ∶= e
+
T − e

−
T ≤ cM/4,

(ii) ∆T > cM/4.

We focus on the more challenging case (i), which, in particular, includes all cusp-like singularities in
the set of admissible energies. In this case, by Lemma 6.4.1, the solution Mt(z) remains bounded in
and around the gap for all times 0 ≤ t ≤ T .

In the simpler case (ii), it is straightforward to verify that the singularity at the endpoint et ∶= φt,T (eT )
is a regular edge-point for all 0 ≤ t ≤ T , where φt,T is the flow map defined in (6.3.19). Consequently,
there is no need to track the precise behavior of the opposite endpoint of the gap, and the analysis
in Section 6.6 holds with ∆t replaced by 1. The definition of the sub-scale domain Dsub

t (see (6.6.8)
below) must be adjusted by the condition κ̃t(z) ∶= dist(et, z) ≤ cM/8 +C ′(T − t), where C ′ ∼ 1 is
an appropriate constant (e.g., from Lemma 6.3.5). The rest of the proof then follows verbatim.
Therefore, for the remainder of this section, we assume that ∆T ≤ cM/4.

For any t ∈ [0, T ] and any z ∶= E + iη with E lying inside the gap [e−t , e+t ] in the support of ρt, the
scDOS ρt(z) satisfies (see Remark 7.3 in [22])

ρt(z) ∼
η

(κ̃t(z) + η)1/2(∆t + κ̃t(z) + η)1/6
, κ̃t(z) ∶= dist(E, e±t ). (6.6.1)

In the following lemma, we collect the necessary properties of the quantities e±t , ∆t, κ̃t(zt) along the
flow (6.3.18), that we later use in the proof of Proposition 6.6.6. Recall that the terminal time is
small, T ∼ N−ξ/4 ≪ 1 by (6.3.22), and the final gap is also sufficiently small ∆T ≤ cM/4.

Lemma 6.6.2 (Characteristic Flow near Small Gaps). For any time 0 ≤ t ≤ T , let e−t , e
+
t be the left

and right end-points of a gap in the support of ρt with size 0 <∆t ≲ 1, then for any 0 ≤ s ≤ t, there
exist a gap in the support of ρs with endpoints e−s , e

+
s and width ∆s ∶= e

+
s − e

−
s , that satisfy

∆s ∼∆t + (t − s)
3/2, (6.6.2)

de±s = −
1
2
e±sds − ⟨Ms(e

±
s )⟩ds. (6.6.3)

Pick an Et ∈ (e−t , e+t ) and ηt ≲ N−ν∆t for some ν > 0. Let zs = Es + iηs ∶= φs,t(Et + iηt), as defined
in (6.3.19), then

ηs ≲ N
−ν/2∆s, Es ∈ (e

−
s , e
+
s ), 0 ≤ s ≤ t. (6.6.4)

Moreover, for any 0 ≤ s ≤ t, recall κ̃s(z) ∶= dist(Re z, e±s ), and assume that κ̃t(zt) ≳ Nνηt , then

η−1
s κ̃s(zs) ≳ η

−1
t κ̃t(zt), 0 ≤ s ≤ t. (6.6.5)

Finally, there exists a constant c > 0, such that for any 0 ≤ t ≤ T , if Et ∈ (e−t , e+t ) and ηt ≲ N−ν κ̃t,
then zs ∶= φs,t(Et + iηt) satisfies

√
κ̃s(zs) ≥

√
κ̃t(zt) + c(t − s)∆−1/6

s . (6.6.6)

We defer the proof of Lemma 6.6.2 to Appendix 6.A.
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f (0)

ρ0

t = 0

Dsub
0

Dabv
0

f (t)

ρt

0 < t < T

Dsub
t

Dabv
t

f (T ) ρT

t = T

Dsub
T

Dabv
T

Figure 6.6.1: Shaded in blue is the illustration of the time-dependent domain Dsub
t , defined in (6.6.8),

at three distinct times: the initial time t = 0 (left), an intermediate time 0 < t < T (center), and
the terminal time t = T (right). The domain Dabv

t at the corresponding time t is indicated with
crosshatching in the zoomed-in insert, with its boundary indicated by a dashed line in the main plot.
The zoomed-in insert also depicts the distance f(t), defined in (6.6.7), between the edge of the
support of ρt and the corresponding horizontal cut-off of the domain Dsub

t . The graph of the scDOS
ρt is superimposed in black on each panel (not to scale).

6.6.2 Absence of Spectrum inside Small Gaps. Proof of Theorem 6.2.9
In the sequel, we always assume that the final gap satisfies ∆T ≥ N

−3/4+5ε. Recall the constant ε
from (6.3.2), and define the function f ≡ fε by

f(t) ≡ fε(t) ∶= [
N−1+ε + r(T − t)

2∆1/6
t

∨N ε√ηf,t]

2
, ηf,t ∶= N

−2/3∆1/9
t , t ∈ [0, T ], (6.6.7)

where we chose the constant r satisfying 1 ≲ r ≤ c (where c is the constant from (6.6.6)) to be
sufficiently small such that f(t) ≤ 1

4∆t. This is indeed possible, since it follows from (6.6.2) that
∆2/3
t ≳∆2/3

T + (T − t), and ∆2/3
T ≫ N−1/2 by assumption on the final gap size.

Fix a tolerance exponent 0 < ζ < 1
100ξ, where ξ is the exponent from (6.3.22), and define the

time-dependent sub-scale domain Dsub
t by

D
sub
t ≖ D

sub
t (ε, ζ) ∶= {z ∶= E + iη ∈ H ∶ κ̃t(z) ≥ f(t), N−ζ/2 ≤ ρt(z)Nη ≤ N ε}, (6.6.8)

where we recall κ̃t(z) = dist(Re z, e±t ). In the sequel, we omit the arguments ε, ζ of the domain
Dsub
t from the notation.

Definition 6.6.3 (Exclusion Estimate). Let Hu be a random matrix depending on some parameter11

u ∈ U , and let Mu be the solution to the MDE (6.2.3) with the data pair (EHu,Su), where Su is
the self-energy operator corresponding to Hu via (6.2.2). For all u ∈ U , let Du be a subset of C, and
let ζ > 0. We say that the resolvent Gu(z) ∶= (Hu − z)

−1 satisfies the exclusion estimate, with data
(Du, ζ,Ω) uniformly in u ∈ U , if and only if the bound

∣⟨Gu(z) −Mu(z)⟩∣ ≤
N−ζ

N ∣Im z∣
, (6.6.9)

holds uniformly in z ∈ Du and in u ∈ U , on the event Ω.

The goal of the present subsection is to deduce the following claim.

Claim 6.6.4. If a random matrix H satisfies the assumptions of Theorem 6.2.8, then for any
0 < ζ < 1

100ξ, the resolvent G(z) ∶= (H − z)−1 satisfies the exclusion estimate (6.6.9) with data
(Dsub

T ,2ζ,Ω) for some very-high-probability event Ω.
11As in Definition 6.3.1, the parameter u will typically be time and the set U will be a bounded subinterval of R.
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6. Cusp universality for correlated random matrices

Then, using Claim 6.6.4 as an input, we conclude (6.2.15) using the following lemma.

Lemma 6.6.5 (Eigenvalue Exclusion). Fix a time t ∈ [0, T ], with the terminal time T as in (6.3.22),
and let H be a random matrix satisfying EH = At and SH = St, where SH is the self-energy
corresponding to H via (6.2.2). Assume that for some tolerance exponent ν > 0 and ℓ ∈ N
with ℓν ≪ ζ, the resolvent G(z) ∶= (H − z)−1 satisfies the exclusion estimate (6.6.9) with data
(Dsub

t , ζ − ℓν,Ω), then

spec(H) ∩ [e−t + f(t), e+t − f(t)] = ∅ on Ω. (6.6.10)

We defer the proof of Lemma 6.6.5 to Appendix 6.A.

Proof of Theorem 6.2.9. Choose ε ∶= 1
5θ0, ξ ∶= 1

10ε and ζ < 1
100ξ. It follows from Claim 6.6.4

that G(z) ∶= (H − z)−1 satisfies the exclusion estimate (6.6.9) with data (Dsub
T ,2ζ,Ω) for some

very-high-probability event Ω, where Dsub
T ∶= Dsub

T (ε, ξ) is defined in (6.6.8). Hence, (6.2.15) follows
immediately from (6.6.10) of Lemma 6.6.5, since f(T ) ∶= fε(T ) ≥ N2εηf(e0) by definition (6.6.7).
This concludes the proof of Theorem 6.2.9.

To prove Claim 6.6.4, we augment the Zigzag induction of Section 6.3 with the following propositions.
Recall that the relations (6.3.3) between the fixed tolerance exponents ζ, ξ, ε from (6.3.2), (6.3.22)
and (6.6.8), respectively.

Proposition 6.6.6 (Zig Step below the Scale). Fix k ∈ {1, . . . ,K}, and recall the definition of tk
from (6.3.23). Let Gt(z) be the time-dependent resolvent defined in (6.3.27). Assume that for
some ν > 0 and ℓ ∈ N with ℓν ≪ ζ, the resolvent Gt satisfies the exclusion estimate (6.6.9) with data
(Dsub

t , ζ − ℓν,Ω) at time t = tk−1, for some very-high-probability event Ω. Then the resolvent Gt
satisfies the exclusion estimate (6.6.9) with data (Dsub

t , ζ − (ℓ + 1)ν,Ω′) uniformly in t ∈ [tk−1, tk],
for some very-high-probability event Ω′ ⊂ Ω.

Proposition 6.6.7 (Zag Step below the Scale). Fix k ∈ {1, . . . ,K}, and let Gs(z) be the time-
dependent resolvent defined in (6.3.28), and let sk ∶= s(∆tk) be as defined in (6.3.14). Assume that
for some ν > 0 and ℓ ∈ N with ℓν ≪ ζ, the resolvent Gs(z) satisfies the exclusion estimate (6.6.9)
with data (Dsub

tk
, ζ − ℓν,Ω) at time s = sk, for some very-high-probability event Ω, and the isotropic

local law in (6.3.1) with data (Dabv
tk
, ξ + ℓν) uniformly in time s ∈ [0, sk]. Then the bound Gs(z)

satisfies the exclusion estimate (6.6.9) with data (Dsub
tk
, ζ − (ℓ+ 1)ν,Ω′) uniformly in time s ∈ [0, sk],

for some very-high-probability event Ω′ ⊂ Ω.

Proof of Claim 6.6.4. Claim 6.6.4 follows by induction in k as in Section 6.3 using the tandem of
Propositions 6.6.6 and 6.6.7, and using the global law of Proposition 6.3.3 for H0 as the initial
estimate at step k = 0. This is indeed sufficient, since for all z ∶= E + iη ∈ Dsub

0 , Nη ≳ N1/4+ε−ζ/4,
hence the right-hand side of (6.3.5b) satisfies

N3ξΨ(z)
√
⟨z⟩

Nη
≲
N3ξ

Nη

√
1 + ρ0(z)Nη

Nη
≲
N−1/8+3ξ+ζ/8

Nη
≤
N−ζ

Nη
. (6.6.11)

This concludes the proof of Claim 6.6.4.

Proof of Proposition 6.6.6. The proof is essentially analogous to that in Sections 6.4, hence we only
outline the key differences.

It follows from (6.3.18) that zs ∶= φs,t(zt) ∈ Dsub
s for all zt ∈ Dsub

t and all 0 ≤ s ≤ t. Moreover, using
(6.6.1), we conclude that

Im z

κ̃s(z)
≲ (

ηf,s

κ̃s(z)
)

3/4√
ρs(z)N Im z ≲ N−ε, z ∈ Dsub

s . (6.6.12)
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Therefore, it follows from (6.6.6) that for all zt ∈ Dsub
t , the trajectory zs ∶= φs,t(zt) satisfies

κ̃s(zs) − f(s) = (
√
κ̃s(zs) +

√
f(s))(

√
κ̃s(zs) −

√
f(s)) ≳

√
κ̃s(zs)

t − s

∆1/6
s

, 0 ≤ s ≤ t, (6.6.13)

where, in the second step, we used (6.6.6) and (6.6.7) to estimate
√
κ̃s(zs) −

√
f(s).

Let tinit ∶= tk−1 and tfinal ∶= tk. Define the stopping time τ by

τ ∶= inf{tinit < t ≤ tfinal ∶ sup
tinit≤s≤t

sup
z∈Dsub

t

∣Nηs⟨Gs(z) −Ms(z)⟩∣ ≤ N
−ζ+(ℓ+1)ν

}. (6.6.14)

Statement (6.6.10) of Lemma 6.6.5 then implies that on the event Ω ∶= {t ≤ τ}, the resolvent Gt
satisfies the norm bound

∥Gt(z)∥ ≤
Im z

(κ̃t(z) − f(t))
2
+ (Im z)2

, z ∈ Dsub
t . (6.6.15)

Therefore, computing the quadratic variation of the martingale term in (6.4.2) with B = 1 similarly
to (6.4.5) yields

[∫

⋅

tinit

1
√
N
∑
ab

∂ab⟨Gs⟩d(Bs)ab]
t∧τ
≤ ∫

t∧τ

tinit

⟨(ImGs)
2⟩

N2η2
s

ds ≤ ∫
t∧τ

tinit

⟨ImGs⟩

N2η2
s

ηs

(κ̃s − f(s))
2
+ η2

s

ds

≲ ∫

t∧τ

tinit

1
N2κ̃

3/2
s ∆−1/6

s ((t ∧ τ − s)2 + κ̃−1
s ∆1/3

s η2
s)

ds

≲
1

N2η2
t∧τ

ηt∧τ
κ̃t∧τ

≲
N−ε

N2η2
t∧τ

,

(6.6.16)

abbreviating Gs ∶= Gs(zs), ηs ∶= Im zs, and κ̃s ∶= κ̃s(zs). In (6.6.16), in the second step we used
(6.6.1), (6.6.13) and (6.6.14), while in the last line we used the fact that κ̃s ≳ κ̃t, ∆s ≳ ∆t and
κ̃

1/2
s ∆−1/6

s ≳ κ̃
1/2
t ∆−1/6

t for all s ≤ t, that follows from (6.6.1), (6.6.2), (6.6.5) and (6.6.6).

The remainder of the proof follows analogously to Section 6.4.

Proof of Proposition 6.6.7. Note that by choosing the constant c′ ∼ 1 in (6.3.21) small enough, we
can guarantee that for any t ∈ [0, T ] and any z ∶= E + iη ∈ Dout

t , the point E + iη(E) lies in Dabv
t ,

where η(E) is defined implicitly via η(E)ρt(E + iη(E)) = N−1+ε. Indeed, we only need to check
that ρt(E + iη(E))−1η(E) ≥ c′(N−1+ε+T − t). However, it follows from (6.6.1) and the definition of
f(t) in (6.6.7) that ρt(E + iη(E))−1η(E) ≳ N εη

1/2
f,t ∆1/6

t +T − t. Together with ∆t ≳∆T ≳ N
−3/4+5ε,

this immediately implies that the inclusion E + iη(E) ∈ Dabv for sufficiently small c′ ∼ 1.

Since throughout the proof the time tk remains fixed, for the remainder of this section, we drop the
superscript tk from Dabv

tk
,Dsub

tk
, ρtk , κ̃tk ,∆tk , and Mtk .

First, using a monotonicity estimate analogous to Lemma 6.5.3 (see (6.A.10) and (6.A.11) in
Remark 6.A.1), we conclude from the isotropic local law in (6.3.1) for Gs(z) that, uniformly in
z ∈ Dsub, in a, b ∈ [N] and in s ∈ [0, sk],

∣(ImGs)aa∣ ≲
N ε

Nη
, ∣(Gs −M)ab∣ ≲

N ε

Nη
, ∣(Gs)ab∣ ≲ 1, w.v.h.p. (6.6.17)

Moreover, note that for all z ∶= E + iη ∈ Dsub, we have the estimates

κ̃(z)∆1/3
≳ N−1+4ε, Nη ∼ N1/2κ̃(z)1/4∆1/12√ρ(z)Nη ≳ N1/4+ε−ζ/4. (6.6.18)
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As in Section 6.5, we conduct the proof along the vertical truncations of the domain Dsub, defined as

D
sub
γ ≡ D

sub
tk,γ
∶= {z ∈ Dsub

≖ D
sub
tk
∶ Im z ≥ N−1+γ}, 0 < γ ≤ 1. (6.6.19)

In particular, we assert that if for some constant γ0 > 0, the resolvent Gs satisfies the estimate

⟨ImGs(z)⟩ ≲ ρ(z), (6.6.20)

with very high probability uniformly in z ∈ Dsub
γ0 ∪D

abv and in time s ∈ [0, sk], then the estimate
(6.6.9) holds uniformly in z ∈ Dsub

γ1 for any fixed γ1 ≤ γ0 − (ζ ∧
1
2µ), and uniformly in time s ∈ [0, sk]

with very high probability.

To this end, we show that the quantity Rs(z) ∶= ⟨Gs(z) −M(z)⟩ satisfies

∣
d
ds

E ∣Rs(z)∣p∣ ≲ (1 +
N3ζ
√

∆tk
)[E ∣Rs(z)∣p + (

N−ζ

N ∣Im z∣
)

p

], z ∈ Dsub
γ1 , (6.6.21)

where ∆tk ∶= tk − tk−1 and tk are defined in (6.3.23). Note that N3ζ√∆tk ≤ N
3ζT 1/2 ≲ N−ζ , using

that T ∼ N−ξ/4 from (6.3.22). The proof of (6.6.21) is analogous to that of Proposition 6.5.5. The
main difference is that for the most critical term (6.5.21), we use the bound

N−5/2
RRRRRRRRRRR

∑
α1,α2,α3

κs(α1, α2, α3)Mb1a2Mb2a3(G
sGs)b3a1

RRRRRRRRRRR

≤ N−1
∣∣∣κ∣∣∣av

3 ∥M∥
2
∥GsGs∥hs

≲
⟨ImGs⟩1/2

Nη3/2 ≲
N−ζ

Nη

N2ζ

κ̃1/4∆1/12
≲
N−ζ

Nη

N2ζ
√
T − tk

≲
N−ζ

Nη

N
5
2 ζ

√
∆tk

,

(6.6.22)

where we used (6.6.20) together with the monotonicity of the map η ↦ η⟨ImGs(E + iη)⟩ for any
fixed E ∈ R to assert that ⟨ImGs(z)⟩ ≲ N2ζρ(z) with very high probability, uniformly in z ∈ Dsub

γ1 .

The remainder of the proof follows analogously to Section 6.5 using the estimates (6.6.17) instead
of the respective bounds in (6.5.2) and (6.5.11).

6.6.3 Improved Local Laws away from the Spectrum. Proof of Theorem 6.2.8

Let ε ∶= min{1
5ε0,

1
2ξ0} and ξ ∶= 1

10ε. Let z ∈ C be a spectral parameter satisfying N ε0ηf(E) ≤

dist(z, suppρ) ≤ ND. Without loss of generality, we assume that ∥x∥ = ∥y∥ = ∥B∥hs = 1, and that
z ∶= E + iη with η ≥ 0.

First, consider the case dist(z, suppρ) ≤ 2η, then it is straightforward to check using the universal
shape of the density ρ (see, e.g., Remark 7.3 in [22]) that ρ(z)Nη ≳ N ε. Therefore, in this regime,
Theorem 6.2.8 follows from Theorem 6.3.2 and Proposition 6.3.3.

It remains to consider the regime dist(z, suppρ) ≥ 2η. Clearly, E lies outside of the support of
ρ. Let e− and e+ be the left and right end-points of the gap that contains E. The assumption
dist(z, suppρ) ≥ 2η implies that κ̃ ∶= dist(E, e±) ≳ η, hence ∆ ∶= e+ − e− ≥ κ̃ ≳ N ε0ηf(E) =
N−2/3+ε0∆1/9, and thus ∆ ≥ N−3/4+9ε0/8.

Define a local domain Dout ≡ Dout(E) as

D
out
≡ D

out
(E) ∶= {z′ ∈ C ∶ ∣Re z′ −E∣ ≤ 1

2
κ̃, ∣Im z′∣ ≤ κ̃}, κ̃ ∶= dist(E, e±), (6.6.23)

and observe that z ∈ Dout. Moreover, by Theorem 6.2.9 with θ0 ∶=
1
2ε0, there exists a very-high-

probability event Ω, such that spec(H) ∩Dout = ∅ on Ω.
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Therefore, on the very-high-probability event Ω, the matrix-valued map z′ ↦ G(z′)−M(z′) is analytic
in the interior of Dout. Using the Cauchy formula, we obtain the contour integral representation

G(z) −M(z) =
1

2πi ∮Γ

G(z′) −M(z′)

z − z′
dz′, (6.6.24)

where Γ ⊂ Dout is the contour tracing the boundary of a rectangle centered at z with width 1
4 κ̃

and height 3
4 κ̃. Note that ∣z′ − z∣ ≳ κ̃ for all z′ ∈ Γ. Using a monotonicity estimate analogous to

Lemma 6.5.3 (see (6.A.11), (6.A.13) in Remark 6.A.1), we conclude from Proposition 6.3.3 and
Theorem 6.3.2 that on a very-high-probability event Ω′ ⊂ Ω, the resolvent G(z′) satisfies

∣⟨(G(z′) −M(z′))B⟩∣ ≲
N ε

N ∣Im z′∣
∧

1
κ̃
, ∣(G(z′) −M(z′))

xy
∣ ≲ N ε

¿
Á
ÁÀ ρ(z′)

N ∣Im z′∣
+

N ε

N ∣Im z′∣
∧

1
κ̃
,

(6.6.25)
uniformly in z′ ∈ Γ, where the alternative κ̃−1 bound follows from the norm-bound on ∥G(z′)∥
and (6.2.15).

Plugging the bounds (6.6.25) into the representation (6.6.24) and using the comparison relation
(6.6.1), we obtain (6.2.14b) and (6.2.14a) at the point z. Here we used (6.6.1) and κ̃ ≥ N ε0ηf(E)
to assert that √

ρ(z)

Nη
∼

√
1

Nκ̃1/2∆1/6
≳

1
Nκ̃

. (6.6.26)

This concludes the proof of Theorem 6.2.8.

Remark 6.6.8 (Faraway Regime). Similarly to the away from-the-spectrum part of the proof of
Theorem 6.2.8 in Section 6.6.3 above, the global law (6.3.5b), together with the contour integration,
can be used to obtain the faraway laws

∣⟨(G(z) −M(z))B⟩∣ ≲
N ξ0

N⟨z⟩2
∥B∥hs , ∣(G(z) −M(z))

xy
∣ ≲

N ξ0

√
N⟨z⟩2

∥x∥ ∥y∥ , (6.6.27)

in the regime dist(z, suppρ) ∈ [C,ND] for some sufficiently large positive C ∼ 1. The proof requires
only the global laws of Proposition 6.3.3 as an input, and is conducted without the use of the Zigzag
dynamics.

6.7 Global Laws: Proof of Proposition 6.3.3
We prove Proposition 6.3.3 in two steps. First, in Section 6.7.2, we prove the isotropic local law
(6.3.5a). Then, in Section 6.7.3, we conclude the proof of Proposition 6.3.3 by proving the averaged
law (6.3.5b), using the isotropic law (6.3.5a) as an input. Before proceeding with the proof, we
collect some preliminary bounds on the stability operator and define the appropriate norm for proving
the isotropic local law.

6.7.1 Preliminaries for the Global Law
First, for any z ∈ C, the stability operator B(z) ∶ CN×N → CN×N is defined by its action on
X ∈ CN×N ,

B(z)[X] ∶=X −M(z)S[X]M(z). (6.7.1)
We control the inverse of the stability operator B using the following lemma.

Lemma 6.7.1. (Proposition 4.4 in [23]) Let M(z) be the solution to the MDE (6.2.3), and let I
be the set of admissible energies defined in (6.2.10). Then the stability operator B(z), defined in
(6.7.1) satisfies, for all z ∈ C with dist(Re z,I) ≤ 3

4cM ,

∥B
−1
(z)∥hs→hs + ∥B

−1
(z)∥∥⋅∥→∥⋅∥ ≲ 1 + β(z)−1, β(z) ∶= ρ(z)2 + ρ(z)∣σ(z)∣ + ρ(z)−1

∣Im z∣, (6.7.2)
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where the function12 σ(z) is defined as

σ(z) ∶= ⟨sign(ReU(z))(ρ(z)−1ImU(z))
3
⟩, U ∶=

(ImM)−1/2(ReM)(ImM)−1/2 + i
∣(ImM)−1/2(ReM)(ImM)−1/2 + i∣

, z ∈ H.

(6.7.3)

Note that by definition of Dglob in (6.3.4), the stability factor satisfies β(z) ≥ N−ξ/4 for all z ∈ Dglob.

Remark 6.7.2 (Local Laws in the Stable Domain). In Section 6.7 we only use the bound β(z) ≥
ρ(z)−1∣Im z∣. However, by Remark 10.4 in [22], there exists a function β̃(z) satisfying β(z) ≲ β̃(z) ≤
β(z), such that the map η ↦ β̃(E + iη) is non-decreasing in η > 0 for any fixed E. Therefore, the
global domain, defined in (6.3.4), can be replaced by the stable domain, defined as

D
stab ∶= {z ∶= E + iη ∈ H ∶ ∣E∣ ≤ ND, N−1+ε

≤ η ≤ ND, β̃(z) ≥ N−ξ/4}, (6.7.4)

with our proof of Proposition 6.3.3 naturally extending to the larger stable domain. In particular,
the stable domain extends down to the level η ≥ N−1+ε in the bulk of spectrum, where ρ(E) ≳ 1.
Therefore, we provide an independent proof of the local laws in Theorems 2.1 and 2.2 of [243] under
the Assumptions 6.2.1–6.2.5 without the complicated graphical expansion machinery.

Next, for a fixed spectral parameter z ∈ Dglob(ξ,D), and a fixed pair of vectors x, y ∈ CN , define a
family of sets of vectors,

V0 ≡ V0(z) ∶= {ea}
N

a=1 ∪ {x,y},

Vj ≡ Vj(z) ∶= Vj−1 ∪ {Mu, κc((Mu)a, ⋅b), κd((Mu)a, b⋅) ∶ u ∈ Vj−1, a, b ∈ [N]}, j ∈ {1, . . . , J},
(6.7.5)

where M ∶=M(z), and J is an integer satisfying J ≥ 2/ξ. We use the corresponding isotropic norm
(Section 5.1 in [243])

∥X∥∗ ≡ ∥X∥
x,y,J,z
∗ ∶=

J

∑
j=0

N−
j

2J ∥X∥(j) +N
−1/2 max

v∈VJ

∥X⋅v∥

∥v∥
, ∥X∥(j) ∶= max

u,v∈Vj

∣Xuv ∣

∥u∥∥v∥
. (6.7.6)

Note that the cardinality of the sets Vj is bounded by NCJ , hence we can take the maximum of
very-high-probability bounds over these sets.

Finally, recall that for all z with Re z in the set of admissible energies I from Assumption 6.2.5,
M(z) satisfies the bound

∥M(z)∥ ≲ ⟨z⟩−1. (6.7.7)

6.7.2 Proof of the Isotropic Bound in Proposition 6.3.3
Proof of the isotropic law in (6.3.5a). Recall the definition of the domain Dglob from (6.3.4). We
conduct the proof iteratively along vertical truncations Dglob

γ of the domain Dglob, defined as

D
glob
γ ∶= {z ∶= E + iη ∈ Dglob ∶ η ≥ N−1+γ

}, γ > 0. (6.7.8)

Once the local law (6.3.5a) is established in the domain Dglob
γ0 for some γ0 ≥ 0, a simple monotonicity

argument analogous to Lemma 6.5.3 (see the proof of Lemma 6.5.3 in Appendix 6.A) implies that
the following bounds on the resolvent G(z),

∣G(z)uv ∣ ≲ N
δ
⟨z⟩−1, ∣(ImG(z))

uu
∣ ≲ N ξ+δ

(ρ(z) +
1
Nη
), w.v.h.p., (6.7.9)

12Roughly speaking, the quantity ∣σ(z)∣ measures how close z is to a possible almost cusp, in particular, if x is an
exact cusp of the density ρ(x), then σ(x) = 0.
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hold uniformly in z ∈ Dglob
γ1 for any γ1 ≥ γ0 − δ with δ ≤ 1

20ξ, and for any deterministic u,v with
∥u∥ = ∥v∥ = 1. Therefore, the key step in the iteration is going from estimates on the resolvent
G(z) to a bound on (G(z) −M(z))xy, that is, using the bounds (6.7.9) as an input to prove the
isotropic local law (6.3.5a) in the domain Dglob

γ1 . This crucial step is based on the following gap in
the possible values of ∥G −M∥∗.

Lemma 6.7.3 (Gap in the Values of G −M). Fix a spectral parameter z ∈ Dglob
γ1 , with some γ1 > 0

such that (6.7.9) holds on Dglob
γ1 , then

∥G(z) −M(z)∥∗ ≲ N
−ξ w.v.h.p. Ô⇒ ∥G(z) −M(z)∥∗ ≲ N

ξΨ(z) w.v.h.p. (6.7.10)

We initialize the iteration in the domain Dglob
2+δ . Indeed, owing to the very high probability bound

∣Huv ∣ ≲ N
1/2+ν for any ν > 0, we have, for any deterministic u,v with ∥u∥ = ∥v∥ = 1,

∥G(z)∥ ≲ ⟨z⟩−1, ∣(ImG(z))
uu
∣ ≲

η

⟨z⟩2
∼ ρ(z), z ∈ Dglob

2+δ , w.v.h.p. (6.7.11)

Note that the bound ∥G(z) −M(z)∥∗ ≤ N−ξ holds trivially for all z with Im z ≥ N ξ. After
Lemma 6.7.3 is established, the proof of (6.3.5a) follows the standard continuity argument on a fine
grid (see Section 5.4 in [243]). This concludes the proof of the isotropic law in (6.3.5a).

The remainder of this subsection is devoted to the proof of Lemma 6.7.3. A local law for random
matrices with slow correlation decay away from the cusps was already proved in [243] and [23].
We present an independent proof under the Assumptions 6.2.1–6.2.5. We utilize the minimalistic
cumulant expansion, that was used previously in [408] and [168]. This allows us to avoid the
complicated graphical expansions.

Proof of Lemma 6.7.3. Since z ∶= E + iη is fixed, we omit the argument of G,M,Ψ, ρ, β, and B.
Assume the very-high-probability bound

∥G −M∥∗ ≲ N
−ξ. (6.7.12)

It suffices to show that ∥G −M∥∗ ≤ N ξΨ with very high probability. Assume that for a deterministic
control parameter ψ, the quantity Ψ−1 ∥G −M∥∗ satisfies

Ψ−1
∥G −M∥∗ ≲ ψ, w.v.h.p. (6.7.13)

By definition of the resolvent G ∶= (H − z)−1 and the MDE (6.2.3), we difference G −M satisfies

G −M = −MWG +MS[G −M]G, (6.7.14)

where the matrix13 WG is defined as

WG ∶=WG + S[G]G. (6.7.15)

Therefore, subtracting MS[G −M]M from both sides and the inverse of the stability operator B,
defined in (6.7.1), yields the equation

G −M = −B−1[MWG] + B−1[MS[G −M](G −M)], (6.7.16)
13The underline WG is a renormalization of WG; for renormalization of general products f(W )Wg(W ), see

Section 4 in [165].
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Observe, that for any X ∈ CN×N , (Eq. (5.4c) in [243])

∥B
−1
[X]∥(j) ≤ ∥X∥(j) + (∥M∥

2
∣∣∣S ∣∣∣ + ∥M∥4 ∣∣∣S ∣∣∣2 ∥B−1∥hs→hs)∥X∥max

≲ ∥X∥(j) + (1 + β
−1) ∥X∥(0) ,

(6.7.17)

where in the last step we used (6.7.2). Here we denote

∣∣∣S ∣∣∣ ∶= ∥S∥max→∥⋅∥ ∨ ∥S∥hs→∥⋅∥ . (6.7.18)

To control the norm ∥G −M∥∗, we first bound the ∥⋅∥(j) individually, and then estimate the
contribution coming from the last summand in (6.7.6) later. Fix an index j ∈ {0, . . . , J} and fix a
pair of vectors u,v ∈ Vj . We compute the p-th (for even p) moment of

Sj ≡ S
uv
j ∶= N

−j
2J (G −M)uv, (6.7.19)

using the equation (6.7.16) for a single factor,

E[∣Sj ∣p] ≤ E[N
−j
2J (B−1

[MWG])
uv
Sj ∣Sj ∣

p−2 ]+E[N
−j
2J (B−1

[MS[G−M](G−M)])
uv
Sj ∣Sj ∣

p−2 ].
(6.7.20)

First, we estimate the size of the second term on the right-hand side of (6.7.20). We observe that (
Eq. (5.5a), (5.5b) in [243])

∥MS[X]X∥(j) ≲ ∣∣∣κ∣∣∣
iso
2 ∥M∥min{∥X∥(j+1) ,

√
N ∥X∥(0)}∥X∥∗ . (6.7.21)

We only use the second mode of the min bound when j = J . Combining (6.7.12), (6.7.17) and

(6.7.21), we deduce that Qj ∶= N
−j
2J (B−1[MS[G −M](G −M)])

uv
satisfies

∥Qj∥(j) ≲
∥G −M∥∗

⟨z⟩N
j

2J
(∥G −M∥(j+1) 1j<J +

√
N ∥G −M∥(0) 1j=J + (1 + β−1) ∥G −M∥(1))

≲ N
1

2J −ξ⟨z⟩−1(1 + β−1)ψΨ, w.v.h.p.,
(6.7.22)

where in the last step we used the estimate (6.7.2), the definition of Dglob in (6.3.4), assumptions

(6.7.12–6.7.13), and the bound ∥X∥(j) ≤ N
j

2J ∥X∥∗ that follows from the definition of ∥⋅∥∗ in (6.7.6).

Next, we estimate the first term in (6.7.20). For any j ∈ {0, . . . , J} and any u,v ∈ Vj , using the
multivariate cumulant expansion formula from Proposition 6.5.2, we obtain

∣E[(MWG)uvSj ∣Sj ∣
p−2 ] ∣≤ ∣E[ 1

N
∑
ab

∑
α1

MuaGbvκ(ab,α1)∂α1{Sj ∣Sj ∣
p−2}] ∣

+
L−1
∑
k=2
∣E[∑

ab

∑
α∈N (ab)k

Mua
κ(ab,α)

N (k+1)/2k!
∂α{GbvSj ∣Sj ∣

p−2}]∣

+N
j

2J ∣Ωuv
j,L∣.

(6.7.23)

Similarly to (6.5.17), we can choose L large enough such that ∣Ωj,L∣ ≲ (Ψ ∥u∥ ∥v∥)
p. We note that

the N
−j
2J factors in (6.7.19) are only relevant for the quadratic term Qj estimated above, therefore,

we do not follow it in the sequel. Moreover, we drop the norms ∥u∥ and ∥v∥ for brevity.
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First, we estimate the term involving second-order cumulants on the right-hand side of (6.7.23).
Here we estimate the contribution coming from the cross part of the second cumulants κc, the
estimate for the direct part κd is completely analogous. Ignoring the difference between Sj and Sj ,
and dropping the overall ∣Sj ∣p−2 factor, we obtain the bound

∣
1
N
∑
ab

∑
α1

κc(ab,α1)MuaGbv∂α1Sj∣ ≲
1
N
∑
bb1

∣∑
a1

κc((Mu) b, a1b1)Gua1∣∣GbvGb1v ∣

≲ N−1+δ
⟨z⟩−1

∥∥κc((Mu)∗, ⋅∗)∥∥ ∥G⋅v∥
2

≲ ∣∣∣κ∣∣∣iso2 N ξ+2δΨ2, w.v.h.p.

(6.7.24)

In the ultimate step, we used (6.7.7) and (6.7.9) to assert that, with very high probability,

1
⟨z⟩
√
N
∥G⋅v∥ =

¿
Á
ÁÀ(ImG)vv

⟨z⟩2Nη
≲ N

ξ+δ
2 Ψ. (6.7.25)

Next, we bound term involving third and higher order cumulants in (6.7.23). Consider, for example,

∣∑
ab

∑
α1,α2

κ(ab,α1, α2)

N3/2 MuaGbv(∂α1Sj)(∂α2Sj)∣

≲ N−3/2
∣∑
ab

∑
a1b1a2b2

κ(ab, a1b1, a2b2)MuaGbvGua1Gb1vGua2Gb2v∣

≲ N3ξ/2+7δ/2Ψ3
∣∣∣κ∣∣∣3, w.v.h.p.

(6.7.26)

Note that the structure of the term (6.7.26) is identical to that of (6.5.36). Indeed, the only
difference is that the resolvent Gxa is replaced by the deterministic approximation Mua (u and v in
(6.7.26) play the role of x and y in (6.5.36)). Consequently, the summation over a is bounded using

(∑
a

∣Mua∣
2
)

1/2
≤ ∥M∥ ≲

1
⟨z⟩

instead of (∑
a

∣Gua∣
2
)

1/2
≲ N

ξ+δ
2

¿
Á
ÁÀρ + 1

Nη

η
, (6.7.27)

yielding a saving of a
√
ρ/η factor in terms of the (ρ/η)-power on the right-hand side of (6.7.26)

compared to the bound in (6.5.36). All other terms in (6.7.23) with cumulant of order three and
higher are bounded analogously to their counterparts in the proof of Proposition 6.5.4, with the
additional saving of

√
ρ/η coming from (6.7.27).

Therefore, using a weighted Young inequality to handle the separated ∣Sj ∣p−k terms, we deduce that
for all j ∈ {0, . . . , J},

E[N
−j
2J (B−1

[MWG])
uv
Sj ∣Sj ∣

p−2 ] ≤ (N ξ/2+4δ
(1 + β−1

)Ψ)p +N−pδ E[∣Sj ∣p]. (6.7.28)

It follows from (6.7.20), (6.7.22), (6.7.23), and (6.7.28) that

E[∣Sj ∣p] ≲ (Ψ)
p
(N ξ/2+4δ

(1 + β−1
) +N−δψ +N

1
2J −ξ+δ⟨z⟩−1(1 + β−1)ψ)

p

. (6.7.29)

Since J ≥ 2/ξ, and δ ≤ ξ/20, we have (1 + β−1)N
1

2J −ξ+δ ≤ N−δ, and we conclude that

∣Sj ∣ ≲ N
νΨ(N3ξ/4+4δ

(1 + β−1
) +N−δψ), w.v.h.p. (6.7.30)

Next, we estimate the contribution of the last summand in (6.7.6) to ∥G −M∥∗. We fix a vector
v ∈ VJ and compute a the p-th (for even p) moment of

S ≡ Sv ∶= N−1
∥(G −M)⋅v∥

2
= N−1((G −M)∗(G −M))

vv
. (6.7.31)
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Using the equation (6.7.14) for a single S factor, we obtain

E[∣S∣p] ≤ N−1∣E[((G −M)∗MWG)
vv
S∣S∣p−2] ∣

+N−1∣E[((G −M)∗MS[G −M]G)
vv
S∣S∣p−2] ∣.

(6.7.32)

To estimate the term in the second line of (6.7.32), we note the following bound,

∣(X∗MS[X]Y )
vv
∣ ≤ ∥X⋅v∥ ∥M∥ ∥S∥max→∥⋅∥ ∥X∥(0) ∥Y⋅v∥ . (6.7.33)

Therefore, using (6.7.6), (6.7.12), (6.7.13), (6.7.25), and (6.7.33), we obtain the very-high-probability
bound

1
N
∣((G −M)∗MS[G −M]G)

vv
∣ ≲

1
⟨z⟩
√
N
∥G −M∥2∗ ∥G⋅v∥ ≲ N

−ξ+δΨ2ψ. (6.7.34)

Next, we turn to estimating the first term on the right-hand side of (6.7.32) using the multivariate
cumulant expansion formula,

1
N
∣E[((G −M)∗MWG)

vv
S∣S∣p−2] ∣ ≲

1
N2 ∣∑

abc

∑
α1

κ(ab,α1)GbvMca∂α1{(G −M)
∗
vcS∣S∣

p−2}∣

+
1
N

L

∑
k=2
∣∑
abc

∑
α∈N (ab)k

κ(ab,α)

N (k+1)/2k!
Mca∂α{Gbv(G −M)

∗
vcS∣S∣

p−2}∣

+Ωv
L,

(6.7.35)

where for sufficiently large integer L, the error term Ωv
L admits the bound Ωv

L ≲ Ψ2p, and is therefore
negligible.

We bound the term involving the second cumulants in (6.7.35). First, for the term containing
∂α1(G −M)

∗
vc, completely analogously to (6.7.24), we obtain

1
N2 ∑

c

∣ ∑
ba1b1

κ((Mec)b, a1b1)GbvG
∗
va1G

∗
b1c∣ ≲ ∥κ∥

iso
2 N ξ+2δΨ2, w.v.h.p., (6.7.36)

where the additional summation over the index c is compensated by the N−1 prefactor. Next, we
estimate the terms arising from ∂α1S. We focus on the term containing ((G −M)∗∂α1G)vv, other
terms are estimated similarly. For the cross part κc, we obtain (ignoring the factor ∣S∣p−2 temporarily)

1
N3 ∣∑

cb

∑
α1

κc((Mec)b,α1)Gbv(G −M)
∗
vc((G −M)

∗∂α1G)vv
∣

≲
1
N2 ∑

cd

∣(G −M)∗vc(G −M)
∗
vd∣

1
N
∑
bb1

∣∑
a1

κc((Mec)b, a1b1)Gda1∣∣GbvGb1v ∣

≲ ∣∣∣κ∣∣∣iso2 N ξ+2δΨ2 1
N2 ∑

cd

∣(G −M)∗vc(G −M)
∗
vd∣

≲ ∣∣∣κ∣∣∣iso2 N ξ+2δΨ2
∥G −M∥2∗ ≲ ∥κ∥

iso
2 N ξ+2δΨ4ψ2, w.v.h.p.,

(6.7.37)

where in the second step we used the bound analogous to (6.7.24) for each c, d, and in the last step
we used (6.7.13).
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Similar estimates hold for terms involving higher order cumulants in (6.7.35). For example, identifying
αi ∶= (ai, bi),

N−7/2
∣∑
abc

∑
α1,α2

κ(ab,α1, α2)Mca(G −M)
∗
vc(∂α1G)bv((G −M)

∗∂α2G)vv
∣

≲ N−7/2
∑
cd

∣(G −M)∗vd(G −M)
∗
vc∣∣∑

ab

∑
α1,α2

κ(ab,α1, α2)McaGba1Gb1vGda2Gb2v∣

≲ ∣∣∣κ∣∣∣3 ∥G −M∥
2
∗N

ξ+3δΨ2
≲ ∣∣∣κ∣∣∣3N

ξ+3δ
⟨z⟩−1Ψ4ψ2, w.v.h.p.

(6.7.38)

Therefore, we obtain, using the very-high-probability bound S ≲ ψΨ by (6.7.13),

1
N
∣E[((G −M)∗MWG)

vv
S∣S∣p−2] ∣ ≲ (Ψ)2p(N ξN8δ

+N−δψ2
)

p

, (6.7.39)

hence, using (6.7.32) and (6.7.34), we deduce that with very high probability,
√
S ≲ NνΨ(N ξ/2+4δ

+N−δ/2ψ). (6.7.40)

It follows from (6.7.6), (6.3.6), (6.7.30) and (6.7.40), that

Ψ−1
∥G −M∥∗ ≲ ψ w.v.h.p.Ô⇒ Ψ ≲ N ξ/2+4δ+ν

(1 + β−1
) +N−δ/2+νψ w.v.h.p. (6.7.41)

By iteration, this implies that Ψ−1 ∥G −M∥∗ ≲ N
ξ/2+4δ+ν(1 + β−1) ≲ N3ξ/4+4δ+ν with very high

probability, since β ≥ N−ξ/4 in Dglob. This concludes the proof of Lemma 6.7.3.

6.7.3 Proof of the Averaged Bound in Proposition 6.3.3

We conclude this section by proving the averaged law in Proposition 6.3.3 using the isotropic law
(6.3.5a), proved in Section 6.7.2 above, as an input.

Proof of the averaged law in (6.3.5b). Fix a deterministic matrix B and a spectral parameter z ∈
Dglob, and let R ∶= ⟨(G −M)B⟩. Using the equation (6.7.16), we compute the p-th (for even p)
moment of R,

E[∣R∣p] ≤ ∣E[⟨MS[G −M](G −M)B̃⟩R∣R∣p−2]∣ + ∣E[⟨MWGB̃⟩R∣R∣p−2]∣, (6.7.42)

where we denote B̃ ∶= ((B−1)∗[B∗])
∗. By (6.7.2) and Lemma 6.7.1, the observable B̃ satisfies

∥B̃∥hs ≲ (1 + β
−1) ∥B∥hs . (6.7.43)

To bound the first term on the right-hand side of (6.7.42), we employ the polar decomposition
B̃ = ∑j σjvju

∗
j , where σj ∶= σj(B̃) and uj ∶= uj(B̃),vj ∶= vj(B̃) are the singular values and

corresponding left and right, respectively, singular vectors of B̃. It follows from (6.3.5a), (6.7.21),
and (6.7.43), that with very high probability,

∣⟨MS[G −M](G −M)B̃⟩∣ ≤
1
N
∑
j

∣σj ∣⟨(MS[G −M](G −M))ujvj
⟩∣ ≲ N2ξ(1 + β−1)Ψ2

∥B∥hs ,

(6.7.44)
where Ψ ∶= Ψ(z) is defined in (6.3.6).
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Next, we bound the second term on the right-hand side of (6.7.42) using the multivariate cumulant
expansion formula from Proposition 6.5.2,

∣E[⟨MWGB̃⟩R∣R∣p−2]∣ ≤ ∣E[ 1
N2 ∑

ab

∑
α1

κ(ab,α1)(GB̃M)ba∂α1{R∣R∣
p−2}]∣

+
L

∑
k=2
∣E[ 1

N
∑
ab

∑
α∈N (ab)k

κ(ab,α)

N (k+1)/2k!
∂α{(GB̃M)baR∣R∣

p−2}]∣

+ ∣ΩB
L ∣.

(6.7.45)

Here, once again ΩB
L is an error term satisfying ∣ΩB

L ∣ ≲ (
√
⟨z⟩/(Nη)Ψ ∥B∥hs)

p for large enough
L, controlled similarly to (6.5.17). The terms involving second order cumulants admit the bound
(ignoring the common ∣R∣p−2 factor)

∣
1
N2 ∑

ab

∑
α1

κ(ab,α1)(GB̃M)ba∂α1R∣ ≤ ∣
1
N3 ∑

ab

∑
a1b1

κ(ab, a1b1)(GB̃M)ba(GBG)b1a1
∣

≤
1

⟨z⟩N2η2 ∥∣κ(∗,∗)∣∥⟨B̃B̃
∗ImG⟩

1/2
⟨BB∗ImG⟩

1/2

≲ N ξ(1 + β−1)∣∣∣κ∣∣∣2
⟨z⟩

Nη
Ψ2
∥B∥2hs , w.v.h.p.,

(6.7.46)

where in the second step we used the norm bound (6.7.7). Here, in the last step, we used the
established isotropic law (6.3.5a), the spectral decomposition of B̃B̃∗ and (6.7.43) to assert that,
with very high probability,

⟨B̃B̃
∗ImG⟩

Nη
=

1
N2η

∑
j

∣σj ∣
2(ImG)

ujuj
≲
N ξ

N2η
∑
j

∣σj ∣
2
(ρ+

√
ρ

Nη
+

1
Nη
) ≲ N ξ(1+β−1)

2
⟨z⟩2Ψ2

∥B∥2hs,

(6.7.47)
where σj and uj are the singular values and left singular vectors of B̃. Similar bound without the
factor (1 + β−1)2 holds for B instead of B̃. Note that, unlike for the isotropic law (6.3.5a), for the
current proof of the average law there is no need to split the second order cumulant into direct and
cross terms, the simpler bound (6.2.6) suffices.

Next, we estimate the terms in (6.7.45) involving third order cumulants. Consider the term containing
a single (∂R). Dropping ∣R∣p−2, we obtain

∣N−5/2
∑
ab

∑
α1,α2

κ(ab,α1, α2)(∂α1GB̃M)ba(∂α2R)∣

≲ N−7/2
∥M∥max

cd
∣Gcd∣∑

ab

∑
α1α2

∣κ(ab,α1, α2)∣∣(GB̃B̃
∗
G∗)

b1b1
∣
1/2
(GBG)

α2

≲ ⟨z⟩−2
∥∑
ab

∣κ(ab,∗,∗)∣∥

¿
Á
ÁÀ⟨B̃B̃

∗ImG⟩

Nη

√
⟨BB∗ImG⟩

N3η3 ≲ N ξ(1 + β−1)
∣∣∣κ∣∣∣3
Nη

Ψ2
∥B∥2hs ,

(6.7.48)

with very high probability, where we used (6.3.5a), (6.7.47), and the bounds

∣(GB̃M)ab∣ ≤ ∥M∥ ∣(GB̃B̃
∗
G∗)

aa
∣
1/2
,

1
N
∑
ab

∣(GBG)ab∣
2
≤

1
η3 ⟨BB

∗ImG⟩. (6.7.49)

The term containing (∂2R) admits a completely analogous estimate.
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For the term containing (∂R)2, we obtain, dropping ∣R∣p−3,

∣N−5/2
∑
ab

∑
α1,α2

κ(ab,α1, α2)(GB̃M)ba(∂α1R)(∂α2R)∣

≲ N−9/2 max
α
∣(GBG)α∣ ∑

ab,α2

∑
α1

∣κ(ab,α1, α2)∣∣(GB̃M)ba(GBG)α2
∣

≲ N ξ
⟨z⟩2Ψ2

∥B∥hs ∥∑
α1

∣κ(∗, α1,∗)∣∥

¿
Á
ÁÀ⟨B̃MM∗B̃

∗ImG⟩

Nη

√
⟨BB∗ImG⟩

N3η3

≲ N2ξ(1 + β−1)
∣∣∣κ∣∣∣3
Nη
⟨z⟩3Ψ4

∥B∥3hs, w.v.h.p.,

(6.7.50)

where we used the local law (6.3.5a) to assert that, with very high probability,

1
N3/2 ∣(GBG)ab∣ ≲

∥B∥
√
N

√
(ImG)

aa
(ImG)

bb

Nη
≲ N ξ

⟨z⟩2Ψ2
∥B∥hs . (6.7.51)

Note that in estimating maxα∣(GBG)α∣, we need to use the operator norm ∥B∥ since no summation
on indices is available. We convert it into ∥B∥hs at a costs of an extra

√
N factor, as ∥B∥ ≤

√
N ∥B∥hs,

but this is affordable since we collected sufficiently many powers of N−1/2 in the third cumulant
term.

Finally, we estimate the term with no (∂R), namely, dropping ∣R∣p−1

∣N−5/2
∑
ab

∑
α1,α2

κ(ab,α1, α2)Gba1Gb1a2(GB̃M)b2a
∣. (6.7.52)

For both Gba1 and Gb1a2 , we write Gab = Mab + (G −M)ab and use the bound ∣Mab∣ ≲ ⟨z⟩
−1,

∣(G −M)ab∣ ≲ N
ξΨ, w.v.h.p., that follow from (6.7.7) and (6.3.5a), respectively, to estimate the

contributions coming from the deterministic and the fluctuating part separately. In particular, we
obtain the very-high-probability bound,

∣N−5/2
∑
ab

∑
α1,α2

κ(ab,α1, α2)(G −M)ba1Mb1a2(GB̃M)b2a
∣

≲ N−1/2+ξΨ⟨z⟩−2
∥∑
α1

∣κ(∗, α1,∗)∣∥⟨GB̃B̃
∗
G∗⟩

1/2

≲ ⟨z⟩−1N2ξ(1 + β−1)∣∣∣κ∣∣∣3Ψ2
∥B∥hs .

(6.7.53)

The contributions coming from Mba1(G −M)b1a2 and (G −M)ba1(G −M)b1a2 admit analogous
estimates. Therefore, it remains to bound the contribution coming from Mba1Mb1a2 . Using (6.2.8),
we estimate

∣N−5/2
∑
ab

∑
α1,α2

κ(ab,α1, α2)Mba1Mb1a2(GB̃M)b2a
∣ ≤ N−1

∣∣∣κ∣∣∣av
3 ∥M∥

2
∥GB̃M∥hs

≲ N ξ/2(1 + β−1)⟨z⟩−2N−1/2Ψ ∥B∥hs , w.v.h.p.
(6.7.54)

Putting back the dropped ∣R∣ factors into the estimates (6.7.46), (6.7.48), (6.7.50), (6.7.53) and
(6.7.54) and using the Young’s inequality to separate these factors into an additive ∣R∣p term with a
small multiplicative constant, we see that the second and third order cumulant terms in (6.7.45) can
be estimated by (N3ξ/2⟨z⟩1/2(Nη)−1/2Ψ ∥B∥hs)

p
+N−pξ/4∣R∣p. Here we used β ≥ N−ξ/4 from (6.3.4).
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Estimating the terms involving forth and higher order cumulants using simple power counting, similarly
to (6.5.30)–(6.5.31), we deduce that

E[∣R∣p] ≲ (N3ξ/2
⟨z⟩1/2(Nη)−1/2Ψ ∥B∥hs)

p

+N−pξ/4 E[∣R∣p]. (6.7.55)

This concludes the proof of (6.3.5b).

6.A Technical Lemmas
In this appendix, we collect the proofs of several technical lemmas used throughout this paper.

Proof of Lemma 6.3.4. Observe that for any s ≥ 0 and any initial condition H, the distribution of
the random matrix Fszag[H] satisfies

Fs
zag[H]

d
= E[H] + e−s/2(H −EH) +

√
1 − e−sΣ1/2

H [WG], (6.A.1)

where WG is a standard GUE/GOE random matrix (in the same symmetry class as H) independent
of H. Moreover, if ΣH ≥ cΣG for some constant 0 < c < 1, then there exists a random matrix Ŵ
with E Ŵ = 0, such that

Σ1/2
H [WG]

d
= Ŵ +

√
c W̃G, (6.A.2)

where W̃G is a GUE/GOE matrix independent of Ŵ . Therefore,

Fs
zag[H]

d
= Ĥ

s
+
√
c
√

1 − e−s W̃G, Ĥ
s d
∶= E[H] + e−s/2(H −EH) +

√
1 − e−s Ŵ , (6.A.3)

where W̃G is independent of Ĥs. Hence, (6.3.13) follows immediately from (6.3.8) and (6.A.3) for
Hc,t(H) defined as

Hc,t(H) ∶= et/2(EH + e−s(t)/2(H −EH) +
√

1 − e−s(t)Ŵ), (6.A.4)

where the random matrix Ŵ independent of H satisfies (6.A.2), and s(t) ≡ sc(t) is defined in (6.3.14).

The estimate (6.3.15) is a direct consequence of (6.3.14). This concludes the proof of Lemma 6.3.4.

Proof of Lemma 6.3.5. Fix a time 0 ≤ t ≤ T and let zs denote the solution of (6.3.18) that satisfies
zt ∈ D

abv
t . It follows from (6.3.18) and (6.3.20) that for all s ∈ [0, t],

d(ηsρs(zs)) = −πρs(zs)2ds ≤ 0, (6.A.5)

where we denote ηs ∶= Im zs. A similar computation reveals that

d(ρs(zs)−1ηs) = −(ρs(zs)
−1ηs + π)ds ≤ −πds, (6.A.6)

since ρ−1
s (z)Im z ≥ 0 for all z ∈ C. Moreover, it follows from (6.2.5) that ∣dzs/ds∣ ≲ C ′ for all

0 ≤ s ≤ T and all zt ∈ Dabv
t , hence, using the estimates (6.A.5) and (6.A.6), we deduce that zs ∈ Dabv

s

for all s ∈ [0, t]. This concludes the proof of Lemma 6.3.5.

Proof of Lemma 6.4.1. Clearly, for terminal times 0 ≤ T ≲ 1, the solutions to (6.3.17) satisfy
∥At −AT ∥ ≲ T − t and ∥St − ST ∥∥⋅∥→∥⋅∥ ≲ T − t, for all 0 ≤ t ≤ T . Therefore, for some sufficiently
small threshold T∗ ∼ 1, the first bound in (6.4.1) follows immediately from Assumption 6.2.5 and the
stability of the MDE against small perturbations of the data pair, see Section 10 in [22]. Moreover,
it follows from the fullness Assumption 6.2.4, that, by possibly shrinking the threshold T∗, we can
guarantee that St[X] ∼ ⟨X⟩ for any Hermitian matrix X ≥ 0. Hence, the second bound in (6.4.1)
follows from Proposition 3.5 in [22] and the first bound in (6.4.1). This concludes the proof of
Lemma 6.4.1.
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Proof of Lemma 6.5.3. Throughout the proof, we consider the time s ∈ [0, sfinal] to be fixed, and
drop it from the superscript of Gs. The uniformity of all estimates in s follows trivially from the
assumptions of Lemma 6.5.3.

First, we prove the second estimate in (6.5.6). The map η ↦ η2/(x2 + η2) is increasing in η > 0 for
any x ∈ R, hence it follows by spectral decomposition of ImG that

η1ImG(E + iη1) ≤ η0ImG(E + iη0), (6.A.7)

in the sense of quadratic forms. Therefore, the second estimate in (6.5.6) follows immediately from
(6.5.2).

Next, we prove the first estimate in (6.5.6). Using the Schwarz inequality and the Ward identity, we
deduce that for all 0 < η < η0,

∣
d
dη
(G(E + iη))

uv
∣ ≲
∣(ImG(E + iη))

uu
(ImG(E + iη))

vv
∣
1/2

η
≲
η0
η2 ρ(E + iη0), (6.A.8)

where in the second step we used the monotonicity of the maps η ↦ ηImG(E+iη) and η ↦ ηρ(E+iη),
and the second bound in (6.5.6) established above. Integrating the bound (6.A.8) from η1 to η0, we
obtain

∣(G(E + iη1))uv
∣ ≲ ∣(G(E + iη0))uv

∣ +
η0
η1
ρ(E + iη0). (6.A.9)

Since ρ(E + iη0) ≲ 1, the first estimate in (6.5.6) follows immediately from (6.5.2) and (6.A.9). This
concludes the proof of Lemma 6.5.3.

Remark 6.A.1 (Local Laws below the Scale). Assume that ρ(E+iη1)Nη1 ≤ N
ε and ρ(E+iη0)Nη0 =

N ε, in particular η1 ≤ η0. Using (6.A.7) with (6.3.1) at z ∶= E + iη0 as an input, we obtain the
very-high-probability bound

(ImG(E + iη1))uu
≲
η0
η1
ρ(E + iη0) ≲

ρ(E + iη0)Nη0
Nη1

≲
N ε

Nη1
. (6.A.10)

Using Lemma 6.7.1 and the identity dM(z)/dz = B−1(z)[M(z)2], that follows by taking the z-
derivative of (6.2.3), we conclude that ∥dM(z)/dz∥ ≲ ∣ρ(z)/Im z∣. Hence, differentiating (G(E +
iη) −M(E + iη))uv with respect to η, similarly to (6.A.8), we can deduce that

∣(G(E + iη1) −M(E + iη1))uv
∣ ≲

N ε

Nη1
, w.v.h.p. (6.A.11)

Analogous reasoning also applies to averaged bounds. Indeed,

∣
d
dη
⟨(G(E + iη) −M(E + iη))B⟩∣ ≲

∣⟨ImG(E + iη)⟩⟨ImG(E + iη)BB∗⟩∣1/2 + ρ(E + iη) ∥B∥hs
η

.

(6.A.12)
Therefore, by integrating (6.A.12) in η and using (6.3.1), we can deduce that

∣⟨(G(E + iη1) −M(E + iη1))B⟩∣ ≲
N ε

Nη1
∥B∥hs , w.v.h.p. (6.A.13)

These results show that the local laws (6.3.1) hold at z = E + iη1, for any 0 < η1 ≤ η0, once they
hold at E + iη0 with η0 satisfying ρ(E + iη0)Nη0 = N

ε.

Proof of Lemma 6.6.2. First, we prove (6.6.2). Let σt be function defined in (6.7.3), corresponding
to the solution Mt of the time-dependent MDE (6.3.16). It follows from Lemma 5.5 in [22] that
σt admits a uniformly 1/3-Hölder regular extension H. Moreover, it follows from Lemma 7.16 in
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[22] that ∣σt(e−t )∣ ∼ ∣σt(e+t )∣ ∼ ∆1/3
t and it follows from Theorem 7.7 (ii.b) in [22] that σt(e−t ) < 0

and σt(e+t ) > 0. Therefore, there exists a point xt ∈ (σt(e−t ), σt(e+t )) satisfying σt(xt) = 0. For any
0 ≤ s ≤ t, let xs ∶= φs,t(xt) as defined in (6.3.19). It follows from (6.3.20) that σs(xs) = 0 for any
s ∈ [0, t].

Furthermore, 1/3-Hölder regularity of ρt in t implies that there exists c ∼ 1 such that for times s
satisfying 0 ≤ t − s ≤ c∆1/3

t , the density ρs has a gap in the support around xs of size ∆s > 0, let e−s
and e+s denote its endpoints. From 1/3-Hölder regularity of σs, we infer that dist(xs, e±s ) ∼∆s.

On the other hand, the map hs ∶ x ↦ limη→+0 ρs(x + iη)−1η is also 1/3-Hölder regular, uniformly
in s, hence hs(xs) ∼ dist(xs, e±s )1/2∆1/6

s ∼ ∆2/3
s by (6.6.1). Along the trajectories of (6.3.18),

hs(xs) ∼ ht(xt) + (t − s) for all s satisfying 0 ≤ t − s ≤ c∆1/3
t , therefore (6.6.2) holds for all

0 ≤ t−s ≤ c∆1/3
t . In particular, ∆t−c∆1/3 ≳∆t+∆1/2

t , which implies that (6.6.2) holds for all 0 ≤ s ≤ t.
This concludes the proof of (6.6.2).

Next, we prove (6.6.3). A similar relation for the evolution of the gaps under the free semicircular
flow was studied in Section 5.1 of [244]. To keep the present paper reasonably self-contained, we
present a complete proof for the evolution under the characteristic flow (6.3.18). Observe that it
follows immediately from (6.3.16) that the density ρs(x) satisfies

d
dx
ρs(x) =

d
dx
(
x

2
ρs(x) + ⟨ReMs(x)⟩ρs(x)), x ∈ R, 0 ≤ s ≤ t. (6.A.14)

Consider the mass of ρs that lies to the left of the point xs. Equation (6.A.14) implies that

d
ds ∫

xs

−∞
ρs(x)dx = 0, 0 ≤ s ≤ t, (6.A.15)

where we used that ρs(xs) = 0. Therefore, the mass of the band of ρs to the left of e−s is constant
0 ≤ s ≤ t. For any r > 0, define γs(r) implicitly by

∫

γs(r)

−∞
ρs(x)dx = ∫

xs

−∞
ρs(x)dx − r. (6.A.16)

Note that by the definition of the edge point e−s and the structure theorem [22, Theorem 7.2 (ii)] for
ρs, there exists a constant c̃ > 0 such that ρs(γs(r)) > 0 for all 0 ≤ r ≤ c̃ and all 0 ≤ s ≤ t. Moreover,
γs(r) < e

−
s ≤ xs. Therefore, it follows from (6.A.14) that (a similar equation for the free semicircular

flow was obtained in Section 4.1 of [155])

d
ds
γs(r) = −

1
2
γs(r) − ⟨ReMs(γs(r))⟩, 0 ≤ r ≤ c̃, 0 ≤ s ≤ t. (6.A.17)

The evolution equation (6.6.3) for e−s follows by taking the limit r → 0 in (6.A.17). An analogous
argument that considers the mass of ρs to the right of xs implies (6.6.3) for e+s .

Next, we prove the first estimate in (6.6.4). By taking the imaginary parts of (6.3.18) and (6.3.20),
we obtain

ηs ∼ ηt + ρt(t − s), ρs ∼ ρt, 0 ≤ s ≤ t. (6.A.18)

Moreover, it follows form the comparison relation for ρt from (6.6.1), that

ρt ∼ ηt(κ̃t + ηt)
−1/2
(∆t + κ̃t + ηt)

−1/6
≲ η

1/2
t ∆−1/6

t , (6.A.19)

where we used 0 ≤ κ̃t ≤∆t and the assumption that ηt ≲ N−ν∆t. Therefore, using (6.6.2), (6.A.18)
and (6.A.19), we obtain

ηs ≲ η
1/2
t ∆−1/6

t (∆t + (t − s)
3/2)

2/3
≲ N−ν/2∆1/3

t ∆2/3
s ≲ N−ν/2∆s, 0 ≤ s ≤ t, (6.A.20)
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hence the first bound in (6.6.4) is established. To prove the second relation in (6.6.4), observe that
it suffices to show that for all 0 ≤ s ≤ t and all η ≲ N−ν/2∆s, we have the bound

±Re [F±s (η) − F±s (+0)] > 0, F ±s (η) ∶= −
1
2
(e±s + iη) − ⟨Ms(e

±
s + iη)⟩. (6.A.21)

Indeed, (6.A.21) implies that along (6.3.18), for all points at level η ≲ N−ν/2∆s above the ends e±s
of the gap, their projection onto the real line moves away from the gap, for all times 0 ≤ s ≤ t. Hence
no trajectory zs = Es + iηs satisfying Et ∈ (e−t , e+t ) and ηt ≲ N−ν∆t can violate (6.6.4). To see that
(6.A.21) holds, note that the Stieltjes representation for ⟨Ms⟩ and the universal shape (see, e.g.,
[244, Eqs. (2.4a)–(2.4e)] for precise formulas) of the density ρs in the vicinity of its singularities e±s
yields

−Re [F −s (η) − F −s (+0)] = 1
π
∫
R

−η2

x(x2 + η2)
ρs(e

−
s + x)dx ≥ C∆−1/6

s η1/2
+O(∆−5/3

s η2) +O(η2
) > 0,

(6.A.22)

where in the last line we used the assumption η ≲ N−ν/2∆s ≲ N
−ν/2. The computation for F +s is

completely analogous. This concludes the proof of (6.6.4).

Next, we prove (6.6.5). Using the comparison relations (6.A.18) for ρs and ρ−1
s ηs, together with the

bound ηs ≲ N−ν/2∆s, and the assumption κ̃t(zt) ≳ Nνηt , we deduce that

1 + κ̃s
ηs
∼

ρ−2
t ηt + (t − s)

∆1/3
t + (t − s)

1/2
≳min{1 + κ̃t

ηt
,
κ̃

1/2
t ∆1/2

t

ηt
} ≳

κ̃t
ηt
, (6.A.23)

which implies (6.6.5) immediately.

Finally, we prove (6.6.6). Without loss of generality, we can assume zs = e−s + ys + iηs with
0 ≤ ys ≤ (1 −C1)∆s for some 1 ≲ C1 < 3/4. Considering the difference of the real part of (6.3.18)
and (6.6.3), we obtain

d
ds
ys +

1
2
ys = Re ⟨Ms(e

−
s ) −Ms(e

−
s + ys) +Ms(e

−
s + ys) −Ms(zs)⟩

= −ys
1
π
∫
R

ρs(e
−
s + x)dx

x(x − ys)
− η2

s

1
π
∫
R

ρs(e
−
s + x)dx

(ys − x)((ys − x)2 + η2
s)
,

(6.A.24)

where in the second line we used the Stieltjes representation for ⟨Ms⟩. Using the universal shape of
the density ρs near the singularities e±s , we conclude that uniformly in 0 ≤ s ≤ t ≤ T ,

ys∫
R

ρs(e
−
s + x)dx

x(x − ys)
≳
y

1/2
s

∆1/6
s

, η2
s ∣∫R

ρs(e
−
s + x)dx

(ys − x)((x − ys)2 + η2
s)
∣ ≲

η2
s

∆1/6
s (ys + ηs)3/2

. (6.A.25)

Since ηs ≲ N−ν/2κ̃s and κ̃s ≤ ys, we conclude from (6.A.24) and (6.A.25) that

d
ds
ys ≲ −

y
1/2
s

∆1/6
s

, (6.A.26)

which, together with (6.6.2), implies (6.6.6) for some constant c > 0. This concludes the proof of
Lemma 6.6.2.

Proof of Lemma 6.6.5. We restrict our considerations to the event Ω on which the assumed bound
(6.6.9) holds.
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First, we prove (6.6.10). Assume, to the contrary, that there is an eigenvalue λ of H such that
λ ∈ [e−t + f(t), e

+
t − f(t)], then

⟨ImG(λ + iη)⟩ ≥ 1
Nη

, η > 0. (6.A.27)

On the other hand, choosing η implicitly such that ρt(λ + iη)Nη = N−ζ/2, implies that λ + iη ∈ Dsub
t

and η ∼ κ̃t(λ)1/4η3/4
f,t N

−ζ/4 . Therefore, using the assumed bound (6.6.9) with data (Dsub
t , ζ + ℓν,Ω)

yields

⟨ImG(λ + iη)⟩ ≲ ρt(λ + iη)Nη +N−ζ(logN)γ

Nη
≲
N−ζ/2

Nη
. (6.A.28)

Therefore, we conclude by contradiction that (6.6.10) holds on Ω. This concludes the proof of
Lemma 6.6.5.

6.B Polynomially Decaying Metric Correlation Structure
In this section, we verify the last condition in Assumption 6.2.3 (i) for the ensemble in Exam-
ple 6.2.6. More precisely, we show that (6.2.8) holds under the assumption that (recall (6.2.11c)
from Example 6.2.6)

∣κ(α1, α2, α3)∣ ≤ C3 ∏
e∈Tmin

1
1 + d(e)s

, (6.B.1)

for some14 s > 2, where Tmin is a minimal spanning tree in a complete graph with vertices α1, α2, α3
and edge weights induced by distance d, defined in (6.2.11b). That is, out goal is to show that, for
all X,Y,Z ∈ CN×N , the estimate

N−3/2
∑

α1,α2,α3

∣κ(α1, α2, α3)∣∣Xb1a2 ∣ ∣Yb2a3 ∣ ∣Zb3a1 ∣ ≲ C3 ∥X∥ ∥Y ∥ ∥Z∥hs , αj ∶= (aj , bj), (6.B.2)

holds for some absolute implicit constant, where C3 is the constant from (6.B.1).

We estimate the contribution of the case when (α1, α3) ∈ Tmin and d(α1, α3) = ∣a1 − b3∣ + ∣b1 − a3∣
in full detail. It is straightforward to check that in all other cases, using the trivial bounds
∣Xb1a2 ∣ ≤ ∥X∥, ∣Yb2a3 ∣ ≤ ∥Y ∥ is sufficient. Indeed, since s > 2, the indices b1, a2, b2, a3 can be
summed up after using the norm bounds on X and Y ; then for the remaining (a1, b3) sum, we use
N−3/2

∑a1,b3 ∣Za1b3 ∣ ≲ ∥Z∥hs.

Therefore, it suffices to bound

X ≡ X(X,Y,Z) ∶= C3N
−3/2

∑
α1,α3

∣Zb3a1 ∣

1 + (∣a1 − b3∣ + ∣b1 − a3∣)
s ∑
α2

∣Xb1a2 ∣ ∣Yb2a3 ∣

1 + (∣a1 − a2∣ + ∣b1 − b2∣)
s , (6.B.3)

where we assumed for concreteness that Tmin = {(α1, α2), (α1, α3)} and d(α1, α3) = ∣a1−a2∣+∣b1−b2∣
(other cases are identical). First, we use the Schwarz inequality in the b2 summation, to obtain

∑
b2

∣Yb2a3 ∣

1 + (∣a1 − a2∣ + ∣b1 − b2∣)
s ≲

1
1 + ∣a1 − a2∣s−1/2

√

∑
b2

∣Yb2a3 ∣
2 ≲

∥Y ∥

1 + ∣a1 − a2∣s−1/2 . (6.B.4)

Plugging (6.B.4) into the expression for X in (6.B.3) and performing the summation in a3, we obtain
the estimates

X ≲ C3 ∥Y ∥N
−3/2

∑
a1,b3

∣Zb3a1 ∣

1 + ∣b3 − a1∣s−1 ∑
a2

1
1 + ∣a1 − a2∣s−1/2 ∑

b1

∣Xb1a2 ∣

≲ C3 ∥X∥ ∥Y ∥N
−1
∑
a1,b3

∣Zb3a1 ∣

1 + ∣b3 − a1∣s−1 ∑
a2

1
1 + ∣a1 − a2∣s−1/2 ≲ C3 ∥X∥ ∥Y ∥ ∥Z∥hs ,

(6.B.5)

14The estimate (6.B.2) below can be proved under the relaxed summability condition s > 3/2. However, s > 2 in
(6.2.11c) is still necessary for (6.2.6)–(6.2.7).
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where in the second step we used Schwarz inequality in b1, and in the ultimate step we use the fact
that s > 2 to first sum the convergent series in a2, and then apply Schwarz in (a1, b3). This yields
the desired (6.B.2).
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Chapter7
Prethermalization for deformed Wigner

matrices

This chapter contains the paper [238]:

L. Erdős, J. Henheik, J. Reker, and V. Riabov. Prethermalization for Deformed Wigner Matrices.
Ann. Henri Poincaré, pages 1–43, 2024

Abstract. We prove that a class of weakly perturbed Hamiltonians of the form Hλ =H0 +λW , with
W being a Wigner matrix, exhibits prethermalization. That is, the time evolution generated by Hλ

relaxes to its ultimate thermal state via an intermediate prethermal state with a lifetime of order
λ−2. Moreover, we obtain a general relaxation formula, expressing the perturbed dynamics via the
unperturbed dynamics and the ultimate thermal state. The proof relies on a two-resolvent law for
the deformed Wigner matrix Hλ.
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7.1 Introduction
It is well-known (see, e.g., [286]) that certain macroscopic observables in an isolated quantum system
with many interacting degrees of freedom tend to equilibrate, i.e., their expectation values become
essentially constant at large times. However, if the system is coupled to the environment (reservoir),
then the process of relaxation to equilibrium may take different forms depending on the properties of
the initial system and the structure of the perturbation.

In this work, we consider a weakly coupled system of the form

Hλ ∶=H0 + λW , (7.1.1)

where H0 is a single-body or a many-body Hamiltonian, W is an energy preserving (Hermitian)
perturbation, and λ is a small coupling constant. For our phenomenological study, we consider a
mean-field random perturbation that couples all modes. Following the extensive physics literature
[586, 221, 468, 189, 192, 193], we choose the perturbation W to be a Wigner random matrix, i.e.,
a random matrix with centered, independent identically distributed (i.i.d.) entries (modulo the
Hermitian symmetry).

The central object of our study is the perturbed time evolution of the quantum expectation value

⟨A⟩Pλ(t) ∶= Tr[Pλ(t)A] (7.1.2)

of an observable A, compared to the unperturbed evolution ⟨A⟩P0(t) = Tr[P0(t)A], which is
considered known. Here

Pλ(t) ∶= e−itHλP eitHλ resp. P0(t) ∶= e−itH0P eitH0 (7.1.3)

denote the Heisenberg time evolution of an initial state P governed by the (un)perturbed Hamiltonian.
We point out that the unperturbed evolution strongly depends on all its constituents and hence, it
might exhibit qualitatively different and generally complex behavior.

In contrast, the perturbed system relaxes to equilibrium via a robust mechanism, and it can be
described by a fairly simple general relaxation formula

⟨A⟩Pλ(t) ≈ ⟨A⟩P̃λ
+ ∣gλ(t)∣

2[⟨A⟩P0(t) − ⟨A⟩P̃λ
], gλ(t) ∶= e−αλ

2t, α > 0, (7.1.4)

where P̃ λ is the thermal state of the composite system (7.1.1). In this form, Eq. (7.1.4) is first
mentioned in [468, Eq. (40)], where it describes the time dependence of the expectation of an
observable in a nonintegrable system after perturbation by a random matrix.

The relaxation formula (7.1.4) shows convergence to the thermal state at an exponential rate on
time scales of order λ−2 (in agreement with Fermi’s golden rule), but it also carries more refined
information about the role of the unperturbed dynamics in the process. A particularly interesting
case occurs if both the perturbed and unperturbed systems equilibrate but do not approach the same
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limiting value. This often happens if H0 has an additional symmetry (conserved quantity) that is
broken by the perturbation. If the time scale λ−2 of the perturbed equilibration is smaller than that
of the unperturbed one, then the former robust process eclipses the latter. In particular, the precise
form of ⟨A⟩P0(t) in (7.1.4) is irrelevant whenever the prefactor ∣gλ(t)∣2 is already exponentially small.
In the opposite case, however, the equilibration of the perturbed dynamics happens in two stages.
This phenomenon, known as prethermalization in the physics literature, was first described in a
paper by Moeckel and Kehrein [450]. We remark, however, that this terminology was already used
to describe a different phenomenon a few years earlier [64].

Nowadays, prethermalization has been extensively studied both experimentally (see, e.g., the re-
view [396]) and theoretically (e.g., in [101, 223, 276, 372, 496, 574, 430], see also the review [455]).
Reimann and Dabelow [189] studied the first relaxation stage of a prethermalization process, which
is governed by H0. More precisely, assuming that P0(t) relaxes to a non-thermal steady state, they
find that the perturbed time evolution ⟨A⟩Pλ(t) with a sufficiently weak perturbation (λ≪ 1) closely
follows the unperturbed time evolution ⟨A⟩P0(t) for times t≪ λ−2. In particular, the perturbed time
evolution ⟨A⟩Pλ(t) is close to the non-thermal steady state of H0 for times 1 ≪ t ≪ λ−2.1 The
authors of [189] further extended their principal approach to a general study of relaxation theory
for perturbed quantum dynamics in [192, 193]. These works now include all times and also the
strong coupling regime (in case of banded matrices), which yields a characteristic power-law time
decay (given more precisely by a Bessel function) instead of the exponential decay in (7.1.4). The
theoretical model is then applied to several examples and compare the prediction to numerical and
experimental works (see also Dabelow’s PhD thesis [188] for further details). Finally, we also mention
that prethermalization in the form of the existence of an effectively conserved quantity for very long
times has been rigorously established in [1] for periodically driven quantum systems if the frequency
is large compared with the size of the driving potential.

In this paper, we approach prethermalization from the viewpoint of random matrix theory, interpreting
the unperturbed Hamiltonian H0 ≡ H0(N) ∈ CN×N as a fixed sequence of bounded self-adjoint
deterministic matrices and the perturbation W ≡W (N) as an N ×N Wigner random matrix. Our
Hamiltonian Hλ in the setting of (7.1.1) is also called deformed Wigner matrix in random matrix
theory, or it can be viewed as a Wigner random matrix with nonzero expectation. Wigner matrices
are encountered in many related physics models, e.g., the recent rigorous study of thermalization
problems [165, 170, 168]. Here, the key technical result is a strong concentration property of the
resolvent G(z) = (Hλ−z)

−1 or products of several resolvents around their deterministic approximation.
Such results are commonly called multi-resolvent global or local laws, depending on the distance of
the spectral parameter from the spectrum. For example, a typical two-resolvent law computes

⟪G(z1)A1G(z2)A2⟫ = ⟪(Hλ − z1)
−1A1(Hλ − z2)

−1A2⟫ (7.1.5)

to leading order in N , where ⟪⋅⟫ denotes the normalized trace, z1, z2 ∈C ∖R, and A1,A2 ∈CN×N

are deterministic matrices. Using functional calculus, the resolvents can be replaced by more general
and even N -dependent functions, thus linking (7.1.5) to the Heisenberg time evolution. Recent work
(see Chapter 2) establishes a multi-resolvent local law for deformed Wigner matrices in the bulk
regime of the spectrum, which motivated our study of perturbed quantum systems.

7.1.1 Description of the main results

The principal goal of this work is a rigorous proof of the relaxation formula (Corollary 7.2.7) and
prethermalization (Corollary 7.2.10) for perturbed quantum Hamiltonians of the form (7.1.1). We

1Unperturbed systems H0, for which the time evolution ⟨A⟩P0(t) does not approach the microcanonical prediction
of equilibrium statistical mechanics, but nevertheless have a large-t limit (a non-thermal steady state), are studied in
[43]. In a sense, these systems exhibit prethermalization, although they do not approach thermal equilibrium after the
first steady state is reached.
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thereby assume that the unperturbed Hamiltonian H0 has a (locally) regular limiting density of states
ρ0 around a reference energy E0 and only energies in a microscopically large but macroscopically
small interval I∆ ∶= [E0 −∆,E0 +∆] are populated by the initial state P (similar assumptions are
made in [189, 192, 193]). We then show the following corollaries of our main Theorem 7.2.4:

Cor. 7.2.7: The relaxation formula (7.1.4) holds generally for short and long kinetic times, i.e. t≪ λ−2 and
t ≫ λ−2, corresponding to ∣gλ(t)∣2 ≈ 1 and ∣gλ(t)∣2 ≈ 0, respectively. At intermediate times,
t ∼ λ−2 it is generally not valid, unless the quadratic forms ⟨uj ,Auj⟩ of overlaps with the
eigenvectors uj of H0 behave regularly in j (cf. Definition 7.2.6). This happens, e.g., if H0
satisfies the Eigenstate Thermalization Hypothesis (ETH).

Cor. 7.2.10: Assuming that the unperturbed time evolution has a long time limit ⟨A⟩P0(t)
t→∞
Ð→ ⟨A⟩Ppre ,

such that the prethermal state Ppre is distinguishable from the thermal state P̃ λ of the
perturbed system, i.e. ⟨A⟩Ppre ≠ ⟨A⟩P̃λ

(cf. Definition 7.2.9), we show the characteristic
two-step relaxation of a prethermalization process; see Figure 7.1.1.

t

⟨A⟩Pλ(t)

⟨A⟩Ppre

⟨A⟩P̃λ

∼ λ−2

Figure 7.1.1: Depicted is a schematic graph of the prethermalization process: For times 1≪ t≪ λ−2,
the perturbed time evolution of the quantum expectation ⟨A⟩Pλ(t) (see (7.1.2)) is close to the
quantum expectation of A in the prethermal state Ppre, i.e. ⟨A⟩Pλ(t) ≈ ⟨A⟩Ppre . For times t≫ λ−2,
we have that ⟨A⟩Pλ(t) is close to the limiting thermal quantum expectation, i.e. ⟨A⟩Pλ(t) ≈ ⟨A⟩P̃λ

.
This value is typically different from the prethermal quantum expectation ⟨A⟩Ppre . This means, the
ultimate relaxation of ⟨A⟩Pλ(t) towards ⟨A⟩P̃λ

happens via an intermediate prethermal value ⟨A⟩Ppre

in two steps, whose time scales are separated by λ−2.

7.1.2 Outline of the paper
The general task in this paper is to approximately evaluate the random time evolution ⟨A⟩Pλ(t)
from (7.1.2). This is carried out in several steps summarized schematically in Figure 7.1.2. First, in
Theorem 7.2.4 (a) in Section 7.2.2, the true time evolution Pλ(t) is expressed as a linear combination
of the unperturbed time evolution P0(t) and another deterministic time-dependent object P̃ λ,t that
is conceptually simpler than Pλ(t). Then, in Theorem 7.2.4 (b), we identify a time-independent
state P̃ λ as the large time limit of P̃ λ,t. Combining both parts of Theorem 7.2.4, we arrive at
Corollary 7.2.7, which establishes the relaxation formula (7.1.4) at small and large kinetic times.
As mentioned above, at intermediate times, it holds only for observables having the local overlap
regularity (LOR) property (see Definition 7.2.6). In the subsequent Section 7.2.3, dropping the LOR
property, but assuming additionally that the unperturbed Hamiltonian H0 and the initial state P
have the prethermalization property (see Definition 7.2.9), we obtain the characteristic two-scale
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relaxation of Pλ(t) towards P̃ λ via an intermediate prethermal state Ppre (see Corollary 7.2.10 and
Figure 7.1.1). As an additional result, in Theorem 7.2.11 in Section 7.2.4 we relate P̃ λ to the
microcanonical ensemble of Hλ, called P (mc)

λ , which is independent of the initial state P . Finally,
our results are illustrated by two simple examples in Section 7.2.5.

While most proofs are given in Section 7.3, some auxiliary results and additional proofs are deferred
to Appendix 7.A.

Pλ(t) P̃ λ,t P̃ λ

Relaxation Formula

Ppre

P
(mc)
λ

Thm. 7.2.4 (a) Thm. 7.2.4 (b)

Cor. 7.2.7

Cor. 7.2.10

Thm. 7.2.11

Figure 7.1.2: The structure of our main results.

7.1.3 Notation
For positive quantities f, g we write f ≲ g (or f = O(g)) and f ∼ g if f ≤ Cg or cg ≤ f ≤ Cg,
respectively, for some constants c,C > 0 which only depend on the constants appearing in the
moment condition (see (7.2.1)) and the definition of the set of admissible energies (see (7.2.4)).
In informal explanations, we frequently use the notation f ≪ g, which indicates that f is "much
smaller" than g. Moreover, we shall also write w ≈ z to indicate the closeness of w, z ∈ C with a not
precisely specified error.

For any natural number n we set [n] ∶= {1, 2, . . . , n}. Matrix entries are indexed by lowercase Roman
letters a, b, c, ... and i, j, k, ... from the beginning or the middle of the alphabet and unrestricted sums
over a, b, c, ... and i, j, k, ... are always understood to be over [N] = {1, ...,N}.

We denote vectors by bold-faced lowercase Roman letters x,y ∈CN , for some N ∈N. Vector and
matrix norms, ∥x∥ and ∥A∥, indicate the usual Euclidean norm and the corresponding induced matrix
norm. For any N ×N matrices A,B we use the notations ⟪A⟫ ∶= N−1TrA to denote the normalized
trace of A and ⟨A⟩B ∶= Tr[AB] is the trace of the product AB. We denote the spectrum of a matrix
or operator A by σ(A). Moreover, for vectors x,y ∈CN and matrices A ∈CN×N we define

⟨x,y⟩ ∶=∑
i

xiyi , Axy ∶= ⟨x,Ay⟩ .

For a unit vector v ∈ CN we shall also use the notation ∣v⟩ ⟨v∣ for the projection onto the one-
dimensional subspace spanned by v.

Finally, we use the concept of “with very high probability” (w.v.h.p.) meaning that for any fixed
C > 0, the probability of an N -dependent event is bigger than 1−N−C for N ≥ N0(C). We introduce
the notion of stochastic domination (see e.g. [241]): given two families of non-negative random
variables

X = (X(N)(u) ∶ N ∈N, u ∈ U (N)) and Y = (Y (N)(u) ∶ N ∈N, u ∈ U (N))

indexed by N (and possibly some parameter u in some parameter space U (N)), we say that X is
stochastically dominated by Y , if for all ξ,C > 0 we have

sup
u∈U(N)

P [X(N)(u) > N ξY (N)(u)] ≤ N−C (7.1.6)

for large enough N ≥ N0(ξ,C). In this case we use the notation X ≺ Y or X = O≺(Y ).
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7.2 Main Results
In Section 7.2.1, we give the precise definition of Wigner random matrices and the assumptions
on the Hamiltonian, observables and states under consideration in (7.1.1)–(7.1.3). Afterward, we
formulate our main results in Sections 7.2.2–7.2.4. Finally, in Section 7.2.5 we discuss our findings
in the context of two simple examples.

7.2.1 Assumptions
We begin with formulating the assumption on the Wigner matrix W .

Assumption 7.2.1 (Wigner matrix). Let W ≡W (N) = (wij)i,j∈[N] from (7.1.1) be a real symmetric
or complex Hermitian random matrix W =W ∗ with independent entries distributed according to
the laws wij d

= N−1/2χod for i < j and wjj d
= N−1/2χd. The random variables χod and χd satisfy the

following assumptions:2 We assume that χd is a centered real random variable, and χod is a real or
complex random variable with Eχod = 0 and E ∣χod∣

2 = 1.
Furthermore, we assume the existence of higher moments, namely

E ∣χd∣
p
+E ∣χod∣

p
≤ Cp, (7.2.1)

for all p ∈N, where Cp are positive constants.

For concreteness, we focus on the complex case with the additional assumptions Eχ2
od = 0 and

E ∣χd∣
2 = 1; all other cases can also be handled as in [165]. The precise conditions on the Wigner

matrix only play a role in the underlying two resolvent global law (Proposition 7.3.1).

For the Hamiltonian H0 ≡H0(N) in (7.1.1) we assume the following.

Assumption 7.2.2 (H0 and its density of states). The Hamiltonian H0 ≡H0(N) is deterministic,
self-adjoint H0 = H

∗
0 , and uniformly bounded ∥H0∥ ≲ 1. We denote the resolvent of H0 at any

spectral parameter z ∈C ∖R by
M0(z) ∶=

1
H0 − z

.

Moreover, we assume the following:

(i) There exists a compactly supported measurable function ρ0 ∶R → [0,+∞) with

∫
R
ρ0(x)dx = 1

and two positive sequences ϵ0(N) and η0(N), both converging to zero as N →∞, such that,
uniformly in z ∈C/R with η ∶= ∣Im z∣ ≥ η0 ≡ η0(N), we have

⟪M0(z)⟫ =m0(z) +O(ϵ0) with ϵ0 ≡ ϵ0(N) . (7.2.2)

Here,
m0(z) ∶= ∫

R

ρ0(x)

x − z
dx (7.2.3)

is the Stieltjes transform of ρ0. We refer to ρ0 as the limiting density of states, and to supp(ρ0)
as the limiting spectrum of H0.

2A careful examination of our proof reveals that the entries of W need not be distributed identically. Indeed, only
the matching of the second moments is necessary, but higher moments can differ.
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(ii) For small positive constants κ, c > 0, we define the set of admissible energies σ(κ,c)adm in the
limiting spectrum of H0 by3

σ
(κ,c)
adm ∶= {x ∈ supp(ρ0) ∶ inf

∣y−x∣≤κ
ρ0(y) > c, ∥ρ0∥C1,1([x−κ,x+κ]) ≤ 1/c} . (7.2.4)

We assume that for some positive κ, c > 0, σ(κ,c)adm is not empty.

Assuming that the set of admissible energies in (7.2.4) is non-empty ensures that there is a part
of the limiting spectrum supp(ρ0), where the limiting density of states ρ0 behaves regularly, i.e. it
is strictly positive and sufficiently smooth. Finally, we formulate our assumptions on the states
considered in (7.1.2) and (7.1.3).

Assumption 7.2.3 (States). Given Assumption 7.2.2, we first pick a reference energy

E0 ∈ σ
(κ0,c0)
adm for some κ0, c0 > 0, (7.2.5)

and further introduce Iδ ∶= [E0 − δ,E0 + δ] for any 0 < δ < κ0. Moreover, take an energy width
∆ ∈ (0, 1

6κ0) and let Π∆ ∶= 1I∆(H0) be the spectral projection of H0 onto the interval I∆.

Then, we assume that the (deterministic) initial state P ≡ P (N) ∈ CN×N in (7.1.3) is a state in the
usual sense (P = P ∗, 0 ≤ P ≤ 1, and Tr[P ] = 1), and is localized in I∆, i.e.

P = Π∆PΠ∆ . (7.2.6)

Note that we assume only the state P to be localized in I∆ and not the (deterministic) observable
A ≡ A(N) ∈ CN×N . However, by inspecting the proof, we see that A and P play essentially
symmetric roles, and thus, our results hold verbatim if we assume localization of A instead of P .
Moreover, for ease of notation, we drop the N -dependence of all the involved matrices.

7.2.2 Relaxation of perturbed quantum dynamics
In this section, we present our main result on the time evolution of the random quantum expectation
⟨A⟩Pλ(t) from (7.1.2). Its relaxation is described in two steps, hence Parts (a) and (b) in the following
theorem. In the first step, we eliminate the randomness and identify the leading deterministic part of
⟨A⟩Pλ(t) in terms of M0, the unperturbed resolvent. In the second step, we consider the short and
long-time limits of the leading term. Further explanatory comments come after the theorem and in
Remark 7.2.5 below.

Theorem 7.2.4 (Relaxation of perturbed dynamics). Let Hλ =H0+λW be a perturbed Hamiltonian
like in (7.1.1) with λ > 0, whose constituents satisfy Assumptions 7.2.1 and 7.2.2, respectively. Pick
a reference energy E0 like in (7.2.5). Let P be a state satisfying Assumption 7.2.3 for some energy
width ∆ > 0 and A a bounded deterministic observable, ∥A∥ ≲ 1.

Then, using the notations (7.1.2) and (7.1.3), we have the following two approximation statements:

(a) [Relaxation in the kinetic limit] The perturbed dynamics ⟨A⟩Pλ(t) satisfies

⟨A⟩Pλ(t) = ∣gλ(t)∣
2
⟨A⟩P0(t) + ⟨A⟩P̃λ,t

+ E , (7.2.7)

where we denoted
gλ(t) ∶= e−αλ

2t with α ∶= πρ0(E0) . (7.2.8)
3Here, C1,1

(J) denotes the set of continuously differentiable functions with a Lipschitz-continuous derivative on
an interval J , equipped with the norm ∥f∥C1,1(J) ∶= ∥f∥C1(J) + sup

x,y∈J ∶x≠y

∣f ′(x)−f ′(y)∣
∣x−y∣ .
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Moreover, we introduced4

P̃ λ,t ∶=
∫R ∫R ImM0(x + iαλ2)Kλ,t(x − y) ⟨ImM0(y + iαλ2)⟩P dxdy

∫R Tr[ImM0(x + iαλ2)] ⟨ImM0(x + iαλ2)⟩P dx
, (7.2.9)

with an explicit kernel given by

Kλ,t(u) ∶=
1
π

2αλ2

u2 + (2αλ2)2
(2αλ2t

sin(tu)
tu

− cos(tu) + e−2αλ2t
) . (7.2.10)

Finally, we have E = O(E0) +O≺(C(λ, t)/
√
N) for some constant C(λ, t) > 0 and for every

fixed T ∈ (0,∞), the deterministic error E0 = E0(λ, t,∆,N) satisfies

lim
∆→0

lim
t→∞
λ→0
λ2t=T

lim
N→∞

E0 = 0 . (7.2.11)

(b) [Long and short kinetic time limit] Defining

P̃ λ ∶=
∫R ImM0(x + iαλ2) ⟨ImM0(x + iαλ2)⟩P dx
∫R Tr[ImM0(x + iαλ2)] ⟨ImM0(x + iαλ2)⟩P dx

, (7.2.12)

it holds that
⟨A⟩P̃λ,t

= (1 − ∣gλ(t)∣2)⟨A⟩P̃λ
+R , (7.2.13)

where, for every fixed T ∈ (0,∞), the error term R =R(λ, t,∆,N) satisfies

lim sup
∆→0

lim sup
t→∞
λ→0
λ2t=T

lim sup
N→∞

∣R∣ ≲ T e−2αT .
(7.2.14)

We point out that the error E in (7.2.7) naturally consists of two parts, a deterministic and a
stochastic one. The stochastic part of order O≺(C(λ, t)/

√
N) is obtained from a global law for two

resolvents of the random matrix Hλ (see (7.3.6) below); the deterministic part O(E0) is obtained
from estimating the deterministic leading term in (7.3.7).

Note that the error R is small compared to the first term in the rhs. of (7.2.13) only in the
regime where T is large, in particular ⟨A⟩P̃λ,t

converges to ⟨A⟩P̃λ
exponentially fast. In the small

T regime, both terms on the right-hand side of (7.2.13) vanish linearly in T . We chose the above
formulation (7.2.13) because, in this way, it relates directly to the relaxation formula (7.1.4) (see
Corollary 7.2.7 below).

Remark 7.2.5. We have two further comments on Theorem 7.2.4.

(i) The triple limits in (7.2.11) and (7.2.14) consist of a thermodynamic limit (N →∞), a kinetic
limit or van Hove limit (t →∞ and λ → 0 while λ2t is fixed), and an infinitesimal spectral
localization (∆→ 0). Note that the kinetic time parameter T = λ2t is natural, as the time scale
prescribed for relaxation in the physics literature, e.g., by explicit analysis of the Pauli master
equation in [455, Sect. 5.2.6], is O(λ−2). The ∆→ 0 limit is needed only to ensure that the
mean level spacing is approximately constant near E0 on the scale ∆. If the density of states is
flat, the ∆→ 0 limit can be omitted. We emphasize that the error terms in Theorem 7.2.4 are
explicit in the sense that their dependence on the scaling parameters N , t, λ, and ∆ is tracked
throughout the proof. The limit in (7.2.11) is then the natural order of limits in which these
errors vanish. Finally, we remark that the explicitly tracked errors allow for certain combined
limits, although for simplicity, we do not pursue these extensions.

4Recall that the imaginary part of a matrix B ∈CN×N is given by ImB = 1
2i
(B −B∗).
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(ii) The idea behind (7.2.12)–(7.2.14) is that the kernel (7.2.10) is an approximate delta function
with T = λ2t-dependent magnitude. More precisely, its Fourier transform5

K̂λ,t(p) =
1
√

2π
(1 − e−2αλ2(t−∣p∣))1(∣p∣ ≤ t)

converges uniformly in compact intervals to a constant. That is, for every fixed T ∈ (0,∞)
and for every compact set Ω ⊂R, we have

lim
t→∞
λ→0
λ2t=T

sup
p∈Ω
∣K̂λ,t(p) −

1
√

2π
(1 − e−2αT )∣ = 0 .

However, since x↦ ImM0(x + iαλ2) is only regular on scale λ2, the approximation

Kλ,t(x − y) ≈ (1 − e−2αλ2t)δ(x − y),

used in heuristically obtaining (7.2.13) from (7.2.9) and (7.2.12), is not generally valid
unless T is very small or very large, as (7.2.14) indicates.

In the remaining part of the current Section 7.2.2, we connect Theorem 7.2.4 to the relaxation
formula (7.1.4). As a preparation, we formulate the following local overlap regularity property,
required in Corollary 7.2.7 (c) below. For this purpose, let µj and uj denote the eigenvalues and
corresponding normalized eigenvectors of

H0 =∑
j

µj ∣uj⟩ ⟨uj ∣ . (7.2.15)

Definition 7.2.6 (Local overlap regularity (LOR)). Let the Hamiltonian H0 be as in Assumption 7.2.2.
We say that a bounded deterministic observable A, ∥A∥ ≲ 1, has the local overlap regularity (LOR)
property if and only if the eigenvector overlaps ⟨uj ,Auj⟩ are approximately constant in the following
sense: There exists a constant A ∈R such that6

⟨uj ,Auj⟩ =A +O(ELOR) for all j ∈N with µj ∈ I2∆ , (7.2.16)

where the error ELOR = ELOR(∆,N) satisfies

lim
∆→0

lim
N→∞

ELOR = 0 .

The LOR property (7.2.16) is satisfied, e.g., if H0 satisfies the Eigenstate Thermalization Hypothesis
[221, 535] (see also the discussion in [192]). For general systems, the ETH remains an unproven
hypothesis. We remark, however, that it has been rigorously proven for a large class of mean-field
random matrices H0 (see [165] and Chapter 2), including Wigner matrices and their deformations.

The following corollary collects our rigorous results on the relaxation formula (7.1.4). The first two
parts (items (a) and (b) below) immediately follow from Theorem 7.2.4 (a) and (b). The third part,
item (c), involves the LOR property of the observable A and requires a separate argument, provided
in Section 7.3.4.

5We use the convention that the Fourier transform of f ∈ L1
(R) is defined as f̂(p) ∶= (2π)−1/2

∫R f(x)e−ipxdx.
6In fact, it is sufficient to assume that the overlaps are regular in j in the sense that there exists a uniformly

equicontinuous sequence (AN)N∈N of functions AN ∶ I2∆ →R such that

⟨uj ,Auj⟩ =AN(µj) +O(ELOR) for all j ∈N with µj ∈ I2∆ .

Alternatively, we could also assume that, for every fixed ∆ > 0 small enough, the overlaps ⟨uj ,Auj⟩ are well approximated
by AN(µj) in ℓp-sense for some p ≥ 1, i.e.,

1
N

∑
j∶µj∈I2∆

∣⟨uj ,Auj⟩ −AN(µj)∣
p N→∞
Ð→ 0 .

The case p = 2 is reminiscent of the so called weak ETH studied in [86, 191].
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Corollary 7.2.7 (Relaxation formula). Under the assumptions and using the notations of Theo-
rem 7.2.4, it holds that

⟨A⟩Pλ(t) = ⟨A⟩P̃λ
+ ∣gλ(t)∣

2
[⟨A⟩P0(t) − ⟨A⟩P̃λ

] +R + E . (7.2.17)

In particular, we have the following:

(a) [Short kinetic time behavior] Let 0 < T ≲ 1. Then, it holds that

lim sup
∆→0

lim sup
t→∞
λ→0
λ2t=T

lim sup
N→∞

∣⟨A⟩Pλ(t) − ⟨A⟩P0(t)∣ ≲ T almost surely (a.s.) (7.2.18)

(b) [Long kinetic time behavior] Let T ≳ 1. Then it holds that (recall α = πρ0(E0))

lim sup
∆→0

lim sup
t→∞
λ→0
λ2t=T

lim sup
N→∞

∣⟨A⟩Pλ(t) − ⟨A⟩P̃λ
∣ ≲ T e−2αT a.s. (7.2.19)

Moreover, additionally assuming that A has the LOR property from Definition 7.2.6, we have:

(c) [Intermediate kinetic times under LOR] For every fixed T ∈ (0,∞) it holds that

lim
∆→0

lim
t→∞
λ→0
λ2t=T

lim
N→∞

[∣R∣ + ∣E ∣] = 0 a.s. , (7.2.20)

i.e. the relaxation formula (7.1.4) is valid at all kinetic times T ∈ (0,∞).

Summarizing Corollary 7.2.7, we have that the relaxation formula (7.1.4) generally holds in the two
limiting regimes (a) ∣gλ(t)∣2 ≈ 0 and (b) ∣gλ(t)∣2 ≈ 1, i.e. T ≪ 1 or T ≫ 1, respectively. In between,
(7.1.4) is valid under the additional assumption that A has the LOR property from Definition 7.2.6,
as this allows for the improved bound (7.2.20) on R compared to (7.2.14). However, without this
regularity assumption, only the bound (7.2.14) (i.e. (7.2.18) and (7.2.19)) can hold, which indicates
that the relaxation formula (7.1.4) is not generally valid for intermediate kinetic times T ∼ 1. Indeed,
it is easy to construct a counterexample. Finally, we remark that Corollary 7.2.7 (c) holds verbatim if
the state P satisfies the LOR condition instead of the observable A. This simply follows by inspecting
the proof in Section 7.3.4.

Remark 7.2.8. We have two further comments on Corollary 7.2.7.

(i) The relaxation formula (7.2.17) is in perfect agreement with the main result of Dabelow and
Reimann, see [192, Eq. (16)]. In fact, the state P̃ λ defined in (7.2.12) agrees with ρ̃ from [192,
Eq. (16)], named the "’washed out’ descendant of the so-called diagonal ensemble" [192].

(ii) In fact, recalling (7.2.15), the proof of Theorem 7.2.4 (b) in Section 7.3.3 reveals that (see
(7.3.71)) the error R in (7.2.13) and (7.2.17) is given by

R =
1
r
∑
j,k

⟨uj ,Auj⟩⟨uk, Puk⟩Rλ,t(µj − µk) , (7.2.21)

where we denoted

r ∶= ∫
R

Tr[ImM0(x + iαλ2
)] ⟨ImM0(x + iαλ2

)⟩P dx (7.2.22)
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and
Rλ,t(u) ∶= πe−2αλ2t 2αλ2

u2 + (2αλ2)2
(1 − cos(tu) − 2αλ2t

sin(tu)
tu

). (7.2.23)

The explicit error term (7.2.21)–(7.2.23) is in precise agreement with the error term in [192],
see Eqs. (17) and (18). In particular, assuming the LOR property (7.2.16) for A (or P ), the
smallness of R in (7.2.20) for all kinetic times T ∈ (0,∞) is a consequence of the fact that
∫R Rλ,t(u)du = 0.

7.2.3 Prethermalization
In this section, we specialize the general relaxation theory of perturbed quantum dynamics from
Theorem 7.2.4 to a class of unperturbed Hamiltonians H0 and states P which has the prethermalization
property in the following sense.

Definition 7.2.9 (Prethermalization property). Let the Hamiltonian H0 and the state P be defined
as in Assumptions 7.2.2 and 7.2.3. We say that (H0, P ) has the prethermalization property if and
only if there exists a state Ppre (called the prethermal state) such that we have the following:

(a) The unperturbed time evolution P0(t) converges to Ppre, i.e., for all7 deterministic observables
A ∈CN×N with ∥A∥ ≲ 1, it holds that

lim
t→∞

lim
N→∞

[⟨A⟩P0(t) − ⟨A⟩Ppre] = 0 . (7.2.24a)

(b) There exists a bounded deterministic observable A0 ∈ CN×N which distinguishes Ppre from P̃ λ
(cf. (7.2.12)), i.e. there exists a constant cpre > 0 such that

lim inf
λ→0

lim inf
N→∞

∣⟨A0⟩Ppre − ⟨A0⟩P̃λ
∣ ≥ cpre . (7.2.24b)

We emphasize that (H0, P ) having the prethermalization property is a purely deterministic condition,
i.e., in particular, it does not depend on the Wigner matrix W . In the physics literature (see, e.g.,
[430] but also [455, 396, 372, 43]), the prethermalization property is generally expected to be satisfied
if H0 is an integrable Hamiltonian having at least one additional conserved quantity Q for which
[H0,Q] = 0.8 This symmetry is then broken by a generic perturbation W , i.e. [W,Q] ≠ 0. In the
presence of M conserved quantities (Qk)Mk=1, a good candidate for the prethermal state Ppre is given
by the so called generalized Gibbs ensemble (GGE)

PGGE =
e−∑M

k=1 λkQk

Tr e−∑M
k=1 λkQk

,

where the parameters λk are chosen in such a way that TrQkPGGE = TrQkP for all k ∈ [M] (see,
e.g., [372] and [455, Section 5.1]).

Exemplary pairs (H0, P ) and observables A0 satisfying the conditions in Definition 7.2.9 are given in
Section 7.2.5.

Assuming that (H0, P ) has the prethermalization property, Theorem 7.2.4 reads as follows.

Corollary 7.2.10 (Prethermalization). Under the assumptions of Theorem 7.2.4, let further (H0, P )
have the prethermalization property from Definition 7.2.9. Then, recalling the notations from
Theorem 7.2.4, it holds that

⟨A⟩Pλ(t) = ⟨A⟩P̃λ
+ ∣gλ(t)∣

2
[⟨A⟩Ppre − ⟨A⟩P̃λ

] +R + E
′ . (7.2.25)

7A common variant of this requirement in the physics literature is to assume the validity of (7.2.24a) only for local
observables, i.e. supported in a finite region of an underlying space (see, e.g., [455, Section 5.2]).

8We use the usual notation for the commutator, i.e. [A,B] ∶= AB −BA for all matrices A,B.
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We have E ′ = O(E ′0)+O≺(C(λ, t)/
√
N) for some constant C(λ, t) > 0 and for every fixed T ∈ (0,∞),

the deterministic errors E ′0 = E ′0(λ, t,∆,N) and R =R(λ, t,∆,N) satisfy

lim
∆→0

lim
t→∞
λ→0
λ2t=T

lim
N→∞

E
′
0 = 0 and lim sup

∆→0
lim sup
t→∞
λ→0
λ2t=T

lim sup
N→∞

∣R∣ ≲ T e−2αT .

We remark that the error term E ′0 contributing in (7.2.25) consists of two parts, E ′0 = E0 + Epre, with
E0 = E0(λ, t,∆,N) from Theorem 7.2.4 and Epre = Epre(t,N) being the (absolute value of the) error
in (7.2.24a). Note that (7.2.25) in particular implies the following small and large T behaviors:

lim sup
∆→0

lim sup
t→∞
λ→0
λ2t=T

lim sup
N→∞

∣⟨A⟩Pλ(t) − ⟨A⟩Ppre ∣ ≲ T for T ≲ 1 a.s. ,

and lim sup
∆→0

lim sup
t→∞
λ→0
λ2t=T

lim sup
N→∞

∣⟨A⟩Pλ(t) − ⟨A⟩P̃λ
∣ ≲ T e−2αT for T ≳ 1 a.s.

(7.2.26)

Moreover, (7.2.24b) ensures that ⟨A⟩Ppre ≠ ⟨A⟩P̃λ
for at least one observable A = A0, which, together

with (7.2.26) establishes Figure 7.1.1 as a schematic graph of a prethermalization process.

7.2.4 Connection to the microcanonical ensemble
Under an additional regularity assumption on x↦ ⟪ImM0(x + iαλ2)A⟫ we can relate the state P̃ λ
from (7.2.12) to the microcanonical ensemble.

Theorem 7.2.11 (Microcanonical average). Under the assumptions of Theorem 7.2.4, let us further
assume that

h ≡ h(λ,N) ∶ x↦ ⟪ImM0(x + iαλ2
)A⟫

is a Lipschitz continuous map on I∆ with Lipschitz constant LipI∆
(h) bounded in the sense that

lim sup
∆→0

lim sup
λ→0

lim sup
N→∞

LipI∆
(h) ≲ 1 . (7.2.27)

Then
⟨A⟩P̃λ

= ⟨A⟩
P
(mc)
λ

+ Emc with P
(mc)
λ

∶=
ImM0(E0 + iαλ2)

Tr[ImM0(E0 + iαλ2)]
, (7.2.28)

where the error Emc = Emc(λ,∆,N) satisfies

lim
∆→0

lim
λ→0

lim
N→∞

Emc = 0.

We emphasize that P (mc)
λ is completely independent of the initial state P . Moreover, as mentioned

above and already indicated by the notation, we can interpret ⟨A⟩
P
(mc)
λ

from (7.2.28) as the
microcanonical average of Hλ at energy E0. The reason underlying this interpretation is that for any
normalized eigenvector vλ of Hλ with eigenvalue Eλ very close to E0, it holds that9

⟨vλ,Avλ⟩ ≈
Tr[ImM0(E0 + iαλ2)A]

Tr[ImM0(E0 + iαλ2)]
= ⟨A⟩

P
(mc)
λ

.

This means, P (mc)
λ is a close effective approximation to the actual projection ∣vλ⟩ ⟨vλ∣ onto the

eigenspace spanned by vλ.
9Indeed, taking, say, Eλ ∈ I∆/2 it can be rigorously shown that the difference ⟨vλ,Avλ⟩ − ⟨A⟩P (mc)

λ

vanishes in the
triple limit (7.2.11). More precisely, this follows from the Eigenstate Thermalization Hypothesis (ETH) for the random
matrix Hλ =H0 + λW (see Theorem 2.2.7) and using assumption (7.2.27) together with (7.3.1) and (7.A.7).
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7.2. Main Results

7.2.5 Examples

In this section, we give two examples of physical settings where prethermalization occurs and connect
them to our assumptions. Note that both examples are one-dimensional. However, the extension to
higher dimensions is straightforward. Moreover, although we do not express the Hamiltonians below
as matrices, both act on finite-dimensional Hilbert spaces and can hence naturally be represented as
such.

7.2.5.1 Next-nearest neighbor hopping

For N ∈N even, we consider the Laplacian-like Hamiltonian H0 acting on functions ψ ∈ ℓ2(Z/(NZ))
as

(H0ψ)(x) ∶= 2ψ(x) − ψ(x − 2) − ψ(x + 2) (7.2.29)

where x − 2 and x + 2 are interpreted mod N . Note that H0 is similar to the discrete Laplacian with
periodic boundary condition but induces next-nearest neighbor hopping instead of nearest neighbor
hopping. In particular, H0 conserves parity in the sense that functions that are only supported on
the even or odd points of Z/(NZ), respectively, remain invariant, and thus its spectrum has an
additional two-fold degeneracy. This corresponds to the conserved quantity Q being the projection
onto the even sites; clearly [H0,Q] = 0. Similar to the routine computations done for the discrete
Laplacian, one can readily check the following:

• The Hamiltonian H0 is bounded, ∥H0∥ ≲ 1.

• Its spectrum is given by σ(H0) = {2(1 − cos(2pj)) ∶ pj = 2πj/N}j∈[N] ⊂ [0,4].

• The limiting density of states as N →∞ evaluates to

ρ0(x) =
1

π
√
x(4 − x)

1[0,4](x) (7.2.30)

which is compactly supported and satisfies the regularity assumptions in Assumption 7.2.2 for
x bounded away from 0 and 4.

In this setting, we fix k such that the eigenvalue 2(1 − cos(2pk)) satisfies pk ∈ (0, π/2). Now take
P ∶= ∣uk⟩ ⟨uk∣ with uk being the normalized eigenvector of H0 supported on the even sub-lattice
corresponding to the eigenvalue 2(1 − cos(2pk)). By construction, for every bounded observable A
we have

⟨A⟩P0(t) = ⟨A⟩P = ⟨A⟩Ppre , for all t ≥ 0 ,

since [P,H0] = 0. Hence, the symmetry implies that Ppre = P . In particular, for A ∶= 1odd being the
identity operator on the odd sub-lattice, its prethermal value is given by ⟨A⟩Ppre = 0. Moreover, by
spectral decomposition of H0 = ∑j µj ∣uj⟩ ⟨uj ∣, we obtain

⟪ImM0(x + iλ2α)A⟫ =
1
N
∑
j

⟨uj ,Auj⟩
αλ2

∣x − µj ∣2 + (αλ2)2
> 0, (7.2.31)

which implies that ⟨A⟩P̃λ
≠ ⟨A⟩Ppre (recall the definition of P̃ λ in (7.2.12)) for A = 1odd. Hence, we

deduce that (H0, P ) has the prethermalization property from Definition 7.2.9.
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7. Prethermalization for deformed Wigner matrices

7.2.5.2 Free spinless fermions on a lattice

As our second example, we consider a model of spinless fermions in a periodic one-dimensional lattice
of even length N (cf. [192, App. B]), which can be seen as a many-body analog of the first example
(although with nearest neighbor hopping instead of next-nearest neighbor hopping). Let

H0 =
1
√
N
∑
j

c†
jcj+1 + c

†
j+1cj , (7.2.32)

where c†
j and cj denote the fermionic creation and annihilation operators at site j, and the summation

indices are considered modulo N . Note that the Hamiltonian in (7.2.32) conserves the particle number.
It is readily checked that H0 admits a limiting density of states which is not compactly supported
but has fast decaying (Gaussian) tails. As the regularity assumptions in Assumption 7.2.2 (ii) are
satisfied, this example is still sufficiently close to our theory to be described by it reasonably well.

In this setting, pick ψj as the orthonormal eigenfunctions of the discrete Laplacian describing nearest
neighbor hopping with periodic boundary conditions (i.e. the analog of (7.2.29) with ±1 instead of
±2) corresponding to the eigenvalues 2(1 − cos(pj)) with

pj ∶=
2πj
N

,
j

N
∈ [

1
8
,
3
8
] ∪ [

5
8
,
7
8
].

We then construct P ∶= ∣ψ⟩ ⟨ψ∣ as a rank−1 projection onto an eigenstate of H0 by taking

ψ ∶=⋀
j

ψj

as a Slater determinant of the N/2 one-particle wave functions ψj . This ensures that P satisfies
Assumption 7.2.3, as the density of states (which is the same as (7.2.30)) is regular in such intervals.
Noting that [P,H0] = 0, we obtain

⟨A⟩P0(t) = ⟨A⟩P = ⟨A⟩Ppre , for all t ≥ 0 ,

for every bounded observable A. Hence, Ppre = P , similar to the first example. In particular,
for A = 1H⊥

N/2
being the identity on the orthogonal complement of the N/2-particle sector of the

Fock space, the prethermal value is given by ⟨A⟩Ppre = 0. Moreover, by spectral decomposition of
H0, similarly to (7.2.31), we find that ⟨A⟩P̃λ

≠ ⟨A⟩Ppre . Hence, we deduce that (H0, P ) has the
prethermalization property from Definition 7.2.9.

7.3 Proofs
In this section, we provide the proofs of our main results formulated in Section 7.2. We begin by
giving the proof of Theorem 7.2.4, which we organize in three steps:

(i) In Section 7.3.1, as the first step, we approximate the random time evolution ⟨A⟩Pλ(t) by a
deterministic object, up to an error vanishing as N →∞ with very high probability. This is done
using a suitable global law for two resolvents of the random matrix Hλ (see Proposition 7.3.1
below).

(ii) The deterministic object resulting from Step (i) consists of two terms, a regular and a singular
one. In Section 7.3.2, we evaluate these terms up to errors captured by E (see Proposition 7.3.2).
This proves Theorem 7.2.4 (a).

(iii) As the third and final step in Section 7.3.3, we examine the behavior of the singular term in the
limits T → 0 and T →∞ for T ∶= λ2t (see Proposition 7.3.6). This proves Theorem 7.2.4 (b).

Afterwards, we give the proofs of Corollary 7.2.7 and Theorem 7.2.11 in Sections 7.3.4 and 7.3.5,
respectively. The proof of Corollary 7.2.10 is immediate from Definition 7.2.9 and Theorem 7.2.4
and hence omitted.
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7.3. Proofs

7.3.1 Step (i): Global law
Let λ > 0 and let Hλ ∶= D + λW such that D ∈ CN×N is a self-adjoint deterministic matrix with
∥D∥ ≲ 1 and W is a Wigner matrix satisfying Assumption 7.2.1. We refer to Hλ as a deformed
Wigner matrix. It is well known [17, 243, 22, 23], that the random resolvent10 Gλ(z) ∶= (Hλ − z)

−1

of Hλ at spectral parameter z ∈ C ∖R is very well approximated by a deterministic matrix Mλ,
which is the unique solution to the Matrix Dyson Equation (MDE)11

−
1

Mλ(z)
= z −D + λ2

⟪Mλ(z)⟫ , with ImMλ(z)Im z > 0 . (7.3.1)

In particular (see [243, Theorem 2.1]), for dist(z, σ(D) + [−2λ,2λ]) ≥ c for some N -independent
c > 0 and σ(D) ⊂R denoting the spectrum of D, and arbitrary deterministic matrix B ∈ CN×N with
∥B∥ ≲ 1, it holds that

∣⟪(Gλ(z) −Mλ(z))B⟫∣ ≺
1
N
. (7.3.2)

For our purposes, it is not sufficient to approximate only a single resolvent in the sense of (7.3.2).
Instead, we need to establish the deterministic approximation to ⟨x,Gλ(z1)BGλ(z2)y⟩ with two
deterministic vectors x,y. This is the content of the following proposition, the proof of which is
given in Appendix 7.A.2.

Proposition 7.3.1 (Isotropic two-resolvent global law for deformed Wigner matrices). Let λ > 0
and let Hλ ∶= D + λW be an N × N deformed Wigner matrix (as in Assumption 7.2.1) with a
bounded self-adjoint deformation D ∈CN×N . Pick B ∈CN×N , a deterministic matrix with ∥B∥ ≲ 1,
deterministic vectors x,y ∈ CN with ∥x∥ = ∥y∥ = 1, and two spectral parameters z1, z2 ∈ C satisfying
mini∈[2] dist(zi, σ(D) + [−2λ,2λ]) ≥ c for some N -independent parameter c > 0. Denote further
Gλ,i ∶= Gλ(zi) = (Hλ − zi)

−1. Then,

∣⟨x,Gλ,1BGλ,2y⟩ − ⟨x, (Mλ,1BMλ,2 + λ
2Mλ,1Mλ,2⟪Mλ,1BMλ,2⟫

1 − λ2⟪Mλ,1Mλ,2⟫
)y⟩∣ ≺

C(λ, c)
√
N

, (7.3.3)

where we denoted Mλ,i ∶=Mλ(zi) with Mλ(z) ∈CN×N being the solution of (7.3.1). The positive
constant C(λ, c) in (7.3.3) depends12 only on its arguments λ and c.

We now apply Proposition 7.3.1 to resolvents Gλ(z) ∶= (Hλ − z)
−1 of our concrete deformed Wigner

random matrix Hλ =H0 + λW . For the proof of Theorem 7.2.4, we use (7.3.3) as follows: Applying
residue calculus allows to rewrite ⟨A⟩Pλ(t) as the contour integral

⟨A⟩Pλ(t) = ⟨e
−itHλP eitHλA⟩ =

1
(2πi)2 ∮γ1

∮
γ2

eit(z1−z2)Tr [Gλ(z1)AGλ(z2)P ]dz1dz2 (7.3.4)

where γ1 and γ2 are two semicircles (each being the complex conjugate of the other) with some
large radius R ≳ 1 (see Figure 7.3.1 below). We further define the contours such that the distance
between the flat part of the semicircles and the real line is t−1. Note that we have

σ(Hλ) ⊆ σ(H0) + [−(2 + ϵ)λ, (2 + ϵ)λ] w.v.h.p. (7.3.5)

for any fixed ϵ > 0 by standard perturbation theory, using that ∥W ∥ ≤ 2 + ϵ with very high probability
(see, e.g., [241, Theorem 7.6]). In particular, the contours encircle the spectrum of Hλ completely if
R is chosen large enough.

10In the sequel, we consistently use the letter G to denote resolvents of random matrices, for example Gλ(z) ∶=
(Hλ − z)

−1, and M to denote deterministic resolvents – more specifically, resolvents of H0.
11The MDE in the context of mean-field random matrices was introduced in [17] and extensively analyzed in [22].
12In fact, by examining the proof of Proposition 7.3.1, it can easily be seen that the dependence on both small

parameters λ and c is at most (inverse) polynomial.
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7. Prethermalization for deformed Wigner matrices

Rσ(Hλ)

γ1 γ1,c

γ2

t−1

2αλ2

R

x+x−
• •

Figure 7.3.1: Sketch of the contours γ1 and γ2 from (7.3.4). The contour γ2 is depicted as a solid
black curve, while the contour γ1 is indicated with dashed and dotted lines. The dotted parts of γ1
constitute the set γ1,c, defined in (7.3.32). The intersections of γ1 (and γ2) with the real line are
denoted by x±.

Writing P = ∑j pj ∣pj⟩ ⟨pj ∣ in spectral decomposition and using that the pj ∈ [0,1] sum to one by
Assumption 7.2.3, the global law (7.3.3) applied to x = y = pj implies13

RRRRRRRRRRR

Tr[Gλ(z1)AGλ(z2)P ]

−Tr [Mλ(z1)AMλ(z2)P + λ
2Mλ(z1)Mλ(z2)P⟪Mλ(z1)AMλ(z2)⟫

1 − λ2⟪Mλ(z1)Mλ(z2)⟫
]

RRRRRRRRRRR

≺
C(λ, t)
√
N

(7.3.6)

uniformly for z1, z2 along the contours γ1, γ2 for any fixed λ > 0. Just as in (7.3.3), C(λ, t) denotes
a positive constant depending only on λ and t. Therefore, combining (7.3.4) with (7.3.6), we find
that

⟨A⟩Pλ(t) =
1

(2πi)2 ∮γ1
∮
γ2

eit(z1−z2)Tr [Mλ(z1)AMλ(z2)P ]dz1dz2

+
1

(2πi)2 ∮γ1
∮
γ2

eit(z1−z2)λ2⟪[]Mλ(z1)AMλ(z2)⟫Tr [Mλ(z1)PMλ(z2)]

1 − λ2⟪Mλ(z1)Mλ(z2)⟫
dz1dz2

+O≺ (
C(λ, t)
√
N
) .

(7.3.7)

To establish (7.2.7), our main task thus lies in evaluating the right-hand side of (7.3.7). For simplicity,
we refer to the integrals in the first and second line of (7.3.7) as the regular and the singular term,
respectively.

7.3.2 Step (ii): Evaluation of the regular and singular term and proof of
Theorem 7.2.4 (a)

We organize the result of our computation of (7.3.7) in the following proposition.
13Note that (7.3.6) is an averaged two-resolvent local law, but we prove it via an isotropic law. Therefore, the error

term in (7.3.6) is not optimal: The true bound is of order N−1 instead of N−1/2. While we could have obtained an
optimal error term with the same proof idea, the weaker bound is sufficient for our analysis and we use it for simplicity.
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7.3. Proofs

Proposition 7.3.2 (Evaluation of the regular and singular term). Under the assumptions of The-
orem 7.2.4 and letting γ1, γ2 be the contours in Fig. 7.3.1, we have (recalling α = πρ0(E0))

1
(2πi)2 ∮γ1

∮
γ2

eit(z1−z2)Tr [Mλ(z1)AMλ(z2)P ]dz1dz2

= e−2αλ2t
⟨A⟩P0(t) +O(Ereg) ,

(7.3.8a)

for the regular term and

F̃ sing ∶=
λ2

(2πi)2 ∮γ1
∮
γ2

eit(z1−z2)⟪Mλ(z1)AMλ(z2)⟫Tr [Mλ(z1)PMλ(z2)]

1 − λ2⟪Mλ(z1)Mλ(z2)⟫
dz1dz2

= ⟨A⟩P̃λ,t
+O(Esing)

(7.3.8b)

for the singular term, with some error terms Ereg/sing = Ereg/sing(λ, t,∆,N) in (7.3.8a) and (7.3.8b)
satisfying (7.2.11). The explicit form of Ereg is given in (7.3.16) and (7.3.18), while the explicit
form of Esing is given in (7.3.26).

Plugging (7.3.8a) and (7.3.8b) into (7.3.7), we immediately conclude Theorem 7.2.4 (a) after setting
E0 ∶= Ereg + Esing and including the error term from (7.3.7) into E .

It thus remains to give the proof of Proposition 7.3.2, i.e. its two parts (7.3.8a) and (7.3.8b). This
is done in Sections 7.3.2.1 and 7.3.2.2, respectively.

7.3.2.1 Proof of (7.3.8a)

The main contribution to the integral in (7.3.8a) comes from the regime14 where z1 and z2 are
close to E0. Hence, as a first approximation we use the replacements ⟪Mλ(z1)⟫ ≈ m0(E0) and
⟪Mλ(z2)⟫ ≈m0(E0) in (7.3.1), which leads to

Mλ(z1) ≈
1

H0 − z1 − λ2m0(E0)
and Mλ(z2) ≈

1
H0 − z2 − λ2m0(E0)

. (7.3.9)

Applying the replacements in (7.3.9) for the term in (7.3.8a) yields

1
(2πi)2 ∮γ1

∮
γ2

eit(z1−z2)Tr [ 1
H0 − z1 − λ2m0(E0)

A
1

H0 − z2 − λ2m0(E0)
P]dz1dz2

=Tr [eit(H0−λ2m0(E0))Ae−it(H0−λ2m0(E0))P ]

=e−2Imm0(E0)λ2tTr [eitH0Ae−itH0P ] = e−2αλ2t
⟨A⟩P0(t),

(7.3.10)

since Imm0(E0) = πρ0(E0), from simple residue calculus for λ > 0 small enough, using that
∣m0(E0)∣ ≲ 1 and γ1, γ2 encircle the spectrum of H0. We have thus extracted the main term in
(7.3.8a), and it remains to estimate the errors resulting from the replacements in (7.3.9).

Recall (see (7.2.15)) that µj and uj are the eigenvalues and the respective orthonormalized eigen-
vectors of H0, i.e.

H0 =∑
j

µj ∣uj⟩ ⟨uj ∣ . (7.3.11)

14Recall that the flat pieces of the contours γ1 and γ2 from Figure 7.3.1 lie on the lower and upper half plane,
respectively.

359



7. Prethermalization for deformed Wigner matrices

Then, by means of (7.3.1), spectral decomposition (7.3.11) of H0 and using Assumption 7.2.3
together with [H0,Π∆] = 0 and Π2

∆ = Π∆, we have that

lhs. of (7.3.8a) = Tr [Θ̃1AΘ̃2P ] = ∑
µi,µj∈I∆

⟨ui,Auj⟩⟨uj , Pui⟩ϑ̃1(i)ϑ̃2(j) , (7.3.12)

where we denoted

Θ̃1 ∶= ∑
µj∈I∆

∣uj⟩ ⟨uj ∣ ϑ̃1(j) and Θ̃2 ∶= ∑
µj∈I∆

∣uj⟩ ⟨uj ∣ ϑ̃2(j) (7.3.13)

with

ϑ̃1(j) ∶=
1

2πi ∮γ1

eitz1

µj − z1 − λ2⟪Mλ(z1)⟫
dz1 , ϑ̃2(j) ∶=

1
2πi ∮γ2

e−itz2

µj − z2 − λ2⟪Mλ(z2)⟫
dz2 .

(7.3.14)
Note that, by symmetry of the contours γ1 and γ2, we have that ϑ̃1(j) = ϑ̃2(j) and Θ̃∗1 = Θ̃2.

The key to approximating (7.3.12) is the following lemma, whose proof is given at the end of the
current Section 7.3.2.1.

Lemma 7.3.3 (First replacement lemma). Using the above notations and assumption, denote

Θ1 ∶= ∑
µj∈I∆

∣uj⟩ ⟨uj ∣ϑ1(j) with ϑ1(j) ∶=
1

2πi ∮γ1

eitz1

µj − z1 − λ2m0(E0)
dz1

and Θ2 ∶= Θ∗1 via ϑ2(j) ∶= ϑ1(j), analogously to (7.3.13) and (7.3.14). Then it holds that

sup
µi∈I∆

∣ϑ̃1(i) − ϑ1(i)∣ + sup
µj∈I∆

∣ϑ̃2(j) − ϑ2(j)∣ ≲ Ẽreg (7.3.15)

for sufficiently small λ > 0 and N large enough (dependent on λ, cf. Lemma 7.A.1). Here, recalling
(7.2.2) for the definition of ϵ0, we denoted

Ẽreg ∶= λ
2t∆ + λ (1 + λ2t) +

λ

∆
(1 + λ

∆
) + λ2t ϵ0 . (7.3.16)

Therefore, by writing Θ̃ = Θ + (Θ̃ −Θ) in (7.3.12), we find the lhs. of (7.3.8a) to be given by

Tr [Θ1AΘ2P ]+Tr [(Θ̃1−Θ1)AΘ2P ]+Tr [Θ1A(Θ̃2−Θ2)P ]+Tr [(Θ̃1−Θ1)A(Θ̃2−Θ2)P ] . (7.3.17)

The first term in (7.3.17) precisely yields the result of (7.3.10) using Assumption 7.2.3. Using ∥A∥ ≲ 1
and Tr[P ] = 1, the second and third term in (7.3.17) can be estimated by (a constant times)

∥Θ1∥ ∥Θ̃2 −Θ2∥ + ∥Θ̃1 −Θ1∥ ∥Θ2∥ ≲ Ẽreg .

Here we used (7.3.15) and that ∥Θ1∥ ≤ 1 and ∥Θ2∥ ≤ 1 as follows by the explicit expressions

Θ1 = eit(Π∆H0Π∆−λ2m0(E0)) and Θ2 = e−it(Π∆H0Π∆−λ2m0(E0))

and Imm0(E0) ≥ 0. Similarly, applying (7.3.15) again, the fourth term in (7.3.17) is bounded by
O(Ẽ

2
reg). Collecting all four terms of (7.3.16), this concludes the proof of (7.3.8a) with

Ereg ∶= Ẽreg + Ẽ
2
reg . (7.3.18)

It remains to give the proof of Lemma 7.3.3.
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Proof of Lemma 7.3.3. Since ϑ̃1(j) = ϑ̃2(j) and ϑ2(j) ∶= ϑ1(j), we only estimate ϑ̃2(j)−ϑ2(j) for
arbitrary but fixed index j such that µj ∈ I∆. Moreover, for ease of notation, we completely drop the
subscript 2.

As a first step, we split the contour into three parts:

γ = Γ1 +̇ Γ2 +̇ Γ3 , (7.3.19)

where Γ1 is the horizontal part of γ with Re z ∈ I2∆, Γ2 is the horizontal part of γ with Re z ∉ I2∆
and Γ3 consists of the great arc of radius R (cf. Figure 7.3.1). We now estimate these three parts
separately.

For the first part, Γ1, we have that (using the notation mλ(z) = ⟪Mλ(z)⟫ from Lemma 7.A.1)15

∣∫Γ1
e−itz
[

1
µj − z − λ2mλ(z)

−
1

µj − z − λ2m0(E0)
]dz∣

≲ ∫Γ1

λ2 (1/t + λ +∆ + ϵ0)
∣µj − z − λ2mλ(z)∣ ∣µj − z − λ2m0(E0)∣

∣dz∣ ≲ λ2t (1/t + λ +∆ + ϵ0) ,
(7.3.20)

uniformly in µj ∈ I∆. To go to the second line, we used that ∣mλ(z)−m0(E0)∣ ≲ 1/t+λ+∆+ϵ0. This
follows by adding and subtracting mλ(E0) and using ∣mλ(z)−mλ(E0)∣ ≲ ∆+ 1/t (using ∣m′λ(z)∣ ≲ 1
for Re z ∈ I2∆; cf. the last estimate in (7.A.2) from Lemma 7.A.1) and ∣mλ(E0) −m0(E0)∣ ≲ λ + ϵ0
(using that (7.A.7) holds down to the real line by combining it with (7.A.8)). For the final bound,
we employed a Schwarz inequality for the integral and estimated the resulting integrals

∫Γ1

∣dz∣
∣µj − z − λ2mλ(z)∣2

≲ (1 + λ2
) t ≲ t and ∫Γ1

∣dz∣
∣µj − z − λ2m0(E0)∣2

≲ t ,

by a change of variables z → z + λ2mλ(z) using that ∣m′λ(z)∣ ≲ 1 for z ∈ Γ1 by means of (7.A.2)
together with ∣Im [z + λ2mλ(z)]∣ ≥ t

−1, and ∣m0(E0)∣ ≲ 1 together with ∣Im [z + λ2m0(E0)]∣ ≥ t
−1,

respectively.

We now turn to the second part, i.e. the integral similar to the left-hand side of (7.3.20) but on
the contour Γ2. By means of ∣m0(E0)∣ ≲ 1 and ∣mλ(z)∣ ≤ λ

−1 (see the first estimate in (7.A.1))
we bound ∣mλ(z) −m0(E0)∣ ≲ λ

−1. Using ∣m0(E0)∣ ≲ 1 and ∣mλ(z)∣ ≤ λ
−1 again, together with

dist(µj ,Γ2) ≳∆, we find this second part to be bounded by (a constant times)

∫Γ2

λ

∣µj − z∣2
∣dz∣ (1 + λ

∆
) ≲

λ

∆
(1 + λ

∆
) , (7.3.21)

again uniformly in µj ∈ I∆.

Finally, we estimate the third part. By the exact same reasoning as for Γ2, we arrive at the bound
(7.3.21) with ∆ replaced by R and Γ2 replaced by Γ3. Hence, using that the radius R of the
semicircle is larger than one (see Figure 7.3.1), we find the third part to be bounded by O(λ/R),
uniformly in µj ∈ I∆.

Combining this with the error terms in (7.3.20) and (7.3.21), this concludes the proof.

7.3.2.2 Proof of (7.3.8b)

Recall that F̃ sing denotes the singular term defined in (7.3.8b). To carry out the analog of the
approximation (7.3.9), we observe that the resolvent identity for H0 implies

z1,λ − z2,λ

z1 − z2
M0(z1,λ)M0(z2,λ) =

M0(z1,λ) −M0(z2,λ)

z1 − z2
=

1
π
∫

R

ImM0(xλ)

(x − z1)(x − z2)
dx, (7.3.22)

15Here and in the following, ∣dz∣ denotes the total variation of the complex measure dz.
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where we introduce the notation z1,λ ∶= z1+λ
2m0(E0), z2,λ ∶= z2+λ

2m0(E0), and xλ ∶= x+λ2m0(E0).
Note that xλ is a complex number with Imxλ = λ

2Imm0(E0) > 0. Here, the second equality follows
from the contour representation of the resolvent M0 of H0, namely

M0(z) =
1
π
∫

R

ImM0(x + iη)
x + iη − z

dx, Im z > η > 0. (7.3.23)

On the other hand, subtracting two instances of the MDE (7.3.1) yields

Mλ(z1)Mλ(z2)

1 − λ2⟪Mλ(z1)Mλ(z2)⟫
=
Mλ(z1) −Mλ(z2)

z1 − z2
=

1
π
∫

R

ImMλ(x)

(x − z1)(x − z2)
dx, (7.3.24)

where we used the matrix-valued analog of the Stieltjes representation for Mλ(z) (cf. [22, Prop. 2.1]),

Mλ(z) =
1
π
∫

R

ImMλ(x)

x − z
dx, z ∈C ∖R . (7.3.25)

In particular, identities (7.3.22) and (7.3.24) suggest that the appropriate approximation for the
factor 1−λ2⟪Mλ(z1)Mλ(z2)⟫ in the denominator of (7.3.8b) is (z1 − z2)(z1,λ − z2,λ)

−1. Indeed, we
prove that the following estimate holds.

Lemma 7.3.4. Under the Assumption 7.2.2 and 7.2.3, the singular term F̃ sing defined in (7.3.8b)
satisfies

∣F̃ sing −Fsing∣ ≲ Esing ∶= (∆ + ϵ0)(1 + λ2t) + λ(1 + λ2t +∆−1 log t)2, (7.3.26)

where the quantity Fsing is given by

Fsing ∶=
λ2

(2πi)2 ∮γ1
∮
γ2

eit(z1−z2) z1,λ − z2,λ

z1 − z2

× ⟪M0(z1,λ)AM0(2,λ)⟫Tr [M0(z1,λ)PM0(z2,λ)]dz1dz2.

(7.3.27)

We defer the proof of Lemma 7.3.4 to the end of the current Section 7.3.2.2, and proceed to analyze
the right-hand side of (7.3.27).

Applying the identity (7.3.22) to both traces in the integrand of (7.3.27), we obtain the expression

Fsing = ∫
R
∫

R
⟪ImM0(xλ)A⟫Tr[ImM0(yλ)P ]Fλ,t(x, y)dxdy, (7.3.28)

where the function Fλ,t(x, y) is defined as

Fλ,t(x, y) ∶=
λ2

(2πi)2π2 ∮γ1
∮
γ2

eit(z1−z2) (z1 − z2)

(x − z1)(x − z2)(y − z1)(y − z2)(z1,λ − z2,λ)
dz2dz1. (7.3.29)

Recall the contours γ1 and γ2 from Figure 7.3.1, and that z1,λ − z2,λ = z1 − z2 − 2iαλ2. Evaluating
the contour integration over γ2 in (7.3.29) yields

Fλ,t(x, y) =
λ2

π2
1

2πi ∮γ1
(

−eit(z1−x)χ(x)

(x − y)(y − z1)(xλ − z1,λ)
+

eit(z1−y)χ(y)

(x − y)(x − z1)(yλ − z1,λ)

+
2iαλ2e−2αλ2t

(x − z1)(y − z1)(xλ − z1,λ)(yλ − z1,λ)
)dz1 − F

out
λ,t (x, y),

(7.3.30)

where we define χ(z) ∶= 1Ω2(z), and Ω2 is the compact connected component of C/γ2, and the
function F out

λ,t (x, y) is defined as

F out
λ,t (x, y) ∶=

λ2

π2
1

2πi ∮γ1

2iαλ2e−2αλ2t(1 − χ(z1 − 2iαλ2))

(x − z1)(y − z1)(xλ − z1,λ)(yλ − z1,λ)
dz1. (7.3.31)
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We proceed to show that F out
λ,t (x, y) contributes at most an O(λ4(1 + ∣ logλ∣2 + (λ2t)2)) error to

the right-hand side of (7.3.28). Let γ1,c denote the set (see Figure 7.3.1)

γ1,c ∶= {z1 ∈ γ1 ∶ z1 − 2iαλ2
∉ Ω2}. (7.3.32)

Then the contribution of F out
λ,t (x, y) to the integral in (7.3.28) is given by

Eγ1,c
∶=
αλ4e−2αλ2t

π3 ∫
γ1,c
∫

R

⟪ImM0(xλ)A⟫dx
(x − z1)(xλ − z1,λ)

∫
R

Tr[ImM0(yλ)P ]dy
(y − z1)(yλ − z1,λ)

dz1. (7.3.33)

Note that by choosing the radii of the contours R ≳ 1 large enough, we can assume that

dist(σ(H0), γ1,c) ≳ R. (7.3.34)

Using the spectral decomposition of H0 from (7.3.11), the fact that ∫R Im [(µj − xλ)]dx = π, and
Assumption 7.2.3, we conclude that

∣∫
R
⟪ImM0(xλ)A⟫dx∣ + ∣∫

R
Tr[ImM0(yλ)P ]dy∣ ≲ 1 + ∥A∥ ≲ 1. (7.3.35)

Furthermore, the spectral decomposition for H0 implies that for all x with dist(x,σ(H0)) ≳ 1,

∣Tr[ImM0(xλ)P ]∣ + ∣⟪ImM0(xλ)A⟫∣ ≲ λ
2
∣x −E0∣

−2. (7.3.36)

Let x± denote the intersections of the contour γ1 with R (see Figure 7.3.1), and define D to be
a union of two small disks of radius ε around x±, D ∶= {z ∈ C ∶ min{∣z − x−∣, ∣z − x+∣} ≤ ε}, for a
sufficiently small constant ε ∼ 1 . Applying the Cauchy-Schwarz inequality to the z1 integration
in (7.3.33), and using the estimates (7.3.34)-(7.3.36) to bound the contribution coming from the
outside of D, and applying the estimates (7.3.34) and (7.3.36) for all x, y ∈R ∩D, we obtain

∣Eγ1,c ∣ ≲ λ
4
∫
γ1,c∩D

∣
λ2

R2 ∫R∩D

dx
∣x − z1∣∣xλ − z1,λ∣

∣

2
∣dz1∣ +O(R

−3λ4) . (7.3.37)

For z1 on the horizontal linear segment of γ1,c ∩D, we use that Im z1 = −1/t to obtain

λ2

R2 ∫R∩D

dx
∣x − z1∣∣xλ − z1,λ∣

≲
1 + λ2t

R2 , (7.3.38)

On the other hand, for z1 lying on the circular arc parts of γ1,c ∩D, we compute

λ2

R2 ∫R∩D

dx
∣x − z1∣∣xλ − z1,λ∣

≲
λ2

R2
∣ logλ2∣ + ∣log ∣η1∣∣ + ∣log ∣η1 − 2αλ2∣∣

∣η1∣ + λ2 , (7.3.39)

where η1 ∶= Im z1. Squaring the estimates (7.3.38) and (7.3.39) and integrating them over the
respective parts of γ1,c ∩D, we conclude from (7.3.37) that

∣Eγ1,c ∣ ≲ R
−3λ4(1 + (λ2t)2 + ∣ logλ∣2). (7.3.40)

Next, using residue calculus, we compute the first term on the right-hand side of (7.3.30), i.e., the
contour integral over γ1, to obtain

Fλ,t(x, y) =
Kλ,t(x − y)

απ
− F out

λ,t (x, y) +
Kλ,t(x − y)

απ
(χ(x)χ(y) − 1)

+
1

2π2
2λ2e−2αλ2t(χ(x) − χ(y))

2

∣x − y∣2 + (2αλ2)2
+

1
π2

2iαλ4e−2αλ2t

∣x − y∣2 + (2αλ2)2
χ(x) − χ(y)

x − y
,

(7.3.41)
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where Kλ,t is the kernel defined in (7.2.10). As we have proved above, the contribution of F out
λ,t (x, y)

to the integral in (7.3.28) admits the bound (7.3.40). Similarly, using the estimates (7.3.35) and
(7.3.36), it is straightforward to check that the third and fourth terms on the right-hand side of
(7.3.41) contribute at most O(λ4) to the right-hand side of (7.3.28), while the last term contributes
at most O(λ2). Therefore,

Fsing = ⟨A⟩P̃λ,t
(1 +O(ϵ0 +∆ + λ2

/∆)) +O(λ2
), (7.3.42)

where we used the estimate πα = π2ρ0(E0) = N
−1r(1 + O(ϵ0 + ∆ + λ2/∆)) that follows from

Lemma 7.A.2 for r defined in (7.2.22), and performed a change of variables x→ x − λ2Rem0(E0)
and y → y − λ2Rem0(E0). We note that the N−1 prefactor results from the different normalization
of the trace in (7.2.22) and (7.A.14). Furthermore, Proposition 7.3.6 below implies that under the
Assumptions 7.2.2 and 7.2.3, ∣⟨A⟩P̃λ,t

∣ ≲ 1. Since the proof of Proposition 7.3.6 is independent of
the statement of (7.3.8b), this concludes the proof of (7.3.8b).

We proceed to prove Lemma 7.3.4.

Proof of Lemma 7.3.4. Define the sequences of overlaps aj ∶= ⟨uj ,Auj⟩, and pk ∶= ⟨uk, Puk⟩ where
we recall from (7.3.11) that uj ’s are the eigenvectors of H0. Observe that the Assumption 7.2.3
implies that

∥a∥∞ ≲ 1, pk ≥ 0 and ∥p∥1 = 1. (7.3.43)

Then, using the spectral decomposition (7.3.11) of H0 and the identity (7.3.24), we rewrite F̃ sing in
the following form,

F̃ sing =∑
j,k

ajpk

N

1
π
∫

R
Im ν̃j(x)λ

2∣ω̃k(x)∣
2dx, (7.3.44)

where ν̃j(z) ∶= (µj − z −λ2mλ(z))
−1 for z ∈ C, and the functions ω̃k(x) are defined by the improper

integrals16

ω̃k(x) ∶=
1

2πi ∮
γ2

eitz ν̃k(z)

x − z
dz, x ∈R. (7.3.45)

Here we adhere to the convention mλ(x) ∶= limη→+0mλ(x + iη).

The key estimates for proving (7.3.26) are collected in the following Lemma that we prove at the
end of the subsection.

Lemma 7.3.5 (Second replacement lemma). Define the functions

ωk(x) ∶=
1

2πi ∮γ2

e−itz

x − z

1
µk − zλ

dz, k ∈ [N], (7.3.46)

where we denote zλ ∶= z + λ2m0(E0). Then under the Assumptions 7.2.2 and 7.2.3, the estimates

∣ωk(x) − ω̃k(x)∣ ≲
(∆ + ϵ0)(1 + λ2t)

∣µk − xλ∣
+ 1 + λ2t +∆−1 log t, x ∈ I3∆, (7.3.47)

∣ωk(x)∣ + ∣ω̃k(x)∣ ≲
1

∣µk − xλ∣
+ 1 + λ2t +∆−1 log t, x ∈ I3∆, (7.3.48)

∣ωk(x)∣ + ∣ω̃k(x)∣ ≲∆−1 log t +R−1, x ∈ [−1
2R,

1
2R]/I3∆, (7.3.49)

hold for all k with µk ∈ I∆.
16The integral in (7.3.45) diverges logarithmically as x approaches the intersection of the contour γ2 with the real

line. However, the contribution of such singularities to the dx integral on the right-hand side of (7.3.44) is negligible.
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Observe that applying the identities (7.3.22), (7.3.24), and the spectral decomposition of H0 to
(7.3.28) yields

F̃ sing −Fsing = Esing,1 + Esing,2, (7.3.50)

where, recalling xλ ∶= x − λ2m0(E0), the quantities Esing,1 and Esing,2 are defined as

Esing,1 ∶=∑
j,k

ajpk

N

1
π
∫

R
Im [ν̃j(x) − (µj − xλ)−1]λ2∣ω̃k(x)∣

2dx. (7.3.51)

Esing,2 ∶=∑
j,k

ajpk

N

1
π
∫

R
Im [(µj − xλ)−1]λ2

(∣ω̃k(x)∣
2
− ∣ωk(x)∣

2
)dx. (7.3.52)

First, we estimate the quantity Esing,1 defined in (7.3.51). In the regime x ∈ I3∆, the bounds in
(7.A.2) imply that

∣ν̃j(x) − (µj − xλ)
−1∣ ≲ (∆ + ϵ0)

λ2

∣µj − xλ∣2
, x ∈ I3∆. (7.3.53)

On the other hand, it is straightforward to check that the regime ∣x∣ ≥ 1
2R contributes at most

O(λ2R−2) to the integral on the right-hand side of (7.3.51). We note that the logarithmic singularity
resulting from the contour γ2 intersecting the real line is removed by the x integration.

Therefore, estimates (7.3.43), (7.3.48), (7.3.49), and (7.3.53) imply that

∣Esing,1∣ ≲ ∑
j,k

∣aj ∣pk

N
∫
I3∆

λ2(∆ + ϵ0)
∣µj − xλ∣2

λ2

∣µk − xλ∣2
dx

+ λ2
(1 + λ2t +∆−1 log t)2∑

j

1
N
∫

R
Im [ν̃j(x) + (µj − xλ)−1]dx

≲ ∑
j,k

∣aj ∣pk

N
∫

R

λ2(∆ + ϵ0)
∣µj − xλ∣2

λ2

∣µk − xλ∣2
dx + λ2(1 + λ2t +∆−1 log t)2,

(7.3.54)

where in the fist step we used the bound ∣Im [ν̃j(x) − (µj − xλ)−1]∣ ≤ Im [ν̃j(x) + (µj − xλ)−1] to
estimate the contribution coming from the second term on the right-hand side of (7.3.48) and
the regime x ∈ [−1

2R,
1
2R]/I3∆; and in the second step we used that ∫R Im [(µj − xλ)−1]dx = π

and ∫R
1
N ∑j Im ν̃j(x)dx = ∫R Immλ(x)dx = π (see, e.g., Proposition 2.1 and Eq. (2.9) in [22]).

Computing the integral in the second term on the right-hand side of (7.3.54) explicitly, and using
the spectral decomposition of H0, we deduce from the admissibility of E0 that

∑
j,k

∣aj ∣pk

N
∫

R

λ2(∆ + ϵ0)
∣µj − xλ∣2

λ2dx
∣µk − xλ∣2

≲ (∆ + ϵ0) sup
µk∈I∆

⟪ImM0(µk + 2iλ2α)⟫ ≲∆ + ϵ0. (7.3.55)

Here we employed (7.3.43) and the estimate ⟨a,Xp⟩ ≲ ∥a∥∞∥p∥1 sup
k∈supp(p)

∑j ∣Xjk∣. Hence, we

conclude that
∣Esing,1∣ ≲∆ + ϵ0 + λ2(1 + λ2t +∆−1 log t)2. (7.3.56)

We proceed to estimate the quantity Esing,2 defined in (7.3.52). We note again that the contribution
of the regime ∣x∣ ≥ 1

2R to the integral on the right-hand side of (7.3.52) is bounded by O(λ2R−2).
Therefore, combining the estimates (7.3.47), (7.3.48), and (7.3.49) yields the bound

∣Esing,2∣ ≲ (∆ + ϵ0)(1 + λ2t) + λ(1 + λ2t +∆−1 log t)2, (7.3.57)

obtained similarly to (7.3.54) and (7.3.56). Together with (7.3.50), the bounds (7.3.56) and (7.3.57)
conclude the proof of (7.3.26).
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It remains to prove Lemma 7.3.5.

Proof of Lemma 7.3.5. Throughout the proof we assume that k ∈ [N] satisfies µk ∈ I∆, and x ∈R
satisfies ∣x∣ ≤ 1

2R. We introduce the auxiliary quantities

ν̌k(z) ∶=
1

µk − z − λ2mλ(µk)
, ω̌k(x) ∶=

1
2πi ∮γ2

e−itz

x − z
ν̌k(z)dz. (7.3.58)

An explicit computation using the residue calculus reveals that

ω̌k(x) =
e−itx − e−it(µk−λ2mλ(µk))

µk − x − λ2mλ(µk)
, ωk(x) =

e−itx − e−it(µk−λ2m0(E0))

µk − xλ
. (7.3.59)

Furthermore, using the bound in (7.A.2), we obtain

∣ωk(x) − ω̌k(x)∣ ≲ (
1

∣µk − xλ∣2
+

t

∣µk − xλ∣
)λ2
∣µk −E0∣ ≲

∆(1 + λ2t)

∣µk − xλ∣
, (7.3.60)

where we additionally applied the estimate

∣y +O(η)∣ + η ∼ ∣y∣ + η, y ∈R, η > 0. (7.3.61)

We decompose the contour γ2 = Γ1 +̇ Γ2 +̇ Γ3 according to (7.3.19). It is straightforward to check
that for ν#(z) denoting one of ν̃k(z), ν̌k(z) or (µk − zλ)−1,

∣∫Γ2+̇Γ3

e−itz

x − z
ν#
k (z)dz∣ ≲

log t
∆
+

1
R
, (7.3.62)

where we used that Im z = t−1 for all z ∈ Γ1. Therefore, rewriting the left-hand sides of (7.3.47)-
(7.3.49) using the integral definitions (7.3.45) and (7.3.46), it suffices to estimate the contributions
coming from the segment Γ1 ⊂ γ2.

Using (7.3.61) and (7.A.2), we deduce that for all z ∈ Γ1, defined in (7.3.19),

∣ν̌k(z) − ν̃k(z)∣ ≲
λ2

∣µk − zλ∣
. (7.3.63)

Integrating the bound (7.3.63) then yields

∣∫Γ1

e−itz

x − z
[ν̃k(z) − ν̌k(z)]dz∣ ≲ (1 + λ2t)1x∈I3∆ + (∆

−1 log t)1x∉I3∆ , (7.3.64)

which, together with (7.3.60), (7.3.62) immediately implies (7.3.47) after writing ω̃k − ωk = (ω̃k −
ω̌k) + (ω̌k − ωk).

On the other hand, noting that ∣ωk(x)∣+∣ω̌k(x)∣ ≲ ∣µk−xλ∣−1 by (7.3.59), and combining the estimates
(7.3.60) and (7.3.62) yields (7.3.48) and (7.3.49). This concludes the proof of Lemma 7.3.5.

7.3.3 Step (iii): Limiting behavior of the singular term and proof of Theorem
7.2.4 (b)

We organize the result of approximating ⟨A⟩P̃λ,t
in the following proposition.

Proposition 7.3.6. Under the assumptions of Theorem 7.2.4, and with P̃ λ defined as in (7.2.12),
we have that, for any fixed T ∈ (0,∞) and recalling α = πρ0(E0)

lim sup
∆→0

lim sup
t→∞
λ→0
λ2t=T

lim sup
N→∞

∣⟨A⟩P̃λ,t
− (1 − e−2αλ2t

)⟨A⟩P̃λ
∣ ≲ T e−2αT .
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Given Proposition 7.3.6, Theorem 7.2.4 (b) immediately follows.

Proof of Proposition 7.3.6. First, we observe that representing ImMλ in spectral decomposition of
H0, the quantity ⟨A⟩P̃λ,t

with Pλ,t defined in (7.2.9), can be rewritten in the from

⟨A⟩P̃λ,t
=

1
r
∑
j,k

ajpk ∫
R
ϕαλ2(x − µj)(Kλ,t ∗ ϕαλ2)(x − µk)dx, (7.3.65)

where r = ∫R Tr[ImM0(x + iαλ2)]⟨ImM0(x + iαλ2)⟩Pdx > 0 has already been introduced in
Remark 7.2.8 (ii), and we denoted ϕη ∶= Im [(x − iη)−1]. Recall that µj ,uj are the eigenvalues
and the respective eigenvectors of H0, and aj ∶= ⟨uj ,Auj⟩, pj ∶= ⟨uj , Puj⟩. Applying the Parseval-
Plancherel identity to the right-hand side of (7.3.65) yields

⟨A⟩P̃λ,t
=

1
r
∑
j,k

ajpkΦλ,t(µj − µk), Φλ,t(u) ∶=
π2

(2π)1/2 ∫R
e−2αλ2∣q∣−iuqKλ,t̂(q)dq, (7.3.66)

where we used the fact that ϕη̂(q) = (π2 )
1/2e−η∣q∣, η > 0 (recall Footnote 5).

A direct computation starting with (7.2.10) reveals that

Kλ,t̂(q) =

⎧⎪⎪
⎨
⎪⎪⎩

(2π)−1/2(1 − e−2αλ2(t−∣q∣)) for ∣p∣ ≤ t ,

0 for ∣p∣ > t ,
(7.3.67)

and implies that Φλ,t(u) admits the explicit expression

Φλ,t(u) = (1 − e−2αλ2t)πϕ2αλ2(u) +Rλ,t(u), (7.3.68)

where the function Rλ,t(u) is defined by

Rλ,t(u) ∶= πe−2αλ2tϕ2αλ2(u)(1 − cos(tu) − 2αλ2t
sin(tu)
tu

). (7.3.69)

Observe that the contribution of the first term on the right-hand side of (7.3.68) to ⟨A⟩P̃λ,t
is given

by (1 − e−2λ2αt)⟨A⟩P̃λ
, since

⟨A⟩P̃λ
=

1
r
∑
j,k

ajpk ∫
R
ϕαλ2(x − µj)ϕαλ2(x − µk)dx. (7.3.70)

Here we used the definition of the state P̃ λ in (7.2.12), and the Parseval-Plancherel identity.

The key observation is that the contribution of the remaining Rλ,t(µj − µk) term

R ∶=∑
j,k

ajpk

r
Rλ,t(µj − µk) (7.3.71)

in (7.3.68) to ⟨A⟩P̃λ,t
admits the bound17

∣R∣ ≤ sup
k∈supp(p)

1
r
∑
j

∣Rλ,t(µj − µk)∣ ⋅ ∥a∥∞∥p∥1 . (7.3.72)

Observe that there exists a constant C > 0 such that for any ξ > 0 and t > 0, we have that
ϕξ(u)(1 − cos(tu)) ≤ Cξtϕ1/t(u) for all u ∈ R. This follows immediately from the fact that the

17Inequality (7.3.72) can be interpreted as a discrete analog of Young’s convolution inequality, which can not be
evoked directly since the eigenvalues µj do not form a group under addition.
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function s↦ (s2 + 1)(1 − cos s)/s2 is uniformly bounded on R. Therefore, the function R admits
the bound

∣Rλ,t(u)∣ ≤ 2παλ2t e−2αλ2t
(Cϕ1/t(u) + ϕ2αλ2(u)), u ∈R. (7.3.73)

Summing the bound (7.3.73) over u = µj yields
1
r
∑
j

∣Rλ,t(µj − µk)∣ ≲ λ
2t e−2αλ2tN

r
Im⟪M0(µk + 2iαλ2

) +M0(µk + i/t)⟫. (7.3.74)

Using the localization of the state P as in (7.2.6), the admissibility of E0 in (7.2.5), and the first
line of (7.A.14) to deduce that r ∼ N(1 +O(ϵ0 +∆ + λ2/∆)), we obtain

sup
k∈supp(p)

1
r
∑
j

∣Rλ,t(µj − µk)∣ ≲ λ
2t e−2αλ2t(1 + ϵ0)(1 + ϵ0 +∆ + λ2

/∆). (7.3.75)

This concludes the proof of Proposition 7.3.6.

7.3.4 Relaxation formula: Proof of Corollary 7.2.7
Estimates (7.2.18) and (7.2.19) in items (a) and (b), respectively, follow immediately from Theo-
rem 7.2.4.

To prove (7.2.20) in item (c), observe that plugging the estimate (7.2.16) from the Definition 7.2.6
of local overlap regularity into (7.3.71) yields

∣R∣ ≲ ∣A∣ sup
k∈supp(p)

∣
1
N
∑

µj∈I2∆

Rλ,t(µj − µk)∣ + sup
k∈supp(p)

∣ ∑
µj∈I2∆

aj −A

N
Rλ,t(µj − µk)∣

+ sup
k∈supp(p)

∣
1
N
∑

µj∉I2∆

ajRλ,t(µj − µk)∣,

(7.3.76)

where we used that ∣r∣ ∼ N (1 +O(ϵ0 +∆ + λ2/∆)) by the first line of (7.A.14) from Lemma 7.A.2.

Applying the estimates analogous to (7.3.72) and (7.3.75) to the second sum on the right-hand side
of (7.3.76), we deduce the bound

sup
k∈supp(p)

∣ ∑
µj∈I2∆

aj −A

N
Rλ,t(µj − µk)∣ ≲ ∣ELOR∣ ⋅ (1 + λ2

/∆) (7.3.77)

Note that by (7.3.43) and the uniform bound

∣Rλ,t(u)∣ ≲
λ2

∆2 , for ∣u∣ ≳∆

following from (7.3.73), the tail sum, i.e., the second line of (7.3.76), admits the estimate

sup
k∈supp(p)

∣
1
N
∑

µj∉I2∆

ajRλ,t(µj − µk)∣ ≲
λ2

∆2 . (7.3.78)

Therefore, it remains to estimate the first term on the right-hand side of (7.3.76). Since the function
Rλ,t(u) is holomorphic in u for ∣Imu∣ ≤ αλ2, we obtain the following series of estimates,

1
N
∑

µj∈I2∆

Rλ,t(µj − µk) =
1

2πi ∮γ
Rλ,t(z − µk)⟪M0(z)⟫dz +O(

λ2

∆2)

=
1

2πi ∮γ
Rλ,t(z − µk)m0(z)dz +O(η0 +

ϵ0
λ2 +

λ2

∆2)

= ∫
I2∆

Rλ,t(u − µk)ρ0(u)du +O(η0 +
ϵ0
λ2 +

λ2

∆2),

(7.3.79)
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where the contour γ is defined to be a rectangle of height 2η0 and width 4C centered at E0, and
the constant C ∼ 1 is chosen in such a way that σ(H0) ⊂ [E0 −C,E0 +C]. Here, in the first step,
we used residue calculus and an estimate analogous to (7.3.78) to extend the sum to all µj ’s. The
second step follows by integrating the estimate (7.2.2) on the horizontal segments of γ and bounding
the contribution of the vertical segments of the contour γ by O(η0). Finally, the third step is a
consequence of the Stieltjes representation (7.2.3) and ∣Rλ,t(u)∣ ≲ ∆−2λ2 for ∣u∣ ≳ ∆. Using the
estimate ρ0(u) = ρ0(E0) +O(∆) for all u ∈ I2∆ by admissibility of E0 as in (7.2.4), we conclude
that

∫
I2∆

Rλ,t(u − µk)ρ0(u)du = ρ0(E0)∫
I2∆

Rλ,t(u − µk)du +O(∆) , (7.3.80)

where we used ∫R ∣Rλ,t(u)∣du ≲ λ2t e−2αλ2t ≲ 1 as a consequence of (7.3.73). Moreover, a direct
computation starting with (7.3.69) reveals that

∫
R
Rλ,t(u − µk)du = 0 and ∫

R/I2∆
∣Rλ,t(u − µk)∣du ≲

λ2

∆
. (7.3.81)

Hence, combining estimates (7.3.76)–(7.3.81) yields

∣R∣ ≲∆ + η0 + λ
−2ϵ0 +∆−2λ2 , (7.3.82)

which implies the R-part of (7.2.20); the E-part is an immediate consequence of Theorem 7.2.4 (a).

To complete the proof under the weaker assumption on ⟨uj ,Auj⟩, stated in Footnote 6, we first
uniformly approximate AN by a real analytic function AN,ℓ ∶ I2∆ → R with ℓ = ℓ(λ, t) > 0 (to
be chosen below), which can be analytically extended to {z ∈ C ∶ dist(z, I2∆) < ℓ} and satisfy
supN∈N ∥AN,ℓ−AN∥∞ → 0 as ℓ→ 0. Such AN,ℓ can be explicitly constructed, e.g., by convolution of
AN with a Gaussian having variance of order ℓ. For ease of notation, we shall now drop the subscript
N . Then, the error term A −Aℓ is easily seen to give a vanishing contribution (as ℓ→ 0) by means
of (7.3.75). Indeed, using (7.3.75) a bound analogous to (7.3.72), and ∥p∥1 ≤ 1, we find that

∣∑
j,k

pk
r
(A(µj) −Aℓ(µj))Rλ,t(µj − µk)∣ ≲ λ

2t e−2αλ2t(1 +∆ + λ2
/∆) ⋅ ∥A −Aℓ∥∞. (7.3.83)

Next, observe that using analyticity of Aℓ and reasoning as in the proof for the case of A being
constant above, we obtain

∣R∣ ≲ sup
µk∈I∆

∣∫
I2∆
(Aℓ(u) −Aℓ(µk))Rλ,t(u − µk)du∣

+∆ + η0 + λ
−2ϵ0 +∆−2λ2

+ (1 +∆ + λ2
/∆) ⋅ ∥A −Aℓ∥∞.

(7.3.84)

Since Aℓ(z) is analytic in the strip of width ℓ, (7.3.73) implies that the integral on the right-hand
side of (7.3.84) is bounded by

1
ℓ
∫
I2∆
(

λ2∣u − µk∣

∣u − µk∣2 + (2αλ2)2
+

t−1∣u − µk∣

∣u − µk∣2 + t−2)du ≲
λ2∣ logλ∣ + t−1 log t

ℓ
, (7.3.85)

uniformly in k such that µk ∈ I∆. Hence, choosing, say, ℓ ∶= λ + t−1/2, this concludes the proof of
Corollary 7.2.7.

7.3.5 Microcanonical average: Proof of Theorem 7.2.11
Using (7.2.12), we start by writing out

⟨A⟩P̃λ
=
∫R⟪ImM0(x + iαλ2)A⟫ ⟨ImM0(x + iαλ2)⟩P dx
∫R⟪ImM0(x + iαλ2)⟫ ⟨ImM0(x + iαλ2)⟩P dx

. (7.3.86)
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For the denominator, we have

∫
R
⟪ImM0(x+iαλ2

)⟫ ⟨ImM0(x+iαλ2
)⟩P dx = π⟪ImM0(E0+iαλ2

)⟫+O(ϵ0+∆+λ2
/∆) (7.3.87)

from Lemma 7.A.2. For the numerator, we use the assumption that h(x) = ⟪ImM0(x + iαλ2)A⟫
has uniformly bounded Lipschitz constant for x ∈ I∆ (recall (7.2.27)). Hence we find

∫
R
h(x) ⟨ImM0(x + iαλ2

)⟩P dx = πh(E0) +O(∆ + λ2
/∆) (7.3.88)

completely analogously to (7.A.15) and (7.A.16), using Assumption 7.2.3.

Therefore, plugging (7.3.87) and (7.3.88) into (7.3.86), and using Assumption 7.2.2 (ii) together
with Lemma 7.A.2, we obtain

⟨A⟩P̃λ
= ⟨A⟩

P
(mc)
λ

+O(Emc) with Emc ∶= ϵ0 +∆ + λ2
/∆ .

This concludes the proof of Theorem 7.2.11.

7.A Auxiliary results and additional proofs

7.A.1 Auxiliary results
In this subsection, we derive two technical lemmas, which are frequently used throughout the main
text.

The first one (Lemma 7.A.1) is concerned with properties of the self-consistent resolvent Mλ(z)
from the λ-dependent Quadratic Matrix Equation (7.3.1) using Assumption 7.2.2 on the unperturbed
matrix H0. Recall that 1

6κ0 denotes the upper bound for the energy width ∆ (cf. Assumption 7.2.3).

Lemma 7.A.1. Let z ∶= E + iη be a spectral parameter in C with ∣z∣ ≤ C, then the solution Mλ(z)
to (7.3.1) satisfies the bounds

⟪∣Mλ(z)∣
2
⟫ ≤ λ−2, ⟪∣Mλ(z)∣⟫ ≤ λ

−1, Im z ≥ 0. (7.A.1)

Moreover, assuming that Im z ≥ 0, ∣Re z −E0∣ ≤
1
2κ0, and E0 lies in the admissible spectrum σ

(κ0,c0)
adm

of H0 the following estimates

Immλ(z) ≳ 1, ∣mλ(z)∣ ≲ 1, ∣m′λ(z)∣ ≲ 1, (7.A.2)

with mλ(z) ∶= ⟪Mλ(z)⟫ hold for any fixed 0 < λ ≤ λ∗, and all N ≥ Nλ ∈N, uniformly in z.

Proof of Lemma 7.A.1. First, we prove the (7.A.1) for Im z > 0. Taking the imaginary part of the
MDE (7.3.1), multiplying by ∣Mλ∣

2 and taking the averaged trace yields

Immλ(z) = (Im z + λ2Immλ(z))⟪∣Mλ(z)∣
2
⟫, (7.A.3)

which immediately implies the first bound in (7.A.1). The second estimate in (7.A.1) follows from
the first one by the Cauchy–Schwarz inequality. To extend (7.A.1) down to Im z = 0, we first address
the regularity18 of mλ(z) = ⟪Mλ(z)⟫.

Differentiating the MDE (7.3.1), taking the trace, and invoking the first bound in (7.A.1), we obtain

∣m′λ(z)∣ =
∣⟪Mλ(z)

2⟫∣

∣1 − λ2⟪Mλ(z)2⟫∣
≤

1
2λ4⟪(ImMλ(z))2⟫

≲
1

λ6(Immλ(z))2
, (7.A.4)

18The comprehensive analysis of the MDE in [17, 22] shows that for any fixed λ, under the additional boundedness
assumption ∥Mλ∥ ≲ 1, the operator Mλ(z) is 1/3-Hölder continuous with a λ-dependent constant. However, for the
purposes of proving the regularity of mλ, the operator norm bound is not necessary.
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where we used the imaginary part of (7.3.1) and the positive-definiteness of ImMλ(z) to obtain the
last inequality in (7.A.4). In the penultimate step, we used the first estimate in (7.A.1) to deduce
the following chain of inequalities, dropping z for brevity,

∣λ−2
− ⟪M2

λ⟫∣ ≥ λ
−2
−Re⟪M2

λ⟫ = λ
−2
− ⟪∣Mλ∣

2⟫ + 2⟪(ImMλ)
2
⟫[] ≥ 2⟪(ImMλ)

2⟫. (7.A.5)

Together with the first estimate in (7.A.1), (7.A.4) implies that λ2Immλ(z) is uniformly 1/3-Hölder
continuous in {z ∈ C ∶ ∣Im z∣ ≥ 0, ∣z∣ ≤ C}. Taking the limit Im z → +0 in (7.A.3), using (7.A.1) with
Im z > 0 and the regularity of λ2Imm(z), we obtain the first bound in (7.A.1) with Im z = 0. This
concludes the proof of (7.A.1) for all ∣z∣ ≤ C with Im z ≥ 0.

Next, we turn to proving the first estimate in (7.A.2). It follows from the MDE (7.3.1) that

mλ(z) = ⟪(H0 − z − λ
2mλ(z))

−1
⟫, (7.A.6)

and Im z + λ2Immλ(z) ≥ Im z.

First, assume that Im z ≥ η0 (recall (7.2.2)). It follows from (7.A.1) that λ2∣mλ(z)∣ ≤ λ, hence by
suitably shrinking the threshold λ∗, we can assume that ∣Re [z + λ2mλ(z)] − E0∣ ≤

3
4κ0 for all z

satisfying Im z ≥ η0, ∣z∣ ≤ C and ∣Re z −E0∣ ≤
1
2κ0. Therefore

mλ(z) =m0(z + λ
2mλ(z)) +O(ϵ0) =m0(z) +O(λ + ϵ0), (7.A.7)

where the first step follows by (7.2.2) and (7.A.1), and in the second estimate we used that
E0 ∈ σ

(κ0,c0)
adm , defined in (7.2.4). In particular, taking the imaginary part of (7.A.7), and using

the positivity of ρ0 in the admissible spectrum yields Immλ(z) ≳ 1 +O(λ + ϵ0). Hence, from the
1/3-Hölder continuity of λ2Immλ(z), and (7.A.7) we deduce that

λ2Immλ(z) ≳ λ
2
+O(λ3

+ λ2ϵ0 + η
1/3
0 ). (7.A.8)

for all z with ∣Re z −E0∣ ≤
1
2κ0, Im z ≥ 0, and ∣z∣ ≤ C. Therefore, for a suitably small threshold λ∗

and any fixed 0 < λ ≤ λ∗, the first estimate in (7.A.2) is established for all N satisfying η0(N)
1/3 ≲ λ2

with the implicit constant depending only on the constant in (7.A.4). Since η0(N) converges to
zero, there exists Nλ ∈ N such that all N ≥ Nλ satisfy η0(N)

1/3 ≲ λ2. Furthermore, we obtain
Im z +λ2Immλ(z) ≳ λ

2 ≥ η0, hence the second estimate in (7.A.2) follows from (7.2.2) and (7.A.6).

Finally, we prove the third estimate in (7.A.2). Differentiating (7.A.6) with respect to z yields

m′λ(z) = ⟪(H0 − z − λ
2mλ(z))

−2
⟫(1 + λ2m′λ(z)), (7.A.9)

In particular, the first factor on the right-hand side of (7.A.9) is a normalized trace of (H0 − ζ)
−2

with ζ ∶= z + λ2mλ(z), satisfying ∣Re ζ −E0∣ ≤
3
4κ0 and Im ζ ≥ 2cλ2 ≥ η0 for some positive constant

c ∼ 1 by the first and second estimates in (7.A.2). Hence, integrating (7.2.2), we deduce that

⟪(H0 − ζ)
−2
⟫ = ∫

R+icλ2

Im⟪(H0 −w)
−1⟫

π (w − ζ)2
dw = ∫

R+icλ2

Imm0(w)

π (w − ζ)2
dw +O(λ−2ϵ0). (7.A.10)

Moreover, using the fact that m0(w) is the Stieltjes transform of the limiting density ρ0, we conclude
that

⟪(H0 − ζ)
−2
⟫ =

1
π
∫

R

ρ0(x)

(x − ζ)2
dx +O(λ−2ϵ0), (7.A.11)

In particular, since Re ζ lies in the admissible spectrum of H0, the integral on the right-hand side of
(7.A.11) admits the estimate

∣
1
π
∫

R

ρ0(x)

(x − ζ)2
dx∣ = ∣∫

J

ρ′0(x) − ρ
′
0(Re ζ)

x − ζ
dx∣ + ∣∫

J

ρ′0(Re ζ) Im ζ

∣x − ζ ∣2
dx∣ +O(κ−2

0 ), (7.A.12)
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where J ∶= [Re ζ − cκ0,Re ζ + cκ0] ⊂ Iκ0 . Here we used that the kernel (x −Re ζ)/∣x − ζ ∣2 is odd
around Re ζ and the integrability of ρ0 to estimate the integral over R/J , while the boundary term
resulting from integration by parts over J is bounded by κ−1

0 O(∥ρ0∥C1(J)) ≲ κ
−1
0 . Observe that the

second term on the right-hand side of (7.A.12) is bounded by O(∣ρ′0(Re ζ)∣), while the first term
is bounded by O(L), where L is the Lipschitz constant of ρ′0 on the interval [E0 − κ0,E0 + κ0].
Therefore, ∣⟪(H0 − ζ)

−2⟫∣ = O(1). Finally, rearranging the identity (7.A.9) now yields

m′λ(z) =
⟪(H0 − z − λ

2mλ(z))
−2
⟫

1 − λ2⟪(H0 − z − λ2mλ(z))
−2
⟫
= O(1). (7.A.13)

This concludes the proof of Lemma 7.A.1.

We conclude this section by evaluating the denominator in (7.2.9).

Lemma 7.A.2. Under Assumptions 7.2.2 and 7.2.3 (recalling the notation α = πρ0(E0)) it holds
that

∣∫
R
⟪ImM0(x + iαλ2

)⟫⟨ImM0(x + iαλ2
)⟩P dx − π2ρ0(E0)∣ = O(ϵ0 +∆ + λ2

/∆) ,

∣π2ρ0(E0) − π⟪ImM0(E0 + iαλ2
)⟫∣ = O(ϵ0 +∆ + λ2

/∆) .
(7.A.14)

Proof. We only prove the first relation in (7.A.14). The argument for the second estimate is analogous
and hence omitted.

We have that

∫
R
⟪ImM0(x + iαλ2

)⟫⟨ImM0(x + iαλ2
)⟩P dx

=∫
R

Imm0(x + iαλ2
)⟨ImM0(x + iαλ2

)⟩P dx +O(ϵ0)

= ∑
µj∈I∆

⟨uj , Puj⟩∫
R

dyρ0(y)∫
R

dx αλ2

(x − y)2 + (αλ2)2
αλ2

(x − µj)2 + (αλ2)2
+O(ϵ0)

=π2
∑

µj∈I∆

⟨uj , Puj⟩∫
R

dyρ0(y)
1
π

2αλ2

(y − µj)2 + (2αλ2)2
+O(ϵ0) ,

(7.A.15)

where we used ∫R⟨ImM0(x + iαλ2)⟩P dx = π and (7.2.2) to go to the second line. To go to the
third line, we employed spectral decomposition (7.3.11) of H0 and used Assumption 7.2.3. Next,
using that µj ∈ I∆ and regularity of ρ0 within I2∆, we can evaluate the integral in the last line of
(7.A.15) as

∫
R

dyρ0(y)
1
π

2αλ2

(y − µj)2 + (2αλ2)2
= ρ0(E0) +O(∆ + λ2

/∆) , (7.A.16)

by adding and subtracting ρ0(E0) and estimating I2∆ and Ic2∆ separately.

Combining (7.A.15) with (7.A.16) and using that Tr[P ] = 1 concludes the argument.

7.A.2 Proof of Proposition 7.3.1
For simplicity of the presentation, we carry out the argument only for λ = 1; the claim in Proposi-
tion 7.3.1 follows from a natural rescaling. Our proof closely follows [168, Appendix B], Section 1.5.2,
and Section 2.6.2,19 hence, we only give the main steps. Note that we are only interested in a

19In fact, for z1, z2 in the bulk of the self consistent density of states ρ(x) ∶= π−1 limη→0+⟪ImM(x + iη)⟫,
Proposition 7.3.1 has already been proven for so called regular matrices A in Proposition 2.4.4. Here, we provide the
proof uniformly in the spectrum and for arbitrary matrices.

372



7.A. Auxiliary results and additional proofs

global law, i.e. the spectral parameters z1, z2 have a distance to the spectrum of H =D +W that
is uniformly bounded from below by an N -independent positive constant (see also (7.3.5)). In
particular, we can simply afford the norm bounds ∥Gi∥ ≲ 1 and ∥Mi∥ ≲ 1.

As a preparation for our argument, we recall the definition of the second order renormalization,
denoted by underline, from [165]. For functions f(W ), g(W ) of the random matrix W , we define

f(W )Wg(W ) ∶= f(W )Wg(W ) − Ẽ [(∂W̃ f)(W )W̃g(W ) + f(W )W̃ (∂W̃ g)(W )] , (7.A.17)

where ∂W̃ denotes the directional derivative in the direction of the GUE matrix W̃ that is independent
of W . The expectation is taken w.r.t. the matrix W̃ . Note that if W itself is a GUE matrix, then
E f(W )Wg(W ) = 0, while for W with a general distribution, this expectation is independent of the
first two moments of W . In other words, the underline renormalizes the product f(W )Wg(W ) to
the second order. We remark that underline (7.A.17) is a well-defined notation if the ‘middle’ W to
which the renormalization refers is unambiguous. This is the case in our proof, since the functions
f, g are resolvents, i.e. not involving explicitly monomials in W .

Moreover, we note that Ẽ W̃RW̃ = ⟪R⟫ and furthermore, that the directional derivative of the
resolvent is given by ∂W̃G = −GW̃G. For example, in the special case f(W ) = 1 and g(W ) =
(W +D − z)−1 = G, we thus have

WG =WG + ⟪G⟫G

by definition of the underline in (7.A.17). Using this underline notation in combination with the
identity G(W +D − z) = I and the defining equation (7.3.1) for M , we have

G =M −MWG +M⟪G −M⟫G =M −GWM +G⟪G −M⟫M . (7.A.18)

Moreover, we have the following lemma, the proof of which is given at the end of this section.

Lemma 7.A.3 (Representation as full underlined, cf. Lemma 1.5.6). Under the notations and
assumptions of Proposition 7.3.1, we have that

(G1BG2 − (M1BM2 +
M1M2⟪M1BM2⟫

1 − ⟪M1M2⟫
))

xy

= −(G1B
′M2WG2)xy

+O≺ (Eiso) (7.A.19)

with Eiso ∶= 1/
√
N for some bounded deterministic matrix B′ ∈CN×N .

Having this approximate representation of the lhs. of (7.3.3) as a full underlined term at hand, we turn
to the proof of (7.3.3) via a (minimalistic) cumulant expansion; see [168, Eq. (4.32)] and (1.5.27).

Let p ∈N be arbitrary. Then, abbreviating the lhs. of (7.A.19) by Qxy, we obtain

E ∣Qxy ∣
2p
≲ E Ξ̃ ∣Qxy ∣

2p−2
+ ∑
∣l∣+∑(J∪J∗)≥2

E Ξ(l, J, J∗)∣Qxy ∣
2p−1−∣J∪J∗∣

+O≺(E
−2p
iso ) , (7.A.20)

where the summation in (7.A.20) is taken over tuples l ∈ Z2
≥0 and multisets of tuples J, J∗ ⊂

Z2
≥0 ∖ {(0,0)}, for which we set ∂(l1,l2) ∶= ∂l1ab∂

l2
ba, ∣(l1, l2)∣ = l1 + l2, ∑J = ∑j∈J ∣j∣. Moreover, we

denoted

Ξ̃ ∶=
∣(G1B

′G1BG2)xy
(G1G2)xy

∣ + ∣(G1B
′G2)xy

(G1BG2G2)xy
∣

N
(7.A.21)

+
∣(G1B

′G∗2B
∗G∗1)xx

(G∗2G2)yy
∣ + ∣(G1B

′G∗1)xx
(G∗2A

∗G∗1G2)yy
∣

N
,

373



7. Prethermalization for deformed Wigner matrices

and defined Ξ(l, J, J∗) via

Ξ ∶= N−(∣l∣+∑(J∪J∗)+1)/2
∑
ab

∣∂l[(G1B
′
)xa(G2)by]∣ (7.A.22)

×∏
j∈J
∣∂j(G1BG2)xy

∣∏
j∈J∗
∣∂j(G∗2B

∗G∗2)yx
∣ .

Now, by a simple norm bound, ∥G∥ ≲ 1, we find that

Ξ̃ ≺ E2
iso . (7.A.23)

For Ξ, our goal is to show that
Ξ(l, J, J∗) ≺ E1+∣J∪J∗∣

iso . (7.A.24)

First, we have the naive bounds

∣∂l[(G1B
′
)xa(G2)by]∣ + ∣∂

j(G1BG2)xy
∣ + ∣∂j(G∗2B

∗G∗2)yx
∣ ≺ 1 (7.A.25)

and hence

Ξ ≺ N−(∣l∣+∑(J∪J∗)+1)/2N2
= N (4−∣l∣)/2N−(1+∑(J∪J∗))/2 = N (4−∣l∣)/2E

1+∑(J∪J∗)
iso .

Thus, for ∣l∣ ≥ 4, we find the naive bounds (7.A.25) to be sufficient for (7.A.24), since trivially
∣J ∪ J∗∣ ≤ ∑(J ∪ J∗). For ∣l∣ ≤ 3, we perform the summation ∑ab a bit more carefully, e.g., recalling
the norm bound ∥G∥ ≲ 1, as

∑
a

∣Gxa∣ ≤ N
1/2
√
∑
a

∣Gxa∣
2 = N1/2

(∣G∣2)xx ≲ N
1/2

instead of the naive ∑a ∣Gxa∣ ≲ N . Indeed, using the condition ∣l∣ +∑(J ∪ J∗) ≥ 2, we can check all
the cases ∣l∣ ≤ 3 explicitly and find

∑
ab

∣∂l[(G1B
′
)xa(G2)by]∣∏

j∈J
∣∂j(G1BG2)xy

∣∏
j∈J∗
∣∂j(G∗2B

∗G∗2)yx
∣ ≺ N2N−(4−∣l∣)/2 ,

from which we conclude (7.A.24).

Plugging (7.A.24) together with (7.A.23) into (7.A.20), using a Young inequality and recalling that
p was arbitrary, we deduce that

∣Qxy ∣ ≺ Eiso =
1
√
N
,

i.e. we have proven Proposition 7.3.1.

It remains to give the proof of Lemma 7.A.3.

Proof of Lemma 7.A.3. Applying (7.A.18) to G2, we thus find that

G1B̃G2 = G1B̃M2 −G1B̃M2WG2 +G1B̃M2⟪G2 −M2⟫G2

for B̃ = X12[B], where we introduced the linear operator

X12[C] ∶= (1 − ⟪M1 ⋅ M2⟫)
−1
[C] for C ∈C2N×2N . (7.A.26)

Extending the underline to the whole product, we obtain

G1B̃G2 =M1B̃M2 + (G1 −M1)B̃M2 −G1B̃M2WG2

+G1B̃M2⟪G2 −M2⟫G2 +G1⟪G1B̃M2⟫G2 ,
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from which we conclude

G1BG2 =M1X12[B]M2 + (G1 −M1)X12[B]M2 −G1X12[B]M2WG2 (7.A.27)
+G1X12[B]M2⟪G2 −M2⟫G2 +G1⟪(G1 −M1)X12[B]M2⟫G2 .

To proceed, we note that
B′ ∶= X12[B] = B +

⟪M1BM2⟫

1 − ⟪M1M2⟫
(7.A.28)

has bounded norm, ∥B′∥ ≲ 1, since for z1, z2 away from the spectrum of H, X12 is a bounded
operator (see Lemma 1.B.5 and Appendix 2.A.2). This can be seen as follows: First, the denominator
in (7.A.28) is estimated as ∣1 − ⟪M1M2⟫∣ ≥ 1 − ⟪∣M1∣

2⟫1/2⟪∣M2∣
2⟫1/2. Next, we employ the identity

⟪∣Mi∣
2⟫ = ⟪ImMi⟫/(Im zi + ⟪ImMi⟫), as follows from the MDE (7.3.1) and, together with a

Schwarz inequality, implies boundedness of the numerator in (7.A.28). Finally, ∣1 − ⟪M1M2⟫∣ ≥ c > 0
follows from the fact that ∣Im zi∣ ∼ ∣⟪ImMi⟫∣ in the regime of zi’s with distance to the spectrum of
H bounded below by an N -independent positive constant.

Then, using the norm bounds ∥Gi∥ ≲ 1 and ∥Mi∥ ≲ 1 together with the single resolvent global law
(7.3.2) (see also [243, Theorem 2.1]) for the second, fourth and fifth term in (7.A.27), we conclude
the desired.

375





Chapter8
Loschmidt echo for deformed Wigner

matrices

This chapter contains the paper [237]:

L. Erdős, J. Henheik, and O. Kolupaiev. Loschmidt echo for deformed Wigner matrices. Lett. Math.
Phys., 115(1):1–42, 2025

Abstract. We consider two Hamiltonians that are close to each other, H1 ≈ H2, and analyze the
time-decay of the corresponding Loschmidt echo M(t) ∶= ∣⟨ψ0, eitH2e−itH1ψ0⟩∣

2 that expresses the
effect of an imperfect time reversal on the initial state ψ0. Our model Hamiltonians are deformed
Wigner matrices that do not share a common eigenbasis. The main tools are new two-resolvent laws
for such H1 and H2.
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8.1 Introduction
Recent quantum technological advances put quantum mechanical time reversal procedures in the
focus of both experimental [308, 415, 425, 546, 306, 473] and theoretical [307, 356, 305, 514, 517,
515, 190, 191] research (see also the review [297] for a concise overview). The basic physical setup
consists of an initial (normalized) quantum state ψ0 and two self-adjoint Hamiltonians close to
each other, H1 ≈ H2, each governing the evolution of the system during a time span t. First,
the initial state ψ0 evolves under the Hamiltonian H1 from time zero to t, resulting in the state
ψt = exp (−iH1t)ψ0. Then, during a second evolution between t and 2t, one applies the Hamiltonian
H2 backward in time, equivalently the Hamiltonian −H2 in forward time, aiming to recover the initial
state ψ0. A schematic summary of this process is given by

ψ0
t

ÐÐÐÐÐ→
H1

ψt
t

ÐÐÐÐ→
−H2

ψ′0 . (8.1.1)

Note that, if H2 =H1, the restoration of ψ0 would be perfect, ψ′0 = ψ0 for any time t. However, in
realistic setup the second Hamiltonian is never a perfect copy of the first one: the non-zero difference
between H1 and H2 regularly leads to an imperfect recovery ψ′0 of ψ0 and the discrepancy also
depends on time.

This imperfection in the time reversal is captured in the scalar overlap function [578, 293, 517]
(sometimes also called fidelity amplitude [292, 293, 579])

S(t) =S
(E0)
H1,H2

(t) ∶= ⟨ψ0, eiH2te−iH1tψ0⟩ (8.1.2)

where it is assumed that the initial state is supported1 around its energy ⟨ψ0,H1ψ0⟩ ≈ ⟨ψ0,H2ψ0⟩ ≈ E0.
The central object of our paper is the absolute value square of the overlap function

M(t) =M
(E0)
H1,H2

(t) ∶= ∣S
(E0)
H1,H2

(t)∣
2
. (8.1.3)

This was coined the fidelity, e.g., by Gorin et. al. in [293], or the Loschmidt echo by Peres [491]
and Jalabert-Pastawski in [358] owing to its connection to the classical Loschmidt’s paradox of time
reversibility [427, 98].

In addition to (8.1.2)–(8.1.3), we will also consider an averaged overlap function and an averaged
Loschmidt echo, defined as

S(t) =S
(E0,η0)
H1,H2 (t) ∶= Av[S(E)H1,H2

(t)] and M(t) =M
(E0,η0)
H1,H2 (t) ∶= ∣S

(E0,η0)
H1,H2 (t)∣

2
, (8.1.4)

respectively. In (8.1.4), by Av[...], we denoted an averaging over initial states with energies E in a
small energy window of size η0 around E0 (see (8.2.5) below for a precise implementation of this
concept).

1This means that, when writing ψ0 = ∑n c
(i)
n ϕ

(i)
n in the eigenbasis {ϕ(i)n }n of Hi, only coefficients c(i)n corresponding

to an eigenvalue close to E0 are non-vanishing.
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8.1. Introduction

The Loschmidt echo is a basic object in the study of complex quantum system and has attracted
considerable attention in different areas of research, e.g. quantum chaos [491, 358, 305, 307, 356, 517],
quantum information theory [280, 278], and statistical mechanics [514, 515, 190, 191]. The Loschmidt
echo, as a measurable physical quantity, is observed and predicted to follow a quite universal behavior
as a function of time (cf. the discussion of our main results around (8.1.6)–(8.1.7) below). On a
high level (see [297]), the reason for the robust universal features is that the subsequent forward and
backward evolutions act as a “filter" for irrelevant details. The typical behavior of the Loschmidt echo
can be structured in three consecutive phases (see Figure 8.1.1, cf. also [297, Figure 4]): After an
initial short-time parabolic decay, M(t) ≈ 1 − γt2, the Loschmidt echo exhibits an intermediate-time
asymptotic exponential decay2, M(t) ≈ e−Γt. Finally, at times t beyond the so-called saturation time
ts ∼ (logN)/Γ, where N is the (effective) Hilbert space dimension, it saturates at a value inversely
proportional to N , i.e. M(t) ∼ 1/N .

t

M(t)

1

∼ 1/N

1 1/Γ ts ∼ (logN)/Γ

∼ 1 − γt2

∼ e−Γt

Figure 8.1.1: Illustrated is the typical behavior of the Loschmidt echo in its three consecutive phases:
Short-time parabolic decay, intermediate-time asymptotic decay, and long-time saturation. In both of
our main results (8.1.6)–(8.1.7), the decay parameters γ and Γ generally satisfy γ ∼ Γ ∼ ⟨(H1−H2)

2⟩;
cf. (8.1.8).

There are several ways to determine the behavior of the Loschmidt echo in a given system (see
the review [297]): One standard option is to employ semi-classical approximations [358, 578, 599],
another one is numerical evaluation [548, 203, 576]. Here, following E. Wigner’s original vision
of describing chaotic quantum systems by large random matrices [586] (see also further extensive
physics literature [185, 292, 371, 210, 147, 148, 191]), we model (part of) the Hamiltonian(s) H1,H2
by Wigner random matrices with independent entries. In this setup we can give a mathematically
rigorous and quite precise analysis of certain features of the Loschmidt echo; some of them have
been predicted in the physics literature.

Before defining the precise model, we first discuss where the name echo for M(t) comes from.
Fix any time t > 0 and consider the two-step process (8.1.1). For s ∈ [0,2t] denote the state at
the intermediate time s by ψs, namely, ψs = e−isH1ψ0 for s ∈ [0, t] and ψs = ei(t−s)H2e−itH1ψ0 for
s ∈ [t,2t]. Comparing this notation to (8.1.1) we see that ψ2t = ψ

′
0. Denote further the (squared)

overlap of ψ0 and ψs by
Pt(s) ∶= ∣⟨ψ0, ψs⟩∣

2. (8.1.5)

This quantity depends also on ψ0 and H1,H2, but we suppress this dependence in notations
for simplicity. We call Pt(s), s ∈ [0,2t], the Loschmidt echo process. Clearly, Pt(0) = 1 and
Pt(2t) =M(t). Later in Corollary 8.2.5 we show that Pt(t)≪Pt(2t) under suitable assumptions,

2In the very extreme case, when the difference H1 −H2 is small compared to the local eigenvalue spacing one
observes Gaussian instead of exponential decay, M(t) ≈ e−γt2

(see, e.g., [297, Section 2.3.1])
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8. Loschmidt echo for deformed Wigner matrices

where Pt is an averaged version of Pt defined in (8.2.9a)-(8.2.9b). This result means that typically
the original complete overlap Pt(0) = 1 is partially recovered at the final moment of time 2t, though
at the intermediate time t it is much smaller than Pt(2t) (see Figure 8.1.2).

s

Pt(s)

1

t 2t
Pt(t)

Pt(2t)

Figure 8.1.2: Schematic behavior of the overlap Pt(s) from (8.1.5) for s ∈ [0, 2t]. At the midpoint,
s = t, typically Pt(t) ≪ Pt(2t), which indicates a partial recovery between time t and 2t of the
original complete overlap at time s = 0.

As our main result, we rigorously prove the decay of the Loschmidt echo for two different physical
settings (called Scenario I and Scenario II), which we now describe somewhat informally (see
Section 8.2 for more precise statements containing all the technical details).

For our first result (Scenario I, Theorem 8.2.4), we consider two deformed N ×N Wigner matrices
Hj = Dj +W , j = 1,2, with bounded deterministic Dj , satisfying D1 ≈ D2, and W a (common)
random Wigner matrix. This setup corresponds to an arbitrary deterministic system modeled by the
Hamiltonian D1 and the time reversed Hamiltonian D2 nearby, which are both subject to an overall
mean-field noise described by the same Wigner matrix W throughout the whole echo process. In this
setting, for an energy E0 in the bulk of the density of states of both H1 and H2, we consider the
averaged Loschmidt echo (8.1.4). Our result in Theorem 8.2.4 then shows (i) short-time parabolic
decay and (ii) intermediate-time asymptotic decay of the form

M(t) ≈

⎧⎪⎪
⎨
⎪⎪⎩

1 − γt2 for t≪ 1
e−Γt for 1≪ t ≲∆−2.

(8.1.6)

Both decay parameters satisfy γ ∼ ∆2 and Γ ∼ ∆2, where ∆ ∶= ⟨(D1 −D2)
2⟩1/2, and depend on

E0 and the density of states at E0. Here we introduced the notation ⟨A⟩ ∶= 1
NTrA for any N ×N

matrix A. We point out that the quadratic relation Γ ∼ ∆2 is in perfect agreement with Fermi’s
golden rule.

For our second main result (Scenario II, Theorem 8.2.10), we consider a physically different situation:
Now the two Hamiltonians3 are H1 = D and H2 = D + λW with the same deterministic D, a
standard Wigner matrix W and a small parameter ∣λ∣≪ 1. The normalization is chosen such that
E⟨W 2⟩ = 1. Hence, the imperfection along the backward evolution is modeled by a small Wigner
matrix λW indicating an additive noise (see, e.g., [190, Eq. (31)] or [191, Eq. (1)]). For a normalized
initial state ψ0 ∈CN supported in the bulk of the density of states of both H1 and H2 with energy
⟨ψ0,H1ψ0⟩ ≈ ⟨ψ0,H2ψ0⟩ ≈ E0, we now consider the usual Loschmidt echo (8.1.3) without averaging.
Similarly to (8.1.6), our result in Theorem 8.2.10 then shows (i) short-time parabolic decay and (ii)

3Within Theorem 8.2.10, the Hamiltonians H1 =D and H2 =D +λW will be denoted by H0 and Hλ, respectively.
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intermediate-time asymptotic decay of the form

M(t) ≈

⎧⎪⎪
⎨
⎪⎪⎩

1 − γt2 for t≪ 1
e−Γt for 1≪ t ≲ λ−2.

(8.1.7)

Here the decay parameters satisfy γ = λ2 and Γ = 2πρ0(E0)λ
2, where ρ0 is the (limiting, as N →∞)

density of states of D. Finally, we note that, since E⟨W 2⟩ = 1, in both of our scenarios (8.1.6)–(8.1.7)
the decay parameters γ and Γ satisfy the general relation

γ ∼ Γ ∼ E⟨(H1 −H2)
2
⟩ . (8.1.8)

As corollaries to our main results (8.1.6)–(8.1.7) in Theorems 8.2.4 and 8.2.10, we also consider
the scrambled Loschmidt echo [190, 387, 515] Msc

δ (t) and its averaged analog M
sc
δ (t). They are

defined from
Ssc
δ (t) ∶= ⟨ψ0, eiH2te−iδV e−iH1tψ0⟩ (8.1.9)

and its averaged analog S
sc
δ (t) as

Msc
δ (t) ∶= ∣S

sc
δ (t)∣

2 and M
sc
δ (t) ∶= ∣S

sc
δ (t)∣

2
,

exactly as in (8.1.3)–(8.1.4), respectively. In (8.1.9), H1 and H2 are the two Hamiltonians either
from Scenario I or Scenario II. The idea behind the quantity in (8.1.9) is that, between the forward
and backward evolution, there is a (short) scrambling time δ, in which the system is uncontrolled and
governed by another self-adjoint scrambling Hamiltonian V [190]. Similarly to (8.1.1), a schematic
summary of this process is given by

ψ0
t

ÐÐÐÐÐ→
H1

ψt
δ

ÐÐÐÐ→
V

ψ′t
t

ÐÐÐÐ→
−H2

ψ′0 . (8.1.10)

In Corollaries 8.2.6 and 8.2.11 (of Theorems 8.2.4 and 8.2.10, respectively), we model the scrambling
Hamiltonian by another Wigner matrix, V ∶= W̃ , that is independent of W ; see [190]. As a result,
we find that

M
sc
δ (t) ≈ (φ(δ))

2 M(t) and Msc
δ (t) ≈ (φ(δ))

2 M(t) (8.1.11)

in the setting of Scenario I and Scenario II, respectively, where we denoted φ(δ) ∶= J1(2δ)/δ and J1
is the first order Bessel function of the first kind. Note that in (8.1.11) we see the effects of the
scrambling Hamiltonian V and the imperfect time reversal of H1 and H2 to completely decouple
(cf. [190, Eq. (35)]).

We point out that Scenario II, discussed around (8.1.7), and the corollaries described in (8.1.11) are
primarily given to provide a more comprehensive view of Loschmidt echoes modeled with Wigner
matrices. Technically, these are obtained by simple modifications of earlier results and techniques
(see [170], Chapter 7 and the proof in Section 8.7 for details). The mathematically novel principal
part of this work therefore consists of Theorem 8.2.4 analyzing Scenario I.

The proof of Theorem 8.2.4 relies on a new two-resolvent global law, i.e. a concentration estimate for
products of resolvents Gi(zi) ∶= (Hi−zi)

−1 for zi ∈ C∖R as the dimension N of the matrix becomes
large. By functional calculus, this can then be used for computing more complicated functions of
Hi, like the exponential, and thus connecting to the time evolutions above. A typical global law
computes, e.g.,

⟨ψ0,G2(z2)G1(z1)ψ0⟩ (8.1.12)

to leading order in N with error terms vanishing like N−1/2+ϵ with very high probability. Note that
such an error term prohibits accessing times beyond the saturation time (when the Loschmidt echo
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is of order 1/N), which is why our main results (8.1.6)–(8.1.7) are only valid up to order ∆−2 and
λ−2, respectively, i.e. well before the saturation time.

The main novelty of this paper is a precise estimate on the deterministic leading term to (8.1.12).
While it is well known that Gi(zi) ≈Mi(zi), where the deterministic matrix Mi(zi) is the solution
of the Matrix Dyson Equation (8.2.1), it does not hold that G2(z2)G1(z1) ≈M2(z2)M1(z1) owing
to correlations between G1 and G2. The correct approximation is

G2(z2)G1(z1) ≈
M2(z2)M1(z1)

1 − ⟨M1(z1)M2(z2)⟩
. (8.1.13)

To control (8.1.13), we hence need to estimate the denominator of (8.1.13), which is well known
in case of H1 = H2, i.e. D1 = D2 [165] (see also Chapters 2 and 7). Here, however, the analysis
of (8.1.13) is much more intricate, since for general D1,D2 the deterministic approximations
M1(z1),M2(z2) do not commute. In our main Proposition 8.4.2, we optimally track the dependence
of (8.1.13) on the difference D1 −D2 of the two deformations and on z1 − z2.

Notations

For positive quantities f, g we write f ≲ g (or f = O(g)) and f ∼ g if f ≤ Cg or cg ≤ f ≤ Cg,
respectively, for some constants c,C > 0 which only depend on the constants appearing in the
moment condition (see Assumption 8.2.1), the bound on M in Assumption 8.2.2, the constants from
Assumption 8.2.8, or the bulk parameter κ from (8.2.3). In informal explanations, we frequently use
the notation f ≪ g, which indicates that f is "much smaller" than g. Moreover, we shall also write
w ≈ z to indicate the closeness of w, z ∈C with a not precisely specified error.

For any natural number n we set [n] ∶= {1, 2, . . . , n}. Matrix entries are indexed by lowercase Roman
letters a, b, c, ... from the beginning of the alphabet. We denote vectors by bold-faced lowercase
Roman letters x,y ∈ CN , or lower case Greek letters ψ,ϕ ∈ CN , for some N ∈N. Vector and matrix
norms, ∥x∥ and ∥A∥, indicate the usual Euclidean norm and the corresponding induced matrix norm.
For any N ×N matrix A we use the notation ⟨A⟩ ∶= N−1TrA for its normalized trace and denote
the spectrum of A by σ(A). Moreover, for vectors x,y ∈ CN we denote their scalar product by
⟨x,y⟩ ∶= ∑i xiyi. The support of a function f is denoted by supp(f).

Finally, we use the concept of “with very high probability” (w.v.h.p.) meaning that for any fixed
C > 0, the probability of an N -dependent event is bigger than 1 −N−C for N ≥ N0(C). We also
introduce the notion of stochastic domination (see e.g. [241]): given two families of non-negative
random variables

X = (X(N)(u) ∶ N ∈N, u ∈ U (N)) and Y = (Y (N)(u) ∶ N ∈N, u ∈ U (N))

indexed by N (and possibly some parameter u in some parameter space U (N)), we say that X is
stochastically dominated by Y , if for all ξ,C > 0 we have

sup
u∈U(N)

P [X(N)(u) > N ξY (N)(u)] ≤ N−C (8.1.14)

for large enough N ≥ N0(ξ,C). In this case we use the notation X ≺ Y or X = O≺(Y ).
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8.2. Main results

8.2 Main results
The key players of our paper are deformed Wigner matrices, i.e. matrices of the form H =D +W ,
where D =D∗ ∈CN×N is a bounded deterministic matrix (called deformation), ∥D∥ ≤ L for some
N -independent L > 0 and W = W ∗ ∈ CN×N is a real symmetric or complex Hermitian Wigner
matrices. This means, its entries are independently distributed random variables according to the
laws4 wij

d
= N−1/2χod for i < j and wjj

d
= N−1/2χd. For the single entry distributions χod and χd we

assume the following.

Assumption 8.2.1 (Wigner matrix). We assume that χd is a centered real random variable, and
χod is a real or complex random variable with Eχod = 0 and E ∣χod∣

2 = 1. Furthermore, we assume
the existence of higher moments, namely E ∣χd∣

p +E ∣χod∣
p ≤ Cp for all p ∈N, where Cp are positive

constants.

It is well known [243, 17] that the resolvent of H, denoted by G(z) ∶= (H − z)−1 for z ∈ C ∖R,
becomes approximately deterministic in the large N limit. Its deterministic approximation (as a
matrix) is given by M(z), the unique solution of the Matrix Dyson equation (MDE)

−
1

M(z)
= z −D + ⟨M(z)⟩ for z ∈C ∖R under the constraint Im z ImM(z) > 0 , (8.2.1)

where ImM(z) ∶= [M(z) −M(z)∗]/2i and positivity is understood as a matrix. The corresponding
(N -dependent) self consistent density of states (scDos) is defined as

ρ(e) ∶=
1
π

lim
η↓0
⟨ImM(e + iη)⟩ . (8.2.2)

This is a compactly supported Hölder-1/3 continuous function on R which is in fact real-analytic
on the set {ρ > 0}5. The positive harmonic extension of ρ is denoted by ρ(z) ∶= π−1∣⟨ImM(z)⟩∣
for z ∈C ∖R. We point out that not only the tracial quantity ⟨ImM(e + iη)⟩ has an extension to
the real axis, but the whole matrix M(e) ∶= limη↓0M(e + iη) is well defined (see Lemma 1.B.1 (b)).
Moreover, for any small κ > 0 (independent of N) we define the κ-bulk of the scDos (8.2.2) as

Bκ(ρ) = {x ∈R ∶ ρ(x) ≥ κ} . (8.2.3)

It is a finite union of disjoint compact intervals, cf. Lemma 1.B.2. Note that, for Re z ∈ Bκ it holds
that ∥M(z)∥ ≲ 1, as easily follows by taking the imaginary part of (8.2.1).

Now, the resolvent G is close to M from (8.2.1) in the following averaged and isotropic sense:

∣⟨(G(z) −M(z))B⟩∣ ≺
1

N ∣Im z∣
, ∣⟨x , (G(z) −M(z))y⟩∣ ≺

1
√
N ∣Im z∣

, (8.2.4)

uniformly in deterministic vectors ∥x∥+ ∥y∥ ≲ 1 and deterministic matrices ∥B∥ ≲ 1. These estimates
are called local laws when ∣Im z∣ ≪ 1 and global laws when ∣Im z∣ ≳ 1. To be precise about their
validity, we recall that while (8.2.4) holds for Re z ∈ Bκ and dist(Re z, supp(ρ)) ≳ 1 for arbitrary
bounded self-adjoint deformations D = D∗ (see [243, Theorem 2.1]), the complementary regime
requires the additional Assumption 8.2.2 on D stated below (see [23, Theorem 2.6] and [239,
Theorem 2.8]). A sufficient condition for Assumption 8.2.2 is discussed in Remark 8.2.3; see also [22].

In the remainder of this section, we formulate our main results on the two different Loschmidt echo
scenarios described in Section 8.1.

4A careful examination of our proof reveals that the entries of W need not be distributed identically. Indeed, only
the matching of the second moments is necessary, but higher moments can differ.

5In [16, 17, 22], the scDos has been thoroughly analysed in increasing generality of the ensemble. It is supported
on finitely many finite intervals and, roughly speaking, there are three different regimes for the behavior or ρ: In the
bulk, ρ is strictly positive; at the edge, ρ vanishes like a square root at the edges of every supporting interval which
are well separated; at the cusp, where two intervals of support (almost) meet, ρ behaves (almost) as a cubic root.
Correspondingly, ρ is locally real analytic, Hölder-1/2, or Hölder-1/3 continuous, respectively. Near the singularities, it
has an approximately universal shape (see (8.A.3a)–(8.A.3d) in the proof of Lemma 8.A.1).
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8. Loschmidt echo for deformed Wigner matrices

8.2.1 Scenario I: Two deformations of a Wigner matrix

For the first echo scenario, we consider two deformed Wigner matrices, Hj = Dj +W , j ∈ [2],
and denote their resolvents and corresponding deterministic approximation (8.2.1) by Gj and Mj ,
respectively. A natural definition of the averaged Loschmidt echo is

M(t) =M
(E0,η0)
H1,H2 (t) ∶=

RRRRRRRRRRR

⟨eitH1ImG1(E0 + iη0)e−itH2⟩

⟨ImM1(E0 + iη0)⟩

RRRRRRRRRRR

2

, (8.2.5)

since ImG/⟨ImM⟩ in (8.2.5) effectively localizes around E0 and averages in a window of size η0 > 0
assumed to be independent of N . In Remark 8.2.7 below we comment on the averaging implemented
by (8.2.5). Note that in order to match (8.1.2)-(8.1.3) from the introduction we need to replace t
by −t in (8.2.5). However, this replacement does not change the quantity (8.2.5) since

∣⟨eitH1ImG1(E0 + iη0)e−itH2⟩∣ = ∣⟨eitH2ImG1(E0 + iη0)e−itH1⟩∣ = ∣⟨e−itH1ImG1(E0 + iη0)eitH2⟩∣ ,

where in the last step we used that eitH1 and ImG1(E0 + iη0) commute. Using this observation we
will work with (8.2.5) in the rest of the paper. The same comment applies also to the other versions
of the averaged Loschmidt echo defined in Section 8.2.1, namely to (8.2.9a), (8.2.9b) and (8.2.12).

We will henceforth assume that the deformations D1,D2 are such that the corresponding solutions
M1,M2 to (8.2.1) are bounded.

Assumption 8.2.2 (Boundedness of M). Let D be an N × N Hermitian matrix and M the
solution to (8.2.1). We assume that there exists an N -independent positive constant L such that
supz∈C∖R∥M(z)∥ < L.

Assumption 8.2.2 is the basis for the shape theory of the scDos, which we briefly described in
Footnote 5. We now give a sufficient condition on D for Assumption 8.2.2 to hold. It basically
requires that its ordered eigenvalue sequence has to be piecewise Hölder-1/2 continuous as a function
of the label.

Remark 8.2.3 (Sufficient condition for Assumption 8.2.2). Denote the eigenvalues of any self-adjoint
deformation D by {dj}Nj=1 labeled in increasing order, dj ≤ dk for j < k. Fix a (large) positive
constant L > 0. The set ML of admissible self-adjoint deformations D is defined as follows: we
say that D ∈ML if ∥D∥ ≤ L and there exists an N -independent partition {Is}ms=1 of [0,1] in at
most L segments such that for any s ∈ [1,m] and any j, k ∈ [1,N] with j/N,k/N ∈ Is we have
∣dj − dk∣ ≤ L∣j/N − k/N ∣

1/2. Since the operator S = ⟨⋅⟩ is flat, condition D ∈ML implies that D
satisfies Assumption 8.2.2 for some L′ <∞ by means of [22, Lemma 9.3].

We can now formulate our first main result.

Theorem 8.2.4 (Averaged Loschmidt echo with two deformations). Let W be a Wigner matrix
satisfying Assumption 8.2.1, and D1,D2 ∈ CN×N be bounded, traceless6 Hermitian matrices,
i.e. ∥Dj∥ ≤ L for some L > 0 and ⟨D1⟩ = ⟨D2⟩ = 0, additionally satisfying Assumption 8.2.2. Fix
η0 ≤ 1 and let E0 be an energy in the bulk of the scDos of H1 and H2, i.e. assume that there exist
δ, κ > 0 such that [E0 − δ,E0 + δ] ⊂ Bκ(ρ1) ∩Bκ(ρ2). We also assume that parameters η0, κ and δ
are N -independent.

Consider the deformed Wigner matrices Hj ∶=Dj +W for j ∈ [2] and the corresponding averaged
(at energy E0 in a window of size η0 > 0) Loschmidt echo M(t) for times t ≥ 0 defined in (8.2.5).
Then we have the following:

6If D1 or D2 had a non-zero trace, it could be absorbed by a simple (scalar) energy shift.
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(i) [Short-time parabolic decay] As t→ 0, it holds that

M(t) = 1 − γt2 +O(⟨D2
⟩t3) +O≺((Nη0)

−1
) (8.2.6)

where the decay parameter is given by γ ∶= ⟨(D − ⟨PD⟩)2 P ⟩, where we abbreviated D ∶=
D2 −D1 and P ∶= ImM1(E0 + iη0)/⟨ImM1(E0 + iη0)⟩. It satisfies γ ∼ ∆2 ∶= ⟨D2⟩ and the
implicit constant in ∼ depends only on κ and L.
The implicit constants in the error terms in (8.2.6) depend only on L, δ, κ and the Cp’s from
Assumption 8.2.1.

(ii) [Intermediate-time asymptotic decay] Take a (large) positive K and consider times 1 ≤ t ≤K/∆2.
Then there exists a positive constant c such that whenever ∆ < c and η0 <∆/∣ log ∆∣ it holds
that

M(t) = e−Γt
+O (E) +O≺(C(t, η0)/N), (8.2.7)

where the rate Γ (explicitly given in (8.4.27)) satisfies Γ ∼ ∆2 with the implicit constant
depending only on κ and L. Moreover, we denoted

E = E(t,∆, η0) ∶=
1 + log t

t
+∆∣ log ∆∣ + η0∣ log ∆∣

∆
(8.2.8)

and C(t) > 0 is a positive constant depending only on t.
The implicit constants in the error terms in (8.2.7) depend only on L, δ, κ,K and the Cp’s
from Assumption 8.2.1.

Since t ≤K/∆2, we find that the leading term e−Γt in (8.2.7) remains of order one throughout the
whole time regime. The error term E is small compared to this leading term if t≫ 1, ∆≪ 1, and
η0 ≪ ∆/∣ log ∆∣, hence these relations define the regime of the parameters where our theorem is
meaningful.

The following corollary to Theorem 8.2.4 reveals the key property of the Loschmidt echo, the partial
recovery of the initial overlap, as discussed in the introduction; see Figure 8.1.2.

Corollary 8.2.5 (Averaged Loschmidt echo process). Assume the set-up and the conditions of
Theorem 8.2.4. For time t > 0 define the averaged Loschmidt echo process Pt(s), s ∈ [0,2t], as
follows:

Pt(s) ∶=
RRRRRRRRRRR

⟨eisH1ImG1(E0 + iη0)⟩

⟨ImM1(E0 + iη0)⟩

RRRRRRRRRRR

2

, s ∈ [0, t], (8.2.9a)

Pt(s) ∶=
RRRRRRRRRRR

⟨eitH1ImG1(E0 + iη0)e−i(s−t)H2⟩

⟨ImM1(E0 + iη0)⟩

RRRRRRRRRRR

2

, s ∈ (t,2t]. (8.2.9b)

Let lim∗ be the simultaneous limit in ∆, η0, t such that ∆, η0 → 0 and t → ∞ under constraints
∆2 ≪ η0 ≪ ∆/∣ log ∆∣ and 1/η0 ≪ t ≲ 1/∆2. Here a ≪ b means that a/b → 0 in this limit. Then
almost surely we have

lim∗ lim sup
N→∞

Pt(t)

Pt(2t)
= lim∗ lim sup

N→∞

Pt(t)

e−Γt = 0, (8.2.10)

where Γ is the same as in Theorem 8.2.4.

Proof of Corollary 8.2.5. Firstly take the limit N →∞ in the denominator Pt(2t) =M(t) of (8.2.10).
Recall the definition of E from (8.2.8). By means of Theorem 8.2.4 we have

lim inf
N→∞

Pt(2t) = lim inf
N→∞

(e−Γt
+O (E(t,∆, η0))) = lim inf

N→∞
(e−Γt

(1 + o(1))) ∼ 1
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in the limit lim∗. Here we used that Γ ∼ ∆2 and t ≲ ∆−2, so e−Γt ∼ 1. Thus in order to verify
(8.2.10) it is sufficient to show that

lim∗ lim sup
N→∞

Pt(t) = 0.

From the average single resolvent global law for H1, see (8.2.4) or [243, Theorem 2.1], we get that

lim
N→∞

∣⟨eitH1ImG1(E0 + iη0)⟩ − ∫
R

eitx η0
(x −E0)2 + η2

0
ρ1(x)dx∣ = 0.

Recall that E0 ∈Bκ(ρ1). Thus ⟨ImM(E0 + iη0)⟩ ∼ 1 for η0 → 0 and

lim sup
N→∞

Pt(t) ≲ lim sup
N→∞

∣∫
R

eitx η0
(x −E0)2 + η2

0
ρ1(x)dx∣

2
≲ (

1
η0t
)

2
. (8.2.11)

In the last inequality we employed integration by parts. Additionally we used that ρ1(x) is a bounded
function of x which is guaranteed by Assumption 8.2.2 and that ρ1(x) has bounded derivative for
∣x −E0∣ ≤ δ (see also Footnote 5), where δ was fixed in Theorem 8.2.4. Both of these bounds (on
ρ1(x) and dρ1(x)/dx) are uniform in N . In the limit lim∗ we have η0t →∞, so (8.2.11) finishes
the proof of Corollary 8.2.5.

As mentioned in the introduction, we also have the following corollary to Theorem 8.2.4.

Corollary 8.2.6 (Scrambled averaged Loschmidt echo with two deformations). Assume the conditions
of Theorem 8.2.4 and consider (as a variant of (8.2.5)) the scrambled averaged Loschmidt echo

M
sc
δ (t) ∶=

RRRRRRRRRRRRRR

⟨e−iδW̃ eitH1ImG1(E0 + iη0)e−itH2⟩

⟨ImM1(E0 + iη0)⟩

RRRRRRRRRRRRRR

2

, (8.2.12)

where W̃ is a Wigner matrix satisfying Assumption 8.2.1, independent of W and 0 ≤ δ ≤ N2/3−ε for
some fixed ε > 0. Moreover, let φ be the Fourier transform of the semi-circular density of states
ρsc(x) ∶= (2π)−1√[4 − x2]+, which is explicitly given as

φ(δ) ∶= ρsĉ(δ) = ∫
R

e−iδxρsc(x)dx =
J1(2δ)
δ

(8.2.13)

where J1 is the first order Bessel function of the first kind.
Then, instead of (8.2.6)–(8.2.7), we have that

M
sc
δ (t) = (φ(δ))

2 [1 − γt2 +O(⟨D2
⟩t3) +O≺((Nη0)

−1
)] +O≺(δ/(Nη0)) as t→ 0

and

M
sc
δ (t) = (φ(δ))

2 [e−Γt
+O (E) +O≺(C(t)/N)] +O≺(δ/(Nη0)) for 1 ≤ t ≤K/∆2

in the short and intermediate time regimes, respectively.

Proof of Corollary 8.2.6. Denote A ∶= eitH1ImG1(E0 + iη0)e−itH2 and observe that ∥A∥ ≤ 1/η0.
Then, by residue calculus with the contour Cδ ∶= {z ∈ C ∶ dist(z, [−2,2]) = δ−1} and a single
resolvent law7 as in (8.2.4), using only the randomness of W̃ , we find

⟨e−iδW̃A⟩ =
1

2πi ∮Cδ

e−iδz
⟨A(W − z)−1

⟩dz = ⟨A⟩
2πi ∮Cδ

e−iδzmsc(z)dz +O≺(δ/(Nη0))

= ⟨A⟩∫
R

e−iδxρsc(x)dx +O≺(δ/
√
N) = ⟨A⟩φ(δ) +O≺(δ/(Nη0)) .

The rest of the proof follows from Theorem 8.2.4.
7To be precise, when δ < 1, we use the slightly improved average global law ∣⟨A(W − z)−1

⟩−m(z)⟨A⟩∣ ≺ δ2
∥A∥/N

(see, e.g., [243, Theorem 2.1]).
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We close this section by commenting on the effect of the small averaging of the Loschmidt echo
over several energy states implemented in (8.2.5). This is a necessary technical step for our proof
in Scenario I that relies on a two-resolvent local law. Note that averaging will not be necessary for
Scenario II since it uses only single resolvent local law.

Remark 8.2.7 (Averaging of the Loschmidt echo). We provide two independent non-rigorous
arguments for the averaged Loschmidt echo M and the original Loschmidt echo M being close to
each other.

(1) First, by means of the Eigenstate Thermalization Hypothesis (ETH) for a deformed Wigner
matrix H =D +W , see Theorem 2.2.7, and a single resolvent local law (8.2.4), it holds that

⟨uj ,Auj⟩ ≈
⟨ImM(E0 + iη0)A⟩

⟨ImM(E0 + iη0)⟩
≈
⟨ImG(E0 + iη0)A⟩

⟨ImM(E0 + iη0)⟩
. (8.2.14)

Here, A is an arbitrary deterministic matrix, uj is a (normalized) eigenvector of H with
eigenvalue ≈ E0, and η0 a small regularization. In this sense, the pure state ∣uj⟩ ⟨uj ∣ is
weakly close to ImG/⟨ImM⟩ (i.e. if tested against a deterministic A), which heuristically
supports the implementation of the averaged Loschmidt echo in (8.2.5). However, the rigorous
ETH statements do not allow to choose A depending on the underlying randomness like
A = e−itH2eitH1 .

(2) Another supporting argument uses the fact that the averaged overlap function S
(E,η0)

(t) (in
particular its phase) is approximately constant as long as E varies in a range ∣E −E0∣ ≲ η0.
Hence it is irrelevant if one (a) first averages and then takes absolute value square, or (b)
does it the other way around. The fact that S

(E,η0)
(t) is slowly varying in E follows by a

simple computation using that (i) S
(E0,η0)

(t) ≈ IE0,η0(t)/⟨ImM1(E0 + iη0)⟩ (see (8.4.1) and
(8.4.7)), (ii) IE0,η0 is given by eits0⟨ImM1(E0 + iη0)⟩ (see (8.4.26)), (iii) the exponent s0 is
Lipschitz continuous on scale ∆ (see the last relation of (8.4.16)), and (iv) we have t ≲∆−2

and η0 ≪∆ by assumption.

Both, the ETH argument (8.2.14) and the fact that S(E,η0)
(t) is approximately constant as long as

∣E −E0∣ ≲ η0, independently indicate that the averaged Loschmidt echo M and the non-averaged
Loschmidt echo M should practically agree with each other. However, neither of them constitutes a
rigorous proof, since (1) the observable A in (8.2.14) cannot be chosen to depend on the randomness,
and (2) we cannot exclude that for some initial fixed energy state ψ0, S in (8.1.2) behaves very
differently from its typical value computed by local averaging.

8.2.2 Scenario II: Perturbation by a Wigner matrix
For the second echo scenario, we consider a single deformed Wigner matrix Hλ =H0 + λW and the
Loschmidt echo

M(t) =M
(E0,∆)
Hλ,H0

(t) ∶= ∣⟨ψ0, eitHλe−itH0ψ0⟩∣
2 (8.2.15)

for some normalized initial state ψ0 ∈ CN with energy E0 = ⟨ψ0,H0ψ0⟩ and localized in an interval of
size ∆ around E0 (see Assumption 8.2.9 below for a precise statement). The localization parameter
∆ plays the same role as η0 in Section 8.2.1, but here we work with a sharp cutoff in the energy.

The unperturbed Hamiltonian H0 is assumed to satisfy the following.

Assumption 8.2.8 (H0 and its limiting density of states). The Hamiltonian H0 is deterministic,
self-adjoint H0 = H

∗
0 , and uniformly bounded, ∥H0∥ ≤ CH0 for some CH0 > 0. We denote the

resolvent of H0 at any spectral parameter z ∈ C ∖R by M0(z) ∶= (H0 − z)
−1. Moreover, we assume

the following:
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(i) There exists a compactly supported measurable function ρ0 ∶R → [0,+∞) with ∫R ρ0(x)dx = 1
and two positive sequences ϵ0(N) and η0(N), both converging to zero as N →∞, such that,
uniformly in z ∈C/R with η ∶= ∣Im z∣ ≥ η0 ≡ η0(N), we have

⟨M0(z)⟩ =m0(z) +O(ϵ0) with ϵ0 ≡ ϵ0(N) . (8.2.16)

Here,
m0(z) ∶= ∫

R

ρ0(x)

x − z
dx (8.2.17)

is the Stieltjes transform of ρ0. We refer to ρ0 as the limiting density of states, and to supp(ρ0)
as the limiting spectrum of H0.

(ii) For small positive constants κ, c > 0, we define the set of admissible energies σ(κ,c)adm in the
limiting spectrum of H0 by8

σ
(κ,c)
adm ∶= {x ∈ supp(ρ0) ∶ inf

∣y−x∣≤κ
ρ0(y) > c, ∥ρ0∥C1,1([x−κ,x+κ]) ≤ 1/c} . (8.2.18)

We assume that for some positive N -independent κ, c > 0, σ(κ,c)adm is not empty.

Assuming that the set of admissible energies in (8.2.18) is non-empty guarantees the limiting spectrum
supp(ρ0) has a part, where the limiting density of states behaves regularly, i.e. it is sufficiently
smooth and strictly positive (in the bulk).

Assumption 8.2.9 (Locality of the initial state). Given Assumption 8.2.8, we first pick a reference
energy

E0 ∈ σ
(κ0,c0)
adm for some κ0, c0 > 0, (8.2.19)

and further introduce Iδ ∶= [E0 − δ,E0 + δ] for any 0 < δ < κ0. Moreover, take an N -independent
energy width ∆ ∈ (0, κ0/2) and let Π∆ ∶= 1I∆(H0) be the spectral projection of H0 onto the
interval I∆. Then, we assume that the initial state ψ0 ∈ CN is normalized, ∥ψ0∥ = 1, has energy
E0 = ⟨ψ0,H0ψ0⟩, and satisfies Π∆ψ0 = ψ0, i.e. ψ0 is localized in I∆.

Theorem 8.2.10 (Loschmidt echo with a single deformation). Consider the Loschmidt echo (8.2.15)
for times t ≥ 0 and assume that its constituents satisfy Assumptions 8.2.1 and 8.2.8–8.2.9. Then we
have the following:

(i) [Short-time parabolic decay] As t→ 0 it holds that

M(t) = 1 − λ2t2 +O(λ2t3) +O≺(1/
√
N) . (8.2.20)

The implicit constants in the error terms in (8.2.20) only depend on CH0 and the Cp’s from
Assumption 8.2.1.

(ii) [Intermediate-time asymptotic decay] For all times t ≥ 0 it holds that

M(t) = e−2πρ0(E0)λ2t
+O(E) +O≺(C(t, λ)/

√
N) , (8.2.21)

where for any fixed T > 0 the error term E , explicitly given in (8.7.8), satisfies

lim
∆→0

lim
t→∞,λ→0
λ2t≤T

lim
N→∞

E = 0

and the constant C(t, λ) > 0 depends only on its arguments. The implicit constants in the
error terms in (8.2.21) depend only on CH0 from Assumption 8.2.8, κ0, c0 from Assumption
8.2.9, and the Cp’s from Assumption 8.2.1.

8Here, C1,1
(J) denotes the set of continuously differentiable functions with a Lipschitz-continuous derivative on

an interval J , equipped with the norm ∥f∥C1,1(J) ∶= ∥f∥C1(J) + sup
x,y∈J ∶x≠y

∣f ′(x)−f ′(y)∣
∣x−y∣ .
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8.3. Short-time parabolic decay in Scenario I: Proof of Theorem 8.2.4 (i)

In the small time regime, t→ 0, (8.2.20) is surely more precise than (8.2.21), but the latter is more
relevant to describe the exponential decay for times of order t ∼ λ−2.

The proof of the following Corollary 8.2.11 is completely analogous to the proof of Corollary 8.2.6
(only using an isotropic law instead of an averaged law) and so omitted.

Corollary 8.2.11 (Scrambled Loschmidt echo with a single deformation). Assume the conditions of
Theorem 8.2.10 and consider (as a variant of (8.2.15)) the scrambled Loschmidt echo

Msc
δ (t) ∶= ∣⟨ψ0, eitHλe−iδW̃ e−itH0ψ0⟩∣

2
, (8.2.22)

where W̃ is a Wigner matrix satisfying Assumption 8.2.1, independent of W and 0 ≤ δ ≤ N2/3−ε for
some fixed ε > 0. Moreover, let φ be given by (8.2.13).

Then, instead of (8.2.20)–(8.2.21), we have that

Msc
δ (t) = (φ(δ))

2 [1 − λ2t2 +O(λ2t3) +O≺(1/
√
N)] +O≺(δ/

√
N) as t→ 0

and

Msc
δ (t) = (φ(δ))

2 [e−2πρ0(E0)λ2t
+O(E) +O≺(C(t, λ)/

√
N)] +O≺(δ/

√
N) for λ2t ≤ T,

respectively.

The rest of the paper is devoted to proving Theorems 8.2.4 and 8.2.10. The proof of Theorem 8.2.4
is conducted in Sections 8.3–8.4. In Section 8.7 we prove Theorem 8.2.10. The proof of several
technical results from Section 8.4 is deferred to Sections 8.5 and 8.6, and Appendix 8.A.

8.3 Short-time parabolic decay in Scenario I: Proof of
Theorem 8.2.4 (i)

In the following, we abbreviate P̃ = ImG1(E0 + iη0)/⟨ImM1(E0 + iη0)⟩, such that M(t) can be
written as

M(t) = ∣⟨eitH1P̃ e−itH2⟩∣
2
= ∣⟨P̃ eitH1e−itH2⟩∣

2
. (8.3.1)

Next, we trivially Taylor expand eitH1 and e−itH2 to second order, leaving us with

eitH1e−itH2 = 1 + it(H1 −H2) −
t2

2
((H1 −H2)

2
− [H1,H2]) +O(t

3
) . (8.3.2)

Plugging this in (8.3.1), we find

M(t) = ⟨P̃ (1 − t2

2 ((H1 −H2)
2
− [H1,H2]))⟩

2

+ t2⟨P̃ (H1 −H2)⟩
2
+O(t3) +O≺((Nη0)

−1
)

=1 − ⟨ (D − ⟨PD⟩)2 P ⟩ t2 +O(t3) +O≺((Nη0)
−1
) .

(8.3.3)

Here, we additionally used that ⟨P̃ [H1,H2]⟩ = 0 since P̃ is a function of H1, D =H2 −H1, and a
single resolvent law in the form ⟨P̃A⟩ = ⟨PA⟩+O≺((Nη0)

−1) for any A with ∥A∥ ≲ 1. The fact that
the decay parameter γ = ⟨(D − ⟨PD⟩)2 P ⟩ satisfies γ ∼∆2 is a simple consequence of the flatness
of the stability operator for a deformed Wigner matrix (see, e.g., [22, Proposition 3.5]).
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8. Loschmidt echo for deformed Wigner matrices

In order to conclude (8.2.6), it remains to show that the error term O(t3) in (8.3.3) is actually
improvable to O(⟨D2⟩t3). To see this, we (formally)9 employ the Baker-Campbell-Hausdorff (BCH)
formula, to write the exponentials as

eitH1e−itH2 = eK with

K = it(H1 −H2) +
t2

2
[H1,H2] +

it3

12
([H1, [H1,H2]] − [H2, [H1,H2]])

−
t4

24
[H2, [H1, [H1,H2]]] + ...

(8.3.4)

and note that every summand in the expression for K in (8.3.4) can be written as a linear combination
of nested commutators of D with H ≡H1 with one D always being in the innermost commutator.
Hence, to conclude the desired, we need to show that, (i) all the terms in eK containing only a single
D vanish, when evaluated in ⟨P̃ ...⟩, and (ii) all the terms in eK containing at least two D’s lead to
an additional ⟨D2⟩-factor in the error term.

For (i), note that the only way to have just a single D in a nested commutator is precisely adnH(D)
with adH(D) ∶= [H,D]. Evaluated in ⟨P̃ ...⟩, this vanishes, ⟨P̃adnH(D)⟩ = 0, since [P̃ ,H] = 0 and
hence

⟨P̃adnH(D)⟩ =
n

∑
k=0
(
n

k
)(−1)k⟨P̃Hn−kDHk

⟩ = ⟨P̃HnD⟩
n

∑
k=0
(
n

k
)(−1)k = 0 . (8.3.5)

For (ii), we take a product, say, T , of H’s and at least two D’s, resulting from resolving (a product
of) nested commutators, and estimate

∣⟨P̃ T ⟩∣ ≲ ⟨P̃D2
⟩ = ⟨PD2

⟩ +O≺((Nη0)
−1) ≲ ⟨D2

⟩ +O≺((Nη0)
−1) . (8.3.6)

In the first step, we estimated all H’s and all but two D’s in T by their operator norm, additionally
using that P̃ ≥ 0 and [H, P̃ ] = 0. In the second step, we employed the single resolvent law (8.2.4),
while in the last step we used ∥P ∥ ≲ 1.

We have hence shown, that all the terms of eK in (8.3.4) carrying at least a third power of t, can in
fact be bounded with an additional ⟨D2⟩-factor compared to (8.3.3). This concludes the proof.

8.4 Asymptotic decay in Scenario I: Proof of Theorem 8.2.4 (ii)
The principal goal of this section is to prove (8.2.7) in Theorem 8.2.4 (ii), i.e. study the behavior of
M(t) defined in (8.2.5) for times 1 ≤ t ≲∆−2. In order to do so, we compute the random quantity
⟨eitH1ImG1(E0 + iη0)e−itH2⟩ by residue calculus as

⟨eitH1ImG1(E0 + iη0)e−itH2⟩ =(
1

2πi
)

2
∮
γ1
∮
γ2

eit(z1−z2) η0
(z1 −E0)2 + η2

0
⟨G1(z1)G2(z2)⟩dz1dz2

+
1

4π ∮γ2
eit(E0+iη0−z2) ⟨G1(E0 + iη0)G2(z2)⟩dz2.

(8.4.1)

Here, the contours γ1, γ2 are chosen to be two semicircles as indicated in Figure 8.4.1. More precisely,
we take a (large) constant R > 0 such that suppρ1 and suppρ2 are contained in [−(R−1),R−1]. The
distance of the flat pieces from the real axis are denoted by η1 ∶=min{1/t, η0/2} and 0 < η2 ≲ 1/t. The
latter will explicitly be chosen later in Section 8.4.3, where we conclude the proof of Theorem 8.2.4 (ii).

9In order to guarantee convergence of the BCH expansion (8.3.4), we need the time t to be small enough such that
∣t∣(∥H1∥ + ∥H2∥) < log 2 [544], which can be achieved in an open interval around zero, since ∥Di∥ ≲ 1 and ∥W ∥ ≤ 2 + ϵ
with very high probability.
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8.4. Asymptotic decay in Scenario I: Proof of Theorem 8.2.4 (ii)

We decompose both contours into their flat in semicircular parts, γj = γ(1)j +̇ γ
(2)
j , j ∈ [2], and

parametrize them as follows:

γ
(1)
1 ∶ z1 = E1 − iη1 with E1 ∈ [−2R,2R] , γ

(2)
1 ∶ z1 = 2Reiφ

− iη1 with φ ∈ [0, π] (8.4.2)

γ
(1)
2 ∶ z2 = E2 + iη2 with E2 ∈ [−R,R] , γ

(2)
2 ∶ z2 = Reiφ

+ iη2 with φ ∈ [0, π] (8.4.3)

Finally, we point out that, in order to (8.4.1) being valid, γ1 is chosen in such a way that it encircles
E0 + iη0, but not E0 − iη0.

Rσ(H1) ∪ σ(H2)

γ1

γ2

η1

η2

2R

R
E0 + iη0•

E0 − iη0•

Figure 8.4.1: Sketch of the contours γ1 (dashed) and γ2 (full) from (8.4.2)–(8.4.3). The union of
the spectra of H1 and H2 is indicated in blue.

The following argument leading towards the proof of Theorem 8.2.4 (ii) is split in three parts. First, in
Section 8.4.1, we approximate the random contour integrals (8.4.1) by their deterministic counterparts
by using an appropriate two resolvent global law for two different deformations (Proposition 8.4.1).
Afterwards, in Section 8.4.2, we collect some preliminary stability bounds (Proposition 8.4.2) and
information on the shift, which is the key parameter in our analysis of the Loschmidt echo; see
Lemmas 8.4.4–8.4.6. Finally, in Section 8.4.3, we summarize the evaluation of the deterministic
contour integrals from Section 8.4.1 in five Lemmas 8.4.7–8.4.11. Combining these with estimates on
the shift from Section 8.4.2, we conclude the proof of Theorem 8.2.4 (ii) at the end of Section 8.4.3.

8.4.1 Step (i): Global law with two deformations

The following two resolvent global law will be used to approximate (8.4.1) by its deterministic
counterpart.

Proposition 8.4.1 (Average two resolvent global law). Let D1,D2 ∈ CN×N be a bounded Hermitian
matrices, i.e. ∥Dj∥ ≤ L for some L > 0, and W a Wigner matrix satisfying Assumption 8.2.1. Moreover,
let z1, z2 ∈ C be spectral parameters satisfying κ ∶= mini∈[2] dist(zi, [−(L + 2), L + 2]) ≥ δ > 0 and
denote Gj(zj) ∶= (Dj +W − zj)

−1 for j ∈ [2]. Then it holds that

∣⟨G1(z1)G2(z2)⟩ − ⟨M(z1, z2)⟩∣ ≺
C(δ)

N
, (8.4.4)
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8. Loschmidt echo for deformed Wigner matrices

where C(δ) > 0 is a constant depending10 only on its argument (apart from L and the constants
from Assumption 8.2.1). In (8.4.4), we abbreviated

M(z1, z2) =M12(z1, z2) ∶=
M1(z1)M2(z2)

1 − ⟨M1(z1)M2(z2)⟩
(8.4.5)

and Mj =Mj(zj), for j ∈ [2], is the unique solution to the Matrix Dyson equation (MDE)

−
1
Mj
= zj −Dj + ⟨Mj⟩ with ImMj(zj)Im zj > 0 for zj ∈C ∖R . (8.4.6)

Proof. Using that ∥Dj +W ∥ ≤ L + 2 + ϵ, j ∈ [2] with very high probability and the stability bound
∣1 − ⟨M1(z1)M2(z2)⟩∣

−1 ≲ 1 for κ ∶= mini∈[2] dist(zi, [−(L + 2), L + 2]) ≳ 1 from Proposition 8.4.2
below,11 the proof works in the same way as [238, Proposition 3.1], [168, Appendix B], Section 1.5.2,
or Section 2.6.2. We omit the details for brevity.

Hence, by means of Proposition 8.4.1, we find that the random contour integral (8.4.1) can be
approximated by the deterministic quantity

IE0,η0(t) ∶=(
1

2πi
)

2
∮
γ1
∮
γ2

eit(z1−z2) η0
(z1 −E0)2 + η2

0
⟨M(z1, z2)⟩dz1dz2

+
1

4π ∮γ2
eit(E0+iη0−z2) ⟨M(E0 + iη0, z2)⟩dz2.

(8.4.7)

up to an error of size O≺(C(η1)C(η2)/N), where we additionally used that the lengths of the
contours are bounded, ℓ(γj) ≲ 1 for j ∈ [2].

8.4.2 Step (ii): Preliminary bounds on the stability operator and the shift

As usual in random matrix theory, local/global laws are governed by a stability operator, which, in
our case is given by

B12(z1, z2)[⋅] ∶= 1 −M1⟨⋅⟩M2 with Mj ≡Mj(zj) . (8.4.8)

One can easily see that B12(z1, z2) has a highly degenerate eigenvalue one, and its only non-trivial
eigenvalue is given by 1 − ⟨M1M2⟩ with corresponding eigen“vector" M1M2.

The following proposition, whose proof is given in Section 8.5, states an upper bound on the
inverse of this non-trivial eigenvalue. A simplified form this stability bound already appeared in [160,
Lemma 5.2] for the very special case that D1 = αD2 for some α ∈R.

Proposition 8.4.2 (Stability bound). Fix a (large) L > 0. Uniformly in z1, z2 ∈C ∖R and traceless
Hermitian D1,D2 with ∣zj ∣ ≤ L, ∥Dj∥ ≤ L, j = 1,2, it holds that

∣
1

1 − ⟨M1M2⟩
∣ ≲

1
∆2 + (Re z1 −Re z2)

2
+ (Im ⟨M1⟩ + Im ⟨M2⟩)

2
+ ∣ Im z1
⟨ImM1⟩ ∣ + ∣

Im z2
⟨ImM2⟩ ∣

∨ 1 , (8.4.9)

where we denoted ∆2 ∶= ⟨(D1 −D2)
2⟩.

10By carefully tracking δ throughout the proof, one can see that the dependence is inverse polynomially, C(δ) ≲ δ−n

for some n ∈N. This will, however, be completely irrelevant for our purposes.
11In view of (8.4.10), note that the supports supp(ρ1), supp(ρ2) of the scDos of H1 and H2 are contained in

[−(L + 2), (L + 2)].
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8.4. Asymptotic decay in Scenario I: Proof of Theorem 8.2.4 (ii)

In the current Section 8.4, more precisely, the proof of Proposition 8.4.1 above, only the special case

∣1 − ⟨M1M2⟩∣
−1
≲ 1 for max

j∈[2]
dist(zj , supp(ρj)) ≳ 1 (8.4.10)

of Proposition 8.4.2 is relevant. However, for later reference, we also point out that, in particular,
∣1 − ⟨M1M2⟩∣

−1 ≲ ∣z1 − z2∣
−2 and that the lhs. of (8.4.9) is bounded by one, whenever z1, z2 are in

the same half-plane and ρ1(z1) + ρ2(z2) ≳ 1 (e.g. if one of them is in the bulk, Re zj ∈Bκ(ρj)).

In addition to these bounds, Proposition 8.4.2 also plays an important role in the analysis of the
shift s(z1, z2) of the spectral parameters z1, z2 in the (generalized) M -resolvent identity

⟨M12⟩ =
⟨M1M2⟩

1 − ⟨M1M2⟩
=
⟨M1⟩ − ⟨M2⟩

z1 − z2 − s(z1, z2)
, (8.4.11)

which can easily be obtained by subtracting MDEs (8.4.6) for M2 and M1 from each other. In
(8.4.11), the shift is defined as follows.

Definition 8.4.3 (The shift). Let D1,D2 be Hermitian traceless matrices and let Mj(zj) for
j ∈ [2] be the solution of the MDE (8.4.6). Then, we define the shift (depending on D1,D2 and
z1, z2 ∈C ∖R) as

s(z1, z2) ∶=
⟨M1(z1)(D1 −D2)M2(z2)⟩

⟨M1(z1)M2(z2)⟩
, (8.4.12)

whenever the denominator does not vanish.

As already mentioned above, the shift s is the key parameter in our analysis of the Loschmidt echo.
We now collect several estimates on s in the following Lemmas 8.4.4–8.4.6. The proofs, which are
based on the stability bound in Proposition 8.4.2, are given in Section 8.5.

Lemma 8.4.4 (Properties of s(z1, z2)). Fix a (small) κ > 0 and a (large) L > 0. Consider spectral
parameters z1, z2 ∈ C ∖R such that Im z1Im z2 < 0 and ∣zj ∣ ≤ L, ∥Dj∥ ≤ L, for j ∈ [2]. Assume
that at least one of these parameters is such that the (positive) harmonic extension of the scDos is
positive, i.e. ρ1(z1)+ ρ2(z2) ≥ κ. Then there exists a positive constant c which depends only on κ,L
such that for any Hermitian traceless D1,D2 with ∆ ∶= ⟨(D1 −D2)

2⟩1/2 ≤ c we have the following:

1. The denominator of the shift (8.4.12) is of order one, ∣⟨M1(z1)M2(z2)⟩∣ ∼ 1. In particular,

∣s(z1, z2)∣ ≲∆. (8.4.13)

2. If ρj(zj) ≥ κ/2, then
∣∂zjs(z1, z2)∣ ≲∆. (8.4.14)

Here all implicit constants depend only on κ and L.

We now introduce an auxiliary function f , which exactly detects the influence of the shift on the real
part of a spectral parameter.

Lemma 8.4.5 (Definition of f and s0). Fix a (small) κ > 0 and a (large) L > 0. Consider 0 < η1, η2 < L
and a spectral parameter z2 = E2 + iη2 such that ρ2(z2) ≥ κ, and satisfying ∣z2∣ ≤ L. Let D1,D2 be
Hermitian traceless matrices with ∥Dj∥ ≤ L, j ∈ [2]. Assume that ∆ ∶= ⟨(D1 −D2)

2⟩1/2 ≤ c, where c
is the constant from Lemma 8.4.4.

Then there exists a unique energy renormalization fη1,η2(E2) = f(E2) ∈ R with ∣f(E2)∣ ≤ L such
that

Re (f(E2) −E2 − s(f(E2) − iη1,E2 + iη2))) = 0.
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Moreover, denoting the renormalized (one point) shift by

sη1,η2
0 (E2) ∶= s(f(E2) − iη1,E2 + iη2), (8.4.15)

the functions fη1,η2(E2) and sη1,η2
0 (E2) are differentiable in η1, η2 and for E2 ∈ Bκ(ρ2) in the bulk,

and the derivatives satisfy

∣∂E2f
η1,η2(E2) − 1∣ ≲∆, ∣∂ηjf

η1,η2(E2)∣ ≲∆, j ∈ [2], and ∣∂E2s
η1,η2
0 (E2)∣ ≲∆. (8.4.16)

Whenever it does not lead to confusion our ambiguities, we will omit the superscripts η1, η2 of fη1,η2

and sη1,η2
0 . Next, we show that the imaginary part of the renormalized shift is in fact much smaller

than indicated by the upper bounds of order ∆ in (8.4.13)–(8.4.14) and (8.4.16).

Lemma 8.4.6 (Behavior of Im s0). Fix a (small) κ > 0 and a (large) L > 0. Let E ∈Bκ(ρ2) be in
the bulk of ρ2. Then there exist positive constants c1, c2 > 0 such that for any Hermitian traceless
D1,D2 with ∥Dj∥ ≤ L, j = 1,2, ∆ < c1 and for any 0 < ηj ≤ c2∆, for j ∈ [2], it holds that

Im sη1,η2
0 (E) ∼∆2. (8.4.17)

Here, c1, c2 and the implicit constants in (8.4.17) depend only on κ and L.

In the following section, armed with the preliminary bounds from Proposition 8.4.2 and Lemmas 8.4.4–
8.4.6, we carry out the evaluation of the contour integrals in (8.4.7).

8.4.3 Step (iii): Contour integration of the deterministic approximation
Throughout this section, let [a, b] be an interval with length of order one satisfying dist(E0, [a, b]

c) ≳ 1
and dist([a, b], (supp(ρ1) ∩ supp(ρ2))

c) ≳ 1. That is, the energy E0 from Theorem 8.2.4 is order
one away from the boundary of [a, b] and [a, b] is simultaneously in the bulk of ρ1 and ρ2. The
existence of such an interval is always guaranteed.

As already mentioned above, we now dissect the evaluation of (8.4.7) in several parts. As the first
step, we show that the second line of (8.4.7) is in fact negligible. The proofs of Lemma 8.4.7 and all
the other Lemmas 8.4.8–8.4.11 is given in Section 8.6.

Lemma 8.4.7 (The second line is negligible). Under the assumptions of Theorem 8.2.4 (ii) it holds
that

I
(2)
E0
∶=

1
4π ∮γ2

eit(E0+iη0−z2) ⟨M(E0 + iη0, z2)⟩dz2 = O (
1
t
) .

For the remaining first line of (8.4.7), we then find that the main contribution of the γ2 integral
comes from the interval [a, b] + iη2, i.e. we can cut away the tails.

Lemma 8.4.8 (Cutting tails). Under the assumptions of Theorem 8.2.4 (ii) it holds that

I
(1)
E0
∶=(

1
2πi
)

2
∮
γ1
∮
γ2

eit(z1−z2) η0
(z1 −E0)2 + η2

0
⟨M(z1, z2)⟩dz1dz2

=(
1

2πi
)

2
∮
γ1
∫

b

a
eit(z1−E2−iη2) η0

(z1 −E0)2 + η2
0
⟨M(z1,E2 + iη2)⟩dz1dE2 +O (

1
t
+
η0
∆
) .

The following lemma formally implements inside the integral from Lemma 8.4.8 the approximation

⟨M(z1,E2 + iη2)⟩ =
⟨M1(z1)⟩ − ⟨M2(E2 + iη2)⟩

z1 − (E2 + iη2) − s(z1,E2 + iη2)
≈
⟨M1(z1)⟩ − ⟨M2(E2 + iη2)⟩

z1 − (E2 + iη2) − s
η1,η2
0 (E2)

,

which is valid in the main contributing regime E1 ≈ E2. This is our first replacement s(z1,E2+ iη2)→
sη1,η2

0 (E2).
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Lemma 8.4.9 (First replacement). Denote d ∶= minE2∈[a,b] ∣η1 + η2 + Im sη1,η2
0 (E2)∣. Then, under

the assumptions of Theorem 8.2.4 (ii), it holds that

(
1

2πi
)

2
∮
γ1

dz1∫
b

a
dE2 eit(z1−E2−iη2) η0

(z1 −E0)2 + η2
0
⟨M(z1,E2 + iη2)⟩

=(
1

2πi
)

2
∮
γ1

dz1∫
b

a
dE2 eit(z1−E2−iη2) η0

(z1 −E0)2 + η2
0
⋅
⟨M1(z1)⟩ − ⟨M2(E2 + iη2)⟩

z1 − (E2 + iη2) − s
η1,η2
0 (E2)

+O (η0 +∆∣ log ∆∣ +∆∣ log d∣) .

(8.4.18)

Next, plugging in the Stieltjes representation ⟨M1(z1)⟩ = ∫R ρ1(x)(x − z1)
−1dx, the γ1 integral in

Lemma 8.4.9 can be explicitly computed using residue calculus. The “unwanted" residue contributions
arising in this way can be estimated using the oscillatory factor and integration by parts (see the
proof of Lemma 8.4.10 in Section 8.6).

Lemma 8.4.10 (Residue computation after the first replacement). Denote a ∶=minE2∈[a,b] ∣η0 − η2 −
Im sη1,η2

0 (E2)∣ and suppose that

η1 + η2 + Im s0(E2) > 0, ∀E2 ∈ [a, b] . (8.4.19)

Then, again under the assumptions of Theorem 8.2.4 (ii), it holds that

(
1

2πi
)

2
∮
γ1

dz1∫
b

a
dE2eit(z1−E2−iη2) η0

(z1 −E0)2 + η2
0
⋅
⟨M1(z1)⟩ − ⟨M2(E2 + iη2)⟩

z1 − (E2 + iη2) − s
η1,η2
0 (E2)

= −
1

2πi ∫R
dx∫

b

a
dE2eit(x−E2−iη2) η0

(x −E0)2 + η2
0
⋅

ρ1(x)

x − (E2 + iη2) − s
η1,η2
0 (E2)

+O (
∣ log a∣
t
+

∆ + t−1

ta
+ η0∣ log a∣ + η0(∆ + t−1)

a
) .

(8.4.20)

In the following lemma, we (i) complete the integral ∫
b
a to a full contour integral ∮γ2

, i.e. put back
the tails that were cut away in Lemma 8.4.8, and (ii) implement the second replacement

sη1,η2
0 (E2)→ s0 ∶= s

η1,η2
0 ((fη1,η2)

−1
(E0)) (8.4.21)

inside the integral from Lemma 8.4.10. This replacement leads to a small error comparing to the
leading term since sη1,η2

0 (E2) ≈ s0 in the relevant regime E2 ≈ E0.

Lemma 8.4.11 (Second replacement). Let b ∶=minE2∈[a,b] ∣η2 + Im sη1,η2
0 (E2)∣ and s0 as in (8.4.21).

Then, again under the assumptions of Theorem 8.2.4 (ii), it holds that

−
1

2πi ∫R
dx∫

b

a
dE2 eit(x−E2−iη2) η0

(x −E0)2 + η2
0
⋅

ρ1(x)

x − (E2 + iη2 + s
η1,η2
0 (E2))

= −
1

2πi ∫R
dx∮

γ2
dz2eit(x−z2) η0

(x −E0)2 + η2
0
⋅

ρ1(x)

x − (z2 + s0)

+O (
η0 + b

b
∆∣ log(η0 + b)∣ + η0∣ log b∣ + 1

t
) .

(8.4.22)

Armed with Lemmas 8.4.7–8.4.11, we can finally give the proof of Theorem 8.2.4 (ii).

Proof of Theorem 8.2.4 (ii). Combining Lemmas 8.4.7 - 8.4.11 we find that

IE0,η0(t) = −
1

2πi ∫R
∮
γ2

eit(x−z2) η0
(x −E0)2 + η2

0
⋅

ρ1(x)dx
x − (z2 + s0)

dz2 +O(Ê(t)), (8.4.23)
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where we collected all the error terms in

Ê(t) ∶=
η0
∆
+∆∣ log ∆∣+∆∣ log d∣+ ∣ log a∣

t
+

∆ + t−1

ta
+η0∣ log a∣+η0(∆ + t−1)

a
+
η0 + b

b
∆∣ log(η0+b)∣+η0∣ log b∣ .

We shall now estimate Ê(t) in different time regimes. First note that Lemmas 8.4.4 and 8.4.6 imply
the existence of positive constants {cj}4j=1 such that

∣s(z1, z2)∣ ≤ c1∆, for all ∣z1∣ ≤ 2R, E2 ∈ [a, b], η2 ∈ [0,1], and
c2∆2

≤ Im sη1,η2
0 (E2) ≤ c3∆2, for all E2 ∈ [a, b], ηj ∈ [0, c4∆], j = 1,2.

(8.4.24)

First regime: For 1 ≤ t ≤ 4Kc3/(c4∆) we take η2 ∶= 8Kc1c3/(c4t). Then, for any E2 ∈ [a, b] it holds
that

η2 + Im s0(E2) ≥ 8Kc1c3/(c1t) − c1∆ ≥ 4Kc1c3/(c1t) > 0.

In particular, the parameters a, b, and d from Lemmas 8.4.10, 8.4.11, and 8.4.9, respectively, are all
of order 1/t and Ê(t) is bounded as

Ê(t) ≲
1 + log t

t
+
η0
∆
+∆∣ log ∆∣ +∆ log t, for 1 ≤ t ≤ 4Kc3

c4
⋅

1
∆
. (8.4.25)

Second regime: For 4Kc3/(c4∆) ≤ t ≤ 2Kc3/η0, we take η2 ∶=
4Kc3
t . In this regime, η2 ≤ c4∆,

so the positivity of η2 + Im s0(E2) follows from (8.4.24). We also have that η2 ≥ 2η0 and again
a ∼ b ∼ d ∼ 1/t. Therefore, (8.4.25) holds in the whole regime 1 ≤ t ≤ 2Kc3/η0.

Third regime: It remains to study the regime 2Kc3/η0 ≤ t ≤K/∆2. If η0 ≤ 2c3∆2 it is in fact empty,
hence we may assume η0 ≥ 2c3∆2. In this case, we take η2 ∶= min{η0/4, c4∆,1/t} and find that
a ∼ η0, b ≳∆2, d ≳∆2. Moreover, the error term Ê(t) is bounded as

Ê(t) ≲
1 + log t

t
+∆∣ log ∆∣ + η0∣ log ∆∣

∆
, for 2Kc3/η0 ≤ t ≤K/∆2.

After having chosen η2 in all time regimes explicitly, we can perform z2-integration in (8.4.23). Note
that in all time regimes η2 was chosen in such a way that η2 + Im s0 > 0, which guarantees that γ2
encircles the point x − s0 for x ∈ supp(ρ1). So, (8.4.23) evaluates to

IE0,η0(t) = eits0
∫

R

η0
(x −E0)2 + η2

0
ρ1(x)dx +O(Ê(t)) = eits0Im ⟨M1(E0 + iη0)⟩ +O(Ê(t)).

(8.4.26)

After dividing by Im ⟨M1(E0 + iη0)⟩ and taking the absolute value square, it is left to notice that,
setting

Γ ∶= 2 Im s0,0
0 ((f

0,0)
−1
(E0)) , (8.4.27)

it holds that

Im s0 = Im sη1,η2
0 ((fη1,η2)

−1
(E0)) = Γ/2 +O(∆(η1 + η2)) = Γ/2 +O(∆/t).

Here we used (8.4.16) from Lemma 8.4.5 and (8.4.14) from Lemma 8.4.4 together with the bound
ηj ≲ 1/t, j = 1, 2. By Lemma 8.4.6, we finally see that the implicit constants in Γ ∼∆2 only depend
on κ and L. This finishes the proof of Theorem 8.2.4 (ii).
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8.5 Stability operator and shift: Proofs for Section 8.4.2

8.5.1 Bound on the stability operator: Proof of Proposition 8.4.2
Throughout the proof, we will use the shorthand notations Ej ∶= Re zj , ηj ∶= ∣Im zj ∣, ρj ∶=
1
π ∣⟨ImMj(zj)⟩∣ and ωj ∶= zj + ⟨Mj(zj)⟩, for j ∈ [2].

We will conclude Proposition 8.4.2 from the following lemma.

Lemma 8.5.1. Under the assumptions of Proposition 8.4.2 and using the notations from above, we
have that:

∣1 − ⟨M1M2⟩∣
−1
≲ (η1/ρ1 + η1/ρ2)

−1
∨ 1. (8.5.1)

∣1 − ⟨M1M2⟩∣
−1
≲ (∆2

+ ∣ω1 − ω2∣
2
)
−1. (8.5.2)

∣1 − ⟨M1M2⟩∣
−1
≲ ∣z1 − z2∣

−2 (8.5.3)

Combining (8.5.1)–(8.5.3) with the simple observation ∣ω1 −ω2∣ ≥ ∣⟨ImM1⟩+ ⟨ImM2⟩∣, we conclude
(8.4.9), i.e. the proof of Proposition 8.4.2.

Proof of Lemma 8.5.1. For (8.5.1), it is sufficient to check that for some c ∈ (0,1) we have
∣⟨M1M2⟩∣ ≤ (1 − c(η1/ρ1 + η2/ρ2)) ∨ (1 − c). This follows from a simple Cauchy-Schwarz inequality
∣⟨M1M2⟩∣ ≤ ⟨∣M1∣

2⟩1/2⟨∣M2∣
2⟩1/2 together with the estimate

⟨∣Mj ∣
2
⟩
1/2
= (

⟨ImMj⟩

Im zj + ⟨ImMj⟩
)

1/2
≲ (

ρj

ηj + ρj
)

1/2
≤ (1 − 1

2
⋅
ηj

ρj
) ∨ (1 − c) , j ∈ [2]

where the first step follows by taking the imaginary part of the MDE (8.4.6).

For (8.5.2), we note that it is sufficient to show

Re ⟨M1M2⟩ ≤ 1 − c (⟨(D1 −D2)
2⟩ + ∣ω1 − ω̄2∣

2) for some c > 0 . (8.5.4)

The idea for proving (8.5.4) is to translate it to a question for the spectral measures of D1 and D2.

In order to do so, for j ∈ [2], denote the eigenvalues and eigenvectors of Dj by {λ(j)k }
N
k=1 and

{u
(j)
k }

N
k=1, respectively, and the normalized spectral measure by µj ∶= N

−1
∑
N
k=1 δλ(j)

k

. By the
MDE (8.4.6), we immediately see that ωj solves the equation ωj − zj =mµj(ωj), where mµ(z) ∶=

∫R dµ(x)(x − z)−1 is the Stieltjes transform of the probability measure µ. By taking the imaginary
part and estimating ∣Imωj ∣ > ∣Imωj − Im zj ∣ we hence find

∫
dµj(x)
∣x − ωj ∣2

< 1 . (8.5.5)

Using the above notations, we further see that Mj can be written asMj = ∑
N
k=1(λ

(j)
k −ωj)

−1∣u
(j)
k ⟩⟨u

(j)
k ∣

and thus

⟨M1M2⟩ =
1
N2

N

∑
a,b=1

1
λ
(1)
a − ω1

⋅
1

λ
(2)
b − ω2

f(λ(1)a , λ
(2)
b ) , with f(λ(1)a , λ

(2)
b ) ∶= N ∣⟨u

(1)
a ,u

(2)
b ⟩∣

2
.

Extending f(x, y) to R2 by zero, we immediately see the following properties of f :

1. f(x, y) ≥ 0 for all x, y ∈ R.

2. ∫ f(x, y)dµ2(y) = 1suppµ1(x) and ∫ f(x, y)dµ1(x) = 1suppµ2(y).
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3. On R2, dν(x, y) ∶= f(x, y)dµ1(x)dµ2(y) is a probability measure with marginals µ1 and µ2.

In this way, the desired inequality (8.5.4) can equivalently be rewritten as

Re∬
1

x − ω1
⋅

1
y − ω2

dν(x, y) ≤ 1 − c(∬ (x − y)2dν(x, y) + ∣ω1 − ω̄2∣
2
) . (8.5.6)

In this form, using (8.5.5), we begin by estimating the lhs. of (8.5.6) as

Re∬
1

x − ω1
⋅

1
y − ω2

dν(x, y) < 1 − 1
2∬

∣
1

x − ω1
−

1
y − ω̄2

∣
2

dν(x, y),

Thus, in order to arrive at (8.5.6), it suffices to bound

∬ ∣
1

x − ω1
−

1
y − ω̄2

∣
2

dν(x, y) ≳∬ ∣(x − y) − (ω1 − ω̄2)∣
2 dν(x, y)

=∬ (x − y)2dν(x, y) − 2Re (ω1 − ω̄2)∬ (x − y)dν(x, y) + ∣ω1 − ω̄2∣
2

=∬ (x − y)2dν(x, y) + ∣ω1 − ω̄2∣
2.

where in the first step we employed ∣x − ω1∣ ≲ ∥D1∥ + ∣ω1∣ ≲ 1 (and analogously for ∣y − ω̄2∣), while in
the last step we used that fact that D1 and D2 are traceless. This finishes the proof of (8.5.2).

Finally, for (8.5.3), we use (8.5.2) and (8.4.11) to get that

∣z1 − z2∣
2
= ∣⟨M2(D1 −D2)M1⟩ + (1 − ⟨M1M2⟩)(z1 − z2 + ⟨M1⟩ − ⟨M2⟩)∣

2

≲ ∣⟨M1(D1 −D2)M2⟩∣
2
+ ∣1 − ⟨M1M2⟩∣

≲ ⟨(D1 −D2)
2⟩ + ∣1 − ⟨M1M2⟩∣ ≲ ∣1 − ⟨M1M2⟩∣ .

8.5.2 Properties of the shift: Proof of Lemmas 8.4.4–8.4.6
We finally prove the properties of the shift from Lemmas 8.4.4–8.4.6.

Proof of Lemma 8.4.4. The proof is split in two parts in the statement of the lemma.

Part (1): Given ∣⟨M1M2⟩∣ ∼ 1, note that the bound (8.4.13) immediately follows since, if, say, z1 is
such that ρ1(z1) ≥ κ/2, then ∥M1∥ ≲ 1 and ⟨∣M2∣

2⟩1/2 ≤ 1. Both of these estimates easily follow by
taking the imaginary part of the respective MDEs (8.4.6).

It is hence left to prove ∣⟨M1M2⟩∣ ∼ 1. The upper bound ∣⟨M1M2⟩∣ ≤ 1 is a consequence of the
Cauchy-Schwarz inequality and ⟨∣Mj ∣

2⟩1/2 ≤ 1. In order to prove the lower bound, we may assume
w.l.o.g. that ∣⟨M1M2⟩∣ ≤ 1/2, in which case ∣1− ⟨M1M2⟩∣ ∼ 1. Now, the numerator in the rhs. of the
M -resolvent identity (8.4.11) is of order one, since 1 ≳ ∣⟨M1⟩ − ⟨M2⟩∣ ≳ ∣⟨ImM1⟩∣ + ∣⟨ImM2⟩∣ ≳ 1.
Thus, by (8.4.11) again, we find that ∣(z1 − z2)⟨M1M2⟩ − ⟨M1(D1 −D2)M2⟩∣ ∼ 1, so, in particular,

1 ≲ ∣(z1 − z2)⟨M1M2⟩ − ⟨M1(D1 −D2)M2⟩∣ ≲ ∣⟨M1M2⟩∣ +∆.

Therefore, for some constant c > 0 which depends only on L and κ we have

∣⟨M1M2⟩∣ ≥ c −∆ ≳ 1,

i.e. we get the desired lower bound for ∣⟨M1M2⟩∣.

Part (2): Assume w.l.o.g. that ρ1(z1) ≥ κ/2. The derivative ∂z1s(z1, z2) can be computed explicitly
as

∂z1s(z1, z2) =
⟨M2

1 (D1 −D2)M2⟩⟨M1M2⟩ − ⟨M1(D1 −D2)M2⟩⟨M
2
1M2⟩

⟨M1M2⟩2(1 − ⟨M2
1 ⟩)
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and we note that, by analogous reasoning as in part (1), the numerator is bounded from above by ∆.
Since ∣⟨M1M2⟩∣ ∼ 1, from part (1), it holds that

∣∂z1s(z1, z2)∣ ≲
∆

∣1 − ⟨M2
1 ⟩∣
≲∆,

where in the last step we used the bound ∣1 − ⟨M2
1 ⟩∣ ≳ ρ1(z1)

2 with the aid of Proposition 8.4.2.

Proof of Lemma 8.4.5. The argument is split in two parts: First, we prove existence and uniqueness
of the energy renormalization function f . Second, we estimate the partial derivatives (8.4.16) of f
and the renormalized (one point) shift s0.

Part (1): Existence and uniqueness of f . First, from Lemma 8.4.5, we have that, for z1 with ∣z1∣ ≤ L
and Im z1 < 0, it holds that ∣s(z1, z2)∣ ≤ C∆ for some C > 0. For fixed z2 = E2 + iη2, we introduce
the auxiliary (differentiable) function

h(E1) ∶= E1 −E2 −Re s(E1 − iη1,E2 + iη2) ,

which has the property that h(E1) < 0 for E1 < E2 −C∆, and h(E2) > 0 for E1 > E2 +C∆. Hence,
h(E1) = 0 has a solution in I ∶= [E2 −C∆,E2 +C∆]. To see uniqueness, we differentiate h and
find that h′(E1) ≥ 1 − c∆ for E1 ∈ I and some c > 0 by means of (8.4.14) from Lemma 8.4.4. Thus
h has a unique zero on I (and hence in (−L,L)) which we denote by f(E2) = f

η1,η2(E2) – the
desired energy renormalization function. Differentiability of f easily follows from the implicit function
theorem.

Part (2): Bounds on derivatives. Differentiating the identity h(fη1,η2(E2)) = 0 in E2, we find that

∂E2f
η1,η2(E2) =

1 +Re∂2s(f(E2) − iη1,E2 + iη2)

1 −Re∂1s(f(E2) − iη1,E2 + iη2))
= 1 +O(∆),

by means of (8.4.14) from Lemma 8.4.4. Here, ∂js denotes the partial derivative of s w.r.t. its jth

argument. Similarly,

∂η1f
η1,η2(E2) = −

Re [i∂1s]

1 −Re [∂1s]
, ∂η2f

η1,η2(E2) =
Re [i∂1s]

1 −Re [∂2s]
,

where s has arguments f(E2) − iη1 and E2 + iη2. This concludes the bound ∣∂ηjf
η1,η2(E2)∣ ≲ ∆ for

j = 1,2. The bound on ∣∂E2s0(E2)∣ is obtained in a similar fashion and thus left to the reader.

Proof of Lemma 8.4.6. The proof is divided in two parts: In the first part, we prove (8.4.17) for
η1 = η2 = +0. In the second part of the argument, we treat the the general case as a perturbation
thereof.

Part (1): Proof on the real line. Applying the M -resolvent identity (8.4.11) for z1 ∶= f(E) − i0 and
z2 ∶= E + i0 and using Proposition 8.4.2, we find that

∣
⟨M1(z1)⟩ − ⟨M2(z2)⟩

f(E) −E − s0(E)
∣ ≲

1
∆2 .

Since the numerator on the lhs. is of order one and the real part of the denominator vanishes by
definition of f(E), we deduce that

∆2
≲ ∣Im [f(E) −E − s0(E)]∣ = ∣Im s0(E)∣ ,

i.e. we have a lower bound on the modulus of Im s0(E). To turn this into a lower bound on Im s0(E)
itself, we need to show that it is positive.
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This will be done via a proof by contraction: Suppose that Im s0(E) < 0. By (8.4.11) for z1 ∶=
f(E) − i0, z2 ∶= E + i0 we get

⟨M1M2⟩

1 − ⟨M1M2⟩
=
⟨M1⟩ − ⟨M2⟩

−iIm s0(E)
. (8.5.7)

Since Im [⟨M1⟩ − ⟨M2⟩] = −c for some c > 0 and ∣Re [⟨M1⟩ − ⟨M2⟩] ∣ ≲ ∆, we obtain, using our
assumption Im s0(E) < 0,

⟨M1⟩ − ⟨M2⟩ = ∣⟨M1⟩ − ⟨M2⟩∣e−
iπ
2 +iO(∆) and ⟨M1⟩ − ⟨M2⟩

−iIm s0(E)
= ∣
⟨M1⟩ − ⟨M2⟩

−iIm s0(E)
∣ eiπ+iO(∆) ,

where here and in the following O(∆) is real-valued. In a similar way, we find that ⟨M1M2⟩ =
1 +O(∆) + iO(∆) and ⟨M1M2⟩ = ∣⟨M1M2⟩∣eiO(∆). Hence, (8.5.7) implies

1 − ⟨M1M2⟩ = ∣
−iIm s0(E)

⟨M1⟩ − ⟨M2⟩
⟨M1M2⟩∣ eiπ+O(∆) ,

i.e., in particular, Re [1 − ⟨M1M2⟩] < 0. On the other hand, it holds that Re [1 − ⟨M1M2⟩] ≥
1 − ∣⟨M1M2⟩∣ ≥ 0, so we arrived at a contradiction and thus Im s0(E) > 0 and Im s0(E) ≳∆2.

For part (1), we are now left to prove ∣Im s0(E)∣ ≲ ∆2, which is done via a perturbative argument in
Appendix 8.A. This concludes part (1), i.e. Im s0,0

0 (E) ∼∆2.

Part (2): Extension away from the real line. By (8.4.16) and the fundamental theorem of calculus,
we have

∣Im sη1,η2
0 (E) − Im s0,0

0 (E)∣ ≤

RRRRRRRRRRRR

η1

∫

0

∂ζ1s
ζ1,η2
0 (E)dζ1

RRRRRRRRRRRR

+

RRRRRRRRRRRR

η2

∫

0

∂ζ2s
0,ζ2
0 (E)dζ2

RRRRRRRRRRRR

≲∆(η1 + η2) .

Hence, if 0 < ηj ≤ c2∆ for some c2 > 0 small enough, we obtain Im sη1,η2
0 (E) ∼ Im s0,0

0 (E) ∼∆2.

8.6 Contour integration: Proof of technical lemmas from
Section 8.4.3

The goal of this section is to give the proofs of the technical lemmas from Section 8.4.3, for which
we recall the construction of the contours γ1, γ2 from Section 8.4, in particular (8.4.2)–(8.4.3) and
Figure 8.1.1, and the definition of the [a, b] interval from the beginning of Section 8.4.3.

In all of the estimates below, we will frequently use the following simple tools:

• To gain 1/t-factors from the oscillatory eit(z1−z2), we integrate by parts.

• When pulling absolute values inside an integral, we bound ∣eit(z1−z2)∣ ≲ 1 (recall ∣Im zj ∣ ≲ 1/t).

• The convolution of two Cauchy kernels yields another Cauchy kernel: For ηj > 0 and Ej ∈R,
j ∈ [2] it holds that

∫
R

η1
(x −E1)2 + η2

1

η2
(x −E2)2 + η2

2
dx ≲ η1 + η2

(E1 −E2)2 + (η1 + η2)2
. (8.6.1)

We now turn to the proofs of the lemmas from Section 8.4.3.
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8.6.1 The second line of (8.4.23) is negligible: Proof of Lemma 8.4.7

We discuss the contributions from the flat and semicircular part of γ2 separately (recall (8.4.3)).

First, the smallness of the integral over γ(2)2 (the semicircular part) is granted by the factor etIm z2

(note that Im z2 ∈ [−R+η2, η2]) and the estimate ∣⟨M(E0+ iη0, z2)⟩∣ ≲ 1, which follows from (8.4.9).
More precisely, we have that

∣∮
γ
(2)
2

eit(E0+iη0−z2) ⟨M(E0 + iη0, z2)⟩dz2∣ ≲ R∫
2π

π
etR sin θdθ ≲ 1

t
. (8.6.2)

Next, we bound the integral over γ(1)2 – the flat part. As a first step, integration by parts yields

∣∫
γ
(1)
2

eit(E0+iη0−z2) ⟨M(E0 + iη0, z2)⟩dz2∣ ≲
1
t
+ ∣

1
it ∫

R

−R
e−itE2∂E2 ⟨M(E0 + iη0,E2 + iη2)⟩dE2∣ .

The derivative can be explicitly computed as

∂z2⟨M(z1, z2)⟩ =
⟨M1M

2
2 ⟩

(1 − ⟨M2
2 ⟩)(1 − ⟨M1M2⟩)2

. (8.6.3)

Since E0 is in the bulk of ρ1 and z0 ∶= E0 + iη0 and z2 are in the same half-plane we infer
∣1 − ⟨M1M2⟩∣ ≳ 1 and thus

∣∮
γ
(1)
2

eit(E0+iη0−z2) ⟨M(E0 + iη0, z2)⟩dz2∣ ≲
1
t
+

1
t
∫

R

−R
∣

1
1 − ⟨M2(E2 + iη2)2⟩

∣dE2.

In order to conclude the proof of Lemma 8.4.7, we finally use that the one-body stability operator
∣1 − ⟨M2(E2 + iη2)

2⟩∣−1 is locally integrable, see Lemma 8.A.1 in Appendix 8.A.

8.6.2 Cutting tails in the first line of (8.4.23): Proof of Lemma 8.4.8

For cutting the tails, we focus on the more critical regime, where both parameters are on the horizontal
part of the contours, zj ∈ γ(1)j for j ∈ [2] (recall (8.4.2)–(8.4.3)). Indeed, if this is not the case, a
simple computation using Proposition 8.4.2 and arguing similarly to (8.6.2) yields (1+ η0/∆)/t ≲ 1/t
as an upper bound for the corresponding integrals.

In the critical regime zj ∈ γ
(1)
j for j ∈ [2] we carry out only the case E2 = Re z2 ∈ [b,R]; for

E2 ∈ [−R,a] the argument is identical. Let δ ∶= (b −E0)/2 and split the region of the E1 = Re z1-
integration into the two parts, [b − δ,2R] and [−2R, b − δ]. In the first regime, using ∣E1 −E0∣ ≳ 1
and, from Proposition 8.4.2, ∣⟨M(E1 − iη1,E2 + iη2)⟩∣ ≲ ((E1 −E2)

2 +∆2)
−1, we find that

∫

2R

b−δ
∫

R

b
∣

η0
(E1 − iη1 −E0)2 + η2

0
⟨M(E1 − iη1,E2 + iη2)⟩∣dE1dE2 ≲

η0
∆
.

For E1 ∈ [−2R, b − δ], by Proposition 8.4.2 again, we have ∣⟨M(z1, z2)⟩∣ ≲ 1, since ∣E1 − E2∣ ∼ 1.
Using this and integration by parts in E2, similarly to the proof of Lemma 8.4.7, in combination
with (8.6.3) and Lemma 8.A.1, we find that

∣∫

b−δ

−2R ∫
R

b
eit(z1−E2−iη2) η0

(E1 − iη1 −E0)2 + η2
0
⟨M(E1 − iη1,E2 + iη2)⟩dE1dE2∣ ≲

1
t
.

This finishes the proof of Lemma 8.4.8.
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8.6.3 First replacement: Proof of Lemma 8.4.9

Let δ > 0 be such that [a − δ, b + δ] is in the bulk of ρ1. We now compare the two integrals on the
lhs. and rhs. of (8.4.18) by taking their difference. Using integration by parts, the contribution from
(z1, z2) ∈ γ

(2)
1 × [a, b] is bounded by η0/t. Analogously to the proof of Lemma 8.4.8, we also find

that the contribution from ([−R,R] ∖ [a − δ, b + δ]) × [a, b] is bounded by η0, since in this regime
∣⟨M(z1, I, z2)⟩∣ ≲ 1 and ∣z1 − z2 − s0(z2)∣

−1 ≳ 1.

We are hence left to estimate the contribution from the region [a − δ, b + δ] × [a, b]. Using that
∣s(z1, z2) − s0(E2)∣ ≲ ∆∣E1 −Re f(z2)∣ by means of Lemma 8.4.4, we find that this can be bounded
by

E ∶= ∫

b+δ

a−δ
∫

b

a

η0
(E1 −E0)2 + η2

0
⋅

∆∣E1 −Re f(z2)∣

∣z1 − z2 − s(z1, z2)∣ ⋅ ∣z1 − z2 − s0(E2)∣
dE1dE2 .

To have better control on E , we now bound the denominators in the second factor from below. First,
using the definition of d from the formulation of Lemma 8.4.9, we get

∣z1 − z2 − s0(E2)∣
2
= (E1 −E2 −Re s0(E2))

2
+ (η1 + η2 + Im s0(E2))

2
≳ (E1 − f(E2))

2
+d2 . (8.6.4)

Next, using that ∣z1 − z2 − s(z1, z2)∣ ≳∆2, as simple consequence of the stability bound (8.4.9), we
infer

∣z1 − z2 − s(z1, z2)∣
2
∼ ∣z1 − z2 − s(z1, z2)∣

2
+∆4

≳ (E1 −E2 −Re s(z1, z2))
2
+∆4 . (8.6.5)

Finally, using the defining properties of the renormalization function f given in Lemma 8.4.5, (8.4.14)
from Lemma 8.4.4, and the triangle inequality, one easily sees that

∣E1 −E2 −Re s(z1, z2)∣ ∼ ∣E1 − f(E2)∣. (8.6.6)

Hence, combining (8.6.4) and (8.6.5)–(8.6.6) we find that

E ≲ ∫

b+δ

a−δ
∫

b

a

η0
(E1 −E0)2 + η2

0
⋅

∆∣E1 − f(E2)∣

∣E1 − f(E2)∣2 + (min{d,∆2})2
dE1dE2

≲ ∫

b+δ

a−δ

η0∆(∣ log ∆∣ + ∣ log d∣)
(E1 −E)2 + η2

0
dE1 ≲∆(∣ log ∆∣ + ∣ log d∣).

where in the second step we changed the integration variable from E2 to f(E2) and employed
(8.4.16) from Lemma 8.4.5. This concludes the proof of Lemma 8.4.9.

8.6.4 Residue computation after the first replacement: Proof of Lemma 8.4.10

Using the integral representation ⟨M1(z1)⟩ = ∫R ρ1(x)(x − z1)
−1dx and carrying out the residue

computation (note that (8.4.19) ensures z2 + s0(E2) is encircled by the contour γ1), we find the
lhs. of (8.4.20) to equal

−
1

2πi ∫
b

a
dE2∫

R
eit(x−E2−iη2) η0

(x −E0)2 + η2
0
⋅

ρ1(x)dx
x − (E2 + iη2 + s0(E2))

+ E1 + E2 ,

where we introduced the shorthand notations

E1 ∶= −
1

4π ∫
b

a
eit(E0+iη0−E2−iη2) ⟨M1(E0 + iη0)⟩ − ⟨M2(E2 + iη2)⟩

E0 + iη0 − (E2 + iη2 + s0(E2))
dE2,

E2 ∶=
1

2πi ∫
b

a
eits0(E2) η0 (⟨M1(E0 + iη0)⟩ − ⟨M2(E2 + iη2)⟩)

(E2 + iη2 + s0(E2) −E0)2 + η2
0

dE2 .
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Moreover, we shall abbreviate z0 ∶= E0 + iη0, z2 ∶= E2 + iη2. Then, to estimate E1, we employ
integration by parts and find that, since ∣∂E2⟨M2(z2)⟩∣ ≲ 1 as ρ2(z2) ≳ 1, using (8.4.16) from
Lemma 8.4.5, and recalling the definition of a from the formulation of Lemma 8.4.10,

∣∂E2
⟨M1(z0)⟩ − ⟨M2(z2)⟩

z0 − (z2 + s0(E2))
∣ ≲

1
∣E0 − f(E2)∣ + a

+
∣⟨M1(z0)⟩ − ⟨M2(z2)⟩∣

∣E0 − f(E2)∣2 + a2 .

Applying the M -resolvent identity (8.4.11) to z0 and z2 we infer, by application of the stability bound
from Proposition 8.4.2 together with (8.4.13) and η2 ≲ 1/t, η0 ≲ ∆, that ∣⟨M1(z0)⟩ − ⟨M2(z2)⟩∣ ≲
∣E0 − f(E2)∣ +∆ + 1/t, and hence

∣E1∣ ≲
1
t
+

1
t
∫

b

a
(

1
∣E0 − f(E2)∣ + a

+
∣E0 − f(E2)∣ +∆ + t−1

∣E0 − f(E2)∣2 + a2 )dE2 ≲
∣ log a∣
t
+

∆ + t−1

ta
.

Similarly, E2 admits the bound ∣E2∣ ≲ η0∣ log a∣+η0a
−1(∆+t−1). This finishes the proof of Lemma 8.4.10.

8.6.5 Second replacement: Proof of Lemma 8.4.11

The argument is split in two parts. First, we estimate the error of the second replacement within the
interval [a, b]. Then, we put back the tails to complete the full contour integral.

For the first part, using ∣s0(E2) − s0∣ ≲ ∆∣f(E2) − E0∣ as a consequence of (8.4.16), we find the
error to be bounded by (a constant times) E1 + E2, where

E1 ∶= ∫
R

dx∫
b

a

η0
(x −E0)2 + η2

0
⋅

∆∣f(E2) −E0∣

∣x − (z2 + s0(E2))∣2
dE2 (8.6.7)

and E2 is the same integral as E1, but with s0(E2) being replaced by s0. Next, convolving Cauchy
kernels (8.6.1) in the x-variable and using (8.4.16) together with the definition of b we arrive at

E1 ≲
η0 + b

b
∫

b

a

∆∣f(E2) −E0∣

(f(E2) −E0)2 + (η0 + b)2
dE2 ≲

η0 + b

b
∆∣ log(η0 + b)∣ .

For E2, the argument is similar: We simply replace f(E2)−E0 in the denominator by E0−E2−Re s0
and estimate ∣E0 − f(E2)∣ ≲ ∣E0 −E2 −Re s0∣ in the numerator. This shows that the error for the
first bound is bounded by (η0 + b)b

−1∆∣ log(η0 + b)∣.

In the second part, we estimate the tails on the rhs. of (8.4.22). In the regime when z2 ∈ γ
(2)
2 we find

the bound 1/t, similarly to (8.6.2). If instead z2 ∈ γ
(1)
2 ∖ ([a, b] + iη2), say, E2 = Re z2 ∈ [b,R] for

concreteness, we have that ∣E0 −E2 −Re s0∣ ∼ 1, so the singularities in x on the rhs. of (8.4.22) are
separated from each other. Now, pick δ ∼ 1 such that [E0 − δ,E0 + δ] ⊂ [a, b] and ∣x−E2 −Re s0∣ ∼ 1
for any E2 ∈ [b,R], x ∈ [E0 − δ,E0 + δ]. Then, for ∣x −E0∣ ≥ δ, it holds that

∣∫
∣x−E0∣≥δ

dx∫
R

b
eit(x−E2−iη2) η0

(x −E0)2 + η2
0
⋅

ρ1(x)dx
x − (E2 + iη2 + s0)

dE2∣ ≲ η0∣ log b∣ ,

where, in order to get b, we employed Lemma 8.4.6 and (8.4.16). Finally, for ∣x−E0∣ ≤ δ, we employ
integration by parts in E2 and use ∣x−E2 −Re s0∣ ∼ 1 for any E2 ∈ [b,R], x ∈ [E0 − δ,E0 + δ] to get

∣∫

E0+δ

E0−δ
dxeit(x−iη2) η0 ρ1(x)

(x −E0)2 + η2
0
∫

R

b
e−itE2 dE2

x − (E2 + iη2 + s0)
∣ ≲

1
t
.

This finishes the justification of the replacement (8.4.22) and thus the proof of Lemma 8.4.11.
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8.7 Second echo protocol: Proof of Theorem 8.2.10
The argument for part (i) is very similar to that for the proof of Theorem 8.2.4 (i). The only two
differences are the following: First, the formerly algebraic cancellations ⟨P̃ [H1,H2]⟩ = 0 below (8.3.3)
and (8.3.5) are replaced by the estimate ∣⟨ψ,Wϕ⟩∣ ≺ ∥ψ∥ ∥ϕ∥N−1/2 for deterministic ϕ,ψ ∈ CN . This
follows by residue calculus and using an isotropic global law for the Wigner matrix W together with
the fact that the first moment of the semicircular density vanishes, ∫R xρsc(x)dx = 0, by symmetry.
More precisely, using ∥W ∥ ≤ 2 + ϵ with very high probability,

∣⟨ψ,Wϕ⟩∣ = ∣
1

2πi ∮∣z∣=3
z⟨ψ, (W − z)−1ϕ⟩dz∣

≲ ∥ψ∥ ∥ϕ∥ ∣
1

2πi ∮∣z∣=3
zmsc(z)dz∣ + ∥ψ∥ ∥ϕ∥O≺(N−1/2

)

≲ ∥ψ∥ ∥ϕ∥ ∣∫
R
xρsc(x)dx∣ + ∥ψ∥ ∥ϕ∥O≺(N−1/2

) ≺ ∥ψ∥ ∥ϕ∥N−1/2

(8.7.1)

where, to go to the last line, we used the Stieltjes representation msc(z) = ∫R(x− z)
−1ρsc(x)dx and

simple residue calculus. Second, in the analog of (8.3.6) it suffices to estimate all the λW simply by
operator norm, recalling ∥W ∥ ≤ 2+ ϵ with very high probability. The rest of the argument goes along
the same lines as in the proof of Theorem 8.2.4 (i) with straightforward modifications.

Part (ii) may be derived from Theorem 7.2.4, but here we give a direct proof relying just on the
argument given in Section 7.3.2.1. First, by means of the single resolvent global law, we have that

⟨ψ0, eitHλe−itH0ψ0⟩ =
1

2πi ∮γ
eitz
⟨ψ0,Gλ(z)e−itH0ψ0⟩dz

=
1

2πi ∮γ
eitz
⟨ψ0,Mλ(z)e−itH0ψ0⟩dz +O≺(C(t, λ)/

√
N)

(8.7.2)

for some constant C(t, λ) > 0 depending only on time t and coupling λ. Next, we approximate
⟨Mλ(z)⟩ ≈m0(E0), leading to

Mλ(z) ≈
1

H0 − z − λ2m0(E0)
. (8.7.3)

Plugging the approximation (8.7.3) into (8.7.2), we find

1
2πi ∮γ

eitz⟨ψ0, (H0 − z − λ
2m0(E0))

−1e−itH0ψ0⟩dz = e−im0(E0)λ2t (8.7.4)

from simple residue calculus for λ > 0 small enough, using that ∣m0(E0)∣ ≲ 1 (as follows from ρ0
being C1,1 around E0; recall (8.2.18)) and γ encircles the spectrum of H0. We have thus extracted
the main term in (8.7.2), and it remains to estimate the errors resulting from the replacements
in (8.7.3).

Denoting the spectral decomposition of H0 by H0 = ∑j µj ∣uj⟩ ⟨uj ∣ and using Assumption 8.2.9, we
have that

1
2πi ∮γ

eitz
⟨ψ0,Mλ(z)e−itH0ψ0⟩dz = ∑

µj∈I∆

⟨ψ0,uj⟩⟨uj , ψt⟩ϑ̃(j) , (8.7.5)

where we denoted ψt ∶= e−itH0ψ0 and

ϑ̃(j) ∶=
1

2πi ∮γ
eitz

µj − z − λ2⟨Mλ(z)⟩
dz . (8.7.6)

The key to approximating (8.7.5) is the following lemma, the proof of which is identical to that of
Lemma 7.3.3 and so omitted.
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Lemma 8.7.1 (cf. Lemma 7.3.3). Under the above assumptions and notations, for every j ∈ [N]
such that µj ∈ I∆, denote ϑ(j) ∶= (2πi)−1

∮γ eitz(µj − z − λ
2m0(E0))

−1dz. Then it holds that

sup
µj∈I∆

∣ϑ̃(j) − ϑ(j)∣ ≲ E (8.7.7)

for sufficiently small λ > 0 and N large enough (dependent on λ, cf. Lemma 7.A.1). Here, recalling
(8.2.16) for the definition of ϵ0 = ϵ0(N), we denoted

E = E(λ, t,∆,N) ∶= λ2t∆ + λ (1 + λ2t) +
λ

∆
(1 + λ

∆
) + λ2t ϵ0 . (8.7.8)

Therefore, by means of Lemma 8.7.1, employing a Hölder inequality in (8.7.5), and using (8.7.4), we
find that

1
2πi ∮γ

eitz
⟨ψ0,Mλ(z)e−itH0ψ0⟩dz = e−im0(E0)λ2t

+O(E) . (8.7.9)

Combining with (8.7.2) and taking the absolute value square of (8.7.9), we arrive at (8.2.21). This
concludes the proof of Theorem 8.2.10.

8.A Additional proofs

8.A.1 Upper bound on the renormalized shift: Perturbation argument for
Lemma 8.4.6

The goal of this section is to prove the upper bound ∣Im s0,0
0 (E)∣ ≲ ∆2, as claimed at the end of part

(1) of the proof of Lemma 8.4.6 in Section 8.5.

This is done via a perturbative calculation, which we carry out in a slightly more general setting:
Consider two spectral parameters z1 = E1 − i0, z2 = E2 + i0, such that Ej is in the bulk of ρj , j ∈ [2].
Introducing the averaged and relative coordinates

D ∶= (D1 +D2)/2, z ∶= (E1 +E2)/2 + i0, Θ ∶= (D2 −D1)/2 − (E2 −E1)/2 ,

we find that D1 − z1 =D − z −Θ and D2 − z2 =D − z +Θ. Let M be the solution of the MDE with
the averaged coordinates, i.e.

−
1
M
= z −D + ⟨M⟩.

Using the identity MM∗ = ImM/⟨ImM⟩, it is easy to compute by Taylor expansion

M2M1 =
1

⟨ImM⟩
(ImM + 2iIm [ImMΘM] + 2iIm [ ⟨ΘM

2⟩

1 − ⟨M2⟩
ImM ⋅M] +O(∣Θ∣2)) , (8.A.1)

where O(∣Θ∣2) indicates terms containing at least two Θ’s. Plugging (8.A.1) in the definition of the
shift (8.4.12), we find that

s(z1, z2)+(z2−z1) = −2
⟨ΘImM⟩ + 2i⟨ΘIm [ImMΘM]⟩ + 2i ⟨ΘIm [ ⟨ΘM

2⟩
1−⟨M2⟩ImM ⋅M]⟩ +O(⟨∣Θ∣3⟩)

⟨ImM⟩ + 2i⟨Im [ImMΘM]⟩ + 2i ⟨Im [ ⟨ΘM
2⟩

1−⟨M2⟩ImM ⋅M]⟩ +O(⟨∣Θ∣2⟩)
.

which implies

⟨ImM⟩2

2
[s(z1, z2) + (z2 − z1)] = − ⟨ΘImM⟩⟨ImM⟩ − 2i⟨ImM⟩ ⟨(Θ − ⟨ΘImM⟩

⟨ImM⟩
) ImMΘImM⟩

− 2i⟨ImM⟩ ⟨(Θ − ⟨ΘImM⟩

⟨ImM⟩
) Im [ ⟨ΘM

2⟩

1 − ⟨M2⟩
ImM ⋅M]⟩ +O(⟨∣Θ∣3⟩).
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Using Im [z2 − z1] = 0 and Im [⟨ΘImM⟩⟨ImM⟩] = 0, the imaginary part is given by

⟨ImM⟩

4
Im s(z1, z2) = − ⟨(Θ −

⟨ΘImM⟩

⟨ImM⟩
) ImM (ΘImM + Im [ ⟨ΘM

2⟩

1 − ⟨M2⟩
M])⟩ +O(⟨∣Θ∣3⟩)

and hence

∣Im s(z1, z2)∣ =
4

⟨ImM⟩
∣⟨(Θ − ⟨ΘImM⟩

⟨ImM⟩
) ImM (ΘImM + Im [ ⟨ΘM

2⟩

1 − ⟨M2⟩
M])⟩ +O(⟨∣Θ∣3⟩)∣ ≲ ⟨∣Θ∣2⟩ ,

since ∥Θ∥ ≲ 1. Specializing to the setting of the Lemma 8.4.6 this result means that

∣Im s0,0
0 (E)∣ ≲∆2

+ ∣f(E) −E∣2 ≲∆2 ,

where in the last step we used (8.4.13) and Lemma 8.4.5. This concludes the proof of the upper
bound in part (1) of Lemma 8.4.6.

8.A.2 The one-body stability operator is locally integrable
In Section 8.6 we frequently use that the one-body stability operator is locally integrable. This is the
statement of the following Lemma.

Lemma 8.A.1 (Integral of one-body stability operator). Fix a (large) positive constant L. Uniformly
in η ∈ [0,1] and in D satisfying Assumption 8.2.2 with constant L we have

∫

L

−L

dE
∣1 − ⟨M2(E + iη)⟩∣

≲ 1. (8.A.2)

Proof. With the notation (8.2.2), we use the classification of local minima of ρ from [22, Theorem 7.1].
This result addresses the case of a diagonal deformation, while D in the formulation of Lemma 8.A.1
does not need to be diagonal. Since the deterministic approximation M(z) to the resolvent (H −z)−1

of a random matrix H depends only on the first two joint moments of entries of H, we have that
M(z) in (8.A.2) coincides with the deterministic approximation to (WGUE +D − z)

−1, where WGUE
is a GUE matrix. Let U be a unitary diagonalizing D, i.e. U∗DU = D0, where D0 is diagonal.
Invariance of GUE under unitary conjugations gives that M̃(z) ∶= U∗M(z)U is a deterministic
approximation to (WGUE +D0 − z)

−1, so M̃(z) solves the MDE

−M̃
−1
(z) = z −D0 + ⟨M̃(z)⟩, Im zIm M̃(z) > 0 for z ∈C ∖R .

We remark that M̃ satisfies the assumptions of [22, Theorem 7.1], since S = ⟨⋅⟩ is flat and by means
of Assumption 8.2.2.

Thus [22, Theorem 7.1] applied to M̃ together with the observation ⟨M̃⟩ = ⟨M⟩ gives that there
exist positive constants ρ∗ > 0 and δ∗ > 0 dependent only on L such that for any local minimum τ0
of ρ with ρ(τ0) < ρ∗ one of the following possibilities holds:

ρ(τ0 + ω) ∼min{∆−1/6ω1/2, ω1/3
} , ω ∈ [0, δ∗] , (left edge) (8.A.3a)

ρ(τ0 + ω) ∼min{∆−1/6
∣ω∣1/2, ∣ω∣1/3}, ω ∈ [−δ∗,0] , (right edge) (8.A.3b)

ρ(τ0 + ω) ∼ ∣ω∣
1/3, ω ∈ [−δ∗, δ∗] , (cusp) (8.A.3c)

ρ(τ0 + ω) ∼ ρ̃ +min{ρ̃−5ω2, ∣ω∣1/3}, ω ∈ [−δ∗, δ∗] , (internal minimum) (8.A.3d)

where ρ̃ ∼ ρ(τ0) in (8.A.3d). In (8.A.3a), ∆ ∶= 1 if τ0 is an extreme left edge of suppρ and ∆ is the
length of the gap between the intervals of support which ends at point τ0 otherwise (see also [22,
Lemma 7.16])12, for the right edge (8.A.3b) ∆ is defined similarly.

12To be consistent with [22] we use ∆ to denote the size of the gap inside of the proof of Lemma 8.A.1. This
should not lead to any confusion with the rest of the paper, where ∆ is used for the Hilbert-Schmidt norm of D1 −D2.
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As a first preparatory step for (8.A.2), we give a lower bound for ∣1 − ⟨M2(E + iη)⟩∣ in terms of
ρ(E). In fact, we will show that uniformly in E ∈ [−L,L] it holds that

∣1 − ⟨M2
(E + iη)⟩∣ ≳ ρ2

(E) . (8.A.4)

By Lemma 8.5.1 the LHS of (8.A.4) has a lower bound of order ρ2(E+ iη)+η/ρ(E+ iη). Recall from
[22, Proposition 2.4] that ρ is 1/3-Hölder regular, i.e. there exists a constant C0 depending only on
L such that ∣ρ(z1)− ρ(z2)∣ ≤ C0∣z1 − z2∣

1/3 uniformly in z1, z2 ∈ C with Im z1Im z2 > 0 and ∣zj ∣ ≤ 2L,
j = 1, 2. If η ≤ ρ(E)3/(2C0)

3, then ρ(E + iη) ∼ ρ(E), i.e. (8.A.4) holds. In the complementary case,
η > ρ(E)3/(2C0)

3, we have ρ(E + iη) < ρ(E) and hence η/ρ(E + iη) ≳ ρ2(E), i.e. (8.A.4) again
holds.

Now, armed with (8.A.4), we are ready to prove (8.A.2). We split the region of integration into
several regimes according to the classification of local minima of ρ. For each local minimum τ0 with
ρ(τ0) < ρ∗ the integration over τ0 + [−δ∗, δ∗] ∩D will be considered separately. Here, D = R for
cusps and internal minima, D = [0,+∞) for left edges and (−∞,0] for right edges. The set D is
chosen in such a way that τ0 + [−δ∗, δ∗] ∩D covers the part, where ρ is positive and small. The
complementary regimes, the bulk regime (where ρ ≥ ρ∗) and the gap regime (where ρ = 0), are
treated separately.

Bulk regime: It holds that ρ(E) ≥ ρ∗, hence desired bound on the lhs. of (8.A.2) in the bulk regime
immediately follows from (8.A.4).

Gap regime: Let τ1 < τ0 be two edges of suppρ such that ρ(E) = 0 for any E ∈ [τ1, τ0]; the cases
when either τ1 is an extreme right edge or τ0 is an extreme left edge are treated similarly. Since
∂zM =M

2(1 − ⟨M2⟩)−1, we have ∣1 − ⟨M2⟩∣−1 ≤ 1 + ∣⟨M ′⟩∣. Together with (8.A.3a) and (8.A.3b)
this gives that

∣1 − ⟨M2
(E + iη)⟩∣ ≳ ((min{∣E − τ1∣, ∣E − τ0∣})

2
+ η2)

1/3
,

so the integral of ∣1 − ⟨M2(E + iη)⟩∣−1 over E ∈ [τ1, τ0] is uniformly bounded in η ∈ [0,1].

Internal minimum with ρ(τ0) < ρ∗: Using (8.A.4) along with (8.A.3d) we find that

∫

δ∗

−δ∗

dω
∣1 − ⟨M2(τ0 + ω + iη)⟩∣

≲ ∫

δ∗

−δ∗

dω
ρ2(τ0 + ω)

≲ ∫

ρ̃3

0

dω
ρ̃2 + ∫

δ∗

ρ̃3

dω
ω2/3 ≲ 1 .

Cusp regime: This works in the exact same way as the internal minimum, using (8.A.3c) instead
of (8.A.3d).

Edge regime: Let τ0 be a left edge of ρ, for the right edge the argument is the same. First, [22,
Corollary 5.3] gives that ∣1 − ⟨M2(z)⟩∣ ≳ ρ(z)(∣σ(z)∣ + ρ(z)), where σ(z) is a 1/3-Hölder regular
function in {z ∈ C ∶ Im z > 0} (by [22, Lemma 5.5]) and ∣σ(τ0)∣ ∼ ∆1/3 (by [22, Theorem 7.7,
Lemma 7.16]). Therefore, there exists a (small) positive constant c ∼ 1 such that for all z with
Re z ∈ [τ0, τ0 + c∆] and Im z ∈ [0, c∆] it holds that ∣σ(z)∣ ∼ ∆1/3. It is easy to see that the
integral of the one-body stability operator over [τ0 + c∆, τ0 + δ∗] has an upper bound of order
one by means of (8.A.4) and (8.A.3a). In the complementary regime [τ0, τ0 + c∆] we distinguish
between two cases (i) η ∈ [0, c∆] and (ii) η > c∆. In the first case, note that, by the integral
representation ρ(E + iη) = ∫R dxρ(x)η/((x−E)2 +η2) and (8.A.3a), it holds that ρ(E + iη) ≳ ρ(E)
for E ∈ [τ0, τ0 + c∆]. Thus

∫

c∆

0

dω
∣1 − ⟨M2(τ0 + ω + iη)⟩∣

≲∆1/3
∫

c∆

0

dω
ω1/2(∆1/2 + ω1/2)

≲ 1.

In the second case, η > c∆, we use (8.A.4) and the bound ∣1 − ⟨M2(z)⟩∣ ≳ ∣Im z∣ to get

∫

c∆

0

dω
∣1 − ⟨M2(τ0 + ω + iη)⟩∣

≲ ∫

c∆

0

dω
ρ2(τ0 + ω) +∆

∼∆1/3
∫

c∆

0

dω
ω +∆4/3 ≲ 1 ,
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which concludes the proof for the regular edge.

A careful examination of the proof shows that all implicit constants in the inequalities above depend
only on L.
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Chapter9
Eigenstate thermalization hypothesis for

translation invariant spin systems

This chapter contains the paper [541]:

S. Sugimoto, J. Henheik, V. Riabov, and L. Erdős. Eigenstate thermalisation hypothesis for translation
invariant spin systems. J. Stat. Phys., 190(7):128, 2023

Abstract. We prove the Eigenstate Thermalisation Hypothesis (ETH) for local observables in a
typical translation invariant system of quantum spins with mean field interaction. This mathematically
verifies the observation made in Ref. [512] that ETH may hold for systems with additional translation
symmetries for a naturally restricted class of observables. We also present numerical support for the
same phenomenon for Hamiltonians with local interaction.
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9.1 Introduction
Recent experiments have demonstrated thermalisation of isolated quantum systems under unitary
time evolution [569, 397, 174, 363, 469, 549]. In this context, thermalisation means that, after a
long time evolution, observables attain their equilibrium (thermal) values determined by statistical
mechanics. The primary mechanism behind this thermalisation of isolated quantum systems is an
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9. Eigenstate thermalization hypothesis for translation invariant spin systems

even stronger concept, the Eigenstate Thermalisation Hypothesis (ETH) [581, 221, 535]. Informally,
the ETH asserts that (i) physical observables A take their thermal value on every eigenstate of
a many-body quantum system and (ii) off-diagonal elements of A in the energy eigenbasis are
vanishingly small. In particular, the ETH ensures the thermalisation of A for any initial state with
a macroscopically definite energy, given no massive degeneracy in the energy spectrum [195, 455,
222]. The ETH has numerically been verified for individual models with several local or few-body
observables [504, 502, 503, 86, 512, 536, 69]. On the other hand, recent studies have revealed several
classes of systems for which the ETH breaks down: examples include systems with an extensive
number of local conserved quantities [505, 139, 320], many-body localisation [49, 465], and quantum
many-body scars [573, 128].

As another approach to this question, it has been proven that the ETH holds true for any deterministic
observable for almost all Hamiltonians H [581, 495, 165] sampled from a Wigner matrix ensemble
which has no further unitary symmetry (see also [5] and Chapter 2 for ETH for more general mean
field ensembles). If the Hamiltonian has some unitary symmetry, the ETH clearly breaks down for
conserved quantities related to those symmetries because we can find simultaneous eigenstates of
the Hamiltonian and conserved quantities. However, Ref. [512] observed an interesting phenomenon,
namely that local quantities still satisfy the ETH even in a system with translational symmetry.
Therefore, the question of how generically and for what class of observables the ETH holds true in
realistic situations has yet to be fully resolved.

In this paper we mathematically rigorously prove an instance of the observation from [512]. More
precisely we show that, for the mean-field case of an ensemble with translational symmetry, the
ETH typically holds for quantities whose support does not exceed half of the system size with the
optimal speed of convergence. The ETH also typically holds for quantities whose support exceeds
half the system size but with a slower convergence speed, while it typically breaks down for some
observables whose support extends to the entire system. We complement our analytical results for
the mean-field case with a numerical simulation for an ensemble of more realistic Hamiltonians with
local interactions.

9.2 Setup
We consider a one-dimensional periodic quantum spin system on the L ∈ N sites of the standard
discrete torus

TL ∶= ZÒLZ .

On each vertex j ∈ TL, the one particle Hilbert space Hj is given by C2 and we denote its canonical
basis by {∣↑⟩ , ∣↓⟩}. The corresponding L-particle Hilbert space

H ∶=
L

⊗
j=1

C2

is simply given by the tensor product with dimension 2L. For simplicity, we restrict ourselves to the
spin-1/2 case, but our results can straightforwardly be extended to general spin s with one particle
Hilbert space being C2s+1.

Next, we introduce the ensemble of Hamiltonians, which is first introduced in Ref. [539] and shall be
studied in this article. The main parameter in the definition is a tunable range ℓ ≤ L of interactions,
which allows us to consider how generically the ETH holds in realistic situations.

Definition 9.2.1 (Hamiltonian). Let T = TL be the (left) translation operator acting on L spins at
the vertices of TL. We define the ensemble of Hamiltonians with local interactions as

H
(ℓ)
L ∶=

L−1
∑
j=0

T −jL (hℓ ⊗ IL−ℓ)T
j
L , hℓ ∶=

3
∑

p1,...,pℓ=0
Jp1,...,pℓ

σ
(p1)
1 . . . σ

(pℓ)
ℓ (9.2.1)
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9.2. Setup

where ℓ ≤ L is the interaction range, IL−ℓ is the identity on the sites ℓ + 1, . . . , L. Here σ(p)j is the
pth Pauli matrix σ(p) acting on the site j ∈ TL, where we recall the standard Pauli matrices,

σ(0) =

⎛
⎜
⎜
⎝

1 0

0 1

⎞
⎟
⎟
⎠

σ(1) =

⎛
⎜
⎜
⎝

0 1

1 0

⎞
⎟
⎟
⎠

σ(2) =

⎛
⎜
⎜
⎝

0 −i

i 0

⎞
⎟
⎟
⎠

σ(3) =

⎛
⎜
⎜
⎝

1 0

0 −1

⎞
⎟
⎟
⎠

. (9.2.2)

The 4ℓ coefficients Jp1,...,pℓ
are independent, identically distributed real Gaussian random variables

with zero mean, EJp1,...,pℓ
= 0, and variance

v2
ℓ ∶= E∣Jp1,...,pℓ

∣
2 .

The ensemble of Hamiltonians hℓ (9.2.1) contains prototypical spin models such as the XYZ model,
hℓ = ∑

3
p=1 Jpσ

(p)
1 σ

(p)
2 .

Observe that the Hamiltonian H(ℓ)L is a shifted version of the same local Hamiltonian hℓ. In particular,
H
(ℓ)
L is translation invariant by construction, i.e., TLH(ℓ)L T −1

L =H
(ℓ)
L . We impose this structure to

study a Hamiltonian with a symmetry. In the sequel we shall exploit this feature of H(ℓ)L by switching
from position space to momentum space.

Lemma 9.2.2. Let
Πk ∶=

1
L

L

∑
j=1

e2πi kj
L T −jL for k = 0, . . . , L − 1 (9.2.3)

be the projection operator onto the k-momentum space, i.e., TLΠk = e
2πi k

L Πk. Then H
(ℓ)
L is

block-diagonal in the momentum space representation, i.e. in the eigenbasis of TL, since we have

H
(ℓ)
L = L

L−1
∑
k=0

Πk(hℓ ⊗ IL−ℓ)Πk . (9.2.4)

Proof. This follows immediately by substituting the spectral decomposition of T given by T =

∑
L−1
k=0 e

2πik/LΠk into (9.2.1).

As we will show in Lemma 9.3.4, the dimensions of each of the L momentum sectors are almost
equal to each other, TrLΠk ≈ 2L/L.

In order to present our main result, the ETH in translation-invariant systems (Theorem 9.3.1), in a
concise form, we need to introduce the microcanonical average. Below, we denote by ∣E(k)α ⟩ the
normalised eigenvector of H(ℓ)L in the k-momentum sector with eigenvalue Eα, i.e. H(ℓ)L ∣E

(k)
α ⟩ =

Eα ∣E
(k)
α ⟩ and Πk ∣E

(k)
α ⟩ = ∣E

(k)
α ⟩. It is easy to see that the spectrum of H in each momentum sector

is simple almost surely.

Definition 9.2.3 (Microcanonical ensemble). For every energy E ∈ R and energy window ∆ > 0, we
define the microcanonical energy shell HE,∆ centered at energy E with width 2∆ by

HE,∆ ∶=
L−1
⊕
k=0
H
(k)
E,∆ , where H

(k)
E,∆ ∶= span{∣E(k)α ⟩ ∶ ∣E

(k)
α −E∣ ≤∆} .

We denote the dimension of H(k)E,∆ by d(k)E,∆ and that of HE,∆ by dE,∆ = ∑L−1
k=0 d

(k)
E,∆.

Whenever dE,∆ > 0, we define the microcanonical average of any self-adjoint observable A ∈CN×N

within HE,∆ by

⟨A⟩
(mc)
∆ (E) ∶=

1
dE,∆

L−1
∑
k=0

∑

∣E(k)α ⟩∈H(k)
E,∆

⟨E(k)α ∣A∣E
(k)
α ⟩ . (9.2.5)
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9. Eigenstate thermalization hypothesis for translation invariant spin systems

Remark 9.2.4. The microcanonical average mimics the microcanonical ensemble before taking the
thermodynamic limit. In order to be physically meaningful, there are two natural requirements on
the energy shell HE,∆:

(i) The density of states is approximately constant in the interval [E −∆,E +∆].

(ii) The microcanonical energy shell contains ≫ 1 states, i.e. dE,∆ →∞ as L→∞.

Note that for any fixed energy E, (i) corresponds to an upper bound and (ii) corresponds to a lower
bound on ∆, both being dependent on E. We point out that very close to the spectral edges with
only a few states, it is not guaranteed that both requirements can be satisfied simultaneously.

Indeed, from a physics perspective, viewing ⟨A⟩(mc)
∆ (E) from (9.2.5) as a finite dimensional ap-

proximation of the microcanonical ensemble is meaningless whenever (i) and (ii) are not satisfied.
However, we will simply view Definition 9.2.3 for arbitrary ∆ as an extension of the standard definition
of the microcanonical average from the physics literature. Our main result, Theorem 9.3.1, will even
hold with the microcanonical average in this extended sense.

We set
N ∶= 2L = dimH

for the total Hilbert space dimension. Our analytic results below will always be understood in the
limit of large system size, i.e. L → ∞, or, equivalently N → ∞. We shall also use the following
common notion (see, e.g., [241]) of stochastic domination.

Definition 9.2.5. Given two families of non-negative random variables

X ≡ (X(N)(u) ∶ N ∈ N, u ∈ U (N)) and Y ≡ (Y (N)(u) ∶ N ∈ N, u ∈ U (N))

indexed by N , we say that X is stochastically dominated by Y , if for all ξ, D > 0, we have

sup
u∈U(N)

P [X(N)(u) > N ξY (N)(u)] ≤ N−D

for any sufficiently large N ≥ N0(ξ,D) and use the notation X ≺ Y or X = O≺(Y ) in that case.

9.3 Main result in the mean-field case
Throughout the entire section, we are in the mean-field case ℓ = L. For any q ≤ L we also introduce
the concept of q-local observables for self-adjoint operators of the form A = Aq ⊗ IL−q, i.e. Aq is
self-adjoint and only acts on the first q sites.

Our main result in this setting is the following theorem.

Theorem 9.3.1 (ETH in translation-invariant systems). Let ℓ = L and consider the Hamiltonian
H
(L)
L from (9.2.1) with eigenvalues E(k)α and associated normalised eigenvectors ∣∗⟩E(k)α . Then, for

every ∆ > 0 and bounded q-local observable A = Aq ⊗ IL−q, ∥∗∥A ≲ 1, it holds that

max
α,β

max
k,k′
∣⟨E(k)α ∣A∣E

(k′)
β ⟩ − δαβδk,k′⟨A⟩

(mc)
∆ (E(k)α )∣ ≺

1
2min{L/2,L−q} , (9.3.1)

where the maxima are taken over all indices labeling the eigenvectors of H(L)L . In particular, for
q ≤ L/2 the ETH holds with optimal speed of convergence of order 1/

√
N .

An extension of Theorem 9.3.1 to arbitrary dimension d ≥ 2 is provided in Theorem 9.A.3 in the
Appendix.
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9.3. Main result in the mean-field case

Remark 9.3.2 (Typicality of ETH). Theorem 9.3.1 asserts that for any fixed local observable A the
ETH in the form (9.3.1) holds with a very high probability, i.e. apart from an event of probability
N−D = 2−LD, for any fixed D, see the precise Definition 9.2.5. This exceptional event may depend
on the observable A. However, as long as q is L-independent (in fact some mild logarithmic increase
is allowed), it also holds that

max
α,β

max
k,k′

max
A
∣⟨E(k)α ∣A∣E

(k′)
β ⟩ − δαβδk,k′⟨A⟩

(mc)
∆ (E(k)α )∣ ≺

1
2L/2

, (9.3.2)

i.e. we may take the supremum over all bounded q-local observables A in (9.3.1). This extension is
a simple consequence of choosing a sufficiently fine grid in the unit ball of the 4q × 4q dimensional
space of q-local observables and taking the union bound. The estimate (9.3.2) can be viewed as a
very strong form of the typicality of ETH within our class of translation invariant mean field operators
H
(L)
L . It asserts that apart from an exceptional set of the coupling constants Jp1,...,pL

the Hamiltonian
H
(L)
L satisfies the ETH with optimal speed of convergence, uniformly in the entire spectrum and

tested against all finite range (q-local) observables. The exceptional set has exponentially small
measure of order 2−LD for any D if L is sufficiently large.

In Lemma 9.3.5 we will see that in the mean–field case the Hamiltonian on each momentum sector is
a GUE matrix, in particular the density of states of H follows Wigner’s semicircle law. An elementary
calculation shows that the radius of this semicircle is given by

R ∶= 2 ⋅ 2L
√
LvL(1 +O(2−L)) .

In light of Remark 9.2.4 we also mention that ⟨A⟩(mc)
∆ (E) in (9.3.1) can be considered as an

approximation of the expectation of A in the microcanonical ensemble at energy ∣E∣ ≤ R if
R

N2/3 ≪∆≪ R − ∣E∣ . (9.3.3)

The upper bound in (9.3.3) comes from requirement (i) in Remark 9.2.4, while the lower bound
in (9.3.3) stems from (ii) using that the eigenvalue spacing near the spectral edge for Wigner matrices
is of order R/N2/3.

For the sequel we introduce the notation

⟨A⟩ ∶=
TrA
Tr I

for the normalised trace of an operator A on any finite-dimensional Hilbert space, where I is the
identity on that space. In particular, if A = Aq ⊗ IL−q is a q-local observable, then ⟨A⟩ = ⟨Aq⟩.

The proof of Theorem 9.3.1 crucially relies on the fact that in our mean-field case ⟨E(k)α ∣A∣E
(k′)
β ⟩

converges to δαβδk,k′⟨A⟩. In other words, the thermodynamics of the system is trivial; the thermal
value of A is always given by its average trace. This is formalised in the following main proposition:

Proposition 9.3.3. Under the assumptions of Theorem 9.3.1 it holds that

max
α,β

max
k,k′
∣⟨E(k)α ∣A∣E

(k′)
β ⟩ − δαβδk,k′⟨A⟩∣ ≺

1
2min{L/2,L−q} . (9.3.4)

Having Proposition 9.3.3 at hand, we can readily prove Theorem 9.3.1.

Proof of Theorem 9.3.1. Averaging (9.3.4) for α = β and k = k′ according to the microcanonical
average (9.2.5), we find that

max
α

max
k
∣⟨A⟩

(mc)
∆ (E(k)α ) − ⟨A⟩∣ ≺

1
2min{L/2,L−q} .

Combining this with (9.3.4), the claim immediately follows.
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9. Eigenstate thermalization hypothesis for translation invariant spin systems

The rest of this section is devoted to the proof of Proposition 9.3.3, which is conducted in four steps.

1. The momentum sectors are all of the same size with very high precision (Lemma 9.3.4).

2. In each momentum sector the mean-field Hamiltonian H(L)L , represented in the eigenbasis of
the translation operator T , is a GUE matrix (Lemma 9.3.5).

3. The ETH holds within each momentum sector separately (Lemma 9.3.6).

4. The averaged trace on each momentum sector and the total averaged trace are close to each
other – at least for local observables (Lemma 9.3.7).

We shall first formulate all the four lemmas precisely and afterwards conclude the proof of Proposi-
tion 9.3.3.

Lemma 9.3.4 (Step 1: Dimensions of momentum sectors). The dimension TrLΠk of the k-
momentum sectors (k = 0, . . . , L − 1) is almost equal to each other in the sense that we have

TrLΠk =
2L

L
+O(L1/22L/2) .

The proof is given in Section 9.3.1

Lemma 9.3.5 (Step 2: GUE in momentum blocks). Each momentum-block of the mean-field
Hamiltonian H(L)L , represented in an eigenbasis of T , is an i.i.d. complex Gaussian Wigner matrix
(GUE), whose entries have mean zero and variance 2LL2 v2

L. Recall that v2
L = E∣Jp1,...,pL

∣
2 from

Definition 9.2.1.

Proof. In the mean-field case ℓ = L, a simple direct calculation of all first and second moments of
the matrix elements shows that the interaction matrix hℓ is a complex Gaussian Wigner matrix whose
entries have variance 2Lv2

L. Since the transformation from the standard basis to an eigenbasis of T
is unitary, and the Gaussian distribution is invariant under unitary transformation, hℓ represented in
an eigenbasis of T is again a Gaussian Wigner matrix. Finally, the projection operators Πk in (9.2.4)
set the off-diagonal blocks to zero. Incorporating the additional factor L in (9.2.4) into the variance
proves Lemma 9.3.5.

As the next step, we show that the ETH holds within each momentum sector.

Lemma 9.3.6 (Step 3: ETH within each momentum sector). For an arbitrary deterministic observable
A with ∥∗∥A ≲ 1 it holds that

max
α,β

max
k
∣⟨E(k)α ∣A∣E

(k)
β ⟩ − δαβ

TrL(ΠkAΠk)

TrLΠk
∣ ≺

1
2L/2

. (9.3.5)

Proof. For any fixed k, Lemma 9.3.5 asserts that ΠkH
(L)
L Πk is a standard GUE matrix (up to

normalisation by vL). Using [165, Theorem 2.2], therefore its eigenvectors ∣∗⟩Eα = ∣∗⟩E(k)α satisfy
ETH in the form that ⟨Eα∣A∣Eβ⟩ is approximately given by the normalised trace of A in the
k-momentum sector

⟨A⟩k ∶=
TrL(ΠkAΠk)

TrLΠk

with very high probability and with an error given by the square root of the inverse of the dimension
of the k-momentum sector, 1/

√
TrLΠk. This holds in the sense of stochastic domination given in

Definition 9.2.5. Using that TrLΠk ≈ 2L/L from Lemma 9.3.4, we obtain that (9.3.5) holds for

414
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each fixed k, uniformly in all eigenvectors. Finally, the very high probability control in the stochastic
domination allows us to take the maximum over k = 1,2, . . . , L by a simple union bound. This
completes the proof of (9.3.5).

We remark that the essential ingredient of this proof, the Theorem 2.2 from [165], applies not only
for the Gaussian ensemble but for arbitrary Wigner matrices with i.i.d. entries (with some moment
condition on their entry distribution) and its proof is quite involved. However, ETH for GUE, as
needed in Lemma 9.3.6, can also be proven with much more elementary methods using that the
eigenvectors are columns of a Haar unitary matrix. Namely, moments of ⟨Eα∣A∣Eβ⟩ can be directly
computed using Weingarten calculus [179]. Since in (9.3.5) we aim at a control with very high
probability, this would require to compute arbitrary high moments of ⟨Eα∣A∣Eβ⟩ − δα,β⟨A⟩k. The
Weingarten formalism gives the exact answer but it is somewhat complicated for high moments, so
identifying their leading order (given by the “ladder” diagrams) requires some elementary efforts. For
brevity, we therefore relied on [165, Theorem 2.2] in the proof of Lemma 9.3.6 above.

Finally, we formulate the fourth and last step of the proof of Proposition 9.3.3 in the following
lemma, the proof of which is given in Section 9.3.2.

Lemma 9.3.7 (Step 4: Traces within momentum sectors). Let A = Aq ⊗ IL−q be an arbitrary q-local
observable with ∥∗∥A ≲ 1. Then it holds that

max
k
∣
TrL(ΠkAΠk)

TrLΠk
− ⟨A⟩∣ ≤ O (

L

2min(L−q,L/2)) . (9.3.6)

Moreover, for q > L/2 + 1 this bound is optimal (up to the factor L).

Armed with these four lemmas, we can now turn to the proof of Proposition 9.3.3.

Proof of Proposition 9.3.3. First, for any q-local observable A = Aq ⊗ IL−q, we conclude from
Lemma 9.3.6 and Lemma 9.3.7 that

max
α,β

max
k
∣⟨E(k)α ∣A∣E

(k)
β ⟩ − δαβ

TrL(ΠkAΠk)

TrLΠk
∣ ≺

1
2min(L−q,L/2) . (9.3.7)

For the element ⟨E(k)α ∣A∣E
(k′)
β ⟩ with k ≠ k′, i.e. in off-diagonal blocks, ∣∗⟩E(k)α and ∣∗⟩E(k

′)
β are

normalised Gaussian vectors independent of each other. Therefore standard concentration estimate
shows that

max
k≠k′
∣⟨E(k)α ∣A∣E

(k′)
β ⟩∣ ≺

1
2L/2

. (9.3.8)

Combining (9.3.7) with (9.3.8), we have proven Proposition 9.3.3.

9.3.1 Dimensions of momentum sectors: Proof of Lemma 9.3.4

In this section we prove Lemma 9.3.4, and establish that the sizes of the momentum sectors are
almost equal. To this end, we show that the leading term in the size of each of the momentum
blocks is given by the number of aperiodic elements in the product basis of H.

We present the proof using group theory notation, which is not strictly necessary for the one-
dimensional case under consideration since the translation group of the torus TL is cyclic. Nevertheless,
we do it to allow for a more straightforward generalisation to the d-dimensional case (cf. Lemma 9.A.4).

415



9. Eigenstate thermalization hypothesis for translation invariant spin systems

Proof. We introduce the following objects. Let s denote the canonical product basis of H,

S(L) ∶= {σ ∶ TL → {∣↑⟩ , ∣↓⟩}} , (9.3.9)

and let G be the group of translations of TL generated by T = TL. Note that G is a finite cyclic
group of size ∣G∣ = L. The action of G on S(L) is defined by

(gσ)(x) ∶= σ(g−1
(x)) , x ∈ TL , σ ∈S(L) , g ∈ G . (9.3.10)

In particular, the set S(L) is a disjoint union of sets Sb(L) defined by

Sb(L) ∶= {σ ∈S(L) ∶ ∣Gσ ∣ = b} , b = 1,2, . . . , L ,

where Gσ ⊂ S(L) is the stabilizer of σ under the action (9.3.10). By the orbit-stabilizer theorem,
Sb(L) = ∅ for all b that do not divide L. Since the group G is cyclic, it has a unique subgroup of
size b for all b∣L, given explicitly by

G
(b) ∶= {TL/b, T 2L/b, . . . , TL} .

Observe that each σ ∈Sb(L) corresponds to a unique map σ̃ on a reduced torus S(L/b) ∶= TLÒ
G(b),

which is defined by
σ̃([x]) ∶= σ(x) , [x] ∈S(L/b) . (9.3.11)

Since σ is stabilised by G(b), the map σ ↦ σ̃ in (9.3.11) is well-defined and injective. In particular,
∣Sb(L)∣ ≤ 2L/b, and hence

2L =∑
b∣L
∣Sb(L)∣ =M(L) + ∑

b∣L,b≥2
∣Sb(L)∣ ≤M(L) +O(L

1/22L/2) , (9.3.12)

where M(L) ∶= ∣S1(L)∣ denotes the number of elements in S(L) with a trivial stabilizer. The last
inequality follows from the fact that L has at most O(L1/2) divisors.

Since M(L) ≤ 2L, we conclude from (9.3.12) that

M(L) = 2L +O(L1/22L/2) . (9.3.13)

For any k ∈ {0, . . . , L − 1}, we can construct an eigenvector of T corresponding to the eigenvalue
e2πik/L by defining

v(σ, k) ∶= Πkσ =
1
L

L−1
∑
j=0

e2πi kj
L T −jσ , σ ∈S1(L) . (9.3.14)

Since the orbit of σ under T consists of L distinct basis elements, the vector v(σ, k) is non-zero.
Furthermore, the vectors v(σ, k) and v(σ′, k) corresponding to σ and σ′ in disjoint orbits are linearly
independent because they share no basis element. Therefore, the dimension of the k-th momentum
space is bounded from below by the number of disjoint orbits in S1(L), that is

TrLΠk ≥
2L

L
+O(L−1/22L/2) , (9.3.15)

where we used inequality (9.3.13) and the fact that all orbits in S1(L) have size L. By means of
(9.3.15), we obtain the following chain of inequalities

TrLΠk = 2L −∑
j≠k

TrLΠj ≤
2L

L
+O(L1/22L/2) , (9.3.16)

which, together with (9.3.15) concludes the proof of Lemma 9.3.4.
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9.3.2 Traces within momentum sectors: Proof of Lemma 9.3.7

In this section, we give a proof of Lemma 9.3.7, which evaluates the difference of the noramalised
trace TrL(ΠkAΠk)/TrLΠk on a momentum sector and the full normalised trace ⟨A⟩ for a q-
local observable A = Aq ⊗ IL−q. We separate A into the tracial part ⟨A⟩I and the traceless part
Å ∶= A − ⟨A⟩I.

Proof of Lemma 9.3.7. Substituting Πk ∶=
1
L ∑

L
j=1 e

2πi kj
L T −jL , we obtain

TrL(ΠkAΠk) = ⟨A⟩TrLΠk +TrL(ΠkÅ)

= ⟨A⟩TrLΠk +
1
L

L−1
∑
j=1

e2πi kj
L TrL(T −jL Å) . (9.3.17)

Then, the task is to evaluate the size of the quantity TrL(T −jL Å).

Lemma 9.3.8. Let A ∶= Aq ⊗ IL−q be a q-local observable with ∥∗∥A ≲ 1. Then, for any j =
1, . . . , L − 1, we have

∣TrL(T −jL A)∣ ≲ 2max(q,gcd(j,L)) , (9.3.18)

where gcd stands for the greatest common divisor.

Combining (9.3.18) with gcd(j,L) ≤ L/2 for j = 1, . . . , L−1 and Lemma 9.3.4 gives the bound (9.3.6).
The optimality of (9.3.6) for q > L/2 + 1 is proven in Lemma 9.3.9 below.

It remains to give the proof of Lemma 9.3.8.

Proof of Lemma 9.3.8. We choose a product basis {∣s1 . . . sL⟩ ∣ sj ∈ { ↑, ↓}} to calculate the trace.
Then, we obtain

∣TrL(T −jL A)∣ = ∣ ∑
s1...sL

⟨s1+j . . . sq+j ∣Aq ∣s1 . . . sq⟩
L

∏
m=q+1

δsmsm+j ∣

≲ ∑
s1...sL

L

∏
m=q+1

δsmsm+j . (9.3.19)

Because of the product ∏Lm=q+1 δsmsm+j of Kronecker deltas, not all of the summation variables
s1, . . . , sL are independent.

To count the number of independent summations in the right-hand side of (9.3.19) and obtain an
upper bound for TrL(T −jL A) with j = 1, . . . , L − 1, we count the number of independent deltas in
the product

G
(L)
q,j ∶=

L

∏
m=q+1

δsmsm+j . (9.3.20)

Here, not all of the delta functions in G(L)q,j are independent in the sense that we may express G(L)q,j

with a fewer number of deltas. For example, we have G(4)1,2 = δs2s4δs3s1δs4s2 = δs3s1δs4s2 .

To obtain an expression of G(L)q,j with the minimal number of deltas, we graphically represent the
product ∏Lm=q+1 δsmsm+j by arranging the sites on a circle and representing the δsmsm+j ’s with a line
connecting the site m and m + j (Figure 9.3.1). A minimal representation of G(L)q,j is obtained by
removing exactly one delta for every occurrence of a loop in the graph of ∏Lm=q+1 δsmsm+j .
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9. Eigenstate thermalization hypothesis for translation invariant spin systems

The graph of ∏Lm=q+1 δsmsm+j can be obtained in two steps: First, in step (i), drawing the graph
of ∏Lm=1 δsmsm+j and second, in step (ii), removing the lines corresponding to the delta functions
δsmsm+j (m = 1, . . . , q), which are depicted with red dashed lines in Figure 9.3.1.

In the first step (i), there are exactly gcd(j,L) loops each starting from the sites 1, . . . , gcd(j,L).
If q > gcd(j,L), there is no loop remaining after the second step (ii). Thus, we obtain a minimal
representation of G(L)q,j as G(L)q,j =∏

L
m=q+1 δsmsm+j . If q ≤ gcd(j,L), the loops starting from the sites

q + 1, . . . , gcd(j,L) remain after the second step (ii), for each of which we remove one delta to
obtain a minimal representation of G(L)q,j as G(L)q,j =∏

L
m=gcd(j,L)+1 δsmsm+j .

In summary, we obtain a minimal representation of G(L)q,j as

G
(L)
q,j =

L

∏
m=max(q,gcd(j,L))+1

δsmsm+j . (9.3.21)

By substituting (9.3.21) into (9.3.19) we obtain

∣TrL(T −jL A)∣ ≲ ∑
s1...sL

L

∏
m=max(q,gcd(j,L))+1

δsmsm+j = 2max(q,gcd(j,L)) .

(a) 1
2

3

4

5

6
7

8

9

10

11

12
(b) 1

2

3

4

5

6
7

8

9

10

11

12

Figure 9.3.1: Graphical representation of the product ∏Lm=q+1 δsm+jsm for (a) L = 12, q = 3, j = 4
and (b) L = 12, q = 5, j = 4. For the first case (a) where q < gcd(j,L), there is a loop 4-8-12-4
remaining after the step (ii), which contains exactly one redundant delta function δs4s8 depicted with
a solid red line. In general, exactly one redundant delta function appears for every occurrence of a
loop in the graph of ∏Lm=q+1 δsm+jsm .

Finally, we prove the optimality of (9.3.6) in the regime q > L/2 + 1.

Lemma 9.3.9. Let Bq ∶= Tq + T −1
q − 22−qIq, where Tq is the (left) translation operator acting only

on the first q spins arranged on the torus Tq. Observe that Bq is Hermitian and traceless. Then, for
q > L/2 + 1, the normalised trace of B ∶= Bq ⊗ IL−q within the k-momentum sector is given by

TrL(ΠkBΠk)

TrLΠk
=

2
2L−q

cos(2πk
L
) +O (

L

2L/2
) . (9.3.22)

This shows that the q-local observable Bq ∶= Tq + T −1
q − 22−qIq saturates the bound (9.3.6) when

q > L/2 + 1. It also shows that the deviation of the normalised trace within a momentum sector,
TrL(ΠkBΠk)/TrLΠk, from ⟨B⟩ = 0, which is of order 2−(L−q), becomes the dominant source of
error in the ETH whenever q > L/2 + 1.
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9.4. Numerical verification of Theorem 9.3.1 for ℓ = O(1)

Proof of Lemma 9.3.9. We first reduce the range of the summation over j in the generally valid
expression (9.3.17) applied to Bq. To do so, we introduce the parity operator PL defined by
PL ∣∗⟩ s1s2 . . . sL ∶= ∣∗⟩ sL . . . s2s1. It satisfies PLTLPL = T −1

L and PLAPL = IL−q ⊗ (PqAqPq) for
any A = Aq ⊗ IL−q. Since Bq is invariant under the parity transformation, we have

TrL(T −jL B) = TrL[T +jL (IL−q ⊗Bq)] = TrL(T −(L−j)L B) ,

Therefore, we can rewrite (9.3.17) with the aid of (9.2.3) as

TrL(ΠkBΠk) =
2
L

⌊L
2 ⌋

∑
j=1

TrL(T −jL B̊) cos(2πkj
L
) +

⎧⎪⎪
⎨
⎪⎪⎩

(−1)k
L TrL(T

−L
2

L B̊) L even
0 L odd .

(9.3.23)

When q > L/2 + 1, we have j < q and cannot skip over the region 1, . . . , j when going along
the lines in the graph of G(L)q,j (recall (9.3.20)). Therefore, each line starting at one of the sites
p ∈ {q + 1, . . . , q + j} passes through a point in {1, . . . , j}. Moreover, the correspondence between
p and the first intersection of the line starting at p with {1, . . . , j} is one-to-one. Therefore, there
exists a permutation τj on 1, . . . , j such that sq+i = sτ(i) for i = 1, . . . , j due to G(L)q,j . With this
permutation τ , we obtain

TrL(T −jL B) = ∑
s1...sL

⟨sq+1 . . . sqsq+1sq+j ∣Bq ∣s1 . . . sq⟩G
(L)
q,j

= ∑
s1...sq

⟨sq+1 . . . sqsτ(1)sτ(j)∣Bq ∣s1 . . . sq⟩

= Trq(τ †
j T
−j
q Bq)

= Trq(τ †
j T
−(j−1)
q ) +Trq(τ †

j T
−(j+1)
q ) − 22−q Trq(τ †

j T
−j
q ) . (9.3.24)

Because τj is a j-local operator (not necessarily self-adjoint) on the q-site chain, we can apply
Lemma 9.3.8 to each term in (9.3.24). Combined with j < q − 1 and gcd(j, q) ≤ j, we obtain

TrL(T −jL B) = δj12q +O(2j) = δj12q +O(2L/2) .

Substituting this result into (9.3.23) and employing TrLΠk =
2L

L +O(L
1/22L/2) from Lemma 9.3.4,

we obtain the result (9.3.22).

9.4 Numerical verification of Theorem 9.3.1 for ℓ = O(1)
In this section, we numerically demonstrate that Theorem 9.3.1 also holds for the non-mean-field
case of ℓ = 2. For that purpose, we adopt the following measure of the ETH used in Refs [539, 540].
For any self-adjoint operator A we define

Λ = Λ(A) ∶= E max
k

max
α

′ ∣⟨E
(k)
α ∣A∣E

(k)
α ⟩ − ⟨A⟩

(mc)
∆ (E

(k)
α )∣

amax − amin
, (9.4.1)

where amax(min) is the maximum (minimum) eigenvalue of A. Here, E denotes the average over
the realisations of the Hamiltonian (9.2.1), and maxα′ denotes the maximum over the eigenstates
∣E
(k)
α ⟩ in the energy shell at the center of the spectrum, i.e. those α for which

∣E(k)α − ⟨H⟩∣ ≤∆ .

The width ∆ of the energy interval is set to be ∆ = 0.4/L such that it satisfies the two physical
requirements mentioned in Remark 9.2.4 for L ≥ 6. With this choice of ∆, the microcanonical energy
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9. Eigenstate thermalization hypothesis for translation invariant spin systems

shell H⟨H⟩,∆ defined by (9.4.1) typically contains more than 10 states, while the density of states
does not change too much within H⟨H⟩,∆.

As the observable, we choose A = Bq ⊗ IL−q with Bq ∶= Tq + T
−1
q − 22−qIq for q = 2, . . . , L, which

saturates the upper bound in (9.3.6) and thus also saturates that of (9.3.2). With this choice we
have amax − amin ≃ 4 for any L and q. Therefore, the ETH measure Λ is essentially the same as the
diagonal part of the left-hand side of (9.3.2) in Theorem 9.3.1 – except that the maximum over α is
now taken only at the center of the spectrum (and we do not take maximum over all A). This is
because the eigenstate expectation value ⟨E(k)α ∣A∣E

(k)
α ⟩ of a local observable A = Aq ⊗ IL−q with

q ≪ L typically acquires an energy dependence when ℓ≪ L [321], and the number of states becomes
not enough to calculate the microcanonical average near the edges for the computationally accessible
system size. The ETH measure Λ satisfies reasonable thermodynamical properties. It is (i) invariant
under the linear transformation A↦ aA + b, (ii) dimensionless, and (iii) thermodynamically intensive
for additive observables A [539].

Figures 9.4.1(a)-(c) depict the L-dependence of the ETH measure Λ for different values of the
parameter q. In particular, Figure 9.4.1(b) illustrates that, whenever L is approximately equal to q so
that L − q < L/2, the ETH measure Λ decays as ∝ 2−L. The rate of this decay is slower for smaller
values of q, but approaches 2−L as q becomes larger. In Figure 9.4.1(c), we take a closer look at
the L-dependence of Λ for q = 6. The data indicates that for L − q ≪ L/2, Λ decays as ∝ 1.8−L,
whereas for L ≳ 2q, Λ decays as ∝ 1.8−L/2. These numerical observations are in agreement with our
analytical results for the mean-field case in Theorem 9.3.1, which predicts that the exponent of the
exponential decrease of Λ in L should be twice as large in the region L − q ≪ L/2 compared to the
region L/2 ≳ L − q. This fact suggests that the theorem remains qualitatively valid for ℓ = O(1) in
the bulk of the spectrum as long as the energy shell width is appropriately chosen.
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9.A Extension to higher dimensions
In this appendix, we extend our main result, Theorem 9.3.1, to the d-dimensional case.

9.A.1 Multidimensional setup
Let L ∶= (L1, . . . , Ld) be a vector of positive integers and set V ∶= ∏ds=1Ls. We consider a
d-dimensional system with V quantum spins at the vertices of the classical discrete torus

TL ∶=
d

⨉
s=1

Z/LsZ .

As before, on each vertex, the one particle Hilbert space is given by C2 with canonical basis {∣↑⟩ , ∣↑⟩}.
The corresponding V -particle Hilbert space is given by

H ∶=
V

⊗
s=1

C2 with dimension dimH = 2V .

For a vector q = (q1, . . . , qd) ∈ TL, we introduce a rectangular subregion Rq ⊂ TL by

Rq ∶= {x = (x1, . . . , xd) ∈ TL∶1 ≤ xs ≤ qs , s = 1, . . . , d} .
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Figure 9.4.1: (a) System-size dependence of the ETH measure Λ for the observable A = Bq ⊗ IL−q
with Bq ∶= Tq + T −1

q − 22−qIq. Grey curves between colored curves show intermediate values of q, i.e.,
q = 4,8,12. (b) The same data as the panel (a) for q = 2,6,10 and 14 plotted against L − q. When
L ≃ q so that L − q < L/2, Λ decreases as ∝ 2−L. (c) The same data as the panel (a) for q = 6.
It decreases as ∝ 1.8−L when L − q ≪ L/2. When L/2 ≳ L − q, the decrease in Λ becomes slower
and follows a different exponential decay with a base of 1.8−1/2, instead of 1.8−1. Aside from the
value of the base, this behavior is consistent with (9.3.2), which predicts that the exponent of the
exponential decrease of Λ in L should be twice as large in the region L − q ≪ L/2 compared to the
region L/2 ≳ L − q. The standard errors are smaller than the size of the data points. The number of
samples lies between 1000 and 10000 for each datum.

A self-adjoint operator of the form A = Aq ⊗ ITL∖Rq is called a q-local observable, where Aq is
self-adjoint and acts on the Hilbert space of the spins in Rq, and ITL∖Rq is the identity on TL ∖Rq.

Finally, let Ts be the (left) translation operator along the s-th coordinate acting on TL. For a vector
j ∶= (j1, . . . , jd) ∈ TL, we introduce T j ∶=∏

d
s=1 T

js
s .

The d-dimensional version of our model in Definition 9.2.1 is given as follows.

Definition 9.A.1. Set the vector ℓ ∶= (ℓ1, . . . , ℓd) ∈ TL that determines the interaction range in each
coordinate direction. We define the ensemble of Hamiltonians with local interactions as

H
(ℓ)
L ∶= ∑

j∈TL

T −j
(hℓ ⊗ ITL∖Rℓ

)T j with hℓ ∶=
3
∑

p1,...,pℓ=0
Jp1,...,pℓ

σ
(p1)
1 . . . σ

(pℓ)
ℓ (9.A.1)

where the symbols 1, 2, . . . , ℓ label the elements of Rℓ in an arbitrary order. As in (9.2.1), σ(p) for
p ∈ {0,1,2,3} are the Pauli matrices (9.2.2).

The 4∣Rℓ∣ coefficients Jp1,...,pℓ
are i.i.d. real Gaussian random variables with zero mean, EJp1,...,pℓ

= 0,
and variance v2

ℓ ∶= E∣Jp1,...,pℓ
∣
2.
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9. Eigenstate thermalization hypothesis for translation invariant spin systems

We have the following multidimensional analog of Lemma 9.2.2,

Lemma 9.A.2. Let
Πk ∶=

1
V
∑

j∈TL

e2πi∑d
s=1

ksjs
Ls T −j for k ∈ TL

be the projection operator onto the k-momentum space, i.e. TsΠk = e
2πi ks

Ls Πk for all s = 1, . . . , d.
Then we have

H
(ℓ)
L = V ∑

k∈TL

Πk(hℓ ⊗ ITL∖Rℓ
)Πk .

Proof. This follows by Lemma 9.2.2 coordinatewise.

Denoting by ∣E(k)α ⟩ the normalised eigenvector of H(ℓ)L belonging to an eigenvalue Eα and the
k-momentum sector, i.e. H(ℓ)L ∣E

(k)
α ⟩ = Eα ∣∗⟩E

(k)
α and Πk ∣∗⟩E

(k)
α = ∣∗⟩E

(k)
α , the definition of the

microcanocical average is completely analogous to Definition 9.2.3.

Moreover, whenever we use the notation ≺ for stochastic domination (Definition 9.2.5), it is always
understood with N ∶= 2V .

9.A.2 Multidimensional version of the main result

The d-dimensional version of Theorem 9.3.1 is then given as follows.

Theorem 9.A.3 (ETH in d-dimensional translation-invariant systems). Let ℓ = L and consider the
the Hamiltonian H

(L)
L from (9.A.1) with eigenvalues E(k)α and normalised eigenvectors ∣∗⟩E(k)α .

Then, for every ∆ > 0 and bounded q-local observable A = Aq ⊗ ITL∖Rq with qs ≤ Ls/2 for all
s = 1, . . . , d, it holds that

max
α,β

max
k,k′
∣⟨E(k)α ∣A∣E

(qk′
β )⟩ − δαβδk,k′⟨A⟩

(mc)
∆ (E(k)α )∣ ≺

1
2V /2

. (9.A.2)

That is, the ETH holds with optimal speed of convergence.

The principal strategy for proving Theorem 9.A.3 is exactly the same as for Theorem 9.3.1, which has
been outlined right below Proposition 9.3.3. We shall hence only discuss the differences compared to
the proof in Section 9.3, which consist solely of Step 1 (generalizing Lemma 9.3.4, cf. Lemma 9.A.4)
and Step 4 (generalizing Lemma 9.3.7, cf. Lemma 9.A.4).

Lemma 9.A.4 (Step 1: Dimensions of momentum sectors). The dimension TrL Πk of the k-
momentum sectors for k ∈ TL is almost equal to each other in the sense that we have

TrL Πk =
2V

V
+O(2V /2+(log2 V )2) .

Proof. Let S = S(L) denote the canonical product basis of H, as in (9.3.9), and let G be the
commutative group generated by the translation operators {Ts}ds=1. The action of G on S is defined
by (9.3.10).

In general, the group G is not cyclic, hence the subgroups of G are not uniquely determined by their
size. However, S can be decomposed into a disjoint union of sets SK =SK(L) defined by

SK ∶= {σ ∈S ∶ Gσ = K} ,
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where Gσ ⊂ G is the stabilizer of σ under the action (9.3.10), and K ≤ G is a subgroup of G. Similarly
to (9.3.11), for any subgroup K of G, we define the map

φK ∶SK → (
TLÒK → {↑, ↓}) , (φK(σ))([x]) ∶= σ(x) , [x] ∈ TLÒK ,

which is easily seen to be an injection and hence and injection, ∣SK∣ ≤ 2V /∣K∣. Therefore, denoting
the number of elements in S with a trivial stabilizer by M(L), we obtain

2V = ∑
K≤G
∣SK∣ =M(L) + ∑

K≤G,∣K∣≥2
∣SK∣ ≤M(L) + s(G)2V /2 ,

where s(G) denotes the number of subgroups of G. Combining this with the following well-known
bound1

s(G) ≤ ∣G∣log2∣G∣ (9.A.3)

and the trivial estimate M(L) ≤ 2V , we conclude that

M(L) = 2V +O(2V /2+(log2 V )2). (9.A.4)

The construction of a linearly independent vectors with a fixed momentum k ∈ TL for each disjoint
orbit with a trivial stabilizer is analogous to (9.3.14). Using estimates analogous to (9.3.15) and
(9.3.16) together with (9.A.4) concludes the proof of Lemma 9.A.4.

Finally, we discuss the generalisation of Step 4, i.e. Lemma 9.3.7.

Lemma 9.A.5 (Step 4: Traces within momentum sectors). Let A = Aq ⊗ ITL∖Rq be a bounded
q-local observable with qs ≤ Ls/2 for all s = 1, . . . , d. Then it holds that

max
k
∣
TrL(ΠkAΠk)

TrL Πk
− ⟨A⟩∣ ≤ O (

V

2V /2
) . (9.A.5)

Proof. Substituting Πk ∶=
1
V ∑j∈TL

e2πi∑d
s=1

ksjs
Ls T −j for k ∈ TL, we obtain

TrL(ΠkAΠk) = ⟨A⟩TrL Πk +
1
V

∑
j∈TL∖{0}

e2πi∑d
s=1

ksjs
Ls TrL(T

−jÅ) .

Then, the task is to evaluate the size of the quantity TrL(T
−jÅ).

Lemma 9.A.6. Let A ∶= Aq ⊗ ITL∖Rq be a q-local observable with qs ≤ Ls/2 for all s = 1, . . . , d and
∥A∥ ≲ 1. Then, for any j ∈ TL ∖ {0}, we have that

∣TrL(T
−jA)∣ ≲ 2V /2 . (9.A.6)

Combining (9.A.6) with Lemma 9.A.4 gives the bound (9.A.5).

It remains to prove Lemma 9.A.6.
1More precisely, in order to see that (9.A.3) holds, observe that for any subgroup K of G and any g ∈ G/K, the size

of the subgroup generated by K and g is at least 2∣K∣. Therefore, any subgroup K is generated by at most log2∣G∣

elements, hence the set of all subgroups of G can be injectively mapped to Glog2 ∣G∣.
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9. Eigenstate thermalization hypothesis for translation invariant spin systems

Proof of Lemma 9.A.6. The d = 1 case is proven in Lemma 9.3.8. Thus, we assume d ≥ 2 in the
following. We choose an orthonormal basis of the Hilbert space on TL as {∣s⟩ ∣ s∶TL → {↑, ↓}} to
calculate the trace. Then, similarly to (9.3.19), we obtain

∣TrL(T
−jA)∣ ≲ ∑

s∶TL→{↑,↓}
∏

x∈TL∖Rq

δs(x),s(x+j) . (9.A.7)

Next, analogously to (9.3.20), we count the number of independent summations on the right-hand
side of (9.A.7). To do so, we consider a graph GL,q,j = (V,E), whose vertices and edges are given
by V ∶= TL and E ∶= {(x,x + j)∶x ∈ TL ∖Rq}, respectively. Exactly one redundant delta function
appears in the product ∏x∈TL∖Rq

δs(x),s(x+j) for every occurrence of a loop in GL,q,j . Thus, by
denoting the number of loops in GL,q,j by N(L,q, j), we obtain

∣TrL(T
−jÅ)∣ ≲ 2∣Rq ∣+N(L,q,j) . (9.A.8)

As in the one-dimensional case, Lemma 9.3.8, the graph GL,q,j is obtained from GL,0,j by removing
the edge (x,x + j) for all x ∈Rq. Therefore, we have N(L,q, j) ≤ N(L,0, j) for all q. Now, the
number of loops in GL,0,j can be counted by considering the orbits of the cyclic group ⟨T j⟩ on TL.
It is clear that the size of each orbit is equal to one another. Denoting it by g(j), the number of
loops in GL,0,j is given by

N(L,0, j) = V

g(j)
.

Note that, since j ≠ 0 by assumption, we have g(j) ≥ 2.

If g(j) ≥ 4, the bound (9.A.6) is already proven because

∣TrL(T
−jÅ)∣ ≲ 2∣Rq ∣+N(L,q,j) ≤ 2

V
4 +

V
4 = 2

V
2 ,

where we used ∣Rq ∣ ≤ V /2d and d ≥ 2 by assumption.

If g(j) = 2 or g(j) = 3, we must have g(j)js ≡ 0 (mod Ls) for all s. Using again that j ≠ 0, there
exists a non-zero component jt. For such a coordinate direction t ∈ {1, ..., d}, we must have g(j) ∣ Lt
because g(j) ∈ {2,3} is prime. We hence have a decomposition

TL = At ⊔ T
j
At ⊔ T

2j
AtAt ∶= {x ∈ TL∶1 ≤ xt ≤

Lt
g(j)

} .

Every loop in GL,0,j can be considered to start from a site in At. Therefore, removing the edge
(x,x + j) for all x ∈ Rq from GL,0,j decreases the number of loops at least by ∣Rq ∩At∣, which
implies

N(L,q, j) ≤ N(L,0, j) − ∣Rq ∩At∣.

Thus, from (9.A.8), we obtain

∣TrL(T
−jÅ)∣ ≲ 2∣Rq ∣−∣Rq∩At∣+N(L,0,j) = 2∣Rq∖At∣+N(L,0,j) .

Finally, we have

∣Rq ∖At∣ +N(L,0, j) ≤ (
Lt
2
−

Lt
g(j)

) ∏
s(≠t)

Ls
2
+

V

g(j)
=
V

2d
(1 − 2

g(j)
) +

V

g(j)
≤
V

2
,

which completes the proof of Lemma 9.A.6.
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BCS Theory





Chapter10
The BCS critical temperature at high

density

This chapter contains the paper [333]:

J. Henheik. The BCS Critical Temperature at High Density. Math. Phys. Anal. Geom., 25(1), 2022

Abstract. We investigate the BCS critical temperature Tc in the high–density limit and derive an
asymptotic formula, which strongly depends on the behavior of the interaction potential V on the
Fermi–surface. Our results include a rigorous confirmation for the behavior of Tc at high densities
proposed by Langmann, Triola, and Balatsky (Phys. Rev. Lett. 122, 2019) and identify precise
conditions under which superconducting domes arise in BCS theory.
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10.1 Introduction
The Bardeen–Cooper–Schrieffer (BCS) gap equation [48]

∆(p) = − 1
(2π)3/2 ∫R3

V̂ (p − q)
∆(q)
E∆,µ(q)

tanh(
E∆,µ(q)

2T
)dq , (10.1.1)
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10. The BCS critical temperature at high density

with dispersion relation E∆,µ(p) =
√
(p2 − µ)2 + ∣∆(p)∣2, has played an important role in physics

since its introduction. The function ∆ is interpreted as the order parameter describing paired
fermions (Cooper pairs) interacting via the local pair potential 2V , which we assume to be integrable,
i.e. V ∈ L1(R3). In this case, V̂ (p) = (2π)−3/2

∫R3 V (x)e−ip⋅xdx denotes its Fourier transform. The
positive parameters T and µ are the temperature and the chemical potential, respectively, where
the latter controls the density of fermions. Whenever the temperature T is below a certain critical
temperature Tc (see Definition 10.2.1), the gap equation (10.1.1) admits non-trivial solutions, above
it does not. Physically, this corresponds to the the system being in a superconducting state (T < Tc)
or a normal state (T ≥ Tc).

BCS theory has previously been studied in the weak–coupling limit [312, 269] and low–density limit
[311, 403]. In the weak–coupling limit one considers a potential λV for a fixed potential V for
small coupling constant λ → 0. In this limit, it was shown by Hainzl and Seiringer [312] that the
critical temperature satisfies Tc ∼ A exp(−B/λ) for explicit constants A,B > 0. In the low–density
limit, µ→ 0, it is shown, again by Hainzl and Seiringer [311], that Tc ∼ µA exp(−B/√µ) for some
(different) explicit constants A,B > 0 (see Equation (10.2.8)).

In this paper we are interested in the critical temperature for the existence of non-trivial solutions
of the BCS gap equation (10.1.1) in the high–density limit, i.e. µ → ∞. Studying the high–
density limit of the critical temperature is especially relevant for explaining superconducting domes
[376, 194, 522, 444, 593, 137], i.e. a non-monotonic Tc(µ) exhibiting a maximum value at finite
µ and going to zero for large µ. In a recent paper [400], the authors claim the ubiquity of
superconducting domes in BCS theory, but only for pure s–wave superconductivity (i.e. angular
momentum ℓ = 0, see Remark 10.2.3). Their result disproves the conventional wisdom, that the
presence of a superconducting dome necessarily indicates some kind of exotic superconductivity,
e.g. resulting from competing orders. BCS theory containing a non–monotonic behavior of Tc(µ)
is in particular relevant for understanding superconducting domes in doped band insulators [593]
and magic–angle graphene [137], where no competing orders occur, and thus a more conventional
explanation is desirable.

There is a simple physical picture arising from an interplay of length scales, that explains the ubiquitous
appearance of superconducting domes (see [400]). If the effective range ξ of the interaction is
much smaller than the mean interparticle distance µ−1/2, i.e. ξ ≪ µ−1/2, the critical temperature
Tc increases by increasing µ as predicted by standard BCS theory [48] and rigorously justified in
[311]. At high densities, i.e. if ξ ≫ µ−1/2, the pairing of electrons near the Fermi surface (with
approximately opposite momenta), which is responsible for the superconducting behavior, becomes
weaker with increasing µ due to the decay of the interaction in Fourier space, suppressing Tc towards
zero. Therefore, at some intermediate density, where ξ ∼ µ−1/2, a superconducting dome arises.
This simple argument is reflected in our results by the presence of the operator Vµ, defined in
Equation (10.2.1), acting on functions on the (rescaled) Fermi surface.

Our results in Section 10.2 are threefold: first, we confirm a proposed asymptotic formula from
[400] for the critical temperature at high densities for s–wave superconductivity (to leading order)
by proving a more general result for radially symmetric interaction potentials V (Theorem 10.2.2);
second, we provide a counterexample, showing that the assumptions on V from [400] are not
quite sufficient to conclude a non–monotonic behavior of Tc and need to be slightly strengthened
(Proposition 10.2.4); third, we use these strengthened assumptions to improve the asymptotics
obtained in Theorem 10.2.2 to second order with the aid of perturbation theory, and obtain an
analogous formula to the ones proven in the weak–coupling and low–density limit (Theorem 10.2.7).
All proofs are given in Section 10.3.
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10.2 Main Results

10.2.1 Preliminaries

It was proven in [309] (see also [316] for a more recent review) that the critical temperature for the
existence of non–trivial solutions of the BCS gap equation (10.1.1) can be characterized as follows.

Definition 10.2.1. (Critical Temperature)
Let µ > 0, V ∈ L3/2(R3) be real–valued and KT,µ denote the multiplication operator in momentum
space

KT,µ(p) =
∣p2 − µ∣

tanh ( ∣p
2−µ∣
2T )

.

The critical temperature for the BCS gap equation (10.1.1) is given by

Tc = inf {T > 0 ∣KT,µ(p) + V (x) ≥ 0} .

One might think of the operator KT,µ(p) + V (x) as the Hessian in the BCS functional of super-
conductivity at a normal state (see [316]), where the positivity corresponds to the “stability" of
this normal state, which is directly related to the existence of a non–trivial solution of the BCS
gap equation (10.1.1). Note that the continuous spectrum of KT,µ starts at 2T and thus Tc is well
defined by Sobolev’s inequality [418, Thm. 8.3] since KT,µ ∼ p

2 for large ∣p∣.

Moreover, note that KT,µ takes its minimum value 2T on the codim−1 submanifold {p2 = µ}.
Thus, similarly to the weak coupling situation [269] and as pointed out by Laptev, Safronov, and
Weidl [401] (see also [314]), the spectrum of KT,µ + V is mainly determined by the behavior of
V near {p2 = µ}, i.e. the Fermi sphere. More precisely, as emphasized in the introduction, a
crucial role for the investigation of Tc in the high–density limit is played by the (rescaled) operator
Vµ ∶ L

2(S2)→ L2(S2) where

(Vµu) (p) =
1

(2π)3/2 ∫S2
V̂ (
√
µ(p − q))u(q)dω(q) . (10.2.1)

Here dω denotes the uniform (Lebesgue) measure on the unit sphere S2. The pointwise evaluation of
V̂ (and thus also on a codim−1 submanifold) is well defined since V̂ is continuous for V ∈ L1(R3).
See Remark 10.2.9 for a discussion of the assumption V ∈ L1(R3) (cf. also [186]). The lowest
eigenvalue of Vµ, which we denote by

eµ = inf specVµ

will be of particular importance. Note, that Vµ is a compact operator (so eµ ≤ 0), which is in fact
trace class (see the argument above Equation (3.2) in [269]) with

tr(Vµ) =
1

2π2 ∫R3
V (x)dx .
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10. The BCS critical temperature at high density

The case eµ < 0 will be important for our main results as it corresponds to an attractive interaction
between (some) electrons on the Fermi sphere. Since Vµ is trace class, a sufficient condition for
eµ < 0 is that the trace of Vµ is negative, i.e. ∫ V < 0. Moreover, by considering a trial function that
is concentrated on two small sets on the rescaled Fermi sphere S2 separated by a distance ∣p∣ < 2,
one can easily see that eµ < 0 if ∣V̂ (p)∣ > V̂ (0) for some ∣p∣ < 2√µ.

In this work, we restrict ourselves to the special case of radial potentials V depending only on ∣x∣,
where the spectrum of Vµ can be determined more explicitly (see, e.g., Section 2.1 in [269]). Indeed,
if V is radially symmetric, the eigenfunctions of Vµ are spherical harmonics and the corresponding
eigenvalues are

1
2π2 ∫R3

V (x) (jℓ(
√
µ∣x∣))2 dx , (10.2.2)

with ℓ ∈ N0 and where jℓ denotes the ℓth–order spherical Bessel function. A few important
properties of the spherical Bessel functions used in our proofs are collected in Proposition 10.3.7. By
Equation (10.2.2), the lowest eigenvalue eµ is thus given by

eµ =
1

2π2 inf
ℓ∈N0
∫

R3
V (x) (jℓ(

√
µ∣x∣))2 dx .

If additionally V̂ ≤ 0, the minimal eigenvalue is attained for the constant eigenfunction (i.e. the
spherical harmonic with ℓ = 0) by the Perron–Frobenius Theorem and we thus have the more concrete
expression

eµ =
1

2π2 ∫R3
V (x)(

sin(√µ∣x∣)
√
µ∣x∣

)

2
dx . (10.2.3)

We refer to Remark 10.2.8 for a discussion of the radiality assumption on V .

10.2.2 Results

As desribed in the introduction, our results are threefold: First, we show an asymptotic formula for
radial potentials V (Theorem 10.2.2), including the rigorous confirmation of the result from [400]
to leading order. Afterwards, we provide a counterexample showing that the assumptions made in
[400] are not quite sufficient to conclude a non–monotonic behavior of Tc, i.e. a superconducting
dome (Proposition 10.2.4). Finally, by slightly strengthening the assumptions on V , we provide an
asymptotic formula for the critical temperature valid to second order (Theorem 10.2.7). All proofs
are given in Section 10.3.

Theorem 10.2.2. Let V ∈ L1(R3) ∩L3/2(R3) be real–valued and radially symmetric. Assume that
there exists µ0 > 0 such that for all µ ≥ µ0 we have eµ < 0. Then Tc(µ) > 0 for all sufficiently large µ
and

lim
µ→∞

√
µeµ log µ

Tc
= −1 . (10.2.4)

Or in other words, we have the asymptotic behavior

Tc = µ e(1+o(1))/(
√
µeµ) (10.2.5)

in the limit of large µ. Note, that the right hand side is the same formula as in the weak–coupling
case [269, 312] but we have coupling parameter λ = 1.

Remark 10.2.3. (Connection to the result from [400])
Assume that V ∈ L1(R3) ∩ L3/2(R3) is real–valued, radially symmetric and additionally satisfies
V̂ ≤ 0 and V̂ (0) < 0 (the latter implies that eµ < 0 for all µ > 0). Note that these conditions,
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which are identical to the ones required in [400], are included in the more general conditions of
Theorem 10.2.2. Then we have, using the notation from [400], that

√
µeµ =

√
µ

2π2 ∫R3
V (x)

sin2(
√
µ∣x∣)

µ∣x∣2
dx = 1

4π2
f−2V (4µ)

4√µ
=∶ −λ ,

where the first equality follows by Equation (10.2.3) and after inserting the definition of the
function f−2V from [400], the second equality is a simple computation using Fubini. By means of
Theorem 10.2.2, we thus confirmed the validity of Equation (6) in [400] in the high–density limit to
leading order, i.e.

Tc = µ e−(1+o(1))/λ .

In full generality, the asymptotic formula proposed in Equation (6) in [400] reads

Tc =
2eγ

π
µ exp(− 1

λ
+
∞
∑
n=0

anλ
n
) ,

where γ ≈ 0.577 denotes the Euler–Mascheroni constant and (an)n≥0 is a sequence of explicit
constants determined by an iterative procedure. The quantity λ is understood as an intrinsic small
parameter which encodes either a weak–coupling, low–density, or high–density limit, or an appropriate
combination.

In order to obtain a meaningful asymptotic formula of the critical temperature at high densities in
a rigorous way, the question to be addressed now is the behavior of √µeµ in the limit µ →∞. In
the following proposition we present a special family of interaction potentials (Vα) showing that
the conditions of Theorem 10.2.2 (which include the more restricted conditions from [400]) not
necessarily lead to a non–monotonic behavior of Tc as claimed in [400], since ∣√µeµ∣ ≫ log(µ)−1

in the limit of large µ for this family of potentials. More precisely, the L3/2(R3)–condition, which
essentially concerns the behavior of the interaction potential near the origin, is not quite sufficient
to obtain a dome–shaped behavior of Tc(µ). Since the potentials (Vα) are perfectly well behaved
away from the origin and decay rapidly at infinity, they illustrate the significance of the behavior of
interaction potentials near the origin for the asymptotics of the critical temperature. It is natural
that the critical temperature is sensitive to the short range behavior of the interaction potential,
since the interparticle distance as the physically relevant length scale that depends on the particle
density tends to zero in the high–density limit.

Proposition 10.2.4. Let α ∈ (1/3,1/2) and set

Vα(x) = −
exp(−∣x∣)

∣x∣2 (log2(∣x∣) + 1)α
.

Then the critical temperature Tc associated with KT,µ + Vα approaches infinity as µ→∞.

Our observations from Proposition 10.2.4 lead to the following definition of “admissible potentials",
that are slightly better behaved at the origin and, in particular, allow for an analysis of eµ (and also
all the other eigenvalues of Vµ) by requiring certain definiteness conditions of V (cf. Lemma 10.3.3
and Lemma 10.3.4).

Definition 10.2.5. (Admissible potentials) Let V ∈ L1(R3) ∩L3/2(R3) be a real–valued radial
function and define

s∗± ∶= sup{s ≥ 0 ∶ ∣ ⋅ ∣−sV± ∈ L1
(R3
)} s∗ ∶=min(s∗+, s∗−) , (10.2.6)

where V± =max{±V, 0} are the positive and negative parts of V . We call V an admissible potential
if the following is satisfied:
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10. The BCS critical temperature at high density

(a) There exists a > 0 such that

sup{r ≥ 0 ∶ lim
ε→0

1
εr
∫
Bε

V±(x)dx = 0} = sup{r ≥ 0 ∶ lim
ε→0

1
εr
∫
Bε

V±∣
∗
Ba
(x)dx = 0} ,

where V±∣∗Ba
denotes the symmetric decreasing rearrangement of V±∣Ba , the restriction of V±

to the ball of radius a around 0,

(b) if ∣ ⋅ ∣−2V ∉ L1(R2), we have s∗ = s∗− < s∗+, if ∣ ⋅ ∣−2V ∈ L1(R2), we have ∫R3
V (x)
∣x∣2 dx < 0,

(c) s∗ > 1, and

(d) if s∗ ≥ 53/27, we have V ∈ Lp(R3) for some p > 5/3.

Condition (d) can be dropped, whenever we have control on the ground state space of Vµ in the
following sense: There exists µ0 > 0 and L ⊂ N0 with ∣L∣ <∞, such that for all µ ≥ µ0, the ground
state space of Vµ is contained in the subspace of L2(S2) spanned by the spherical harmonics with
angular momentum ℓ ∈ L.

In a nutshell, an admissible potential is a radial potential V ∈ L1(R3) ∩L3/2(R3), which satisfies
the following:

(i) There exists some a > 0 such that both, positive and negative part, have their strongest
singularity in Ba at the origin.

(ii) It has a dominating attractive part (for short distances), i.e. s∗−< s∗+ resp. ∫R3
V (x)
∣x∣2 dx < 0.

(iii) It is slightly less divergent at the origin than allowed by the L3/2(R3)-assumption, i.e. s∗ > 1.

The most relevant examples for admissible potentials are the attractive Yukawa and Gaussian potential,
i.e.

VYukawa(x) = −
1

4π∣x∣
e−∣x∣ and VGauss(x) = −(2π)−3/2e−∣x∣

2/2 .

Remark 10.2.6. (On condition (d) for admissible potentials)
The additional Lp(R3)-assumption with p > 5/3 for s∗ ≥ 53/27 in condition (d) is due to technical
reasons and will we be explained during the proof of Theorem 10.2.7, which is formulated below.
Note that, since s∗ ≥ 53/27 and V ∈ L1(R3), this condition is essentially about regularity away from
0 and infinity. However, our proof would work without change if we only had p > f(s∗), where f has
some complicated (explicit) expression (see Lemma 10.3.3 and Equation (10.3.13)) and is strictly
monotonically increasing between 53/27 and 2, and satisfies f(53/27) = 3/2 and f(s∗) = 5/3 for
all s∗ ≥ 2. We do not state Theorem 10.2.7 with this slight generalization for simplicity. Whenever
we have some control on the ground state space of Vµ, the Lp(R3)-assumption is not necessary.
For example, in the special case V̂ ≤ 0, one can choose L = {0} by means of Equation (10.2.3) and
completely drop condition (d).

We will show in Lemma 10.3.4 that for any admissible potential eµ < 0 for µ large enough. Moreover,
for any radial potential V ∈ L1(R3) ∩L3/2(R3) with eµ < 0 and s∗ > 1 (in particular any admissible
potential), by application of Theorem 10.2.2, the critical temperature decays exponentially fast as
µ→∞ since

∣
√
µeµ∣ ≤

1
2π2 ∥

V

∣ ⋅ ∣s
∥
L1

sup
ℓ∈N0

∥∣ ⋅ ∣
s/2jℓ∥

2

L∞
µ

1−s
2 (10.2.7)

for s ∈ (1, s∗) and the term involving jℓ is finite as long as s ≤ 5/3 by uniform decay of spherical
Bessel functions (see Proposition 10.3.7 (iii)). A slightly different bound as given in Lemma 10.3.3
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allows to improve this threshold. Note that the class of interaction potentials from Proposition 10.2.4
is not admissible since s∗ = 1 for these potentials.

The existence of a maximal critical temperature at some intermediate density (superconducting dome),
can now be obtained by combining the decay of Tc in the high–density limit from Equation (10.2.5)
and Equation (10.2.7) for admissible potentials in the sense of Definition 10.2.5 to the decay of Tc
in the low–density limit, where

Tc = µ(
8
π

eγ−2
+ o(1)) eπ/(2

√
µa) (10.2.8)

as shown in [312]. This result was obtained for (not necessarily radially symmetric) real valued
interaction potentials V , with V (x)(1 + ∣x∣) ∈ L1(R3) ∩ L3/2(R3), negative scattering length a,
and in the absence of bound states. Thus, we rigorously confirmed the ubiquity of superconducting
domes in BCS theory for a general class of interaction potentials, as claimed in [400].

As our next result, we shall derive the second order correction to Equation (10.2.5), i.e. we shall
compute the constant in front of the exponential for admissible potentials. For this purpose we
define the operator W(κ)µ on u ∈ L2(S2) via its quadratic form

⟨u∣W(κ)µ ∣u⟩ =
√
µ∫

∞

0
d∣p∣ ( ∣p∣2

∣∣p∣2 − 1∣
[∫

S2
dω(p) (∣φ̂(√µp)∣2 − ∣φ̂(√µp/∣p∣)∣2)]

+
∣p∣2

∣p∣2 + κ2 ∫S2
dω(p)∣φ̂(√µp/∣p∣)∣2) (10.2.9)

for fixed κ ≥ 0 (cf. Equation (13) in [311] for an analogous definition in the weak coupling case with
κ = 0). Here, we denote φ̂(p) = (2π)−3/2

∫S2 V̂ (p −
√
µq)u(q)dω(q), and (∣p∣, ω(p)) ∈ (0,∞) × S2

are spherical coordinates for p ∈ R3. Since V ∈ L1(R3), the map ∣p∣↦ ∫S2 dω(p)∣φ̂(p)∣2 is Lipschitz
continuous for any u ∈ L2(S2), such that the radial integral in Equation (10.2.9) is well defined
even in the vicinity of ∣p∣ ∼ 1. For large ∣p∣ the integral converges since V ∈ L3/2(R3). Although
we formulate our result in Theorem 10.2.7 only for κ = 0, the case of a positive parameter κ > 0 is
crucial in the proof of this statement, as it ensures, e.g., that the first term in the decomposition of
the Birman–Schwinger operator associated with KT,µ +V is small (cf. Equation (10.3.2)). Whenever
it does not lead to confusion, we refer to some κ–dependent quantity at κ = 0 by simply dropping
the (κ)–superscript.

Now, we define the operator
B
(κ)
µ =

π

2
(Vµ −W

(κ)
µ ) , (10.2.10)

which measures the strength of the interaction potential near the Fermi surface up to second order
and let b(κ)µ denote its lowest eigenvalue,

b(κ)µ = inf specB(κ)µ . (10.2.11)

We introduced the factor π/2 in Equation (10.2.10) since bµ = b(0)µ has the interpretation of an
effective scattering length, which is best illustrated in the case of small µ (see Proposition 1 in [311]).
Moreover, we will see in the proof of Theorem 10.2.7 that if eµ < 0 then also b

(κ)
µ < 0 for large

enough µ. With the aid of b(κ)µ we can now state our second main result concerning the asymptotic
formula for the critical temperature valid up to second order.

Theorem 10.2.7. Let V be an admissible potential. Then the critical temperature Tc is positive
and satisfies

lim
µ→∞
(log µ

Tc
+

π

2√µbµ
) = 2 − γ − log(8/π) .
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10. The BCS critical temperature at high density

In other words,
Tc = µ(

8
π

eγ−2
+ o(1)) eπ/(2

√
µbµ)

in the limit µ → ∞. Similarly to Theorem 10.2.2, this formula is in complete analogy to the
weak–coupling case [312] (replace V → λV and take the limit λ→ 0) but we have coupling parameter
λ = 1 here. As discussed in the introduction, this analogy is not entirely surprising. In physical
terms, only those fermions with momenta close to the Fermi surface {p2 = µ} contribute to the
superconductivity. Therefore, due to the decay of the interaction V̂ in Fourier space, the high–density
limit, µ→∞, is effectively a weak–coupling limit.

The constant in front of the exponential is in particular relevant for obtaining the universality of
the ratio of the critical temperature and the energy gap, which is achieved in Chapter 11, where a
similar asymptotic formula for the energy gap is proven.

Remark 10.2.8. (Radiality)
The assumption of the interaction potential being radially symmetric enters the proofs of our main
theorems in a crucial way. On the one hand, the radial symmetry allows an additional averaging
over the sphere S2 in position space in the proof of Theorem 10.2.2, which leads to a “decoupling"
of the position variables x and y (cf. Equation (10.3.6)) as the arguments of integral kernels of
operators that appear after employing the Birman–Schwinger principle [309, 269, 316]. Without
this averaging the supposed error terms in Equation (10.3.2) could not be concluded to be small.
On the other hand, the radial symmetry enables us to obtain useful bounds on the quantity eµ
(cf. Lemma 10.3.2, Lemma 10.3.3, and Lemma 10.3.4), which naturally appears in the obtained
asymptotics in Theorem 10.2.2 and Theorem 10.2.7. Although the assumption of a radial potential
is a loss of generality compared to the weak coupling [269, 312] and low density [311] situation, the
case of an isotropic interactions seems physically the most relevant and natural.

Remark 10.2.9. (Potentials with slow decay at infinity)
The recent work [186] by Cuenin and Merz indicates how to generalize our results to interaction
potentials with slow decay at infinity, i.e. which fail to satisfy V ∈ L1(R3). The main idea is to
employ the Tomas–Stein Theorem to define the Fourier transform of the potential on the codim−1
submanifold S2 ⊂R3 having non–vanishing curvature. Moreover, by using the methods from [291],
where Gontier, Hainzl, and Lewin originally studied a lower bound on the Hartree–Fock energy of
the electron gas, one can see that

Tc ≤ C1 µ exp (−C2 µ
1/4
) (10.2.12)

for any real–valued potential V satisfying ∣ ⋅ ∣V ∈ L∞(R3). A detailed proof of this estimate is given
in Section 10.3. Note that for an admissible potential V that satisfies ∣ ⋅ ∣V ∈ L∞(R3), we have
s∗ ≥ 2 and infer by Equation (10.2.7) that the bound provided by Equation (10.2.12) is not optimal.
Although these results indicate that it is mathematically possible to deal with slow decay at infinity,
it seems physically natural to assume fast decay at infinity, at least in the high–density limit for an
effective interaction potential, when the phenomenon of screening plays an important role.

10.3 Proofs
The most important tool for our proofs will be the Birman–Schwinger principle (see [309, 269, 316]).
According to this principle, Tc is determined by the fact that for T = Tc the smallest eigenvalue of

BT,µ = V
1/2 1
KT,µ

∣V ∣1/2

equals −1. Here, we used the notation V (x)1/2 = sgn(V (x))∣V (x)∣1/2. The main simplification
is that the study of the spectrum of the unbounded operator KT,µ + V reduces to identifying the
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10.3. Proofs

singular part of the compact Birman–Schwinger operator. With this in mind, our proofs will build on
a convenient decomposition of BT,µ in a dominant singular term and other error terms.

Let Fµ ∶ L
1(R3)→ L2(S2) denote the rescaled Fourier transform restricted to S2 with

(Fµψ) (p) =
1

(2π)3/2 ∫R3
e−i√µp⋅xψ(x)dx ,

which is well–defined by the Riemann–Lebesgue Lemma. Since V ∈ L1(R3), the multiplication with
∣V ∣1/2 is a bounded operator from L2(R3) to L1(R3), and hence Fµ∣V ∣

1/2 is a bounded operator
from L2(R3) to L2(S2). A further important ingredient in our proofs is to study the asymptotic
behavior of

m(κ)µ (T ) =
1

4π ∫R3
(

1
KT,µ(p)

−
1

p2 + κ2µ
)dp

for fixed κ > 0, which was done in a similar way for the low–density and weak–coupling limit of the
critical temperature and the energy gap (see [312, 311, 316, 403]). Indeed, using Lemma 1 from
[312] one can easily see that

m(κ)µ (T ) =
√
µ(log µ

T
+ γ − 2 + log 8

π
+ κ

π

2
+ o(1)) (10.3.1)

as long as T /µ→ 0. Using the definitions above, we arrive at our convenient decomposition, which
we define as

BT,µ = V
1/2 1
p2 + κ2µ

∣V ∣1/2 +m(κ)µ (T )V
1/2Fµ

†Fµ∣V ∣
1/2
+A

(κ)
T,µ (10.3.2)

for κ > 0, where A(κ)T,µ is implicitly defined. For the first term to be small, we need that κ > 0. For
the second term, note that

V 1/2Fµ
†Fµ∣V ∣

1/2

is isospectral to Vµ = FµV Fµ
†. In fact, the spectra agree at first except possibly at 0, but 0 is in

both spectra as the operators are compact on an infinite dimensional space.

This second term will be the dominant term, which is how the quantity eµ appears in the asymptotic
formulas in our main theorems, whereas the first and third term are negligible error terms in the
limit µ→∞. Showing this, is the objective of the proofs of Theorem 10.2.2 and Theorem 10.2.7

A priori, it is not clear, how Tc behaves at high densities. Therefore, before we go to the proofs of
Theorem 10.2.2 and Theorem 10.2.7, let us fix the following

Lemma 10.3.1. Tc ≤ O(µ) as µ→∞.

Proof. Since tanh(t) ≤min(1, t) for t ≥ 0, we have

KT,µ + V ≥
1
2
(∣p2
− µ∣ + 2T ) + V

≥
1
2
(p2
+ µ + 2V ) + (T − µ) .

The first term is non–negative for sufficiently large µ by application of Sobolev’s inequality [418,
Thm. 8.3] using V ∈ L3/2(R3). Thus, by Definition 10.2.1, we obtain Tc ≤ µ.

In the proof of Theorem 10.2.2 below, we will in fact show that Tc = o(µ), so Equation (10.3.1)
gives the correct asymptotic behavior.
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10. The BCS critical temperature at high density

10.3.1 Proof of Theorem 10.2.2

Proof of Theorem 10.2.2. Fix κ > 0. As outlined above, the strategy of the proof is to show that the
first and the third term in the decomposition (10.3.2) vanish in operator norm in the high–density
limit and thus the asymptotic behavior is entirely determined by the spectrum of the operator in the
second term. We discuss this in detail now.

For the first term, note that the Fourier transform of 1
p2+κ2µ is given by e−κ

√
µ∣x∣

∣x∣ , up to a constant.
Thus the Hilbert–Schmidt norm ∥ ⋅ ∥HS, which is always an upper bound for the operator norm ∥ ⋅ ∥op,
is given by

∥V 1/2 1
p2 + κ2µ

∣V ∣1/2∥
2

HS
= C ∫

R3
dx∫

R3
dy ∣V (x)∣e

−2κ√µ∣x−y∣

∣x − y∣2
∣V (y)∣ .

This vanishes as µ →∞ by an application of the dominated convergence theorem in combination
with the Hardy–Littlewood–Sobolev inequality [418, Thm. 4.3]. Here and in the following, we shall
use the notation c and C for generic positive small resp. large constants, possible having a different
value in each appearance. If we want to emphasize the dependence on a certain parameter, we add
a subscript, e.g. by writing cδ or Cp,a.

For the third term, we will heavily use the radiality of V . In fact, since V is radially symmetric,
every eigenfunction of KT,µ and thus BT will have definite angular momentum and we can focus on
f, g ∈ L2(R3) of the form f(x) = f(∣x∣)Y m

ℓ (x̂) resp. g(x) = g(∣x∣)Y m′

ℓ′ (x̂), with a slight abuse of
notation, where x̂ = x/∣x∣ denotes the unit vector in direction x. Now we aim to bound ⟨f ∣A(κ)T,µ∣g⟩,
uniformly in (ℓ, ℓ′) (and (m,m′)). As A(κ)T,µ has integral kernel

A
(κ)
T,µ(x, y) = CV

1/2
(x)∣V (y)∣1/2∫

R3
(

1
KT,µ(p)

−
1

p2 + κ2µ
)(eip⋅(x−y)

− ei√µp̂⋅(x−y)
)dp ,

and using the radial symmetry of V we arrive at

⟨f ∣A
(κ)
T,µ∣g⟩ = C ∫

∞

0
d∣x∣ ∣x∣2∫

∞

0
d∣y∣ ∣y∣2f̄(∣x∣)V 1/2

(∣x∣)∣V (∣y∣)∣1/2g(∣y∣) (10.3.3)

× ∫
R3

dp ( 1
KT,µ(p)

−
1

p2 + κ2µ
) (10.3.4)

× ∫
S2

dω(x)∫
S2

dω(y)Y m
ℓ (x̂)Y

m′

ℓ′ (ŷ) (eip⋅(x−y)
− ei√µp̂⋅(x−y)

) . (10.3.5)

Note that the angular integrals of x and y can be performed first only by the radial symmetry of V .
If V were not radially symmetric, we would have had to compute the angular integral of p first and
would have ended up with completely different integrals to estimate. Now, using the plane wave
expansion eip⋅x = 4π∑∞ℓ=0∑ℓm=−ℓ iℓjℓ(∣p∣∣x∣)Y m

ℓ (p̂)Y
m
ℓ (x̂), the last line (10.3.5) evaluates to

16π2
(−i)ℓ+ℓ

′
(jℓ(∣p∣∣x∣)jℓ′(∣p∣∣y∣) − jℓ(

√
µ∣x∣)jℓ′(

√
µ∣y∣))Y

m
ℓ (p̂)Y

m′

ℓ′ (p̂) . (10.3.6)

In order to get a non-zero angular p-integral from the second line (10.3.4), we need to have ℓ = ℓ′
and m =m′, by orthogonality of spherical harmonics. We can hence focus on that case and write
x, y, and p instead of ∣x∣, ∣y∣, and ∣p∣, respectively, such that (10.3.4) and (10.3.5) combine to (a
constant times)

∫

∞

0
dpp2

(
1

KT,µ(p)
−

1
p2 + κ2µ

)(jℓ(px)jℓ(py) − jℓ(
√
µx)jℓ(

√
µy)) . (10.3.7)

After changing the integration variable p → p/
√
µ and inserting ±jℓ(p

√
µx)jℓ(

√
µy), we use the

uniform Lipschitz continuity and the uniform decay of spherical Bessel functions (Proposition 10.3.7
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(ii) and Proposition 10.3.7 (iii)) to obtain

∣(10.3.7)∣ ≤ Cµ1/2
∫

∞

0
dpp2

∣
1

KT /µ,1(p)
−

1
p2 + κ2 ∣ ∣p − 1∣ε ( 1

pε
+ 1)

× (∣jℓ(p
√
µx)∣1−11ε/5

+ ∣jℓ(
√
µx)∣1−11ε/5

)(∣jℓ(p
√
µy)∣1−11ε/5

+ ∣jℓ(
√
µy)∣1−11ε/5

) ,

for any ε ∈ (0,2/11). Using that and by employing Hölder for the integrals over x and y in
Equation (10.3.3), we get

∣⟨f ∣A
(κ)
T,µ∣g⟩∣ ≤ C ∥f∥L2 ∥g∥L2 ∫

∞

0
dp ∣ 1

KT /µ,1(p)
−

1
p2 + κ2 ∣ ∣p − 1∣ε ( 1

pε
+ 1)p2 (10.3.8)

× µ1/2
∫

R3
dx ∣V (x)∣ (∣jℓ(p

√
µ∣x∣)∣2−22ε/5

+ ∣jℓ(
√
µ∣x∣)∣2−22ε/5

) . (10.3.9)

In Lemma 10.3.2 below (as ε < 2/11 we have 2 − 22ε/5 > 6/5), we show that the last line (10.3.9)
can be estimated by

(10.3.9) ≤ (1
p
+ 1) ∣o(1)∣ ,

where o(1) is some function of µ that vanishes as µ→∞. Thus, we arrive at

∣⟨f ∣A
(κ)
T,µ∣g⟩∣ ≤ C ∣o(1)∣ ∥f∥L2 ∥g∥L2 ∫

∞

0
dp ∣ 1

KT /µ,1(p)
−

1
p2 + κ2 ∣ ∣p − 1∣εp1−ε

(1 + p1+ε
) ,

where the integral is uniformly bounded (since κ > 0) as long as T ≤ Cµ and we conclude

lim sup
µ→∞

sup
0<T≤Cµ

∥A
(κ)
T,µ∥op

= 0 ,

since all bounds above are uniform in ℓ. Therefore, as long as Tc = O(µ), the spectrum of the Birman–
Schwinger operator approaches the spectrum of the operator in the second term in Equation (10.3.2)
as µ→∞.

Summarizing our considerations above, we get that, since by assumption eµ < 0 for µ ≥ µ0, Tc > 0 for
all sufficiently large µ. This is because the second term in the decomposition (10.3.2) can be made
arbitrarily negative by taking T → 0, whereas the first and the third term are bounded uniformly in
T ≤ Cµ. Thus we get with the aid of Lemma 10.3.1 that

−1 = lim
µ→∞

m(κ)µ (Tc) eµ .

In order to obtain Equation (10.2.4) by means of Equation (10.3.1), it remains to show that Tc = o(µ).
Since it is already shown in Lemma 10.3.1 that Tc = O(µ), we assume that Tc = Θ(µ), i.e. there
exist 0 < c < C such that cµ ≤ Tc ≤ Cµ. This means that m(κ)µ (Tc) is of order √µ, which leads
to a contradiction since √µeµ = o(1) by Lemma 10.3.2 below. So, Equation (10.3.1) implies
Equation (10.2.4) as desired.

Lemma 10.3.2. Let V ∈ L3/2(R3) and α > 6/5. Then

lim sup
µ→∞

√
µ sup
ℓ∈N0
∫

R3
dx ∣V (x)∣ ∣jℓ(

√
µ∣x∣)∣α = 0 .

Proof. We estimate
√
µ sup
ℓ∈N0
∫

R3
dx ∣V (x)∣ ∣jℓ(

√
µ∣x∣)∣α ≤ C

√
µ∫

R3
dx ∣V (x)∣ 1

(
√
µ∣x∣)

5α/6
+ 1

, (10.3.10)
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where the inequality follows from the uniform decay of spherical Bessel functions (see Proposi-
tion 10.3.7 (iii)). By using Hölder, we can further bound

(10.3.10) ≤ C∥V − ϕ∥L3/2 ∥
1

∣ ⋅ ∣5α/6 + 1
∥
L3
+C
√
µ∫

R3
dx ∣ϕ(x)∣ 1

(
√
µ∣x∣)

5α/6
+ 1

for any ϕ ∈ C∞0 (R3). Since α > 6/5, the second term vanishes as µ→∞ by dominated convergence
using ϕ ∈ C∞0 (R3), and the first term can be made arbitrarily small as C∞0 (R3) is dense in L3/2(R3).
Thus, we have proven the claim.

10.3.2 Proof of Proposition 10.2.4

Proof of Proposition 10.2.4. We check that Vα satisfies the assumptions of Theorem 10.2.2. First,
Vα is radial and clearly satisfies Vα ∈ L1(R3). Vα ∈ L

3/2(R3) follows since α > 1/3. Next, we
calculate the derivative of ∣x∣∣Vα(x)∣ w.r.t. ∣x∣ as

(
(log(∣x∣) + α)2

∣x∣(log2(∣x∣) + 1)
+

1 − α2

∣x∣(log2(∣x∣) + 1)
+ 1) exp(−∣x∣)

∣x∣(log2(∣x∣) + 1)

and conclude that ∣x∣Vα(x) is monotonically increasing in ∣x∣, since α < 1/2. Therefore, by using the
radiality of Vα and the argument from Equation (4) in [570], we find that V̂ α ≤ 0 and infer

eµ =
1

2π2 ∫R3
Vα(x)(

sin(√µ∣x∣)
√
µ∣x∣

)

2
dx < 0

by Equation (10.2.3). Thus, Vα satisfies all conditions of Theorem 10.2.2. In order to obtain a lower
bound on Tc(µ) we estimate

∣
√
µeµ∣ ≥ c∫

√
µ/2

0

sin(x)2

x2∣ log(x/√µ)∣2α
dx ≥ c 1

∣ log(µ)∣2α

for some c > 0 and µ large enough. Using Theorem 10.2.2, this yields

Tc ≳ µ exp(− log(µ)2α/c)→∞

as µ→∞ since α < 1/2.

10.3.3 Proof of Theorem 10.2.7
The proof of Theorem 10.2.7 is based on the following two Lemmas providing the necessary estimates
for a perturbation theoretic argument yielding the next order correction to the asymptotics obtained
in Theorem 10.2.2. While Lemma 10.3.3 improves the upper bounds on integrals of the interaction
potential against spherical Bessel functions obtained in Lemma 10.3.2 and Equation (10.2.7), in
particular for s∗ > 5/3, Lemma 10.3.4 provides a lower bound on eµ for admissible potentials. We
postpone the proofs of Lemma 10.3.3 and Lemma 10.3.4 until the end of this Section.

Lemma 10.3.3. Let V ∈ L1(R3) ∩ Lp(R3) for some p ∈ [3/2,9/4] with dual q = p
p−1 ∈ [9/5,3].

Assume that s∗ > 1, with s∗ as in Definition 10.2.5 and set

β∗p =

⎧⎪⎪
⎨
⎪⎪⎩

s∗

2 for s∗ ∈ (1,5/3]
min ( (q+1)s∗−4

3qs∗−7 +
1
2 ,

10q−11
12q−14) for s∗ > 5/3 .

(10.3.11)

Note that β∗p depends continuously on s∗ and is (strictly) monotonically increasing (between 1 and
2), and β∗p ≤min(s∗, 2)/2 for any s∗ > 1. Then for any δ > 0 there exists an ε0 > 0 such that for all
ε ∈ [0, ε0] we have

lim sup
µ→∞

µβ
∗
p−δ sup

ℓ∈N0
∫

R3
dx∣V (x)∣ ∣jℓ(

√
µ∣x∣)∣2−ε = 0 .
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For admissible potentials that satisfy the Lp(R3)-assumption in condition (d) from Definition 10.2.5,
we will use this Lemma with

β∗ =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

s∗

2 for s∗ ∈ (1,5/3]
4s∗−4
9s∗−7 +

1
2 for s∗ ∈ (5/3,53/27)

min ( 7s∗−8
15s∗−14 +

1
2 ,

7
8) + δp for s∗ ≥ 53/27 ,

for some δp > 0 since p > 5/3. For our perturbation theoretic argument to work in the general case,
where we have no control on the ground state space of Vµ, it turns out to be necessary that

4β∗ − 3 min(s∗,2)
2

−
1
2
> 0 , (10.3.12)

which is why we need the Lp(R3)-assumption in Definition 10.2.5 for s∗ ≥ 53/27. The function
f(s∗) from Remark 10.2.6 can explicitly be determined by requiring that

4β∗f(s∗) −
3 min(s∗,2)

2
−

1
2
= 0 . (10.3.13)

Lemma 10.3.4. Let V be an admissible potential (cf. Definition 10.2.5, condition (d) can be
dropped). Then for any δ > 0 there exists cδ > 0 such that

lim inf
µ→∞

∣µmin(s∗+δ,2)/2 eµ∣ ≥ cδ .

In particular, for admissible V , we have eµ < 0 for µ large enough.

The proof of Theorem 10.2.7 is divided in two parts. In the first part, Lemma 10.3.5, we provide an
asymptotic formula for Tc with parameter κ > 0. In the second part, Lemma 10.3.6, we asymptotically
compare 1/(√µb(κ)µ ) with 1/(√µbµ). By combining these formulas, we obtain Theorem 10.2.7.

Lemma 10.3.5. Let V be an admissible potential and fix κ > 0. Then the critical temperature Tc is
positive and satisfies

lim
µ→∞

⎛

⎝
log µ

Tc
+

π

2√µb(κ)µ

⎞

⎠
= 2 − γ − κ π

2
− log(8/π) . (10.3.14)

Lemma 10.3.6. Let V be an admissible potential and κ > 0. Then

lim
µ→∞

⎛

⎝

π

2√µbµ
−

π

2√µb(κ)µ

⎞

⎠
= κ

π

2
. (10.3.15)

Proof of Theorem 10.2.7. By combining Lemma 10.3.5 with Lemma 10.3.6 we obtain

lim
µ→∞
(log µ

Tc
+

π

2√µbµ
) = lim

µ→∞

⎛

⎝
log µ

Tc
+

π

2√µb(κ)µ

⎞

⎠
+ lim
µ→∞

⎛

⎝

π

2√µbµ
−

π

2√µb(κ)µ

⎞

⎠

= 2 − γ − κ π
2
− log(8/π) + κ π

2
= 2 − γ − log(8/π) .

The rest of this Section is devoted to the proofs of the four Lemmas above. We begin with
Lemma 10.3.5 and Lemma 10.3.6.
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Proof of Lemma 10.3.5. Fix κ > 0. We first assume condition (d) from Definition 10.2.5 and discuss
the changes for the special case afterwards. Similarly to the proof of Theorem 10.2.2, we show that
the first and the third term in the decomposition (10.3.2) vanish in operator norm.

For the first term, we need to improve the estimate from Theorem 10.2.2, where we employed the
easily accessible Hilbert–Schmidt norm as an upper bound to the operator norm. Indeed, using the
radial symmetry of V , similarly to the bound of A(κ)T,µ in Equation (10.3.9), the operator norm of the
compact operator L(κ)µ ∶= V 1/2(p2 + κ2µ)−1∣V ∣1/2 can be estimated as

∥L(κ)µ ∥op
≤ C µ1/2

∫

∞

0
dp p2

p2 + κ2 sup
ℓ∈N0
∫

R3
dx∣V (x)∣ ∣jℓ(

√
µp∣x∣)∣2 , (10.3.16)

which is bounded by µ−β∗+1/2+δ for any δ > 0 by means of Lemma 10.3.3 (note that the p–integral is
finite since s∗ > 1). Recall from the prove of Theorem 10.2.2 (in particular Equation 10.3.9) that

∥A
(κ)
T,µ∥op

≤ C ∫
∞

0
dp ∣ 1

KT /µ,1(p)
−

1
p2 + κ2 ∣ ∣p − 1∣ε ( 1

pε
+ 1)p2 (10.3.17)

× µ1/2 sup
ℓ∈N0
∫

R3
dx ∣V (x)∣ (∣jℓ(p

√
µ∣x∣)∣2−22ε/5

+ ∣jℓ(
√
µ∣x∣)∣2−22ε/5

) .

for any ε ∈ (0,5/11). Again by Lemma 10.3.3 we may bound the x–integral by µ−β∗+δ(1 + p−β∗+δ)
for any δ > 0 and the p–integral is finite as long as 0 < T ≤ Cµ. We now define, analogously to
Equation (28) in [312],

V 1/2M
(κ)
T,µ ∣V ∣

1/2 ∶= V 1/2K−1
T,µ∣V ∣

1/2
−m(κ)µ (T )V

1/2F†
µFµ∣V ∣

1/2
= L(κ)µ +A

(κ)
T,µ

and combine the bounds (10.3.16) and (10.3.17) from above to obtain

lim sup
µ→∞

µβ
∗−1/2−δ sup

0<T≤Cµ
∥V 1/2M

(κ)
T,µ ∣V ∣

1/2
∥

op
= 0 (10.3.18)

for any δ > 0. Also, since V 1/2F†
µFµ∣V ∣

1/2 is isospectral to Vµ, so its eigenvalues are given by
Equation (10.2.2), one can easily see, using Lemma 10.3.3 again, that

lim sup
µ→∞

µβ
∗−δ
∥V 1/2F†

µFµ∣V ∣
1/2
∥

op
= 0 (10.3.19)

for any δ > 0. In particular, since s∗ > 1, the bound (10.3.18) implies that 1 + V 1/2M
(κ)
T,µ ∣V ∣

1/2 is
invertible for any 0 < T ≤ Cµ and µ large enough.

We can thus, following the argument around Equation (30) in [312], conclude that the Birman-
Schwinger operator BT,µ having an eigenvalue −1 is equivalent to the selfadjoint operator

Fµ∣V ∣
1/2 m

(κ)
µ (T )

1 + V 1/2M
(κ)
T,µ ∣V ∣

1/2
V 1/2F†

µ . (10.3.20)

acting on L2(S2) having an eigenvalue −1. At T = Tc, −1 is the smallest eigenvalue of BT,µ, hence
(10.3.20) has an eigenvalue −1 for this value of T . By continuity and monotonicity of m(κ)µ (T ) one
can in fact show that −1 is the smallest eigenvalue of (10.3.20) in this case (cf. the discussion below
Equation (31) in [312]).

Since FµV F†
µ = Vµ (see Equation (10.2.1)) and eµ = inf specVµ < 0 by Lemma 10.3.4, it immediately

follows that
−1 = lim

µ→∞
inf specVµm(κ)µ (Tc) = lim

µ→∞
eµm

(κ)
µ (Tc) ,
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which, in combination with the asymptotics (10.3.1) and the argument for Tc = o(µ) from the
proof of Theorem 10.2.2, reproves (10.2.4) resp. (10.2.5), i.e. the asymptotic formula for Tc to
leading order. To obtain the next order, we employ first order perturbation theory as in the proof of
Theorem 1 in [312] (in particular, see Equation (32)).

Indeed, using Equation (10.3.18) and Equation (10.3.19), we can expand the geometric series in
Equation (10.3.20) to first order and employ first order perturbation theory to arrive at

1
√
µ
m(κ)µ (Tc) =

−1
√
µeµ −

√
µ⟨u∣FµVM

(κ)
Tc,µ

V F†
µ∣u⟩ +O(µ−4β∗+min(s∗,2)/2+3/2+δ)

, (10.3.21)

for any δ > 0. Here, u is the normalized eigenfunction corresponding to the lowest negative eigenvalue
eµ of the compact operator Vµ = FµV F†

µ (see Lemma 10.3.4). In case of (finite!) degeneracy, one
has to choose the ground state u of Vµ that minimizes the second term in the denominator of
(10.3.21). The error term in Equation (10.3.21) is twofold. The first part comes from expanding the
geometric series. The second part comes from first order perturbation theory, where we made use of
the fact that

∣
√
µeµ∣ ≥ cδ µ

−min(s∗+δ,2)/2+1/2 and sup
0<T≤Cµ

√
µ∥FµVM

(κ)
T,µV F†

µ∥op ≤ Cδµ
−2β∗+1+δ (10.3.22)

for any δ > 0 by Lemma 10.3.4 resp. Equation (10.3.19) and Equation (10.3.18) (recall Tc = o(µ)
from above). The error from the series expansion is of order O(µ−3β∗+3/2+δ) and the error from
the perturbation argument is of order O(µ−4β∗+min(s∗,2)/2+3/2+δ) and hence dominates, since β∗ ≤
min(s∗,2)/2.

Equation (10.3.21) is an implicit equation for Tc. By the second estimate in Equation (10.3.22) and
since Tc → 0 as µ → ∞, we need to evaluate the limit of ⟨u∣FµVM (κ)

T,µV F†
µ∣u⟩ as T → 0. By the

same arguments as used in Equation (35) in [312] (dominated convergence and Lipschitz continuity
of the angular integrals), this yields

lim
T→0
⟨u∣FµVM

(κ)
T,µV F†

µ∣u⟩ = ⟨u∣W
(κ)
µ ∣u⟩ ,

uniformly in u ∈ L2(S2) with ∥u∥L2(S2) = 1, where W(κ)µ was defined in (10.2.9). Using that Tc is
exponentially small (in some positive power of µ) as µ →∞ by application of Theorem 10.2.2 in
combination with Equation (10.2.7), we obtain

∣⟨u∣FµVM
(κ)
Tc,µ

V F†
µ∣u⟩ − ⟨u∣W

(κ)
µ ∣u⟩∣ ≤ CDµ

−D (10.3.23)

for any D > 0, uniformly in u ∈ L2(S2) with ∥u∥L2(S2) = 1. Combining the second estimate in
Equation (10.3.22) with Equation (10.3.23) we thus get

∥W
(κ)
µ ∥op

≤ Cδµ
−2β∗+1/2+δ (10.3.24)

for any δ > 0. Since ∣√µeµ∣ ≥ cδ µ−min(s∗+δ,2)+1/2, we have that whenever eµ < 0 also b
(κ)
µ < 0

for large enough µ (recall Equation (10.2.10) and Equation (10.2.11)). In particular, combining
Equations (10.3.21), (10.3.23) and (10.3.24), we have shown that

1
√
µ
m(κ)µ (Tc) +

π

2√µb(κ)µ
= O(µ−4β∗+3 min(s∗,2)/2+1/2+δ

) ,

for any δ > 0. Since 4β∗ − 3 min(s∗,2)/2 − 1/2 > 0 (see Equation (10.3.12)), we conclude Equa-
tion (10.3.14) by employing the asymptotics (10.3.1).
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In case that there exists µ0 > 0 and L ⊂ N0 with ∣L∣ <∞, such that for all µ ≥ µ0, the ground state
space of Vµ is contained in the finite–dimensional subspace

IL ∶= span {Y m
ℓ ∶ ℓ ∈ L, ∣m∣ ≤ ℓ}

of L2(S2), spanned by the spherical harmonics with angular momentum ℓ ∈ L, we can drop condition
(d) from Definition 10.2.5. In order to see this, take Y m

ℓ with ℓ ∈ L and ∣m∣ ≤ ℓ and estimate

∥∣V ∣1/2F†
µY

m
ℓ ∥

2

L2
= C ∫

R3
∣V (x)∣ ∣∫

S2
ei
√
µp⋅xY m

ℓ (p)dω(p)∣
2

dx

= C ∫
R3
∣V (x)∣(jℓ(

√
µ∣x∣))2dx ≤ Cℓ,δ µ−min(s∗,2)+δ ,

for any δ > 0. The second equality follows by the radiality of V and the final estimate by the decay of
spherical Bessel functions (see the first bound in Proposition 10.3.7 (iii)). Using Equation (10.3.18)
with β∗3/2 instead of β∗ by means of Lemma 10.3.3, this implies that

sup
u∈IL , ∥u∥L2=1

∣
√
µ ⟨u∣FµVM

(κ)
T,µV F†

µ∣u⟩∣ ≤ CL,δ µ
−β∗3/2−min(s∗,2)/2+1+δ (10.3.25)

for any δ > 0 (and µ large enough). Therefore, since β∗3/2 ≤min(s∗, 2)/2, the error from the geometric
expansion dominates the error from the perturbation theory in Equation (10.3.21) and we get

1
√
µ
m(κ)µ (Tc) =

−1
√
µeµ −

√
µ⟨u∣FµVM

(κ)
Tc,µ

V F†
µ∣u⟩ +O(µ

−3β∗3/2+3/2+δ
)
, (10.3.26)

for any δ > 0, instead. Moreover, using Equation (10.3.25) and Equation (10.3.23), we get

∥W
(κ)
µ ∣IL

∥
op
≤ CL,δµ

−β∗3/2−min(s∗,2)/2+1/2+δ (10.3.27)

for any δ > 0. By combining Equations (10.3.26), (10.3.23) and (10.3.27) with ∣√µeµ∣ ≥ cδ µ−min(s∗+δ,2)+1/2,
we find

1
√
µ
m(κ)µ (Tc) +

π

2√µb(κ)µ
= O(µ

−3β∗3/2+min(s∗,2)+1/2+δ
)

for any δ > 0, and the proof comes to an end in the same way as above by realizing that 3β∗3/2 −
min(s∗,2) − 1/2 > 0.

Proof of Lemma 10.3.6. The proof follows a similar perturbation theoretic argument as in the proof
of Lemma 10.3.5. We first assume condition (d) from Definition 10.2.5 and discuss the changes for
the special case afterwards. To begin with, we derive a bound on ∥Wµ∥op. For this purpose, we take
a normalized u ∈ L2(S2) and estimate

∣⟨u∣Wµ∣u⟩∣ ≤ ∣⟨u∣Wµ∣u⟩ − ⟨u∣W
(κ)
µ ∣u⟩∣

+ ∣⟨u∣FµVM
(κ)
Tc,µ

V F†
µ∣u⟩ − ⟨u∣W

(κ)
µ ∣u⟩∣ + ∣⟨u∣FµVM

(κ)
Tc,µ

V F†
µ∣u⟩∣ .

The second term is smaller than any inverse power of µ by Equation (10.3.23). Using Equa-
tion (10.3.18) and Equation (10.3.19), the third term is bounded by µ−2β∗+1/2+δ for any δ > 0,
uniformly in u ∈ L2(S2). Since

⟨u∣Wµ∣u⟩ − ⟨u∣W
(κ)
µ ∣u⟩ =

√
µ∫

∞

0
d∣p∣ (1 − ∣p∣2

∣p∣2 + κ2)∥Vµu∥
2
L2 = κ

π

2
√
µ ∥Vµu∥

2
L2 , (10.3.28)

we infer by means of Equation (10.3.18) that also the first term is bounded by µ−2β∗+1/2+δ, uniformly
in u ∈ L2(S2), and we thus have

∥Wµ∥op ≤ Cδµ
−2β∗+1/2+δ (10.3.29)
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for any δ > 0. In particular, since ∣√µeµ∣ ≥ cδ µ−min(s∗+δ,2)+1/2 for any δ > 0, this shows that,
whenever eµ < 0 also bµ < 0 for large enough µ. Moreover, using ∣√µeµ∣ ≥ cδ µ−min(s∗+δ,2)+1/2

together with Equation (10.3.24) and Equation (10.3.29), first order perturbation theory implies

π

2√µbµ
−

π

2√µb(κ)µ
=
π

2
b
(κ)
µ − bµ
√
µb
(κ)
µ bµ

=
(eµ − ⟨u∣W

(κ)
µ ∣u⟩) − (eµ − ⟨u

′∣Wµ∣u
′⟩) +O(µ−4β∗+min(s∗,2)/2+3/2+δ)

√
µe2

µ +O(µ
−2β∗+1+δ)

(10.3.30)

=κ
π

2
+O(µ−4β∗+3 min(s∗,2)/2+1/2+δ

) .

As in the proof of Lemma 10.3.5, u resp. u′ is a (the) normalized eigenfunction corresponding to
the lowest eigenvalue eµ of Vµ. In case of (finite!) degeneracy, one has to choose the ground
state u resp. u′ of Vµ that minimizes the second term in each bracket (⋯) in Equation (10.3.30).
A priori, u and u′ could be different. But, by application of Equation (10.3.28) we get that Wµ

and W(κ)µ differ only by the constant (κπ√µe2
µ)/2 on the ground state space of Vµ. Therefore,

u = u′ and the last equality in Equation (10.3.30) follows by Equation (10.3.28) in combination
with ∣√µeµ∣ ≥ cδ µ−min(s∗+δ,2)+1/2. Since 4β∗ − 3 min(s∗,2)/2 − 1/2 > 0 (see Equation (10.3.12)),
Equation (10.3.30) implies Equation (10.3.15).

In case that there exists µ0 > 0 and L ⊂ N0 with ∣L∣ <∞, such that for all µ ≥ µ0, the ground state
space of Vµ is contained in the finite–dimensional subspace

IL ∶= span {Y m
ℓ ∶ ℓ ∈ L, ∣m∣ ≤ ℓ}

of L2(S2), spanned by the spherical harmonics with angular momentum ℓ ∈ L, we can drop condition
(d) from Definition 10.2.5. In order to see this, we use Equation (10.2.2) and estimate

∥Vµ∣IL
∥

op
= sup
ℓ∈L
∣

1
2π2 ∫R3

V (x) (jℓ(
√
µ∣x∣))2 dx∣ ≤ CL,δ µ−min(s∗,2)+δ

for any δ > 0 (and µ large enough) by means of Proposition 10.3.7 (iii). Combining this with
Equation (10.3.25) and using β∗3/2 ≤min(s∗,2)/2, we get by the same argument as above that

∥Wµ∣IL
∥

op
≤ CL,δµ

−β∗3/2−min(s∗,2)/2+1/2+δ (10.3.31)

for any δ > 0. Using first order perturbation theory, Equation (10.3.31) and Equation (10.3.28)
together with ∣√µeµ∣ ≥ cδ µ−min(s∗+δ,2)+1/2 imply

π

2√µbµ
−

π

2√µb(κ)µ
= κ

π

2
+O(µ

−3β∗3/2+min(s∗,2)+1/2+δ
)

for any δ > 0. Since 3β∗3/2 −min(s∗,2) − 1/2 > 0 we conclude the desired.

Finally, we give the proofs of Lemma 10.3.3 and Lemma 10.3.4.

Proof of Lemma 10.3.3. For s∗ ∈ (1,5/3] the statement easily follows from the uniform decay of
spherical Bessel functions (see Proposition 10.3.7 (iii)). For s∗ > 5/3 choose

α =max ( 5q − 7
3qs∗ − 7

,
5q − 7
6q − 7

) ∈ (0,1) (10.3.32)

and for (small) δ > 0 set s ∶= min(s∗,2) − δ/α. Recall that q = p/(p − 1) denotes the dual of
p ∈ [3/2,9/4]. We now employ Hölder’s inequality to obtain

sup
ℓ∈N0
∫

R3
dx∣V (x)∣∣jℓ(

√
µ∣x∣)∣2−ε
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≤C ∥
V

∣ ⋅ ∣s
∥

α

L1
∥V ∥1−αLp sup

ℓ∈N0

(∫

∞

0
dxx

qαs
1−α
+2
∣jℓ(
√
µx)∣

q
1−α
(2−ε)
)

1−α
q

≤Cµ−
αs+3(1−α)/q

2 ∥
V

∣ ⋅ ∣s
∥

α

L1
∥V ∥1−αLp sup

ℓ∈N0

(∫

∞

0
dxx

qαs
1−α
+2
∣jℓ(x)∣

q
1−α
(2−ε)
)

1−α
q

.

For ε(δ) > 0 small enough, the integral is finite by the uniform Lp–integrability of spherical Bessel
functions (see Proposition 10.3.7 (iv)) since α < (5q − 7)/(3qs − 7) and thus the claim follows since
αs+3(1−α)/q

2 = β∗p − δ/2 (cf. Equation (10.3.11) for the definition of β∗p , and Equation (10.3.32)).

Proof of Lemma 10.3.4. To begin with the proof, we have two important observations.

First, recall the definition of s∗± from Equation (10.2.6). We aim to prove that r∗± = s∗±, where

r∗± ∶= sup{r ≥ 0 ∶ lim
ε→0

1
εr
∫
Bε

V±(x)dx = 0} .

For this purpose, we define

s∗±(a) ∶= sup{s ≥ 0 ∶ ∣ ⋅ ∣−sV±∣∗Ba
∈ L1
(R3
)}

and
r∗±(a) ∶= sup{r ≥ 0 ∶ lim

ε→0

1
εr
∫
Bε

V±∣
∗
Ba
(x)dx = 0}

for the same a > 0, for which we assumed that r∗± = r∗±(a) in Definition 10.2.5.

Note that r∗± ≥ s∗± by definition. Using that ∣ ⋅ ∣−s is equal to its symmetric decreasing rearrangement,
we can employ the basic rearrangement inequality [418, Thm. 3.4] to obtain s∗± ≥ s∗±(a). Therefore,
since r∗± = r∗±(a) by assumption, we have

r∗±(a) = r
∗
± ≥ s

∗
± ≥ s

∗
±(a) .

In order to see r∗± = s∗± it is sufficient to prove that s∗±(a) ≥ r∗±(a). Assume the contrary, i.e. s∗±(a) <
r∗±(a), and let r, r + δ ∈ (s∗±(a), r∗±(a)) for some δ > 0. We denote V ∗±,a ≡ V±∣∗Ba

for short. By
definition of s∗± and r∗±, we thus have

∫
Bε

V ∗±,a(x)

∣x∣r
dx ≥ c and ∫

Bε

V ∗±,a(x)dx = o(εr+δ) . (10.3.33)

The first integral actually equals infinity, but we only need that it is uniformly bounded from below
by some c > 0. Since ∣V±,a∣∗ is symmetric–decreasing and thus one–sided limits exist, the auxiliary
quantity

t∗±(a) ∶= inf {t ≥ 0 ∶ lim
∣x∣→0
∣x∣t V ∗±,a(x) = 0}

is well defined. By definition of t∗±(a) we thus get

cν

∣x∣t
∗
±(a)−ν

≤ V ∗±,a(x) ≤
Cν

∣x∣t
∗
±(a)+ν

for any ν > 0 and ∣x∣ small enough. Inserting this in Equation (10.3.33) we arrive at

ε3−t∗±(a)−r−ν ≥ cν and ε3−t∗±(a)−r−δ+ν ≤ Cν

which yields a contradiction by choosing ν ∈ (0, δ/2). Therefore, r∗±(a) = s∗±(a), which proves that
r∗± = s

∗
±.
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Second, note that for any f ∈ L1(R3) we have

∫
R3
f(x)(sin(n∣x∣))2dx = 1

2 ∫R3
f(x)(1 − cos(2n∣x∣))dxÐ→ 1

2 ∫R3
f(x)dx

as n→∞ by the Riemann–Lebesgue Lemma.

In order to prove Lemma 10.3.4, we study the asymptotic behavior of the integral

vµ ∶= ∫
R3
V (x)(

sin(√µ∣x∣)
√
µ∣x∣

)

2
dx

in three different cases.

Case 1. If ∣ ⋅ ∣−2V ∈ L1(R3), we get by our second observation that

vµ = µ
−1
(

1
2 ∫R3

V (x)

∣x∣2
dx + o(1)) ≤ −cµ−1 ,

which immediately proves the claim.

Case 2. If ∣ ⋅ ∣−2V ∉ L1(R3) and s∗ < 2 we take some r ∈ (0,1/2) and estimate

∫
R3
V (x)(

sin(√µ∣x∣)
√
µ∣x∣

)

2
dx

= ∫
Br

V+(x)(
sin(√µ∣x∣)
√
µ∣x∣

)

2
dx − ∫

Br

V−(x)(
sin(√µ∣x∣)
√
µ∣x∣

)

2
dx +O(µ−1

) .

The first term can be bounded by µ−s∗+/2+δ for any δ > 0. The second term can be estimated from
below as

∫
Br

V−(x)(
sin(√µ∣x∣)
√
µ∣x∣

)

2
dx ≥ ∫

B r√
µ

V−(x)(
sin(√µ∣x∣)
√
µ∣x∣

)

2
dx

≥ cr ∫
B r√

µ

V−(x)dx ≥ cr,δµ−s
∗
−/2−δ

for any δ > 0. Since s∗ = s∗− < s∗+, we get that vµ ≤ −cδµ−min(s∗+δ,2)/2 for any δ > 0.

Case 3. If ∣ ⋅ ∣−2V ∉ L1(R3) and s∗ = 2 we have that ∣ ⋅ ∣−2V+ ∈ L
1(R3) but ∣ ⋅ ∣−2V− ∉ L

1(R3) since
s∗ = s∗− < s

∗
+. On the one hand, this implies that

∫
R3
V+(x)(

sin(√µ∣x∣)
√
µ∣x∣

)

2
dx ≤Kµ−1

for some K > 0 by means of our second observation. On the other hand, let r > 0 and estimate

µ∫
R3
V−(x)(

sin(√µ∣x∣)
√
µ∣x∣

)

2
dx ≥ µ∫

Bc
r

V−(x)(
sin(√µ∣x∣)
√
µ∣x∣

)

2
dx µ→∞
Ð→

1
2 ∫Bc

r

V−(x)

∣x∣2
dx .

By taking r → 0 the right hand side can be made arbitrarily large, in particular greater than K. This
implies that vµ ≤ −Cµ−1 for any C > 0.
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10.3.4 Properties of spherical Bessel functions

Proposition 10.3.7. (Properties of spherical Bessel functions [3, 391, 537])
The spherical Bessel functions (jℓ)ℓ∈N0 satisfy the following properties:

(i) uniform boundedness, i.e. supℓ∈N0 supx≥0 ∣jℓ(x)∣ ≤ 1,

(ii) uniform Lipschitz continuity, i.e. supℓ∈N0 supx≥0 ∣j′ℓ(x)∣ ≤ 1,

(iii) (uniform) decay, i.e. for every ℓ ∈ N0, we have supx≥0 ∣x jℓ(x)∣ ≤ Cℓ for some Cℓ > 0, and
supℓ∈N0 supx≥0 ∣x5/6jℓ(x)∣ ≤ C for some universal C > 0,

(iv) uniform Lp–integrability, i.e. for p ∈ (0,∞) and a ∈ (−1, p−1) if p ∈ (0, 4] or a ∈ (−1, 5p/6−1/3)
if p ∈ (4,∞), we have

sup
ℓ∈N0
∫

∞

0
∣jℓ(x)∣

pxadx ≤ Cp,a

for some universal constant Cp,a > 0.

Proof. The first statement (i) is an elementary property of the spherical Bessel functions. The second
statement (ii) follows from the uniform boundedness in (i) and the recursion relation [3, Eq. 10.1.20]

j′ℓ =
1

2ℓ + 1
(ℓjℓ−1 − (ℓ + 1)jℓ+1) .

By noticing that jℓ(x) =
√
π/(2x)Jℓ+1/2(x), the third (iii) and the fourth statement (iv) are easy

consequence of [3, Eq. 9.2.1], [391, Eq. 1], and [537, Eq. 3], respectively, where analogous estimates
for the standard Bessel functions Jν with ν ≥ 0 are proven.

10.3.5 Proof of Equation (10.2.12)

Proof of Equation (10.2.12). We note that KT,µ(p) + V (x) ≥ 0 is equivalent to KT /µ,1(p) +
1
µV (x/

√
µ) ≥ 0 and estimate

KT /µ,1(p) +
1
µ
V (x/

√
µ) ≥

1
2
(∣p2
− 1∣ + 2T

µ
) −

1
µ
V−(x/

√
µ)

≥
1
2
(∣p2
− 1∣ + 2T

µ
−

2
µ
V−(x/

√
µ) (e−m∣x∣ +m∣x∣))

≥
1
2
(∣p2
− 1∣ + 2T

µ
−

2
√
µ
∥∣ ⋅ ∣V ∥L∞ (

e−m∣x∣

∣x∣
+m))

for any m > 0. By definition of Tc, we have the bound

Tc ≤ −
µ

2
inf spec(∣p2

− 1∣ − 2
√
µ
∥∣ ⋅ ∣V ∥L∞ (

e−m∣x∣

∣x∣
+m)) .

After taking m = (const.)µ1/4e−
√
π/(2∥∣⋅∣V ∥L∞)µ1/4 and using the estimate above Equation (15) in

[291], we get

Tc ≲ µ exp(−
√

π

2∥∣ ⋅ ∣V ∥L∞
µ1/4
) .
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Chapter11
The BCS energy gap at high density

This chapter contains the paper [336]:

J. Henheik and A. B. Lauritsen. The BCS Energy Gap at High Density. J. Stat. Phys., 189(5), 2022

Abstract. We study the BCS energy gap Ξ in the high–density limit and derive an asymptotic
formula, which strongly depends on the strength of the interaction potential V on the Fermi surface.
In combination with the recent result by one of us (Math. Phys. Anal. Geom. 25, 2022; see
Chapter 10) on the critical temperature Tc at high densities, we prove the universality of the ratio of
the energy gap and the critical temperature.
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11.1 Introduction and Main Results
The Bardeen–Cooper–Schrieffer (BCS) theory [48] (see [316] for a review of recent rigorous mathe-
matical work) has been an important theory of superconductivity since its conception. More recently,
it has also gained attraction for describing the phenomenon of superfluidity in ultra cold fermionic
gases, see [87, 145] for reviews. In either context, BCS theory is often formulated in terms of the
BCS gap equation (at zero temperature)

∆(p) = − 1
(2π)3/2 ∫R3

V̂ (p − q)
∆(q)
E∆,µ(q)

dq , (11.1.1)

where E∆,µ(p) =
√
(p2 − µ)2 + ∣∆(p)∣2. At finite temperature T > 0 one replaces E∆,µ by

E∆,µ/ tanh(E∆,µ/2T ). The function ∆ is interpreted as the order parameter describing the Cooper
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11. The BCS energy gap at high density

pairs (paired fermions). The interaction is local and given by the potential V , which we will as-
sume satisfies V ∈ L1(R3), in which case it has a Fourier transform given by (FV )(p) = V̂ (p) =
(2π)−3/2

∫R3 V (x)e−ip⋅xdx.

The chemical potential µ controls the density of the fermions, and we investigate the high–density
limit, i.e. µ → ∞, here. Recently this limit was studied by one of us [333], where an asymptotic
formula for the critical temperature Tc was found. For temperatures T below the critical temperature,
T < Tc, the gap equation at temperature T (Equation (11.1.1) with E∆,µ replaced as prescribed)
admits a non–trivial solution, for T ≥ Tc it does not. The critical temperature may equivalently
be characterized by the existence of a negative eigenvalue of a certain linear operator, see [309].
Physically, a system at temperature T is superconducting/–fluid if T < Tc, if T ≥ Tc it is not.

In this paper we study the energy gap (at zero temperature)

Ξ = inf
p
E∆,µ(p) = inf

p

√
(p2 − µ)2 + ∣∆(p)∣2 . (11.1.2)

The function E∆,µ has the interpretation of the dispersion relation for the corresponding BCS
Hamiltonian, and so Ξ is indeed an energy gap (see Appendix A in [309]). We show that, in the
high–density limit, µ → ∞, the ratio of the energy gap and the critical temperature tends to a
universal constant independent of the interaction potential,

Ξ
Tc
≈
π

eγ
, (11.1.3)

where γ ≈ 0.577 denotes the Euler–Mascheroni constant. This universality is well–known in the
physics literature, see, e.g., [295], and was rigorously verified in the weak–coupling limit by Hainzl
and Seiringer [312] and in the low–density limit, µ → 0, by one of us [403] building on a work by
Hainzl and Seiringer [311]. The general strategy for proving the universality in these limits has been
to establish sufficiently good asymptotic formulas for both, Tc and Ξ, and compare them afterwards.

The weak–coupling limit is studied in [312, 261], where one considers a potential λV for V fixed and
a small coupling constant λ→ 0. In this limit, Hainzl and Seiringer [312] have shown that the critical
temperature and energy gap satisfies Tc ∼ A exp(−B/λ) and Ξ ∼ C exp(−B/λ) respectively for
explicit constants A,B,C > 0 depending on the interaction potential V and the chemical potential µ.
This limit exhibits the same universality and the ratio C/A = πe−γ is independent of the interaction
potential V and the chemical potential µ.

The low–density limit µ → 0 is studied in [311, 403]. In this limit Hainzl and Seiringer [311] have
shown that the critical temperature satisfies Tc ∼ µA exp(−B/√µ) and one of us [403] has shown
that the energy gap satisfies Ξ ∼ µC exp(−B/√µ), for some (different) explicit constants A,B,C > 0
depending on the interaction potential V . Also in this limit we have the same universality and the
ratio C/A = πe−γ is independent of the interaction potential V . These results together with the
present paper thus show that the universality (11.1.3) holds in both, the low– and high–density limit,
as well as in the weak–coupling limit.

To show the universality, we prove in Theorem 11.1.3 an asymptotic formula for the energy gap Ξ
in the high–density limit, similar to the corresponding formula for the critical temperature given in
Theorem 10.2.7. This formula, as well as the one given in Theorem 11.1.3, depends strongly on
the strength of the interaction potential V on the Fermi sphere {p2 = µ}, which becomes weak due
to the decay of V̂ in momentum space. Together with the formula for the critical temperature in
Chapter 10 we prove the universality (11.1.3) in Corollary 11.1.5. All proofs are given in Section 11.2.
We now introduce some technical constructions and give the precise statements of our results.
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11.1. Introduction and Main Results

11.1.1 Preliminaries
We will work with the formulation of BCS theory of [311, 312, 269, 309, 316, 333, 403]. There one
considers minimizers of the BCS functional (at zero temperature)

F(α) =
1
2 ∫R3

∣p2
− µ∣ (1 −

√
1 − 4∣α̂(p)∣2)dp + ∫

R3
V (x)∣α(x)∣2dx . (11.1.4)

If α is a minimizer of this, then ∆ = −2V α̂ satisfies the BCS gap equation (11.1.1). As discussed in
[312] the minimizer α is in general not necessarily unique, hence also ∆ and Ξ are not necessarily
unique. However, since we will assume that the interaction V has non–positive Fourier transform, α
and thus Ξ is unique (see Lemma 2 in [312]).

A crucial role for the investigation of the energy gap (11.1.2) in the high–density limit is played by
the (rescaled) operator Vµ ∶ L2(S2)→ L2(S2) measuring the strength of the interaction potential V̂
on the Fermi surface. It is defined as

(Vµu) (p) =
1

(2π)3/2 ∫S2
V̂ (
√
µ(p − q))u(q)dω(q) , (11.1.5)

where dω denotes the uniform (Lebesgue) measure on the unit sphere S2. The pointwise evaluation
of V̂ (and in particular on a codim−1 submanifold) is well defined since V ∈ L1(R3). The condition
that V ∈ L1(R3) could potentially be relaxed, see [186] and Remark 10.2.9. The lowest eigenvalue
of Vµ, which we denote by

eµ = inf specVµ
will be of particular importance. Note, that Vµ is a trace–class operator (see the argument above
Equation (3.2) in [269]) with

tr(Vµ) =
1

2π2 ∫R3
V (x)dx =

√
2
π
V̂ (0) .

We will assume that V̂ (0) < 0 in which case eµ < 0. This corresponds to an attractive interaction
between (some) electrons on the Fermi sphere.

In this work, we restrict ourselves to the special case of radial potentials V , where the spectrum
of Vµ can be determined more explicitly (see, e.g., Section 2.1 in [269]). Indeed, for radial V , the
eigenfunctions of Vµ are spherical harmonics and the corresponding eigenvalues are

1
2π2 ∫R3

V (x) (jℓ(
√
µ∣x∣))2 dx . (11.1.6)

The lowest eigenvalue eµ is thus given by

eµ =
1

2π2 inf
ℓ∈N0
∫

R3
V (x) (jℓ(

√
µ∣x∣))2 dx .

Here, jℓ denotes the spherical Bessel function of order ℓ ∈ N0. Additionally, in case that V̂ ≤ 0, we
have, by the Perron–Frobenius theorem, that the minimal eigenvalue is attained for the constant
eigenfunction (i.e. with ℓ = 0). Thus

eµ =
1

2π2 ∫R3
V (x)(

sin(√µ∣x∣)
√
µ∣x∣

)

2
dx . (11.1.7)

For further discussions of the radiality assumption on V , see Remark 10.2.8.

In order to obtain an asymptotic formula for the energy gap that is valid up to second order (see
[312, 333]), we define the operator W(κ)µ on u ∈ L2(S2) via its quadratic form

⟨u∣W(κ)µ ∣u⟩ =
√
µ∫

∞

0
d∣p∣ ( ∣p∣2

∣∣p∣2 − 1∣
[∫

S2
dω(p) (∣φ̂(√µp)∣2 − ∣φ̂(√µp/∣p∣)∣2)]
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11. The BCS energy gap at high density

+
∣p∣2

∣p∣2 + κ2 ∫S2
dω(p)∣φ̂(√µp/∣p∣)∣2) (11.1.8)

for any fixed κ ≥ 0 (cf. (10.2.10) resp. Equation (13) in [312] for an analogous definition with
κ = 0). Here φ̂(p) = (2π)−3/2

∫S2 V̂ (p −
√
µq)u(q)dω(q), and (∣p∣, ω(p)) ∈ (0,∞) × S2 denote

spherical coordinates for p ∈ R3. To see that this operator is well–defined note that the map
∣p∣ ↦ ∫S2 dω(p)∣φ̂(p)∣2 is Lipschitz continuous for any u ∈ L2(S2) since V ∈ L1(R3). Hence
the radial integral in Equation (11.1.8) is well defined for ∣p∣ ∼ 1. We will further assume that
V ∈ L3/2(R3), in which case the integral is well–defined for large ∣p∣ as well. We formulate our result
in Theorem 11.1.3 only for κ = 0, but the case of a positive parameter κ > 0 is crucial in the proof
of this statement. For example, κ > 0 ensures that the second term in the decomposition of the
Birman–Schwinger operator associated with E∆,µ + V is small (cf. Equation (11.2.2)). Whenever it
does not lead to confusion, we will refer to some κ–dependent quantity at κ = 0 by simply dropping
the (κ)–superscript.

We now define the operator
B
(κ)
µ =

π

2
(Vµ −W

(κ)
µ ) , (11.1.9)

which captures the strength of the interaction potential near the Fermi surface to second order and
denote its lowest eigenvalue by

b(κ)µ = inf specB(κ)µ . (11.1.10)

The factor π/2 is introduced in Equation (11.1.9) since for this scaling, the eigenvalue b(κ)µ has the
interpretation of an effective scattering length in the case of small µ (see Proposition 1 in [312]).
Moreover, it was shown during the proof of Theorem 10.2.7 that if eµ < 0 then also b(κ)µ < 0 for µ
large enough. This will also follow from Equation (11.2.17) in the proof below.

11.1.2 Results
The following definition characterizes the class of interaction potentials for which our asymptotic
formula will hold.

Definition 11.1.1 (Admissible potentials). Let V ∈ L1(R3) ∩ L3/2(R3) be a radial real–valued
function with non–positive Fourier transform V̂ ≤ 0 and V̂ (0) < 0. Denote

s∗± ∶= sup{s ≥ 0 ∶ ∣ ⋅ ∣−sV± ∈ L1
(R3
)} , s∗ ∶=min{s∗+, s∗−} , (11.1.11)

where V± =max{±V, 0} are the positive and negative parts of V . We say that V is admissible if the
following is satisfied:

(a) There exists a > 0 such that

sup{r ≥ 0 ∶ lim
ϵ→0

1
ϵr
∫
Bϵ

V±(x)dx = 0} = sup{r ≥ 0 ∶ lim
ϵ→0

1
ϵr
∫
Bϵ

V±∣
∗
Ba
(x)dx = 0} ,

where V±∣∗Ba
denotes the symmetric decreasing rearrangement of V±∣Ba , the restriction of V±

to the ball of radius a around 0,

(b) if ∣ ⋅ ∣−2V ∉ L1(R3), we have s∗ = s∗− < s∗+, and

(c) ∣ ⋅ ∣V ∈ L2(R3) and s∗ > 7/5.

As discussed around Equation (11.1.4), the definiteness of the Fourier transform is needed for
ensuring uniqueness of the energy gap Ξ. Intuitively, the other criteria may be though as follows:
Assumption (a) captures that the strongest singularity of V near the origin is in fact at the origin,
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11.1. Introduction and Main Results

assumption (b) captures that V is predominantly attractive, and assumption (c) captures that
V is slightly less divergent at the origin, than allowed by the L3/2(R3)-assumption. In view of
assumption (a), we remark that it is natural that the system is sensitive to the short range behavior
of the interaction potential, since the interparticle distance as the physically relevant length scale
that depends on the particle density tends to zero in the high–density limit. Furthermore, note that
for V ∈ L1(R3) ∩ L3/2(R3), the condition ∣ ⋅ ∣V ∈ L2(R3) is mainly about regularity away from 0
and infinity.

The most important examples of allowed interaction potentials include the cases of attractive
Gaussian, Lorentzian and Yukawa potentials, also discussed in [400]. That is

VGauss(x) = −(2π)−3/2e−x
2/2 , VLorentz(x) = −

1
π2(1 + x2)2

, VYukawa(x) = −
1

4π∣x∣
e−∣x∣ .

Remark 11.1.2. The proof of our main result formulated in Theorem 11.1.3 works without change
if we assume ∣ ⋅ ∣V ∈ Lr(R3) for some 2 ≥ r > f(s∗) instead of ∣ ⋅ ∣V ∈ L2(R3), where f is
some complicated (explicit) expression, see the proof of Proposition 11.2.9. We do not state the
theorem with this slight generalization for simplicity. We will however give the proof under this
more general assumption for the purpose of illuminating where the assumption on r = 2 comes from.
Additionally, to further illuminate where the conditions are used, all propositions and lemmas are
stated with only the conditions needed on V for that specific statement. (Beyond the conditions that
V ∈ L1(R3) ∩L3/2(R3) is real–valued, radial and has V̂ ≤ 0, V̂ (0) < 0, which is always assumed.)

We can now state our main result for admissible interaction potentials.

Theorem 11.1.3. Let V be an admissible potential. Then the energy gap Ξ is positive and satisfies

lim
µ→∞
(log µ

Ξ
+

π

2√µbµ
) = 2 − log(8) . (11.1.12)

In other words,

Ξ = µ (8 e−2
+ o(1)) exp( π

2√µbµ
)

in the limit µ → ∞. Similarly as for the critical temperature (see Chapter 10), this asymptotic
formula is completely analogous to the weak–coupling case [312] (replace V → λV and take the
limit λ → 0) but we have coupling parameter λ = 1 here. This similarity is not entirely surprising.
From a physical perspective, only those fermions with momenta close to the Fermi surface {p2 = µ}
contribute to the superconductivity/–fluidity. Thus, by the decay of the interaction V̂ in Fourier
space, the high–density limit, µ→∞, is effectively a weak–coupling limit.

In order to deduce universality as in Equation (11.1.3) in the high–density limit, we show that
every admissible potential in the sense of Definition 11.1.1 satisfies the imposed conditions for the
proof of an analogous formula for the critical temperature. These conditions were formulated in
Definition 10.2.5.

Proposition 11.1.4. Every admissible potential satisfies the conditions of Definition 10.2.5.

Proof. By comparing the two definitions, the statement is trivial apart from the following two points.
First, the additional requirement ∫R3

V (x)
∣x∣2 dx < 0 from Definition 10.2.5 in the case ∣ ⋅ ∣−2V ∈ L1(R3)

is automatically fulfilled, since

−∆p
V

∣ ⋅ ∣2

̂
(p) = V̂ (p) ≤ 0 .
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11. The BCS energy gap at high density

That is, the radial function V
∣⋅∣2
̂ is subharmonic and approaches 0 as ∣p∣→∞ (by the Riemann–Lebesgue

Lemma), and thus by the maximum principle assumes a strictly negative value at 0. Second, since
V̂ ≤ 0 and by application of the Perron–Frobenius Theorem, the constant spherical harmonic is
the unique normalized ground state of Vµ and thus condition (d) from Definition 10.2.5 can be
dropped.

Therefore, by means of Theorem 10.2.7, the critical temperature Tc satisfies

Tc = µ(
8
π
eγ−2

+ o(1)) exp( π

2√µbµ
)

for any admissible potential. Here γ ≈ 0.577 is the Euler–Mascheroni constant. Together with
Theorem 11.1.3, this immediately proves the following.

Corollary 11.1.5. Let V be an admissible potential. Then

lim
µ→∞

Ξ
Tc
=
π

eγ
≈ 1.764 .

This universality of the ratio between the energy gap and the critical temperature is well known in the
physics literature (see, e.g., [295]) and has been previously established rigorously in the weak–coupling
and low–density limits (see [312] resp. [403]).
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11.2 Proofs

As in the analysis of the critical temperature in Chapter 10 we introduce the parameter κ > 0. We
have the following comparison of b(κ)µ with the κ = 0 quantity.

Lemma 11.2.1 (see Lemma 10.3.6). Let V be admissible and κ > 0. In the limit of high density,
µ→∞, we have

π

2√µbµ
=

π

2√µb(κ)µ
+ κ

π

2
+ o(1) .

Proof. This is immediate from Lemma 10.3.6 by invoking Proposition 11.1.4.

Now, one important ingredient in our proof is the asymptotic behavior of

m(κ)µ (∆) =
1

4π ∫R3
(

1
E∆,µ(p)

−
1

p2 + κ2µ
)dp

for fixed κ > 0 (recall that E∆,µ(p) =
√
(p2 − µ)2 + ∣∆(p)∣2). This is similar to the strategy for the

weak–coupling, low–density, and high–density limits of the critical temperature (see [312, 311, 333]),
and for the weak–coupling and low–density limits of the energy gap (see [312, 403]).
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Lemma 11.2.2. Let V be admissible and κ > 0. In the limit of high density, µ→∞, we have

Ξ =∆(√µ)(1 + o(1)) ,

m(κ)µ (∆) =
√
µ(log µ

∆(√µ)
− 2 + κ π

2
+ log(8) + o(1)) ,

m
(κ)
µ (∆)
√
µ

= −
π

2√µb(κ)µ
+ o(1) .

These three asymptotic equalities are proven in Propositions 11.2.5, 11.2.9, and 11.2.10 respectively.

Proof of Theorem 11.1.3. By Lemma 11.2.2 and Lemma 11.2.1 we get

lim
µ→∞
(log µ

Ξ
+

π

2√µbµ
) = lim

µ→∞
(log µ

∆(√µ)
+

π

2√µbµ
)

= lim
µ→∞

⎛

⎝
log µ

∆(√µ)
+

π

2√µb(κ)µ

⎞

⎠
+ κ

π

2
= lim
µ→∞

⎛

⎝
log µ

∆(√µ)
−
m
(κ)
µ (∆)
√
µ

⎞

⎠
+ κ

π

2

= 2 − κ π
2
+ log(8) + κ π

2
= 2 − log(8) ,

which yields (11.1.12) and we have proven Theorem 11.1.3.

The rest of this paper is devoted to the proof of Lemma 11.2.2.

11.2.1 Proof of Lemma 11.2.2

As remarked, a key idea is to study the integral m(κ)µ (∆). As in [312, 403] we first need some control
of ∆ in the form of a Lipschitz–like bound (given in Lemma 11.2.4) and a bound controlling ∆(p)
in terms of ∆(√µq) for q ∈ S2 (given in Equation (11.2.10)). First, we recall some properties (from
[312]) of the minimizer α of the BCS functional at zero temperature

F(α) =
1
2 ∫R3

∣p2
− µ∣ (1 −

√
1 − 4∣α̂(p)∣2)dp + ∫

R3
V (x)∣α(x)∣2dx . (11.2.1)

In [312, Lemma 2] it is shown that for potentials V with non-positive Fourier transform there exists
a unique minimizer α with (strictly) positive Fourier transform. Moreover, for radial V the BCS
functional is invariant under rotations. Hence α and thus also ∆ = −2V α̂ are radial functions.
Therefore, with a slight abuse of notation, we will write ∆(∣p∣) and mean ∆(p) for some (any) vector
p. (In general for any radial function f , we will write f(∣p∣) for the value of f(p).) Additionally,
since V̂ ≤ 0 we have that ∆ ≥ 0. In fact, by the BCS gap equation (11.1.1), we even have ∆ > 0,
see Lemma 2 in [312]. Now, we give some a priori bounds on the minimizer α. The proofs of
Lemma 11.2.3 and Lemma 11.2.4 are given in Section 11.2.2.

Lemma 11.2.3. Let α be the minimizer of the BCS functional (11.2.1). Then for large µ

∥α∥L2 ≤ Cµ
7/20 and ∥α∥H1 ≤ Cµ

3/4.

These estimates on the minimizer α now translate to bounds on ∆ = −2V α̂.
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11. The BCS energy gap at high density

Lemma 11.2.4. Suppose V ∈ Lr(R3) for some 6/5 ≤ r ≤ 2. Define δr = 3
4 −

6
5r . Then for sufficiently

large µ we have
∥∆∥L∞ ≤ Cµ

24−5r
20r = Cµ

1
2−δr .

Similarly, if ∣ ⋅ ∣V ∈ Lr(R3) then

∣∆(p) −∆(q)∣ ≤ Cµ
24−5r

20r ∣∣p∣ − ∣q∣∣ = Cµ
1
2−δr ∣∣p∣ − ∣q∣∣

for all p, q. In particular, if r > 8/5 then δr > 0 and thus 1/2 − δr < 1/2.

We will use the first bound as ∥∆∥L∞ ≤ Cµ11/20 = o(µ) for r = 3/2, and the second bound as
∣∆(p) −∆(q)∣ ≤ Cµ7/20∣∣p∣ − ∣q∣∣ for r = 2.

Armed with these a priori bounds on ∆, we can now prove the asymptotic formulas in Lemma 11.2.2
and start with the first one.

Proposition 11.2.5. Suppose ∣ ⋅ ∣V ∈ Lr(R3) for r > 8/5. Then Ξ =∆(√µ)(1 + o(1)).

Proof. Clearly Ξ = inf
√
∣p2 − µ∣2 + ∣∆(p)∣2 ≤∆(√µ). Take now p with ∣p2 −µ∣ ≤ Ξ ≤∆(√µ). Then

∣∆(p) −∆(√µ)∣ ≤ Cµ1/2−δr ∣∣p∣ −
√
µ∣ ≤ Cµ1/2−δr

∆(√µ)
∣p∣ +
√
µ
≤ Cµ−δr ∆(√µ)

where δr > 0 by assumption. Hence, ∆(p) =∆(√µ)(1 + o(1)) for any such p and we conclude the
desired.

The proofs of the second and third equality (Proposition 11.2.9 and Proposition 11.2.10, respectively)
heavily use Lemma 11.2.6 and Lemma 11.2.7, which we import from Chapter 10. Lemma 11.2.6
provides an upper bound for integrals of the potential against spherical Bessel functions jℓ, uniformly
in ℓ ∈ N0. These naturally arise by the spherical symmetry of V (cf. Equation (11.1.6)).

Lemma 11.2.6 (see Lemma 10.3.3). Let V ∈ L1(R3) ∩L3/2(R3) and assume that s∗ > 1, with s∗
as in Definition 11.1.1. Set

β∗ =

⎧⎪⎪
⎨
⎪⎪⎩

s∗

2 for s∗ ∈ (1,5/3]
min (4s∗−4

9s∗−7 +
1
2 ,

19
22) for s∗ > 5/3 .

Note that β∗ depends continuously on s∗ and is (strictly) monotonically increasing (between 1 and
2), and β∗ ≤min(s∗,2)/2 for any s∗ > 1. Then for any δ > 0 there exists an ϵ0 > 0 such that for all
ϵ ∈ [0, ϵ0] we have

lim sup
µ→∞

µβ
∗−δ sup

ℓ∈N0
∫

R3
dx∣V (x)∣∣jℓ(

√
µ∣x∣)∣2−ε = 0 .

Lemma 11.2.7 gives a lower bound on the quantity eµ that measures the strength of the interaction
potential on the Fermi surface (see Equation (11.1.7)).

Lemma 11.2.7 (see Lemma 10.3.4). Let V be an admissible potential (cf. Definition 11.1.1). Then
for any δ > 0 there exists cδ > 0 such that

lim inf
µ→∞

∣µmin(s∗+δ,2)/2 eµ∣ ≥ cδ .

Proof. This is immediate from Lemma 10.3.4 by invoking Proposition 11.1.4.
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11.2. Proofs

An upper bound is trivially obtained as ∣eµ∣ ≤ Cδµ−min(s∗−δ,2)/2 for any δ > 0 by definition of s∗ in
Equation (11.1.11) (see also Equation (11.2.9)). Note that both, upper and lower bound, remain true
if we replace the exponent with min(s∗,2)/2 ± δ, i.e. cδµ−min(s∗,2)/2−δ ≤ ∣eµ∣ ≤ Cδµ

−min(s∗,2)/2+δ.
This is the formulation we will use.

Beside these two Lemmas, we will use the following observation: It can easily be checked (see
Lemma 3 in [312]) that the operator E∆,µ(p) + V (x) has 0 as its lowest eigenvalue, and that α is
the (unique) eigenvector with this eigenvalue. By employing the Birman–Schwinger principle (see
[269, 309, 316]), this is equivalent to the fact that the Birman–Schwinger operator

B∆,µ = V
1/2 1
E∆,µ

∣V ∣1/2

has −1 as its lowest eigenvalue with V 1/2α being the corresponding (unique) eigenvector. Here
we used the notation V (x)1/2 = sgn(V (x))∣V (x)∣1/2. In the following we need a convenient
decomposition of B∆,µ in a dominant singular term and other error terms. For this purpose we let
Fµ ∶ L

1(R3)→ L2(S2) denote the (rescaled) Fourier transform restricted to S2 with

(Fµψ) (p) =
1

(2π)3/2 ∫R3
e−i√µp⋅xψ(x)dx ,

which is well–defined by the Riemann–Lebesgue Lemma. Now, we decompose the Birman–Schwinger
operator as

B∆,µ =m
(κ)
µ (∆)V 1/2Fµ

†Fµ∣V ∣
1/2
+ V 1/2M

(κ)
∆,µ∣V ∣

1/2 , (11.2.2)

where M (κ)
∆,µ is such that this holds. For the first term, note that V 1/2Fµ

†Fµ∣V ∣
1/2 is isospectral to

Vµ = FµV Fµ
†. In fact, the spectra agree at first except possibly at 0, but 0 is in both spectra as the

operators are compact on an infinite dimensional space. This first term in the decomposition (11.2.2)
will be the dominant term, which is how the third equality in Lemma 11.2.2 will arise.

Analogously to the proof of Lemma 10.3.5 and the proof of Theorem 1 in [312], we further decompose

V 1/2M
(κ)
∆,µ∣V ∣

1/2
= V 1/2 1

p2 + κ2µ
∣V ∣1/2 +A

(κ)
∆,µ =∶ L

(κ)
µ +A

(κ)
∆,µ , (11.2.3)

where now A
(κ)
∆,µ is such that this holds. During the proof of Lemma 10.3.5 (see (10.3.16)) it was

shown that
∥L(κ)µ ∥op

≤ C µ1/2
∫

∞

0
dp p2

p2 + κ2 sup
ℓ∈N0
∫

R3
dx∣V (x)∣ ∣jℓ(

√
µp∣x∣)∣2 ,

which may be bounded by µ−β∗+1/2+δ for any δ > 0 by means of Lemma 11.2.6. We continue with a
bound on the operator norm of A(κ)∆,µ by estimating the matrix elements ⟨f ∣A(κ)∆,µ∣g⟩ for functions
f, g ∈ L2(R3). This computation is analogous to the computation in the proof of Theorem 10.2.2.
We give it here for completeness.

Note that, since V is radial, it is enough to restrict to functions of definite angular momentum. That
is, with a slight abuse of notation, functions of the form f(x) = Y m

ℓ (x̂)f(∣x∣), where Y m
ℓ denotes

the spherical harmonics and we write x̂ = x/∣x∣. The operator A(κ)∆,µ is indeed block–diagonal in the
angular momentum as will follow from the computations below. Since functions of definite angular
momentum span L2(R3) [319, Sections 17.6-17.7] it is thus enough to bound ⟨f ∣A(κ)∆,µ∣g⟩ for f, g of
the form f(x) = Y m

ℓ (x̂)f(∣x∣), g(x) = Y m′

ℓ′ (x̂)g(∣x∣).

Now, A(κ)∆,µ has integral kernel

A
(κ)
∆,µ(x, y) = CV

1/2
(x)∣V (y)∣1/2∫

R3
(

1
E∆,µ(p)

−
1

p2 + κ2µ
)(eip⋅(x−y) − ei

√
µp̂⋅(x−y)

)dp .
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11. The BCS energy gap at high density

Thus, by the radiality of V we get

⟨f ∣A
(κ)
∆,µ∣g⟩ = C ∫

∞

0
d∣x∣ ∣x∣2V 1/2

(∣x∣)f(∣x∣)∫
∞

0
d∣y∣ ∣y∣2∣V (∣y∣)∣1/2g(∣y∣)

× ∫

∞

0
d∣p∣ ∣p∣2 ( 1

E∆,µ(∣p∣)
−

1
∣p∣2 + κ2µ

)∫
S2

dω(p̂)

× ∫
S2

dω(x̂)∫
S2

dω(ŷ)Y m
ℓ (x̂)Y

m′

ℓ′ (ŷ) (e
−ip⋅(x−y)

− e−i
√
µp̂⋅(x−y)

) .

(11.2.4)

Now, using the plane–wave expansion eip⋅x = 4π∑∞ℓ=0∑ℓm=−ℓ iℓjℓ(∣p∣∣x∣)Y m
ℓ (p̂)Y

m
ℓ (x̂), the spherical

integrations in x and y may be evaluated as

16π2
(−i)ℓ+ℓ

′
(jℓ(∣p∣∣x∣)jℓ′(∣p∣∣y∣) − jℓ(

√
µ∣x∣)jℓ′(

√
µ∣y∣))Y m

ℓ (p̂)Y
m′

ℓ′ (p̂)

using the orthogonality of the spherical harmonics. The spherical p–integral of this gives a factor
δℓℓ′δmm′ again by orthogonality of the spherical harmonics. (This shows that A(κ)∆,µ is block–diagonal
in the angular momentum as claimed.) We may thus restrict to the case of ℓ = ℓ′ and m = m′.
Hereinafter, we will write x, y, and p instead of ∣x∣, ∣y∣, and ∣p∣.

Recall the following bounds on spherical Bessel functions

sup
ℓ∈N0

sup
x≥0
∣jℓ(x)∣ ≤ 1 , sup

ℓ∈N0

sup
x≥0
∣j′ℓ(x)∣ ≤ 1 , sup

ℓ∈N0

sup
x≥0

x5/6
∣jℓ(x)∣ ≤ C ,

where the first one is elementary, the second one follows from [3, Eq. 10.1.20], and the third one
may be found in [391, Eq. 1] (see also Proposition 10.3.7). Adding ±jℓ(px)jℓ(

√
µy) and using these

bounds we may estimate for any 0 < ϵ < 5/11

∣jℓ(px)jℓ(py) − jℓ(
√
µx)jℓ(

√
µy)∣

≤ C ∣p −
√
µ∣ϵ (p−ϵ + (

√
µ)−ϵ) (∣jℓ(px)∣

1−11ϵ/5
+ ∣jℓ(

√
µx)∣1−11ϵ/5

)

× (∣jℓ(py)∣
1−11ϵ/5

+ ∣jℓ(
√
µy)∣1−11ϵ/5

) .

(11.2.5)

The radial p–integral in Equation (11.2.4) is then (a constant times)

∫

∞

0
dp( 1

E∆,µ(p)
−

1
p2 + κ2µ

)(jℓ(px)jℓ(py) − jℓ(
√
µx)jℓ(

√
µy)) (11.2.6)

Using Equation (11.2.5) and changing integration variable p→√µp we get

∣(11.2.6)∣ ≤ Cµ1/2
∫

∞

0
dpp2

RRRRRRRRRRR

1
√
(p2 − 1)2 + ∣∆(√µp)/µ∣2

−
1

p2 + κ2

RRRRRRRRRRR

∣p − 1∣ϵ ( 1
pϵ
+ 1)

× (∣jℓ(
√
µpx)∣1−11ϵ/5

+ ∣jℓ(
√
µx)∣1−11ϵ/5

)

× (∣jℓ(
√
µpy)∣1−11ϵ/5

+ ∣jℓ(
√
µy)∣1−11ϵ/5

) .

Plugging this into Equation (11.2.4) and using Hölder for the x– and y–integrations we thus get

∣⟨f ∣A
(κ)
∆,µ∣g⟩∣

≤ Cµ1/2
∫

∞

0
dpp2

RRRRRRRRRRR

1
√
(p2 − 1)2 + ∣∆(√µp)/µ∣2

−
1

p2 + κ2

RRRRRRRRRRR

∣p − 1∣ϵ ( 1
pϵ
+ 1)

× ∫
R3

dx ∣V (x)∣ (∣jℓ(
√
µp∣x∣)∣2−22ϵ/5

+ ∣jℓ(
√
µ∣x∣)∣2−22ϵ/5

) ,
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where we changed back to x denoting a vector in R3. By Lemma 11.2.6 we may bound the x–integral
by µ−β∗+δ(1 + p−β∗+δ) for any δ > 0. Also, ∥∆∥L∞ = o(µ) by Lemma 11.2.4. Hence the p–integral
will be finite uniformly in µ for µ large enough. We conclude that

∥A
(κ)
∆,µ∥op

≤ Cµ−β
∗+1/2+δ

for any δ > 0 and for µ large enough. Combining this with the bound on ∥L(κ)µ ∥op from above, we get

lim sup
µ→∞

µβ
∗−1/2−δ

∥V 1/2M
(κ)
∆,µ∣V ∣

1/2
∥

op
= 0 (11.2.7)

for any δ > 0. Also, since V 1/2F†
µFµ∣V ∣

1/2 is isospectral to Vµ, so its eigenvalues are given by
Equation (11.1.6), one can easily see, using Lemma 11.2.6 again, that

lim sup
µ→∞

µβ
∗−δ
∥V 1/2F†

µFµ∣V ∣
1/2
∥

op
= 0 , (11.2.8)

for any δ > 0. Finally, by definition of s∗ (see Equation (11.1.11)), we get for any δ > 0 that

lim sup
µ→∞

µmin(s∗,2)/2−δ
∫

R3
∣V (x)∣ (

sin(√µ∣x∣)
√
µ∣x∣

)

2
dx = 0 . (11.2.9)

As the last ingredient we need the following Lemma, which provides a bound controlling ∆(p) in
terms of ∆(√µ). Its proof is given in Section 11.2.2.

Lemma 11.2.8. Suppose s∗ > 1 and let u(p) = (4π)−1/2 be the constant function on the sphere S2

and let
φ̂(p) =

√
4πFV F†

µu(p) =
1

(2π)3/2 ∫S2
V̂ (p −

√
µq)dω(q) ,

where F denotes the usual Fourier transform. Then

∆(p) = f(µ) [φ̂(p) + ηµ(p)] ,

for some function f(µ). The function ηµ satisfies

lim sup
µ→∞

µβ
∗+min(s∗,2)/4−1/2−δ

∥ηµ∥L∞ = 0 and lim sup
µ→∞

µβ
∗+min(s∗,2)/2−1/2−δ

∣ηµ(
√
µ)∣ = 0

for any δ > 0.

Note that φ̂(√µ) =
√

4πFµV F†
µu(1) = eµ. Now, combining this with Lemmas 11.2.6 and 11.2.7,

we see that ∆(√µ) = f(µ)eµ(1 + o(1)), from which we conclude that

∆(p) =
φ̂(p) + ηµ(p)

eµ + ηµ(
√
µ)

∆(√µ) = [1 +
φ̂(p) − φ̂(

√
µ)

eµ
+
ηµ(p)

eµ
] (1 + o(1))∆(√µ) .

Now, it is an easy computation to see ∣φ̂(p) − φ̂(q)∣ ≤ Cµ−1/2∣p − q∣ for all p, q. Thus

∣∆(p)∣ ≤ C (1 + µmin(s∗,2)/2−1/2+δ
∣p −
√
µ∣ + µmin(s∗,2)/4−β∗+1/2+δ

)∆(√µ) (11.2.10)

for any δ > 0, again by means of Lemma 11.2.6 and Lemma 11.2.7, assuming that V is admissible.
So, we get the desired control on ∆(p) in terms of ∆(√µ).

The bound on ηµ(
√
µ) is effectively a bound on ⟨u∣F†

µVM
(κ)
∆,µV Fµ∣u⟩. (This will be clear from the

proof.) For sufficiently large µ we have

∣⟨u∣F†
µVM

(κ)
∆,µV Fµ∣u⟩∣ ≤ Cδµ

−β∗−min(s∗,2)/2+1/2+δ (11.2.11)

for any δ > 0. This will be of importance in the perturbation argument in Proposition 11.2.10.

We are now able to prove the second and third equality in Lemma 11.2.2.
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11. The BCS energy gap at high density

Proposition 11.2.9. Let V be an admissible potential. Then we have

m(κ)µ (∆) =
√
µ(log µ

∆(√µ)
− 2 + κ π

2
+ log(8) + o(1))

in the limit µ→∞.

Proof. Computing the angular integral, and substituting s = ±p
2−µ
µ we get

m(κ)µ (∆) =
√
µ

2

⎡
⎢
⎢
⎢
⎢
⎣

∫

1

0

⎛

⎝

√
1 − s − 1

√
s2 + x−(s)2

+

√
1 + s − 1

√
s2 + x+(s)2

−

√
1 − s

1 − s + κ2 −

√
1 + s

1 + s + κ2
⎞

⎠
ds

+ ∫

1

0

⎛

⎝

1
√
s2 + x+(s)2

+
1

√
s2 + x−(s)2

⎞

⎠
ds

+ ∫

∞

1

⎛

⎝

√
1 + s

√
s2 + x+(s)2

−

√
1 + s

1 + s + κ2
⎞

⎠
ds
⎤
⎥
⎥
⎥
⎥
⎦

,

where x±(s) =
∆(√µ

√
1±s)

µ . Now, using dominated convergence and ∥∆∥L∞ = o(µ), it is easy to see
that the first and last integrals converge to

∫

1

0
(

√
1 − s − 1
s

+

√
1 + s − 1
s

−

√
1 − s

1 − s + κ2 −

√
1 + s

1 + s + κ2)ds

and

∫

∞

1
(

√
1 + s
s
−

√
1 + s

1 + s + κ2)ds ,

respectively, in the limit µ→∞. For the middle integral we claim that

∫

1

0

⎛

⎝

1
√
s2 + x±(s)2

−
1

√
s2 + x±(0)2

⎞

⎠
ds→ 0 as µ→∞ . (11.2.12)

As in [312, 403] this is where we need both the Lipschitz–like bound on ∆ (Lemma 11.2.4) and the
bound controlling ∆(p) in terms of ∆(√µ) (Equation (11.2.10)). In terms of x±, Lemma 11.2.4
reads

∣x±(s) − x±(0)∣ ≤ Cµ−δrs . (11.2.13)

In terms of x±, Equation (11.2.10) reads

x±(s) ≤ C(1 + µmin(s∗,2)/2+δs + µmin(s∗,2)/4−β∗+1/2+δ
)x±(0) . (11.2.14)

Now, the integrand in Equation (11.2.12) is bounded by

∣x±(s)
2 − x±(0)2∣

√
s2 + x±(s)2

√
s2 + x±(0)2 (

√
s2 + x±(s)2 +

√
s2 + x±(0)2)

.

We introduce a cutoff ρ ∈ (0, 1) and compute the integrals ∫
1
ρ and ∫

ρ
0 . For the first integral we have

∫

1

ρ

∣x±(s)
2 − x±(0)2∣

√
s2 + x±(s)2

√
s2 + x±(0)2 (

√
s2 + x±(s)2 +

√
s2 + x±(0)2)

ds

≤ Cµ−δr
∫

1

ρ

1
s

x±(s) + x±(0)
√
s2 + x±(s)2 +

√
s2 + x±(0)2

ds

≤ Cµ−δr ∣ log ρ∣ .
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which vanishes for any ρ≫ exp (−µδr), in particular for ρ = µ−N for suitable N > 0, which we choose
here. For the second integral we have

∫

ρ

0

∣x±(s)
2 − x±(0)2∣

√
s2 + x±(s)2

√
s2 + x±(0)2 (

√
s2 + x±(s)2 +

√
s2 + x±(0)2)

ds

≤ C ∫
ρ

0
µ−δr (1 + µmin(s∗,2)/4−β∗+1/2+δ

+ µmin(s∗,2)/2+δs)

×
x±(0)

√
x±(0)2 + s2 (s +

√
x±(0)2 + s2)

ds

≤ Cµmin(s∗,2)/4−β∗−δr+1/2+δ
∫

ρ

0

x±(0)
√
x±(0)2 + s2 (s +

√
x±(0)2 + s2)

ds

≤ Cµmin(s∗,2)/4−β∗−δr+1/2+δ .

Note that for r = 2, we have δr=2 = 3/20 and thus β∗ − min(s∗,2)/4 − 1/2 + 3/20 > 0 for any
s∗ > 7/5 (see Remark 11.1.2). Also, optimizing this expression in the allowed r’s gives the assumption
r > f(s∗) given in Remark 11.1.2. Therefore, also this second integral vanishes as desired by choosing
0 < δ < β∗ −min(s∗,2)/4 − 7/20. We conclude that

m(κ)µ (∆) =
√
µ

2

⎡
⎢
⎢
⎢
⎢
⎣

∫

1

0
(

√
1 − s − 1
s

+

√
1 + s − 1
s

−

√
1 − s

1 − s + κ2 −

√
1 + s

1 + s + κ2)ds

+ ∫

1

0

2
√

s2 + (
∆(√µ)
µ )

2
ds + ∫

∞

1
(

√
1 + s
s
−

√
1 + s

1 + s + κ2)ds + o(1)
⎤
⎥
⎥
⎥
⎥
⎦

.

This may be computed (perhaps most easily by adding and subtracting the corresponding integral
with κ = 0) as

m(κ)µ =
√
µ(log µ

∆(√µ)
− 2 + log(8) + κπ

2
+ o(1)) .

We conclude by showing the third equality of Lemma 11.2.2.

Proposition 11.2.10. Let V be an admissible potential. Then

m
(κ)
µ (∆)
√
µ

= −
π

2√µb(κ)µ
+ o(1) .

Proof. Recall that, by the Birman–Schwinger principle the lowest eigenvalue of B∆,µ is −1. Using
the decomposition in Equation (11.2.2) and the bound in Equation (11.2.7) we get that

−1 = lim
µ→∞

m(κ)µ (∆) inf spec (V 1/2Fµ
†Fµ∣V ∣

1/2
) = lim

µ→∞
m(κ)µ (∆)eµ .

Now, since s∗ > 7/5 we have that ∣√µeµ∣ ≤ Cµ−2/5 by Lemma 11.2.6 (recall Equation (11.1.6) and
Equation (11.2.9)). Thus, by Proposition 11.2.9 we conclude that ∆(√µ) is exponentially small (in
some positive power of µ) as µ→∞.

To obtain the next order in the expansion of mµ(∆), we note that 1 + V 1/2M
(κ)
∆,µ∣V ∣

1/2 is invertible
for µ large enough by means of Equation (11.2.7). We can thus factorize the Birman–Schwinger
operator (11.2.2) as

1 +B∆,µ = (1 + V 1/2M
(κ)
∆,µ∣V ∣

1/2
)
⎛
⎜
⎝

1 +
m
(κ)
µ (∆)

1 + V 1/2M
(κ)
∆,µ∣V ∣

1/2
V 1/2F†

µFµ∣V ∣
1/2
⎞
⎟
⎠
.
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11. The BCS energy gap at high density

Because B∆,µ has −1 as its lowest eigenvalue by the Birman–Schwinger principle, we conclude that,
for µ large enough, the self–adjoint operator

T∆,µ ∶=m
(κ)
µ (∆)Fµ∣V ∣1/2

1
1 + V 1/2M

(κ)
∆,µ∣V ∣

1/2
V 1/2F†

µ

acting on L2(S2) has −1 as its lowest eigenvalue since it is isospectral to the right–most operator
above. (This follows from the fact that for operators A,B the operators AB and BA have the
same spectrum apart from possibly at 0. See also the argument around (10.3.20) as well as around
Equation (30) and Equation (47) in [312].)

To highest order T∆,µ is proportional to Vµ. Since the constant function u(p) = (4π)−1/2 on S2 is
the unique eigenvector of Vµ with lowest eigenvalue, this is true also for T∆,µ whenever µ is large
enough.

To find the lowest eigenvalue (which is −1) we expand the geometric series to first order and employ
first order perturbation theory. This is completely analogous to the arguments in [312] and (10.3.21).
We obtain

1
√
µ
m(κ)µ (∆) =

−1
µ1/2eµ − µ1/2⟨u∣FµVM

(κ)
∆,µV F†

µ∣u⟩ +O(µ−3β∗+3/2+δ)
(11.2.15)

for any δ > 0 (recall Equations (11.2.7), (11.2.8) and (11.2.11)). The error term in Equation (11.2.15)
is twofold. The first part comes from the expansion of the geometric series. The second part comes
from first order perturbation theory using the bounds

∣
√
µeµ∣ ≥ cδµ

−min(s∗,2)/2+1/2−δ and ∣µ1/2⟨u∣FµVM
(κ)
∆,µV F†

µ∣u⟩∣ ≤ Cδµ
−β∗−min(s∗,2)/2+1+δ

for any δ > 0 from Lemma 11.2.7 and Equation (11.2.11). The error from the series expansion is of or-
derO(µ−3β∗+3/2+δ) and the error from the perturbation argument is of order O(µ−2β∗−min(s∗,2)/2+3/2+δ)
and is hence dominated by the expansion of the geometric series, since β∗ ≤min(s∗,2)/2.

Now, we need to show that FµVM
(κ)
∆,µV F†

µ is close to W(κ)µ , when evaluated in ⟨u∣⋯∣u⟩. Therefore,
considering their difference, we split the involved radial p–integral according to ∣p∣ ≤ µN and ∣p∣ > µN
for some large N > 0. The second part is clearly bounded by, e.g., Cµ−N/2. For the first part, we
have ∆(p) ≤ CµN∆(√µ) by Equation (11.2.10). Using this in combination with the fact that
∆(√µ) is exponentially small, we find, by dominated convergence and Lipschitz continuity of the
involved angular integrals (cf. Equation (35) in [312] and (10.3.23)), that this part is bounded by
CDµ

−D for any D > 0. Since N > 0 was arbitrary, we conclude that

∣⟨u∣FµVM
(κ)
∆,µV F†

µ −W
(κ)
µ ∣u⟩∣ ≤ CDµ

−D (11.2.16)

for any D > 0. Thus, by combining Equation (11.2.11) and Equation (11.2.16) (recall Equa-
tion (11.1.9) and Equation (11.1.10)) we get

∣⟨u∣W(κ)µ ∣u⟩∣ ≤ Cδµ
−β∗−min(s∗,2)/2+1/2+δ (11.2.17)

for any δ > 0. (In particular b(κ)µ < 0 for large µ. This was also shown in Chapter 10.)

In particular, combining Equations (11.2.15), (11.2.16) and (11.2.17), we get again by a perturbation
theory argument that

1
√
µ
m(κ)µ (∆) = −

π

2√µb(κ)µ
+O(µ−3β∗+min(s∗,2)+1/2+δ

) ,

for any δ > 0. Since 3β∗ −min(s∗,2) − 1/2 > 0 we conclude the desired.
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11.2.2 Proofs of Auxiliary Lemmas
In this Subsection, we prove the auxiliary Lemmas 11.2.3, 11.2.4, and 11.2.8.

Proof of Lemma 11.2.3. First we show

∥α∥2H1 ≤ C ∥α∥
2
L2 +Cµ

3/2. (11.2.18)

Since V ∈ L3/2(R3) we have by Sobolev’s inequality [418, Thm. 8.3] inf spec (p
2

2 + V ) > −∞. Thus,
using

√
1 − 4x2 ≤ 1 − 2x2 and α̂ ≤ 1/2 we get

F(α) =
1
2 ∫R3

∣p2
− µ∣ (1 −

√
1 − 4α̂(p)2)dp + ∫

R3
V (x)∣α(x)∣2dx

≥ ∫
R3
(p2
− µ)α̂(p)2dp + ∫

R3
V (x)∣α(x)∣2dx

= ⟨α∣
p2

2
+ V ∣α⟩ + ∫

R3
(
p2

2
− µ) α̂(p)2dp

≥
1
4
∥α∥2H1 −C ∥α∥

2
L2 + ∫

R3
(
p2

4
− µ −

1
4
) α̂(p)2dp

≥
1
4
∥α∥2H1 −C ∥α∥

2
L2 −

1
4 ∫R3

[
p2

4
− µ −

1
4
]
−

dp

≥
1
4
∥α∥2H1 −C ∥α∥

2
L2 −Cµ

3/2 ,

which gives the desired. Now we show that

∥α̂1{∣p∣<t}∥L2 ≤ C ∥α̂1{∣p∣>t}∥L2 +Cµ
2δ−1
∥α∥2H1 ,

for t = µδ and 0 < δ < 1/2.

To see this, we split the integrals in the functional F according to small or large momentum p and
compute

F(α) =
1
2 ∫R3

∣p2
− µ∣ (1 −

√
1 − 4α̂(p)2)dp + ∫

R3
V (x)∣α(x)∣2dx

≥ ∫
∣p∣<t
∣p2
− µ∣α̂(p)2dp + ∫

∣p∣>t
∣p2
− µ∣α̂(p)2dp

+
1

(2π)3/2 ∬R3×R3
α̂(p)V̂ (p − q)α̂(q)dpdq

≥ µ ∥α̂1{∣p∣<t}∥
2
L2 − ∥p

2α̂1{∣p∣<t}∥
2
L2 + ⟨α̂1{∣p∣>t}∣p2

+ V ∣α̂1{∣p∣>t}⟩ − µ ∥α̂1{∣p∣>t}∥
2
L2

+
1

(2π)3/2
[∬

∣p∣,∣q∣<t
α̂(p)V̂ (p − q)α̂(q)dpdq + 2∬

∣p∣<t,∣q∣>t
α̂(p)V̂ (p − q)α̂(q)dpdq] .

Note that, again by Sobolev’s inequality [418, Thm. 8.3], we have

⟨α̂1{∣p∣>t}∣p2
+ V ∣α̂1{∣p∣>t}⟩ ≥ −C ∥α̂1{∣p∣>t}∥

2
L2 .

Moreover, by application of Young’s inequality [418, Thm. 4.2] we obtain

∫
∣p∣<t
∫
∣q∣<t

α̂(p)V̂ (p − q)α̂(q)dpdq ≥ − ∥V̂ ∥
L3 ∥α̂1{∣p∣<t}∥

2
L6/5

≥ −C (t3)
2⋅(5/6−1/2)

∥α̂1{∣p∣<t}∥
2
L2

= −Cµ2δ ∥α̂1{∣p∣<t}∥
2
L2
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and
∫
∣p∣<t
∫
∣q∣>t

α̂(p)V̂ (p − q)α̂(q)dpdq ≥ − ∥α̂1{∣p∣<t}∥L1 ∥V̂ ∥L3 ∥α̂1{∣p∣>t}∥L3/2

≥ −Ct3/2 ∥α∥H1 ∥α̂1{∣p∣<t}∥L2

= −Cµ3δ/2
∥α∥H1 ∥α̂1{∣p∣<t}∥L2 ,

where we used that ∥ĝ∥L3/2 ≤ C ∥g∥H1 . Thus we arrive at

F(α) ≥ cµ ∥α̂1{∣p∣<t}∥
2
L2 −C1µ

3δ/2
∥α∥H1 ∥α̂1{∣p∣<t}∥L2 −C2µ ∥α̂1{∣p∣>t}∥

2
L2 ,

where we absorbed all non-leading terms in these. This is a second degree polynomial in ∥α̂1{∣p∣<t}∥L2

and thus the value of ∥α̂1{∣p∣<t}∥L2 lies between the roots, i.e.

∥α̂1{∣p∣<t}∥L2 ≤
C1µ

3δ/2 ∥α∥H1 +

√

C2
1µ

3δ ∥α∥2H1 + 4cC2µ2 ∥α̂1{∣p∣>t}∥
2
L2

2cµ
≤ C ∥α̂1{∣p∣>t}∥L2 +Cµ

3δ/2−1
∥α∥H1 .

From the estimate

∥α̂1{∣p∣>t}∥
2
L2 = ∫∣p∣>t

α̂(p)2dp ≤ ∫
∣p∣>t
α̂(p)2

1 + p2

1 + t2
dp ≤ 1

1 + t2
∥α∥2H1 ≤ Cµ

−2δ
∥α∥2H1 ,

we conclude that

∥α∥2L2 = ∥α̂1{∣p∣<t}∥
2
L2 + ∥α̂1{∣p∣>t}∥

2
L2 ≤ C (µ

−2δ
+ µ3δ−2) ∥α∥2H1 .

Choosing the optimal δ = 2/5 we get ∥α∥L2 ≤ Cµ−2/5 ∥α∥H1 , which, in combination with Equa-
tion (11.2.18), yields

∥α∥2H1 ≤ Cµ
−4/5
∥α∥2H1 + µ

3/2.

Hence ∥α∥H1 ≤ Cµ3/4 and thus also ∥α∥L2 ≤ Cµ−2/5 ∥α∥H1 ≤ Cµ7/20 for sufficiently large µ.

We now turn to the proof of Lemma 11.2.4.

Proof of Lemma 11.2.4. Let t = 5
2 −

3
r . Then we have

∥∆∥L∞ ≤ C ∥V α∥L1 ≤ C ∥V ∥Lr ∥α∥Lr′ ≤ C ∥α∥
t
L2 ∥α∥

1−t
L6 ≤ Cµ

15−8t
20 = Cµ

24−5r
20r

by Sobolev’s inequality [418, Thm. 8.3]. For the difference note that ∆(p) −∆(q) is (proportional
to) the Fourier transform of V (x) (1 − ei(p−q)⋅x)α(x). Then

∥V (x) (1 − ei(p−q)x)∥
r

Lr
= ∫

R3
∣V (x)∣r ∣1 − ei(p−q)⋅x∣rdx ≤ C ∫

R3
∣V (x)∣r ∣p − q∣r ∣x∣rdx.

Using radiality of ∆, the same argument as before gives the desired.

Finally, we give the proof of Lemma 11.2.8.

Proof of Lemma 11.2.8. Recall from the factorization of the Birman–Schwinger operator in the proof
of Proposition 11.2.10, that the self–adjoint operator

m(κ)µ (∆)Fµ∣V ∣1/2
1

1 + V 1/2M
(κ)
∆,µ∣V ∣

1/2
V 1/2F†

µ
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acting on L2(S2) has −1 as its lowest eigenvalue and u(p) = (4π)−1/2 is the unique eigenvector with
lowest eigenvalue for µ large enough. Hence, one can easily see that

1
1 + V 1/2M

(κ)
∆,µ∣V ∣

1/2
V 1/2F†

µu

is an eigenvector of B∆,µ for the lowest eigenvalue and thus proportional to V 1/2α. By expanding
1

1+x = 1 − x
1+x we conclude that ∆ = f(µ)[φ̂ + ηµ], where

ηµ = −
√

4πF∣V ∣1/2
V 1/2M

(κ)
∆,µ∣V ∣

1/2

1 + V 1/2M
(κ)
∆,µ∣V ∣

1/2
V 1/2F†

µu ,

which can easily be bounded as

∥ηµ∥L∞ ≤ C ∥V ∥
1/2
L1 ∥V

1/2M
(κ)
∆,µ∣V ∣

1/2
∥

op
∥V 1/2F†

µu∥
L2
.

For ∣p∣ = √µ, we first note that φ̂(√µ) =
√

4πFµV F†
µu(1) = eµ. Similarly, since ηµ is radial, we

have that

ηµ(
√
µ) =

1
4π ∫S2

ηµ(
√
µq)dω(q) = − ⟨u

RRRRRRRRRRRRR

Fµ∣V ∣
1/2 V 1/2M

(κ)
∆,µ∣V ∣

1/2

1 + V 1/2M
(κ)
∆,µ∣V ∣

1/2
V 1/2F†

µ

RRRRRRRRRRRRR

u⟩

and we can thus bound

∣ηµ(
√
µ)∣ ≤ C ∥V 1/2M

(κ)
∆,µ∣V ∣

1/2
∥

op
∥∣V ∣1/2F†

µu∥
2

L2
.

It remains to check that

∥∣V ∣1/2F†
µu∥

2

L2
= C ∫

R3
∣V (x)∣ ∣∫

S2
ei
√
µp⋅x 1
√

4π
dω(p)∣

2
dx

= C ∫
R3
∣V (x)∣ (

sin√µ∣x∣
√
µ∣x∣

)

2
dx .

Now the claim follows by application of Equations (11.2.7) and (11.2.9).
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Chapter12
Universality in low-dimensional BCS

theory

This chapter contains the paper [338]:

J. Henheik, A. B. Lauritsen, and B. Roos. Universality in low-dimensional BCS theory. Rev. Math.
Phys., page 2360005, 2023

Abstract. It is a remarkable property of BCS theory that the ratio of the energy gap at zero
temperature Ξ and the critical temperature Tc is (approximately) given by a universal constant,
independent of the microscopic details of the fermionic interaction. This universality has rigorously
been proven quite recently in three spatial dimensions and three different limiting regimes: weak
coupling, low density, and high density. The goal of this short note is to extend the universal behavior
to lower dimensions d = 1,2 and give an exemplary proof in the weak coupling limit.
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12.1 Introduction
The Bardeen–Cooper–Schrieffer (BCS) theory of superconductivity [48] is governed by the BCS gap
equation. For translation invariant systems without external fields the BCS gap equation is

∆(p) = − 1
(2π)d/2 ∫Rd

V̂ (p − q)
∆(q)
E∆(p)

tanh(E∆(p)

2T
)dq (12.1.1)
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12. Universality in low-dimensional BCS theory

with dispersion relation E∆(p) =
√
(p2 − µ)2 + ∣∆(p)∣2. Here, T ≥ 0 denotes the temperature and

µ > 0 the chemical potential. We consider dimensions d ∈ {1,2,3}. The Fourier transform of the
potential V ∈ L1(Rd)∩LpV (Rd) (with a d-dependent pV ≥ 1 to be specified below), modeling their
effective interaction, is denoted by V̂ (p) = (2π)−d/2 ∫Rd V (x)e−ip⋅xdx.

According to BCS theory, a system is in a superconducting state, if there exists a non-zero solution
∆ to the gap equation (12.1.1). The question of existence of such a non-trivial solution ∆ hinges, in
particular, on the temperature T . It turns out, there exists a critical temperature Tc ≥ 0 such that
for T < Tc there exists a non-trivial solution, and for T ≥ Tc it does not [309, Theorem 12.1.3 and
Definition 12.1.4]. This critical temperature is one of the key (physically measurable) quantities of the
theory and its asymptotic behavior, in three spatial dimensions, has been studied in three physically
rather different limiting regimes: In a weak-coupling limit (i.e. replacing V → λV and taking λ→ 0)
[312, 269], in a low-density limit (i.e. µ→ 0) [311], and in a high-density limit (i.e. µ→∞) [333].

As already indicated above, at zero temperature, the function E∆ may be interpreted as the dispersion
relation of a certain ‘approximate’ Hamiltonian of the quantum many-body system, see [309, Appendix
A]. In particular

Ξ ∶= inf
p∈Rd

E∆(p) (12.1.2)

has the interpretation of an energy gap associated with the approximate BCS Hamiltonian and as
such represents a second key quantity of the theory. Analogously to the critical temperature, the
asymptotic behavior of this energy gap, again in three spatial dimensions, has been studied in the
same three different limiting regimes: In a weak coupling limit [312], in a low density limit [403],
and in a high density limit (see Chapter 11).

In this paper, we focus on a remarkable feature of BCS theory, which is well known in the physics
literature [48, 477, 400]: The ratio of the energy gap Ξ and critical temperature Tc tends to a
universal constant, independent of the microscopic details of the interaction between the fermions,
i.e. the potential V . More precisely, in three spatial dimension, it holds that

Ξ
Tc
≈
π

eγ
≈ 1.76 , (12.1.3)

where γ ≈ 0.577 is the Euler-Mascheroni constant, in each of the three physically very different limits
mentioned above. This result follows as a limiting equality by combining asymptotic formulas for
the critical temperature Tc (see [269, 312, 311, 333]) and the energy gap Ξ (see [312, 403] and
Chapter 11) in the three different regimes. Although these scenarios (weak coupling, low density,
and high density) are physically rather different, they all have in common that ‘superconductivity is
weak’ and one can hence derive an asymptotic formula for Tc and Ξ as they depart from being zero
(in the extreme cases λ = 0, µ = 0, µ =∞, respectively). However, all the asymptotic expressions are
not perturbative, as they depend exponentially on the natural dimensionless small parameter in the
respective limit. We refer to the above mentioned original works for details.

The goal of this note is to prove the same universal behavior (12.1.3), which has already been
established in three spatial dimension, also in dimensions d = 1,2 in the weak coupling limit
(i.e. replacing V → λV and taking λ → 0). This situation serves as a showcase for the methods
involved in the proofs of the various limits in three dimensions (see Remark 12.3.6 and Remark 12.3.9
below). Apart from the mathematical curiosity in d = 1,2, there have been recent studies in lower-
dimensional superconductors in the physics literature, out of which we mention one-dimensional
superconducting nanowires [467] and two-dimensional ‘magic angle’ graphene [137].

In the remainder of this introduction, we briefly recall the mathematical formulation of BCS theory,
which has been developed mostly by Hainzl and Seiringer, but also other co-authors [309, 269, 316].
Apart from the universality discussed here, also many other properties of BCS theory have been
shown using this formulation: Most prominently, Ginzburg-Landau theory, as an effective theory
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describing superconductors close to the critical temperature, has been derived from BCS theory
[270, 272, 220, 219]. More recently, it has been shown that the effect of boundary superconductivity
occurs in the BCS model [310]. We refer to [316] for a more comprehensive review of developments
in the mathematical formulation of BCS theory. The universal behavior in the weak coupling limit
for lower dimensions d = 1,2 is presented in Section 12.2. Finally, in Section 12.3, we provide the
proofs of the statements from Section 12.2.

12.1.1 Mathematical formulation of BCS theory
We will now briefly recall the mathematical formulation [309, 316] of BCS theory [48], which is
an effective theory developed for describing superconductivity of a fermionic gas. In the following,
we consider these fermions in Rd, d = 1,2, at temperature T ≥ 0 and chemical potential µ ∈ R,
interacting via a two-body potential V , for which we assume the following.

Assumption 12.1.1. We have that V is real-valued, reflection symmetric, i.e. V (x) = V (−x) for all
x ∈Rd, and it satisfies V ∈ LpV (Rd), where pV = 1 if d = 1, pV ∈ (1,∞) if d = 2.

Moreover, we neglect external fields, in which case the system is translation invariant.

The central object in the mathematical formulation of the theory is the BCS functional, which can
naturally be viewed as a function of BCS states Γ. These states are given by a pair of functions (γ,α)
and can be conveniently represented as a 2× 2 matrix valued Fourier multiplier on L2(Rd)⊕L2(Rd)

of the form

Γ̂(p) =
⎛
⎜
⎜
⎝

γ̂(p) α̂(p)

α̂(p) 1 − γ̂(p)

⎞
⎟
⎟
⎠

(12.1.4)

for all p ∈Rd. In (12.1.4), γ̂(p) denotes the Fourier transform of the one particle density matrix and
α̂(p) is the Fourier transform of the Cooper pair wave function. We require reflection symmetry of
α̂, i.e. α̂(−p) = α̂(p), as well as 0 ≤ Γ̂(p) ≤ 1 as a matrix.

The BCS free energy functional takes the form

FT [Γ] ∶= ∫
Rd
(p2
− µ)γ̂(p)dp − TS[Γ] + ∫

Rd
V (x)∣α(x)∣2dx , Γ ∈ D, (12.1.5)

D ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Γ̂(p) =
⎛
⎜
⎜
⎝

γ̂(p) α̂(p)

α̂(p) 1 − γ̂(p)

⎞
⎟
⎟
⎠

∶ 0 ≤ Γ̂ ≤ 1 , γ̂ ∈ L1
(Rd, (1 + p2

)dp) , α ∈H1
sym(Rd

)

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

,

where the entropy density is defined as

S[Γ] = −∫
Rd

TrC2 [Γ̂(p) log Γ̂(p)]dp .

The minimization problem associated with (12.1.5) is well defined. In fact, the following result has
only been proven for d = 3 and V ∈ L3/2(R3), but its extension to d = 1,2 is straightforward.

Proposition 12.1.2 ([309], see also [316]). Under Assumption 12.1.1 on V , the BCS free energy is
bounded below on D and attains its minimum.

The BCS gap equation (12.1.1) arises as the Euler–Lagrange equations of this functional [309].
Namely by defining ∆ = −2V α̂, the Euler–Lagrange equation for α takes the form of the BCS gap
equation (12.1.1). Additionally, one has the following linear criterion for the BCS gap equation to
have non-trivial solutions. Again, so far, a proof has only been given in spatial dimension d = 3 and
for V ∈ L3/2(R3), but its extension to d = 1,2 is straightforward.
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Theorem 12.1.3 ([309, Thm. 1]). Let V satisfy Assumption 12.1.1 and let µ ∈R as well as T ≥ 0.
Then, writing FT [Γ] ≡ FT (γ,α), the following are equivalent.

1. The minimizer of FT is not attained with α = 0, i.e.

inf
(γ,α)∈D

FT (γ,α) < inf
(γ,0)∈D

FT (γ,0),

2. There exists a pair (γ,α) ∈ D with α ≠ 0 such that ∆ = −2V α̂ satisfies the BCS gap equation
(12.1.1),

3. The linear operator KT + V , where KT (p) =
p2−µ

tanh((p2−µ)/(2T )) has at least one negative
eigenvalue.

The third item immediately leads to the following definition of the critical temperature Tc for the
existence of non-trivial solutions of the BCS gap equation (12.1.1).

Definition 12.1.4 (Critical temperature, see [269, Def. 1]). For V satisfying Assumption 12.1.1, we
define the critical temperature Tc ≥ 0 as

Tc ∶= inf{T > 0 ∶KT + V ≥ 0} . (12.1.6)

By KT (p) ≥ 2T and the asymptotic behavior KT (p) ∼ p
2 for ∣p∣ → ∞, Sobolev’s inequality [418,

Thm. 8.3] implies that the critical temperature is well defined.

The other object we study is the energy gap Ξ defined in (12.1.2). The energy gap depends on the
solution ∆ of the gap equation (12.1.1) at T = 0. A priori, ∆ may not be unique. However, for
potentials with non-positive Fourier transform, this possibility can be ruled out.

Proposition 12.1.5 (see [312, (21)-(22) and Lemma 2]). Let V satisfy Assumption 12.1.1 (and
additionally V ∈ L1(R2) in case that d = 2). Moreover, we assume that V̂ ≤ 0 and V̂ (0) < 0. Then,
there exists a unique minimizer Γ of F0 (up to a constant phase in α). One can choose the phase
such that α has strictly positive Fourier transform α̂ > 0.

In particular, we conclude that ∆ is strictly positive. Moreover, by means of the gap equation
(12.1.1), ∆ is continuous and thus Ξ > 0.
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12.2 Main Results
As explained in the introduction, our main result in this short note is the extension of the universality
(12.1.3) from d = 3 to lower spatial dimensions d = 1,2 in the limit of weak coupling (i.e., replacing
V → λV and taking λ→ 0). We assume the following properties for the interaction potential V .

Assumption 12.2.1. Let d ∈ {1, 2} and assume that V satisfies Assumption 12.1.1 as well as V̂ ≤ 0,
V̂ (0) < 0. Moreover, for d = 1 we assume that (1 + ∣ ⋅ ∣ε)V ∈ L1(R1) for some ε > 0. Finally, in case
that d = 2, we suppose that V ∈ L1(R2) is radial.
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By Proposition 12.1.5, this means that, in particular, the minimizer of F0 is unique (up to a phase)
and the associated energy gap at zero temperature (12.1.2) is strictly positive, Ξ > 0. We are now
ready to state our main result.

Theorem 12.2.2 (BCS Universality in one and two dimensions). Let V be as in Assumption 12.2.1.
Then the critical temperature Tc(λ) (defined in (12.1.6)) and the energy gap Ξ(λ) (defined in
(12.1.2)) are strictly positive for all λ > 0 and it holds that

lim
λ→0

Ξ(λ)
Tc(λ)

=
π

eγ
,

where γ ≈ 0.577 is the Euler-Mascheroni constant.

To prove the universality, we separately establish asymptotic formulas for Tc (see Theorem 12.2.5)
and Ξ (see Theorem 12.2.7), valid to second order, and compare them by taking their ratio. The
asymptotic formula for Tc is valid under weaker conditions on V than Assumption 12.2.1, because we
do not need uniqueness of ∆. To obtain the asymptotic formulas, we first introduce two self-adjoint
operators V(d)µ and W(d)µ mapping L2(Sd−1)→ L2(Sd−1) and as such measuring the strength of the
interaction V̂ on the (rescaled) Fermi surface (see [312, 333] and Chapter 11). To assure that V(d)µ

and W(d)µ will be well-defined and compact, we assume the following.

Assumption 12.2.3. Let V satisfy Assumption 12.1.1. Additionally, assume that for d = 1,
(1 + (ln(1 + ∣ ⋅ ∣))2)V ∈ L1(R1) and for d = 2, V ∈ L1(R2).

First, in order to capture the strength to leading order, we define V(d)µ via

(V
(d)
µ u)(p) =

1
(2π)d/2 ∫Sd−1

V̂ (
√
µ(p − q))u(q)dω(q) ,

where dω is the Lebesgue measure on Sd−1. Since V ∈ L1(Rd), we have that V̂ is a bounded
continuous function and hence V(d)µ is a Hilbert-Schmidt operator (in fact, trace class with trace being
equal to (2π)−d∣Sd−1∣ ∫Rd V (x)dx). Therefore, its lowest eigenvalue e(d)µ ∶= inf specV(d)µ satisfies
e
(d)
µ ≤ 0 and it is strictly negative if e.g. ∫ V < 0 as in Assumption 12.2.1.

Second, in order to capture the strength of V̂ to next to leading order, we define the operator W(d)µ

via its quadratic form

⟨u∣W(d)µ ∣u⟩

= µd/2−1
[∫
∣p∣<
√

2

1
∣p2 − 1∣

(∣ψ(
√
µp)∣2 − ∣ψ(

√
µp/∣p∣)∣2)dp + ∫

∣p∣>
√

2

1
∣p2 − 1∣

∣ψ(
√
µp)∣2dp] ,

where ψ(p) = 1
(2π)d/2 ∫Sd−1 V̂ (p −

√
µq)u(q)dω(q) and u ∈ L2(Sd−1). The proof of the following

proposition shall be given in Section 12.3.3.

Proposition 12.2.4. Let d ∈ {1,2} and let V satisfy Assumption 12.2.3. The operator W(d)µ is
well-defined and Hilbert-Schmidt.

Next, we define the self-adjoint Hilbert-Schmidt operator

B
(d)
µ (λ) ∶=

π

2
(λV(d)µ − λ2

W
(d)
µ )

on L2(Sd−1) and its ground state energy

b(d)µ (λ) ∶= inf spec (B(d)µ (λ)) . (12.2.1)
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12. Universality in low-dimensional BCS theory

Note that if e(d)µ < 0, then also b(d)µ (λ) < 0 for small enough λ. After these preparatory definitions,
we are ready to state the separate asymptotic formulas for the critical temperature and the energy
gap in one and two dimensions, which immediately imply Theorem 12.2.2.

Theorem 12.2.5 (Critical Temperature for d = 1,2). Let µ > 0. Let V satisfy Assumption 12.2.3
and additionally e(d)µ < 0. Then the critical temperature Tc, given in Definition 12.1.4, is strictly
positive and satisfies

lim
λ→0

⎛

⎝
ln( µ

Tc(λ)
) +

π

2µd/2−1 b
(d)
µ (λ)

⎞

⎠
= −γ − ln(2cd

π
) ,

where γ denotes the Euler-Mascheroni constant and c1 =
4

1+
√

2 and c2 = 1.

Here, the Assumptions on V are weaker than Assumption 12.2.1, since V̂ (0) < 0 implies that e(d)µ < 0.
We thus have the asymptotic behavior

Tc(λ) = 2cd
eγ

π
(1 + o(1))µeπ/(2µ

d/2−1b
(d)
µ (λ))

in the limit of small λ.

Remark 12.2.6. Theorem 12.2.5 is essentially a special case of [314, Theorem 2]. We give the proof
here for two main reasons.

(i) There is still some work required to translate the statement of [314, Theorem 2] into a form in
which it is comparable to that of Theorem 12.2.7 (in order to prove Theorem 12.2.2). The
main difficulty is that the operator W(d)µ in [314] is only defined via a limit, [314, Equation
(2.10)].

(ii) The goal of this paper is to give an exemplary proof of Theorem 12.2.5 in order to compare it
to the proofs of the similar statements in the literature concerning the asymptotic behavior of
the critical temperature in various limits [311, 312, 333].

Theorem 12.2.5 is complemented by the following asymptotics for the energy gap.

Theorem 12.2.7 (Energy Gap for d = 1,2). Let V satisfy Assumption 12.2.1 and let µ > 0. Then
there exists a unique radially symmetric minimizer (up to a constant phase) of the BCS functional
(12.1.5) at temperature T = 0. The associated energy gap Ξ, given in (12.1.2), is strictly positive
and satisfies

lim
λ→0

⎛

⎝
ln(µ

Ξ
) +

π

2µd/2−1 b
(d)
µ (λ)

⎞

⎠
= − ln(2cd) ,

where b(d)µ is defined in (12.2.1) and c1 =
4

1+
√

2 and c2 = 1.

In other words, we have the asymptotic behavior

Ξ(λ) = 2cd (1 + o(1))µeπ/(2µ
d/2−1b

(d)
µ (λ))

in the limit of small λ. Now, Theorem 12.2.2 follows immediately from Theorems 12.2.5 and 12.2.7.
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Remark 12.2.8 (Other limits in dimensions d = 1,2). Similarly to the presented results, one could
also consider the limits of low and high density. We expect that also here the universality Ξ

Tc
≈ π

eγ

holds. As mentioned in the introduction, this has already been shown in three spatial dimensions;
see [311, 403, 333] and Chapters 10–11. We expect that one could generalize the arguments of
[311, 403] and Chapters 10–11 to lower dimensions, but that there will be some non-trivial technical
difficulties in doing so. Also for the weak coupling limit presented here, the overall structure and
ideas of the proof are the same in lower dimensions as in three dimensions [312], but with non-trivial
technical differences, see Remark 12.3.3.

The following is an example of such a non-trivial difference in the low-density limit. In three spatial
dimensions [311, 403] the asymptotic formulas for Tc and Ξ were obtained for attractive potentials
V not creating bound states of −∇2 + V . This latter condition ensures that the low-density limit is
given by µ→ 0. However, in spatial dimensions one and two, attractive potentials, no matter how
weak, always give rise to bound states of −∇2 + V , see [525]. This means that one should not take
the limit µ→ 0, but rather the limit µ→ −Eb, with −Eb < 0 the energy of the (lowest energy) bound
state, see [315]. We will not deal with the low- and high-density limits here.

The rest of the paper is devoted to proving Theorem 12.2.5 and Theorem 12.2.7.

12.3 Proofs
The overall structure of our proofs is as follows: First, we argue that the Schrödinger type operators
KTc + λV and E∆ + λV have lowest eigenvalue zero. The second step is to study the corresponding
Birman-Schwinger operators

B
(d)
T ∶= λV 1/2K−1

T ∣V ∣
1/2 and B

(d)
∆ ∶= λV 1/2E−1

∆ ∣V ∣
1/2 ,

where V (x)1/2 = sgn(V (x))∣V (x)∣1/2. According to the Birman-Schwinger principle, the lowest
eigenvalue of B(d)Tc

and B(d)∆ is −1. It turns out, that for X ∈ {T,∆} one can decompose

B
(d)
X = λm(d)µ (X)V

1/2
(F(d)µ )

†F(d)µ ∣V ∣
1/2
+ λV 1/2M

(d)
X ∣V ∣

1/2, (12.3.1)

where V 1/2M
(d)
X ∣V ∣

1/2 are bounded operators,

m(d)µ (T ) =
1
∣Sd−1∣ ∫∣p∣<

√
2µ

1
KT (p)

dp, (12.3.2)

m(d)µ (∆) =
1
∣Sd−1∣ ∫∣p∣<

√
2µ

1
E∆(p)

dp, (12.3.3)

and F
(d)
µ ∶ L1(Rd)→ L2(Sd−1) is the (scaled) Fourier transform restricted to the (rescaled) Fermi

sphere,
(F(d)µ ψ) (p) =

1
(2π)d/2 ∫Rd

ψ(x)e−i
√
µp⋅xdx .

Note that for an L1-function, pointwise values of its Fourier transform are well-defined by the
Riemann–Lebesgue lemma. (In particular the restriction to a co–dimension 1 manifold of a sphere is
well-defined.)

To satisfy the constraint that the lowest eigenvalue of the Birman-Schwinger operators is −1, the
functions m(d)µ must diverge as λ→ 0. It turns out that this is only possible if T and ∆ go to zero.
For each m

(d)
µ one then derives the asymptotics up to second order in two ways, once from the

constraint that B(d)X has lowest eigenvalue −1 and once by directly computing the asymptotics of
m
(d)
µ for T and ∆ going to zero.
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12. Universality in low-dimensional BCS theory

Indeed, for the critical temperature we obtain the following asymptotics, which, by combining them,
immediately prove Theorem 12.2.5.

Proposition 12.3.1. Let µ > 0. Let V satisfy Assumption 12.2.3 and additionally e(d)µ < 0. Then,
the critical temperature Tc is positive and, as λ→ 0, we have that

m(d)µ (Tc) = −
π

2b(d)µ (λ)
+ o(1) ,

m(d)µ (Tc) = µ
d/2−1

(ln( µ
Tc
) + γ + ln(2cd

π
) + o(1)) .

For the energy gap we obtain the following asymptotics, which, again by combining them, immediately
prove Theorem 12.2.7.

Proposition 12.3.2. Let V satisfy Assumption 12.2.1 and let µ > 0. Then (by Proposition 12.1.5)
we have a strictly positive radially symmetric gap function ∆ and associated energy gap Ξ, which, as
λ→ 0, satisfy the asymptotics

Ξ =∆(√µ)(1 + o(1))

m(d)µ (∆) = −
π

2b(d)µ (λ)
+ o(1)

m(d)µ (∆) = µd/2−1
(ln( µ

∆(√µ)
) + ln(2cd) + o(1))

With a slight abuse of notation, using radiality of ∆, we wrote ∆(√µ) instead of ∆(√µp̂) for some
p̂ ∈ Sd−1.

Remark 12.3.3. The main technical differences between d ∈ {1,2} considered here and the proof
for d = 3 in [312] arise when bounding V 1/2M

(d)
X ∣V ∣

1/2. The underlying reason is that the Fourier
transform of the constant function on the sphere jd(x) = (2π)−d/2 ∫Sd−1 eip⋅xdω(p) decays like 1/∣x∣
for large ∣x∣ in three dimensions, but only like ∣x∣−1/2 in two dimensions and does not decay for d = 1.

Remark 12.3.4. In [186], Cuenin and Merz use the Tomas-Stein theorem to define F
(d)
µ on a larger

space than L1(Rd). With this they are able to prove a general version of Theorem 12.2.5 under
slightly weaker conditions on V . However, we do not pursue this here, see Remark 12.2.6.

12.3.1 Proof of Proposition 12.3.1

Proof of Proposition 12.3.1. The argument is divided into several steps.

1. A priori spectral information on KTc + λV . First note that, due to Theorem 12.1.3 and
Definition 12.1.4, the critical temperature Tc is determined by the lowest eigenvalue of KT + λV
being 0 exactly for T = Tc.

2. Birman-Schwinger principle. Next, we employ the Birman-Schwinger principle, which says that
the compact Birman-Schwinger operator B(d)T = λV 1/2K−1

T ∣V ∣
1/2 has −1 as its lowest eigenvalue

exactly for T = Tc, see [269, 312].

Using the notation for the Fourier transform restricted to the rescaled Fermi sphere introduced above,
we now decompose the Birman-Schwinger operator as in (12.3.1), where M (d)

T is defined through
the integral kernel

M
(d)
T (x, y) =

1
(2π)d

[∫
∣p∣<
√

2µ

1
KT (p)

(eip⋅(x−y) − ei
√
µp/∣p∣⋅(x−y)

)dp

+∫
∣p∣>
√

2µ

1
KT

eip⋅(x−y)dp] .
(12.3.4)
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We claim that V 1/2M
(d)
T ∣V ∣

1/2 is uniformly bounded.

Lemma 12.3.5. Let µ > 0. Let V satisfy Assumption 12.2.3. Then we have for all T ≥ 0

∥V 1/2M
(d)
T ∣V ∣

1/2
∥

HS
≤ C ,

where C > 0 denotes some positive constant and ∥ ⋅ ∥HS is the Hilbert-Schmidt norm.

Armed with this bound, we have that for sufficiently small λ that 1 + λV 1/2M
(d)
T ∣V ∣

1/2 is invertible,
and hence

1 +B(d)T = (1 + λV 1/2M
(d)
T ∣V ∣

1/2
)
⎛

⎝
1 +

λm
(d)
µ (T )

1 + λV 1/2M
(d)
T ∣V ∣

1/2
V 1/2
(F(d)µ )

†F(d)µ ∣V ∣
1/2⎞

⎠
.

Thus, the fact that B(d)T has lowest eigenvalue −1 at T = Tc is equivalent to

λm(d)µ (T )F
(d)
µ ∣V ∣

1/2 1
1 + λV 1/2M

(d)
T ∣V ∣

1/2
V 1/2
(F(d)µ )

† (12.3.5)

having lowest eigenvalue −1, again at T = Tc, as it is isospectral to the rightmost operator on the
right-hand-side above. (Recall that for bounded operators A,B, the operators AB and BA have
the same spectrum apart from possibly at 0. However, in our case, both operators are compact on
an infinite dimensional space and hence 0 is in both spectra.)

We now prove Lemma 12.3.5.

Proof of Lemma 12.3.5. We want to bound the integral kernel (12.3.4) of M (d)
T uniformly in T .

Hence, we will bound KT ≥ ∣p
2 − µ∣. The computation is slightly different in d = 1 and d = 2, so we

do them separately.

d = 1. The second integral in (12.3.4) is bounded by

2∫
∣p∣>
√

2µ

1
∣p2 − µ∣

dp = 2arcoth
√

2
√
µ

.

For the first integral, we use that ∣eix − eiy ∣ ≤min{∣x − y∣,2}, ∣p2 − µ∣ ≥
√
µ∣∣p∣ −

√
µ∣, and increase

the domain of integration to obtain the bound

2
√
µ
∫

2√µ

0

min {∣∣p −√µ∣∣x − y∣,2}
∣p −
√
µ∣

dp = 8
√
µ
[1 + ln(max{

∣x − y∣
√
µ

2
,1})]

≤
8
√
µ
(1 + ln(1 +√µmax{∣x∣, ∣y∣}).

We conclude that ∣M (1)
T (x, y)∣ ≲

1√
µ(1 + ln(1 +√µmax{∣x∣, ∣y∣})). Hence,

∥V 1/2M
(1)
T ∣V ∣

1/2
∥

2

HS
≲

1
µ
(∥V ∥2L1(R) + ∥V ∥L1(R)∫

R
∣V (x)∣(1 + ln(1 +√µ∣x∣))2dx) .

d = 2. We first compute the angular integral. Note that ∫S1 eipxdω(p) = 2πJ0(∣x∣), where J0 is the
zeroth order Bessel function. For the second integral in (12.3.4) we may bound ∣p2 − µ∣ ≥ cp2. Up to
some finite factor, the second integral is hence bounded by

∫

∞
√

2µ

1
p
∣J0(p∣x − y∣)∣dp ≤ C ∫

∞
√

2µ

1
p1+λ ∣x − y∣

−λdp ≤ Cλ∣x − y∣−λ,
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for any 0 < λ ≤ 1/2 since ∣J0(x)∣ ≤ C and
√
xJ0(x) ≤ C, see e.g. [122, (9.55f), (9.57a)]. For the

first integral we get the bound

∫

√
2µ

0

p

∣p2 − µ∣
∣J0(p∣x − y∣) − J0(

√
µ∣x − y∣)∣dp.

Here we use that J0 is Lipschitz, since its derivative J−1 is bounded (see e.g. [122, (9.55a),(9.55f)]),
so that

∣J0(x) − J0(y)∣ ≤ C ∣x − y∣
1/3
(∣J0(x)∣ + ∣J0(y)∣)

2/3
≤ C ∣x − y∣1/3 (x−1/3

+ y−1/3
) .

That is

∣J0(p∣x − y∣) − J0(
√
µ∣x − y∣)∣ ≤ C

∣p −
√
µ∣1/3

p1/3 +
√
µ1/3 .

This shows that the first integral is bounded. We conclude that ∣M (2)
T (x, y)∣ ≲ 1 + 1

∣x−y∣λ for any
0 < λ ≤ 1/2. Then, by the Hardy–Littlewood–Sobolev inequality [418, Theorem 4.3] we have that

∥V 1/2M
(2)
T ∣V ∣

1/2
∥

2

HS
=∬ ∣V (x)∣∣M

(2)
T (x, y)∣∣V (y)∣dxdy ≲ ∥V ∥2L1(R2) + ∥V ∥

2
Lp(R2)

for any 1 < p ≤ 4/3.

3. First order. Evaluating (12.3.5) at T = Tc and expanding the geometric series to first order we
get

−1 = λm(d)µ (Tc) inf spec
⎛

⎝
F(d)µ ∣V ∣

1/2 1
1 + λV 1/2M

(d)
Tc
∣V ∣1/2

V 1/2
(F(d)µ )

†⎞

⎠

= λm(d)µ (Tc) inf specV(d)µ (1 +O(λ)) = λm(d)µ (Tc) e(d)µ (1 +O(λ))

where we used V(d)µ = F
(d)
µ V (F

(d)
µ )

†. Since by assumption e(d)µ < 0, this shows that m(d)µ (Tc)→∞
as λ→ 0.

4. A priori bounds on Tc. By (12.3.2), the divergence of m(d)µ as λ→ 0 in particular shows that
Tc/µ→ 0 in the limit λ→ 0.

5. Calculation of the integral m(d)µ (Tc). This step is very similar to [312, Lemma 1] and [310,
Lemma 3.5], where the asymptotics have been computed for slightly different definitions of m(d)µ in
three and one spatial dimension, respectively. Integrating over the angular variable and substituting
s = ∣

∣p∣2
µ − 1∣, we get

m(d)µ (Tc) = µ
d/2−1

∫

1

0
tanh( s

2(Tc/µ)
)
(1 + s)d/2−1 + (1 − s)d/2−1

2s
ds.

According to [312, Lemma 1],

lim
Tc↓0

⎛
⎜
⎝
∫

1

0

tanh ( s
2(Tc/µ))

s
ds − ln µ

Tc

⎞
⎟
⎠
= γ − ln π

2
.

By monotone convergence, it follows that

m(d)µ (Tc) = µ
d/2−1

[ln µ

Tc
+ γ − ln π

2
+ ∫

1

0

(1 − s)d/2−1 + (1 + s)d/2−1 − 2
2s

ds + o(1)] .

The remaining integral equals ln cd and we have thus proven the second item in Proposition 12.3.1.
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Combining this with the third step, one immediately sees that the critical temperature vanishes
exponentially fast, Tc ∼ e1/λeµ , as λ→ 0, recalling that e(d)µ < 0 by assumption.

6. Second order. Now, to show the universality, we need to compute the next order correction. To
do so, we expand the geometric series in (12.3.5) and employ first order perturbation theory, yielding
that

m(d)µ (Tc) =
−1

λ ⟨u∣F
(d)
µ V (F

(d)
µ )

†∣u⟩ − λ2 ⟨u∣F
(d)
µ VM

(d)
Tc
V (F

(d)
µ )

†∣u⟩ +O(λ3)
, (12.3.6)

where u is the (normalized) ground state (eigenstate of lowest eigenvalue) of F(d)µ V (F
(d)
µ )

†. (In case
of a degenerate ground state, u is the ground state minimizing the second order term.)

This second order term in the denominator of (12.3.6) is close to W(d)µ . More precisely, it holds that

lim
λ→0
⟨u∣F(d)µ VM

(d)
Tc
V (F(d)µ )

†
∣u⟩ = ⟨u∣W(d)µ ∣u⟩ , (12.3.7)

which easily follows from dominated convergence, noting that 1
KT

increases to 1
∣p2−µ∣ as T → 0. We

then conclude that

lim
λ→0

⎛

⎝
m(d)µ (Tc) +

π

2b(d)µ (λ)

⎞

⎠
= 0 ,

since ⟨u∣λV(d)µ − λ2W
(d)
µ ∣u⟩ = inf spec(λV(d)µ − λ2W

(d)
µ ) + O(λ

3) = π
2 b
(d)
µ (λ) + O(λ

3), again by
first-order perturbation theory. This concludes the proof of Proposition 12.3.1.

We conclude this subsection with several remarks, comparing our proof with those of similar results
from the literature.

Remark 12.3.6 (Structure here vs. in earlier papers on Tc). We compare the structure of our proof
to that of the different limits in three dimensions [312, 311] and Chapter 10:

• Weak coupling: The structure of the proof we gave here is quite similar to that of [312], only
they do Steps 5 and 6 in the opposite order. Also the leading term for Tc was shown already
in [269], where a computation somewhat similar to Steps 1–4 is given.

• High density: For µ → ∞, the structure of the proof in Chapter 10 is slightly different
compared to the one given here. This is basically due to the facts that (i) the necessary a priori
bound Tc = o(µ) already requires the Birman-Schwinger decomposition and (ii) the second
order requires strengthened assumptions compared to the first order. To conclude, the order of
steps in Chapter 10 can be thought of as: 1, 5, 4 (establishing Tc = O(µ)), 2, 3, 4 (establishing
Tc = o(µ)), 2 (again), 6. Here the final step is much more involved than in the other limits
considered.

• Low density: As above, for the proof of the low density limit in [311] the structure is slightly
different. One first needs the a priori bound Tc = o(µ) on the critical temperature before
one uses the Birman-Schwinger principle and decomposes the Birman-Schwinger operator.1
Also, the decomposition of the Birman-Schwinger operator is again different. For the full
decomposition and analysis of the Birman-Schwinger operator one needs also the first-order
analysis, that is Step 2, which is done in two parts. The order of the steps in [311] can then
mostly be though of as: 1, 4, 5, 2, 3, 2 (again), 6.

1Strictly speaking, in [311], it is only proven that Tc = O(µ) (which is sufficient for applying the Birman-Schwinger
principle), while the full Tc = o(µ) itself requires the Birman-Schwinger decomposition (see [402, Remark 4.12] for
details).
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12. Universality in low-dimensional BCS theory

12.3.2 Proof of Proposition 12.3.2

Proof of Proposition 12.3.2. The structure of the proof is parallel to that of Proposition 12.3.1 for
the critical temperature.

1. A priori spectral information on E∆ + λV . First, it is proven in [312, Lemma 2] that F0 has a
unique minimizer α which has strictly positive Fourier transform. Using radiality of V , it immediately
follows that this minimizer is rotationally symmetric (since otherwise rotating α would give a different
minimizer) and hence also ∆ = −2λV̂ ⋆ α̂ is rotation invariant. It directly follows from [312, (43) and
Lemma 3] that that E∆ +λV has lowest eigenvalue 0, and that the minimizer α is the corresponding
eigenfunction.

2. Birman-Schwinger principle. This implies, by means of the Birman-Schwinger principle, that
the Birman-Schwinger operator B(d)∆ = λV 1/2E−1

∆ ∣V ∣
1/2 has −1 as its lowest eigenvalue. As in the

proof of Proposition 12.3.1, we decompose it as described in (12.3.1) and prove the second summand
to be uniformly bounded.

Lemma 12.3.7. Let µ > 0. Let V satisfy Assumption 12.2.3. Then, uniformly in small λ, we have

∥V 1/2M
(d)
∆ ∣V ∣

1/2
∥

HS
≤ C .

With this one may similarly factor

1 +B(d)∆ = (1 + λV 1/2M
(d)
∆ ∣V ∣

1/2
)
⎛

⎝
1 +

λm
(d)
µ (∆)

1 + λV 1/2M
(d)
∆ ∣V ∣

1/2
V 1/2
(F(d)µ )

†F(d)µ ∣V ∣
1/2⎞

⎠
(12.3.8)

and conclude that

T
(d)
∆ ∶= λm(d)µ (∆)F(d)µ ∣V ∣1/2

1
1 + λV 1/2M

(d)
∆ ∣V ∣

1/2
V 1/2
(F(d)µ )

† (12.3.9)

has lowest eigenvalue −1.

Proof of Lemma 12.3.7. Note that M∆ has kernel

M∆(x, y) =
1
(2π)d

[∫
∣p∣<
√

2µ

1
E∆(p)

(eip⋅(x−y) − ei
√
µp/∣p∣⋅(x−y)

)dp

+∫
∣p∣>
√

2µ

1
E∆(p)

eip⋅(x−y)dp] .

We may bound this exactly as in the proof of Lemma 12.3.5 using that E∆(p) ≥ ∣p
2 − µ∣.

3. First order. Expanding the geometric series in (12.3.9) to first order, we see that

−1 = λm(d)µ (∆) inf spec
⎛

⎝
F(d)µ ∣V ∣

1/2 1
1 + λV 1/2M

(d)
∆ ∣V ∣

1/2
V 1/2
(F(d)µ )

†⎞

⎠

= λm(d)µ (∆) inf specV(d)µ (1 +O(λ)) = λe(d)µ m(d)µ (∆)(1 +O(λ)).

Hence, in particular, m(d)µ (∆) ∼ − 1
λe
(d)
µ

→∞ as λ→ 0.

4. A priori bounds on ∆. We now prepare for the computation of the integral m(d)µ (∆) in terms
of ∆(√µ). This requires two types of bounds on ∆: One bound estimating the gap function ∆(p)
at general momentum p ∈ Rd in terms of ∆(√µ) (see (12.3.10)), and one bound controlling the
difference ∣∆(p) −∆(q)∣ in some kind of Hölder-continuity estimate (see (12.3.11)).
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Lemma 12.3.8. Suppose that V is as in Assumption 12.2.1. Then for λ small enough

∆(p) = f(λ) (∫
Sd−1

V̂ (p −
√
µq)dω(q) + ληλ(p)) ,

where f is some function of λ and ∥ηλ∥L∞(Rd) is bounded uniformly in λ.

Proof. Recall that α is the eigenfunction of E∆ + λV with lowest eigenvalue 0. Then, by the
Birman-Schwinger principle, ϕ = V 1/2α satisfies

B∆ϕ = λV
1/2 1
E∆
∣V ∣1/2V 1/2α = −ϕ.

With the decomposition Equation (12.3.8) then ϕ is an eigenfunction of

λm
(d)
µ (∆)

1 + λV 1/2M
(d)
∆ ∣V ∣

1/2
V 1/2
(F(d)µ )

†F(d)µ ∣V ∣
1/2

of eigenvalue −1. Thus, F(d)µ ∣V ∣1/2ϕ is an eigenfunction of T (d)∆ of (lowest) eigenvalue −1. Now
u = ∣Sd−1∣−1/2 is the unique eigenfunction corresponding to the lowest eigenvalue of V(d)µ by radiality
of V and the assumption V̂ ≤ 0 (see e.g. [269]). Hence, for λ small enough, u is the unique
eigenfunction of T (d)∆ of smallest eigenvalue. Thus,

ϕ = f(λ)
1

1 + λV 1/2M
(d)
∆ ∣V ∣

1/2
V 1/2
(F(d)µ )

†u = f(λ) (V 1/2
(F(d)µ )

†u + λξλ)

for some number f(λ). The function ξλ satisfies ∥ξλ∥L2(Rd) ≤ C by Lemma 12.3.7. Noting that

∆ = −2∣V ∣1/2ϕ̂ and bounding ∥∣V ∣1/2ξλ̂
∥
L∞
≤ ∥V ∥

1/2
L1 ∥ξλ∥L2 we get the desired.

Evaluating the formula in Lemma 12.3.8 at p =√µ we get ∣f(λ)∣ ≤ C∆(√µ) for λ small enough.
This in turn implies that

∆(p) ≤ C∆(√µ) . (12.3.10)

For the Hölder-continuity, we have by rotation invariance

∣∫ V̂ (p −
√
µr) − V̂ (q −

√
µr)dω(r)∣ = ∣∫ V̂ (∣p∣e1 −

√
µr) − V̂ (∣q∣e1 −

√
µr)dω(r)∣

= ∣
1

(2π)d/2 ∫Rd
dx(V (x) (ei∣p∣x1 − ei∣q∣x1)∫

Sd−1
e−i
√
µx⋅rdω(r))∣

≤ Cϵµ
−ϵ/2
∣∣p∣ − ∣q∣∣ϵ∫ dx(∣V (x)∣(√µ∣x∣)ϵ ∣∫

Sd−1
e−i
√
µx⋅rdω(r)∣) ,

for any 0 < ϵ ≤ 1. For d = 2 we have V ∈ L1(R2) and

∣∫
Sd−1

e−i
√
µxrdω(r)∣ = ∣J0(

√
µ∣x∣)∣ ≤ (

√
µ∣x∣)−1/2.

For d = 1 we have ∣x∣ϵV ∈ L1(R) for some ϵ > 0 and

∣∫
Sd−1

e−i
√
µx⋅rdω(r)∣ = 2∣ cos(√µ∣x∣)∣ ≤ 2.

We conclude that with ϵ = 1/2 for d = 2 and small enough ϵ > 0 for d = 1

∣∆(p) −∆(q)∣ ≤ C ∣f(λ)∣ (µ−ϵ/2∣∣p∣ − ∣q∣∣ϵ + λ) ≤ C ∣∆(√µ)∣ (µ−ϵ/2∣∣p∣ − ∣q∣∣ϵ + λ) . (12.3.11)
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Additionally, since m(d)µ (∆)→∞ we have that ∆(p)→ 0 at least for some p ∈Rd by (12.3.3). Then
it follows from Lemma 12.3.8 that f(λ)→ 0, i.e. that ∆(p)→ 0 for all p.

5. Calculation of the integral m(d)µ (∆). Armed with the a priori bounds (12.3.10) and (12.3.11),
we can now compute the integral m(d)µ (∆). Carrying out the angular integration and substituting
s = ∣

∣p∣2−µ
µ ∣ we have

m(d)µ (∆) =
µd/2−1

2

⎡
⎢
⎢
⎢
⎢
⎣
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1

0

⎛
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⎞

⎠
ds
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1

0

⎛

⎝

1
√
s2 + x−(s)2

+
1

√
s2 + x+(s)2

⎞

⎠
ds
⎤
⎥
⎥
⎥
⎥
⎦

,

where x±(s) =
∆(√µ

√
1±s)

µ . By dominated convergence, using that x±(s) → 0, the first integral is
easily seen to converge to

∫

1

0
(
(1 − s)d/2−1 − 1

s
+
(1 + s)d/2−1 − 1

s
)ds = 2 ln cd

for λ→ 0. For the second integral, we will now show that

∫

1

0

⎛

⎝

1
√
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−
1

√
s2 + x±(0)2

⎞
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In fact, the integrand is bounded by
RRRRRRRRRRR

1
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RRRRRRRRRRR
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√
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s2 + x±(s)2

√
s2 + x±(0)2

,

using the Hölder continuity from (12.3.11). By continuity of V̂ there exists some s0 (independent of
λ) such that for s < s0 we have x±(s) ≥ cx±(0). We now split the integration into ∫

s0
0 and ∫

1
s0

. For
the first we have

∫
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For the second we have
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Collecting all the estimates, we have thus shown that m(d)µ (∆) equals

µd/2−1 ⎛

⎝
ln cd + ∫

1
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1
√
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∣∆(√µ)∣
+ o(1)) .
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This proves the third inequality in Proposition 12.3.2.

Combining this with the third step, one immediately sees that the gap function evaluated on the
Fermi sphere vanishes exponentially fast, ∆(√µ) ∼ e1/λeµ , as λ → 0, recalling that e(d)µ < 0 by
assumption.

6. Second order. To obtain the next order, we recall that T (d)∆ has lowest eigenvalue −1 (see
(12.3.9)), and hence, by first-order perturbation theory,

m(d)µ (∆) =
−1

λ ⟨u∣F
(d)
µ V (F

(d)
µ )

†∣u⟩ − λ2 ⟨u∣F
(d)
µ VM

(d)
∆ V (F

(d)
µ )

†∣u⟩ +O(λ3)
, (12.3.12)

where u(p) = ∣Sd−1∣−1/2 is the constant function on the sphere. Recall that u is the unique ground
state of V(d)µ .

In the second order term we have that

lim
λ→0
⟨u∣F(d)µ VM

(d)
∆ V (F(d)µ )

†
∣u⟩ = ⟨u∣W(d)µ ∣u⟩ ,

which follows from a simple dominated convergence argument as for Tc, noting that ∆(p) → 0
pointwise.

By again employing first–order perturbation theory, similarly to the last step in the proof of Proposi-
tion 12.3.1, we conclude the second equality in Proposition 12.3.2.

7. Comparing ∆(√µ) to Ξ. To prove the first equality in Proposition 12.3.2 we separately prove
upper and lower bounds. The upper bound is immediate from

Ξ = inf
p∈Rd

E∆(p) = inf
p∈Rd

√
∣p2 − µ∣ +∆(p)2 ≤∆(√µ) .

Hence, for the lower bound, take p ∈Rd with
√
∣p2 − µ∣ ≤ Ξ ≤∆(√µ). Then by (12.3.11)

∆(p) ≥∆(√µ) − ∣∆(p) −∆(√µ)∣ ≥∆(√µ) −C∆(√µ) (∣∣p∣ −√µ∣ϵ + λ)
≥∆(√µ)(1 + o(1)).

In combination with the upper bound, we have thus shown that Ξ =∆(√µ)(1 + o(1)) as desired.
This concludes the proof of Proposition 12.3.2.

We conclude this subsection with several remarks, comparing our proof with those of similar results
from the literature.

Remark 12.3.9 (Structure here vs. in earlier papers on Ξ). We now compare the proof above to
the proofs of the three different limits in 3 dimensions [312, 403] and Chapter 11:

• Weak coupling: The structure of our proof here is very similar to that of [312]. Essentially,
only the technical details in Lemma 12.3.7 and the calculation of m(d)µ (∆) in Step 5 are
different.

• High density: For the high-density limit in Chapter 11, we needed some additional a priori
bounds on ∆ before we could employ the Birman-Schwinger argument. Apart from that,
in Chapter 11 the comparison of ∆(√µ) and Ξ are done right after these a priori bounds.
Additionally, since one starts with finding a priori bounds on ∆, one does not need the first-order
analysis in Step 3. One may think of the structure in Chapter 11 as being ordered in the above
steps as follows: 4, 7, 1, 2, 4 (again), 5, 6.
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12. Universality in low-dimensional BCS theory

• Low density: For the low-density limit in [403] the structure is quite different. Again, one first
needs some a priori bounds on ∆ before one can use the Birman-Schwinger argument. One
then improves these bounds on ∆ using the Birman-Schwinger argument, which in turn can
be used to get better bounds on the error term in the decomposition of the Birman–Schwinger
operator. In this sense, the Steps 2–4 are too interwoven to be meaningfully separated. Also,
Step 5 is done in two parts.

12.3.3 Proof of Proposition 12.2.4

Note that W(d)µ = F
(d)
µ VM

(d)
0 V (F

(d)
µ )

†, where M
(d)
0 is defined in (12.3.4). By Lemma 12.3.5,

V 1/2M
(d)
0 V 1/2 is Hilbert-Schmidt. The integral kernel of W(d)µ is bounded by

∣W
(d)
µ (p, q)∣ ≤

1
(2π)d ∫R2d

∣V (x)∣∣M
(d)
0 (x, y)∣∣V (y)∣dxdy ≤ 1

(2π)d
∥V ∥1∥V

1/2M
(d)
0 V 1/2

∥HS.

(12.3.13)
It follows that ∥W(d)µ ∥HS ≤

∣Sd−1∣
(2π)d ∥V ∥1∥V

1/2M
(d)
0 V 1/2∥HS.

482



Chapter13
Universal behavior of the BCS energy

gap

This chapter contains the paper [337]:

J. Henheik and A. B. Lauritsen. Universal behavior of the BCS energy gap. J. Spectr. Theory, 2025.
(online first)

Abstract. We consider the BCS energy gap Ξ(T ) (essentially given by Ξ(T ) ≈∆(T,√µ), the BCS
order parameter) at all temperatures 0 ≤ T ≤ Tc up to the critical one, Tc, and show that, in the
limit of weak coupling, the ratio Ξ(T )/Tc is given by a universal function of the relative temperature
T /Tc. On the one hand, this recovers a recent result by Langmann and Triola (Phys. Rev. B 108.10
(2023)) on three-dimensional s-wave superconductors for temperatures bounded uniformly away from
Tc. On the other hand, our result lifts these restrictions, as we consider arbitrary spatial dimensions
d ∈ {1, 2, 3}, discuss superconductors with non-zero angular momentum (primarily in two dimensions),
and treat the perhaps physically most interesting (due to the occurrence of the superconducting
phase transition) regime of temperatures close to Tc.
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13.1 Introduction

The Bardeen–Cooper–Schrieffer (BCS) [48] theory of superconductivity exhibits many interesting
features. Notably it predicts, for s-wave superconductors (i.e. those for which the gap function
has angular momentum ℓ = 0, i.e. is radially symmetric), that the superconducting energy gap Ξ
(essentially given by Ξ ≈∆(√µ), the BCS order parameter) is proportional to the critical temperature
Tc with a universal proportionality constant independent of the microscopic details of the electronic
interactions, i.e. the specific superconductor. At zero temperature, the claimed universality is the
(approximate) formula Ξ/Tc ≈ πe−γ ≈ 1.76 with γ ≈ 0.57 the Euler–Mascheroni constant, a property
which is well-known in the physics literature [477, 48]. More recently, based on the variational
formulation of BCS theory first introduced by Leggett [411] and later developed on mostly by Hainzl
and Seiringer with others [309, 269, 313, 316], it has been put on rigorous grounds in various
(physically quite different) limiting regimes [269, 312, 311, 403, 333, 336, 338] (see Section 13.1.2.1
for details). The general picture in all these works is that the universal behavior appears in a limit
where “superconductivity is weak”, meaning that Tc is small.

The predicted universality at positive temperature is notably less studied. It is expected that the
ratio Ξ(T )/Tc is given by some universal function of the relative temperature T /Tc [412, 399],
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see Figure 13.1.1. For three-dimensional superconductors,1 this has recently been shown in [399]
(building on ideas of [400]) for temperatures uniformly in an interval [0, (1 − ε)Tc] for any ε > 0
in an appropriate limit where Tc is small. The perhaps most interesting regime of temperatures,
however, are those close to the critical temperature, due to the phase transition occurring there. For
such temperatures one expects2 the behavior [561, Eq. (3.54)]

Ξ(T )/Tc ≈ Cuniv
√

1 − T /Tc, Cuniv =

¿
Á
ÁÀ 8π2

7ζ(3)
≈ 3.06. (13.1.1)

Notably, the critical exponent 1/2 (i.e. the order parameter ∆(√µ) ≈ Ξ vanishing as a square root)
agrees with the prediction from the phenomenological Landau theory [390] for second order phase
transitions (not to be confused with Ginzburg -Landau theory of superconductivity [282, 294, 201])
in mean-field systems.

0 1
0

πe−γ

T/Tc

Ξ/Tc

Figure 13.1.1: The ratio of the BCS energy gap and the critical temperature, Ξ/Tc, is well approxi-
mated by a universal function of the relative temperature T /Tc, which is given by fBCS(

√
1 − T /Tc)

with fBCS defined in (13.2.9) below. At T = 0, it approaches the well-known constant πe−γ ≈ 1.76,
with γ ≈ 0.57 being the Euler-Mascheroni constant.

In this paper we extend the previously shown universality in three important directions: Firstly,
we consider all spatial dimensions d ∈ {1,2,3}. Secondly, we treat the full range of temperatures
0 ≤ T ≤ Tc. Thirdly, we extend the result to the case of non-zero angular momentum in two
dimensions, in particular proving the formula in (13.1.1). Interestingly the case of non-zero angular
momentum in two dimensions has the exact same universal behavior as s-wave superconductors
in any dimensions: Independently of the angular momentum we find the same universal function
describing the ratio Ξ(T )/Tc. This is substantially different from the three-dimensional case, where
one still expects some sort of universal behavior to occur, only the universal function strongly depends
on the angular momentum, see, e.g., [492] and Remark 13.2.15 below.

1In [399], only the three-dimensional case is considered explicitly. However, their arguments seem to be easily
extendable to handle also the cases of one- and two-dimensional superconductors.

2Historically, the first article suggesting the square root behavior near Tc is by Buckingham [127]. In [48, Eq. (3.31)],
BCS verified this in their original model, however, with the numerical constant given by 3.2 instead of Cuniv ≈ 3.06.
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13. Universal behavior of the BCS energy gap

One of the central ideas in the analysis of temperatures close to the critical temperature is the use
of Ginzburg-Landau (GL) theory. In the physics literature it is well-known that for temperatures
close to the critical BCS theory is well-approximated by GL theory [294]. This correspondence has
been studied, and put on rigorous grounds, quite recently in the mathematical physics literature
[270, 272, 220, 219]. See Section 13.1.2.2 for more details.

13.1.1 Mathematical formulation of BCS theory
We consider a gas of fermions in Rd for d = 1,2,3 at temperature T > 0 and chemical potential
µ > 0. The interaction is described by a two-body, real-valued and reflection-symmetric potential
V ∈ L1(Rd), for which we assume the following.

Assumption 13.1.1. We have that V ∈ LpV (Rd) for pV = 1 if d = 1, pV ∈ (1,∞) if d = 2, or
pV = 3/2 if d = 3.

A BCS state Γ is given by a pair of functions (γ,α) and can be conveniently represented as a 2 × 2
matrix valued Fourier multiplier on L2(Rd)⊕L2(Rd) of the form

Γ̂(p) =
⎛
⎜
⎜
⎝

γ̂(p) α̂(p)

α̂(p) 1 − γ̂(p)

⎞
⎟
⎟
⎠

(13.1.2)

for all p ∈Rd. Here, γ̂(p) denotes the Fourier transform of the one particle density matrix and α̂(p)
is the Fourier transform of the Cooper pair wave function. We require reflection symmetry of α̂,
i.e. α̂(−p) = α̂(p), as well as 0 ≤ Γ̂(p) ≤ 1 as a matrix. Recall the definition of the BCS free energy
functional [411, 309], which is given by

FT [Γ] ∶= ∫
Rd
(p2
− µ)γ̂(p)dp − TS[Γ] + ∫

Rd
V (x)∣α(x)∣2dx , (13.1.3)

where the entropy per unit volume is defined as

S[Γ] = −∫
Rd

TrC2 [Γ̂(p) log Γ̂(p)]dp .

The variational problem associated with the BCS functional is studied on

D ∶= {Γ as in (13.1.2) ∶ 0 ≤ Γ̂ ≤ 1 , γ̂ ∈ L1
(Rd, (1 + p2

)dp) , α ∈H1
sym(Rd

)} .

The following proposition provides the foundation for studying this problem.

Proposition 13.1.2 ([309], see also [316]). Under Assumption 13.1.1 on V , the BCS free energy is
bounded below on D and attains its minimum.

However, in general, the minimizer is not necessarily unique. This potential non-uniqueness shall not
bother us at this stage but will be of importance later on (see Sections 13.1.1.1 and 13.2.3). The
Euler–Lagrange equation for α associated with the minimization problem is the celebrated BCS gap
equation

∆(p) = − 1
(2π)d/2 ∫Rd

V̂ (p − q)
∆(q)
K∆
T (q)

dq , (13.1.4)

satisfied by ∆(p) = −2 (2π)−d/2(V̂ ⋆ α̂)(p), where α is the off–diagonal entry of a minimizing Γ ∈ D
of (13.1.3), see [309, 316]. Here, V̂ (p) = (2π)−d/2 ∫Rd V (x)E−ipx dx denotes the Fourier transform
of V , and we have introduced the notation

K∆
T (p) =

E∆(p)

tanh (E∆(p)
2T )

with E∆(p) =
√
(p2 − µ)2 + ∣∆(p)∣2 .
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The gap equation can equivalently be written as

(K∆
T + V )α = 0 , (13.1.5)

where K∆
T (p) is understood as a multiplication operator in momentum space and V (x) is understood

as a multiplication operator in position space. The Euler–Lagrange equation for γ (see [309, 316]) is
given by

γ̂(p) =
1
2
−

p2 − µ

2K∆
T (p)

. (13.1.6)

Remark 13.1.3 (Log-divergence). For T =∆ = 0 we have K∆=0
T=0 (p) = ∣p

2 − µ∣. This gives rise to a
logarithmic divergence in Equation (13.1.4). Understanding how to treat this log-divergence was one
of the key insights of Langmann and Triola [399].

13.1.1.1 Critical temperature and energy gap

The system described by FT is superconducting if and only if any minimizer Γ of FT has off–diagonal
entry α = Γ12 /≡ 0 (or, equivalently, (13.1.4) has a solution ∆ /≡ 0). The question, whether a system is
superconducting or not can be reduced to a linear criterion involving the pseudo–differential operator
with symbol

KT (p) ≡K
0
T (p) =

p2 − µ

tanh (p2−µ
2T )

.

In fact, as shown in [309], the system is superconducting if and only if the operator KT + V has
at least one negative eigenvalue. Moreover, there exists a unique critical temperature Tc ≥ 0 being
defined as

Tc ∶= inf{T > 0 ∶KT + V ≥ 0} , (13.1.7)

for which KTc + V ≥ 0 and inf spec(KT + V ) < 0 for all T < Tc. By Assumption 13.1.1 and the
asymptotic behavior KTc(p) ∼ p

2 for ∣p∣→∞ the critical temperature is well-defined by Sobolev’s
inequality [418, Thm. 8.3]. Note that, for T ≥ Tc the BCS functional (13.1.3) is uniquely minimized
by the normal state ΓFD ≡ (γFD,0), where

γ̂FD(p) =
1

1 +E
1
T
(p2−µ)

(13.1.8)

is the usual Fermi-Dirac distribution. In contrast, for temperatures 0 ≤ T < Tc strictly below the
critical temperature, the normal state ΓFD is not a minimizer of (13.1.3) and it is a priori not clear
whether or not the minimizer of (13.1.3) is unique.

In this paper we deal with two different cases. In the case of s-wave superconductivity we will
assume properties of V such that the minimizer is unique and in the case of 2-dimensional non-zero
angular momentum we will assume properties of V such that there are at most 2 minimizers, see
Section 13.2.3.

For the s-wave case we assume the following.

Assumption 13.1.4. Let the (real valued) interaction potential V ∈ L1(Rd) be radially symmetric
and assume that V is of negative type, i.e. V̂ ≤ 0 and V̂ (0) < 0.

As shown in [312], Assumption 13.1.4 implies that, in particular, the critical temperature is non-zero,
i.e. Tc > 0.3 Moreover, as already indicated above, it ensures that the minimizer of (13.1.3) is unique.
While this fact is already known at zero temperature [312, Lemma 2], we are not aware of any place
in the literature where the extension to positive temperature is given. As we will need this extension,
we formulate it in the following proposition and give a proof in Section 13.A.1.

3To be precise, the arguments in [312] cover only the case d = 3, but, as already noted in [270], they are immediately
transferable to the cases d = 1,2.
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13. Universal behavior of the BCS energy gap

Proposition 13.1.5 (Uniqueness of minimizers for potentials of negative type). Let V satisfy
Assumptions 13.1.1 and 13.1.4, and consider the BCS functional (13.1.3). Then we have the
following:

(i) For 0 ≤ T < Tc, let Γ ≡ (γ,α) be a minimizer of the BCS functional (13.1.3) (which exists by
means of Proposition 13.1.2). Then the operator K∆

T + V from (13.1.5) is non–negative and
α is its unique ground state with eigenvalue zero 0.

(ii) The minimizer Γ =∶ Γ∗ ≡ (γ∗, α∗) of (13.1.3) is unique up to a phase of α∗ and can be chosen
to have strictly positive Fourier transform α̂∗. Moreover, both γ∗ and α∗ are radial functions.

In particular, under Assumption 13.1.4, we have that the energy gap

Ξ(T ) ∶= inf
p∈Rd

√
(p2 − µ)2 + ∣∆(p)∣2 , (13.1.9)

for ∆ being the (up to multiplication by a constant phase) unique non-zero solution of (13.1.4) and
temperatures 0 ≤ T < Tc, is well-defined.

In case there is more than one solution ∆ of the BCS gap equation (13.1.4) (i.e. more than
one minimizer of the BCS functional) we may for each such ∆ define the energy gap Ξ as in
Equation (13.1.9). In the case of two dimensions with (definite) non-zero angular momentum we
shall prove that there exist exactly two (up to multiplication of either by a constant phase) such
functions, ∆±. They however satisfy ∣∆+∣ = ∣∆−∣ and so the energy gap Ξ is also here uniquely
defined. For the details see Section 13.2.3.

Remark 13.1.6. The energy gap is essentially the same as the order parameter ∣∆(√µ)∣ as we show
in Equations (13.3.18) and (13.3.29) below. In particular, one may replace Ξ with ∣∆(√µ)∣ in our
main results, Proposition 13.2.1 and Theorems 13.2.4 and 13.2.11.

13.1.1.2 Weak coupling

We consider here the weak–coupling limit where the interaction is of the form λV for a λ > 0 and we
consider the limit λ → 0. In the weak–coupling limit an important role is played by the (rescaled)
operator Vµ ∶ L2(Sd−1)→ L2(Sd−1) [312, 338, 186, 314]. This operator, which is defined as

(Vµu) (p) =
1

(2π)d/2 ∫Sd−1
V̂ (
√
µ(p − q))u(q)dω(q) , (13.1.10)

where dω denotes the uniform (Lebesgue) measure on the unit sphere Sd−1, measures the strength of
the interaction potential V̂ on the Fermi surface. The pointwise evaluation of V̂ (and in particular
on a codim−1 submanifold) is well-defined since we assume that V ∈ L1(Rd).

The lowest eigenvalue eµ = inf specVµ is of particular importance. Note, that Vµ is a trace-class
operator (see the argument above [269, Equation (3.2)]) with

tr(Vµ) =
∣Sd−1∣

(2π)d ∫Rd
V (x)dx = ∣S

d−1∣

(2π)d/2
V̂ (0) .

For radial potentials one sees that the eigenfunctions of Vµ are the spherical harmonics.

For potentials of negative type we have V̂ (0) < 0 and so eµ < 0. This corresponds to an attractive
interaction between (some) electrons on the Fermi sphere. Further, one easily sees that the constant
function u(p) = (∣Sd−1∣)−1/2 is an eigenfunction of Vµ, which, since V̂ ≤ 0 by Assumption 13.1.4, is
in fact the ground state by the Perron–Frobenius theorem, i.e.

eµ =
1

(2π)d/2 ∫Sd−1
V̂ (
√
µ − q

√
µ)dω(q) . (13.1.11)
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In two dimensions the spherical harmonics take the form u±ℓ(p) = (2π)−1/2e±iℓφ with φ denoting
the angle of p ∈R2 in polar coordinates. In this case the ground state space of Vµ is spanned by
{u±ℓ}ℓ∈L for some set of angular momenta L. If ℓ0 ≠ 0 for some ℓ0 ∈ L then the ground state is at
least twice degenerate, since then both u±ℓ0 are eigenfunctions with this lowest eigenvalue.

13.1.2 Previous mathematical results
So far, all mathematical results on solutions of the BCS gap equation (13.1.4) focused either on
zero temperature, T = 0, or the regime close to the critical one, T ≈ Tc, where the transition from
superconducting to normal behavior is described by Ginzburg-Landau theory.

13.1.2.1 BCS theory in limiting regimes: Universality at T = 0

At zero temperature it is expected, that the ratio of the energy gap and the critical temperature is
given by a universal constant,

Ξ(T = 0)
Tc

≈ πe−γ , (13.1.12)

with γ ≈ 0.577 the Euler–Mascheroni constant in a limiting regime where “superconductivity is weak”,
meaning that Tc is small.

In the literature three such limits have been studied: Historically, the first regime, which has been
considered is the weak coupling limit in three spatial dimensions [312, 269], which we recently
extended to one and two dimensions in Chapter 12. The critical temperature in the low density limit
in three dimensions was studied in [311] and later complemented by a study of the energy gap by
one of us in [403], thus, in combination, yielding the above-mentioned universal behavior. Finally, we
considered the high density limit, again in three dimension, in Chapters 10–11 and proved (13.1.12)
in this regime.

13.1.2.2 Superconductors close to Tc: Ginzburg-Landau theory

For temperatures close to the critical BCS theory is well-approximated by Ginzburg-Landau (GL)
theory. In contrast to the microscopic BCS model, GL theory is a phenomenological model, which
describes the superconductor on a macroscopic scale. Moreover, as suggested by Equation (13.1.1) a
natural parameter measuring “closeness to Tc” is the parameter h =

√
1 − T /Tc. A rigorous analysis

of various aspects of BCS theory in the limit h→ 0 was then studied in [270, 272, 271], very recently
also allowing for general external fields [220, 219]. Of particular interest to us is the fact that any
minimizer of the BCS functional (γ,α) has α ≈ hψa0 with a0 ∈ ker(KTc + λV ) fixed and ψ ∈ C a
minimizer of the corresponding GL functional, see [272, Theorem 2.10].

13.1.3 Outline of the paper
The rest of this paper is structured as follows. In Section 13.2 we present our main result, starting with
the prototypical universality in the original BCS model (Section 13.2.1). Afterwards, in Sections 13.2.2
and 13.2.3 we describe our results on universality for s-wave superconductors in arbitrary dimension
d ∈ {1,2,3}, and for two-dimensional superconductors having pure angular momentum, respectively.
The proofs of these results are given in Section 13.3, while several additional proofs are deferred to
Appendix 13.A.
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13.2 Main Result

We next describe the main results of the paper. We first consider the example of an interaction as
considered by BCS [48]. The reason for doing this is twofold:

1. It highlights, how the universal function Ξ(h)/Tc ≈ fBCS(h) appears.

2. A central idea in the proof of removing the log-divergence is already present in the BCS gap
equation (13.1.4). (Recall Remark 13.1.3.)

13.2.1 Energy gap in the original BCS approximation [48]

In their seminal work [48], Bardeen–Cooper–Schrieffer modeled the interaction by a so called separable
potential V (x, y) (i.e. factorizing and depending not only on the relative coordinate x − y), whose
Fourier transform V̂ (p, q) is a product of two radial single variable functions, that are compactly
supported in the shell

Sµ(TD) ∶= {p ∈Rd ∶ ∣p2
− µ∣ ≤ TD} (13.2.1)

around the Fermi surface {p ∈ Rd ∶ p2 = µ}, the only (material dependent) parameter being the
so-called Debye temperature 0 < TD < µ. Switching from momentum p to energy ϵ = p2 − µ, the just
mentioned single variable functions are chosen in such a way, that4

V̂ (ϵ, ϵ′)N(ϵ′) = −λBCS θ(1 − ∣ϵ/TD ∣)θ(1 − ∣ϵ′/TD ∣) , λBCS > 0 , (13.2.2)

where the electronic density of states (DOS) is denoted by N(ϵ) ∼ (ϵ + µ)(d−2)/2 and θ is the
Heaviside function. (θ(t) = 1 for t > 0 and θ(t) = 0 otherwise.)

In this case, the (unique non-negative) solution to the BCS gap equation (13.1.4) is given by

∆(ϵ) =∆ ⋅ θ(1 − ∣ϵ/TD ∣) (13.2.3)

for some temperature dependent constant ∆ ≥ 0, which is determined by the scalar gap equation
(cf. [48, Eq. (3.27)])

1
λBCS

= ∫

TD

0

tanh (
√
ϵ2+∆2

2T )
√
ϵ2 +∆2

dϵ (13.2.4)

for any temperature 0 ≤ T < Tc. In turn, the critical temperature Tc > 0 is determined by (13.2.4)
with ∆ = 0, i.e.

1
λBCS

= ∫

TD

0

tanh ( ϵ
2Tc
)

ϵ
dϵ . (13.2.5)

In case of a small BCS coupling parameter, λBCS ≪ 1,5 it holds that Tc is exponentially small in
λBCS, i.e. Tc ∼ e−1/λBCS (see [48, Eq. (3.29)]). Moreover, it is easily checked that ∆ as a function of
temperature is monotonically decreasing in the interval [0, Tc] and satisfies ∆(T = 0) ∼ e−1/λBCS ,
similarly to the critical temperature.

4Assuming that V̂ is constant throughout the energy shell (13.2.1) (as done in [48]), the BCS coupling parameter
emerges as λBCS = −V̂ (0,0)N(0).

5This can happen for various reasons. One example is that V itself is scaled by a coupling parameter λ > 0,
i.e. V → λV , and one considers the limit λ→ 0, as done in Sections 13.2.2–13.2.3.
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Next, changing variables as x ∶= ϵ/Tc and setting δ ∶=∆/Tc as well as6

h ∶=

√

1 − T
Tc

for 0 ≤ T ≤ Tc , (13.2.6)

we can subtract (13.2.4) and (13.2.5) to find

∫

TD/Tc

0

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

tanh (
√
x2+δ2

2(1−h2))
√
x2 + δ2

−
tanh (x2)

x

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

dx = 0 . (13.2.7)

Note that this difference formula (13.2.7) removes the divergences of (13.2.4)–(13.2.5) as λBCS → 0.

The proof of the following proposition is given in Section 13.3.1. (In the statement of Proposi-
tion 13.2.1, one may replace Ξ by the order parameter ∆(√µ), see Remark 13.1.6 above.)

Proposition 13.2.1 (Energy gap in the original BCS model [48]). Let µ > 0, fix a Debye temperature
0 < TD < µ and let λBCS > 0 be the BCS coupling parameter as above. Let the critical temperature
Tc and the gap function ∆(p) be defined via (13.2.3)–(13.2.5).

Then the energy gap Ξ (defined in (13.1.9)) as a function of h =
√

1 − T /Tc for 0 ≤ T ≤ Tc (recall
(13.2.6)) is given by

Ξ(h) = Tc fBCS(h) (1 +O(e−1/λBCS)) (13.2.8)

uniformly in h ∈ [0,1], where the function fBCS ∶ [0,1]→ [0,∞) is implicitly defined via

∫R

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

tanh
√
s2+fBCS(h)2
2(1−h2)

√
s2 + fBCS(h)2

−
tanh s

2
s

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

ds = 0 (13.2.9)

and plotted in Figure 13.2.1.

This means that, independent of the material dependent Debye temperature TD > 0 and the chemical
potential µ > 0, the energy gap Ξ within the original BCS approximation [48], follows a universal curve,
described by (13.2.8), in the limit of weak BCS coupling. A similar formula for fBCS like (13.2.9) (but
as a function of x ∶= 1− h2) also appeared in the monograph of Leggett [412, Eq. (5.5.21)]. We now
list a few basic properties of fBCS, whose proofs we omit, as they can be obtained by means of the
implicit function theorem and further elementary tools (see also [399, Lemma 1] as well as Lemmas
13.3.1 and 13.3.13 below). Almost all of these properties become apparent from Figure 13.2.1.

Lemma 13.2.2 (Properties of fBCS). There exists a unique implicitly defined solution function
fBCS ∶ [0,1]→ [0,∞) of (13.2.9). Moreover, fBCS has the following properties:

(i) It is strictly monotonically increasing in [0,1].

(ii) It is C1 in (0,1) and has continuous one-sided derivatives at the boundaries 0 and 1.

(iii) It has the boundary values fBCS(0) = 0, f′BCS(0) = Cuniv and fBCS(1) = πe−γ ≈ 1.76, f′BCS(1) = 0.
Here, γ ≈ 0.57 is the Euler-Mascheroni constant and

Cuniv ∶=

¿
Á
ÁÀ 8π2

7ζ(3)
≈ 3.06 , (13.2.10)

where ζ(s) denotes Riemann’s ζ-function.

6As mentioned above, the parameter h is commonly used (see, e.g., [270, 272]) in the context of Ginzburg-Landau
theory, where it served as a ‘semiclassical’ small parameter in the derivation this theory.
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0 1
0

πe−γ

h

fBCS(h)

Figure 13.2.1: Sketch of the function fBCS obtained via the implicit relation (13.2.9).

Remark 13.2.3 (Contact interactions). Our proof of Proposition 13.2.1 can easily be generalized to
all BCS models, in which the energy gap is constant (at least near the Fermi surface).

(a) In case of a delta potential, V (x) = −δ(x) in one spatial dimension, d = 1, the gap function
solving (13.1.4) is given by a constant (simply because here V̂ is constant). This setting can
be analyzed similarly (in a weak coupling limit, i.e. replacing V → λV and taking λ→ 0) as
done in Proposition 13.2.1 for the original BCS model [48].

(b) Also for contact interactions in three spatial dimensions, d = 3, the situation is similar. This
setting is studied in [125, 126], where it is shown that for a suitable sequence of potentials Vℓ
converging to a point interaction with scattering length a < 0, the gap function ∆ℓ converges
(uniformly on compact sets, see [125, Eq. (14)]) to a constant ∆ solving the gap equation

−
1

4πa
=

1
(2π)3 ∫R3

(
1

K∆
T (p)

−
1
p2)dp .

Replacing the limit of weak coupling by a small scattering length limit, a→ 0, one can obtain
a result similar to Proposition 13.2.1.

13.2.2 Universal behavior of the s-wave BCS energy gap
After having discussed the prototypical universality in the seminal BCS paper [48], we can now
formulate our main result on general s-wave superconductors with local interactions. The proof of
Theorem 13.2.4 is presented in Sections 13.3.2–13.3.4, while the main ideas are briefly described in
Remark 13.2.7 below. (We remark that, in the statement of Theorem 13.2.4, one may replace Ξ by
the order parameter ∆(√µ), see Remark 13.1.6 above.)

Theorem 13.2.4 (BCS energy gap for s-wave superconductors). Let d ∈ {1,2,3}, µ > 0, λ > 0 and
let V satisfy Assumptions 13.1.1 and 13.1.4. Let Tc and Ξ be as in (13.1.7) and (13.1.9) with
interaction λV and ∆ the unique non-zero solution the BCS gap equation (13.1.4) with interaction
λV .
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Then, with fBCS(h), h =
√

1 − T /Tc being the function defined via (13.2.9), we have the following:

(a) Assuming additionally that ∣ ⋅ ∣2V ∈ L1(Rd), it holds that

Ξ(h) = Tc fBCS(h) (1 +O(h−1e−c/λ)) (13.2.11)

for some constant c > 0 independent of λ and h.

(b) Assuming additionally that (1 + ∣ ⋅ ∣)V ∈ L2(Rd), it holds that

Ξ(h) = Tc fBCS(h) (1 +O(hec
′/λ
) + oλ→0(1)) (13.2.12)

for some constant c′ > 0 independent of λ and h and where oλ→0(1) vanishes as λ → 0
uniformly in h.

For the special case h = 1, i.e. T = 0, (13.2.11) reproduces the results from [312] (for d = 3) and
Chapter 12 (for d = 1,2), which state the universality

lim
λ→0

Ξ(T = 0)
Tc

=
π

eγ

at T = 0. Moreover, by (13.2.11) again, we find that, uniformly in temperatures bounded away from
Tc, i.e. h ∈ [ε,1] for some fixed ε > 0,

lim
λ→0

Ξ(h)
Tc
= fBCS(h) ,

recovering the universality result in [399] (for d = 3), with an exponential speed O(e−c/λ) of
convergence. In the complementary case, for temperatures very close to the critical temperature,
T ≈ Tc, the question of universality is (i) physically more interesting due to the phase transition
from superconducting to normal behavior and (ii) mathematically more delicate than in the previous
scenarios. This is because now there are two small parameters λ and h, instead of λ only, and the
error term in (13.2.11) might actually be large compared to one. However, now involving both,
(13.2.11) and (13.2.12), we find that

lim
λ,h→0

e−c/λ≪h

Ξ(h)
Tc h

= Cuniv and lim
λ,h→0
h≪e−c′/λ

Ξ(h)
Tc h

= Cuniv (13.2.13)

with the aid of Lemma 13.2.2 (iii). In particular, the ratio Ξ(h)/(Tch) converges to the same universal
constant Cuniv (recall (13.2.10)) in both orders of limits, limλ→0 limh→0 and limh→0 limλ→0.

Remark 13.2.5 (Joint limit). A careful inspection of the proof reveals that the constants c, c′
satisfy c < c′. In particular, the proof does not allow the two regimes considered in (13.2.13) to be
overlapping and we cannot prove that limλ,h→0

Ξ(h)
Tch
= Cuniv in any joint limit. We expect this to

hold in any joint limit, however, as we saw for the particular example from [48] in Proposition 13.2.1

Remark 13.2.6 (Comparison of assumptions with [399]). Compared to the similar result in [399] our
assumptions hold for a slightly different class of potentials. The assumptions of [399] are essentially
on the smoothness of the interaction V (formulated via some regularity/decay assumption on the
Fourier transform V̂ ). Our assumptions on the other hand are on the regularity/decay of V . In
particular, our assumptions cover the examples of [399, Table I] which are not covered by the
assumptions of [399]. These are (in three dimensions)

VYukawa(x) =
e−∣x∣

4π∣x∣
, VaY+bE(x) =

(2a + b∣x∣)e−∣x∣

8π∣x∣
, Vx-box(x) =

3θ(1 − ∣x∣)
4π

.
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Remark 13.2.7 (On the proof). The main ideas in the proof of Theorem 13.2.4 are the following.

(a) For part (a), we crucially use that both, K∆
T + λV and KTc + λV , have lowest eigenvalue zero.

We then consider their corresponding Birman-Schwinger (BS) operators and use that, for λ
small enough, two naturally associated operators on the Fermi sphere both have the same
ground state. Evaluating the difference of these two associated operators in this common
ground state, we find that a difference of two logarithmically divergent integrals, similarly to
(13.2.9), vanishes up to exponentially small errors O(e−c/λ).
The removal of the log-divergence in this way (which – in a similar fashion – was the major
insight in [399]) is the key idea to (i) access also non-zero temperatures and (ii) obtain extremely
precise error estimates (compared to all the previous results mentioned in Section 13.1.2.1).

(b) For part (b), we employ Ginzburg-Landau (GL). The principal realm of GL theory is to describe
superconductors and superfluids close to their critical temperature Tc. In this regime, when
superconductivity is weak, the main idea is that the prime competitor for developing a small
off-diagonal component α̂ for a BCS minimizer, is the normal state ΓFD = (γFD, 0), with γFD
given by the usual Fermi-Dirac distribution (recall (13.1.8)). Moreover, to leading order, the
off-diagonal component α̂ lies in the kernel (which agrees with the ground state space) of the
operator KTc + λV .
The main input, which we use, is that every minimizer (γ,α) of the BCS functional has
α ≈ hψa0 with a0 ∈ ker(KTc + λV ) fixed and ψ ∈ C minimizing the corresponding GL
functional [272, Theorem 2.10]. Taking the convolution of â0 with V̂ , we find the universal
constant (13.2.10) appearing in Ξ/(Tch) ≈ Cuniv.

Moreover, the “additional assumptions" in Theorem 13.2.4 are not quite rigid, meaning that they
can be weakened in the following sense.

(a) In case that ∣ ⋅ ∣2αV ∈ L1 for a 0 < α ≤ 1 the error term in Equation (13.2.11) should instead be
O(h−1e−cα/λ) with the constant c then being independent also of α.

(b) In case that (1 + ∣ ⋅ ∣)V ∈ Lp(Rd) for p < 2, the factor h in the first error term in (13.2.12)
would not appear raised to the first power but with exponent

(3p − 4)/p for d = 1 , (3p − 4)/p − ϵ for d = 2 , and (4p − 6)/p for d = 3 .

Remark 13.2.8 (Other limits). Although, in this paper, we considered only the weak coupling
limit, we expect the relation Ξ(h) ≈ TcfBCS(h) to hold also in other limiting regimes in which
“superconductivity is weak", that is, e.g., the low-7 and high-density limit, that were studied in
[311, 403] and Chapters 10–11, respectively. This idea is already contained in [399], where the
authors considered a “universal" parameter λ in [399, Eq. (7)], which can be small for various physical
situations.

Remark 13.2.9 (Non-universality). We recover also the formula [399, Equation (16)]

∆(p)
∆(√µ)

= F (p) +O(e−c/λ) (13.2.14)

for some function F not depending on the temperature and some constant c > 0. The function F
depends on the interaction V however. For this reason (13.2.14) is called a “non-universal” feature
in [399]. The proof of (13.2.14) is given in Section 13.3.3.

7For dimensions d = 1,2, the same caveats mentioned in Remark 12.2.8 apply.
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13.2.3 The case of pure angular momentum for d = 2

In this section, we generalize Theorem 13.2.4 from s-wave superconductors to two-dimensional
systems which have a definite (or pure) angular momentum ℓ0 ∈N0, which can differ from 0.

Assumption 13.2.10 (Pure angular momentum). Let V ∈ L1(R2) be radially symmetric and
attractive on the Fermi sphere, i.e. the lowest eigenvalue eµ of Vµ is strictly negative (recall
(13.1.10)–(13.1.11)). Moreover, suppose that for all λ > 0 small enough the lowest eigenvalue of
KTc + λV is at most twice degenerate, i.e. dim ker(KTc + λV ) ∈ {1,2}.

Since KTc commutes with the Laplacian, Assumption 13.2.10 ensures the ground state of KTc + λV
to have definite angular momentum. More precisely, it holds that

ker(KTc + λV ) = span{ρ}⊗ Sℓ0 with Sℓ ∶= span{e±iℓφ} ⊂ L2
(S1
) for some ℓ0 ∈N0 ,

(13.2.15)
where ρ ∈ L2((0,∞); rdr) is a (λ-dependent) radial function.8

We can now formulate our main result in the case of pure angular momentum for d = 2. (We
again remark that, in the statement of Theorem 13.2.11, one may replace Ξ by the order parameter
∣∆(√µ)∣, see Remark 13.1.6 above.)

Theorem 13.2.11 (BCS energy gap for 2d pure angular momentum). Let d = 2, µ > 0 and let V
satisfy Assumptions 13.1.1 and 13.2.10. Define the critical temperature Tc and energy gap Ξ as
in (13.1.7) and (13.1.9) with interaction λV for a λ > 0 and ∆ being any (arbitrary!) non-zero
solution the BCS gap equation (13.1.4) with interaction λV .

Then, with fBCS(h), h =
√

1 − T /Tc being the function defined via (13.2.9), we have the following:

(a) Assume additionally that V ∈ L2(R2), V̂ ∈ Lr(R2) for some 1 ≤ r < 2 and that ∣ ⋅ ∣2V ∈ L1(Rd).
Then there exists 0 ≤ T̃ < Tc with T̃ /Tc ≤ e−c/λ for some c > 0, such that for all temperatures
T ∈ (T̃ , Tc) it holds that

Ξ(h) = Tc fBCS(h) (1 +O(h−1e−c/λ)) (13.2.16)

for some constant c > 0 independent of λ and h.

(b) Assuming additionally that (1 + ∣ ⋅ ∣)V ∈ L2(Rd), it holds that

Ξ(h) = Tc fBCS(h) (1 +O(hec
′/λ
) + oλ→0(1)) (13.2.17)

for some constant c′ > 0 independent of λ and h and where oλ→0(1) vanishes as λ → 0
uniformly in h.

The proof of Theorem 13.2.11 is given in Section 13.3.5.

Remark 13.2.12 (On the assumptions). The additional assumptions in part (a) here compared
to Theorem 13.2.4 (namely V ∈ L2 and V̂ ∈ Lr) are those of [218, Theorem 2.1]. The proof of
Equation (13.2.16) centrally uses this result. As discussed in [218, Remark 2.3] these additional
assumptions are expected to be of a technical nature.

8In fact, the angular momentum of the kernel of KTc +λV must be even, i.e. ℓ0 ∈ 2N0. This is because BCS theory
is formulated for reflection symmetric α, whence KTc + λV is naturally defined on the space of reflection symmetric
functions only.
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Remark 13.2.13 (The temperature T̃ ). The presence of the temperature T̃ in Theorem 13.2.11 (a)
arises from the first excited eigenvalue of KTc +λV , see [218, Remark 2.2]. As discussed in the proof,
the temperatures Tc, T̃ are given by Tc = Tc(ℓ0) and T̃ = Tc(ℓ1), the critical temperatures restricted
to angular momenta ℓ0 and ℓ1, for some angular momenta ℓ0 ≠ ℓ1, see also [218, Remark 2.2]. For
temperatures T ∈ (T̃ , Tc) the BCS minimizer(s) then have angular momentum ℓ0 [218, Theorem
2.1]. For temperatures T < T̃ however, we do not in general know whether the BCS minimizer(s)
have angular momentum ℓ0. The proof crucially uses that the minimizer(s) have a definite angular
momentum. If we however know a priori, that the BCS minimizer(s) have angular momentum ℓ0 for
some larger ranger of temperatures (T1, Tc), then the formula in Equation (13.2.16) holds in this
larger range of temperatures.

Remark 13.2.14 (Nodes of the gap function). As already mentioned in Section 13.1.1.1, we establish
during the proof, that any solution ∆ of the BCS gap equation (13.1.4) has a radially symmetric
absolute value, ∣∆(p)∣, which is, moreover, independent of the particular solution ∆. In particular,
every solution ∆ of the BCS gap equation (13.1.4) does not have nodes on the Fermi surface. This
contrasts many examples of d-wave superconductors in the physics literature, where a (necessarily)
non-radial interaction V leads to a gap function ∆ with nodes on the Fermi surface, see, e.g.,
[103, 429, 261, 601].

Remark 13.2.15 (Non-extension to three dimensions). The formula Ξ(h) ≈ TcfBCS(h) is not expected
to hold in three dimensions for non-zero angular momentum, see for instance [492, Figure 14.6].
More precisely, we have the following:

(i) For non-zero angular momentum in three dimensions, our method of proving Theorem 13.2.11 (a)
breaks down. In fact, we crucially use that K∆

T + λV ≥ 0 for ∆ = −2λV α̂ with α a minimizer
of the BCS functional. However, as shown in [218, Proposition 2.11] this implies that ∣α̂∣ is
a radial function. In particular, in three dimensions, α (and therefore also ∆) cannot have a
definite non-zero angular momentum.

(ii) Assume that we know a priori that a solution of the BCS gap equation (13.1.4) (in spherical
coordinates) satisfies ∆(p,ω) =∆0(p)Y

m
ℓ (ω) — at least to leading order.9 Here, Y m

ℓ is the
usual L2-normalized (complex) spherical harmonic with ℓ ∈ N0 and m ∈ {−ℓ, ..., ℓ}. Then,
by application of [272, Theorem 2.10], following very similar arguments to Sections 13.3.4
and 13.3.5.2, we find that the radial part of the gap function is given by

∣∆0(
√
µ)∣ ≈ cℓ,mCunivhTc (13.2.18)

on the Fermi sphere {p2 = µ}. Here Cuniv was defined in (13.2.10) and we denoted

cℓ,m ∶=(∫
S2
∣Y m
ℓ (ω)∣

4dω)
−1/2

=(
2ℓ
∑
L=0

(2ℓ + 1)2

4π(2L + 1)
∣⟨ℓ, ℓ; 0,0∣L; 0⟩∣2 ∣⟨ℓ, ℓ;m,m∣L; 2m⟩∣2)

−1/2 (13.2.19)

with ⟨ℓ1, ℓ2;m1,m2∣L;M⟩ being the well tabulated Clebsch-Gordan coefficients (see, e.g., [176,
p. 1046]). The relation (13.2.19) shows that, in particular, even in the subspace of fixed angular
momentum ℓ ≠ 0, the behavior (13.2.18) is non-universal due to a non-trivial dependence on
m ∈ {−ℓ, ..., ℓ}, as, for example (see [272, Eq. (6.8)]),

c2,0 =

√
28π
15

and c2,±1 = c2,±2 =

√
14π
5

.

9If one models the interaction V by a rank one projection V = ∣χ⟩ ⟨χ∣ (similarly to (13.2.2)), instead of a
multiplication operator, such a form of ∆ can easily be enforced by taking χ(p,ω) = χ0(p)Y

m
ℓ (ω).
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For temperatures 0 ≤ T ≤ Tc and h ∶=
√

1 − T /Tc, we expect (13.2.18) to generalize to

∣∆0(
√
µ)∣ ≈ Tc f(ℓ,m)BCS (h)

with f(ℓ,m)BCS ∶ [0,1]→ [0,∞) being implicitly defined via

∫

∞

0
ds∫

S2
dω

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

tanh

√
s2+(f(ℓ,m)

BCS (h))
2
∣Y m

ℓ
(ω)∣2

2(1−h2)
√

s2 + (f(ℓ,m)BCS (h))
2
∣Y m
ℓ (ω)∣

2
−

tanh s
2

s

⎫⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎭

∣Y m
ℓ (ω)∣

2
= 0 , (13.2.20)

similarly to [492, Eq. (14.33)]. For ℓ =m = 0, (13.2.20) yields that f(0,0)BCS = (4π)
1/2fBCS with

fBCS from (13.2.9) due to the L2-normalization of the spherical harmonics (recall ∆(p,ω) =
∆0(p)Y

m
ℓ (ω)).

A detailed analysis of the three-dimensional case with non-zero angular momentum is deferred to
future work.

13.3 Proofs of the main results
This section contains the proofs of our main results formulated in Section 13.2.

13.3.1 Proof of Proposition 13.2.1
For ease of notation, we shall henceforth write λ instead of λBCS. From the explicit form (13.2.3) it
is clear that Ξ =∆ and δ(h) ≡ δ =∆/Tc is determined through (13.2.7). Hence, the goal is to show
that δ(h)/fBCS(h) = 1 +O(e−1/λ) uniformly in h ∈ [0,1]. The proof of this is conducted in three
steps.

13.3.1.1 A priori bound on δ

We shall prove the following lemma.

Lemma 13.3.1. For δ = δ(h) defined through (13.2.7) and λ > 0 small enough, it holds that

δ(h) ≤ Ch . (13.3.1)

Proof. First, we note that δ(h) ≤ C uniformly for h ∈ [0, 1]. This easily follows from observing that
δ(h) is strictly monotonically increasing (as follows from elementary monotonicity properties of the
integrand in (13.2.7)) and δ(1) is necessarily bounded.

In order to show (13.3.1), we employ the implicit function theorem to derive an asymptotic ODE for
δ(h). For this purpose, we now introduce the function (recalling Tc ∼ e−1/λ)

Gλ ∶ [0,1] × [0,∞)→R , (h, δ)↦ ∫
TD/Tc

0

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

tanh (
√
x2+δ2

2(1−h2))
√
x2 + δ2

−
tanh (x2)

x

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

dx

and trivially note that (13.2.7) is equivalent to Gλ(h, δ(h)) = 0. Since Gλ is C1 (away from the
boundary) in δ and h (this easily follows from dominated convergence), we can apply the implicit
function theorem to obtain the differential equation

∂δ(h)

∂h
=
(1 − h2)h

δ(h)

⎛
⎜
⎝
∫

TD/Tc

0

1
cosh2 (

√
x2+δ2

2(1−h2))
dx/∫

TD/Tc

0

g1 (
√
x2+δ2

1−h2 )
√
x2+δ2

1−h2

dx
⎞
⎟
⎠
, (13.3.2)
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where we introduced the auxiliary functions

g0(z) ∶=
tanh(z/2)

z
, g1(z) ∶= −g

′
0(z) = z

−1g0(z) −
1
2
z−1 1

cosh2(z/2)
. (13.3.3)

It is elementary to check that the even function z ↦ g1(z)/z is (strictly) positive and (strictly)
decreasing for z ∈ [0,∞). In combination with δ(h) ≤ C and Tc ∼ e−1/λ, one can thus bound the
denominator on the r.h.s. of (13.3.2) from below. Together with an upper bound on the integral in
the numerator (obtained by using elementary monotonicity properties of the hyperbolic cosine), we
find that

∂δ(h)

∂h
≤ C ′

h

δ(h)

⎛
⎜
⎝
∫

∞

0

1
cosh2(x)

dx/∫
C

0

g1 (
√
x2 +C2)

√
x2 +C2

dx
⎞
⎟
⎠
≤ C ′′

h

δ(h)
(13.3.4)

for h > 0 and λ > 0 small enough (to ensure TD/Tc ≥ C).

Finally, the differential inequality (13.3.4) can be integrated using the boundary condition δ(0) = 0
to conclude the desired.10

13.3.1.2 Uniform error estimate

Having Lemma 13.3.1 as an input, we shall now prove the following.

Lemma 13.3.2. For δ = δ(h) defined through (13.2.7), it holds that

∫

∞

TD/Tc

RRRRRRRRRRRRRR

tanh (
√
x2+δ2

2(1−h2))
√
x2 + δ2

−
tanh (x2)

x

RRRRRRRRRRRRRR

dx ≤ C h2 e−2/λ . (13.3.5)

Proof. First, we add and subtract tanh(x/2)/
√
x2 + δ2 in (13.3.5). Then, we employ Tc ∼ e−1/λ and

Lemma 13.3.1 to estimate

∫

∞

TD/Tc

RRRRRRRRRRRRRR

tanh (
√
x2+δ2

2(1−h2))
√
x2 + δ2

−
tanh (x2)√
x2 + δ2

RRRRRRRRRRRRRR

dx ≤ C h2
∫

∞

TD/Tc

1
cosh2(x/2)

dx ≤ C h2 e−2/λ

and

∫

∞

TD/Tc

RRRRRRRRRRR

tanh (x2)√
x2 + δ2

−
tanh (x2)

x

RRRRRRRRRRR

dx ≤ C h2
∫

∞

TD/Tc

1
x3 dx ≤ C h2 e−2/λ .

Combining these bounds yields the claim by means of the triangle inequality.

From Lemma 13.3.2 and Equation (13.2.7), we immediately conclude that

∫
R

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

tanh (
√
x2+δ2

2(1−h2))
√
x2 + δ2

−
tanh (x2)

x

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

dx = O(h2 e−2/λ
) . (13.3.6)

10Strictly speaking, this requires to extend the function δ(h) in (0,1), obtained via the implicit function theorem
for Gλ, to the boundary points 0. In order to do so, note that, for h ∈ (0,1/2), (13.3.2) yields

∂δ(h)

∂h
∼

h

δ(h)
,

from which we immediately conclude that ∣∂hδ(h)∣ ≤ C, uniformly in (0, 1/2). Hence, δ(h) continuously extends to 0.
The same is true for its derivative by means of (13.3.2) again. We remark that by a similar argument, δ(h) can be
extended to 1 as well.
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13.3.1.3 Comparison with fBCS

Given (13.3.6), the remaining task is to show that, because δ approximately solves the defining
equation of fBCS, it is actually close to fBCS. This is the content of the following lemma.

Lemma 13.3.3. Fix h ∈ [0,1]. If ϕ ∈ [0,∞) satisfies11

∫
R

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

tanh (
√
x2+ϕ2

2(1−h2) )
√
x2 + ϕ2

−
tanh (x2)

x

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

dx = R (13.3.7)

for some ∣R∣ ≤ C, then
ϕ = fBCS(h) +O(∣R∣

1/2
) (13.3.8)

with fBCS defined in (13.2.9).

Hence, combining (13.3.6) with (13.3.8) and invoking Lemma 13.2.2 (iii), we find that

δ(h) = fBCS(h) +O(he−1/λ
) = fBCS(h) (1 +O(e−1/λ

)) .

This concludes the proof of Proposition 13.2.1.

Proof of Lemma 13.3.3. First, we note that, given h ∈ [0,1], (13.3.7) has a solution ϕ ∈ [0,∞) if
and only if R ≤ log (1/(1 − h2)). Then, as in the proof of [399, Lemma 6] (see [399, Equation
(C50)]) we find that

ϕ = e−RfBCS (
√
h2 + (1 − h2)(1 − eR)) . (13.3.9)

Taylor expanding in R around 0, using regularity of fBCS from Lemma 13.2.2, we get

eRϕ = fBCS(h) + ∫
1

0
f′BCS (

√
h2 + (1 − h2)(1 − etR)) −(1 − h2)RetR

2
√
h2 + (1 − h2)(1 − etR)

dt .

To bound the integral we change variables to s = h2 + (1 − h2)(1 − etR) and bound ∣f′BCS(h)∣ ≤ C by
Lemma 13.2.2. We split into cases depending on the sign of R.
R > 0: For R > 0 the integral is bounded by

∫

h2

h2−(1−h2)(eR−1)

ds
2
√
s
= h −

√
h2 − (1 − h2)(eR − 1) = (1 − h2)(eR − 1)

√
h2 − (1 − h2)(eR − 1) + h

.

Noting that δ√
ε−δ+

√
ε
≤
√
δ and that (1 − h2)(eR − 1) ≤ CR we find that the integral is bounded by

√
R.

R < 0: For R < 0 the integral is similarly bounded by

∫

h2+(1−h2)(1−eR)

h2

ds
2
√
s
=
√
h2 + (1 − h2)(1 − eR) − h ≤ C

√
∣R∣ .

Plugging these bounds into (13.3.9), we conclude the desired.

13.3.2 Proof of Theorem 13.2.4(a)

We give here the proof of Theorem 13.2.4(a). The argument is divided into several steps.
11We follow the convention that, if h = 1, we replace tanh(...) by the constant function 1.
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13.3.2.1 A priori spectral information

For any temperature T we have by Proposition 13.1.5 that there exists a unique (up to a constant
global phase) minimizer (γ∗, α∗) of the BCS functional. The function α∗ is radial and has α̂∗ > 0.
Moreover, the operator K∆

T + λV has lowest eigenvalue 0 and α∗ is the unique eigenfunction with
this eigenvalue.

13.3.2.2 Weak a priori bound on ∆

From the proof of Proposition 13.1.2 in [316] we have the following bound on the minimising (γ∗, α∗)
of the BCS functional [316, Eqn. 3.12]

∫ (1 + p2
)(∣α̂∗(p)∣

2
+ γ̂∗(p))dp

≤ 8T ∫ log (1 + e−(p
2−µ)/4T

)dp + 8∫ [p2
/4 − 1 +C2(λ)]− dp ≤ Cλ

with C2(λ) = inf spec(p2/4 + λV ) ≤ 0 and thus Cλ uniformly bounded for λ small enough. In
particular ∥α∗∥H1 ≤ C uniformly for λ small enough. By Sobolev’s inequality [418, Thm 8.3] we then
have

∥α∥2L∞ ≤ C ∥∇α∥L2 ∥α∥L2 ≤ C (d = 1)
∥α∥2Lq ≤ C ∥∇α∥L2 ∥α∥L2 ≤ C (d = 2)
∥α∥2L6 ≤ C ∥∇α∥

2
L2 ≤ C (d = 3)

for any 2 ≤ q <∞. Thus,

∥∆∥L∞ ≤ 2λ ∥V α∥L1 ≤

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

2λ ∥V ∥L1 ∥α∥L∞ d = 1
2λ ∥V ∥Lp ∥α∥

(2pq−2q−2p)/(pq−2p)
L2 ∥α∥

(2q−pq)/(pq−2p)
Lq d = 2

2λ ∥V ∥L3/2 ∥α∥
1/2
L2 ∥α∥

1/2
L6 d = 3

≤ Cλ

(13.3.10)
uniformly for λ small enough (for any 1 < p <min{2, pV } by choosing q large enough in dimension
d = 2). In particular we see that ∆(p)→ 0 as λ→ 0.

13.3.2.3 Birman–Schwinger principle

Next, by the Birman–Schwinger principle [269, 309, 316] the fact that K∆
T +λV has lowest eigenvalue

0 with α∗ being the unique eigenvector is equivalent to the Birman–Schwinger operator

BT,∆ ∶= λV
1/2 1
K∆
T

∣V ∣1/2

having −1 as its lowest eigenvalue and ϕ = V 1/2α∗ being the unique eigenfunction corresponding
to this eigenvalue. Here we use the convention V 1/2(x) = sgn(V (x))∣V (x)∣1/2. We decompose the
Birman–Schwinger operator into a dominant singular term and an error term. For this purpose we
define the (rescaled) Fourier transform restricted to the sphere Fµ ∶ L

1(Rd)→ L2(§d−1) by

Fµψ(p) =
1

(2π)d/2 ∫Rd
ψ(x)e−i√µp⋅xdx,

which is well-defined by the Riemann–Lebesgue Lemma. Define then

m(T,∆) = 1
∣§d−1∣

∫
∣p∣≤
√

2µ

1
K∆
T (p)

dp (13.3.11)
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and decompose
BT,∆ = λm(T,∆)V 1/2F†

µFµ∣V ∣
1/2
+ λV 1/2MT,∆∣V ∣

1/2,

with MT,∆ defined such that this holds. Analogously to [269, Lemma 2] and Lemma 12.3.5 we have
the following lemma, the proof of which (it is analogous to the one of Lemma 12.3.5) is given in
Section 13.A.2.1.

Lemma 13.3.4. We have ∥V 1/2MT,∆∣V ∣
1/2∥HS ≤ C for small λ uniformly in T and ∆, where ∥ ⋅ ∥HS

denotes the Hilbert-Schmidt norm of an operator.

We conclude that 1 + λV 1/2MT,∆∣V ∣
1/2 is invertible for sufficiently small λ and thus, analogously to

[312, Lemma 4] and Lemma 11.2.8 and Proposition 11.2.10 the fact that BT,∆ has lowest eigenvalue
−1 is equivalent to the fact that the operator

ST,∆ ∶= λm(T,∆)Fµ∣V ∣1/2
1

1 + λV 1/2MT,∆∣V ∣1/2
V 1/2F†

µ (13.3.12)

acting on L2(§d−1) has lowest eigenvalue −1. Moreover, the function Fµ∣V ∣
1/2ϕ = FµV α∗ is the

unique eigenfunction of ST,∆ corresponding to the eigenvalue −1.

13.3.2.4 A priori bounds on ∆

For the analysis of the integral m(T,∆) we need some a priori bounds on ∆. Analogously as
in [312] and Chapter 12 we need some control of ∆(p) in terms of ∆(√µ) and some type of
Lipschitz-continuity of ∆. These are collected in the following lemma.

Lemma 13.3.5. The function ∆ satisfies the bounds

∆(p) ≤ C∆(√µ), (13.3.13)
∣∆(p) −∆(q)∣ ≤ C∆(√µ)∣p − q∣ (13.3.14)

for sufficiently small λ.

Proof. As noted above, the function Fµ∣V ∣
1/2ϕ = FµV α is the eigenfunction of ST,∆ corresponding

to the lowest eigenvalue −1.

Further, to leading order, ST,∆ is proportional to Vµ = FµV F†
µ. Since the constant function

u = ∣§d−1∣
−1/2
∈ L2(§d−1) is the ground state of Vµ (see the argument around (13.1.11)), the same

is also true for ST,∆ whenever λ is small enough. Hence, one can easily see that

1
1 + λV 1/2MT,∆∣V ∣1/2

V 1/2F†
µu

is an eigenvector of BT,∆ corresponding to the eigenvalue −1 and thus proportional to ϕ = V 1/2α∗.
Thus, with F denoting the usual Fourier transform, by expanding 1

1+x = 1 − x
1+x we have

∆ = −2λF∣V ∣1/2ϕ = f(λ)F∣V ∣1/2 1
1 + λV 1/2MT,∆∣V ∣1/2

V 1/2F†
µu

= f(λ) (∫§d−1
V̂ (p −

√
µq)dω(q) + ληλ(p))

for some constant f(λ) (where we absorbed the factor ∣§d−1∣−1/2(2π)−d/2 into f(λ)). One easily
verifies that

ηλ = −(2π)d/2F∣V ∣1/2
V 1/2MT,∆∣V ∣

1/2

1 + λV 1/2MT,∆∣V ∣1/2
V 1/2F†

µu
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has ∥ηλ∥∞ ≤ C uniformly in λ < λ0 for some λ0 by Lemma 13.3.4. By evaluating at p = √µ we
find ∣f(λ)∣ ≤ C∆(√µ) for small λ and thus the global bound (13.3.13). Moreover, we have the
Lipschitz-bound:

∣∆(p) −∆(q)∣ ≤ ∣f(λ)∣∣p − q∣ ∥∣x∣∣V ∣1/2 1
1 + λV 1/2MT,∆∣V ∣1/2

V 1/2F†
µu∥

L1

≤ C∆(√µ)∣p − q∣ ∥∣x∣2V ∥1/2
L1

1
1 − λ ∥V 1/2MT,∆∣V ∣1/2∥

∥V 1/2F†
µu∥

L2

≤ C∆(√µ)∣p − q∣

for sufficiently small λ.

13.3.2.5 First order

Expanding the resolvent in Equation (13.3.12) to first order in a geometric series we see that ST,∆
to leading order is proportional to the operator Vµ (defined in (13.1.10) above). Moreover, we have

−1 = λm(T,∆) inf spec(Fµ∣V ∣1/2
1

1 + λV 1/2MT,∆∣V ∣1/2
V 1/2F†

µ)

= λm(T,∆) inf specVµ(1 +O(λ)) = λeµm(T,∆)(1 +O(λ)).

In particular m(T,∆) = −1
λeµ
(1 +O(λ))→∞ as λ→ 0.

13.3.2.6 Exponential vanishing of ∆

Pointwise we may bound K∆
T ≥ E∆. Thus, by the first–order analysis above, we have

−1
λeµ
(1 +O(λ)) =m(T,∆) = 1

∣§d−1∣
∫
∣p∣<
√

2µ

1
K∆
T

dp ≤ 1
∣§d−1∣

∫
∣p∣<
√

2µ

1
√
∣p2 − µ∣2 + ∣∆(p)∣2

dp

The latter integral is calculated in [312] and Chapter 12. The same calculation is valid here by the
bounds (13.3.13) and (13.3.14) and the fact that ∆(p)→ 0 by (13.3.10). That is

−1
λeµ
≤ µd/2−1

(log µ

∆(√µ)
+O(1))

in the limit λ→ 0. We conclude that ∆(√µ) ≲ e−c/λ as λ→ 0 (with c = −1/eµµd/2−1).

The constant c shall henceforth be used generically and its precise value might change from line to
line.

13.3.2.7 Infinite order

Recall that, for small λ, the unique eigenfunction of ST,∆ corresponding to the eigenvalue −1 is
given by the constant function u. Thus, for small λ we have

−1 = λm(T,∆) ⟨u∣Fµ∣V ∣1/2
1

1 + λV 1/2MT,∆∣V ∣1/2
V 1/2F†

µ∣u⟩ .

Combining this for the temperatures T and Tc we find

m(T,∆) −m(Tc,0)

=
−1
λ

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

⟨u∣Fµ∣V ∣1/2
1

1+λV 1/2MT,∆∣V ∣1/2
V 1/2F†

µ∣u⟩
−

1

⟨u∣Fµ∣V ∣1/2
1

1+λV 1/2MTc,0∣V ∣1/2
V 1/2F†

µ∣u⟩

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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=
−1
λe2

µ

(1 +O(λ)) ⟨u∣Fµ∣V ∣1/2 (
1

1 + λV 1/2MT,∆∣V ∣1/2
−

1
1 + λV 1/2MTc,0∣V ∣

1/2)V
1/2F†

µ∣u⟩

(13.3.15)

for small enough λ by expanding to first order in the denominator and noting that inf specVµ = eµ.
The proof of the following lemma (which is somewhat analogous to the proof of Lemma 13.3.4) is
given in Section 13.A.2.2.

Lemma 13.3.6. There exists λ0 > 0 such that for 0 < λ < λ0

∥V 1/2
(MT,∆ −MTc,0)∣V ∣

1/2
∥

HS
≤ Ce−c/λ

for some constants C, c > 0 uniformly in λ.

Having Lemma 13.3.6 at hand, we write the difference as a telescoping sum

1
1 + λV 1/2MT,∆∣V ∣1/2

−
1

1 + λV 1/2MTc,0∣V ∣
1/2

=
∞
∑
k=1
(−λ)k [(V 1/2MT,∆∣V ∣

1/2
)
k
− (V 1/2MTc,0∣V ∣

1/2
)
k
]

=
∞
∑
k=1
(−λ)k

k−1
∑
ℓ=0
(V 1/2MT,∆∣V ∣

1/2
)
k−1−ℓ

V 1/2
(MT,∆ −MTc,0)∣V ∣

1/2
(V 1/2MTc,0∣V ∣

1/2
)
ℓ
.

Thus, by Lemmas 13.3.4 and 13.3.6 we have

∥
1

1 + λV 1/2MT,∆∣V ∣1/2
−

1
1 + λV 1/2MTc,0∣V ∣

1/2∥
HS
≤
∞
∑
k=1

λk
k−1
∑
ℓ=0

Ck−1−ℓ
×Ce−c/λ ×Cℓ

≤
∞
∑
k=1

kλkCke−c/λ ≤ Cλe−c/λ.

We conclude that
∣m(T,∆) −m(Tc,0)∣ ≤ Ce−c/λ. (13.3.16)

13.3.2.8 Calculation of the integral m(T,∆) −m(Tc,0)

To extract the asymptotics in (13.2.11) from the bound in (13.3.16) we calculate the difference
m(T,∆) −m(Tc,0) and show that it is essentially the left-hand-side of (13.2.9). The argument is
essentially given in [399, Appendix C.4]. For completeness, we give the argument here.

By changing variables to s = (p2 − µ)/µ and defining x(s) =∆(
√
µ(1 + s))/µ we get

m(T,∆) −m(Tc,0) = ∫
√

2µ

0
(

1
K∆
T

−
1
KTc

)pd−1dp

=
µd/2−1

2 ∫

1

−1

⎛
⎜
⎜
⎜
⎝

tanh(
√
s2+x(s)2
2T /µ )

√
s2 + x(s)2

−
tanh s

2Tc/µ

s

⎞
⎟
⎟
⎟
⎠

(1 + s)d/2−1ds.

This is of the form where we can use [399, Lemma 5].

Lemma 13.3.7 ([399, Lemma 5]). Let g,G be functions with g(0) = G(0) = 1 and g ∈ L∞ and let
τ, τc, δ > 0. Assume that g̃(s) ∶= (g(s) − 1)/s and G̃(s) ∶= (G(s) − 1)/s satisfy g̃, G̃ ∈ L∞(R). Let
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s1 > 0 such that g(s) > 1/2 for ∣s∣ < s1 and define

Jτ,δ,τc(g,G) = ∫R

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

tanh
√
s2+g(s)2δ2

2τ√
s2 + g(s)2δ2

−
tanh s

2τc

s

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

G(s)ds,

J
(0)
τ,δ,τc

= Jτ,δ,τc(1,1) = ∫R

⎧⎪⎪
⎨
⎪⎪⎩

tanh
√
s2+δ2

2τ√
s2 + δ2

−
tanh s

2τc

s

⎫⎪⎪
⎬
⎪⎪⎭

ds.

Then

∣Jτ,δ,τc(g,G) − J
(0)
τ,δ,τc
∣ ≤ ∥G̃∥

L∞
(4τ + 4τc + πδ ∥g∥L∞) + 4δ ∥g̃∥L∞ (1 + ∥g∥L∞) (1 +

δ

2s1
) .

To apply this lemma we write

x(s) =
∆(
√
µ(1 + s))

∆(√µ)
∆(√µ)
µ

= g(s)δ.

Then g ∈ L∞ uniformly in λ by (13.3.13) and g̃ ∈ L∞ uniformly in λ by (13.3.14). Finally, clearly
G(s) = (1 + s)d/2−1χ∣s∣≤1 has G̃ ∈ L∞. We conclude that

m(T,∆) −m(Tc,0) =
µd/2−1

2 ∫
R

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

tanh
√
s2+(∆(√µ)/µ)2

2T /µ
√
s2 + (∆(√µ)/µ)2

−
tanh s

2Tc/µ

s

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

ds +O(e−c/λ).

Writing T = Tc(1 − h2), recalling the bound in (13.3.16) and changing variables we find

∫
R

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

tanh
√
s2+(∆(√µ)/Tc)2

2(1−h2)
√
s2 + (∆(√µ)/Tc)2

−
tanh s

2
s

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

ds = R,

with R = O(e−c/λ). Hence, by Lemma 13.3.3, we find that

∆(√µ)
Tc

= fBCS(h) +O(∣R∣
1/2
) = fBCS(h)(1 +O(h−1e−c/λ)) (13.3.17)

since fBCS(h) ∼ h for small h by Lemma 13.2.2.

13.3.2.9 Comparing ∆(√µ) and Ξ

We finally prove that Ξ is essentially given by ∆(√µ).

Clearly Ξ = infpE∆(p) ≤ E∆(
√
µ) = ∆(√µ). To show a corresponding lower bound consider p with

∣p2 − µ∣ ≤ Ξ ≤∆(√µ). Then by Equation (13.3.14) and the bound ∆(√µ) = O(e−c/λ) we have

∆(p) ≥∆(√µ) −C∆(√µ)∣p −√µ∣ ≥∆(√µ) (1 −C∆(√µ)) ≥∆(√µ)(1 +O(e−c/λ)).

We conclude that
Ξ =∆(√µ) (1 +O(e−c/λ)) . (13.3.18)

Together with (13.3.17) this concludes the proof of Theorem 13.2.4(a).
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13.3.3 Non-universal property of ∆: Proof of Equation (13.2.14)
From the Birman–Schwinger argument (Section 13.3.2.3) we have that ϕ = V 1/2α∗ is the (unique)
eigenvector of

λm(T,∆)
1 + λV 1/2MT,∆∣V ∣1/2

V 1/2F†
µFµ∣V ∣

1/2

corresponding to the eigenvalue −1. Recalling that ∆ = −2λFV α∗ we thus get the equation

∆ = −F∣V ∣1/2 λm(T,∆)
1 + λV 1/2MT,∆∣V ∣1/2

V 1/2F†
µ∆(√µ ⋅)

with ∆(√µ ⋅) being the constant function on the unit sphere of value ∆(√µ). Recall that −1 =
λm(T,∆) ⟨u∣Fµ∣V ∣1/2 1

1+λV 1/2MT,∆∣V ∣1/2
V 1/2F†

µ∣u⟩ for small enough λ. By the same argument as
in Section 13.3.2.7 we may replace MT,∆ by M0,0, its corresponding value at T = ∆ = 0, up to
errors of order e−c/λ. (Concretely one can define M0,0 via the representation of its kernel as given in
Equations (13.A.3) to (13.A.5), (13.A.8) and (13.A.9), setting T =∆ = 0.) Hence, for sufficiently
small λ,

∆
∆(√µ)

=
∣§d−1∣1/2F∣V ∣1/2 1

1+λV 1/2M0,0∣V ∣1/2
V 1/2F†

µu

⟨u∣Fµ∣V ∣1/2
1

1+λV 1/2M0,0∣V ∣1/2
V 1/2F†

µ∣u⟩
+O(e−c/λ) = F +O(e−c/λ).

Clearly, the function F does not depend on the temperature T .

13.3.4 Ginzburg-Landau theory: Proof of Theorem 13.2.4(b)
As mentioned above, the proof of Theorem 13.2.4(b) builds on Ginzburg–Landau (GL) theory. For
convenience of the reader, we recall the main input from GL theory for the purpose of the present
paper in Proposition 13.3.9 below. More general and detailed statements can be found in the original
papers [270, 272, 220, 219]. In particular, these works allow for external fields or ground state
degeneracy (cf. Lemma 13.3.8 below), respectively.

As a preparation for Proposition 13.3.9, we have the following lemma.

Lemma 13.3.8 (Ground state of KTc + λV ). Let V satisfy Assumptions 13.1.1 and 13.1.4. Then
KTc +λV has 0 as a non-degenerate ground state eigenvalue and its L2(Rd)-normalized ground state
a0 can be chosen to have strictly positive Fourier transform. Moreover, it holds that â0 ∈ L

∞(Rd).

Proof. Since Tc > 0 (recall the discussion below Assumption 13.1.4), we first note that the Fourier
multiplier KTc is strictly positive. Then using V̂ ≤ 0, the claim follows from a Perron-Frobenius type
argument (see also [312] and [270, Assumption 2]). The fact that â0 ∈ L

∞(Rd) follows from [270,
Proposition 2] by invoking Assumption 13.1.1.

We can now formulate the main results from GL theory, needed for the present paper.

Proposition 13.3.9 (Ginzburg-Landau theory, see [272, Theorem 2.10]). Let V be a function
satisfying Assumptions 13.1.1 and 13.1.4 and suppose that 0 ≤ T < Tc. Then, using the notations
from Proposition 13.1.5 and Lemma 13.3.8, we have that

FT [Γ∗] −FT [ΓFD] = h
4
EGL(ψGL) +O(h

6
) as h→ 0 ,

where ψGL ≠ 0 minimizes the Ginzburg-Landau “functional” EGL ∶C→R,

EGL(ψ) =∣ψ∣
4
[

1
T 3
c
∫
Rd

g1((p
2 − µ)/Tc)

(p2 − µ)/Tc
∣KTc(p)∣

4
∣â0(p)∣

4dp]

− ∣ψ∣2 [
1

2Tc ∫Rd

1
cosh2 ((p2 − µ)/(2Tc))

∣KTc(p)∣
2
∣â0(p)∣

2dp] .
(13.3.19)
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Here we used the auxiliary function g1 from (13.3.3). Moreover, we can decompose the off–diagonal
element α̂∗ of Γ∗ as

α̂∗ = h∣ψ0∣â0 + ξ̂ (13.3.20)

where ∥ξ∥L2 = O(h2) and ψ0 ≠ 0 approximately minimizes (13.3.19), i.e.

EGL(ψ0) ≤ EGL(ψGL) +O(h
2
) . (13.3.21)

Remark 13.3.10. We emphasize that all error terms in the above proposition (and also the implicit
constants hidden in â0 ∈ L

∞(Rd)) are not uniform in λ. This crucially limits the applicability of our
GL theory based method for temperatures slightly away from the critical one with e−c′/λ ≪ h≪ 1
(cf. the error bound in (13.2.12)). Indeed, a careful examination of the proofs in [270, 272] reveals
that the hidden dependencies on the critical temperature Tc are at most inverse polynomially and
hence exponential in λ, i.e. ec/λ for some c > 0 (independent of λ and h).

13.3.4.1 Minimizing the Ginzburg-Landau functional

Given the inputs from GL theory, Theorem 13.2.4(b) is based on the following Proposition 13.3.11,
the proof of which we postpone after finishing the proof of Theorem 13.2.4(b).

Proposition 13.3.11. The (up to a phase unique) minimizer ψGL of the GL functional (13.3.19)
satisfies

∣ψGL∣ = Cuniv
Tc

∆0(
√
µ)
(1 + oλ→0(1)) , (13.3.22)

where ∆0 ∶= −2(2π)−d/2λV̂ ⋆ â0,12 the constant Cuniv is given in (13.2.10), and the error is uniform
in h.

The fact that ∣ψ0∣ > 0 approximately minimizes (13.3.19) (see (13.3.21)), implies that (recalling
Remark 13.3.10)

∣ψ0∣ = ∣ψGL∣ +O(hec/λ) .

Therefore, by means of (13.3.20) in combination with Proposition 13.3.11, we infer

α̂∗ = Cuniv Tc h
â0

∆0(
√
µ)
(1 + oλ→0(1) +O(hec/λ)) + ξ̂ .

Thus, after taking the convolution with λV̂ ,

∆ = Cuniv Tc h
∆0

∆0(
√
µ)
(1 + oλ→0(1) +O(hec/λ)) +∆ξ , (13.3.23)

where ∆ > 0 is the unique solution of the BCS gap equation (13.1.4) (see Proposition 13.1.5) and
we denoted ∆ξ ∶= −2(2π)−d/2λV̂ ⋆ ξ̂.

13.3.4.2 A priori bounds on ∆0

For the proof of Theorem 13.2.4(b) we need some a priori bounds on ∆0 analogously to those of
Section 13.3.2.4. The bounds follow from the following lemma, the proof of which is analogous to
the argument of Sections 13.3.2.3 and 13.3.2.4 and given in Section 13.A.2.3.

12Note that ∆0 was denoted by t in [270, 272]. We also remark that ∆0(
√
µ) ≠ 0 as follows from â0 > 0 (by

Lemma 13.3.8) and V̂ ≤ 0 (by Assumption 13.1.4).
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Lemma 13.3.12 (c.f. [312, Lemma 4] and Lemma 11.2.8). Let a0 ∈ H
1(Rd) with â0 > 0 be

the unique H1(Rd)-normalized ground state of KTc + λV from Lemma 13.3.8. Moreover, let
u(p) = (∣Sd−1∣)−1/2 be the constant function on the sphere Sd−1 and let

φ̂(p) = −
1

(2π)d/2 ∫Sd−1
V̂ (p −

√
µq)dω(q) . (13.3.24)

Then ∆0 = −2(2π)−d/2λV̂ ⋆ â0 can be expanded as

∆0(p) = f(λ)[φ̂(p) + ληλ(p)] (13.3.25)

for some positive function f(λ) and ∥ηλ∥L∞(Rd) bounded uniformly in λ > 0.

After realizing φ̂(√µ) = −eµ by (13.1.11), we conclude for small enough λ > 0 that

∆0(p) −∆0(
√
µ) =

[φ̂(p) − φ̂(
√
µ)] + λ[ηλ(p) − ηλ(

√
µ)]

−eµ + ληλ(
√
µ)

∆0(
√
µ) .

Now it is an easy computation to see ∣φ̂(p) − φ̂(q)∣ ≤ Cmin {∣∣p∣ − ∣q∣∣,1} for all p, q ∈Rd. Thus,

∣∆0(p) −∆0(
√
µ)∣ ≤ C (min {∣∣p∣ −√µ∣,1} + λ) ∆0(

√
µ) . (13.3.26)

13.3.4.3 A priori bounds on ∆ξ

For the following arguments, we need two estimates on ∆ξ = −2(2π)−d/2λV̂ ⋆ ξ̂.

• First, it is a simple consequence of Young’s inequality and ∥ξ̂∥L2 = ∥ξ∥L2 = O(h2ec/λ), that

∥∆ξ∥L∞ = ∥V ∥L2 O(h2ec/λ) . (13.3.27)

• Second, we note that ∆ξ(p) −∆ξ(q) is (proportional to) the Fourier transform of V (x)(1 −
Ei(p−q)⋅x )ξ(x), and thus

∥V (x)(1 −Ei(p−q)⋅x )∥
2

L2
= ∫

Rd
∣V (x)∣2 ∣1 −Ei(p−q)⋅x

∣
2

dx ≤ C ∣p − q∣2∫
Rd
∣V (x)∣2∣x∣2dx .

Using radiality of ∆ and ∆0, we conclude the radiality of ∆ξ and therefore

∣∆ξ(p) −∆ξ(q)∣ ≤ ∣∣p∣ − ∣q∣∣ ∥∣ ⋅ ∣V ∥L2 O(h
2ec/λ) . (13.3.28)

Recall that ∥(1 + ∣ ⋅ ∣)V ∥L2 <∞ by assumption.

13.3.4.4 Comparing ∆(√µ) and Ξ

We aim at proving
Ξ =∆(√µ) (1 +O(λ + h2ec/λ)) . (13.3.29)

In order to see this, we note that clearly Ξ =
√
(p2 − µ)2 + ∣∆(p)∣2 ≤ ∆(√µ). For the reverse

inequality, let p ∈Rd with ∣p2 − µ∣ ≤ Ξ ≤∆(√µ). Then

∣∆(p) −∆(√µ)∣ ≤ C Tc h(1 + oλ→0(1) +O(hec/λ)) ⋅ (∣∣p∣ −√µ∣ + λ) +C ∣∣p∣ −√µ∣h2ec/λ

by application of (13.3.26) and (13.3.28). Using that ∆(√µ) ∼ Tch, as a consequence of (13.3.23)
for h small enough (meaning hec/λ ≪ 1), we then conclude

∣∆(p) −∆(√µ)∣ ≤ C (λ + h2ec/λ)∆(√µ)

In combination with the upper bound, this proves (13.3.29).

507



13. Universal behavior of the BCS energy gap

13.3.4.5 Conclusion: Proof of Theorem 13.2.4(b)

We evaluate (13.3.23) at p =√µ, such that we find

Ξ = [Cuniv Tc h (1 + oλ→0(1) +O(hec/λ)) +O(h2ec/λ)] ⋅ (1 +O(λ + h2ec/λ))

with the aid of (13.3.27) and (13.3.29). Collecting all the error terms leaves us with

Ξ = Cuniv Tc h(1 + oλ→0(1) +O(hec/λ)) . (13.3.30)

Hence, using fBCS(h) = Cunivh +O(h
2), by Lemma 13.2.2, we arrive at Theorem 13.2.4(b).

13.3.4.6 Proof of Proposition 13.3.11

In the following estimates, we use the shorthand notations (recall the definition of the auxiliary
function g1 from (13.3.3))

f4(p) ∶=
g1((p

2 − µ)/Tc)

(p2 − µ)/Tc
f2(p) ∶=

1
cosh2 ((p2 − µ)/(2Tc))

, (13.3.31)

such that the absolute value of the minimizer ψGL of (13.3.19) is given by

∣ψGL∣ = Tc (
∫Rd f2(p)∣KTc(p)∣

2∣â0(p)∣
2dp

4 ∫Rd f4(p)∣KTc(p)∣
4∣â0(p)∣4dp

)

1/2

= Tc (
∫Rd f2(p)∣∆0(p)∣

2dp
∫Rd f4(p)∣∆0(p)∣4dp

)

1/2

.

We denoted ∆0 = −2(2π)−d/2λV̂ ⋆ â0 (as in Proposition 13.3.11) and used that a0 ∈ ker (KTc +λV ).
Note that, ∆0 = ∣∆0∣ by means of Proposition 13.1.5 and V̂ ≤ 0 from Assumption 13.1.4.

Next, we add and subtract ∣∆0(
√
µ)∣2 (resp. ∣∆0(

√
µ)∣4) in the integral in the numerator (resp. de-

nominator). The terms involving ∣∆0(
√
µ)∣j are evaluated as follows.

Lemma 13.3.13 (Emergence of Cuniv in GL theory). Let µ > 0. In the limit Tc/µ→ 0 we have that
(recall Cuniv from (13.2.10))

⎛
⎜
⎝
∫

Rd

1
cosh2 (p

2−µ
2Tc
)

dp/∫
Rd

g1((p
2 − µ)/Tc)

(p2 − µ)/Tc
dp
⎞
⎟
⎠

1/2

Ð→ Cuniv (13.3.32)

for all d = 1,2,3.

Proof. Since the integrands are both radial, we switch to spherical coordinates and neglect the
common ∣Sd−1∣–factor in numerator and denominator. By splitting the remaining radial integration
according to p2 ≤ µ and p2 ≥ µ and changing the integration variables from (p2−µ)/2Tc to −t resp. t
we find the numerator of (13.3.32) being equal to

2Tcµ(d−2)/2
[∫

µ/2Tc

0
(1 − 2Tc

µ t)
(d−2)/2

+ ∫

∞

0
(1 + 2Tc

µ t)
(d−2)/2

](
1

cosh2(t)
)dt . (13.3.33)

Similarly, we find the denominator of (13.3.32) to equal

2Tcµ(d−2)/2

8
[∫

µ/2Tc

0
(1 − 2Tc

µ t)
(d−2)/2

+ ∫

∞

0
(1 + 2Tc

µ t)
(d−2)/2

](
tanh(t)
t3

−
1

t2 cosh2(t)
)dt .

(13.3.34)
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We now take the ratio of (13.3.33) and (13.3.34) and send Tc/µ→ 0. By means of the dominated
convergence theorem (note that the integrand in (13.3.34) behaves as t−3 for large t) we thus find
the limit being given as the ratio of

∫

∞

0

1
cosh2(t)

dt and 1
8 ∫

∞

0
(

tanh(t)
t3

−
1

t2 cosh2(t)
)dt .

While the former is easily evaluated as being equal to one, the latter is given by 7ζ(3)
8π2 (see, e.g., [298,

3.333.3]). This proves the claim.

With the aid of (13.3.26) and noting fj > 0, the resulting differences (from adding and subtracting
∣∆0(
√
µ)∣j) can be estimated as

∣∫
Rd
fj(p)(∣∆0(p)∣

j
− ∣∆0(

√
µ)∣j)dp∣ ≤ C ∣∆0(

√
µ)∣j ∫

Rd
fj(p) (min (∣∣p∣ −√µ∣,1) + λ)dp

for j = 2, 4. These integrals can be treated analogously to (13.3.33) and (13.3.34) in Lemma 13.3.13
(for the ∣∣p∣ −√µ∣-term, note that fj essentially concentrates around ∣p∣ ≈ √µ) and we find them
to be smaller than the corresponding leading term ∫Rd fj(p)∣∆0(

√
µ)∣jdp in the limit λ→ 0 (and

hence Tc → 0). Therefore,

∣ψGL∣ =
Tc

∆0(
√
µ)
(
∫Rd f2(p)dp
∫Rd f4(p)dp

)

1/2
⋅ (1 + oλ→0(1)) = Cuniv

Tc
∆0(
√
µ)
⋅ (1 + oλ→0(1)) ,

where we used Lemma 13.3.13 in the last step. As the GL functional (13.3.19) is entirely independent
of the relative difference to the critical temperature (Tc − T )/Tc = h2, it is clear that all the errors
here hold uniform in the parameter h. This finishes the proof of Proposition 13.3.11.

13.3.5 Pure angular momentum for d = 2: Proof of Theorem 13.2.11
13.3.5.1 Part (a)

The proof of Theorem 13.2.11 (a) is mostly the same as that of Theorem 13.2.4 (a). We sketch the
argument here, highlighting the few differences.

The operator Vµ. Using the Birman–Schwinger principle on the operator KTc + λV (as is done in
[269, 312]) we find that, for sufficiently small λ, the lowest eigenvalue eµ of Vµ (recall (13.1.10)) is
an eigenvalue for angular momentum ℓ0, since this is the angular momentum of the ground state(s)
of KTc + λV by assumption. Further, since V is radial, the eigenfunctions of Vµ all have a definite
angular momentum. In particular the first excited state has some angular momentum ℓ1 ≠ ℓ0:

e(1)µ = inf
u⊥u±ℓ0

⟨u∣Vµ∣u⟩ = ⟨u±ℓ1 ∣Vµ∣u±ℓ1⟩ ,

with u±ℓ(p) = (2π)−1/2e±iℓφ the eigenfunctions of angular momentum ℓ. Here φ denotes the
angle of p ∈ R2 in polar coordinates. Note that e(1)µ ≤ 0 since Vµ is a compact operator on an
infinite-dimensional space.

A priori spectral information. It is proved in [218, Theorem 2.1] that there exists a temperature
T̃ such that for temperatures T̃ < T < Tc the minimizers of the BCS functional are given by

α̂±(p) = e
±iℓ0φα̂0(p)

where φ denotes the angle of p ∈R2 in polar coordinates, α̂0 is a radial function, and ℓ0 is the angular
momentum given by Equation (13.2.15). The BCS gap functions are then ∆±(p) = ∆0(p)e

±iℓ0φ,
with ∆0 a radial function.13 Further, we have K∆0

T + λV ≥ 0 for temperatures T ∈ (T̃ , Tc) [218,
Proposition 4.3] and ker(K∆0

T + λV ) = span{α+, α−}.
13This should not be confused with the function ∆0 used in Section 13.3.4.
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13. Universal behavior of the BCS energy gap

The temperature T̃ . As discussed in [218, Remark 2.6] the temperature T̃ is given by T̃ = Tc(ℓ1),
the critical temperature when restricted to angular momentum ℓ1. Following the argument in [269]
(see also [314, Theorem 1]) we find

T̃ ≤

⎧⎪⎪
⎨
⎪⎪⎩

Ce1/λe(1)µ e
(1)
µ < 0,

Ce−c/λ
2

e
(1)
µ = 0.

Recalling that Tc ∼ e1/λeµ and that eµ < e(1)µ ≤ 0 then clearly T̃ /Tc ≤ Ce−c/λ for some c > 0.

Weak a priori bound on ∆±. Exactly as in Equation (13.3.10) we have ∥∆±∥L∞ ≤ Cλ.

Birman–Schwinger principle. Analogously to Section 13.3.2.3 we have by the Birman–Schwinger
principle that

BT,∆0 = V
1/2 1
K∆0
T

∣V ∣1/2

has −1 as its lowest eigenvalue, only the eigenspace is spanned by the two vectors ϕ± = V 1/2α±. By
a completely analogous argument is in Section 13.3.2.3 we find that

ST,∆0 = λm(T,∆0)Fµ∣V ∣
1/2 1

1 + λV 1/2MT,∆0 ∣V ∣
1/2V

1/2F†
µ

has −1 as its lowest eigenvalue with corresponding eigenspace spanned by FµV α±.

A priori bounds on ∆±. Analogously to Lemma 13.3.5 we claim

Lemma 13.3.14. The functions ∆± satisfy the bounds (with slight abuse of notation, recall that
∆0 is a radial function)

∣∆±(p)∣ ≤ C ∣∆0(
√
µ)∣, ∣∆±(p) −∆±(q)∣ ≤ C ∣∆0(

√
µ)∣∣p − q∣ .

Proof. The proof is analogous to that of Lemma 13.3.5. First we note that Vµ = FµV F†
µ has

eigenfunctions of lowest eigenvalue u±ℓ0(p) = (2π)−1/2e±iℓ0φ and that the operator ST,∆0 preserves
the angular momentum. Analogously to the proof of Lemma 13.3.5 we find

∆±(p) = f±(λ) (∫§1
V̂ (p −

√
µq)u±ℓ0(q)dω(q) + ληλ±(p))

with ∥ηλ±∥L∞ ≤ C uniformly in λ. Evaluating on the Fermi surface {p2 = µ} we get (recall that
inf specVµ = eµ)

∆±(
√
µp/∣p∣) = f±(λ) (eµu±ℓ0(p/∣p∣) + ληλ±(

√
µp/∣p∣)) .

In particular, we conclude that ∣∆0(
√
µ)∣ = ∣∆±(

√
µp/∣p∣)∣ > 0 for λ small enough and that ∣f±(λ)∣ ≤

C ∣∆0(
√
µ)∣. We conclude the rest of the proof exactly as for Lemma 13.3.5.

The remaining parts of the argument (first order analysis of m, the exponential vanishing of ∆±,
infinite order analysis of m, calculation of the integral m(T,∆0) −m(Tc,0) and comparing ∆± on
the Fermi surface with Ξ) are exactly as in Sections 13.3.2.5 to 13.3.2.9 only replacing ∆ and u by
∆± and u±ℓ0 , respectively. This concludes the proof of Theorem 13.2.11 (a).

13.3.5.2 Part (b)

Again, we highlight only the main differences compared to the proof of Theorem 13.2.4 (b).

510



13.A. Additional proofs

Ginzburg-Landau functional Since every function â0 in kernel of KTc + λV can be written (in
polar coordinates) as

â0(p,φ) = ρ̂(p)[ψ+eiℓ0φ + ψ−e−iℓ0φ]

for an appropriate normalized ρ̂ ∈ L2((0,∞);pdp) and ψ± ∈ C by Assumption 13.2.10 (cf. (13.2.15)),
the analog of the Ginzburg-Landau functional (13.3.19) becomes [272, Theorems 2.10 and 3.5]

EGL(ψ+, ψ−) = [∣ψ+∣
4
+ ∣ψ−∣

4
+ 4∣ψ+∣2∣ψ−∣2] × [

2π
T 3
c
∫

∞

0

g1((p
2 − µ)/Tc)

(p2 − µ)/Tc
∣KTc(p)∣

4
∣ρ̂(p)∣4 pdp]

− [∣ψ+∣
2
+ ∣ψ−∣

2] × [
π

Tc
∫

∞

0

1
cosh2 ((p2 − µ)/(2Tc))

∣KTc(p)∣
2
∣ρ̂(p)∣2 pdp] .

(13.3.35)

Minimizers of the GL functional In contrast to (13.3.19), the functional (13.3.35) now has two
(up to a phase unique) minimizers. This follows from observing that EGL(ψ+, ψ−) = EGL(ψ−, ψ+)
and that one of the ψ± is necessarily zero for any minimizer of (13.3.35). In fact, these minimizers
are

(∣ψGL∣,0) and (0, ∣ψGL∣)

with ∣ψGL∣ given in (13.3.22) but with ∆0 ∶= −2(2π)−d/2λV̂ ⋆ ρ̂, where ρ̂ is understood as a radial
function in L2(R2).14 Hence, using the notation from Proposition 13.3.9 (see also [272, Theorem
2.10], which provides a general analog of (13.3.20)–(13.3.21), valid also for the concrete functional
(13.3.35)) and (13.3.23), we find that (up to a constant phase) every non-zero solution of the BCS
gap equation (13.1.4) can be written as

∆±(p,φ) = Cuniv Tc h
∆0(p)

∆0(
√
µ)

e±iℓ0φ(1 + oλ→0(1) +O(hec/λ)) +∆ξ(p,φ) .

The rest of the argument (a priori bounds on ∆0(p)e±iℓ0φ and ∆ξ, comparison of ∣∆±∣ on the Fermi
surface with Ξ) works completely analogously to Section 13.3.4 with similar adjustments as explained
in Section 13.3.5.1. This concludes the proof of Theorem 13.2.11 (b).

13.A Additional proofs

13.A.1 Uniqueness of the minimizer: Proof of Proposition 13.1.5
Finally, we present the proof of Proposition 13.1.5.

Proof of Proposition 13.1.5. We remark that the argument has already partly been sketched in
[316, 218]. The key observation for our proof is, that, if V̂ ≤ 0, then

⟨α̂∣V̂ ⋆ α̂⟩ ≥ ⟨∣α̂∣∣V̂ ⋆ ∣α̂∣⟩ . (13.A.1)

Let (γ̂, α̂) minimize the BCS functional (13.1.3). Then, by means of (13.A.1), we have FT [(γ̂, α̂)] ≥
FT [(γ̂, ∣α̂∣)], hence also (γ̂, ∣α̂∣) is a minimizer. Consequently, the (inverse) Fourier transform of
∣α̂∣ is an eigenvector of K∆

T + V with ∆ = −2(2π)−d/2V̂ ⋆ ∣α̂∣ with the eigenvalue zero. Note that,
using continuity of ∆ and the BCS gap equation (13.1.4), we not only have ∣α̂∣ ≥ 0 but also ∣α̂∣ > 0
everywhere (see [312, Lemma 2.1]). By the observation (13.A.1) again, we find that for any ground
state α̂GS of K∆

T +V also ∣α̂GS∣ is a ground state. But ∣α̂GS∣ is non–orthogonal to ∣α̂∣, which implies
that zero has to be the lowest eigenvalue of K∆

T + V , i.e.

K∆
T + V ≥ 0 . (13.A.2)

14The fact that ∆0(
√
µ) ≠ 0 can be seen in a similar way as in the proof of Lemma 13.3.14.
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By writing out (13.A.1), we see that the inequality is actually an application of Cauchy-Schwarz
and thus becomes strict, unless α̂(p) = Eiϕ∣α̂(p)∣ for some fixed ϕ ∈R. Therefore, by repeating the
above arguments, we find that the ground state of (13.A.2) is non–degenerate and we have proven
item (i).

In order to prove item (ii), let Γi ≡ (γi, αi), i = 1,2, be two (non–trivial) minimizers of the BCS
functional (13.1.3) and denote the corresponding gap functions by ∆1 resp. ∆2. We now apply the
relative entropy identity (see [270] and [272, Prop. 5.2]) and a simple trace inequality (see [270,
Lemma 3] and [272, Lemma 5.7]) to find that

FT [Γ1] −FT [Γ2] ≥ ⟨(α1 − α2)∣K
∆1
T + V ∣(α1 − α2)⟩ ≥ 0

(and the same inequality with indices 1 and 2 interchanged) by means of (13.A.2). Since FT [Γ1] =
FT [Γ2], this implies (α1 − α2) ∈ ker(K∆1

T + V ) and thus α2 = ψ21α1 for some ψ21 ∈ C ∖ {0} (recall
from (i) that ker(K∆1

T + V ) is one–dimensional). From this we conclude

(Kψ21∆1
T + V )α1 = 0 .

Now, the pointwise strict monotonicity of ∣ψ21∣↦Kψ21∆1
T (p) together with the fact that one can

choose ∣α̂1∣ to be strictly positive, implies that ∣ψ21∣ = 1 and we have shown uniqueness of minimizers
up to a constant phase, which can be chosen in such a way that it ensures strict positivity of α̂.
Finally, it is shown in [218, Proposition 2.9] that if α is not radial, then (13.A.2) is violated. Radiality
of the corresponding γ follows from (13.1.6). This finishes the proof.

13.A.2 Proofs of technical lemmas within the proof of Theorem 13.2.4
This section contains the proofs of Lemmas 13.3.4, 13.3.6, and 13.3.12.

13.A.2.1 Proof of Lemma 13.3.4

The argument is slightly different in dimensions d = 1,2,3. The case d = 3 is similar to [312, 269]
and the case d = 1,2 is similar to Chapter 12.

The case d = 3: We write

V 1/2MT,∆∣V ∣
1/2
= V 1/2 1

p2 ∣V ∣
1/2
+ V 1/2

(MT,∆ −
1
p2χ∣p∣>

√
2µ) ∣V ∣

1/2
− V 1/2 1

p2χ∣p∣≤
√

2µ∣V ∣
1/2.

(13.A.3)
The first term in Equation (13.A.3) has kernel (proportional to)

V (x)1/2
1

∣x − y∣
∣V (y)∣1/2 ∈ L2

(R3
×R3

) (13.A.4)

by the Hardy–Littlewood–Sobolev inequality [418, Theorem 4.3]. The kernel of the second term in
Equation (13.A.3) is given by

V (x)1/2∣V (y)∣1/2
1
(2π)3

⎡
⎢
⎢
⎢
⎢
⎣

∫
∣p∣<
√

2µ

1
K∆
T (p)

(eip(x−y) − ei
√
µp/∣p∣(x−y)

)dp

+ ∫
∣p∣>
√

2µ
(

1
K∆
T (p)

−
1
p2) e

ip(x−y)dp
⎤
⎥
⎥
⎥
⎥
⎦

.

(13.A.5)

We compute the angular integral first. In the first term the integral is

4π∫
√

2µ

0

1
K∆
T (p)

[
sin ∣p∣∣x − y∣
∣p∣∣x − y∣

−
sin√µ∣x − y∣
√
µ∣x − y∣

] ∣p∣2d∣p∣. (13.A.6)
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Here we bound ∣ sinaa −
sin b
b
∣ ≤ C

∣a−b∣
a+b for a, b > 0. Thus we get the bound

∣(13.A.6)∣ ≤ C ∫
√

2µ

0

1
K∆
T (p)

∣p −
√
µ∣

p +
√
µ
p2dp ≤ C ∫

√
2µ

0

1
∣p2 − µ∣

∣p −
√
µ∣

p +
√
µ
p2dp ≤ C.

In the second term the integral is (bounded by)

4π∫
∞
√

2µ
∣

1
K∆
T (p)

−
1
p2 ∣
∣ sin ∣p∣∣x − y∣∣
∣p∣∣x − y∣

∣p∣2d∣p∣ ≤ 4π
∣x − y∣

∫

∞
√

2µ
∣

1
K∆
T (p)

−
1
p2 ∣pdp.

To bound the remaining integral we bound

∣
1

K∆
T (p)

−
1
p2 ∣ ≤

∣tanh
√
∣p2−µ∣2+∆(p)2

2T − 1∣
√
∣p2 − µ∣2 +∆(p)2

+

RRRRRRRRRRR

1
√
∣p2 − µ∣2 +∆(p)2

−
1

∣p2 − µ∣

RRRRRRRRRRR

+ ∣
1

∣p2 − µ∣
−

1
p2 ∣.

Note first that ∣tanhx − 1∣ ≤ 2e−2x. Thus, we have

∫

∞
√

2µ

∣tanh
√
∣p2−µ∣2+∆(p)2

2T − 1∣
√
∣p2 − µ∣2 +∆(p)2

pdp ≤ 2∫
∞
√

2µ
e−
√
∣p2−µ∣2+∆(p)2/T 1

√
∣p2 − µ∣2 +∆(p)2

pdp

≤ 2∫
∞
√

2µ
e−∣p

2−µ∣/T p

∣p2 − µ∣
dp ≤ CT.

Next, we estimate
RRRRRRRRRRR

1
√
∣p2 − µ∣2 +∆(p)2

−
1

∣p2 − µ∣

RRRRRRRRRRR

=
1

∣p2 − µ∣

∆(p)2
√
∣p2 − µ∣2 +∆(p)2 (∣p2 − µ∣ +

√
∣p2 − µ∣2 +∆(p)2)

≤
1

∣p2 − µ∣

∥∆∥2L∞
√

∣p2 − µ∣2 + ∥∆∥2L∞ (∣p2 − µ∣ +
√

∣p2 − µ∣2 + ∥∆∥2L∞)
≤
∥∆∥2L∞

2∣p2 − µ∣3
,

(13.A.7)

using pointwise monotonicity in ∆(p). Thus, changing variables to u = p2 − µ we have

∫

∞
√

2µ

RRRRRRRRRRR

1
√
∣p2 − µ∣2 +∆(p)2

−
1

∣p2 − µ∣

RRRRRRRRRRR

pdp ≤ 1
4
∥∆∥2L∞ ∫

∞

µ

1
u3 du ≤ C ∥∆∥2L∞ .

Finally,

∫

∞
√

2µ
∣

1
∣p2 − µ∣

−
1
p2 ∣pdp ≤ C.

We conclude that the kernel of the second term in Equation (13.A.3) is bounded by

∣V (x)∣1/2 (
1 + T + ∥∆∥2L∞
∣x − y∣

+ 1) ∣V (y)∣1/2 ∈ L2
(R3
×R3

).

Finally, the last term of Equation (13.A.3) has kernel

4πV (x)1/2∣V (y)∣1/2∫
√

2µ

0

sin p∣x − y∣
p∣x − y∣

dp ∈ L2 (R3
×R3) (13.A.8)

since the integral is bounded by
√

2µ.
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The cases d = 1 and d = 2: The kernel of MT,∆ is given by

MT,∆(x, y) =
1
(2π)d

[∫
∣p∣<
√

2µ

1
K∆
T

(eip(x−y) − ei
√
µp/∣p∣(x−y)

) + ∫
∣p∣>
√

2µ

1
K∆
T

eip(x−y)] (13.A.9)

Now, one may bound K∆
T ≥ ∣p

2 − µ∣ uniformly in T,∆. Then we may bound MT,∆ exactly as in
Lemma 12.3.5. That is, we have the bounds

∥V 1/2MT,∆∣V ∣
1/2
∥

2

HS
≲

⎧⎪⎪
⎨
⎪⎪⎩

∥V ∥2L1 + ∥V ∥L1 ∫R ∣V (x)∣ [1 + log(1 +√µ∣x∣)]2 dx d = 1,
∥V ∥2L1 + ∥V ∥

2
Lp d = 2

for any 1 < p ≤ 4/3. This concludes the proof of Lemma 13.3.4.

13.A.2.2 Proof of Lemma 13.3.6

To bound the difference, first note that by computing the angular integrals we have

[MT,∆ −MTc,0] (x, y) =
∣§d−1∣

(2π)d

⎡
⎢
⎢
⎢
⎢
⎣

∫

√
2µ

0
(

1
K∆
T

−
1
KTc

)(jd(p∣x − y∣) − jd(
√
µ∣x − y∣))pd−1dp

+ ∫

∞
√

2µ
(

1
K∆
T

−
1
KTc

) jd(p∣x − y∣)p
d−1dp

⎤
⎥
⎥
⎥
⎥
⎦

(13.A.10)
where

jd(x) =
1
∣§d−1∣

∫§d−1
eixωdω =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

cosx d = 1
J0(∣x∣) d = 2
sin ∣x∣
∣x∣ d = 3

with J0 the zero’th Bessel function.

Bounding Equation (13.A.10) is similar in spirit to the proof of Lemma 13.3.4 above. We bound

∣
1
K∆
T

−
1
KTc

∣ ≤
∣tanh E∆

2T − 1∣
E∆

+ ∣
1
E∆
−

1
∣p2 − µ∣

∣ +
∣1 − tanh ∣p

2−µ∣
2Tc
∣

∣p2 − µ∣
.

We bound the first term as follows

∣tanh E∆
2T − 1∣
E∆

≤ 2e−E∆/T 1
E∆
≤ 2e−∣p

2−µ∣/T 1
∣p2 − µ∣

≤ 2e−∣p
2−µ∣/Tc

1
∣p2 − µ∣

.

Similarly,
∣1 − tanh ∣p

2−µ∣
2Tc
∣

∣p2 − µ∣
≤ 2e−∣p

2−µ∣/Tc
1

∣p2 − µ∣
.

Finally, we estimate, exactly as in (13.A.7) in the course of proving Lemma 13.3.4,

∣
1
E∆
−

1
∣p2 − µ∣

∣ ≤
1

∣p2 − µ∣

∥∆∥2L∞
√

∣p2 − µ∣2 + ∥∆∥2L∞ (∣p2 − µ∣ +
√

∣p2 − µ∣2 + ∥∆∥2L∞)

≤
∥∆∥2L∞

2∣p2 − µ∣3
.

We will use the first bound for the first integral in Equation (13.3.13) and the second bound for the
second integral in Equation (13.3.13). Note further that 1√

x2+A2(x+
√
x2+A2)

is decreasing in x and

∣p2 − µ∣ ≥
√
µ∣p −

√
µ∣. That is, we have the bound
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∣
1
K∆
T

−
1
KTc

∣ ≤ 4e−∣p
2−µ∣/Tc

1
∣p2 − µ∣

+ χ∣p∣>
√

2µ
∥∆∥2L∞

2∣p2 − µ∣3

+ χ∣p∣<
√

2µ
1

√
µ∣p −

√
µ∣

∥∆∥2L∞
√

µ∣p −
√
µ∣2 + ∥∆∥2L∞ (

√
µ∣p −

√
µ∣ +
√

µ∣p −
√
µ∣2 + ∥∆∥2L∞)

. (13.A.11)

In the first integral in Equation (13.A.10) we bound ∣jd(a)− jd(b)∣ ≤ C ∣a− b∣. Then the contribution
of the first term of Equation (13.A.11) to the first integral in Equation (13.A.10) is bounded by
(changing variables to s =√µ∣p −√µ∣/Tc)

∫

√
2µ

0
e−∣p

2−µ∣/Tc
1

∣p2 − µ∣
∣p −
√
µ∣∣x − y∣pd−1dp ≤ C ∣x − y∣∫

√
2µ

0
e−
√
µ∣p−√µ∣/Tcdp

≤ Tc∣x − y∣∫
µ/Tc

0
e−sds ≤ CTc∣x − y∣.

Next, the contribution of the last term of Equation (13.A.11) is bounded by (changing variables to
s =
√
µ∣p −

√
µ∣/ ∥∆∥L∞)

∫

√
2µ

0

∥∆∥2L∞
√

µ∣p −
√
µ∣2 + ∥∆∥2L∞ (∣p −

√
µ∣
√
µ +
√

µ∣p −
√
µ∣2 + ∥∆∥2L∞)

∣p −
√
µ∣∣x − y∣pd−1

∣p −
√
µ∣
√
µ

dp

≤ C ∥∆∥L∞ ∣x − y∣∫
µ/∥∆∥L∞

0

1
√
s2 + 1(s +

√
s2 − 1)

ds ≤ C ∥∆∥L∞ ∣x − y∣.

Next we estimate the last integral of Equation (13.A.10). Here we note that ∣jd(a)∣ ≤ C. Then the
contributions of the first and second term in Equation (13.A.11) to Equation (13.A.10) is bounded
by

∫

∞
√

2µ
e−∣p

2−µ∣/Tc
1

∣p2 − µ∣
pd−1dp ≤ C ∫

∞
√

2µ
e−∣p

2−µ∣/Tc ∣p2
− µ∣d/2−2pdp ≤ CTce−µ/Tc ≤ CTc

and ∫

∞
√

2µ

∥∆∥2L∞
∣p2 − µ∣3

pd−1dp ≤ C ∥∆∥2L∞ .

We conclude that (using ∥∆∥L∞ ≤ CTc)

∥V 1/2
(MT,∆ −MTc,0)∣V ∣

1/2
∥

2

HS
≤ CT 2

c ∬ ∣V (x)∣∣V (y)∣(µ∣x − y∣2 + 1)dxdy

≤ CT 2
c (µ ∥∣ ⋅ ∣

2V ∥1 ∥V ∥1 + ∥V ∥
2
1) ≤ Ce

−c/λ

by assumption on V . This finishes the proof of Lemma 13.3.6.

13.A.2.3 Proof of Lemma 13.3.12

The proof is very similar to the ones of [312, Lemma 4] and Lemma 11.2.8 and follows from a
Birman–Schwinger argument analogously to Sections 13.3.2.3 and 13.3.2.4.

First of all, recall from Proposition 13.1.5 (ii), that KTc + λV has 0 as a (non-degenerate) ground
state eigenvalue, which, by the Birman–Schwinger principle, is equivalent to the fact that the
Birman-Schwinger operator BTc ∶= λV

1/2K−1
Tc
∣V ∣1/2 has −1 as its (non-degenerate) ground state

eigenvalue. As in Section 13.3.2.3, defining m(Tc) ∶= m(Tc,0) (recall (13.3.11)), we decompose
BTc as

BTc = λm(Tc)V
1/2F†

µFµ∣V ∣
1/2
+ λV 1/2MTc ∣V ∣

1/2 ,

where MTc is such that this holds. It has been shown in [269, Lemma 2] (for d = 3) and Lemma 12.3.5
(for d = 1,2), that the Hilbert-Schmidt norm ∥V 1/2MTc ∣V ∣

1/2∥HS of the second term is uniformly
bounded for small Tc (i.e. small λ).
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13. Universal behavior of the BCS energy gap

Then, by an argument completely analogous to the one in the proof of Lemma 13.3.5 in Sec-
tion 13.3.2.4 we find that ∆0 = f(λ)[φ̂ + ληλ] with φ̂ defined in (13.3.24) and ηλ has ∥ηλ∥L∞ ≤ C
uniformly in small λ (cf. (13.3.25)). This concludes the proof of Lemma 13.3.12.
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Chapter14
Multi-band superconductors have

enhanced critical temperatures

This chapter contains the paper [335]:

J. Henheik, E. Langmann, and A. B. Lauritsen. Multi-band superconductors have enhanced critical
temperatures. arXiv:2409.17297, 2024

Abstract. We introduce a multi-band BCS free energy functional and prove that for a multi-
band superconductor the effect of inter-band coupling can only increase the critical temperature,
irrespective of its attractive or repulsive nature and its strength. Further, for weak coupling and
weaker inter-band coupling, we prove that the dependence of the increase in critical temperature on
the inter-band coupling is (1) linear, if there are two or more equally strongly superconducting bands,
or (2) quadratic, if there is only one dominating band.
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14.1 Introduction and main results

Shortly after the development of the celebrated Bardeen-Cooper-Schrieffer (BCS) theory of super-
conductivity [48], Suhl, Matthias and Walker [542], and independently Moskalenko [457], introduced
an extension of BCS theory allowing for more complex electronic band structures. These models
for multi-band superconductors were subsequently theoretically studied, e.g. by Kondo [375] and
Leggett [410] in the 1960s.
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14. Multi-band superconductors have enhanced critical temperatures

Despite these quite early modifications of BCS theory, it took around two decades until the first
experimental realization [82] of multi-band superconductivity in Nb doped SrTiO3. Still, (probably)
due to the relatively low critical temperature Tc (below which the material becomes superconducting
— see (14.1.8) below for a mathematical definition), interest in multi-band superconductivity remained
small for another two decades. This changed with proposals that high-temperature superconductivity
in cuprates [53] exhibit multi-band structure [383, 458]. The most flourishing period of research
on multi-band superconductivity was kicked off by the discovery [464] of a relatively high Tc ≈ 39K
in the conventional superconductor MgB2, whose characteristic feature is the interaction of two
different electronic bands [532]. After MgB2, other materials, such as NbSe2 [351], or iron based
high-temperature superconductors [501], were found to be multi-band superconductors.

One of the most important features of multi-band superconductors is a strong Tc-enhancing effect of
the inter-band interactions. This was already pointed out by Kondo [375] and further studied in the
physics literature [135, 132, 134, 133]. In particular either linear [134] or quadratic [132, 133, 135]
Tc-enhancements are expected depending on the multi-band superconductor. The aim of this paper
is to put these predictions on rigorous ground. We restrict ourselves to continuum models where
the Brillouin zone is Rd; we believe that our methods would be applicable also to models with
other Brillouin zones, see Remark 14.A.1 for further details. We also mention that the results in
the present paper are restricted to the leading order in the weak coupling parameter λ. It would be
interesting to extend our results to higher order, in generalization of such results in the one-band
case [312, 400, 399], but this is beyond the scope of the present paper.

Multi-band BCS theory has not been studied much in the mathematical physics literature with the
exception being the work of Yang [589]. In [589], however, rather restrictive assumptions on the
interaction are imposed. In this paper, we give a much more general mathematical formulation of
multi-band BCS theory, similarly to the single-band setting by Hainzl, Seiringer and others [309, 316]
and study the effect of multi-band interactions on the critical temperature of the system. As our
main results, we prove that:

Proposition 14.1.4. Inter-band couplings can only increase the critical temperature Tc, irrespective
of its attractive or repulsive nature and its strength.

Theorem 14.1.6. For weak coupling and weaker inter-band coupling, Tc depends either (1) linearly or
(2) quadratically on the inter-band coupling for (1) two or more equally strongly superconducting
bands or (2) a single dominating band.

Structure of the paper. In Section 14.1.1, we provide the mathematical formulation of multi-band
BCS theory. Afterwards, in Section 14.1.2, we formulate our main results, whose proofs are given
in Section 14.2. In Section 14.A we give a heuristic derivation of the multi-band BCS functional
(14.1.4) from a many-body Hamiltonian on a physics level of rigor, and in Section 14.B we collect
some basic notation used in the paper.

14.1.1 Multi-band functional, gap equation, and critical temperature

We consider a gas of fermions in Rd for d = 1, 2, 3 at temperature T > 0. The particles are assumed
to occupy n ∈N bands (alternatively, they come in n different species), characterized by different
dispersion relations ϵa(p) (i.e. a relation between momentum p and energy ϵ) for a = 1, ..., n, which
we assume to satisfy the following (cf. [314]).

Assumption 14.1.1 (On the dispersion relation). For every a ∈ {1, ..., n}, we have that the zero set
of ϵa(p) is a manifold (a generalized Fermi surface)

Sa ∶= {p ∈Rd ∶ ϵa(p) = 0} ⊂Rd (14.1.1)
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14.1. Introduction and main results

of codimension one, which is not necessarily connected but consists of finitely many components.
Moreover, there exists some σ > 0 and a compact neighborhood Ω ⊂Rd of Sa containing Sa, such
that dist(Sa,Ωc) ≥ σ (Ωc is the complement of Ω in Rd). For ϵa we further assume that

(i) it is locally bounded, measurable, reflection-symmetric (ϵa(−p) = ϵa(p)) and satisfies ϵa ∈
C2(Ω);

(ii) its gradient ∇ϵa(p) does not vanish in Ω;

(iii) there exist constants c,C > 0 such that ϵa(p) ≥ cp2 −C for all a ∈ {1, ..., n}.

Here and in the following we use the convention that C denotes any positive constant and its value
may change line by line.

Assumption 14.1.1 is satisfied by all relevant (non-relativistic) dispersion relations, in particular the
Sommerfeld band dispersion relation

ϵa(p) ∶=
p2

2ma
− µa (14.1.2)

with effective mass ma > 0 and effective chemical potential µa > 0. In previous works on supercon-
ductivity in the single-band case (see, e.g., [309]), the authors always (with the exception of [314])
chose (14.1.2) with mass being set to 1/2 by simple scaling. However, since, even if we restrict to
Sommerfeld dispersion relations of the form (14.1.2) only, effective masses and effective chemical
potentials can and will be different in different bands, this cannot be achieved in general in our
multiband setting. Therefore, we keep the most general form of ϵa as specified in Assumption 14.1.1.
This also allows for non-spherical Fermi surfaces Sa. In the physics literature, many multi-band
models arise from one-band models with a non-spherical Fermi surface, and the Fermi surfaces in
the emerging (multiple) bands are then also possibly non-spherical; see e.g. [437, 20, 398] (in the
context of the Eliashberg theory).

The interaction between fermions in bands a and b is described by a two-body potential Vab, for
which we assume the following.

Assumption 14.1.2 (On the interaction potential). For any a, b ∈ {1, . . . , n} the interaction Vab =
Vba ∈ L

1(Rd) ∩LpV (Rd) is real-valued and reflection-symmetric (meaning Vab(−x) = Vab(x)) with
pV = 1 if d = 1, pV ∈ (1,∞) if d = 2, or pV = 3/2 if d = 3.

We stress that the class of models we consider is large. It includes multi-orbital models obtained from
a one-band model where the dispersion relation is rotation invariant but the two-body interaction
potential is not; in such a case, a can be identified with the angular momentum ℓ (which is 0, 2, . . . for
s-, d-wave, and higher even angular momenta, respectively), and Vab for a ≠ b are interactions between
different angular momentum channels. Another example are multiband models with Sommerfeld
dispersion relations and rotation invariant interactions within and inbetween different bands; see
Example 14.1.9 for details.

A multi-band BCS state Γ is given by n pairs of functions (γa, αa)na=1 and can be conveniently
represented as a 2n × 2n matrix valued Fourier multiplier on L2(Rd; Cn)⊕L2(Rd; Cn) of the form

Γ̂(p) =
⎛
⎜
⎜
⎝

γ̂(p) α̂(p)

α̂(p) 1 − γ̂(p)

⎞
⎟
⎟
⎠

, γ = diag[γa]na=1, α = diag[αa]na=1 (14.1.3)

for all p ∈Rd (the bar indicates complex conjutation). Here, for every band a = 1, ..., n, γ̂a(p) denotes
the Fourier transform of the one particle density matrix and α̂a(p) is the Fourier transform of the
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14. Multi-band superconductors have enhanced critical temperatures

Cooper pair wave function, both in band a. We require reflection symmetry of α̂a, i.e. α̂a(−p) = α̂a(p),
as well as 0 ≤ Γ̂(p) ≤ 1 as a matrix. In this paper, we study the following multi-band version of the
standard BCS free energy functional [411, 309] (see also [313, 316, 312, 311, 403] and Chapters 10–
11), which we will derive from a many-body Hamiltonian [542, 457, 375, 410] in Appendix 14.A on
a physics level of rigor. It is given by

FT [Γ] ∶= ∫
Rd

n

∑
a=1

ϵa(p)γ̂a(p)dp − TS[Γ] + ∫Rd

n

∑
a,b=1

Vab(x)αa(x)αb(x)dx , (14.1.4)

where entropy per unit volume is defined as

S[Γ] = −∫
Rd

TrC2n [Γ̂(p) log Γ̂(p)]dp . (14.1.5)

The variational problem associated with the BCS functional (14.1.4) is studied on
D ∶= {Γ as in (14.1.3) ∶ 0 ≤ Γ̂ ≤ 1, γ̂a ∈ L1

(Rd, (1 + p2
)dp), αa ∈H1

sym(Rd,dx), a = 1, ..., n} .

Here H1
sym denotes the set of reflection-symmetric H1-functions. The following proposition, whose

proof is completely analogous to those in [309, 316], and so omitted, provides the foundation for
studying this problem.

Proposition 14.1.3. Under Assumption 14.1.2 on V , the BCS free energy is bounded below on D
and attains its minimum.

The associated Euler-Lagrange equation is easily found to be

(K∆
T + V )α = 0, K∆

T = diag [K∆a
T,a]

n

a=1
(14.1.6)

where

K∆a
T,a(p) =

√
ϵa(p)2 + ∣∆a(p)∣2

tanh(
√
ϵa(p)2+∣∆a(p)∣2

2T )

.

Here, V = (Vab)na,b=1 is the matrix of interactions, and we denoted the vector of gaps by ∆(p) =
−2 (2π)−d/2(V̂ ⋆ α̂)(p) with (V̂ ⋆ α̂)(p) ∶= ∫Rd V̂ (p − q)α̂(q)dq the convolution. Further, we define
Ea(p) =

√
ϵa(p)2 + ∣∆a(p)∣2, the modified dispersion relation(s) arising from the gap function(s)

∆a.

An equivalent form of (14.1.6) is the following natural analog of the celebrated (standard single-band,
see [309]) BCS gap equation, given by

∆a(p) = −
1

(2π)d/2
n

∑
b=1
∫

Rd
V̂ ab(p − q)

tanh (Eb(q)
2T )

Eb(q)
∆b(q)dq , a = 1, . . . , n. (14.1.7)

Written without the indices, the gap equation takes the following form, where the relevant objects
are matrix-valued, ∆(p) = −(2π)−d/2 ∫Rd V̂ (p − q)K∆

T (q)
−1∆(q)dq.

The system described by the functional FT is superconducting if and only if any minimizer Γ of FT
has a non-vanishing vector of off-diagonal entries, α /≡ 0 (or, equivalently, (14.1.7) has a solution
∆ /≡ 0). The (a priori highly non-linear) question, whether a system is superconducting or not
can be reduced to a linear criterion involving the matrix-valued pseudo-differential operator with
symbol KT (p) ≡ K

0
T (p). In fact, as can be shown completely analogously to [309], the system

is superconducting if and only if the (matrix-valued) operator KT + V has at least one negative
eigenvalue. Moreover, there exists a unique critical temperature Tc ≥ 0 being defined as

Tc ∶= inf{T > 0 ∶KT + V ≥ 0} , (14.1.8)

for which KTc + V ≥ 0 and inf spec(KT + V ) < 0 for all T < Tc. It can easily be seen that, by
Assumption 14.1.2 and the asymptotic behavior KTc(p) ≳ p

2 for ∣p∣→∞, the critical temperature is
well-defined by invoking Sobolev’s inequality [418, Thm. 8.3].
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14.1.2 Main results
In this paper, we study the effect of the interband coupling due to Vab for a ≠ b on the critical
temperature Tc. More concretely, we rescale the original interaction matrix V as

V → λV d
+ κλV od with λ > 0 and κ ∈R , (14.1.9)

where V d denotes the diagonal part of V and V od the off-diagonal part. We will in particular
consider the scaling in (14.1.9) in the limit of weak coupling, λ≪ 1. The parameter κ ∈R regulates
the relative strength between the intra-band coupling V d and inter-band coupling V od. We point
out that κ does not have a sign, which means that the inter-band coupling can be either attractive
or repulsive. To indicate the dependence on the parameters λ and κ, we shall henceforth write
Tc = Tc(λ,κ).

Similar to previous works [186, 312, 314] and Chapter 12, in the weak coupling limit, a special role
is played by the self-adjoint trace-class operator V ∶ ⊕n

a=1L
2(Sa) → ⊕

n
a=1L

2(Sa), measuring the
strength of the interaction matrix V on the Fermi surfaces Sa and Sb whose action is defined as

(Vu)a(p) ∶=
n

∑
b=1
(Vabub)(p) ∶=

n

∑
b=1

1
(2π)d/2

2
√
∣∇ϵa(p)∣

∫
Sb

V̂ ab(p − q)
√
∣∇ϵb(q)∣

ub(q)dω(q) . (14.1.10)

Here, Vab maps L2(Sb) → L2(Sa) and we note that Vba = V∗ab. Moreover, corresponding to the
decomposition of V into diagonal and off-diagonal part in (14.1.9), we shall also write V = Vd+κVod.
Finally, note that the pointwise evaluation of V̂ ab (and in particular on a nice codim–1 submanifold –
recall Assumption 14.1.1) is well-defined since we assume V ∈ L1(Rd).

Our first result is that the effect of the inter-band coupling can only increase the critical temperature:

Proposition 14.1.4 (Increase of critical temperature). Let d ∈ {1, 2, 3} and let the dispersion relations
ϵa satisfy Assumption 14.1.1 and the interaction matrix V = (Vab)na,b=1 satisfy Assumption 14.1.2.
Assume in addition that V od /≡ 0.
Then, for any λ > 0 there exists κ±c ∈ [0,∞) such that

• For κ ∈ [−κ−c , κ+c ] we have Tc(λ,κ) = Tc(λ,0), and

• For κ ∉ [−κ−c , κ+c ] we have Tc(λ,κ) > Tc(λ,0).

The proof of Proposition 14.1.4 is given in Section 14.2.

Remark 14.1.5. In particular we note that Tc(λ,κ) > 0 for large ∣κ∣ even if Tc(λ,0) = 0. As an
example we can consider a system with Vab ≥ 0 for all a, b. For κ ≥ 0 then all intra- and inter-
band interactions are repulsive. At no inter-band coupling we have Tc(λ,0) = 0, since a repulsive
single-band system is never superconducting. However, for κ large enough, the system becomes
superconducting, even though also the inter-band interactions are repulsive.

For our second (main) result we will assume that at least one of the intra-band interactions Vaa has
an attractive part on the Fermi surface, meaning that

ea ∶= inf specVaa (14.1.11)

is strictly negative for at least one a = 1, ..., n. Since the trace of Vaa can be computed as
Tr(Vaa) = 2(2π)−d/2V̂ aa(0) ∫Sa

∣∇ϵa(p)∣
−1dω(p), a sufficient condition for ea < 0 is that ∫ Vaa < 0.

Finally, for every a ∈ {1, ..., n}, we denote the ground state space of Vaa by

La ∶= span {u ∈ L2
(Sa) ∶ (Vaa − ea)u = 0} . (14.1.12)

We can now formulate our main result, the proof of which is given in Section 14.2.
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Theorem 14.1.6 (Weak coupling). Let d ∈ {1,2,3} and assume that ϵ and V satisfy Assumptions
Assumption 14.1.2 and 14.1.1. Assume in addition that ∫Rd ∫Rd ∣Vab(x)∣∣x − y∣

2∣Va′b′(y)∣dxdy <∞
for all a, b, a′, b′ ∈ {1, ..., n} and that mina∈{1,...,n} ea < 0.

Then we have the following:

(i) There exist constants A±1 ∈ [0,∞) such that for small λ and ∣κ∣ we have

log(Tc(λ,κ)
Tc(λ,0)

) = A
sgn(κ)
1 ∣κ∣λ−1

+O(κ2λ−1
) +O(κ). (14.1.13)

We have A±1 > 0 if and only if there exist a least two minima â1, â2 ∈ {1, ..., n} of a ↦ ea
and functions uâi

∈ Lâi
for i = 1,2 such that the quadratic form ⟨uâ1 ,Vâ1â2uâ2⟩L2(Sâ1)

=

⟨Vâ2â1uâ1 , uâ2⟩L2(Sâ2)
≠ 0 does not vanish.

If â1, â2 are the only minima of a↦ ea and dimLâi
= 1 for at least one i = 1,2, it holds that

A+1 = A
−
1 .

(ii) Suppose that the minimizer â of a↦ ea is unique. Then there exists a constant A2 ∈ [0,∞)
such that for small λ and ∣κ∣

log(Tc(λ,κ)
Tc(λ,0)

) = A2κ
2λ−1

+O(κ3λ−1
) +O(κ2

) . (14.1.14)

We have A2 > 0 if and only if Vaâ∣Lâ
/≡ 0 for some a ≠ â.

We now informally interpret Proposition 14.1.4 and Theorem 14.1.6 in the following Remark 14.1.7.

Remark 14.1.7 (Qualitative interpretation of our main results). Proposition 14.1.4 says, in particular,
that Tc(λ,κ) ≥ Tc(λ, 0) with no assumptions on the coupling strengths λ and κ. They may be order
one or even large. Thus, it may be understood as the statement:

(1) In a multi-band superconductor, the critical temperature increases when invoking inter-band
couplings, irrespective of both its attractive/repulsive nature and its strength.

Part (i) of Theorem 14.1.6 describes a degenerate case of (at least) two bands giving rise to
(approximately) the same critical temperature. Assuming further that these (at least) two bands
couple non-trivially then A±1 > 0. Rewriting (14.1.13) in this case, we have

Tc(λ,κ) = Tc(λ,0) exp
⎡
⎢
⎢
⎢
⎢
⎣

A
sgn(κ)
1
λ2 ∣κλ∣ [1 +O(λ) +O(κ)]

⎤
⎥
⎥
⎥
⎥
⎦

≈ Tc(λ,0) exp
⎡
⎢
⎢
⎢
⎢
⎣

A
sgn(κ)
1
λ2 ∣κλ∣

⎤
⎥
⎥
⎥
⎥
⎦

. (14.1.15)

Thus, part (i) may be understood as

(2) In the degenerate case of (at least) two equally strong bands, this increase in the critical
temperature is linear for small inter-band coupling strengths κλ.

This effect has been previously observed in the physics literature [134], in contrast with the usual
quadratic enhancement. Moreover, for three (or more) bands that give rise to the same critical
temperature in the absence of interband couplings, the slope of the enhancement will generically
depend on the sign of κ, i.e., A+1 ≠ A−1 ; see e.g. [594].

Part (ii) of Theorem 14.1.6 describes the generic case of a unique band â being the strongest.
Further, one usually also has that Vaâ∣Lâ

/≡ 0 (meaning this band couples non-trivially to the rest).
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Thus, Theorem 14.1.6 (ii) says that the constant A2 generically takes value A2 > 0. Hence, rewriting
(14.1.14) in that generic case, we have

Tc(λ,κ) = Tc(λ,0) exp [A2
λ3 (κλ)

2
[1 +O(λ) +O(κ)]] ≈ Tc(λ,0) exp [A2

λ3 (κλ)
2
] (14.1.16)

Thus, part (ii) may be understood as follows:

(3) In the generic case of one dominating band, this increase in the critical temperature is quadratic
for small inter-band coupling strengths κλ.

This effect has been previously observed in the physics literature [135, 132, 133]. In our approach,
the quadratic enhancement of Tc eventually stems from second order perturbation theory for the
Birman–Schwinger operator associated with KTc + V from (14.1.8).

Remark 14.1.8. As an illustrative simple example of where the ‘linear’ versus ‘quadratic’ increase
arises, one may consider the eigenvalues of the 2 × 2 matrices

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 κ

κ 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, λmax = 1 + κ, and
⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 κ

κ 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, λmax =
1 +
√

1 + 4κ2

2
= 1 + κ2

+O(κ4
).

For the first matrix the dependence of the largest eigenvalue on κ is linear, while for the second it is
quadratic for small κ; see also Example 14.1.10 below. This is the underlying effect distinguishing
the two different cases in Theorem 14.1.6.

We conclude this section by providing an explicit expression for the constant A2 in a simple example
and assuming the generic case of a unique strongest band.

Example 14.1.9 (Explicit formula for A2). Assuming Sommerfeld dispersion relations1

ϵa(p) =
p2

2ma
− µa (14.1.17)

with ma, µa > 0 for all a ∈ {1, ..., n} and radial interaction potentials Vab, one can easily find an
explicit expression for the constant A2 in (14.1.14).

Assume that â is the unique minimum of a ↦ ea and dimLâ = 1, which corresponds to s-wave
superconductivity (for dimLâ > 1 the formulas below are similar). Let e1 ∈Rd be the unit vector in
1-direction2 and denote

jd(y) ∶=
1
∣Sd−1∣ ∫§d−1

eiyp⋅e1dω(p) for y ∈R . (14.1.18)

Moreover, for a, b ∈ {1, ..., n}, let

vab ∶=
∣Sd−1∣

(2π)d
(4mamb)

d/4
(µaµb)

d−2
4 ∫

Rd
Vab(x)jd(

√
2maµa∣x∣)jd(

√
2mbµb∣x∣)dx . (14.1.19)

Note that vââ = eâ and vaa ∈ specVaa for all a ∈ {1, ..., n}, showing that ∣vââ − vaa∣ ≳ 1 − δâa, with
δab the Kronecker delta.

1In case that all the dispersion relations are radially symmetric, the additional condition ∫Rd ∫Rd ∣Vab(x)∣∣x −
y∣2∣Va′b′(y)∣dxdy <∞ from Theorem 14.1.6 can be relaxed, cf. [314, Theorem 2.1].

2By rotational invariance, one could have chosen any unit vector in Rd. This shows that, in particular, jd is
real-valued.
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With these notations (14.1.18)–(14.1.19), in Section 14.2, we prove the constant A2 to be given by

A2 = ∑
a≠â

∣vaâ∣
2

∣vââ∣2∣vââ − vaa∣
. (14.1.20)

Armed with (14.1.20), we find that A2 > 0 if and only if vâa ≠ 0 for some a ≠ â. On the one hand,
as vâa is essentially a Fourier transform, there surely exist (“ungeneric”) potentials Vâa such that
vâa vanishes for whole intervals of m’s and µ’s (by compact support in the Fourier-type space). On
the other hand, given Vâa with exponential decay at infinity, it is an elementary exercise, invoking
analyticity in the m and µ parameters, to show that the set of such values for which vâa = 0 is
isolated. Hence, A2 > 0 is the generic scenario.

Example 14.1.10 (Explicit formula for Tc for a two-band model). Consider the setting of radial
interactions and Sommerfeld dispersions as in Example 14.1.9 above with dimLa = 1 for a = 1,2
(but not necessarily assuming that inf ea < 0). We further restrict to a two-band case and assume
that for all κ ∈R the ground state space of V = Vd + κVod is contained in L1 ⊕L2. (Physically this
means that we have two coupled s-wave bands.) Then, Tc can be computed analytically in κ: In
case that vmin(κ) ∶=

v11+v22
2 −

√

(v11−v22
2 )

2
+ κ2∣v12∣2 < 0 (which happens, e.g., if v11 < 0 or v22 < 0),

we claim that
Tc(λ,κ) = T0 exp [ 1

λvmin(κ) +Oκ(λ2)
] (14.1.21)

for some fixed temperature scale T0, and where the implicit constant in Oκ(λ2) depends on κ. Note
that this expression for the critical temperature in a two-band superconductor already appeared in the
seminal paper by Suhl–Matthias–Walker [542]. We point out that, even if vab > 0 for all a, b = 1,2,
i.e., all interactions are repulsive, we have vmin(κ) < 0 for ∣κ∣ large enough; recall also Remark 14.1.5.
Further, we point out that the leading-order κ-dependence in (14.1.21) is linear respectively quadratic
in case v11 = v22 respectively v11 ≠ v22, matching the two different settings in Theorem 14.1.6; recall
also Remark 14.1.8. Finally, on the other hand, if vmin(κ) > 0, then Tc(λ,κ) = 0 for λ small enough.
The formula (14.1.21) above follows from the proof of Theorem 14.1.6. More concretely, inspecting
the proof of Theorem 14.1.6 below and expanding the formula −1 = inf specSTc(λ,κ) to first order in
λ, the formula follows.

In the following Section 14.2 we prove Proposition 14.1.4, Theorem 14.1.6 and the explicit formula
(14.1.20) for A2.
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14.2 Proofs
We first give the

Proof of Proposition 14.1.4. Consider (14.1.8). At κ = 0 and T = Tc(λ, 0) we thus find for any λ > 0
that KTc(λ,0) + λV

d ≥ 0. Define then the function by the variational principle

f(κ) = inf spec(KTc(λ,0) + λV
d
+ λκV od

) = inf
ψ∶∥ψ∥L2=1

⟨ψ∣KTc(λ,0) + λV
d
+ λκV od∣ψ⟩ .
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14.2. Proofs

Being an infimum over affine functions, f is concave in κ. Moreover, since V od is off-diagonal f
assumes a local maximum at κ = 0, again by the variational principle. It follows that f(κ) ≤ 0 for all
κ and with equality only on some (possibly infinite) interval [−κ−c , κ+c ]. Since KT is a monotone
increasing function of T then Tc(λ,κ) ≥ Tc(λ, 0) with strict inequality outside the interval [−κ−c , κ+c ].

To see that the interval [−κ−c , κ+c ] is finite we note that, since V od is off-diagonal, we can find a
function ψ ∈ H1 (of finite kinetic energy) with ⟨ψ∣λV od∣ψ⟩ ≤ −e < 0 for some e > 0. Then, by
Sobolev’s inequality [418, Theorem 8.3], we have ⟨ψ∣KTc(0) + λV

d∣ψ⟩ ≤ C and so, by the variational
principle

f(κ) ≤ ⟨ψ∣KTc(λ,0) + λV
d
+ λκV od

)∣ψ⟩ ≤ C − κe < 0, (14.2.1)

for κ > C/e. Thus κ+c < C/e. Similarly κ−c is finite. By (14.1.8), this concludes the proof.

Next, we give the

Proof of Theorem 14.1.6. First, we note that κ = 0 correspond to decoupled one-band models. Thus,
Tc(λ,0) > 0 by [269]. In particular then by Proposition 14.1.4 we have Tc(λ,κ) ≥ Tc(λ,0) > 0.

Next, analogously to the single-band case [269, 312, 311, 311] and Chapters 10 and 12, we use the
Birman–Schwinger principle to relate spectral properties of the unbounded operator KT + λV to the
compact Birman–Schwinger operator

BT ∶= λV
1/2K−1

T ∣V ∣
1/2. (14.2.2)

In (14.2.2), we used a polar decomposition V = U ∣V ∣ for the self-adjoint interaction matrix V
and denoted V 1/2 ∶= U ∣V ∣1/2. Note that BT has real spectrum: Indeed, BT is isospectral to3 the
self-adjoint operator λK−1/2

T ∣V ∣1/2V 1/2K
−1/2
T = λK

−1/2
T V K

−1/2
T since U and ∣V ∣ commute. The

Birman-Schwinger principle then says that −1 is the lowest eigenvalue of BT exactly for T = Tc, see
[269].

Further, we decompose the Birman–Schwinger operator into a dominant singular and a bounded
error term as

BT = λ log (T0
T
)V 1/2F†F∣V ∣1/2 + λV 1/2MT ∣V ∣

1/2 (14.2.3)

with all the operators in (14.2.3) being matrices and T0 > 0 a fixed reference temperature. More
precisely, we introduced the rescaled restricted Fourier transforms F ∶= diag(Fa)na=1 with

Fa ∶ L
1
(Rd
)→ L2

(Sa) , where (Faψ)(p) ∶=
1

(2π)d/2

√
2

√
∣∇ϵa(p)∣

∫
Rd

e−ip⋅xψ(x)dx∣
p∈Sa

and MT ∶= diag(MT,a)
n
a=1 is such that (14.2.3) holds.

The boundedness of the second summand in (14.2.3) is the content of the following lemma, which is
rather standard in the context of BCS theory. We give the proof below.

Lemma 14.2.1 (cf. [269, Lemma 2], Lemma 12.3.5, and [314, Lemma 3.2]).
Under the conditions of Theorem 14.1.6, we have that, uniformly in T > 0, V 1/2MT ∣V ∣

1/2 is a
bounded operator, supT>0 ∥V 1/2MT ∣V ∣

1/2∥ ≤ C.

Using Lemma 14.2.1, we find, by a similar argument as in Chapter 13 (see also [338, 312]), that

ST ∶= λ log (T0
T
)F∣V ∣1/2

1
1 + λV 1/2MT ∣V ∣1/2

V 1/2F†

3This follows from the general fact that spec(AB) ∖ {0} = spec(BA) ∖ {0} for any bounded operators A,B.
Moreover, in our case, 0 is in both spectra, since AB and BA are compact operators on an infinite-dimensional space.
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14. Multi-band superconductors have enhanced critical temperatures

has −1 as its lowest eigenvalue exactly for T = Tc. Similarly to Chapter 13 we wish to use this fact
for the two settings with or without interband coupling. To do this we first note that, to leading
order in λ, ST is proportional to FV F† = V. Thus, the ground states of ST are among those of V
for λ small enough. (The ground states of V may have different ST -expectations to higher order in
λ. The ground states of ST are those with smallest higher-order terms.) As V depends on κ so does
the ground state space of ST . Denote this space by Lκ.

Next, consider degenerate perturbation theory (in κ) for the operator ST . From degenerate first
order perturbation theory for the ground states, we find that any (normalized) ground state uκ ∈ Lκ
of STc(λ,κ) can be written as

uκ =
u(0) + κu(1)

√

1 + κ2 ⟨u(1)∣u(1)⟩
, u(0) ∈ L0, u(1) ⊥ L0, ⟨u(0)∣u(0)⟩ = 1, ⟨u(1)∣u(1)⟩ ≤ C.

Then, for small enough λ, we have −1 = ⟨uκ∣STc(λ,κ)∣uκ⟩ and −1 = ⟨u(0)∣STc(λ,0)∣u
(0)⟩. Next, writing

1
1+x = 1 − x

1+x we decompose ST as

ST = λ log (T0
T
)[V − λF∣V ∣1/2

V 1/2MT ∣V ∣
1/2

1 + λV 1/2MT ∣V ∣1/2
V 1/2F†

] .

At the critical temperature Tc(λ,κ) we write the second term in [. . .] as λW(λ,κ). Combining then
for both with and without inter-band couplings we get (noting that uκ and u(0) are ground states of
Vd + κVod and Vd respectively)

λ log(Tc(λ,κ)
Tc(λ,0)

)

=
1

inf spec (Vd + κVod) − λ ⟨uκ∣W(λ,κ)∣uκ⟩
−

1
inf spec (Vd) − λ ⟨u(0)∣W(λ,0)∣u(0)⟩

.

To evaluate this, we first note that, by simple perturbation theory for the compact self-adjoint
operator Vd + κVod up to second order

inf spec (Vd
+ κVod) = eâ −U

sgn(κ)
1 ∣κ∣ −U

sgn(κ)
2 κ2

+O(κ3
) (14.2.4)

for some constants U±1 , U±2 ≥ 0. (The signs of U±1 follows from the the fact that Tc(λ,κ) ≥ Tc(λ, 0).
The signs of U±2 is a general feature of second order perturbation theory.) Second, expanding
⟨uκ∣W(λ,κ)∣uκ⟩ in powers of κ, we have by Lemma 14.2.1 (and using that F and F† as well as
multiplication by ∣V ∣1/2 and V 1/2 are bounded operators with the appropriate (co)domains)

⟨uκ∣W(λ,κ)∣uκ⟩

= ⟨u(0)∣W(λ,0)∣u(0)⟩ + κ [⟨u(0)∣∂κW(λ,0)∣u(0)⟩ + 2Re ⟨u(0)∣W(λ,0)∣u(1)⟩] +O(κ2
).

(14.2.5)

To prove Theorem 14.1.6 (i) we use (14.2.4) and (14.2.5) to order κ. Bounding further ∥W(λ,0)∥ ≤ C
by Lemma 14.2.1 again it follows that

λ log(Tc(λ,κ)
Tc(λ,0)

) =
U

sgn(κ)
1
e2
â

∣κ∣ +O(κ2
) +O(∣κ∣λ).

To prove the second part of Theorem 14.1.6 (i) we note that A±1 = U±1 /e2
â > 0 happens when first

order perturbation theory in (14.2.4) does not vanish. This is the case, precisely if there exist a least
two minima â1, â2 ∈ {1, ..., n} of a↦ ea and functions uâi

∈ Lâi
for i = 1,2 such that the quadratic

form ⟨uâ1 ,Vâ1â2uâ2⟩L2(Sâ1)
= ⟨Vâ2â1uâ1 , uâ2⟩L2(Sâ2)

≠ 0 does not vanish. Finally, one can easily
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check that, in case of exactly two minima â1, â2 of a↦ ea and dimLai = 1 for at least one i = 1,2,
the constants U±1 in (14.2.4) and hence A±1agree.

Next, to prove Theorem 14.1.6 (ii) we use (14.2.4) and (14.2.5) to order κ2. By assumption,
the order κ term in (14.2.4) vanishes using the argument from above. Further, in this case also
U2 ∶= U

+
2 = U

−
2 agree. We claim that also the order κ terms in (14.2.5) vanish. This follows from the

fact that W(λ,0) is diagonal and the perturbation is off-diagonal. More precisely, since ∂κW(λ,0)
is off-diagonal we conclude that ⟨u(0)∣∂κW(λ,0)∣u(0)⟩ = 0. Second, W(λ, 0)u(0) ∈ L0 since L0 is a
subset of the ground state space of V and is an eigenspace for ST . Thus, ⟨u(0)∣W(λ,0)∣u(1)⟩ = 0.
Combining ∥W(λ,0)∥ ≤ C (by Lemma 14.2.1 again) with (14.2.4), we conclude that

λ log(Tc(λ,κ)
Tc(λ,0)

) =
U2
e2
â

κ2
+O(κ3

) +O(λκ2
) ,

which immediately shows the first part of Theorem 14.1.6 (ii). Lastly, A2 = U2/e
2
â = 0 happens

when both first and second order perturbation theory vanish in (14.2.4). This is precisely the case if
Vaâ∣Lâ

≡ 0 for all a ≠ â.

This concludes the proof of Theorem 14.1.6.

It remains to give the

Proof of Lemma 14.2.1. The argument is very similar to [314, Lemma 3.2] for dimensions d = 2,3
(the adjustments to d = 1 are straightforward), hence we will be very brief.

First, multiplying by the unitary U∗, we see that ∣V ∣1/2MT ∣V ∣
1/2 is self-adjoint and satisfies

∥∣V ∣1/2MT ∣V ∣
1/2∥ = ∥V 1/2MT ∣V ∣

1/2∥. Then, for ψ ∈ L2(Rd,Cn) setting φ ∶= ∣V ∣1/2ψ, it holds
that

⟨ψ∣∣V ∣1/2MT ∣V ∣
1/2
∣ψ⟩ =

n

∑
a=1
[∫

Rd

∣φ̂a(p)∣
2

KT,a(p)
dp − 2 log (T0

T
)∫

Sa

∣φ̂a(p)∣
2

∣∇ϵa(p)∣
dω(p)] (14.2.6)

since F†F and K−1
T are diagonal, and we denoted KT,a(p) ∶= ϵa(p)/ tanh ( ϵa(p)2T ). The expression in

(14.2.6) is the analog of [314, Eq. (3.25)] with the identifications T (p) + e→ (KT,a(p) − 2T ) + 2T ,
f(e) → 2 log(T0/T ), and ∇P → ∇ϵa. Now, we estimate every summand in (14.2.6) separately,
following the arguments in [314, pp. 496–498] for r = 14 with the following modifications: The bound
[314, Eq. (3.33)] is replaced by

∣φ̂a(p)∣
2
≲

n

∑
b,b′=1

∬ (∣V ∣1/2)ab(x)(∣V ∣
1/2
)ab′(y)ψb(x)ψb′(y)eip⋅(x−y)dxdy

≲
nmax

a,b=1
∥Vab∥L1(Rd)∥ψ∥

2
L2(Rd,Cn) ≲ ∥ψ∥

2
L2(Rd,Cn)

and, in a similar fashion, the bound [314, Eq. (3.34)] is replaced by

∣∇∣φ̂a(p)∣
2∣ ≲ (

nmax
b,b′=1∬

∣V ∣ab(x)∣x − y∣
2
∣V ∣ab′(y)dxdy)∥ψ∥2L2(Rd,Cn)

≲ (
nmax

a,b,a′,b′=1∬
∣Vab∣(x)∣x − y∣

2
∣Va′b′ ∣(y)dxdy)∥ψ∥2L2(Rd,Cn) ≲ ∥ψ∥

2
L2(Rd,Cn) .

In both estimates, the second step follows from elementary linear algebra. This concludes the proof
of Lemma 14.2.1.

4Note that the second to last line in [314, p. 497] contains a misprint: The estimate ∫
τ

0 t(t2 + e)−1dt ≤ const g(e)
should rather be ∫

τ

0 t(tr + e)−1dt ≤ const g(e).
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Finally, we give the

Proof of Equation (14.1.20). From the proof of Theorem 14.1.6 we have A2 = U2/e
2
â.

Since Vaa is radial by assumption, all eigenfunctions of Vaa are given by appropriately normalized
d-dimensional spherical harmonics (2maµa)

−(d−1)/4Yℓ and their eigenvalues are denoted ea(ℓ).
Here, we abused the common notation Y from three spatial dimensions for all d = 1,2,3 and
regard ℓ as an angular momentum multi-index. The Yℓ form an orthonormal basis of L2(Sd−1),
i.e. ⟨Yℓ, Yℓ′⟩L2(Sd−1) = δℓℓ′ , and Y0 is always understood to be the constant spherical harmonic.
Moreover, we shall also write ua(ℓ) ∶= (0, ...,0, (2maµa)

−(d−1)/4Yℓ,0, ...,0) ∈ ⊕n
a=1L

2(Sa), where
the only non-zero entry is at position a ∈ {1, ..., n}.

With these notations, using dimLâ = 1, it follows that uâ(0) is the unique (normalized) ground state
vector of Vd. Hence, second order perturbation theory shows that U2 can be evaluated as

U2 = ∑
(a,ℓ)≠(â,0)

∣⟨ua(ℓ),V
oduâ(0)⟩∣2

ea(ℓ) − eâ
. (14.2.7)

Since all the Vab are radial by assumption and using orthogonality of spherical harmonics, the large
sum in (14.2.7) (over all bands and angular momenta) further collapses to a sum only over the
bands, i.e.

U2 = ∑
a≠â

∣⟨ua(0),Voduâ(0)⟩∣2

∣ea(0) − eâ∣
,

where we put the absolute value in the denominator for better comparability with (14.1.20). Indeed, in
order to arrive at (14.1.20), we simply note that eâ = vââ, ea(0) = vaa, as well as ⟨ua(0),Voduâ(0)⟩ =
vaâ, where vab was defined in (14.1.19).

14.A Derivation of the multi-band BCS functional
We give here a heuristic derivation of the functional in (14.1.4), see also [411] and [309, Appendix A].
It arises as a formal infinite volume limit of the (negative) pressure functional restricted to a certain
class of states.

To start, we consider a spin- 1
2 Fermi gas localized to some box Λ = [0, L]d so that Fourier space is

Λ∗ = 2π
L Zd (we use periodic boundary conditions for the fermion operators). The fermions come in n

different species — these are the bands. We consider the most general interactions carrying 4 band
indices. Thus, the Hamiltonian is given by

H =∑
k,σ

∑
a

ϵ(0)a (k)a
∗
k,σ,aak,σ,a +

1
2Ld ∑

p,k,k′,σ,τ
∑

a,a′,b,b′
V̂ aa′,bb′(p)a

∗
k+p,σ,aa

∗
k′−p,τ,a′ak′,τ,b′ak,σ,b

with (bare) dispersion relations ϵ(0)a and interactions Vaa′,bb′ (we abuse notation slightly and use
the same symbol a both for fermin operators and a band index). Here a∗k,σ,a and ak,σ,a denote the
creation and annihilation operators of a particle of momentum k ∈ Λ∗, spin σ∈ {↑, ↓} and in band a.
Next, we restrict H to quasi-free states with no fixed particle number. These are the states relevant
for BCS theory [309, 411, 48]. Quasi-free states obey the Wick rule

⟨a#
1 a

#
2 a

#
3 a

#
4 ⟩ = ⟨a

#
1 a

#
4 ⟩ ⟨a

#
2 a

#
3 ⟩ − ⟨a

#
1 a

#
3 ⟩ ⟨a

#
2 a

#
4 ⟩ + ⟨a

#
1 a

#
2 ⟩ ⟨a

#
3 a

#
4 ⟩ ,

with each a#
i being either ak,σ,a or a∗k,σ,a. The three terms are the direct, exchange and pairing term

respectively. Then, the expectation ⟨H⟩ can be written in terms of

γ̂(a,σ),(b,τ)(k, k
′
) = ⟨a∗k,σ,aak′,τ,b⟩ and α̂(a,σ),(b,τ)(k, k

′
) = ⟨ak′,τ,bak,σ,a⟩;

note that the functions α(a,σ),(b,τ)(k, k′) are odd under the exchange (k, σ, a)↔ (k′, τ, b). Next,
we make the following three simplifying assumptions:
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14.A. Derivation of the multi-band BCS functional

(a) We consider only translation invariant states. This means that for the one-particle density
matrix γ that k = k′ for the non-zero entries and for the pairing function α that k = −k′ for
the non-zero entries.

(b) We consider only spin rotation invariant states and, in particular, only spin singlet supercon-
ducting states. (In the mathematical physics literature, this is referred to as SU(2)-invariance.)

(c) We consider only pairing functions with one band index, meaning that for α(a,σ),(b,τ) only
terms with a = b are non-zero.

Points (a) and (b) are discussed at length in [316]; the simplification in (c) is common in the
multi-band physics literature [542, 457, 375, 410].

With these assumptions, the expectation ⟨H⟩ can be written in terms of the simpler functions

γ̂ab(k) = ⟨a
∗
k,↑,aak,↑,b⟩ = ⟨a

∗
k,↓,aak,↓,b⟩ and α̂a(k) = ⟨a−k,↑,aak,↓,a⟩ = − ⟨a−k,↓,aak,↑,a⟩ ;

note that the latter condition means that we only consider spin-singlet superconducting states, and
this condition and the canonical anti-commutator relations imply that α̂a(k) are even functions of
k. The matrix-valued functions γ̂ = [γ̂ab]na,b=1 and α̂ = diag[α̂a]na=1 can be conveniently grouped
together in the generalized reduced one-particle density matrix Γ given by

Γ̂(p) =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

γ̂(p) α̂(p)

α̂(p) 1 − γ̂(−p)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

As a matrix this satisfies 0 ≤ Γ̂(p) ≤ 1 pointwise. The expectation of H in the state with generalized
reduced one-particle density matrix Γ is then

⟨H⟩Γ = 2∑
k,a

ϵa(k)
(0)γ̂aa(k) +

2
Ld

∑
a,a′,b,b′

V̂ aa′,bb′(0) [∑
k

γ̂ab(k)] [∑
k

γ̂a′b′(k)]

−
1
Ld

∑
k,p,a,a′,b,b′

V̂ aa′bb′(p)γ̂ab′(p − k)γ̂a′b(p) +
1
Ld
∑

k,p,a,b

V̂ aa,bb(p)α̂a(k − p)α̂b(k)

= 2∑
k,a

ϵa(k)
(0)γ̂aa(k) +∬ ∑

a,b

Vaa,bb(x − y)αa(x − y)αb(x − y)dxdy ,

+∬ ∑
a,a′,b,b′

Vaa′,bb′(x − y) [2γab(0)γa′b′(0) − γa′b(x − y)γab′(x − y)]dxdy

where the factors of two arise from the spin degrees of freedom. The pressure functional of the state
(with generalized reduced one-particle density matrix) Γ is then given by

P[Γ] = 1
Ld
[2TS(Γ) − ⟨H⟩Γ] , S(Γ) = −∑

p

TrC2n [Γ̂(p) ln Γ̂(p)] ,

where the factor two in front of the entropy again comes from the spin degrees of freedom. Taking a
formal infinite volume limit of −1

2P and replacing V → 2V we find the functional

F
(0)
[Γ] = ∫ ∑

a

ϵ(0)a (p)γ̂aa(p)dp − TS[Γ] + ∫Rd
∑
a,b

αa(x)Vaa,bb(x)αb(x)dx

+ ∫
Rd

∑
a,a′,b,b′

Vaa′,bb′(x) [2γab(0)γa′b′(0) − γa′b(x)γab′(x)]dx,

with the entropy per unit volume S[Γ] as in (14.1.5). The claim is then that, up to corrections which
are negligible, the direct and exchange terms effectively only serve to renormalize the dispersions ϵ(0)a ,
see [411]. Since in the interaction only terms with a = a′ and b = b′ appear, we define the matrix
Vab = Vaa,bb. Finally, by concavity of the entropy, the minimizer has γ diagonal, and we may thus
restrict to diagonal matrices γ. We then recover the functional in (14.1.4).
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14. Multi-band superconductors have enhanced critical temperatures

Remark 14.A.1 (Brillouin zones). It would be natural to consider also models with other Brillouin
zones, meaning that the k-integrals are not over Rd but over some different domain. For instance, a
Brillouin zone of a (cubic) torus of sidelengths 2π/a corresponds to a model of fermions on a lattice
aZd where a > 0 is the lattice spacing.

It would be interesting to extend our results to such lattice fermion models with compact Brillouin
zones, but this is beyond the scope of the present paper. We expect that the main results stated in
the beginning of the introduction are true also for such models, and we believe that the methods of
this paper would be applicable also to these other settings.

14.B Notation
For the convenience of the reader, we collect some notations used throughout this paper.

• For f(x) a (suitable) function of x = (x1, . . . , xd) ∈ Rd, we denote its Fourier transform by
f̂(p) = (2π)−d/2 ∫Rd f(x)e−ip⋅xdx, (here p ∈Rd).

• For ϵa(p) a dispersion relation determining a Fermi surface Sa as explained in Assumption 14.1.1,
we denote as dω the (Lebesgue) measure on Sa. In particular, letting δ be Dirac delta, for any
function f the Lebesgue measure satisfies

∫
Sa

1
∣∇ϵa(p)∣

f(p)dω(p) = ∫
Rd
δ(ϵa(p))f(p)dp .

• The unit sphere is denoted §d−1 = {p ∈ Rd ∶ ∣p∣ = 1} and the (Lebesgue) measure on
§d−1 is denoted dω. In particular, ∫§d−1 f(p)dω(p) = ∫Rd f(p)δ(∣p∣ − 1)dp for any f and
∣Sd−1∣ = ∫Rd δ(∣p∣ − 1)dp.

• For a general measure µ on Rd we denote by Lp(Rd,dµ) the space of all C-valued functions
for which ∫ ∣f ∣pdµ <∞. For Lebesgue measure µ we simply write Lp(Rd,dx) = Lp(Rd).

• The space H1
sym of reflection-symmetric H1 functions is more concretely given as

H1
sym(Rd,dx) = {f ∈ L2

(Rd,dx) ∶ f̂ ∈ L2
(Rd, (1 + p2

)dp), f(x) = f(−x) ∀x} .
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Chapter15
Local stability of ground states in locally
gapped and weakly interacting quantum

spin systems

This chapter includes the paper [343]:

J. Henheik, S. Teufel, and T. Wessel. Local stability of ground states in locally gapped and weakly
interacting quantum spin systems. Lett. Math. Phys., 112(1):9, 2022

Abstract. Based on a result by Yarotsky (J. Stat. Phys. 118, 2005), we prove that localized but
otherwise arbitrary perturbations of weakly interacting quantum spin systems with uniformly gapped
on-site terms change the ground state of such a system only locally, even if they close the spectral
gap. We call this a strong version of the local perturbations perturb locally (LPPL) principle which
is known to hold for much more general gapped systems, but only for perturbations that do not close
the spectral gap of the Hamiltonian. We also extend this strong LPPL-principle to Hamiltonians
that have the appropriate structure of gapped on-site terms and weak interactions only locally in
some region of space.

While our results are technically corollaries to a theorem of Yarotsky, we expect that the paradigm
of systems with a locally gapped ground state that is completely insensitive to the form of the
Hamiltonian elsewhere extends to other situations and has important physical consequences.
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15. Local stability of ground states

15.1 Introduction
We consider weakly interacting quantum spin systems on finite subsets Λ of the lattice Zν, ν ∈N,
described by a self-adjoint Hamiltonian

H =H0 +Hint , (15.1.1)

which is composed of a non-interacting part H0 and an interacting part Hint. The non-interacting
Hamiltonian H0 is a sum of non-negative on-site Hamiltonians hx, x ∈ Λ. Each hx is assumed to have
a non-degenerate ground state with ground state energy 0 and spectral gap of size at least g above
the ground state. The interaction Hamiltonian Hint is a sum of interaction terms Φx of finite range R
and of small uniformly bounded norm ∥Φx∥. We show that for such Hamiltonians a strong version of
the local perturbations perturb locally (LPPL) principle holds: For any self-adjoint perturbation P,
supported in a region X ⊂ Λ, any ground state ρP of the perturbed Hamiltonian H + P agrees with
the ground state ρ of the unperturbed Hamiltonian H when tested against observables A supported
in a region Y ⊂ Λ up to an error that is exponentially small in the distance dist(Y,X). More precisely,
Theorem 15.2.3 states that there are positive constants c, c1, c2 > 0 depending only on R and g, but
not on Λ, A, H or P, such that whenever ∥Φx∥ ≤ c for all x ∈ Λ, it holds that

∣tr((ρP − ρ)A)∣ ≤ ec1∣Y ∣ ∥A∥ e−c2 dist(Y,X) . (15.1.2)

Note that the uniformity of the error estimate with respect to the system size ∣Λ∣ is one key aspect
which makes this estimate non-trivial. Note also, that the bound on ∥Φx∥ implies that H has a gap
above its unique ground state ρ as we discuss below. However, for our result we neither require nor
actually have any uniform lower bound on the gap above the possibly non-unique ground state ρP of
the perturbed Hamiltonian H + P.

As a corollary of our main theorem, we show that a bound of the form (15.1.2) also holds for systems
that have the appropriate structure of gapped on-site terms and weak interactions only locally in
some region of space. In particular, this shows that the notion of a locally gapped ground state,
which is completely insensitive to the form of the Hamiltonian elsewhere, is perfectly valid in this
setup.

The LPPL-principle was coined by Bachmann, Michalakis, Nachtergaele, and Sims in [39], where
a similar estimate with subexponential decay was proven. While their result covers much more
general interacting quantum spin systems, it requires the gap above the ground state to remain
open also for the perturbed Hamiltonian H + P. More precisely, it relies on connecting H(0) ∶=H
with H(1) ∶=H + P by a continuous path [0, 1] ∋ t↦H(t) in the space of Hamiltonians, such that
the gap above the ground state of H(t) remains open uniformly along the whole path. Then the
locality of the quasi-adiabatic evolution introduced by Hastings and Wen in [326] can be used to
prove the result. Their subexponential bound was improved to exponential precision for finite-range
interactions by De Roeck and Schütz in [207]. See also [461, 462] for recent developments.

While we prove the strong version of the LPPL-principle only for weakly interacting spin systems,
we expect it to hold somewhat more generally. For example, we expect it to hold for fermions on
the lattice with weak finite range interactions, a physical setup where the strong LPPL-principle
would have important consequences. It would imply that a gapped ground state for such a system
with periodic boundary conditions remains unchanged in the bulk when introducing open boundary
conditions that may close the global gap due to the emergence of edge states. And as a consequence,
it would also explain why the adiabatic response to external fields in the bulk of such systems is not
affected by edge states that close the gap, see [36, 452, 556, 342, 341] for related results. However,
it is known that the strong LPPL-principle cannot hold in general, but requires further conditions on
the unperturbed ground state sector such as local topological quantum order (LTQO) [448, 463].

Shortly before resubmitting the final version of this article, Bachmann et al. published a preprint
containing a closely related result. In [35] they prove an LPPL-bound as in (15.1.2), but with
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15.2. Main results

subexponential decay, assuming LTQO for a unique frustration-free gapped ground state of the
unperturbed Hamiltonian which has no long-range entanglement.

Our result is a corollary of a result by Yarotsky [591] (see Theorem 15.3.2 below), which provides a
bound on the difference of so-called finite volume ground states in quantum spin systems described by
Hamiltonians of the form (15.1.1). His aim and main result in that work was to show the uniqueness
of the ground state of such systems in the thermodynamic limit. In a different work Yarotsky [590]
has shown that Hamiltonians of the form (15.1.1) with ∥Φ∥ < c indeed have a unique ground state
separated by a gap g̃ > 0 from the rest of the spectrum, with g̃ independent of Λ (see [206, 273, 324]
for similar results). Closely related to the stability of the gap is the stability of phase diagrams at low
temperatures, see [102, 197, 198].

Acknowledgments. J. H. acknowledges partial financial support by the ERC Advanced Grant
“RMTBeyond” No. 101020331. S. T. thanks Marius Lemm and Simone Warzel for very helpful
comments and discussions and Jürg Fröhlich for references to the literature.

15.2 Main results
Consider the lattice Zν for fixed ν ∈ N equipped with the ℓ1-metric d∶Zν × Zν → N0 and define
P0(Zν) = {Λ ⊂ Zν ∣Λ∣ <∞ }, where ∣Λ∣ denotes the cardinality of Λ. With each site x ∈ Zν one
associates a (possibly infinite dimensional) Hilbert space Hx. For Λ ∈ P0(Zν) set HΛ =⊗x∈ΛHx
and denote the algebra of bounded linear operators on HΛ by AΛ = B(HΛ). Due to the tensor
product structure, we have AΛ = ⊗x∈ΛB(Hx). Hence, for Λ′ ⊂ Λ ∈ P0(Zν), any A ∈ AΛ′ can be
viewed as an element of AΛ by identifying A with A⊗ 1Λ∖Λ′ ∈ AΛ, where 1Λ∖Λ′ denotes the identity
in AΛ∖Λ′ . Note that

[A,B] = 0 for all A ∈ AΛ , B ∈ AΛ′ with Λ ∩Λ′ = ∅ .

Similarly, we will also denote by K the closure of 1Λ∖Λ′ ⊗K on HΛ∖Λ′ ⊗D(K) for any self-adjoint
operator K on HΛ′ . Here and in the following, D(K) denotes the domain of the operator K.

Our main result will be formulated for a Hamiltonian

H =H0 +Hint ∈ AΛ

that is composed of a non-interacting part H0 and an interacting part Hint. The non-interacting
part H0 is assumed to be of the form

H0 = ∑
x∈Λ

hx ,

where each hx is a non-negative self-adjoint (possibly unbounded) operator on Hx with a unique
gapped ground state ψx ∈D(hx) satisfying

hxψx = 0 and hx∣D(hx)⊖ψx
≥ g , (15.2.1)

for some fixed g > 0. The latter means that ⟨φx, (hx − g1x)φx⟩ ≥ 0 for all φx ∈ D(hx) with
⟨ψx, φx⟩ = 0. In other words, all Hamiltonians hx have a spectral gap of size at least g above the
bottom of their spectrum. The interacting part is of the form

Hint = ∑
x∈Λ

Φx ,

with Φx ∈ Abx(R) self-adjoint for each x ∈ Λ and some fixedR ∈N. Here bx(R) ∶= { y ∈ Λd(x, y) ≤ R }
denotes the ℓ1-ball with radius R centered at x ∈ Λ. We set

∥Φ∥ ∶= sup
x∈Λ
∥Φx∥ .
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15. Local stability of ground states

Definition 15.2.1 (Weakly interacting spin system). For any Λ ∈ P0(Zν) we call a Hamiltonian
H =H0 +Hint on HΛ with H0 and Hint satisfying the above conditions a weakly interacting spin
system on Λ with on-site gap g, interaction range R and interaction strength ∥Φ∥.

We use the following definition for ground states and briefly explain how it is connected to the
standard definition in Appendix 15.A.

Definition 15.2.2. Let Λ ∈ P0(Zν) and K be a self-adjoint and bounded below operator on HΛ. We
say that [K,A] is a bounded operator B ∈ AΛ, whenever A leaves D(K) invariant and [K,A] = B
on D(K).

A state ρ ∈ AΛ, i.e. a positive semi-definite bounded operator with trace equal to one, is called a
ground state of K, if

tr(A∗[K,A]ρ) ≥ 0 for all A ∈ AΛ such that [K,A] is bounded.

Our first main result is the following.

Theorem 15.2.3 (The strong LPPL-principle). Let R ∈ N and g > 0. There exist constants
c, c1, c2 > 0, such that for any Λ ∈ P0(Zν) and any weakly interacting spin system H = H0 +Hint
on Λ with on-site gap at least g, interaction range R, and interaction strength ∥Φ∥ ≤ c the following
holds:

Let X ⊂ Λ be non-empty and P be a symmetric operator on HX such that P is relatively bounded
with respect to H with H-bound less than one. Set HP =H +P. Then for any ground state ρ of H ,
any ground state ρP of HP , and all A ∈ AY with Y ⊂ Λ it holds that

∣tr((ρP − ρ)A)∣ ≤ ec1∣Y ∣ ∥A∥ e−c2 dist(Y,X) . (15.2.2)

Under the assumptions of the theorem, Yarotsky has proven in [590] that H has a unique ground
state ρ, whenever c > 0 is small enough.1 In the following we will assume that this is the case.

For X at the edge of Λ, the perturbation P can be employed to realize all kinds of boundary
conditions, e.g. if Λ = {−M, . . . ,M}ν is a box, periodic boundary conditions can be modeled by
some P connecting opposite sites in Λ. Therefore, if X is at the edge, one can take the thermodynamic
limit Λ↗ Zν in (15.2.2) and conclude that there exists a unique ground state ρ, i.e. a normalized
positive functional, on the C∗-algebra of quasi-local observables A = Aloc

∥⋅∥, independent of the
imposed boundary conditions for the finite systems. This uniqueness of ground states for the infinite
system was the main result of [591] and has been shown by Yarotsky based on Theorem 15.3.2,
which we quote below.

As mentioned in the introduction, we expect a similar strong LPPL-principle to hold also for fermionic
lattice systems with weak finite range interactions. As discussed in [342, 341], this would have
important consequences for linear response and adiabatic theorems for systems with a gap only in
the bulk.

Our second main result is a local version of Theorem 15.2.3, where we assume the on-site gap and
the weak interaction only locally.

1Note that the systems for which Yarotsky proves existence and uniqueness of the ground state in [590] differ
slightly from our definition of weakly interacting spin systems in the treatment of interaction terms near the boundary
of the domain. To obtain the same result with our definition, one extends the Hamiltonian H to Ω ⊃ Λ as in the proof
of Theorem 15.2.3, applies the result from [590] and restricts the resulting ground state to Λ by taking the partial trace.

538



15.3. Proof

Definition 15.2.4 (Locally weakly interacting spin system). For any Λ ∈ P0(Zν) and Λ′ ⊂ Λ we
say that a self-adjoint operator H on HΛ is weakly interacting in the region Λ′ with on-site gap g,
range R and strength s, if and only if there exists a weakly interacting spin system H̃ = H̃0 + H̃ int on
Λ with on-site gap g, range R and strength ∥Φ∥ = s such that H − H̃ = 1HΛ′ ⊗ Q with Q a possibly
unbounded symmetric operator on HΛ∖Λ′ such that Q is infinitesimally H̃-bounded.

Corollary 15.2.5 (The strong LPPL-principle for local gaps). Let R ∈N, g > 0, and c, c1, c2 > 0 be
the constants from Theorem 15.2.3. Then for any Λ ∈ P0(Zν), Λ′ ⊂ Λ, and any self-adjoint operator
H on HΛ which is weakly interacting in the region Λ′ with on-site gap at least g, range R and
strength s ≤ c the following holds:
Let X ⊂ Λ be non-empty and P be a symmetric operator on HX such that P is relatively bounded
with respect to H with H-bound less than one. Set HP =H + P (see Figure 15.2.1). Then for any
ground state ρ of H, any ground state ρP of HP , and all A ∈ AY with Y ⊂ Λ′ it holds that

∣tr((ρP − ρ)A)∣ ≤ 2 ec1∣Y ∣ ∥A∥ e−c2 min{dist(Y,X),dist(Y,Λ∖Λ′)
} .

Λ′

X

Y

Λ

dist(Y,X)

dist(Y,Λ∖Λ′)

Figure 15.2.1: Depicted is the setting from Corollary 15.2.5. The system H defined on Λ is assumed
to be weakly interacting and to have an on-site gap in Λ′ ⊂ Λ. For any perturbation P acting on
X ⊂ Λ, ground states of H and H + P agree in regions Y away from X and Λ ∖Λ′.

Proof. Let H̃ and Q be as in Definition 15.2.4. Then H̃ , H̃ +Q and H̃ +Q+P are self-adjoint. For
the latter this follows, because also Q + P is relatively bounded with respect to H̃ with H̃-bound
less than one. This is not obvious, but the proof is a straightforward calculation that we skip.

Let ρ̃ be a ground state of H̃ , see the comment after Theorem 15.2.3 for existence. Then the triangle
inequality and two applications of Theorem 15.2.3 yield

∣tr((ρP − ρ)A)∣ ≤ ∣tr((ρP − ρ̃)A)∣ + ∣tr((ρ − ρ̃)A)∣

≤ ec1∣Y ∣ ∥A∥ (e−c2 dist(Y,X∪(Λ∖Λ′))
+ e−c2 dist(Y,Λ∖Λ′)) .

15.3 Proof
The proof of Theorem 15.2.3 is essentially a reinterpretation of a result by Yarotsky [591]. Since we
only deal with finite volumes, we modify Yarotsky’s notion of finite volume ground states to ground
states in the bulk. To make the arguments as transparent as possible, we will add superscripts to
Hamiltonians and states indicating on which subset of Zν they are defined. These superscripts are
also used to distinguish different operators and states. From now on let

DΛ ∶= {A ∈ AΛ[H
Λ
0 ,A] is bounded }
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15. Local stability of ground states

and note, that also {A ∈ AΛ[H
Λ
0 +K,A] is bounded } = DΛ for all bounded operators K ∈ AΛ.

Definition 15.3.1 (Ground states in the bulk). Let R ∈ N, Λ∗ ⊂ Λ ∈ P0(Zν) and HΛ∗ =HΛ∗
0 +H

Λ∗
int ∈

AΛ∗ be a weakly interacting spin system on Λ∗ with range R. Then we call

Λ○∗ ∶= { x ∈ Λ∗ dist(x,Zν ∖Λ∗) > 2R }

the bulk of the Hamiltonian HΛ∗ and any state ρΛ ∈ AΛ satisfying

tr(ρΛA∗[HΛ∗ ,A]) ≥ 0 for all A ∈ DΛ○∗

a ground state in the bulk of HΛ∗ .

Our proof is based on the following theorem due to Yarotsky [591].

Theorem 15.3.2 (Theorem 2 in [591]). Let R ∈ N and g > 0. There exist constants c, c1, c2 > 0
such that for any Λ∗ ∈ P0(Zν), and any weakly interacting spin system HΛ∗ = HΛ∗

0 +H
Λ∗
int on Λ∗

with on-site gap at least g, range R and interaction strength ∥Φ∥ ≤ c the following holds:

Let Λ ∈ P0(Zν) be such that Λ∗ ⊂ Λ. Then for any two ground states ρΛ
1 and ρΛ

2 ∈ AΛ in the bulk
of HΛ∗ in the sense of Definition 15.3.1, Y ⊂ Λ∗, and A ∈ AY it holds that

∣tr((ρΛ
1 − ρ

Λ
2 )A)∣ ≤ ec1∣Y ∣ ∥A∥ e−c2 dist(Y,Zν∖Λ○∗) .

Note that the set denoted by Λ in [591, Theorem 2] corresponds to our set Λ∗. Note, moreover,
that any ground state ρΛ in the bulk of HΛ∗ trivially defines a finite-volume ground state A ↦
tr(ρΛ (A⊗1Λ∖Λ∗)) of HΛ∗ in the sense of [591, Definition 2]. Allowing an arbitrary on-site gap g > 0
instead of g = 1, as in [591], is achieved by simple scaling.

Lemma 15.3.3. Let R ∈ N, Λ∗ ⊂ Λ ∈ P0(Zν) and HΛ = HΛ
0 +H

Λ
int ∈ AΛ be a weakly interacting

spin system. Then the canonical restriction of HΛ to Λ∗ defined by

HΛ
∣Λ∗ =H

Λ
0 ∣Λ∗ +H

Λ
int∣Λ∗ ∶= ∑

x∈Λ∗
hx + ∑

x∈Λ∗∶
dist(x,Λ∖Λ∗)>R

Φx

is a weakly interacting spin system on Λ∗ with the same on-site gap, range and strength and has the
following property: For any symmetric operator Q on HΛ∖Λ○∗ such that Q is relatively bounded with
respect to HΛ with HΛ-bound less than one, any ground state of HΛ +Q is also a ground state in
the bulk of HΛ∣Λ∗ .

Proof. It is clear that HΛ∣Λ∗ is a weakly interacting spin system on Λ∗. A simple calculation shows,
that Q is also relatively bounded with respect to HΛ∖Λ○∗

0 = ∑x∈Λ∖Λ○∗ hx with HΛ∖Λ○∗
0 -bound less than

one. Hence, K ∶= (HΛ −HΛ∣Λ∗ +Q) is a self-adjoint operator on HΛ∖Λ○∗ . Moreover, any A ∈ AΛ○∗
leaves invariant the domain of 1Λ○∗ ⊗K and satisfies

[1Λ○∗ ⊗K,A⊗ 1Λ∖Λ○∗] = 0.

Similarly, for all A ∈ DΛ○∗ , [H
Λ +Q,A] is bounded and satisfies

[HΛ
+Q,A] = [HΛ

∣Λ∗ ,A].

Therefore, any ground state of HΛ +Q is also a ground state in the bulk of HΛ∣Λ∗ .
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Λ○∗ Λ○

X

Y

Λ

Figure 15.3.1: Depicted is the setting from the proof of Proposition 15.3.4. The subset X ⊂ Λ is the
region where the perturbation P acts, and we choose Λ∗ = Λ ∖X. The shaded region Λ○∗ is the bulk
of HΛ∗. Y ⊂ Λ○∗ is the support of the observable A. This indicates why (15.3.1) holds.

Before we prove Theorem 15.2.3, let us give an intermediate result, which follows rather directly
from Theorem 15.3.2 and Lemma 15.3.3.

Proposition 15.3.4. Let R ∈ N and g > 0. There exist constants c, c1, c2 > 0 such that for any
Λ ∈ P0(Zν) and any weakly interacting spin system HΛ =HΛ

0 +H
Λ
int on Λ with on-site gap at least g,

interaction range R, and interaction strength ∥Φ∥ ≤ c the following holds:

Let X ⊂ Λ be non-empty and P be a symmetric operator on HX such that P is relatively bounded
with respect to HΛ with HΛ-bound less than one. Set HΛ

P =H
Λ +P. Then for any ground state ρΛ

of HΛ, any ground state ρΛ
P of HΛ

P , and all A ∈ AY with Y ⊂ Λ it holds that

∣tr((ρΛ
P − ρ

Λ
)A)∣ ≤ ec1∣Y ∣ ∥A∥ e−c2 min{dist(Y,Zν∖Λ○),dist(Y,X)−2R} .

Proof. Assume w.l.o.g. that Y ⊂ Λ○. Otherwise, the statement in Proposition 15.3.4 is trivially
satisfied after a possible adjustment of c1.

Let Λ∗ = Λ∖X, and let HΛ∣Λ∗ be the canonical restriction of HΛ to Λ∗ as defined in Lemma 15.3.3.
Then Λ○∗ ∩X = ∅. We can assume w.l.o.g. that dist(X,Y ) > 2R since otherwise the statement in
Proposition 15.3.4 is trivially satisfied after a possible adjustment of c1. Then also Y ⊂ Λ○∗ (compare
Figure 15.3.1). By application of Lemma 15.3.3 with Q = P and Q = 0 we find that both, ρΛ

P and
ρΛ, are ground states in the bulk of HΛ∣Λ∗ . Hence, Theorem 15.3.2 implies that

∣tr((ρΛ
P − ρ

Λ
)A)∣ ≤ ec1∣Y ∣ ∥A∥ e−c2 dist(Y,Zν∖Λ○∗) .

From
Zν ∖Λ○∗ = (Zν ∖Λ○) ∪ { x ∈ Zν dist(x,X) ≤ 2R }

we immediately conclude that

dist(Y,Zν ∖Λ○∗) =min {dist(Y,Zν ∖Λ○), dist(Y,X) − 2R} , (15.3.1)

which yields the claim.

We now extend this result to obtain Theorem 15.2.3.

Proof of Theorem 15.2.3. In the following, we add superscripts Λ to the Hamiltonians and states
from the statement of Theorem 15.2.3.
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Let Ω ∈ P0(Zν) be such that Λ ⊂ Ω. For each x ∈ Ω∖Λ let hx ∈ A{x} be a self-adjoint operator with
gap at least g and non-degenerate ground state ψx satisfying (15.2.1). Then ρΩ∖Λ =⊗x∈Ω∖Λ ∣ψx⟩ ⟨ψx∣
is the ground state of

HΩ∖Λ
0 ∶= ∑

x∈Ω∖Λ
hx .

Moreover, ρΩ ∶= ρΛ ⊗ ρΩ∖Λ is a ground state of HΩ ∶= HΛ +HΩ∖Λ
0 which is a weakly interacting

spin system on Ω with on-site gap at least g, range R, and interaction strength ∥Φ∥. And also
ρΩ
P ∶= ρ

Λ
P ⊗ ρ

Ω∖Λ is a ground state of HΩ
P ∶=H

Λ
P +H

Ω∖Λ
0 =HΩ + P.

According to Proposition 15.3.4 we have

∣tr((ρΩ
P − ρ

Ω
)A)∣ ≤ ec1∣Y ∣ ∥A∥ e−c2 min{dist(Y,Zν∖Ω○),dist(Y,X)−2R}

for all A ∈ AY and Y ⊂ Ω. By requiring Y ⊂ Λ we obtain

∣tr((ρΛ
P − ρ

Λ
)A)∣ = ∣tr((ρΩ

P − ρ
Ω
)A)∣ ≤ ec1∣Y ∣ ∥A∥ e−c2 min{dist(Λ,Zν∖Ω○),dist(Y,X)−2R}.

Since this bound is independent of Ω, we can choose Ω sufficiently large such that dist(Λ,Zν ∖Ω○) >
dist(Y,X) − 2R. Absorbing e2c2R in c1 yields the claim.

15.A Characterization of ground states
In the following lemma we show that every ground state in the usual sense, i.e. every minimizer of
the energy functional, is also a ground state according to Definition 15.2.2. While Definition 15.2.2 is
often used as a characterization of ground states in the context of extended quantum lattice systems,
we could not find any reference in the literature, which covers the statement of the following lemma
also for unbounded operators.

Lemma 15.A.1. Let Λ ∈ P0(Zν) and K be a self-adjoint and bounded below operator on HΛ. A
state ρ ∈ AΛ is a ground state in the usual sense, i.e.

tr(K ρ) ≤ tr(K ρ̃) for all states ρ̃ ∈ AΛ , (15.A.1)

if and only if ran(ρ) ⊂D(K) and

tr(A∗[K,A]ρ) ≥ 0 for all A ∈ AΛ such that [K,A] is bounded. (15.A.2)

Here we adopt the convention that the trace of an operator that is not trace class is +∞.

For bounded K this implies that for any state ρ ∈ AΛ the conditions (15.A.1) and (15.A.2) are
equivalent. And for unbounded K, any ground state in the usual sense is a ground state according to
our Definition 15.2.2. It could be that equivalence extends to unbounded operators, i.e. that (15.A.2)
implies ran(ρ) ⊂D(K). However, we could not find a proof for this.

Proof of Lemma 15.A.1. Let E0 ∶= inf σ(K) and let (ϕn) be a Weyl sequence for E0, i.e. ϕn ∈D(K),
∥ϕn∥ = 1 and ∥(K −E0)ϕn∥ ≤ 1/n for all n ∈N.

Assume that ρ satisfies (15.A.1). Since tr(K ∣ϕn⟩ ⟨ϕn∣) ≤ E0 + 1/n, it follows that tr(Kρ) = E0.
Hence, E0 is an eigenvalue of K and the range of ρ is contained in the ground state eigenspace. Let
A ∈ AΛ such that [K,A] is bounded. Then the operator A∗(K −E0)A is non-negative and

tr(A∗[K,A]ρ) = tr(ρ
1
2A∗[K,A]ρ

1
2 ) = tr(ρ

1
2A∗(K −E0)Aρ

1
2 ) ≥ 0

follows.
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15.A. Characterization of ground states

Now assume that ρ is a ground state in the sense of Definition 15.2.2, denote by ρ = ∑i λi ∣ψi⟩ ⟨ψi∣
a spectral decomposition of ρ with ψi normalized. Since ran(ρ) ⊂ D(K), also ψi ∈ D(K). The
operator An,j ∶= ∣ϕn⟩ ⟨ψj ∣ then has a bounded commutator with K and inequality (15.A.2) yields

0 ≤ tr(A∗n,j[K,An,j]ρ) = λj ⟨[⟩ ]ϕn, [K,An,j]ψj ≤ λj (E0 +
1
n − ⟨ψj ,Kψj⟩).

Thus, ⟨ψj ,Kψj⟩ ≤ E0 for all j. Hence, tr(Kρ) = E0 and ρ is indeed a ground state of K.
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Chapter16
On adiabatic theory for gapped

fermionic lattice systems

This chapter includes the paper [346]:

J. Henheik and T. Wessel. On adiabatic theory for extended fermionic lattice systems. J. Math.
Phys., 63(12):121101, 2022

Abstract. We review recent results on adiabatic theory for ground states of extended gapped
fermionic lattice systems under several different assumptions. More precisely, we present generalized
super-adiabatic theorems for extended but finite and infinite systems, assuming either a uniform gap
or a gap in the bulk above the unperturbed ground state. The goal of this note is to provide an
overview of these adiabatic theorems and briefly outline the main ideas and techniques required in
their proofs.
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16.1 Introduction
In this article, we review four recent results on adiabatic theory for ground states of extended
finite and infinite fermionic lattice systems at zero temperature [556, 342, 341]. These results are
generalized super-adiabatic theorems (see Section 16.1.2) and concern Hamiltonians of the form

Hε
=H0 + εV ,

where the unperturbed Hamiltonian H0 is a sum-of-local-terms (SLT) operator describing short-range
interacting fermions and is assumed to have a spectral gap above its ground state. This gap might
be closed by the (small) perturbation εV , which is given by a short-range Hamiltonian, a Lipschitz
potential, or a sum of both. Consequently, the results presented in this article are adiabatic theorems
for resonances of Hε (cf. [2, 235]).

The most important corollary and main motivation for proving such theorems in the context of
extended fermionic lattice systems is the rigorous justification of linear response theory [556, 340]
and the Kubo formula [386] for (topological) insulators [432], such as quantum Hall systems [560],
where the prototypical relevant perturbation is a linear external potential modeling a constant electric
field closing the gap of H0 for every ε ≠ 0 (see Figure 16.1.1 on page 550).

In the remainder of this introduction, we first briefly discuss the connection between linear response
and adiabatic theory in Section 16.1.1 (see also [556, 340]). Furthermore, we point out the key
ingredients and developments, which allowed to prove the four adiabatic theorems reviewed in this
paper. Afterwards, in Section 16.1.2, we explain the notion of generalized super-adiabatic theorems
and thereby introduce (super-adiabatic) non-equilibrium almost-stationary states (NEASSs) [556] as
the above mentioned resonances of Hε. A first brief but somewhat precise statement and overview
of the results is given in Section 16.1.3.

16.1.1 Linear response and adiabatic theory
The formalism of linear response theory [386] has been widely used in physics to calculate the
response of a system in thermal equilibrium to external perturbations. Put briefly, linear response
theory provides an answer to the following question: What is the response of a system described by
a Hamiltonian H0, that is initially in an equilibrium state ρ0, to a small static perturbation εV ? Or,
in somewhat more mathematical terms: What is the change1

ρε(A) − ρ0(A) = εσA + o(ε)

of the expectation value of an observable A induced by the perturbation εV to leading order in
its strength 0 < ε ≪ 1? Here, ρε denotes the state of the system after the perturbation has been
(adiabatically) turned on and σA denotes the linear response coefficient.

The answer to this fundamental question of linear response clearly hinges on the problem of
determining ρε. Although in few particular situations one expects ρε to remain an equilibrium state

1To be consistent with the rest of the paper, we view states as linear functionals on the algebra of observables (see
Section 16.2).
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for the perturbed Hamiltonian Hε =H0 + εV , the original linear response theory [386] was developed
for situations where the system is driven out of equilibrium, i.e. ρε being a resonance state. As
prominently formulated by Simon [526] in his ‘Fifteen problems in mathematical physics’ from 1984,
the latter non-equilibrium situation causes the main challenges in a rigorous mathematical treatment.
However, in either case, the linear response coefficient σA is customarily expected to be given by the
celebrated Kubo formula [386], and rigorously justifying it was formulated as one of the problems by
Simon [526]. For a more detailed recent review on the (mathematical) problem of proving Kubo’s
formula and its relevance in the context of quantum Hall systems, we refer to [340].

In a nutshell, the problem of justifying linear response theory and proving Kubo’s formula is thus to
verify that a system, initially in an equilibrium state ρ0, is adiabatically driven by a small perturbation
εV into a non-equilibrium state ρε ≈ ρ0. Since the perturbation acts over a very long (macroscopic)
time, this problem clearly supersedes standard perturbation theory: The change of the state being
small is not a trivial consequence of the smallness of the perturbation εV . Instead, verifying that
the two states, ρε and ρ0, are close to each other requires an adiabatic type theorem.

However, even in our rather simple setting (zero temperature, assuming that ρ0 is the gapped ground
state of H0 describing an extended fermionic lattice system, the perturbation εV might close the
gap), the problem of justifying the linear response formalism also goes beyond standard adiabatic
theory. In fact, the applicability of the standard adiabatic theorem of quantum mechanics is rather
restrictive for the following three reasons:

(i) The standard adiabatic theorem requires the perturbation εV to not close the spectral gap. In
that scenario, it asserts that ρε is (close to) the gapped ground state of Hε =H0 + εV and as
such a (nearly) equilibrium state.

(ii) Even if we neglect the first issue, the usual adiabatic theorem estimates the difference between
ρε and the ground state of the perturbed Hamiltonian Hε in operator norm, leaving the
translation to local differences in expectation values as an additional and potentially non-trivial
step.

(iii) In general, extended systems are plagued by the orthogonality catastrophe: Whenever for single-
particle states ψ, ψ̃ we have ∥ψ − ψ̃∥ ∼ ε, the non-interacting many-particle states ⊗x∈Λψx and
⊗x∈Λψ̃x satisfy ∥⊗x∈Λ ψx − ⊗x∈Λψ̃x∥ ∼ ε∣Λ∣, i.e. the norm-estimate deteriorates when ∣Λ∣→∞.
This means that the approximation error in the standard adiabatic theorem grows with the
systems size, and it is thus not applicable for macroscopic systems.

A major breakthrough in overcoming these obstacles has recently been achieved by Bachmann,
De Roeck and Fraas [36] (see also their introductory lecture notes [37]). They proved the first
adiabatic theorem for extended (but finite) lattice systems with short-range interactions, thereby
solving the second and third problem in the list above. More precisely, their result concerns differences
in expectation values and provides error estimates, which are uniform in the system size.

For these lattice systems with short-range interactions, well known Lieb-Robinson bounds [419, 460,
461] ensure a finite speed of correlation and prevent build-up of long-range entanglement. Having
Lieb-Robinson bounds at hand allowed Bachmann et al. [39] to prove that the generator of the spectral
flow, introduced by Hastings and Wen [326], is an SLT operator and thus preserves good locality
properties. The general spectral flow technique can then be used to prove automorphic equivalence of
two gapped ground states ρ0 and ρ1 of Hamiltonians H(0) and H(1), respectively: Given a smooth
path s ↦ H(s) of (uniformly) gapped SLT Hamiltonians, their ground states are automorphically
equivalent (equal up to a conjugation by unitaries) with the generator of the automorphism being
an SLT operator [39]. This automorphic equivalence allowed Bachmann et al. [36] to prove a
super-adiabatic theorem (see Section 16.1.2 for an explanation of this notion) for such systems,
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however, still requiring the spectral gap not only for H0 but also for Hε, i.e. the gap must remain
open.2

The four theorems presented in this article also solved the last remaining problem given under item (i)
in the above list, i.e. they allow the perturbation εV to close the spectral gap of H0. The main
idea for establishing this generalization is that a spatially local gap should suffice for an adiabatic
theorem to hold. This underlies the space-time adiabatic perturbation theory originally developed
for non-interacting fermions by Panati, Spohn and Teufel [484, 483], where one utilizes a gap that
exists locally in space (and time) but does not exist globally. It also underlies the recent results by
De Roeck, Elgart and Fraas [204], where an adiabatic theorem holds even if the ‘spectral gap’ is filled
with eigenvalues, whose corresponding eigenvectors are spatially localized, leaving a gap (with smaller
size) locally open. Finally, this is also the idea behind the Theorems 16.3.7 and especially 16.3.9
presented below, where one still has an adiabatic type theorem although the gap closes at the
boundary of the lattices.

Combining the ideas from the space-time adiabatic perturbation theory with the methods invented
in [36], the first of the four theorems presented in this article was proven by Teufel [556]. It concerns
extended but finite systems and requires a spectral gap for H0, uniformly in the system size (see
Assumption (GAPunif)). The precise statement is formulated in Theorem 16.3.2 below. In order to
extend this result from finite lattices to an infinite system, Henheik and Teufel [342] adapted ideas
from Nachtergaele, Sims and Young [461] on controlling the thermodynamic limit of automorphisms
with SLT generators. This result is formulated in Theorem 16.3.5 below.

So far, all mentioned results were obtained under the assumption of a (uniform) spectral gap for
the finite systems (which also implies a gap for the infinite system). However, the recent result
on automorphic equivalence with a gap only in the bulk (via the GNS construction) by Moon
and Ogata [454], opened the door for a new class of adiabatic theorems, where the unperturbed
Hamiltonian H0 is no longer required to have a uniform spectral gap. Instead, Theorem 16.3.7,
originally proven by Henheik and Teufel [341], is a result for the infinite volume states and requires a
gap in the bulk. This technically means a gap for the infinite system (cf. Assumption (GAPbulk)) but
can be understood as requiring a local gap in the interior of the finite lattices (cf. Remark 16.3.6).

Moreover, by employing strong locality estimates from [461, 454] and assuming fast convergence of
ground states, Theorem 16.3.7 can be traced back to extended but finite systems which only have a
gap in the bulk. This was also proven in [341] and is formulated in Theorem 16.3.9 below.

16.1.2 Non-equilibrium almost-stationary states

For the results presented in this paper, we consider time-dependent families

Hε
(t) =H0(t) + εV (t) , t ∈ I ⊂R , (16.1.1)

of many-body Hamiltonians for lattice fermions in Γ ⊂ Zd with short-range interactions. Here, Γ will
either be a finite box Λ or the whole of Zd. For each t ∈ I, we denote by ρ0(t) the instantaneous ground
state of H0(t) on the (quasi-local) algebra of observables AΓ. For simplicity of the presentation,
we shall assume that the ground state is unique.3 Moreover, we assume that the ground state
is separated by a gap from the rest of the spectrum (see Assumptions (GAPunif) and (GAPbulk)
in Section 16.3 for the precise formulation). The perturbation V (t) can be a Hamiltonian with

2A slight generalization of their result can be found in [452], where the authors used an alternative gauge with a
time-dependent vector potential for a quantum Hall model.

3We refer to the original papers [556, 342, 341] for the most general assumptions. However, note that the results
from [341], corresponding to our Theorems 16.3.7 and 16.3.9, are only formulated for a unique ground state, although
the underlying result on automorphic equivalence of gapped phases [454] can easily be generalized to any gapped pure
state (see [454, Remark 1.4]). In general, allowing for a degenerate ground state (or even a gapped spectral patch)
requires understanding an enhanced modification of the spectral flow.

548



16.1. Introduction

short-range interactions or a possibly unbounded external Lipschitz potential or a sum of both (see
Section 16.2 and the Assumptions (INT1)–(INT4) in Section 16.3).

As mentioned above, the main results presented in this article are so-called generalized super-adiabatic
theorems for ρ0(t), which we briefly explain in the following. For ε = 0, the results are ‘standard’
super-adiabatic theorems and establish the existence of super-adiabatic states ρη0(t) on AΓ close to
ρ0(t), i.e.

∣ρη0(t)(A) − ρ0(t)(A)∣ = O(η) ,

such that the adiabatic time-evolution Uηt,t0 on AΓ generated by 1
ηH0(⋅) intertwines the super-

adiabatic states to all orders in the adiabatic parameter η > 0, i.e.

∣ρη0(t0)(U
η
t,t0

JAK) − ρη0(t)(A)∣ = O(η
∞
) (16.1.2)

for all A in a dense subspace D ⊂ AΓ. Throughout the entire paper, we shall study our system in
the Heisenberg picture, meaning that the observable A evolves in time, not the state ρη0(t0) (see
also Proposition 16.3.4). Note that the comparison state ρη0(t) does not involve any time evolution
but simply depends on the Hamiltonian at time t (see Definition 16.3.1 for details). Here and in the
following, we write the arguments of (densely defined) linear operators on AΓ inside the brackets J⋅K
for better readability.

For ε > 0, the scope of the adiabatic theorem (16.1.2) extends considerably since the perturbation
εV (t) might close the spectral gap and turn the ground state ρ0(t) of H0(t) into an instantaneous
resonance state Πε(t) for Hε(t). These states have a life-time of order O(ε−∞) for the dynamics
s ↦ eisLHε(t) with LHε(t)J⋅K ∶= [Hε(t), ⋅ ] (formally) denoting the derivation associated to Hε(t).
That is, for all n ∈N and fixed t, it holds that

∣Πε
(t)(eisLHε(t)JAK) −Πε

(t)(A)∣ = O(εn (1 + ∣s∣d+1)) ,

which is why they were called non-equilibrium almost-stationary states (NEASSs) in this context
by Teufel [556]. The generalized super-adiabatic theorems then establish the existence of a super-
adiabatic NEASS Πε,η(t) on AΓ close to Πε(t) such that the adiabatic time-evolution Uε,ηt,t0 generated
by 1

ηH
ε(⋅) approximately intertwines the super-adiabatic NEASSs in the following sense: for any

n > d and for all A ∈ D ⊂ AΓ, we have

∣Πε,η
(t0)(U

ε,η
t,t0

JAK) −Πε,η
(t)(A)∣ = O(ηn−d +

εn+1

ηd+1) (16.1.3)

uniformly for t in compact sets, which we call a generalized super-adiabatic theorem.

In our setting of gapped Hamiltonians H0 describing insulating materials, there is indeed a clear and
simple physical picture suggesting the existence of NEASSs for Hε as observed in [556, 340] (see
Figure 16.1.1). For simplicity, assume that H0 is a periodic one-body operator in one spatial dimension
and that the Fermi energy µ (chemical potential) lies in a gap of size g. For the perturbation,
we consider the potential of a small constant electric field ε. In the initial state ρ0, before the
perturbation is turned on, all one-body states with energy smaller than µ are occupied. After the
voltage has been applied, the energy of an electron located at position x0 gets substantially shifted
by εx0, but is only subject to small force of order ε. As indicated in Figure 16.1.1, in order to make a
transition, such an electron must either overcome the gap of size g or tunnel a macroscopic distance
of order g/ε. Thus, although ρ0 is neither close to the ground state nor any other equilibrium state of
the perturbed Hamiltonian Hε =H0 + εV , it is still almost stationary for Hε. This heuristic picture
remains valid if short-range interactions between the electrons are taken into account.

While for ε = 0 the generalized super-adiabatic theorem (16.1.3) reduces to the standard one (16.1.2),
for 0 < ε ≪ 1 the right-hand side of (16.1.3) is small if and only if also η is small, but not too
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gapped secto
r

rest of the spectrum

g

g/ε

σ(H0) + εx

xx0

Figure 16.1.1: Let H0 be a Hamiltonian with a gapped sector and a gap g. Perturbing with a
Lipschitz potential v(x) = εx, the gap gets closed (for large enough lattices). But, as indicated in
the figure, a local gap persists and an electron at location x0 would either need to overcome the gap
(vertical arrow) or tunnel along the distance g/ε (horizontal arrow) in order to make a transition
from the gapped sector. [556, 340]

small compared to ε, i.e. ε
n+1
d+1 ≪ η ≪ 1 for some n ∈ N. Physically, this simply means that the

adiabatic approximation breaks down when the adiabatic switching occurs at times that exceed
the lifetime of the NEASS, an effect that has been observed in adiabatic theory for resonances
before, see, e.g., [2, 235]. It can also be heuristically understood from the tunneling picture given in
Figure 16.1.1.

Moreover, in view of the linear response problem discussed in Section 16.1.1, let us only mention
here that a statement like (16.1.3), in fact, yields a solution to this problem after expanding the
state Πε,η(t) in powers of ε, where the linear term (eventually stemming from the first order
operator A1 given in (16.4.6)) does, in fact, constitute Kubo’s formula. See [556, 340, 342] for
details.

16.1.3 Brief statement of the results
We shall establish the existence of super-adiabatic NEASSs in four generally quite different situations,
the main differences are also summarized in Table 16.1:

(I) On finite systems Λk ⋐ Zd with suitable boundary conditions, assuming that the unperturbed
Hamiltonians HΛk

0 (t) have a gapped ground state uniformly in Λk, there exists NEASSs on
AΛk

such that the constants in (16.1.3) are independent of Λk. See Theorem 16.3.2 and [556].

(II) Additionally assuming convergence of the Hamiltonians (they have a thermodynamic limit,
cf. Definition 16.3.3) and ground states, there also exists a super-adiabatic NEASS on AZd

after taking the thermodynamic limit Λk ↗ Zd. See Theorem 16.3.5 and [342].

(III) For the infinite system Zd, assuming that the unperturbed Hamiltonian H0 has a unique gapped
ground state (via the GNS construction), there exists a NEASS on AZd , while a (uniform)
spectral gap for finite sub-systems is not required. See Theorem 16.3.7 and [341].
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Table 16.1: Overview of the adiabatic theorems and the original papers.

Finite volume Infinite volume

Uniform gap Theorem 16.3.2; see [556] Theorem 16.3.5; see [342]

Gap in the bulk Theorem 16.3.9; see [341] Theorem 16.3.7; see [341]

(IV) Additionally assuming a quantitative control on the convergence of the finite volume Hamiltoni-
ans HΛk(t) (they have a rapid thermodynamic limit, cf. Definition 16.3.8) and the unperturbed
ground states in the thermodynamic limit, there also exist NEASSs on AΛk

(again with a
uniform constant) up to an error vanishing faster than any inverse polynomial in the distance
to the boundary. See Theorem 16.3.9 and [341].

A typical example of a physically relevant class of Hamiltonians [452, 556, 340], to which the above
generalized super-adiabatic theorems apply, is given by

HΛk
0 = ∑

x,y∈Λk

a∗x T (x − y)ay + ∑
x∈Λk

a∗x ϕ(x)ax

+ ∑
x,y∈Λk

a∗xaxW (d
Λk(x, y))a∗yay − µNΛk

,
(16.1.4)

modeling Chern or topological insulators. In agreement with the precise locality assumptions (INT1)–
(INT4) in Section 16.3, we suppose that the kinetic term T ∶Zd → L(Cr) is an exponentially decaying
function with T (−x) = T (x)∗, the potential term ϕ∶Zd → L(Cr) is a bounded function taking
values in the self-adjoint matrices, and the two-body interaction W ∶ [0,∞)→ L(Cr) is exponentially
decaying and also takes values in the self-adjoint matrices. Note, that x− y in the kinetic term refers
to the difference modulo the imposed boundary condition on Λk. In the first line of (16.1.4), ax is
the column vector of the annihilation operators ax,i (i labels internal degrees of freedom such as
spin) and a∗x the row vector of the creation operators a∗x,i (see Section 16.2). And with a slight abuse
of notation in the second line of (16.1.4), we wrote a∗xax for the row vector with entries a∗x,iax,i and
a∗yay for the column vector with entries a∗y,iay,i.

It is well known that non-interacting Hamiltonians H0, i.e. with W ≡ 0, of the type (16.1.4) on
a torus (periodic boundary condition) have a uniform spectral gap (see Assumption (GAPunif))
whenever the chemical potential µ multiplying the number operator lies in a gap of the spectrum of
the corresponding one-body operator on the infinite domain. It was recently shown [324, 206], that
the spectral gap remains open when perturbing by sufficiently small short-range interactions W ≠ 0.
On the other hand, the Hamiltonian H0 on a cube with open boundary condition has, in general, no
longer a spectral gap because of the appearance of edge states. However, away from the boundary, a
gap in the bulk (see Assumption (GAPbulk)) is still present. While also uniqueness of the ground
state is expected to hold for such models, to our knowledge it has been shown only for certain types
of quantum spin systems, cf. [591, 273, 462, 463] and Chapter 15. For further details, we refer to
the original papers [556, 342, 341]. Finally, it is an interesting program to extend Table 16.1 by
further rows representing different notions of a spectral gap for H0, e.g. a local gap as in Chapter 15
or even only a mobility gap (see [204] for a first result in this direction).

After a brief introduction to the relevant mathematical framework in Section 16.2, we formulate the
four main theorems in Section 16.3. Ideas of their proofs are provided in Section 16.4.
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16.2 Mathematical Framework
In this section, we briefly introduce the (standard) mathematical framework used in the formulation
of the adiabatic theorems. More explanations and details are provided in [556, 342, 341].

16.2.1 Algebra of observables
We consider fermions with r spin or other internal degrees of freedom on the lattice Zd. Let
{X ⋐ Zd} ∶= {X ⊂ Zd ∶ ∣X ∣ <∞} denote the set of finite subsets of Zd, where ∣X ∣ is the number of
elements in X. For each X ⋐ Zd let FX be the fermionic Fock space built up from the one-body
space ℓ2(X,Cr). The C∗-algebra of bounded operators AX ∶= L(FX) is generated by the identity
element 1AX

and the creation and annihilation operators a∗x,i, ax,i for x ∈ X and 1 ≤ i ≤ r, which
satisfy the canonical anti-commutation relations (CAR). Whenever X ⊂ X ′, then AX is naturally
embedded as a subalgebra of AX′ . For infinite systems, the algebra of local observables is defined as
the inductive limit

Aloc ∶= ⋃
X⋐Zd

AX , and its completion AZd ∶= Aloc
∥⋅∥

with respect to the operator norm ∥ ⋅ ∥ is a C∗-algebra, called the quasi-local algebra. The even
elements A+Zd ⊂ AZd form a C∗-subalgebra. Also, note that for any X ⋐ Zd the set of elements ANX
commuting with the number operator NX ∶= ∑x∈X a

∗
x ax ∶= ∑x∈X ∑

r
i=1 a

∗
x,i ax,i forms a subalgebra

of the even subalgebra, i.e. ANX ⊂ A+X ⊂ AX . As only even observables will be relevant to our
considerations, we will drop the superscript + from now on and redefine AZd ∶= A+Zd .

Since a very similar construction is common for quantum spin systems (see, e.g., [461]), all the
results immediately translate to this setting.

16.2.2 Interactions and operator families
We shall consider sequences of Hamiltonians defined on centered boxes Λk ∶= {−k, . . . ,+k}d of size
2k with metric dΛk(⋅, ⋅). This metric may differ from the standard ℓ1-distance d(⋅, ⋅) on Zd restricted
to Λk if one considers discrete tube or torus geometries, but satisfies the bulk-compatibility condition

∀k ∈ N ∀x, y ∈ Λk ∶ dΛk(x, y) ≤ d(x, y) and dΛk(x, y) = d(x, y) whenever d(x, y) ≤ k .

An interaction on a domain Λk is a map

ΦΛk ∶{X ⊂ Λk}→ ANΛk
, X ↦ ΦΛk(X) ∈ ANX

with values in the self-adjoint operators. Note that the maps ΦΛk can be extended to maps on the
whole {X ⋐ Zd} or restricted to a smaller Λl, trivially. In order to describe fermionic systems on
the lattice Zd in the thermodynamic limit, one considers sequences Φ = (ΦΛk)

k∈N of interactions on
domains Λk and calls the whole sequence an interaction.

An infinite volume interaction is a map

Ψ∶{X ⋐ Zd}→ ANloc , X ↦ Ψ(X) ∈ ANX ,

again with values in the self-adjoint operators. Such an infinite volume interaction defines a general
interaction Ψ = (ΨΛk)

k∈N by restriction, i.e. by setting ΨΛk ∶= Ψ∣{X⊂Λk}.
4 With any interaction Φ,

one associates an operator family, which is a sequence A = (AΛk)k∈N of self-adjoint operators

AΛk ∶= AΛk(Φ) ∶=∑
X⊂Λk

ΦΛk(X) ∈ ANΛk
.

4We will use the convention that Φ denotes general interactions and Ψ infinite volume interactions.
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For any a > 0 and n ∈N0, we define the norm

∥Φ∥a,n ∶= sup
k∈N

sup
x,y∈Zd

∑
X⊂Λk ∶
x,y∈X

dΛk -diam(X)n ea⋅d
Λk(x,y)

∥ΦΛk(X)∥ (16.2.1)

on the space of interactions.5 Note that these norms depend on the sequence of metrics dΛk on the
cubes Λk, i.e. on the boundary conditions.

Similar constructions for interactions and interaction norms are long known. More commonly,
the norms are independent of the particular lattice Λk and the interaction (ΦΛk)

k∈N is given by
restrictions of a single infinite volume interaction. Moreover, in earlier works [506, 511] the authors
did not require additional decay properties, which were only added later (see, e.g., [527, 325, 461]).
The use of interactions and corresponding norms, which are not simply restrictions of an infinite
volume interaction, originates in [452] to incorporate non-trivial boundary conditions. In order to
control commutators with Lipschitz potentials (see Section 16.2.3), the dependence on the diameter
dΛk -diam(X) was added in [556]. Finally, to ensure the existence of the thermodynamic limit, it
is necessary to require the bulk-compatibility condition [342, 341]. Yet another variant of defining
interaction norms is to replace dist(x, y) with diam(X) in (16.2.1) (see, e.g., [325, 35]).

In order to quantify the difference of interactions in the bulk (see Section 16.3.2), we also introduce
for any interaction ΦΛl on the domain Λl and any ΛM ⊂ Λl the quantity

∥ΦΛl∥a,n,ΛM
∶= sup
x,y∈ΛM

∑
X⊂ΛM ∶
x,y∈X

diam(X)n ea⋅d(x,y) ∥ΦΛl(X)∥ ,

where d and diam now refer to the ℓ1-distance on Zd.

Let Ba,n be the Banach space of interactions with finite ∥⋅∥a,n-norm and define the space of
exponentially localized interactions as the intersection Ba,∞ ∶= ⋂n∈N0 Ba,n. In the literature, the
vector spaces of operator families, which can be written in terms of such interactions, are denoted by
La,n and La,∞. Moreover, we will be a bit sloppy in the following terminology and call the elements
AΛk of an operator sequence A sum-of-local-terms (SLT) operators, whenever its interaction ΦA

has a finite interaction norm similar to (16.2.1), but with the exponential replaced by a function
growing faster than any polynomial. This will allow us to formulate the results and the ideas of the
proofs without too many details. For the precise conditions see, e.g., [342, Section 2.2].

Now, let I ⊂ R be an open interval. We say that a map Φ∶ I → Ba,n is smooth and bounded whenever
it is (i) term- and point-wise smooth in t ∈ I, i.e. t ↦ ΦΛk(t,X) are C∞-functions for all k ∈ N
and X ⊂ Λk, and (ii) supt∈I ∥ di

dti Φ(t)∥a,n <∞ for all i ∈N0. The corresponding spaces of smooth
and bounded time-dependent interactions and operator families are denoted by BI,a,n and LI,a,n
and are equipped with the norm ∥Φ∥I,a,n ∶= supt∈I ∥Φ(t)∥a,n. We say that Φ∶ I → Ba,∞ is smooth
and bounded, if Φ∶ I → Ba,n is smooth and bounded for all n ∈N0, and we write BI,a,∞ and LI,a,∞
for the corresponding spaces of time-dependent exponentially localized interactions and operator
families respectively.

For (time-dependent) infinite volume interactions Ψ, we add a superscript ○ to the norms and to the
normed spaces defined above, emphasizing in particular the use of open boundary conditions, i.e.
dΛk ≡ d. Note that the compatibility condition for the metrics dΛk implies that ∥Ψ∥a,n ≤ ∥Ψ∥○a,n.

5One should be aware that the norm definition (16.2.1) is slightly modified compared to the original works [556,
342, 341] for the sake of simplicity in presentation. For more general and precise statements of the theorems we refer
the reader to the original works.

553



16. On adiabatic theory for gapped fermionic lattice systems

16.2.3 Lipschitz potentials

For the perturbation we will allow external potentials v = (vΛk ∶Λk → R)
k∈N that satisfy the Lipschitz

condition

Cv ∶= sup
k∈N

sup
x,y∈Λk ∶
x≠y

∣vΛk(x) − vΛk(y)∣

dΛk(x, y)
<∞ , (16.2.2)

and call them for short Lipschitz potentials.6 With a Lipschitz potential v we associate the
corresponding operator-sequence Vv = (V Λk

v )k∈N defined by

V Λk
v ∶= ∑

x∈Λk

vΛk(x)a∗x ax

and denote the space of Lipschitz potentials by V . We emphasize that, since supk∈N supx∈Λk
∣vΛk(x)∣

might be infinite, Vv is in general no SLT operator. However, this is still more restrictive than general
onsite potentials, because it only varies slowly in space. Moreover, we say that the map v∶ I → V
is smooth and bounded whenever (i) vΛk(x, ⋅) are C∞-functions for all k ∈ N and x ∈ Λk, and
(ii) satisfies supt∈I C di

dti v(t)
<∞ for all i ∈ N0. The space of smooth and bounded time-dependent

Lipschitz potentials is denoted by VI .

As above, we also introduce infinite volume Lipschitz potentials v∞∶Zd → R, which, again by
restriction and invoking the compatibility condition for the metrics dΛk , can be viewed as a Lipschitz
potential with dΛk ≡ d in (16.2.2). And analogously to Section 16.2.2, for (time-dependent) infinite
volume Lipschitz potentials, we add a superscript ○ to the constant from (16.2.2) and to the spaces,
emphasizing the use of open boundary conditions. Note that the compatibility condition for the
metrics dΛk implies that Cv ≥ C○v .

16.3 Adiabatic theorems for gapped quantum systems
As mentioned in the introduction, we shall distinguish two generally quite different settings regarding
the presence of a spectral gap of the unperturbed Hamiltonian H0 grouped as Theorem 16.3.2 and
Theorem 16.3.5 in Section 16.3.1 as well as Theorem 16.3.7 and Theorem 16.3.9 in Section 16.3.2.
First, in Section 16.3.1, we will work under the assumption that there exists a sequence of subsystems
(Λk)k∈N equipped with an appropriate metric (reflecting, e.g., periodic boundary conditions), ensuring
that HΛk

0 have a uniform gap above their ground state, which is made precise in Assumption (GAPunif)
below. Then, in Section 16.3.2, however, we drop this assumption and solely assume that H0 has a
gap in the bulk, meaning that the GNS Hamiltonian, describing the system in the thermodynamic
limit, has a spectral gap above its ground state eigenvalue zero (see Assumption (GAPbulk)). Note
that the second group of results is more general than the first group with regard to the gap condition,
since a uniform gap for finite systems guarantees a spectral gap for the GNS Hamiltonian describing
the infinite system (see Proposition 5.4 in [38]). Therefore, the second row in Table 16.1 somewhat
improves the results in the first row since finding a suitable geometry for which one already has a
spectral gap for finite systems is no longer necessary.

In the precise formulation of the adiabatic theorems, we shall frequently use the abbreviating phrase
that a state Πε,η(t) is a super-adiabatic NEASS (see Section 16.1.2), which we generally define as
follows, reminiscent of [556, 342, 341].

Definition 16.3.1 (Super-adiabatic non-equilibrium almost-stationary states). We assume to be in
the following general setting, which is made precise in concrete situations: For (small) ε > 0, define

6Teufel [556] instead allowed slightly more general slowly-varying potentials. And while the phrase captures the
idea very well, the technical definition is less transparent and slightly complicates the presentation of the proofs. Hence,
we here, as in [342, 341], restrict to the subclass of Lipschitz potentials.
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the time-dependent Hamiltonian

Hε
(t) =H0(t) + εV (t) , t ∈ I , on Γ ⊂ Zd

and let ρ0(t) be (close to)7 the ground state of H0(t). Moreover, denote the Heisenberg time-
evolution on the algebra of (quasi-local) observables AΓ generated by 1

ηH
ε(t) as Uε,ηt,t0 , where t, t0 ∈ I

for some open interval I ⊂R and η > 0 is a (small) adiabatic parameter.
Then, we say that a state Πε,η(t) on AΓ is a super-adiabatic non-equilibrium almost-stationary state
for the state ρ0(t) and the time-evolution Uε,ηt,t0 on AΓ if it satisfies the following properties:

1. Πε,η almost intertwines the time evolution: For any n ∈ N, there exists a constant Cn such
that for any t, t0 ∈ I and for all X ⋐ Γ and A ∈ AX ⊂ AΓ we have

∣Πε,η
(t0)(U

ε,η
t,t0

JAK) −Πε,η
(t)(A)∣ ≤ Cn

εn+1 + ηn+1

ηd+1 (1 + ∣t − t0∣d+1) ∥A∥ ∣X ∣2. (16.3.1)

2. Πε,η is local in time: Πε,η(t) only depends on H0 and V and their time derivatives at time t.

3. Πε,η is stationary whenever the Hamiltonian is stationary: If for some fixed t ∈ I all time-
derivatives of H0 and V vanish at time t, then Πε,η(t) equals the NEASS8 Πε(t) for the
instantaneous ground state ρ0(t) and the time-evolution s ↦ eisLHε(t) generated by the
time-independent Hamiltonian Hε(t).

4. Πε,η equals the (approximate) ground state ρ0 of H0 whenever the perturbation vanishes and
the Hamiltonian is stationary: If for some t ∈ I all time-derivatives of H0 and V vanish at time
t and V (t) = 0, then Πε,η(t) = Πε,0(t) = ρ0(t).

We could have written bound (16.3.1) in a more general form as indicated by (16.1.3). For example,
we could allow (1 + ∣t − t0∣d+1) to be replaced by a constant CK <∞, depending only on a compact
subset K ⊂ I of times, or, similarly, ∣X ∣2 to be replaced by a constant CX < ∞, depending only
on the support X ⋐ Zd of the observable A. Also, the power of η in the denominator could be
allowed to be more general, e.g. some constant Cd <∞ instead of d+ 1. However, the concrete form
of (16.3.1) indeed matches the precise bounds of the results in Section 16.3.

16.3.1 Systems with a uniform gap
Throughout this section, we assume that H0 has a uniformly gapped unique ground state in the
following sense.

(GAPunif) Assumptions on the ground state of H0.

Let ΦH0 = (Φ
Λk
H0
)
k∈N be an interaction. There exists L ∈ N such that for all t ∈ I, k ≥ L and

corresponding Λk the operator HΛk
0 (t) has a simple gapped ground state eigenvalue EΛk

0 (t) =

inf σ(HΛk
0 (t)), i.e. there exists g > 0 such that dist(EΛk

0 (t), σ(H
Λk
0 (t)) ∖ {E

Λk
0 (t)}) ≥ g, for all

t ∈ I, k ≥ L. We denote the spectral projection of HΛk
0 (t) corresponding to EΛk

0 (t) by PΛk
0 (t) and

write ρΛk
0 (t)(⋅) ∶= tr (PΛk

0 (t) ⋅ ) for the canonically associated state on AΛk
.

A physically relevant class of Hamiltonians satisfying this assumption (possibly up to the uniqueness,
which we require for simplicity of the presentation) was given in (16.1.4) in Section 16.1.3. In the
following, we shall present adiabatic theorems for extended but finite systems (Theorem 16.3.2) as
well as for infinite systems (Theorem 16.3.5) under Assumption (GAPunif).

7See the comment below Assumption (Sbulk) on page 561 for a precise definition.
8It follows from the construction sketched in Section 16.4.1.1 that Πε

(t) = Πε,0
(t). Moreover, Πε

(t) is almost
stationary with a bound as in (16.3.1) where the fraction is replaced by εn+1.
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16.3.1.1 Extended but finite systems

The basic assumption on the Hamiltonian says that it is composed of exponentially localized
interactions and/or a Lipschitz potential.

(INT1) Assumptions on the interactions.

LetH0,H1 be the Hamiltonians of two time-dependent exponentially localized interactions, i.e. ΦH0 ,ΦH1 ∈

BI,a,∞ for some a > 0, and v ∈ VI be a time-dependent Lipschitz potential.

The following results due to Teufel [556] marks the starting point for generalized super-adiabatic
theorems for extended fermionic lattice systems.

Theorem 16.3.2 (Adiabatic theorem for finite systems with a uniform gap, see Theorem 5.1 in [556]).
Under Assumptions (GAPunif) and (INT1), there exists a sequence of near-identity9 automorphisms
βε,η,Λk(t) = eiεLΛk

Sε,η(t) with SLT generators Sε,η for any ε, η ∈ (0,1] and t ∈ I such that the states

Πε,η,Λk(t) ∶= ρΛk
0 (t) ○ β

ε,η,Λk(t) (16.3.2)

are super-adiabatic NEASSs for the Heisenberg time-evolution Uε,η,Λk
t,t0

onAΛk
generated by 1

η H
ε,Λk(⋅)

with
1
η H

ε,Λk(t) ∶= 1
η (H

Λk
0 (t) + ε (V

Λk
v (t) +H

Λk
1 (t)))

uniformly in k ≥ L. That is, for every n ∈N, there exists a constant Cn, such that for any A ∈ AX ,
ε, η ∈ (0,1] and all t, t0 ∈ I it holds that

sup
k≥L
∣Πε,η,Λk(t0)(U

ε,η,Λk
t,t0

JAK) −Πε,η,Λk(t)(A)∣ ≤ Cn
εn+1 + ηn+1

ηd+1 (1 + ∣t − t0∣d+1
) ∥A∥ ∣X ∣2 .

The proof of this result fundamentally builds on space-time adiabatic perturbation theory [484, 483]
and technical estimates originally derived in [36]. The latter show that the operations necessary for
the construction of the generator of the near-identity automorphism in the definition of the NEASS
in (16.3.2) (almost) preserve exponential localization required for the Hamiltonian (see Section 16.4).
As already mentioned in the introduction, although the adiabatic theorem in [36] is at first sight
quite similar to the one above, it requires the perturbation to not close the spectral gap of the
Hamiltonian H0 and is thus not generalized in the sense explained in Section 16.1.2.

16.3.1.2 Infinite systems

The next result is obtained from Theorem 16.3.2 by taking Λk ↗ Zd. This requires the interactions
and the Lipschitz potential composing the Hamiltonian (16.1.1) to have a thermodynamic limit [342]
in the following sense.

Definition 16.3.3 (Thermodynamic limit of interactions and potentials). (a) An exponentially lo-
calized time-dependent interaction Φ ∈ BI,a,∞ is said to have a thermodynamic limit (have a
TDL) if there exists an infinite volume interaction Ψ ∈ B○I,a,∞ such that

∀n ∈N, i ∈ N0, M ∈ N ∶ lim
k→∞

sup
t∈I
∥

di

dti
(Ψ −ΦΛk) (t)∥

a,n,ΛM

= 0 ,

and we write ΦÐ→td Ψ in this case.
An operator family is said to have a TDL if and only if the corresponding interaction does.
For more general (non-exponentially localized) SLT operators, the definition is completely
analogous.

9Indeed, supk∈N∥A − β
ε,η,Λk(t)JAK∥ ≤ (ε + η)C ∥A∥ ∣X ∣ ∣t∣ for A ∈ AX and t in a bounded interval by [461,

Theorem 3.4(i)].
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(b) A Lipschitz potential v ∈ VI is said to have a TDL if there exists an infinite volume Lipschitz
potential v∞ ∈ V○I such that

∀M ∈ N ∃K ≥M ∀k ≥K, t ∈ I ∶ vΛk(t, ⋅)∣ΛM
= v∞(t, ⋅)∣ΛM

.

Again, we write v Ð→td v∞ in this case.

Note that, whenever Φ = Ψ for some infinite-volume interaction Ψ, or v = v∞ for some infinite
volume Lipschitz potential v∞, both Φ and v trivially have a TDL.

The following proposition is a standard consequence of Lieb-Robinson bounds and shows that the
property of having a TDL for interactions and Lipschitz potentials guarantees the existence of
the thermodynamic limit for the corresponding evolution operators [461, 124]. We remark that it
remains true under less restrictive assumptions on the localization quality of the interaction (see,
e.g., Proposition 2.2 in [342]).

Proposition 16.3.4 (Thermodynamic limit of evolution operators). Let K0 ∈ LI,a,∞ and w ∈ VI
both have a thermodynamic limit, i.e. ΦK0 Ð→

td ΨK0 and w Ð→td w∞ for some ΨK0 ∈ B
○
I,a,∞ and

w∞ ∈ V
○
I . Set K =K0 + Vw and let Uη,Λk(t, t0) denote the evolution family generated by KΛk(t) in

scaled time with η > 0, i.e. the solution to the Schrödinger equation

i η d
dt
Uη,Λk(t, t0) =K

Λk(t)Uη,Λk(t, t0)

with Uη,Λk(t0, t0) = id. Then, there exists a co-cycle of automorphisms Uηt,t0 ∶ A
d
Z → AZd such that

for all A ∈ Aloc,

Uηt,t0JAK = lim
k→∞

Uη,Λk
t,t0

JAK ∶= lim
k→∞

Uη,Λk(t, t0)
∗AUη,Λk(t, t0) .

The co-cycle Uηt,t0 only depends on ΨK0 and w∞ and is generated by the time-dependent (closed)
derivation (LK(t),D(LK(t))) associated with K(t).

As mentioned above, since the following Theorem 16.3.5 is deduced from Theorem 16.3.2 by taking
Λk ↗ Zd, we will need to assume the existence of a thermodynamic limit for the building blocks of
the Hamiltonian (16.1.1).

(INT2) Assumptions on the interactions.

For ΨH0 ,ΨH1 ∈ B
○
I,a,∞ for some a > 0 and v∞ ∈ V○I there exist ΦH0 ,ΦH1 ∈ BI,a,∞ and v ∈ VI with

appropriate boundary conditions (encoded in the definition of the norms defining the spaces L and
the Lipschitz condition) all having a TDL with the respective object as the limit, i.e. ΦH0 Ð→

td ΨH0 ,
ΦH1 Ð→

td ΨH1 and v Ð→td v∞.

We also assume the convergence of ground states, by means of the Banach-Alaoglu Theorem (the unit
sphere in A∗Zd is weak∗-compact), essentially only in order to avoid the extraction of a subsequence.

(Sunif) Assumptions on the convergence of states.

Assume that for every t ∈ I the sequence (ρΛk
0 (t))k∈N of ground states (naturally extended to the

whole of AZd) converges in the weak∗-topology to a state ρ0(t) on AZd , which we call the gapped
limit ground state at t ∈ I.

We can now formulate the second generalized super-adiabatic theorem concerning infinite systems
with a uniform gap [342].
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16. On adiabatic theory for gapped fermionic lattice systems

Theorem 16.3.5 (Adiabatic theorem for infinite systems with a uniform gap, see Theorems 3.2 and 3.5
in [342]). Under the Assumptions (GAPunif), (INT2) and (Sunif), there exists a near-identity auto-
morphism βε,η(t) = eiεLSε,η(t) with SLT generators Sε,η for any ε, η ∈ (0,1] and t ∈ I, such that the
state

Πε,η
(t) ∶= ρ0(t) ○ β

ε,η
(t)

is a super-adiabatic NEASS for the Heisenberg time-evolution on AZd generated by 1
ηΨHε(⋅) with

ΨHε ∶= ΨH0 + ε (Vv∞ +ΨH1) .

The crucial point in the proof of Theorem 16.3.5 in [342] is to show that the property of having a
TDL is designed in such a way that it is preserved under all necessary operations for the construction
of the NEASS (see Section 16.4). Therefore, also the near-identity automorphism from (16.3.2)
converges as Λk ↗ Zd by means of Proposition 16.3.4.

16.3.2 Systems with a gap in the bulk
In this section, we drop Assumption (GAPunif) of a uniform gap for finite systems, but merely work
under the condition of a gap in the bulk, which is formulated via the Gelfand-Naimark-Segal (GNS)
construction in Assumption (GAPbulk) below: Let ΨH0 ∈ B

○
a,0 be an infinite volume interaction and

LH0 denote the induced derivation on (a dense subset of) AZd . A state ω on AZd is called an
LH0-ground state, if and only if ω(A∗LH0(A)) ≥ 0 for all A ∈ D(LH0). Let ω be an LH0-ground
state and (Hω, πω,Ωω) be the corresponding GNS triple (Hω a Hilbert space, πω ∶A → L(Hω) a
representation and Ωω ∈Hω a cyclic vector). Then, there exists a unique densely defined, self-adjoint
positive operator H0,ω ≥ 0 on Hω satisfying

πω(eitLH0 JAK) = eitH0,ω πω(A) e−itH0,ω and e−itH0,ω Ωω = Ωω (16.3.3)

for all A ∈ A and t ∈ R. We call this H0,ω the bulk Hamiltonian (or GNS Hamiltonian) associated
with ΨH0 and ω. See [118] for the general theory.

We assume that ΨH0 has a unique gapped ground state in the following sense (cf. [454, 341]):

(GAPbulk) Assumptions on the ground state of ΨH0.

(i) Uniqueness. For each t ∈ I, there exists a unique LH0(t)-ground state ρ0(t).

(ii) Gap. There exists g > 0 such that σ(H0,ρ0(t)(t)) ∖ {0} ⊂ [g,∞) for all t ∈ I.

(iii) Regularity. For any strictly positive f ∈ S(R) (Schwarz functions), define Df as the set
of observables A ∈ AZd for which ∥A∥f ∶= ∥A∥ + supk∈N(∥(1 − EΛk

)JAK∥/f(k)) < ∞, where
EΛk

J⋅K denotes the conditional expectation (see [342, Appendix C]). Then, for any A ∈ Df ,
t↦ ρ0(t)(A) is differentiable and there exists a constant Cf such that

sup
t∈I
∣ρ0̇(t)(A)∣ ≤ Cf ∥A∥f .

The smoothness of expectation values of (almost) exponentially localized observables as under item
(iii) is a rather technical condition and a consequence of a uniform gap as in Assumption (GAPunif)
(see Remark 4.15 in [454] and Lemma 6.0.1 in [453]). Although uniqueness of the ground state in
item (i), which we required throughout the paper, is expected to hold for the physically relevant type
of Hamiltonian (16.1.4), it has been shown, to our present knowledge, only in very specific quantum
spin systems. These include (a) weak perturbations of non-interacting gapped frustration-free
systems [591] (see also Chapter 15), and (b) short-range interacting frustration-free models fulfilling
local topological quantum order (LTQO) [463, 35].
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16.3. Adiabatic theorems for gapped quantum systems

Remark 16.3.6. As mentioned in the beginning of Section 16.3, item (ii) holds, in particular, if
one has a uniform gap for finite systems as spelled out in Assumption (GAPunif), since it cannot
close abruptly in the thermodynamic limit for the GNS Hamiltonian (see Proposition 5.4 in [38]).
However, we observe that a considerably weaker sufficient condition for having a gap for the GNS
Hamiltonian as in Assumption (GAPbulk) (ii) is to have a gap in the bulk for the finite systems Λk in
the following sense: There exists g > 0 such that for all k ∈N there exists some l = l(k) ∈N with
l(k)→∞ as k →∞, and we have

ρΛk
0 (t)(A

∗
L

Λk

H0(t)JAK) ≥ g (ρΛk
0 (t)(A

∗A) − ∣ρΛk
0 (t)(A)∣

2
) (16.3.4)

for all A ∈ AΛl
and all t ∈ I, where ρΛk

0 (t) denotes a suitable ground state of HΛk
0 (t). Indeed,

assuming that ρΛk
0 (t)⇀ ρ0(t) for every t ∈ I,10 this simply follows after taking the limit k →∞ on

both sides of (16.3.4) and realizing that, as k →∞, the set of admissible observables A ∈ AΛl(k)
exhausts Aloc, which is dense in AZd by definition. The resulting inequality immediately yields the
desired spectral gap for the GNS Hamiltonian (cf. [118, Proposition 5.3.19] and [462, Section 7]).

In the following, we shall present adiabatic theorems for infinite systems (Theorem 16.3.7) as well as
for extended but finite systems (Theorem 16.3.9) under Assumption (GAPbulk).

16.3.2.1 Infinite systems

Analogously to Section 16.3.1, the basic assumptions on the Hamiltonian say that it is composed of
exponentially localized interactions and/or a Lipschitz potential. In addition, the Hamiltonian H0
satisfies a technical regularity assumption in t, for which we recall that I ⊂ R denotes an open time
interval.

(INT3) Assumptions on the interactions.

(i) Let ΨH0 ,ΨH1 ∈ B
○
I,a,∞ be time-dependent infinite volume interactions and v∞ ∈ V

○
I a time-

dependent infinite volume Lipschitz potential.

(ii) Assume that the map I → B○a,∞, t↦ ΨH0(t) is continuously differentiable.11

We can now formulate the third generalized super-adiabatic theorem concerning infinite systems with
a gap in the bulk [341].

Theorem 16.3.7 (Adiabatic theorem for infinite systems with a gap in the bulk, see Theorem 3.4
in [341]). Under Assumptions (GAPbulk) and (INT3), there exists a near-identity automorphism
βε,η(t) = eiεLSε,η(t) on AZd with SLT generators Sε,η for any ε, η ∈ (0,1] and t ∈ I such that the
state

Πε,η
(t) ∶= ρ0(t) ○ β

ε,η
(t)

is a super-adiabatic NEASS for ρ0(t) and the Heisenberg time-evolution on AZd generated by
1
ηΨHε(⋅) with

ΨHε ∶= ΨH0 + ε (Vv∞ +ΨH1) .

10Note that the sequence (ρΛk
0 (t))k∈N is compact for every fixed t ∈ I (Banach-Alaoglu Theorem). Moreover, it is

shown in Proposition 5.3.25 in [118] that every limit point of a sequence of ground states associated to a converging
sequence of derivations LΛk

H0(t)
→ LH0(t) is a ground state of the limiting derivation.

11Note that this technical assumption does not follow from ΨH0 ∈ B
○
I,a,∞, as the spaces of smooth and bounded

interactions are defined via term-wise and point-wise time derivatives (cf. Section 16.2.2).

559



16. On adiabatic theory for gapped fermionic lattice systems

The key role of the spectral gap condition is that it allows to construct an inverse of the Liouvillian
LH0(t), appearing in the construction of the NEASS, which maps SLT operators to SLT operators
with slightly deteriorated locality properties. Hence, the inverse of LH0(t) is called the quasi-local
inverse of the Liouvillian.12 Assuming a gap only in the bulk, as done in (GAPbulk), means that the
action of the Liouvillian can only be inverted in the bulk (see Section 16.4).

16.3.2.2 Extended but finite systems

Contrary to the results in Section 16.3.1, the adiabatic theorem describing an infinite system with a
gap in the bulk did not require any notion of having a TDL in its formulation. Instead, in order to
derive a finite-volume analogue from Theorem 16.3.7 (with qualitative additional error terms, see
Theorem 16.3.9 below), we need to introduce the stronger notion of having a rapid thermodynamic
limit for the exponentially localized interactions and the Lipschitz potential. We refer to [341] for a
detailed discussion of this property.

Definition 16.3.8 (Rapid thermodynamic limit of interactions and potentials). (a) An exponen-
tially localized time-dependent interaction Φ ∈ BI,a,∞ is said to have a rapid thermodynamic
limit with exponent γ ∈ (0,1) (have a RTDLγ) if there exists an infinite volume interaction
Ψ ∈ B○I,a,∞ such that

∀n ∈N, i ∈ N0 ∃λ,C > 0 ∀M ∈N ∀k ≥ M + λMγ ∶

sup
t∈I
∥

di

dti
(Ψ −ΦΛk) (t) ∥

a,n,ΛM

≤ C e−aM
γ

,
(16.3.5)

and we write ΦÐ→rtd Ψ in this case.
A family of operators is said to have a RTDL if and only if the corresponding interaction does.
For more general (non-exponentially localized) SLT operators, the definition is completely
analogous.

(b) A Lipschitz potential v ∈ VI is said to have a RTDLγ if it is eventually independent of k, i.e. if
there exists an infinite volume Lipschitz potential v∞ ∈ V○I such that

∃λ > 0 ∀M ∈N ∀k ≥ M + λMγ , t ∈ I ∶ v∞(t, ⋅)∣ΛM
= vΛk(t, ⋅)∣ΛM

.

Again, we write v Ð→rtd v∞ in this case.

In a nutshell, having a RTDLγ means that the interaction (or the Lipschitz potential) essentially
agrees with a corresponding infinite volume object, up to terms located on a thin shell with relative
size of order kγ−1 right at the boundary of Λk. Note that, whenever Φ = Ψ for some infinite-volume
interaction Ψ, or v = v∞ for some infinite volume Lipschitz potential v∞, both Φ and v trivially have
a RTDLγ (with any exponent γ ∈ (0,1)).

The following Theorem 16.3.9 is deduced from Theorem 16.3.7 by comparing the time evolution
Uε,ηt,t0 and the near identity automorphism βε,η in the definition of the NEASS on the infinite system
Zd with the same objects for large (but finite) systems Λk. Therefore, we will need to assume the
existence of a rapid thermodynamic limit for the building blocks of the Hamiltonian (16.1.1).

12 This particular phrase was used in [556]. Others call it local inverse [36, 452] or just inverse [340, 342, 461].
In [341], it was called SLT inverse. To avoid confusion, we want to reserve the SLT prefix for operators, i.e. SLT
operator or SLT generator, but not for maps between SLT operators.
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16.3. Adiabatic theorems for gapped quantum systems

(INT4) Assumptions on the interactions.

The interactions ΦH0 ,ΦH1 ∈ BI,a,∞ and the Lipschitz potential v ∈ VI all have a RTDL, i.e.
ΦH0 Ð→

rtd ΨH0 , ΦH1 Ð→
rtd ΨH1 and v Ð→rtd v∞. The limiting objects ΨH0 , ΨH1 and v∞ satisfy

Assumption (INT3).

In Theorem 16.3.9 we shall consider finite volume states ρΛk
0 (t), which are close to the infinite

volume ground state ρ0(t) away from the boundary in following sense.

(Sbulk) Assumption on the convergence of states.

The sequence (ρΛk
0 (t))k∈N of states on AΛk

converges rapidly to ρ0(t) in the bulk: there exist
C ∈R, m ∈ N and h ∈ S such that for any finite X ⊂ Zd, A ∈ AX and Λk ⊃X

sup
t∈I
∣ρ0(t)(A) − ρ

Λk
0 (t)(A)∣ ≤ C ∥A∥diam(X)m h(dist(X,Zd ∖Λk)) .

While the sequence ρΛk
0 (t) ≡ ρ0(t)∣AΛk

of simple restrictions satisfies Assumption (Sbulk) trivially,
the adiabatic theorem ensures the existence of a super-adiabatic NEASS constructed for any such
sequence.13 Most interesting for physical application would be a sequence of ground states ρΛk

0 (t)

of the finite volume Hamiltonians HΛk
0 (t). While the above assumption is expected to hold for any

sequence of finite volume ground states for Hamiltonians modeling Chern or topological insulators
like in (16.1.4), the only result we are aware of indeed proving such a statement is again (see
the discussion below Assumption (GAPbulk)) for weakly interacting spin systems [591]. In spirit,
assuming (Sbulk) is very similar to supposing that the system satisfies local topological quantum order
(LTQO) [448, 463] or a strong local perturbations perturb locally (LPPL) principle for perturbations
acting at the boundary of the system [35] (see also Chapter 15).

We can now formulate the fourth and last generalized super-adiabatic theorem concerning finite
systems with a gap in the bulk [341].

Theorem 16.3.9 (Adiabatic theorem for finite systems with gap in the bulk, see Theorem 4.1 in
[341]). Under the Assumptions (GAPbulk), (INT4) and (Sbulk), there exists a sequence of near-identity
automorphisms βε,η,Λk(t) = eiεLΛk

Sε,η(t) with SLT generators Sε,η for any ε, η ∈ (0,1] and t ∈ I, such
that the states

Πε,η,Λk(t) ∶= ρΛk
0 (t) ○ β

ε,η,Λk(t)

are super-adiabatic NEASSs for the Heisenberg time-evolution Uε,η,Λk
t,t0

onAΛk
generated by 1

η H
ε,Λk(⋅)

with
1
η H

ε,Λk(t) ∶= 1
η(H

Λk
0 (t) + ε (V

Λk
v (t) +H

Λk
1 (t))) ,

up to an error vanishing faster than any inverse polynomial in the distance to the boundary. That
is, for any n ∈ N there exists a constant Cn and for any compact K ⊂ I and m ∈N there exists a
constant C̃n,m,K such that for all k ∈N, all X ⊂ Λk, all A ∈ AX and all t, t0 ∈K

∣Πε,η,Λk(t0)(U
ε,η,Λk
t,t0

JAK) −Πε,η,Λk(t)(A)∣

≤ Cn
εn+1 + ηn+1

ηd+1 (1 + ∣t − t0∣d+1) ∥A∥ ∣X ∣2 (16.3.6)

+ C̃n,m,K (1 + η dist(X,Zd ∖Λk))
−m
∥A∥diam(X)2d .

13This is why we wrote ‘(close to) a ground state’ in Definition 16.3.1.
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16. On adiabatic theory for gapped fermionic lattice systems

The above theorem asserts that by assuming (GAPbulk), one obtains similar adiabatic bounds also
for states of finite systems (without a spectral gap!) which are close to the infinite volume ground
state in the bulk as formulated in Assumption (Sbulk). Since adiabaticity potentially breaks at the
boundaries of the finite systems, non-adiabatic effects arising close to the boundary may propagate
into the bulk. Therefore, an additional error term appears, but it decays faster than any polynomial
in the size of the finite system for any fixed η. The actual form of the additional error term in the last
line of (16.3.6) coming out of the proof in [341, Section 5] is slightly better but more complicated,
which is why we refrain from stating it here.

The main points in the proof of Theorem 16.3.9, which we discuss in Section 16.4, are to show that
(i) the property of having a RTDLγ is preserved under all necessary operations for the construction
of the NEASS (similarly as for Theorem 16.3.5) and (ii) having a RTDLγ for an interaction provides
an explicit rate of convergence for the associated evolution family as in Proposition 16.3.4.

16.4 Idea of the proofs

The goal of the present section is to convey the main ideas relevant for proving the individual
theorems from Section 16.3, where we already glimpsed the key steps required in their proofs. For
many technical details we refer the reader to the original works [556, 342, 341].

16.4.1 Systems with a uniform gap

The fundamental conceptual idea behind the proof for all four variants of the generalized super-
adiabatic theorems is a perturbative scheme, which was called space-time adiabatic perturbation
theory in [484, 483]. The basic structure of this computation is most easily presented for finite
systems, where no further technical difficulties arise since all appearing operators are in fact matrices
and thus bounded. However, it is still necessary to show that all estimates are uniform in the size of
the system Λk.

16.4.1.1 Extended but finite systems: Proof of Theorem 16.3.2

The form in which we presented Theorem 16.3.2 differs slightly from the original result [556,
Theorem 5.1]. The original statement concerns a sequence Πε,η,Λk

n (t) ∶= ρΛk
0 (t) ○ β

ε,η,Λk
n (t) of states

on Λk (indexed by n ∈N), where

βε,η,Λk
n (t)JAK ∶= e

−iεLΛk
S

ε,η
n (t)JAK and εLΛk

Sε,η
n (t) ∶=

n

∑
j=1

εjLΛk

Aε,η
j (t)

.

From this, Theorem 16.3.2 (and similarly all other three theorems) follows by a simple resummation
of the εjLΛk

Aε,η
j (t)

, which will be discussed in Section 16.4.3 below.

The main idea of the proof is to choose each operator Aε,η,Λk
j (t), j = 1, . . . , n, in such a way that

the jth-order term in the perturbative scheme vanishes. For the n-dependent result (i.e. prior to
resummation), we apply the fundamental theorem of calculus to get

Πε,η,Λk
n (t0)(U

ε,η,Λk
t,t0

JAK) −Πε,η,Λk
n (t)(A) = −∫

t

t0
ds d

ds
ρΛk

0 (s)(β
ε,η,Λk
n (s) ○ Uε,η,Λk

t,s JAK) (16.4.1)

and then aim to bound the integrand. Calculating the derivative by using the chain rule and
Duhamel’s formula leaves us with

d
ds
ρΛk

0 (s)(β
ε,η,Λk
n (s) ○ Uε,η,Λk

t,s JAK) = −
i
η
ρΛk

0 (s)([Q
ε,η,Λk
n (s), βε,η,Λk

n (s) ○ Uε,η,Λk
t,s JAK]) , (16.4.2)
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where Qε,η,Λk
n (s) is a shorthand notation for

η IΛk
s (Ḣ

Λk

0 (s)) + η∫
1

0
dλ e−iλεSε,η,Λk

n (s) εṠ
ε,η,Λk

n (s) eiλεSε,η,Λk
n (s)

+ e−iεSε,η,Λk
n (s) (HΛk

0 (s) + εV
Λk(s)) eiεSε,η,Λk

n (s)

=∶HΛk
0 (s) +

n

∑
j=1

εjRε,η,Λk
j (s) + εn+1Rε,η,Λk

n+1 (s) , (16.4.3)

and V Λk = V Λk
v +HΛk

1 . Here, IΛk
s (Ḣ

Λk

0 (s)) is the SLT generator of the parallel transport within
the vector-bundle ΞΛk

0,I over I defined by t↦ ρΛk
0 (t).14 This parallel transport is also known as the

spectral flow, which plays a fundamental role in proving automorphic equivalence of gapped ground
state phases (see e.g. [39, 36]). Moreover, the operator IΛk

s ∶AΛk
→ AΛk

is called the quasi-local
inverse of the Liouvillian12 LΛk

H0(s), since it satisfies [36, 556]

ρΛk
0 (s)([L

Λk

H0(s) ○ I
Λk
s JB1K − iB1,B2]) = 0 for all B1,B2 ∈ AΛk

, s ∈ I , (16.4.4)

and also preserves good localization of its argument (in particular, it maps SLT operators to
SLT operators). This combined property of IΛk

s heavily relies on the ground state ρΛk
0 (s) being

gapped [36, 556, 461] and will be of fundamental importance in the following.

In the last line of (16.4.3), we expanded in powers of ε and η in the sense that Rε,η,Λk
j (s), for j ≤ n,

are polynomials in η/ε of order (at most) j with ε- and η-independent SLT operators as coefficients.
A more detailed step-by-step calculation can be found in the proof of Proposition 5.1 in [556]. Let
us here only report the general structure

Rε,η,Λk
j (s) = −iLΛk

H0(s)
(Aε,η,Λk

j (s)) + R̃
ε,η,Λk

j (s), (16.4.5)

where the first remainder term is given by

R̃
ε,η,Λk

1 (s) = η
ε I

Λk
s (Ḣ

Λk

0 (s)) − V
Λk(s)

and all other R̃ε,η,Λk

j (s) are composed of iterated commutators of the operators Aε,η,Λk
i (s) and

Ȧ
ε,η,Λk

i (s), for i < j ≤ n, with HΛk
0 (s) and V Λk(s). In contrast to general onsite potentials, the

commutator of a Lipschitz potential with an SLT operator is an SLT operator itself [556, Lemma 2.1].
For the commutator of SLT operators, this is easy to see.

We now consider individual terms from (16.4.3) when plugged into (16.4.2). The zero-order term
vanishes, because ρΛk

0 (s) is the ground state of HΛk
0 (s). By application of (16.4.4) we can iteratively

choose
Aε,η,Λk
j (s) = −IΛk

s (R̃
ε,η,Λk

j (s)) (16.4.6)

such that (16.4.2) vanishes up to

−i ε
n+1

η
ρΛk

0 (s)([R
ε,η,Λk
n+1 (s), β

ε,η,Λk
n (s) ○ Uε,η,Λk

t,s JAK]) . (16.4.7)

Moreover, all the operations involved in calculating the Aε,η,Λk
j (s), i.e. taking commutators and

applying the quasi-local inverse of the Liouvillian preserve the locality properties of the operators as
shown in the appendices of [556, 452], which are heavily based on [36]. Hence, also all Aε,η,Λk

j are
SLT operators.

14Since we assumed uniqueness of the ground state ρΛk
0 (t), the vector-bundle ΞΛk

0,I is one-dimensional. If this were
not the case, one had to include further terms generating the internal dynamic in ΞΛk

0,I (see [556, 342]).
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It turns out that also Rε,η,Λk
n+1 is a polynomial in η/ε of order at most n + 1 and its coefficients,

as we just explained, are SLT operators [556, Proof of Proposition 6.1]. Thus, the absolute value
of (16.4.1) is bounded by

εn+1

η
∣∫

t

t0
ds ρΛk

0 (s)([R
ε,η,Λk
n+1 (s), β

ε,η,Λk
n (s) ○ Uε,η,Λk

t,s JAK])∣

≤
εn+1

η
∣t − t0∣ sup

s∈[t0,t]
∥[(βε,η,Λk

n )
−1
(s)(Rε,η,Λk

n+1 (s)),U
ε,η,Λk
t,s JAK]∥

≤ Cn
εn+1

η
∣t − t0∣ (1 + (

η

ε
)
n+1
)(1 + ( ∣t − t0∣

η
)
d
)∥A∥ ∣X ∣2 (16.4.8)

≤ Cn
εn+1 + ηn+1

ηd+1 ∣t − t0∣ (1 + ∣t − t0∣d) ∥A∥ ∣X ∣2 ,

where we essentially used a generalized Lieb-Robinson bound [556, Lemma B.5] to estimate the
commutator. Note that the (1 + (∣t − t0∣/η)d)-factor comes from the Lieb-Robinson bound and the
adiabatic 1/η-scaling of the time evolution Ut,s. The (1 + (η/ε)n+1)-factor comes from bounding
the interaction norm of Rε,η,Λk

n+1 (s) by separating the polynomial dependence on η/ε such that Cn
is independent of Λk, ε and η. We have thus shown that the NEASS almost intertwines the time
evolution, i.e. item 1 of Definition 16.3.1.

We are left with discussing the remaining three characterizing properties of the NEASS given in
Definition 16.3.1: By construction, all Aε,η,Λk

j (t) depend only on HΛk
0 (t) and V Λk(t) and their jth

derivatives at time t. This shows that the NEASS is local in time, i.e. item 2. Moreover, if all time
derivatives of H0 and V vanish for some t ∈ I, then all non-constant (i.e. in front of some positive
power of η/ε) coefficients in Rε,η,Λk

j vanish and Πε,η,Λk
n (t) = Πε,0,Λk

n (t). This shows that the NEASS
is stationary whenever the Hamiltonian is stationary, i.e. item 3. If, for some t ∈ I, ḢΛk

0 (t) and
V Λk(t) vanish, then R̃ε,η,Λk

1 and thus Aε,η,Λk
1 vanish. If additionally all derivatives of HΛk

0 and V Λk

at t vanish, also R̃Λk

j (t) and thus Aε,η,Λk
j (t) vanish. Hence, βε,η,Λk

n (t) = 1Λk
and the NEASS equals

the ground state, i.e. item 4 holds.

The above listed general arguments immediately translate to the other three theorems.

16.4.1.2 Infinite systems: Proof of Theorem 16.3.5

Without any further assumptions, the sequence Hamiltonian Hε,Λk and its constituents HΛk
0 and

V Λk could have nothing in common for different lattice sizes k (they might even describe different
physical systems), so taking the limit Λk ↗ Zd might not be well-defined. In order to avoid this
somewhat meaningless situation, we assumed that the building blocks of the Hamiltonian have
a TDL (see Definition 16.3.3 and Assumption (INT2)) and also the sequence of ground states
(ρΛk

0 (t))k∈N converges (Assumption (Sunif)). Since the property of having a TDL guarantees the
existence of the thermodynamic limit for the corresponding evolution operators (see Proposition 16.3.4
and [461]), it remains to show that the operator sequences (Aε,η,Λk

j (t))
k∈N, j = 1, . . . , n, constructed

in Section 16.4.1.1 have a TDL. More precisely, one needs to show that taking time-derivatives,
sums of commutators with the building blocks of Hε (and Ḣ0), and the inverse of the Liouvillian
(see (16.4.5)) leaves the property of having a TDL for SLT operators invariant, which is in fact the
main point of the proof in [342]. It is then straightforward to show that compositions of states and
automorphisms, all having a thermodynamic limit, converge as Λk ↗ Zd. Since the constant Cn
from (16.4.8) is uniformly bounded in k, the (sketch of a) proof of Theorem 16.3.5 is complete.
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16.4.2 Systems with a gap in the bulk
For systems having a spectral gap only in the bulk (i.e. for the GNS Hamiltonian), the characteris-
tic (16.4.4) of IΛk

s , that it essentially inverts the Liouvillian LΛk

H0(s) (and still maps SLT operators
to SLT operators), is now only fulfilled for certain B1 and B2 in a dense domain D ⊂ AZd after
taking the limit Λk ↗ Zd (see [341, Proposition 3.3]). Presuming that the limit actually exists,
this point is the main challenge in proving an adiabatic theorem under the less restrictive gap
Assumption (GAPbulk).

16.4.2.1 Infinite systems: Proof of Theorem 16.3.7

As just explained, the main difficulty in proving Theorem 16.3.7 is that (16.4.4) only holds if HΛk
0

is gapped. On top of that, we cannot handle the limit Λk ↗ Zd of the R̃ε,η,Λk

j directly nor could
they be used in the infinite volume version of (16.4.4) because it only holds for B1,B2 ∈ D ⊂ AZd .
However, the rest of the construction from Section 16.4.1.1 is still valid, but the lower order terms
in (16.4.1) have a non-vanishing contribution in finite domains. We thus repeat this construction
but take coefficients Aε,η,Λk,Λl

j (t), which are built up from HΛk
0 (t) but restricting the perturbations

Ḣ0(t) and V (t) to Λl with l < k. In this way, one can take the limit Λk ↗ Zd in (16.4.4) with
B1 = limk→∞ R̃

ε,η,Λk,Λl

j ∈ AdZ (see (16.4.10) and (16.4.11) and the comment thereafter for technical
obstructions in taking the limit). Using this notational convention, we introduce the states

Πε,η,Λk,Λl
n (t) = ρ0(t) ○ β

ε,η,Λk,Λl(t) ,

where ρ0(t) is the infinite volume ground state, and compare them to the actual objects in infinite
volume while estimating

∣Πε,η
n (t0)(U

ε,η
t,t0

JAK) −Πε,η
n (t)(A)∣ ≤ ∣Πε,η

n (t0)(U
ε,η
t,t0

JAK) −Πε,η,Λk,Λl
n (t0)(U

ε,η,Λk,Λl
t,t0

JAK)∣

+ ∣Πε,η,Λk,Λl
n (t0)(U

ε,η,Λk,Λl
t,t0

JAK) −Πε,η,Λk,Λl
n (t)(A)∣ (16.4.9)

+ ∣Πε,η,Λk,Λl
n (t)(A) −Πn(t)(A)∣

by means of the triangle inequality. Since all the interactions (and the Lipschitz potential) have a
TDL, one can prove [341, Section 5.1(b)] that the first and last summand in (16.4.9) can be made
arbitrarily small for k, l ∈N large enough, and we can thus focus on the second summand. However,
since (16.4.4) only holds in the limit Λk ↗ Zd and also ρ0(t) is not necessarily a ground state of
HΛk

0 (t), the lower order terms in the analogues of (16.4.2) and (16.4.3) do not vanish for finite k
and l. Instead, only

lim
k→∞

ρ0(s)([H
Λk
0 (s), β

ε,η,Λk,Λl
n (s) ○ Uε,η,Λk,Λl

t,s JAK]) = 0 (16.4.10)

and
lim
k→∞

ρ0(s)([R
ε,η,Λk,Λl
j (s), βε,η,Λk,Λl

n (s) ○ Uε,η,Λk,Λl
t,s JAK]) = 0 (16.4.11)

for all l ∈N and uniformly for s and t in compacts. These statements require a careful analysis of
deteriorating localization properties along the expansion as well as convergence estimates in norms
measuring the quality of localization (cf. the norm ∥ ⋅ ∥f introduced in Assumption (GAPbulk) (iii)),
such that the limits really converge to the infinite volume version of (16.4.4) with B1 and B2 in
a dense domain D ⊂ AZd . For further details, we refer to Proposition 3.2 and the statements in
Appendix B of [341], which are adaptions of technical estimates that were originally established for
the proof of automorphic equivalence with a gap only in the bulk [454]. Now, combining (16.4.10)
and (16.4.11) with the estimates on the first and third summand in (16.4.9), we conclude that all
the lower order terms vanish in the limit k →∞ followed by l →∞, which finishes our sketch of the
proof of Theorem 16.3.7.
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16.4.2.2 Extended but finite systems: Proof of Theorem 16.3.9

Let us briefly explain the strategy to prove Theorem 16.3.9. In order to show (16.3.6), we first
estimate

∣Πε,η,Λk
n (t0)(U

ε,η,Λk
t,t0

JAK) −Πε,η,Λk
n (t)(A)∣ ≤ ∣Πε,η,Λk

n (t0)(U
ε,η,Λk
t,t0

JAK) −Πε,η
n (t0)(U

ε,η
t,t0

JAK)∣

+ ∣Πε,η
n (t0)(U

ε,η
t,t0

JAK) −Πε,η
n (t)(A)∣ (16.4.12)

+ ∣Πε,η,Λk
n (t)(A) −Πε,η

n (t)(A)∣

and treat the three summands separately. The second summand corresponds to the infinite system
and can be estimated by means of Theorem 16.3.7, such that it accounts for the first contribution on
the RHS of (16.3.6). We are left with bounding the remaining two summands in (16.4.12). These
contribute the additional error term on the RHS of (16.3.6). To estimate them, we need explicit
control on the speed of convergence (it must be faster than any inverse polynomial) for the states
(see Assumption (Sbulk)) and automorphisms βε,η,Λk

n and Uε,η,Λk
t,t0

. For the time evolution Uε,η,Λk
t,t0

, the
rapid convergence to Uε,ηt,t0 is ensured by supposing that the building blocks of Hε have a RTDL (see
Definition 16.3.8 and Assumption (INT4)). This was carried out in [341, Appendix B], building on
estimates from [461, Section 3]. We remark that the adiabatic 1/η-scaling of the time evolution is
responsible for the factor η appearing in the additional error term in (16.3.6). In order to show that
also βε,η,Λk

n → βε,ηn sufficiently fast, we need to show that all Aε,ηj have a RTDL, i.e. the operations
involved in constructing the generator of βε,ηn leave the property of having a RTDL (essentially)
invariant (see [341, Appendix C]). This finishes the sketch of the proof of Theorem 16.3.9 and we
refer to [341, Section 5.2] for further details.

16.4.3 Resummation of the NEASS
As mentioned in the beginning of Section 16.4.1.1, the statements formulated in Section 16.3 require
a resummation, which we explain in the following. First, note that the generator εSε,ηn of βε,ηn
constructed above can be rewritten as εSε,ηn = ∑nj=1∑

j
i=0 ε

iηj−1Aj,i, where the coefficients Aj,i are
time-dependent SLT operators and independent of ε and η. Now, it is easy to show (see [342,
Lemma E.1]) that there exists a sequence δj → 0 and constants Cn such that the resummed generator

εSε,η =
∞
∑
j=1

χ[0,1](ε/δj)χ[0,1](η/δj)
j

∑
i=0
εiηj−iAj,i (16.4.13)

satisfies
∥εSε,η − εSε,ηn ∥SLT ≤ Cn (ε

n
+ ηn) ,

where ∥ ⋅ ∥SLT denotes an interaction norm similar to (16.2.1). Resummations of this type are
standard, e.g., in microlocal analysis [438] and the above estimate immediately leads to the bounds
(cf. [342, Lemmata E.3, E.4])

sup
t∈I
∣Πε,η,Λk(t)(A) −Πε,η,Λk

n (t)(A)∣ ≤ C ′n (ε
n
+ ηn) ∥A∥ ∣X ∣2 and (16.4.14)

∣Πε,η,Λk(t0)(U
ε,η,Λk
t,t0

JAK) −Πε,η,Λk
n (t0)(U

ε,η,Λk
t,t0

JAK)∣ ≤ C ′′n
εn + ηn

ηd+1 (1 + ∣t − t0∣)
d+1
∥A∥ ∣X ∣2 ,

(16.4.15)

uniformly in the size of the system Λk. In the context of Theorem 16.3.5 and Theorem 16.3.7,
corresponding estimates hold in infinite volume, i.e. without the subscript Λk.

Next, since the sum in (16.4.13) is finite for every fixed ε > 0, also the resummed generator Sε,η,Λk

has a TDL as soon as Sε,η,Λk
n has a TDL. Therefore, the states Πε,η,Λk constructed using the Sε,η,Λk
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instead of the Sε,η,Λk
n have a well-defined thermodynamic limit Πε,η (see [342, Lemma E.2]) and

since the bounds (16.4.14) and (16.4.15) are independent of Λk, they also hold for the respective
objects in the thermodynamic limit. Hence, the results formulated in Section 16.3 can be concluded
by combining the n-dependent statements discussed earlier in this section with the bounds (16.4.14)
and (16.4.15) (or their infinite volume correspondents).
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Chapter17
Response theory for locally gapped

systems

This chapter includes the paper [347]:

J. Henheik and T. Wessel. Response theory for locally gapped systems. arXiv:2410.10809, 2024

Abstract. We introduce a notion of a local gap for interacting many-body quantum lattice systems
and prove the validity of response theory and Kubo’s formula for localized perturbations in such
settings. On a high level, our result shows that the usual spectral gap condition, concerning the
system as a whole, is not a necessary condition for understanding local properties of the system.

More precisely, we say that an equilibrium state ρ0 of a Hamiltonian H0 is locally gapped in Λgap ⊂ Λ,
whenever the Liouvillian −i [H0, ⋅ ] is almost invertible on local observables supported in Λgap when
tested in ρ0. To put this into context, we provide other alternative notions of a local gap and discuss
their relations.

The validity of response theory is based on the construction of non-equilibrium almost stationary
states (NEASSs). By controlling locality properties of the NEASS construction, we show that
response theory holds to any order, whenever the perturbation ϵV acts in a region which is further
than ∣log ϵ∣ away from the non-gapped region Λ ∖Λgap.
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17.1 Introduction

Spectral gaps lie at the heart of many areas of physics and mathematics, and their existence has several
profound consequences. Classical mathematical examples include (i) Cheeger’s inequality [143, 451],
relating the spectral gap of the (discrete) Laplacian on a Riemannian manifold (a graph) to geometric
properties of the underlying space, (ii) exponential heat kernel estimates [65], (iii) classical Poincaré
or Nash inequalities [418], or (iv) the logarithmic Sobolev inequality and hypercontractivity for
Markov semigroups [302, 301, 42].

In physics, questions concerning the spectral gap lie at the center of several of the most challenging
problems, e.g. the Berry-Tabor [67] and Bohigas-Giannoni-Schmit [89] conjectures in quantum
chaos, Haldane’s conjecture on integer valued antiferromagnetic Heisenberg chains [317, 318], or
the Yang-Mills mass gap problem. The great interest in spectral gaps, far beyond these famous
conjectures, is rooted in the fact that its existence has tremendous effects on fundamental properties
of the system: It is textbook material in condensed matter theory, that the (non)-existence of a
band gap determines the isolating (conducting) behavior of a material, and in superconductivity,
the existence of a non-zero solution of the BCS gap equation [48] decides whether a system is
superconducting.

Moreover, in quantum many-body physics, the existence of a spectral gap above the ground state
eigenvalue has far-reaching consequences for entanglement properties [459, 323] and ground state
correlations [325]. On the other hand, the closing of a spectral gap is related to the occurrence of a
(topological) quantum phase transition [39, 461]. Finally, the assumption of a spectral gap played
a crucial role in recent proofs of adiabatic theory and linear response for many-body systems (see
Section 17.1.1 for a detailed discussion).
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However, an overall drawback in all of the above examples is that the desired spectral property is of
global nature, i.e. involving the studied system as a whole, and thus seldomly compatible with a
notion of locality in an underlying physical space. Therefore, a natural question to ask is:

How can one express that a system is locally gapped, and which consequences that one
has for globally gapped systems persist?

In this paper, we study this question in the setting of locally interacting many-body quantum spin
lattice systems; see Section 17.2 for precise definitions. More precisely, in the above spirit of our
guiding question, this paper has two main goals:

(i) We propose a notion of a local gap via an (equivalent) dynamical characterization and exemplary
prove that local perturbations of Hamiltonians with a frustration free product ground state
satisfy this condition. Moreover, we study possible alternative notions of local gaps and their
relations among each other (see Sections 17.1.2 and 17.4).

(ii) As an application to a physically relevant problem, we show that for Hamiltonians with a local
gap, response theory approximately holds to any order and thus justify Kubo’s formula (see
Sections 17.1.3 and 17.3.1).

There are only few works in the literature studying many-body quantum systems under a non-standard
gap condition, i.e. one differing from the clean separation of eigenvalues: In [204], the authors derive
Kubo’s formula for two-dimensional disordered systems having only a mobility gap (cf. also the
recent paper [205] dealing with spectral gaps in presence of disorder). Together with Teufel, one
of us in [341, Theorem 4.1], proved that finite systems, whose analog in the thermodynamic limit
has a usual spectral gap, approximately obey an adiabatic theorem. In another recent work [596],
the authors developed a theory of metastable states, characterized by the requirement that local
operators raise the energy of such a state by a certain minimal amount (their condition is similar to
an alternative notion of a local gap given in (17.4.8) below). Finally, we remark that, in the context
of Lie group theory, the notion of a “local gap” has recently been introduced [117] and proved itself
to have profound consequences [117, 116].

Next, in Section 17.1.1, we discuss the problem of justifying linear (and higher order) response theory
and Kubo’s formula based on adiabatic theory. Afterwards, in Section 17.1.2, we introduce our
local dynamical gap condition (LDGintro). Finally, in Section 17.1.3, we discuss our main result on
response theory.

17.1.1 Response theory in many-body quantum systems
The purpose of response theory is to express how quantum expectation values change, after a small
perturbation is slowly turned on. More precisely, one considers an unperturbed Hamiltonian H0 with
equilibrium state (usually a ground state) ρ0 and slowly turns on a small additive perturbation εV .
Denoting by ρε the state of the system after εV has been turned on, one aims to understand, how
the expectation value of an observable B changes, i.e. determine

⟨B⟩ρε − ⟨B⟩ρ0 = εσB + o(ε) (17.1.1)

at least to leading order in the strength ε.

A central piece of response theory is Kubo’s formula [386], which provides a simple expression for the
so-called linear response coefficient σB in (17.1.1). Despite the simplicity and empirical success of
Kubo’s formula, the problem of justifying it in a very general framework has so far escaped rigorous
treatment. The fundamental difficulty lies in the fact that, in general, the state ρε is no longer an
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equilibrium state, and therefore determining it is outside the powerful realm of equilibrium statistical
mechanics. This problem has prominently been pointed out by Simon [526] in 1984 in his “Fifteen
problems in mathematical physics”, containing a rigorous justification of Kubo’s formula from first
principles as problem (4B).

However, in the particular setting of many-body lattice systems with a spectral gap at zero temperature,
it has recently been possible [36, 452, 556, 340] to actually prove Kubo’s formula and justify the
applicability of linear response theory to compute the change in expectation values (17.1.1). The
more general underlying results establish generalized super-adiabatic theorems1 for short range
interacting Hamiltonians, which can be written as a sum of local terms, and are hence called SLT
operators [342, 341] (see also Chapter 16).

The recent breakthrough, which paved the way for these results, was achieved by Bachmann, De
Roeck, and Fraas [36] (see [452] for an adaptation to fermionic systems), who proved the first
adiabatic theorem for extended (but finite) quantum lattice systems. One key difficulty is that,
for macroscopic systems, typical operator norm bounds in adiabatic theory deteriorate due to the
orthogonality catastrophe and one instead has to formulate the result in a weaker topology by testing
against local observables. On a high level, the main ingredient for their proof are the well-known
Lieb-Robinson bounds (LRBs) [419], which ensure a finite speed of correlation and prevent build-up
of long-range entanglement. These LRBs, enabled to prove that the generator of the spectral flow,
introduced by [326], is in fact an SLT operator and hence maintains good locality properties [326, 39]
(showing so-called automorphic equivalence of ground states).

However, the work [36] had the limitation that the spectral gap of H0 is assumed to remain open
after adding the perturbation εV . To allow εV to close the gap, [556] combined ideas from space-
time adiabatic perturbation theory [484, 483] with locality estimates from [36]. The underlying
perturbative scheme is an iterative application of locality preserving Schrieffer-Wolff transformations
(a.k.a. Lie-Schwinger block diagonalization [273]), which proved to be a powerful approach in several
rather recent works in that direction [36, 556, 342, 341, 595, 205, 596]. In this paper, we carefully
exploit locality properties of the operations involved in the perturbative scheme, which allows to deal
with locally gapped systems (see Section 17.1.2 below).

The rough physical picture underlying [556, 484, 483] is that a gap that is locally intact after adding
perturbation should be sufficient for adiabatic theory to be valid (cf. [340, Figure 1]). The results
from [36, 452, 556] for large but finite systems were subsequently extended to the thermodynamic
limit [342, 341], building on an extension of the spectral flow techniques to infinite systems by [454].
We point out that, contrary to [342], the papers [454, 341] assumed a spectral gap only for the
GNS Hamiltonian of the infinite system (a gap in the bulk). More comprehensive reviews of the
developments discussed in this section are given in [340, 346].

In view of the linear response problem and the second of our principal goals, the contribution of
this paper is to extend the previous results for uniformly or bulk gapped systems to systems where
H0 is locally gapped. This important extension allows to rigorously treat systems with impurities
of gap-closing edge modes (see the discussions in Sections 17.1.2–17.1.3 below). Technically, our
contribution is to control operations on SLT operators, which are localized on a subregion of the
whole lattice; see Section 17.2.2 and Appendix 17.A.

Lastly, we remark that we only consider finite-dimensional spaces and bounded operators for simplicity
of the presentation.

1 This term describes adiabatic theorems for time-dependent Hamiltonians of the form Hε(t) = H0(t) + εV (t),
where H0(t) is assumed to have a spectral gap. Now “super-adiabatic” means that for ε = 0, there exists a state
ρη

0(t) close to the instantaneous ground state ρ0(t) of H0(t), such that the time-evolution generated by η−1H0( ⋅ )

intertwines ρη
0(t0) and ρη

0(t) to any order in η. The term “generalized” means that, even for a gap-closing perturbation
V , there exist super-adiabatic non-equilibrium almost-stationary states (NEASSs) Πε,η

(t), which are intertwined by
the time evolution generated by η−1Hε( ⋅ ) to any order in ε and η. We refer to [452, 556, 342, 341] and Chapter 16
for details (see also Sections 17.3.2 and 17.5.2).

572



17.1. Introduction

17.1.2 A local dynamical gap condition
All the results on linear response and adiabatic theory mentioned in Section 17.1.1 above, heavily
rely on the range of the equilibrium state ρ ≡ ρ0 being contained in a gapped part of the spectrum of
the unperturbed Hamiltonian H ≡H0.2 More precisely, assume

spec(H) = σ1 ∪̇ σ2 with d(σ1, σ2) ≥ g (17.1.2)

for some gap size g > 0. Then, denoting the spectral projection3 associated to H onto σ1 by P , we
have that PρP = ρ.

On a technical level, in all of the works [36, 452, 556, 342, 341], the crucial importance of the gap
of H lies in the local invertibility of the Liouvillian LHJ ⋅ K ∶= −i [H, ⋅ ]. That is, there exists a locality
preserving (usually called quasi-local) map IH,g = IH,gJ ⋅ K on the observable algebra, depending
on the SLT Hamiltonian H and the gap size g, which inverts the Liouvillian in the projection
⟨ ⋅ ⟩P = tr(P ⋅ ) onto the gapped part of H. More precisely (see Proposition 17.1.1), for all local
observables A,B it holds that

⟨[LH ○ IH,gJAK −A,B]⟩
P
= 0. (17.1.3)

Note that such a map cannot be uniquely characterized as a “weak” right inverse of LH , and is
thus clearly not unique. However, mostly for concreteness, we will always work with an explicitly
constructed [326, 39] variant (see Remarks 17.A.10 and 17.A.12 for relaxed, rather abstract conditions
on I), denoted by

IH,gJAK ∶= ∫
R

dtwg(t)∫
t

0
ds eiHsA e−iHs, (17.1.4)

and henceforth called the quasi-local inverse of the Liouvillian. The positive weight function
wg ∈ L

1(R), normalized to ∫ wg = 1, is required to have Fourier transform4 wĝ with support

supp(wĝ) ⊂ [−g, g]. (17.1.5)

Moreover, for the explicitly constructed wg (see Lemma 17.A.9 in Appendix 17.A.3), we additionally
have the bound

∣wg(t)∣ ≤ C e−∣t∣
q

for all q < 1. (17.1.6)
This estimate (17.1.6) together with classical Lieb-Robinson bounds [419] for the dynamics generated
by H ensure that IH,g acts as a quasi-local operator. In Appendix 17.A.3 we will briefly recall the
construction of IH,g and report on its properties in more detail.

17.1.2.1 Dynamical characterization of a spectral gap

Interestingly, the Hamiltonian H having a spectral gap is actually equivalent to the invertibility
of the Liouvillian. In particular, the spectral property (17.1.2) can be dynamically characterized
via (17.1.3). A short proof of this fact is given in Section 17.6.1.

Proposition 17.1.1 (Dynamical characterization of a spectral gap). Let H be a self-adjoint operator
on a finite dimensional Hilbert space H. Let g > 0, wg ∈ L1(R) be positive, normalized to ∫ wg = 1
and satisfy (17.1.5) with wĝ ∣(−g,g) > 0. Decompose the spectrum of H as spec(H) = σ1 ∪̇ σ2 and
let P be the spectral projection onto σ1. Then, denoting LHJ ⋅ K = −i [H, ⋅ ] and IH,g as in (17.1.4),
we have that

⟨[LH ○ IH,gJAK −A,B]⟩
P
= 0 ∀A,B ∈ B(H) ⇐⇒ d(σ1, σ2) ≥ g. (17.1.7)

2For ease of notation and since there will be no perturbation εV in the current Section 17.1.2, we will drop the
subscript 0 here.

3We will follow the convention that (orthogonal) projections will be denoted by P (i.e. satisfying P 2
= P and

P ∗ = P ), while states are denoted by ρ (i.e. satisfying ρ = ρ∗ and 0 ≤ ρ ≤ 1 with trρ = 1). Clearly, if P is an orthogonal
projection, then ρ ∶= P /dim rankP is a state.

4We use the convention that f̂(p) ∶= (2π)−1/2
∫R dx e−ipxf(x) for the Fourier transform.
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17. Response theory for locally gapped systems

The goal of this article is to relax the requirement of a globally spectrally gapped Hamiltonian H
and instead work with a so-called local dynamical gap condition (LDGintro). This condition roughly
asserts that, the Hamiltonian H behaves as if it had a gap in a spatially localized region, i.e. that
the Liouvillian can (almost) be locally inverted in that region. A more formal version of (LDGintro) is
formulated in Assumption (LDGmain).

(LDGintro) Local dynamical gap condition – informal version.

Let H be an SLT Hamiltonian and ρ an equilibrium state of H, i.e. [H,ρ] = 0. We say that ρ is
locally dynamically gapped of size at least g > 0 in a region Λgap ⊂ Λ if and only if for all observables5

A ∈ AX and B ∈ AY localized in X ⊂ Λ and Y ⊂ Λ, it holds that

∣⟨[LH ○ IH,gJAK −A,B]⟩
ρ
∣ ≤ C ∥A∥ ∥B∥ (diam(X) + diam(Y ))ℓ

× exp(−(d(X,Λ ∖Λgap
) + d(Y,Λ ∖Λgap

))
q
)

(17.1.8)

for some fixed ℓ ∈N0 and constants C, q > 0, independent of the sizes ∣Λ∣ and ∣Λgap∣.

Λgap

X

Y

Λ

Figure 17.1.1: Illustrated is the local dynamical gap condition (LDGintro) in the case where the
system is gapped in the bulk of Λ, e.g., due to gap closing edge modes. If the observables A ∈ AX
and B ∈ AY are supported well inside Λ ∖Λgap, the rhs. of (17.1.8) is small, i.e. the Liouvillian is
locally almost invertible.

In a nutshell, this means that, within Λgap, the Hamiltonian H approximately behaves as if it were
spectrally gapped – up to an error vanishing (stretched) exponentially fast in the distance to Λ∖Λgap.
On the physical level, one might think of Λ∖Λgap as some impurity region causing the global spectral
gap to close, or the boundary of Λ and hence allowing for gap-closing edge modes (see Figure 17.1.1).
Indeed, as we will show in Section 17.4.4, the local gap condition (LDGintro) is satisfied for ground
states of locally in Λ ∖Λgap (but arbitrarily strongly) perturbed Hamiltonians of certain quantum
spin systems, which have a globally gapped ground state.

17.1.2.2 Verifying the local dynamical gap condition

Despite the supportive examples above, our concrete formulation of a local gap condition (LDGintro)
might still seem a bit ad hoc at the moment. Therefore, we will outline several alternative ways to
formulate such a condition and discuss their respective features and relations in Section 17.4. In
particular, in Proposition 17.4.1 we show the following (the constants q,C, ℓ have the same meaning
as in (17.1.8) but might take different values):

5Throughout this paper, AX denotes the algebra of observables with support in X.
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(1) Let the SLT Hamiltonian H (with equilibrium state ρ) be obtained from a globally gapped SLT
Hamiltonian H∗ (with equilibrium state ρ∗) by an SLT perturbation J localized in Λ ∖Λgap,
i.e. H =H∗ + J . Then, if the locally tested difference ρ − ρ∗ is small in trace norm, i.e.

∥(ρ − ρ∗)A∥tr + ∥A (ρ − ρ∗)∥tr ≤ C ∥A∥ diam(X)ℓ exp(−d(X,Λ ∖Λgap
)
q),

then ρ is locally dynamically gapped (cf. Proposition 17.4.1 (i) and (vi)).

(2) In the same setting as in (1), it holds that, whenever there exists a norm-preserving automor-
phism τ on the observable algebra, i.e. ⟨ ⋅ ⟩ρ = ⟨τJ ⋅ K⟩ρ∗ , which satisfies

∥(τ − 1)JAK∥ ≤ C ∥A∥ diam(X)ℓ exp(−d(X,Λ ∖Λgap
)
q),

then ρ is locally dynamically gapped (cf. Proposition 17.4.1 (vii)).

(3) Let H be an SLT Hamiltonian and ρ = ∣ψ⟩ ⟨ψ∣ its pure product ground state. Then, if one has
an effective gap well inside Λgap of the form6

i ⟨A∗LJAK⟩
ρ
≥ g (1 −C diam(X)ℓ exp(−d(X,Λ ∖Λgap

)
q)) (⟨A∗A⟩ρ − ∣⟨A⟩ρ∣

2
),

for all A ∈ AX , then ρ is locally dynamically gapped (cf. Proposition 17.4.1 (viii)).

Items (1) and (2) will be used in Section 17.4.4.2, to show that ground states of perturbations of
gapped frustration free Hamiltonians have a local dynamical gap.

17.1.3 Discussion of our main result
We can now formulate an informal version of our main result as a showcase application of our local
gap condition (LDGintro) to a physically relevant problem – the validity of response theory. In a
nutshell, it says that, even after relaxing the usual condition of a global gap to (LDGintro), we have
response theory to all orders for a perturbation localized in Λpert – provided that d(Λpert,Λ ∖Λgap)
is sufficiently large compared to ∣log(ε)∣1/q, where ε > 0 is the strength of the perturbation and
q ∈ (0,1) is some small constant (see (17.1.14) and Figure 17.1.2).

Λgap

Λpert

Λ

≫∣log ε∣1/q

Figure 17.1.2: Let H0 be locally dynamically gapped in Λ∖Λgap and consider a small Λpert-localized
perturbation εV , which is adiabatically turned on. Then, if the distance between Λpert and Λ ∖Λgap

is large compared to ∣log ε∣1/q, response theory (17.1.12) holds to any order.

More precisely, let H0 be an SLT Hamiltonian and ρ0 an equilibrium state of H0 that is locally
dynamically gapped in Λgap (according to Assumption (LDGintro)). Let V be a Λpert-localized

6For Λgap
= Λ, this condition for all observables, is actually equivalent to the usual spectral gap condition.
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17. Response theory for locally gapped systems

perturbation by an SLT Hamiltonian (see (17.2.7) and Lemma 17.2.1 for details), f ∶R → [0,1] a
smooth switching function with f(t) = 0 for t ≤ −1 and f(t) = 1 for t ≥ 0, and define

Hε(t) ∶=H0 + εf(t)V. (17.1.9)

Moreover, let ρε,η,f(t) be the solution of the time-dependent adiabatic Schrödinger equation

i η d
dt
ρε,η,f(t) = [Hε(t), ρ

ε,η,f
(t)] (17.1.10)

with adiabatic parameter η ∈ (0,1] and initial datum ρε,η,f(t) = ρ0 for all t ≤ −1. Finally, for an
observable B ∈ AY define the response to the perturbation as

Σε,η,f
B (t) ∶= ⟨B⟩ρε,η,f (t) − ⟨B⟩ρ0 . (17.1.11)

Main Result (see Theorem 17.3.1). For every j ∈ N there exists a response coefficient σB,j ,
independent of ε, η and f , such that the following holds: There exists a constant q ∈ (0,1) and
for every n,m ∈N and T > 0, there exists a constant C > 0, independent of ε, such that for every
t ∈ [0, T ] we have that

sup
η∈[εm,ε

1
m ]

RRRRRRRRRRR

Σε,η,f
B (t) −

n

∑
j=1

εjσB,j

RRRRRRRRRRR

≤ C ∣∣∣B∣∣∣ εn+1
(1 + e−d(Λ

pert,Λ∖Λgap)q−C log(ε)
) , (17.1.12)

where ∣∣∣B∣∣∣ measures the norm of B and its support Y .
The first order coefficient is given by Kubo’s formula

σB,1 = −i ⟨[IH0,gJV K,B]⟩
ρ0
. (17.1.13)

When Λgap = Λ, the equilibrium state ρ0 of H0 is globally dynamically gapped and the expo-
nential in (17.1.12) is absent since d(Λpert,∅) ∶= ∞. This special case of our result (when
ρ0 = P0/dim rankP0 and P0 projects onto a gapped spectral patch) has already been proven
in [556] with extensions to infinite systems in [342, 341]; see also Remark 17.3.2 below. Moreover,
observe that, whenever

d(Λpert,Λ ∖Λgap
)≫ ∣log(ε)∣1/q, (17.1.14)

with q from our main result, the exponential in (17.1.12) is small compared to 1. In particular, this
is the case, if d(Λpert,Λ ∖ Λgap) ≫ ε−δ for some (arbitrarily small) δ > 0. Hence, our main result
gives an effective condition on the distance from the perturbation region, Λpert, to the non-gapped
region, Λ ∖Λgap, in comparison to the perturbation strength ε, which ensures that response theory
to all orders is valid (see Figure 17.1.2).

It is interesting to compare our main result to the adiabatic theorem [341, Theorem 4.1] for finite
systems with a gap in the bulk, which – in some sense – are locally gapped systems. By routine
arguments (see [556, Proof of Theorem 4.1]), [341, Theorem 4.1] yields the analog of (17.1.12) again
with an additional error term: Instead of the exponential in (17.1.12), one obtains7 O((εCd(Y,Λ ∖
Λgap))

−∞
). Therefore, in order to have response theory to all orders in this setting, one needs that

d(Y,Λ ∖Λgap
)≫ ε−C . (17.1.15)

We point out the following two differences between the conditions in (17.1.14) and (17.1.15): First,
in (17.1.14), the relevant distance is between ‘where the perturbation V acts’, i.e. Λpert, and ‘where
we do not have a gap’, i.e. Λ∖Λgap. In contrast to that, the relevant distance in (17.1.15) is between
‘where the observable B tests’, i.e. Y , and ‘where we do not have a gap’, i.e. Λ∖Λgap. Second, while
in (17.1.14) the distance must be much bigger than a power of the logarithm of the perturbation
strength ε, in (17.1.15), the distance must be much bigger than a large inverse power of ε.

7The bound in [341, eq. (4.1)] essentially means that the unperturbed system on Λ ≡ Λk is gapped within
Λgap

≡ Λ⌊k(1−o(1))⌋, where Λl denotes the box of side length 2l + 1 in Zd centered at zero.

576



17.2. Mathematical framework

17.1.4 Structure of the paper
The rest of this paper is structured as follows. After introducing the mathematical framework, in
particular the underlying space and the concept of locality of SLT operators, in Section 17.2, we
precisely formulate our main result in Theorem 17.3.1 in Section 17.3.1 and also give its proof based
on the NEASS construction. In Section 17.4 we discuss the problem of formulating a local gap
condition, formulate different variants and explain their connections, and, moreover, show certain
exemplary systems to have a local dynamical gap. Afterwards, in Section 17.5, we perform the
NEASS construction under Assumption (LDGintro) and prove the necessary inputs for Theorem 17.3.1.
Additional proofs concerning the formulation of the local gap condition are given in Section 17.6;
several technical lemmata and auxiliary results needed for the arguments in Section 17.5 are deferred
to Appendix 17.A.
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17.2 Mathematical framework
In this section, we briefly introduce the (standard) mathematical framework used in the formulation
of the adiabatic theorems. For similar setups see [556, 342, 341, 36].

17.2.1 Spatial structure and algebra of observables
We consider a quantum spin system on a finite graph Λ equipped with the graph distance d( ⋅ , ⋅ ).
Let Br(x) ∶= { y ∈ Λ ∶ d(x, y) ≤ r } be the ball of radius r centered at x ∈ Λ. The graph is assumed
have dimension (at most) d > 0, i.e. there exists a constant Cvol > 0 such that

sup
x∈Λ
∣Br(x)∣ ≤ 1 +Cvol r

d, (17.2.1)

where ∣X ∣ denotes the number of sites in X ⊂ Λ. The set of all such graphs Λ is denoted by

G(d,Cvol) ∶= { ∗ }Λ finite graph ∶ sup
x∈Λ
∣Br(x)∣ ≤ 1 +Cvol r

d for all r > 0. (17.2.2)

To each vertex x ∈ Λ, we associate a single-particle Hilbert space Hx, which we assume to be of finite
dimension, supx∈Λ dimHx <∞. Moreover, for each X ⊂ Λ let HX ∶= ⊗x∈XHx be the many-particle
Hilbert space on X and denote the associated C∗-algebra of observables by AX ∶= L(HX). Whenever
X ⊂X ′, then AX is naturally embedded as a subalgebra of AX′ and we set A ∶= AΛ.

Since a very similar construction is common for fermionic lattice systems (see, e.g., [460] and
Chapter 16), all the results almost immediately translate to this setting.

17.2.2 Interactions and SLT operators
An interaction is a map

Φ∶{X ⊂ Λ }→ AN , X ↦ Φ(X) = Φ(X)∗ ∈ AX . (17.2.3)

With any interaction, one associates a sum of local terms (SLT) operator A via

A ∶= ∑
X⊂Λ

Φ(X) ∈ A. (17.2.4)
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Note that, while every interaction defines a unique operator, there are multiple interactions realizing
the same operator, i.e. the assignment Φ↦ A(Φ) is not invertible. Note that all interactions and
SLT operators are by definition always self-adjoint.

For any b > 0 and p ∈ (0,1], we consider the stretched exponential function

χb,p ∶ [0,∞)→ (0,1] , x↦ e−bx
p

(17.2.5)

as localization functions and define the associated SLT interaction norm

∥Φ∥b,p ∶= sup
z∈Λ
∑
Z⊂Λ∶
z∈Z

∥Φ(Z)∥
χb,p(diam(Z))

(17.2.6)

on interactions. The quality of the localization for an interaction will be expressed by the finiteness
of a norm ∥Φ∥b,p, independent of the (size of the) graph Λ. Operators with this property will often
be referred to as (b, p)-localized SLT operators.
Moreover, in order to further quantify, how well an interaction is localized in a region Ω ⊂ Λ, we
introduce the localized SLT interaction norm

∥Φ∥b,p;Ω ∶= sup
z∈Λ
∑
Z⊂Λ∶
z∈Z

∥Φ(Z)∥
χb,p(diam(Z))χb,p(d(z,Ω))

(17.2.7)

and refer to operators with the property that ∥Φ∥b,p;Ω ≤ C as (b, p,Ω)-localized SLT operators.
Whenever it is clear from the context, or irrelevant for the discussion, we will often also omit the
arguments (b, p), and simply refer to Ω-localized SLT operators. Finally, observe that ∥Φ∥b,p;Λ =
∥Φ∥b,p.

The following simple lemma, whose proof is given in Appendix 17.A.4, relates conceptually easier
notions of locality of SLT operators to boundedness of the norm (17.2.7).

Lemma 17.2.1. Let A be an SLT operator stemming from an interaction Φ, for which we assume
that ∥Φ∥b,p ≤ C for some constant C > 0, and let Ω ⊂ Λ.

(i) Let A be strictly Ω-localized, i.e. Φ(Z) = 0 whenever Z ∩ (Λ ∖Ω) ≠ ∅. Then it holds that
∥Φ∥b,p;Ω ≤ C

(ii) Let A be strongly Ω-localized, i.e. Φ(Z) = 0 whenever Z ∩ Ω = ∅. Then it holds that
∥Φ∥b/2,p;Ω ≤ C.

17.3 Main result: Response theory for locally gapped systems
In this section, we formulate our main result, the validity of response theory to any order, in Theo-
rem 17.3.1 in Section 17.3.1. Its proof, based on the NEASS construction, is given in Section 17.3.2.

17.3.1 Response theory
We recall the assumption (LDGintro) from Section 17.1 of a local gap, now formulated preparatory of
our main result, Theorem 17.3.1 below.

(LDGmain) Local dynamical gap condition – formal version.

We say that an equilibrium state ρ0 of the SLT-operator H0, i.e. with [H0, ρ0] = 0, is locally
dynamically gapped of size at least g > 0 in a region Λgap ⊂ Λ with respect to Cgap, b, p > 0 and
ℓ ∈N0, if and only if for all X,Y ⊂ Λ and A ∈ AX and B ∈ AY , it holds that

∣⟨[LH0 ○ IH0JAK −A,B]⟩
ρ0
∣ ≤ Cgap ∥A∥ ∥B∥ [diam(X) + diam(Y )]ℓ

× χb,p(d(X,Λ ∖Λgap
) + d(Y,Λ ∖Λgap

)).

(17.3.1)
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We can now formulate our main result. In a nutshell, it says the following: We have validity of
response theory to all orders under the assumption of (LDGmain) for a perturbation localized in Λpert

– provided that the distance to Λ ∖Λgap is sufficiently large compared to ∣log(ε)∣1/q, where ε > 0 is
the strength of the perturbation and q > 0 is some small constant.

The proof of Theorem 17.3.1 is given at the end of Section 17.3.2.

Theorem 17.3.1 (Response theory to all orders). Fix n,m ∈ N and let d ∈ N, Cvol > 0, b > 0,
p ∈ (0, 1], Cint > 0 and g > 0, Cgap > 0, ℓ ∈N0, and Cswitch > 0. Take any q ∈ (0, p). Then there exist
a constant Cn,m > 0 (in particular depending on n and m) such that for all lattices Λ ∈ G(d,Cvol)
(recall (17.2.2)), subsets Λpert ⊂ Λ and SLT-operators H0 and V , with corresponding interactions
that satisfy ∥ΦH0∥b,p < Cint and ∥ΦV ∥b,p;Λpert < Cint, respectively, the following holds:

Assume that the equilibrium state ρ0 of H0 is locally dynamically gapped in Λgap of size at least g
and with respect to Cgap, b, p and ℓ according to Assumption (LDGmain). Let Y ⊂ Λ and B ∈ AY .
Then there exist response coefficients σB,j in the following sense: For ε > 0 and smooth switching
function f ∶R → [0,1] satisfying f(t) = 0 for t ≤ −1, f(t) = 1 for t ≥ 0, and ∥f∥CCn,m(R) < Cswitch
with Cn,m ∶= ⌈m(n + 1 + (2d + ℓ)/p)⌉, consider the time-dependent Hamiltonian

Hε(t) ∶=H0 + ε f(t)V. (17.3.2)

Let ρε,η,f(t) be the solution of the time-dependent adiabatic Schrödinger equation

i η d
dt
ρε,η,f(t) = [Hε(t), ρ

ε,η,f
(t)] (17.3.3)

with adiabatic parameter η ∈ (0,1] and initial datum ρε,η,f(t) = ρ0 for all t ≤ −1.

Then, the response to the perturbation, Σε,η,f
B (t) ∶= ⟨B⟩ρε,η,f (t) − ⟨B⟩ρ0 , satisfies

sup
η∈[εm,ε1/m]

RRRRRRRRRRR

Σε,η,f
B (t) −

n

∑
j=1

εjσB,j

RRRRRRRRRRR

≤ Cn,m ∥B∥ diam(Y )(3+n)d+ℓ(1 + t)(2d+ℓ)/p+1
εn+1

× (1 + e−d(Λ
pert,Λ∖Λgap)q−(Cn,m+1) log(ε)

) ,

(17.3.4)

for all t ≥ 0. The first order coefficient is given by Kubo’s formula (17.1.13).

Our result can also be extended to infinite systems.

Remark 17.3.2 (Extension to infinite systems). Following the arguments from [342], it is reasonably
straightforward to extend our result to the case of infinite systems. More precisely, in order to do so,
we need to

• consider Λ to be part of a sequence of graphs exhausting an infinite graph Γ, e.g. Λ ≡ Λk ∶=
{−k, . . . , k}d ⊂ Zd and Γ ∶= Zd;

• assume that the interactions associated to H0 and V have a thermodynamic limit (see [342,
Definition 2.1]);

• require that the sequence of equilibrium states ρ0 ≡ ρ
Λ
0 satisfies the local dynamical gap

condition (LDGmain) with constants independent of Λ and converges (in the weak∗ sense in
the dual to the algebra of quasi-local observables, see [342, Section 2.5]) as Λ↗ Γ;

• and suppose that also the perturbation region Λpert as well as the gapped region Λgap

converge (in a suitable sense) to some Γpert,Γgap ⊂ Γ, respectively, at least ensuring that
d(Λpert,Λ ∖Λgap)→ d(Γpert,Γ ∖ Γgap) as Λ↗ Γ.
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Then, (17.3.4) also holds for the infinite system but with d(Γpert,Γ ∖ Γgap) in the exponential.

In the special case, where the gapped region exhausts the entire graph, i.e. Λgap ↗ Γ, we find (17.3.4)
without the additional exponential error term. This corresponds to H0 having a gap in the bulk
(see [341], Chapter 16 and also the discussion around (17.4.8) in Section 17.4), where in the finite
systems H0 could have gap closing edge modes (see Figure 17.1.1).

17.3.2 Non-equilibrium almost stationary states and proof of Theorem 17.3.1
The main underlying idea of our justification of linear response theory is the construction of so-called
non-equilibrium almost-stationary states (NEASS) [452, 556, 340, 342, 341] for the dynamics of the
perturbed Hamiltonian

Hε ∶=H0 + εV. (17.3.5)

More precisely, for every n ∈N there exists8 a state Πε
n, which is obtained from the equilibrium state

ρ0 of H0 by a unitary transformation with a small SLT generator, in such a way, that it is almost
stationary under the dynamics generated by (17.3.5).

Similarly to [556, Theorem 3.1], one can obtain Proposition 17.3.3 by following the proof of
Proposition 17.3.4, given in Section 17.5.2, and combining it with Proposition 17.3.5. As the
arguments in [556, Theorem 3.1] are rather standard, we omit the details for brevity.

Proposition 17.3.3 (Non-equilibrium almost-stationary states). Fix n ∈N and let d ∈N, Cvol > 0,
b > 0, p ∈ (0, 1], Cint > 0 and g > 0, Cgap > 0, ℓ ∈N0. Take any q ∈ (0, p). Then there exist a constant
Cn > 0 (in particular depending on n) such that for all lattices Λ ∈ G(d,Cvol) (recall (17.2.2)), subsets
Λpert ⊂ Λ and SLT-operators H0 and V , with corresponding interactions that satisfy ∥ΦH0∥b,p < Cint
and ∥ΦV ∥b,p;Λpert < Cint, respectively, the following holds:

Assume that the equilibrium state ρ0 of H0 is locally dynamically gapped in Λgap of size at least
g > 0 and with respect to Cgap, b, p and ℓ according to Assumption (LDGmain). Then, there exists a
sequence (Aµ)µ∈N of SLT operators, which are (1, p′,Λpert)-localized for any p′ < p, such that the
state

Πε
n ∶= eiεSε

n ρ0 e−iεSε
n with Sεn ∶=

n

∑
µ=1

εµ−1Aµ (17.3.6)

is almost-stationary for the dynamics generated by Hε =H0 + εV in the following sense: Let ρε(t)
be the solution to the Schrödinger equation

i d
dt
ρε(t) = [Hε, ρ

ε
(t)] with ρε(0) = Πε

n. (17.3.7)

Under these conditions, for all B ∈ AY with Y ⊂ Λ and t ≥ 0, it holds that

∣⟨B⟩ρε(t) − ⟨B⟩Πε
n
∣ ≤ Cn,m ∥B∥diam(Y )3d+ℓ ∣t∣(1 + ∣t∣(2d+ℓ)/p) εn+1

× (1 + e−d(Λ
pert,Λ∖Λgap)q−(n+1) log(ε)

).

(17.3.8)

We point out that, similarly to [556, Theorem 3.1], one can improve the bound in (17.3.8) by
rescaling every t by εm for some m ∈N, at the cost of increasing the constant in front of log(ε).

From a technical perspective, our proof of response theory for locally gapped quantum spin systems,
Theorem 17.3.1, rests on the following two propositions, the proof of which shall be given in
Section 17.5. The first, Proposition 17.3.4, states that the NEASS constructed in Proposition 17.3.3

8 Following the resummation procedure in [342, Appendix E], one could even construct a single (i.e. n independent)
state Πε, which, for every fixed n, has the same properties as Πε

n. We will, however, refrain from doing so for brevity
of the presentation.
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is also almost-stationary under the dynamics generated by the time-dependent Hamiltonian (17.3.2)
whose perturbation V is turned on by the switching function f on the adiabatic time scale 1/η (see,
e.g., [556, Prop. 3.2]). The proof of Proposition 17.3.4 is given in Section 17.5.2.

Proposition 17.3.4 (Adiabatic switching and the NEASS). Under the assumptions of Theorem 17.3.1
(in particular recalling (17.3.3)) it holds that

∣⟨B⟩ρε,η,f (t) − ⟨B⟩Πε
n
∣ ≤ C ∥B∥diam(Y )3d+ℓ(1 + t)(2d+ℓ)/p+1 εn+1 + ηn+1

η(2d+ℓ)/p+1

× (1 + e−d(Λ
pert,Λ∖Λgap)q−(n+1) log(ε)

),

(17.3.9)

for t ≥ 0, where Πε
n is the NEASS (17.3.6) constructed in Proposition 17.3.3.

For our application to response theory, it is important to have an explicit expansion of expectation
values in the NEASS in powers of ε with coefficients given by expectations in the unperturbed
equilibrium state, the linear term constituting the celebrated Kubo formula. This is the content of
the following proposition, whose proof works in the exact same way as in [452, Theorem 3.3] or [556,
Proposition 5.2] and is hence omitted.

Proposition 17.3.5 (Asymptotic expansion of the NEASS). Under the assumptions of Proposi-
tion 17.3.3, there exist linear maps Kj ∶A → A, j ∈N, given by nested commutators with the Aµ’s
in (17.3.6), such that for n ≥m it holds that

∣⟨B⟩Πε
n
−

m

∑
j=1

εj⟨KjJBK⟩ρ0∣ ≤ Cn,m ε
m+1
∥B∥ ∣Y ∣m χb′,p(d(Λpert, Y )), (17.3.10)

with b′, p the parameters of the localization of the Aµ given in Proposition 17.3.3. The first two
orders of the expansion (17.3.10) are explicitly given by

⟨K0JBK⟩ρ0 = ⟨B⟩ρ0 and ⟨K1JBK⟩ρ0 = −i⟨[IH0,gJV K,B]⟩
ρ0
, (17.3.11)

where IH0,gJ ⋅ K is the inverse Liouvillian from (17.1.4).

We can finally give the proof of Theorem 17.3.1.

Proof of Theorem 17.3.1. Armed with Propositions 17.3.4–17.3.5, the proof of Theorem 17.3.1
follows by a simple application of the triangle inequality when applying Proposition 17.3.4 with n→
ñ ∶= ⌈m(n+1+(2d+ℓ)/p)⌉ and Proposition 17.3.5 for n→ ñ and m→ n; cf. [556, Theorem 4.1].

17.4 How to formulate a local gap condition?
Formulating a (i) physically and mathematically transparent, (ii) practically applicable, and (iii)
reasonably restrictive condition of a local gap for a Hamiltonian H is a non-trivial task. In this
section, we discuss several different possible approaches to do so. In principle, there are two main
ways: Either we compare H to a globally gapped reference Hamiltonian H∗ (extrinsic formulation, see
Section 17.4.1), or the condition involves the original Hamiltonian H alone (intrinsic formulation, see
Section 17.4.2). We shall first list all the different variants and afterwards compare their respective
features in view of the above listed three requirements and explain their relations in Section 17.4.3.
Finally, in Section 17.4.4 we discuss two exemplary systems, which we prove to have a local dynamical
gap in the sense of Assumption (LDGmain).

Throughout the entire section (except differently stated explicitly), we will use C, ℓ, b, p as generic
constants satisfying C > 0, ℓ ≥ 0, b > 0, and p ∈ (0, 1]. Their precise value might change from line to
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line and it only depends on the model parameters, i.e. the interaction norms (17.2.6)–(17.2.7) of the
involved SLT Hamiltonians, the lattice parameters in (17.2.2), or the gap size g > 0 of a reference
Hamiltonian.

17.4.1 Extrinsic local gap conditions

In this section, we describe several ways of extrinsically expressing that an equilibrium state ρ (e.g. the
ground state) of a Hamiltonian H is locally gapped. We call these formulations of a local gap
condition extrinsic, since the Hamiltonian H and equilibrium state P of interest are compared to
another reference Hamiltonian H∗, called the parent Hamiltonian, with equilibrium state ρ∗, which
is globally gapped. Throughout this section, for simplicity of the presentation, we will assume that
both ρ and ρ∗ have rank one.

The common core of all the different ways to extrinsically formulate a local gap conditions, is to
assume that H and H∗ differ only locally: That is, H∗ and H are related as

H =H∗ + J (17.4.1)

where J is some SLT operator, which is localized in Λ ∖Λgap (e.g., in one of the senses mentioned
in Lemma 17.2.1). This form (17.4.1) of H and H∗ differing only locally is then passed on to their
equilibrium states, ρ and ρ∗, respectively. More precisely, we will assume that local perturbations of
H∗ perturb its equilibrium state ρ∗ only locally. Whenever this holds, one (usually) says that H∗
satisfies the local perturbations perturb locally (LPPL) principle, which has been shown to be the
case for ground states in several contexts [207, 35] (see also Chapter 15).

Local gap via ‘classical’ LPPL The simplest way to formulate an extrinsic local gap condition for
H given by (17.4.1) with ground state ρ, is to assume that the globally parent gapped Hamiltonian
H∗ with ground state ρ∗ satisfies a strong form9 of the LPPL principle. This means that, for A ∈ AX ,
we have

∣⟨A⟩ρ − ⟨A⟩ρ∗ ∣ ≤ C ∥A∥ diam(X)ℓ χb,p(d(X,Λ ∖Λgap
)). (17.4.2)

An estimate of the form (17.4.2) has been shown to hold for weakly interacting spin systems
in Chapter 15 (based on ideas of [591]) and – in a similar way – in [35]. Moreover, in [341,
Theorem 4.1], such type of assumption was used to formulate an adiabatic theorem for large but
finite systems with a gap in the bulk. In this case (cf. [341, eq. (4.1)]), the additional error term
(compared to the case of having a global gap) in the response theory expansion (17.1.12) becomes
O((εC d(X,Λ ∖Λgap))

−∞
). Moreover, using that H∗ and J are SLT operators, (17.4.2) implies

that (LDGmain) holds but with the argument of χb,p in (17.3.1) being the minimum of the distances
(or – up to changing constants – the distance of the union of the two supports to Λ ∖Λgap) instead
of their sum (i.e. their maximum). Hence, the decay in d(Λpert,Λ∖Λgap), emerging in the course of
proving Proposition 17.3.4 in Section 17.5, will eventually be lost.

In conclusion, although this way (17.4.2) of saying that H has a local gap, is quite simple, the
resulting error terms are considerably bad and, moreover, it does not quite allow for tracking
d(Λpert,Λ ∖Λgap)-decays.

Trace norm LPPL One could even further strengthen the LPPL assumption (17.4.2) to a trace
norm LPPL. This means, that ρ and ρ∗ are not only close in the weak∗ sense (17.4.2), but we have

∥(ρ − ρ∗)A∥tr + ∥A (ρ − ρ∗)∥tr ≤ C ∥A∥ diam(X)ℓ χb,p(d(X,Λ ∖Λgap
)), (17.4.3)

9According to the terminology introduced in Chapter 15, calling an LPPL principle strong, simply means, that the
perturbation J is not required to leave the spectral gap of H∗ open – contrary to earlier works [39, 207] on LPPL.
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where ∥ ⋅ ∥tr ∶= tr(∣ ⋅ ∣) denotes the trace norm. We remark, that surely (17.4.3) implies (17.4.2).
A somewhat weakened version of (17.4.3) is to ask that only the trace norm of the commutator
[ρ − ρ∗,A] is small like in (17.4.3), i.e.

∥[ρ − ρ∗,A]∥tr ≤ C ∥A∥ diam(X)ℓ χb,p(d(X,Λ ∖Λgap
)), (17.4.4)

As we show in Proposition 17.4.1 in Section 17.4.3 (see also Figure 17.4.1), both these ways, (17.4.3)
and (17.4.4), of saying that H has a local gap are sufficient to conditions for H having a local gap
in the sense of Assumption (LDGmain).10 However, it is a quite restrictive condition that ρ and ρ∗
are close in such strong topology as (17.4.3) or (17.4.4).

Intertwining automorphism Another, compared to (17.4.2) strengthened, way of saying that ρ
and ρ∗ are close to each other, is to assume the following: There exists a intertwining norm-preserving
∗-automorphism τ on A, i.e. ⟨ ⋅ ⟩ρ = ⟨τJ ⋅ K⟩ρ∗ , which satisfies

∥(τ − 1)JAK∥ ≤ C ∥A∥ diam(X)ℓ χb,p(d(X,Λ ∖Λgap
)), (17.4.5)

where 1 is the identity map. Similarly to (17.4.3), we surely have that (17.4.5) implies (17.4.2).
Moreover, (17.4.5) is a sufficient condition for having (LDGmain) (see Proposition 17.4.1 and
Figure 17.4.1 below), as will be used for proving that both of the examples studied in Section 17.4.4
below satisfy (LDGmain) (see Section 17.6).

17.4.2 Intrinsic local gap conditions
In this section, we describe two ways of intrinsically expressing that an equilibrium state ρ of a
Hamiltonian H is locally gapped. In contrast to the previous extrinsic formulation, they are called
intrinsic, as they do not refer to another (parent) Hamiltonian.

Local spectral gap conditions only for ground states In case of ρ being the (unique) ground
state, a very natural way to connect the notion of locality with spectral analysis is to require that a
variational condition characterizing the spectral gap is tested only locally. Generally speaking, assume
that ψ0 is the unique ground state with eigenvalue E0 of a local Hamiltonian H in some underlying
physical space Λ. Then, a spectral gap above E0 of size (at least) g > 0 is characterized by

inf
ψ⊥ψ0

⟨ψ, (H −E0)ψ⟩

⟨ψ,ψ⟩
≥ g. (17.4.6)

If the minimization in (17.4.6) is restricted a smaller set of ψ’s, i.e. those which are localized to a
region, say, Λgap ⊂ Λ in some appropriate sense, one could say that H is locally gapped in Λgap.
Alternatively, for every fixed ψ, the gap size g could be assumed to be non-constant but dependent
on the distance of the support of ψ to the region Λgap.

For quantum spin systems on the graph Λ, it can easily be checked that the analog of (17.4.6) for
an SLT Hamiltonian H with unique ground state ρ is

i ⟨A∗LJAK⟩ρ ≥ g (⟨A∗A⟩ρ − ∣⟨A⟩ρ∣
2
), (17.4.7)

for all observables A ∈ A, where LJ ⋅ K ∶= −i [H, ⋅ ] denotes the Liouvillian. We now give two options
to turn (17.4.7) into a local gap condition.

As a first option, one could require that the gap size g decays as the support X of the observable
A ∈ AX approaches the complement of Λgap, e.g. as

i ⟨A∗LJAK⟩ρ ≥ g (1 −C diam(X)ℓ χb,p(d(X,Λ ∖Λgap
))) (⟨A∗A⟩ρ − ∣⟨A⟩ρ∣

2
). (17.4.8)

10This fact is used for proving (LDGmain) (which is done in Section 17.6) for one of the examples discussed in
Section 17.4.4 below.
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In case that ρ = ∣ψ⟩ ⟨ψ∣ with ψ being a product state, variants of Proposition 14 and Lemma 15 in [596]
can be used to show the following: The gap decay condition (17.4.8) implies a slightly weakened
version (see (17.4.12) below) of our local dynamical gap condition; see Proposition 17.4.1 (viii).

We further remark that, if one is interested in taking the thermodynamic limit, Λ↗ Γ for some infinite
graph Γ, and Λgap ↗ Γ in this limit (e.g. in the scenario of gap-closing edge modes), then (17.4.8)
yields a gap in the bulk of the naturally associated infinite system (see Remark 16.3.6).11

Another, compared to (17.4.8) weaker, option is to include a separate additive error term on the
lhs. of (17.4.7), e.g. as

i ⟨A∗LJAK⟩ρ ≥ g (⟨A∗A⟩ρ − ∣⟨A⟩ρ∣
2
) −C ∥A∥2 diam(X)ℓ χb,p(d(X,Λ ∖Λgap

)), (17.4.9)

which we call defective coercivity for the following reason.

The global gap characterization can equivalently be rewritten as

i ⟨Ã∗LJÃK⟩ρ ≥ g ⟨Ã
∗
Ã⟩ρ with Ã ∶= A − ⟨A⟩ρ,

which means that on A⊥ ∶= { ρ }⊥ = { Ã ∶ A ∈ A } ⊂ A the bounded sesquilinear form

B∶A
⊥
×A

⊥
→C , (A,B)↦ i ⟨A∗LJBK⟩P

is coercive with respect to the semi-norm ∣∣∣A∣∣∣ ∶=
√
⟨A∗A⟩ρ on A⊥. Hence, (17.4.9) expresses some

defect in the original coercivity of (17.4.7). We remark that, at least morally, one could use the
Lax-Milgram theorem to deduce existence of an inverse of the Liouvillian L given such a coercivity
estimate. However, the problem is that the inverse obtained in this way does not necessarily have
any nice locality properties, which are crucially used for practical purposes.

Finally, we point out that the defective coercivity (17.4.9) is implied by the ‘classical’ strong
LPPL (17.4.2). More precisely, assume there exists a parent Hamiltonian H∗ which is related to H
like in (17.4.1). Then, if the globally gapped ground state ρ∗ of H∗ satisfies the strong form (17.4.2)
of LPPL, then (17.4.9) holds – modulo adjusting the constants b, p, ℓ, and C; see Proposition 17.4.1
and Figure 17.4.1 below.

Local dynamical gap condition The – at least in view of our application – most important
property of an SLT Hamiltonian with a gapped part of its spectrum, is that (the offdiagonal part of)
its Liouvillian can be locally inverted; see, e.g., (17.1.3) in Section 17.1.2 and also [556, Appendix
C]. In these applications, roughly said, the local invertibility of the Liouvillian guarantees that the
effect of perturbations remains local. More precisely, it allowed to prove automorphic equivalence
of gapped ground states [39, 454] and adiabatic theorems in cases where the perturbation is not
allowed to close the gap [36, 452] and later also for gap closing perturbations [556, 340, 342, 341].

As already noted in Section 17.1.2, the local invertibility of the Liouvillian is in fact equivalent
to the Hamiltonian having a gapped part of its spectrum (see Proposition 17.1.1), which yields a
dynamical characterization of a spectral property. A local version of this feature is formulated in our
local dynamical gap condition in Assumptions (LDGintro) and (LDGmain): Let I ≡ IH,g denote the
inverse Liouvillian from (17.1.4) with gap size g > 0. Then, an equilibrium state ρ (not necessarily
the ground state!) of H is locally dynamically gapped, if for all observables A ∈ AX and B ∈ AY
localized in X ⊂ Λ and Y ⊂ Λ, it holds that

∣⟨[L ○ IJAK −A,B]⟩
ρ
∣ ≤ C ∥A∥ ∥B∥ [diam(X) + diam(Y )]ℓ

× χb,p(d(X,Λ ∖Λgap
) + d(Y,Λ ∖Λgap

)) .

(17.4.10)

11More precisely, this also requires that an interaction Φ = ΦH , associated to the SLT Hamiltonian H, has a
thermodynamic limit in a suitable sense (see [342, Definition 2.1], [341, Definition 3.1], and Definitions 16.3.3 and
16.3.8). In this case, the linear functional A ↦ tr(PA) converges in weak∗ sense to a state on the C∗-algebra of
quasi-local observables on Γ. A gap in the bulk then means, that the naturally associated GNS Hamiltonian of the
infinite system has a spectral gap above zero.
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In the special case of ℓ = 0, by taking a supremum over all observables B with ∥B∥ ≤ 1 in (17.4.10),
we find that – for ℓ = 0 – our local dynamical gap condition (17.4.10) is actually equivalent to

∥[L ○ IJAK −A,ρ]∥tr ≤ C ∥A∥ χb,p(d(X,Λ ∖Λgap
)).

Here, we additionally used cyclicity of the trace together with sup∥D∥≤1∣tr(CD)∣ = ∥C∥tr.

Moreover, we point out that, while the rhs. of (17.4.10) is obviously symmetric in A and B, the
lhs. is as well. This follows by rewriting (recall (17.1.4))

LH ○ IH,gJAK −A = ∫
R

dtwg(t) eiHtA e−iHt
=∶ JH,gJAK = J JAK (17.4.11)

and using [H,ρ] = 0 together with the symmetry wg(t) = wg(−t).

A slightly weakened (asymmetric) version of (17.4.10) would be to require that for all X ⊂ Λ
satisfying diam(X) ≤ d(X,Λ ∖Λgap)β (for some β > 0) and observables A ∈ AX , and Y ⊂ Λ and
observables B ∈ AY , it holds that

∣⟨[L ○ IJAK −A,B]⟩
ρ
∣ ≤ C ∥A∥ ∥B∥ diam(Y )ℓ χb,p(d(X,Λ ∖Λgap

)). (17.4.12)

This version will be introduced as the weakened local gap condition (LDGweak) in Section 17.5.1
below. Such an assumption will in fact be sufficient for proving our main result in Theorem 17.3.1.

Finally, we remark that another symmetric (in A and B) bound on the lhs. of (17.4.10) would be to
replace the sum of the distances in the exponent in (17.4.10) by d(X ∪ Y,Λ ∖Λgap) (i.e. take the
minimum of the distances to Λ ∖Λgap instead of their maximum). Using quasi-locality estimates for
J J ⋅ K defined in (17.4.11) (see, e.g., [461, Lemma 5.1]), this bound could actually be proven as a
consequence of the LPPL principle (17.4.2), provided that there is a globally spectrally gapped parent
Hamiltonian H∗ for H. Therefore, similarly to the paragraph below (17.4.2), using this assumption,
the decay in d(Λpert,Λ∖Λgap), emerging in the course of proving Proposition 17.3.4 in Section 17.5,
would eventually be lost.

17.4.3 Summary and comparison
In the previous two Sections 17.4.1–17.4.2 we described several different ways of expressing that
a Hamiltonian is locally gapped, distinguishing between extrinsic (Section 17.4.1) and intrinsic
(Section 17.4.2) formulations.

While the extrinsic conditions are easy to formulate, they rely – by definition – on a reference (parent)
Hamiltonian with a global gap satisfying some form of LPPL principle (cf. (17.4.2)–(17.4.5)). Since
for a system of interest, it is not guaranteed to have such a well-understood parent Hamiltonian
available, it is conceptually more desirable to formulate a local gap condition in an intrinsic way. Or,
in other words, saying that a system is (or behaves as if it were) locally gapped should not only
make sense relative to another globally gapped system.

In the intrinsic category, we formulated two local spectral gap conditions (17.4.8)–(17.4.9), which,
however, are (i) only meaningful for (non-degenerate) ground states and (ii) although mathemat-
ically clean, hardly applicable in physical problems in a direct way (apart from the connection in
Proposition 17.4.1 (viii)). These two issues are then resolved by our local dynamical gap condition
(LDG) in (17.4.10) and its weakened version in (17.4.12).

The following proposition formulates the implications shown in Figure 17.4.1 precisely.

Proposition 17.4.1 (Relations among the local gap conditions). Fix g > 0, d ∈ N, Cvol > 0,
b̃ > 0, p̃ ∈ (0,1], Cint > 0. Let Λ ∈ G(d,Cvol), Λgap ⊂ Λ and let H∗ and J be SLT-operators
with corresponding interactions satisfying ∥ΦH∗∥b̃,p̃ < Cint and ∥ΦJ∥b̃,p̃;Λ∖Λgap < Cint. Let ρ∗ be an
equilibrium state of H∗ and ρ and equilibrium state of H ∶=H∗ + J .
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LPPL in (17.4.2)
ext

def. coerc. in (17.4.9)
int

∥ ⋅ ∥tr in (17.4.3)
ext

(τ − 1) in (17.4.5)
ext

gap-dec. in (17.4.8)
int

LDGweak in (17.4.10)
int

∥[ ⋅ , ⋅ ]∥tr in (17.4.4)
ext

LDG in (17.4.10)
int

(iv)

(i)

(ii)

(iii)

(vii)

(v)

(viii)

(vi)

(ix)

Figure 17.4.1: Implications among the various local gap conditions from Sections 17.4.1–17.4.2. The
numbering refers to the precise statements in Proposition 17.4.1.

Then the following implications hold (modulo adjusting the constants C, ℓ, b, and p in a way which
only depends on g, d,Cvol, b̃, p̃, and Cint):

(i) Trace norm LPPL implies commutator trace norm LPPL, i.e. we have (17.4.3) Ô⇒ (17.4.4).

(ii) Trace norm LPPL implies the usual LPPL, i.e. we have (17.4.3) Ô⇒ (17.4.2).

(iii) An intertwining automorphism implies the usual LPPL, i.e. we have (17.4.5) Ô⇒ (17.4.2).

(iv) Additionally assuming that ρ∗ is the unique ground states of H∗ with a spectral gap of size at
least g > 0 above its ground state (see (17.4.7)), the usual LPPL implies defective coercivity,
i.e. (17.4.2) Ô⇒ (17.4.9).

(v) A decaying gap size implies defective coercivity, i.e. (17.4.8) Ô⇒ (17.4.9).

(vi) Additionally assuming that ρ∗ has a LDG (17.4.10) (e.g. if ρ∗ is a normalized projection onto
a gapped spectral patch of H∗; see Proposition 17.1.1), the commutator trace norm LPPL
implies LDG for ρ, i.e. (17.4.4) Ô⇒ (17.4.10).

(vii) Additionally assuming that ⟨[LH∗ ○ IH∗,gJAK − A,B]⟩ρ∗ = 0 for all A,B ∈ A (e.g. if ρ∗ is
a normalized projection onto a gapped spectral patch of H∗; see Proposition 17.1.1), an
intertwining automorphism implies LDG, i.e. (17.4.5) Ô⇒ (17.4.10).

(viii) Assume that ρ = ∣ψ⟩ ⟨ψ∣ and ψ is a product state. Then, a decaying gap size implies a weak
LDG, i.e. (17.4.8) Ô⇒ (17.4.12).

(ix) A local dynamical gap implies a weakened local dynamical gap, i.e. (17.4.10) Ô⇒ (17.4.12).

17.4.4 Two exemplary systems with a local dynamical gap

In this section, we will discuss two exemplary systems, which we will show to satisfy the local gap
condition (17.1.8) by means of Proposition 17.4.1 (vi) and (vii). The first example in Section 17.4.4.1
is concerned with a (local perturbation of a) classical Ising model. It is contained in a whole class of
examples considered in Section 17.4.4.2, which are studied based on [35]. We nevertheless discuss
it separately, as proving it to satisfy the local dynamical gap condition (LDGmain) is elementary, in
particular not relying on [35]. The actual proofs for the two examples are given in Section 17.6.3.
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17.4.4.1 Perturbations of the classical Ising model with weak interaction

As the first example we consider the classical Ising model on Λ ⊂ Zd

H∗ = ∑
x∈Λ

σ3
x +

1
2 ∑x,y∈Λ

λ(x − y)σ3
xσ

3
y , (17.4.13)

where σix is the ith Pauli matrix σi acting only on the spin on site x ∈ Λ. More precisely,

σix = 1⊗⋯⊗ 1⊗ σi
®

site x

⊗1⊗⋯⊗ 1 ∈ B(⊗x∈ΛHx), (17.4.14a)

where, as usual,

σ1 ∶=

⎛
⎜
⎜
⎝

0 1

1 0

⎞
⎟
⎟
⎠

, σ2 ∶=

⎛
⎜
⎜
⎝

0 i

−i 0

⎞
⎟
⎟
⎠

, σ3 ∶=

⎛
⎜
⎜
⎝

1 0

0 −1

⎞
⎟
⎟
⎠

. (17.4.14b)

The Hamiltonian H∗ features a magnetic field of unit strength in 3-direction and (small) symmetric
coupling function λ ∶ Zd →R of finite range, i.e. ∥λ∥1 ∶= ∑x∣λ(x)∣ < 2 and there exists some R > 0
such that λ(x) = 0 for ∣x∣ > R. In particular, for any p ∈ (0,1] and b > 0, there exists a constant
C∗ > 0, such that ∥ΦH∗∥b,p ≤ C∗, uniformly in Λ, where ΦH∗ is the canonical interaction realizing
H∗.

As we show in Section 17.6.3.1, every ground state ρ for every perturbation of the form
H =H∗ + J has a local dynamical gap in the sense of Assumption (LDGmain). Here, J is a strictly
Λ ∖Λgap-localized SLT Hamiltonian, i.e. there exists a constant CJ > 0 such that for some p ∈ (0, 1]
and b > 0, we have ∥ΦJ∥b,p ≤ CJ for some interaction ΦJ realizing J , for which also ΦJ(X) = 0
whenever X ∩Λgap ≠ ∅ (recall Lemma 17.2.1 (i)).

The example (17.4.13) can immediately be generalized to an arbitrary graph Λ ∈ G(d,Cvol). Moreover,
our above assertions remain valid for any Hamiltonian with gapped on-site terms and sufficiently
weak mutually commuting finite range interactions that can be simultaneously diagonalized with the
on-site terms (i.e. one has a classical system).

17.4.4.2 Perturbations of frustration free product states

As the second basic example, we consider an SLT Hamiltonian H∗ of the form

H∗ = ∑
Z⊂Λ

Φ(Z), (17.4.15)

for which there exist p ∈ (0,1] and b > 0 and a constant C∗ > 0 such that ∥Φ∥b,p ≤ C∗. Moreover
Λ ∈ G(d,Cvol) in (17.4.15) is a finite graph as described in Section 17.2. Apart from the locality of
the interaction Φ, we will impose the following further conditions (cf. [35]).

(A1) Frustration-free ground state.

All terms in the SLT Hamiltonian (17.4.15) are non-negative, i.e. Φ(Z) ≥ 0 for all Z ⊂ Λ. There
exists a unique (up to a phase) normalized vector ψ∗ ∈ H such that ψ∗ ∈ ker Φ(Z) for all Z ⊂ Λ.
The corresponding ground state (projection) is denoted by ρ∗ = ∣ψ∗⟩ ⟨ψ∗∣.

We note that the frustration free assumption depends on the explicit way (17.4.15) the Hamiltonian
is written, i.e. on the interaction Φ.

(A2) Product property and regularity.

The vector ∣ψ∗⟩ ∈ H factorizes as ∣ψ∗⟩ = ⊗z∈Λ ∣ψ∗,z⟩ and for every Ω ⊂ Λ, the unique ground state
vector of

H∗∣Ω = ∑
Z⊂Ω

Φ(Z) (17.4.16)

is given by ∣ψ∗∣Ω⟩ = ⊗z∈Ω ∣ψ∗,z⟩.
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The latter condition can be thought of as a strong variant of the common local topological quantum
order (LTQO). Moreover, it is possible to relax both, the product property of ∣ψ∗⟩ and the strong
LTQO condition, in the following way: Instead of the product property, we could only assume that
∣ψ∗⟩ (possibly upon adjoining an auxiliary state after doubling the Hilbert space, cf. Assumption 4
in [35]) is unitarily conjugate – with SLT-generator – to a product state; instead of the strong LTQO
property, we could only assume that, upon adjoining a suitable state ∣ψ∗∣Λ∖Ω⟩ ∈ ⊗z∈Λ∖ΩHx, the
unique ground state ∣ψ∗∣Ω⟩ of (17.4.16) is unitarily conjugate – with SLT-generator localized at the
boundary of Ω – to ∣ψ∗⟩, i.e. ∣ψ∗∣Ω⟩⊗ ∣ψ∗∣Λ∖Ω⟩ = eiF ∣ψ∗⟩, where F is an SLT operator localized at
the boundary of Ω. However, we refrain from going into this further generalization of our exemplary
system (17.4.15) for simplicity.

The final assumption on (17.4.15) concerns the spectral gaps

γ ∶= inf(spec(H∗) ∖ {0}) and γ(Ω) ∶= inf(spec(H∗∣Ω) ∖ {0})

of H∗ and its restrictions H∗∣Ω to some Ω ⊂ Λ, respectively.

(A3) Gap condition.

The SLT Hamiltonian H∗ from (17.4.15) has a spectral gap, i.e. γ > 0. Moreover, the gap
of restrictions (17.4.16) of H∗ to balls Ω = Br(x) = { y ∈ Λ ∶ d(x, y) ≤ r } in Λ shrink at most
polynomially with the radius, i.e. there exist Cγ , dγ > 0 such that for every x ∈ Λ it holds that

1
γ(Br(x))

≤ Cγr
dγ . (17.4.17)

An exemplary system satisfying all of the above assumptions (up to a constant energy shift) is given
by the Heisenberg XXZ model for small enough nearest neighbor interactions ∣λ1∣, ∣λ3∣ (depending on
the dimension d and the constant Cvol, cf. (17.2.1) and (17.2.2)). The corresponding Hamiltonian
is given by

H∗ = ∑
x∈Λ

σ3
x + ∑

(x,y)∈E(Λ)
λ1 σ

1
xσ

1
y + λ1 σ

2
xσ

2
y + λ3 σ

3
xσ

3
y ,

where E(Λ) denote the edges of Λ and we recall the notations (17.4.14).

Back to the general setting, as we show in Section 17.6.3.2 building on [35], every ground state ρ
for every perturbation of the form H =H∗ +J has a local dynamical gap in a slightly weakened
sense of (LDGmain); see Assumption (LDGweak) in Section 17.5, which is, however, sufficient for
obtaining our main result, Theorem 17.3.1. Here, J is a strongly Λ∖Λgap-localized SLT Hamiltonian,
which means that there exists a constant CJ > 0 such that for some p ∈ (0,1] and b > 0, we have
∥ΦJ∥b,p ≤ CJ for some interaction ΦJ realizing J , for which also ΦJ(Z) = 0 whenever Z ∩Λgap ≠ ∅
(recall Lemma 17.2.1 (ii)).

17.5 Construction of the NEASS: Proofs of
Propositions 17.3.3–17.3.5

The fundamental conceptual idea behind the proof of Proposition 17.3.4 is a perturbative scheme,
which was called space-time adiabatic perturbation theory in [484, 483]. Before going into this
expansion in Section 17.5.2, we show that a weakened version of our local dynamical gap condition
carries over to SLT operators (see Lemma 17.5.1 in Section 17.5.1). The main technical input for
carrying out the space-time adiabatic perturbation scheme, is to show that all the operations involved
in the expansion preserve localization of SLT operators as required for Lemma 17.5.1 to apply. This
is the content of several auxiliary technical results in Appendix 17.A.
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17.5. Construction of the NEASS: Proofs of Propositions 17.3.3–17.3.5

17.5.1 Weakened version of the local dynamical gap condition for SLT operators
Throughout the proof, we will work under the following weakened version of the original local
dynamical gap condition (see Assumptions (LDGintro) and (LDGmain)).

(LDGweak) Local dynamical gap condition – weakened version.

We say that an equilibrium state ρ0 of an SLT operator H0, i.e. with [H0, ρ0] = 0, is weakly locally
dynamically gapped of size at least g > 0 in a region Λgap ⊂ Λ with respect to Cgap, b, p, β > 0 and
ℓ ∈N0, if and only if the following holds: For all X ⊂ Λ satisfying diam(X) ≤ d(X,Λ ∖Λgap)β and
observables A ∈ AX , and Y ⊂ Λ and observables B ∈ AY , it holds that

∣⟨[LH0 ○ IH0,gJAK −A,B]⟩
ρ0
∣ ≤ Cgap ∥A∥ ∥B∥ diam(Y )ℓ χb,p(d(X,Λ ∖Λgap

)). (17.5.1)

As mentioned above, we start with the following basic lemma which will heavily be used in our proof.
It says that the local dynamical gap condition naturally carries over to SLT operators.

Lemma 17.5.1. Let b > 0, p ∈ (0,1) and H0 be a χb,p-SLT operator. Assume that the equilibrium
state ρ0 of H0 satisfies the weakened local gap condition, Assumption (LDGweak) above, with gap
size at least g > 0 and with respect to Cgap, b, p, β and ℓ.

Then, there exists a constant C, such that for any (b, p,Ω)-localized SLT operator A and observable
B ∈ AY , we have that

∣⟨[LH0 ○ IH0,gJAK −A,B]⟩
ρ0
∣ ≤ C diam(Y )ℓ+d ∥B∥ ∥ΦA∥b,p;Ω χb/2,pmin{β,1}(d(Ω,Λ ∖Λgap

)).

(17.5.2)

The proof of Lemma 17.5.1 is presented in Appendix 17.A.5. The principal idea is to write
A = ∑Z⊂Λ ΦA(Z) and then estimate only the contribution of ‘small’ Z’s (i.e. those with diam(Z) ≤
d(Z,Λ ∖ Λgap)β) by (17.5.1). Large Z’s (i.e. those with diam(Z) > d(Z,Λ ∖ Λgap)β) are treated
using Lieb-Robinson bounds and the smallness of ∥ΦA(Z)∥ (by definition (17.2.7)).

17.5.2 The adiabatic perturbation scheme
For the proof of Proposition 17.3.4 we use the same strategy as in [556]. However, since we
only have a local gap, the lower order terms do not vanish exactly, but can be bounded using
Assumption (LDGweak).

The statements in Propositions 17.3.4, will be deduced from a time-dependent NEASS, which is
part of the next Theorem. In contrast to the previous works, it will not include a time-dependent
unperturbed Hamiltonian H0(t), because there is no spectral flow available. That means, we
construct a time-dependent NEASS Πε

n(t) specifically for the switching Hamiltonian given in (17.3.2).
For times t ≥ 0 it will turn out to be time-independent.

In order to formulate the result, we introduce time-dependent interactions

Φ∶ I × {X ⊂ Λ}→ AN , (t,X)↦ Φ(t,X) = Φ(t,X)∗ ∈ AX

for I ⊂R. We will assume that t↦ Φ(t,X) is smooth for every X ⊂ Λ and we denote the term-wise
time derivatives by Φ(k), i.e. Φ(k)(t,X) = dk

dtk Φ(t,X) for every X ⊂ Λ. Moreover, we identify
Φ(t,X) = (Φ(t))(X), such that for every fixed t ∈ I, Φ(t) can be viewed as a time-independent
interaction. The notion of SLT operators naturally translates to the time-dependent setting.

Theorem 17.5.2 (Time-dependent NEASS). Fix n ∈ N and let d ∈ N, Cvol > 0, b > 0, p ∈ (0,1],
Cint > 0 and g > 0, Cgap > 0, β > 0, ℓ ∈N0. Take any q ∈ (0, pmin{1, β}). Then there exist a constant
Cn > 0 (in particular depending on n) such that for all lattices Λ ∈ G(d,Cvol) (recall (17.2.2)), subsets
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Λpert ⊂ Λ, intervals I ⊂ R and SLT-operators H0 and V (t), with corresponding interactions that
satisfy ∥ΦH0∥b,p < Cint and supt∈I ∥Φ

(k)
V (t)∥b,p;Λpert

< Cint for all k ≤ n, respectively, the following
holds:

Assume that the equilibrium state ρ0 of H0 is locally dynamically gapped in Λgap of size at least
g > 0 and with respect to Cgap, b, p and ℓ according to Assumption (LDGweak). And let

Hε(t) ∶=H0 + εV (t) (17.5.3)

be the perturbed Hamiltonian.

Then, there exists a sequence (Aµ)µ∈N of time-dependent SLT operators, which are (1, p′,Λpert)-
localized for any p′ < p, such that the state

Πε,η
n (t) ∶= eiSε,η

n (t) ρ0 e−iSε,η
n (t) with Sε,ηn (t) ∶=

n

∑
µ=1

εµAµ(t), (17.5.4)

is almost-stationary for the dynamics generated by Hε(t) in the following sense: Let t0 ∈R and let
ρε,η,f(t) be the solution of the time-dependent adiabatic Schrödinger equation

iη d
dt
ρε,η,f(t) = [Hε(t), ρ

ε,η,f
(t)] with ρε,η,f(t0) = Πε,η

n (t0) (17.5.5)

with adiabatic parameter η ∈ (0,1].

Under these conditions, for all B ∈ AY with Y ⊂ Λ and t ∈R, it holds that

∣⟨B⟩ρε,η
t0
(t) − ⟨B⟩Πε,η

n (t)∣ ≤ Cn ∥B∥ diam(Y )3d+ℓ (1 + η
n+1

εn+1 ) ε
n+1

×
∣t − t0∣

η
(1 + v ∣t − t0∣

η
)

(ℓ+2d)/p

× (1 + e−d(Λ
pert,Λ∖Λgap)q−(n+1) log(ε)

).

(17.5.6)

Moreover, the operators Aµ(t) at time t depend only on V and its first µ derivatives at time t.

Before we prove Theorem 17.5.2, let us deduce the results from Section 17.3, which will follow by
taking β = 1 in Theorem 17.5.2.

Proof of Proposition 17.3.3. We choose V (t) = V , which implies that also all Aµ are time-independent
(i.e. the time-dependent interaction is constant). Moreover, since there is no adiabatic timescale
in (17.3.7), we choose η = 1. To obtain the correct scaling, we inspect the proof of Theorem 17.5.2:
In equation (17.5.9), we expand in powers of ε and Rε,ηj are polynomials in η/ε. Here, since Ṡε,ηn = 0,
these polynomials are just constants and there is no η in (17.5.9) or any of the later expressions.
Hence, also the norm estimates ∥ΦR̃

ε,η
j
(s)∥ < C (1 + ηj/εj) used in the end of the proof simplify to

∥ΦR̃
ε
j
∥ < C uniformly in ε. Hence, (1+ηn+1/εn+1) is replaced by 1 in (17.5.6). All other η in (17.5.6)

come from the adiabatic timescale and are thus replaced by 1.

Proof of Proposition 17.3.4. We choose V (t) = f(t)V and since V (t) constant for t ≤ 0, we obtain
Πε,η
n (t) = Πε

n for all t ≥ 0. To compare with the solution of (17.3.3), we choose t0 = −1 such that
Πε,η
n (t0) = ρ0. Then ∣t − t0∣ = 1 + t and (17.5.6) gives the statement.
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Proof of Proposition 17.3.5. To prove the asymptotic expansion, we first expand (17.3.6) and obtain

tr(Πε
nB) = tr(ρ0 eεLSε

n JBK) =
m

∑
k=0

1
k!
⟨L

k
Sε

n
JBK⟩

ρ0
+

1
(m + 1)!

tr(ρ0 eε̃LSε
n ○L

m+1
Sε

n
JBK)

for some ε̃ ∈ [0, ε]. Since the Aµ and thus also the Sεn are Λpert-localized, we use Lemma 17.A.4 to
bound the remainder by

1
(m + 1)!

∥L
m+1
Sε

n
JBK∥ ≤ C ∥B∥ ∣Y ∣m+1 χb′,p(d(Y,Λpert

)) ∥Sεn∥
m+1
b′,p,Λpert ,

where ∥Sεn∥b′,p;Λpert ≤ ε C̃. It is clear from the proof of Theorem 17.5.2, that C̃ depends only on
n, d,Cvol, b, p,Cint, and g. We now expand Sεn in the first term and group the terms according
to the powers in ε. The zero order term clearly is ⟨B⟩ρ0 . In first order, we obtain ε ⟨LA1⟩ρ0 =

−ε i ⟨[IH0,gJV K,B]⟩
ρ0

as can be read of from (17.5.12). All Kj for j ≤m are constructed in this way.
In the end, some higher order terms are left. They all come with multi-commutators of Λpert-localized
Aµ with B and can be bounded as the remainder above using Lemma 17.A.4.

We now prove the time-dependent NEASS from Theorem 17.5.2.

Proof of Theorem 17.5.2. For the proof we first assume the form of (17.5.4) and then iteratively
choose Aµ(t) so that the statement holds. Therefore, let U ε,ηt,t0 be the solution of

i η d
dt
U ε,ηt,t0 =Hε(t)U

ε,η
t,t0

with U ε,ηt0,t0 = 1 for all t, t0 ∈ I, (17.5.7)

with Hε given in (17.3.2). Then, ρε,ηt0 (t) ∶= U
ε,η
t,t0

Πε,η
n (t0)U

ε,η
t0,t

is the solution of (17.5.5). To
obtain (17.5.6) we use the fundamental theorem of calculus, and get

⟨B⟩ρε,η
t0
(t) − ⟨B⟩Πε,η

n (t) = −∫
t

t0
ds d

ds
⟨e−iSε,η

n (s)U ε,ηs,t BU
ε,η
t,s eiSε,η

n (s)
⟩
ρ0
. (17.5.8)

By product rule and Duhamel’s formula, the derivative evaluates as

d
ds

e−iSε,η
n (s)U ε,ηs,t BU

ε,η
t,s eiSε,η

n (s)
= −

i
η
[Qε,ηn (s), e−iSε,η

n (s)U ε,ηs,t BU
ε,η
t,s eiSε,η

n (s)
],

where

Qε,ηn (s) = η ∫
1

0
dλ e−iλSε,η

n (s) Ṡ
ε,η
n (s) eiλSε,η

n (s)
+ e−iSε,η

n (s) (H0 + εV (s)) eiSε,η
n (s)

= η ∫
1

0
dλ eλLS

ε,η
n (s)

q
Ṡ
ε,η
n (s)

y
+ eLS

ε,η
n (s)

q
H0 + εV (s)

y
(17.5.9)

=H0 +
n

∑
j=1

εj Rε,ηj (s) + ε
n+1Rε,ηn+1(s).

In the last line we expanded in powers of ε and η such that Rε,ηj (s) are polynomials in η/ε of order
j with ε- and η-independent SLT operators as coefficients. In this way, the joint power of ε and η in
front of the SLT operators collected in Rε,ηj is j. By Taylor formula with mean-value form of the
remainder, there exist θ ∈ [0,1] such that

eLS
ε,η
n (s)

q
H0 + εV (s)

y
=

n

∑
k=0

1
k!
L
k
Sε,η

n (s)
q
H0 + εV (s)

y

+
1

(n + 1)!
eθLS

ε,η
n (s) ○L

n+1
Sε,η

n (s)
q
H0 + εV (s)

y
.

(17.5.10)
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Similarly, for the first term in (17.5.9) we expand the integrand using the integral form of the
remainder and obtain

η ∫
1

0
dλ eλLS

ε,η
n (s)

q
Ṡ
ε,η
n (s)

y

= η
n−2
∑
k=0

∫
1

0 dλλk

k!
L
k
Sε,η

n (s)
q
Ṡ
ε,η
n (s)

y

+ η ∫
1

0
dλ ∫

λ

0
dµ (λ − µ)

n−2

(n − 2)!
eµLS

ε,η
n (s) ○L

n−1
Sε,η

n (s)
q
Ṡ
ε,η
n (s)

y
,

= η
n−2
∑
k=0

1
(k + 1)!

L
k
Sε,η

n (s)
q
Ṡ
ε,η
n (s)

y

+ η ∫
1

0
dµ (1 − µ)

n−1

(n − 1)!
eµLS

ε,η
n (s) ○L

n−1
Sε,η

n (s)
q
Ṡ
ε,η
n (s)

y
,

(17.5.11)

From this expansion and (17.5.4), we can read of

Rε,η1 (s) = −LH0JA
ε,η
1 (s)K + V (s), (17.5.12)

Rε,η2 (s) = −LH0JA
ε,η
2 (s)K +LAε,η

1 (s)
JV (s)K + η

ε Ȧ
ε,η
1 (s), (17.5.13)

and more generally
Rε,ηj (s) = −LH0JA

ε,η
j (s)K + R̃

ε,η
j (s), (17.5.14)

where the R̃
ε,η
j (s) are sums of iterated commutators of the operators Aε,ηi (s) and Ȧ

ε,η
i (s) for

i < j ≤ n and V (s). We can now iteratively choose

Aε,ηj (s) = IH0,g

q
R̃
ε,η
j (s)

y
.

Clearly, for all p′ < p, it holds that R̃ε,η1 (s) = V (s) is a (b, p′,Λpert)-localized SLT operator. Hence,
by Lemma 17.A.11, Aε,η1 (s) is (b′, p′,Λpert)-localized for any b′ < b. This step only works for p′ < p,
because Lemma 17.A.11 requires a slightly better localization of the Hamiltonian H0 compared to the
argument of the inverse Liouvillian. Finally, by Lemma 17.A.5 also LH0JA

ε,η
1 (s)K and thus Rε,η1 (s)

are (b′, p′,Λpert)-localized SLT operator for any slightly smaller b′. The same arguments hold for
the higher orders Rε,ηj (s) with j ≤ n as well, at each step lowering b′. We point out that clearly
the smallest b′ can be chosen independently of n by choosing all intermediate b′ in an n-dependent
equidistant way.

With this expansion it is also immediate, that the Aµ(s) only depend on V and its derivatives at
time s.

Putting everything back together and denoting τt,sJBK ∶= U ε,ηs,t BU
ε,η
t,s , we find

∣⟨B⟩ρε,η
t0
(t) − ⟨B⟩Πε,η

n (t)∣ (17.5.15)

≤
∣t − t0∣

η
sup
s∈[t0,t]

⎛
⎜
⎜
⎜
⎜
⎜
⎝

n

∑
j=1

εj ∣⟨[LH0 ○ IH0,g

q
R̃
ε,η
j (s)

y
− R̃

ε,η
j (s), e

L
S

ε,η
n (s) ○ τt,sJBK]⟩

ρ0
∣

+ εn+1
∣⟨[Rε,ηn+1(s), e

L
S

ε,η
n (s) ○ τt,sJBK]⟩

ρ0
∣.

⎞
⎟
⎟
⎟
⎟
⎟
⎠

The remainder Rε,ηn+1(s) collects all the remaining terms which are (a) the higher order terms from
the first lines and (b) the remainder terms from the second lines of (17.5.10) and (17.5.11). The
former are local by the previous arguments. The latter additionally include an evolution by the local
operator Sε,ηn (s) and are local by Lemma 17.A.8.
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To apply the local gap assumption in the form given in Lemma 17.5.1 to the lower order terms, we
need to decompose the second entry of the commutator into strictly local operators. Therefore, we
use the same decomposition as in the proof of Lemma 17.A.7

τt,sJBK =
∞
∑
k=0

∆k,

where
∆0 ∈ AYδ

⊂ AY
δ1/p , ∥∆0∥ ≤ ∥B∥ ,

and for k ∈N ∆k ∈ AY(δ+k)1/p
, ∥∆k∥ ≤ CLR E ∥B∥ ∣Y ∣ e−bk.

For better readability we abbreviate δ = 1+v ∣t−s∣/η here. The extra 1/η is due to the scaling in (17.5.7).
For the outer automorphism, we can use the decomposition from the proof of Lemma 17.A.8, just
replace O =∆k there, to obtain, for each k, the decomposition

eLS
ε,η
n (s)J∆kK =

∞
∑
l=0

∆k,l

with
∆k,0 ∈ AY(δ+k)1/p

, ∥∆k,0∥ ≤ ∥∆k∥ , and

∆k,l ∈ AY
l+(δ+k)1/p

, ∥∆k,l∥ ≤ CLR ∥∆k∥ ∣Y(δ+k)1/p ∣ (e
c ∥ΦS∥d,q − 1)χd′,j(l)

for l ∈N. Thus, in total we have

eLS
ε,η
n (s) ○ τt,sJBK =

∞
∑
k,l=0

∆k,l,

where the sum is actually finite on finite lattices as discussed in Lemmata 17.A.7 and 17.A.8. Then
we use the triangle inequality and Lemma 17.5.1 to apply (17.5.2) and bound

∣⟨[LH0 ○ IH0,g

q
R̃
ε,η
j (s)

y
− R̃

ε,η
j (s), e

L
S

ε,η
n (s) ○ τt,sJBK]⟩

ρ0
∣

≤ C ∥ΦR̃
ε,η
j
(s)∥

b′,p′;Λpert

∞
∑
k,l=0

diam(Yl+(δ+k)1/p)
ℓ+d ∥∆k,l∥ χb′/2,q′(d(Λpert,Λ ∖Λgap

))

≤ C ∥ΦR̃
ε,η
j
(s)∥

b′,p′;Λpert

∞
∑
k=0

diam(Y(δ+k)1/p)
ℓ+2d
∥∆k∥

× (1 + (ec ∥ΦS∥d,q − 1)
∞
∑
l=1
lℓ+d χd′,j(l))χb′/2,q′(d(Λpert,Λ ∖Λgap

))

≤ C ∥ΦR̃
ε,η
j
(s)∥

b′,p′;Λpert
ec ∥ΦS∥d,q diam(Y )ℓ+3d

∥B∥ δ(ℓ+2d)/p

×
∞
∑
k=0

k(ℓ+2d)/p e−bk χb′/2,q′(d(Λpert,Λ ∖Λgap
))

≤ C ∥ΦR̃
ε,η
j
(s)∥

b′,p′;Λpert
ec ∥ΦS∥d,q diam(Y )ℓ+3d

∥B∥ δ(ℓ+2d)/p χb′/2,q′(d(Λpert,Λ ∖Λgap
)),

where we abbreviated q′ ∶= p′ min{β, 1} (according to Lemma 17.5.1) and b′ is the smallest of the b′
such that all ΦR̃

ε,η
j
(s) are (b′, p′,Λpert)-localized. Finally, for any q < q′ we bound

χb′/2,q′(d(Λpert,Λ ∖Λgap
)) ≤ C χ1,q(d(Λpert,Λ ∖Λgap

)) (17.5.16)

for some constant C > 0 depending only on b′, q′, and q. Since p′ < p was arbitrary, this q can be
chosen arbitrarily in the interval (0, pmin{β,1}).
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17. Response theory for locally gapped systems

With the same local decomposition argument as above and using Lemma 17.A.4 we can also bound
the remainder

∣⟨[Rε,ηn+1(s), e
L

S
ε,η
n (s) ○ τt,sJBK]⟩

ρ0
∣

≤ C ∥ΦR̃
ε,η
n+1
(s)∥

b′,p′;Λpert
ec ∥ΦS∥d,q diam(Y )3d ∥B∥ δ2d/p.

We recall, that like the Rε,ηj (s), also the R̃ε,ηj (s) are polynomials of order j in η/ε with Λpert-localized
SLT operators as coefficients. Hence, the interaction norms in the above equations can be bounded
by a constant depending on the interaction norms of H and V (t) times 1 + (η/ε)j . With this
observation, we can insert these bounds into (17.5.15) and conclude (17.5.6).

To reduce the number of constants in the formulation of the statement, we actually do the proof
for (p + p′)/2 instead of p′. In the end we then estimate χb′,(p+p′)/2 ≤ C χ1,p′ for the locality of the
operators Aµ(t), similarly to (17.5.16).

17.6 Local gap conditions: Proofs for Proposition 17.1.1 and
Section 17.4

This section collects several proofs concerning the local dynamical gap condition (LDGintro) (or
(LDGmain) for the formal version), which were skipped in earlier sections. More precisely, we will
prove the dynamical characterization of a spectral gap in Proposition 17.1.1 and the relations among
the various local gap conditions formulated in Proposition 17.4.1 in Section 17.4.3. Finally, we show
that the examples from Section 17.4.4 satisfy (LDGmain) by means of Proposition 17.4.1.

17.6.1 Dynamical characterization of a spectral gap: Proof of Proposition 17.1.1

Deriving the lhs. from the rhs. is standard material; see, e.g., [461, Lemma 6.8 and Proposition 6.9].
Therefore, dropping the subscripts H and g for ease of notation, suppose that for all A,B ∈ B(H)
we have (recall (17.4.11))

0 = ⟨[L ○ IJAK −A,B]⟩
P
= ⟨[J JAK,B]⟩

P
= − tr([J JAK, P ]B).

Since B is arbitrary, this means [J JAK, P ] = 0. Moreover, inserting the spectral decomposition
H = ∑nEn Pn, this can be written as

0 = [J JAK, P ] =
√

2π
⎛
⎜
⎜
⎝

∑
En∈σ2
Em∈σ1

ŵ(Em −En)PnAPm −∑
En∈σ1
Em∈σ2

ŵ(Em −En)PnAPm

⎞
⎟
⎟
⎠

. (17.6.1)

For contradiction, we now assume that d(σ1, σ2) < g. Then, since ŵ∣(−g,g) > 0, one can easily
construct an observable A, which violates (17.6.1), e.g. A = Pn∗Pm∗ with En∗ ∈ σ, Em∗ ∈ σ2
satisfying ∣En∗ −Em∗ ∣ = d(σ1, σ2) < g.

17.6.2 Relations among local gap conditions: Proof of Proposition 17.4.1

We prove the seven implications gathered in Proposition 17.4.1 one by one. Unless differently stated,
we will use the constants C, ℓ, b and p from the formulation of Proposition 17.4.1 generically, i.e. their
precise value might change from line to line. Some technical details are kept brief in this section,
more detailed proofs using similar arguments are given in Appendix 17.A.
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17.6. Local gap conditions: Proofs for Proposition 17.1.1 and Section 17.4

Proofs of (i)–(iii): All of these are obvious, by application of the estimates

∥[ρ − ρ∗,A]∥tr ≤ ∥(ρ − ρ∗)A∥tr + ∥A (ρ − ρ∗)∥tr ,

∣tr((ρ − ρ∗)A)∣ ≤ ∥(ρ − ρ∗)A∥tr ,
and

∣tr(ρ∗(τ − 1)JAK)∣ ≤ ∥(τ − 1)JAK∥,

for (i), (ii), and (iii), respectively.

Proof of (iv): By assumption, it holds that

i ⟨A∗LH∗JAK⟩ρ∗ ≥ g [⟨A
∗A⟩ρ∗ − ∣⟨A⟩ρ∗ ∣

2
] (17.6.2)

for all observables A ∈ A, where LH∗J ⋅ K ∶= −i [H∗, ⋅ ] denotes the Liouvillian of H∗. The idea is now
to replace H∗ →H and ρ∗ → ρ in (17.6.2) and estimate the resulting error in such a way that we
arrive at (17.4.9).

First, by application of (17.4.2), we replace [⟨A∗A⟩ρ∗ − ∣⟨A⟩ρ∗ ∣2] by [⟨A∗A⟩ρ − ∣⟨A⟩ρ∣2] on the
rhs. of (17.6.2) at the cost of an error bounded by C ∥A∥2 diam(X)ℓ χb,p(d(X,Λ ∖Λgap)).

For the lhs. of (17.6.2), we estimate

∣⟨A∗LH∗JAK⟩ρ∗ − ⟨A
∗
LHJAK⟩ρ∣

≤ ∣⟨A∗(LH∗JAK −LHJAK)⟩
ρ∗
∣ + ∣tr((ρ∗ − ρ)A∗LHJAK)∣

(17.6.3)

by means of the triangle inequality. The first term on the rhs. of (17.6.3) can now be bounded as
(recall that H =H∗ + J , J is Λ ∖Λgap-localized, and A ∈ AX)

∣⟨A∗(LH∗JAK −LHJAK)⟩
ρ∗
∣ ≤ 2 ∥ΦJ∥b,p;Λ∖Λgap ∥A∥

2 diam(X)dχb,p(d(X,Λ ∖Λgap
)) (17.6.4)

by application of (17.A.2) in Lemma 17.A.4.

For the second term on the rhs. of (17.6.3), we write LHJAK = EXnLHJAK + (1 −EXn)LHJAK for
some n to be chosen below, where Xn ∶= { x ∈ Λ ∶ d(x,X) ≤ n } denotes the n-fattening of the set
X ⊂ Λ. We now estimate the two terms separately. For the first term, we employ (17.4.2) to bound

∣tr((ρ∗ − ρ)A∗EXnLHJAK)∣ ≤ C ∥A∥2 (diam(X) + n)ℓχb,p(d(Xn,Λ ∖Λgap
)) (17.6.5)

where we used that EXnLHJAK ∈ AXn (by definition) and ∥EXnLHJAK∥ ≤ C ∣X ∣ ∥A∥ (by (17.A.2)
from Lemma 17.A.4 and Lemma 17.A.6 (c)). For the second term, we use (17.A.3) from Lemma 17.A.4
and Lemma 17.A.6 (e) for estimating the difference ∥(1 −EXn)LHJAK∥ to get

∣tr((ρ∗ − ρ)A∗(1 −EXn)LHJAK)∣ ≤ C ∥A∥2 diam(X)ℓ χb,p(n) (17.6.6)

Using d(Xn,Λ ∖Λgap) ≥ d(X,Λ ∖Λgap) − n for (17.6.5), we can pick n = d(X,Λ ∖Λgap)/2, say, to
estimate

(17.6.5) + (17.6.6) ≤ C ∥A∥2 diam(X)ℓ χb/2,p(d(X,Λ ∖Λgap
)).

Combining this with (17.6.4), we estimate (17.6.3) by C ∥A∥2 diam(X)ℓ χb,p(d(X,Λ ∖Λgap)) and
we thus arrive at (17.4.9).

Proof of (v): This is obvious, because ∣⟨A∗A⟩ρ − ∣⟨A⟩ρ∣
2
∣ ≤ 2 ∥A∥2.

Proof of (vi): By assumption (17.4.10), it holds that, for all observables A ∈ AX and B ∈ AY
localized in X ⊂ Λ and Y ⊂ Λ, it holds that (recall (17.4.11) for the definition of J )

∣⟨[JH∗JAK,B]⟩
ρ∗
∣ ≤ C ∥A∥ ∥B∥ [diam(X) + diam(Y )]ℓ

× χb,p(d(X,Λ ∖Λgap
) + d(Y,Λ ∖Λgap

)) .

(17.6.7)
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17. Response theory for locally gapped systems

Similarly to the proof of (iv), the idea is now to replace H∗ → H and ρ∗ → ρ on the lhs. (17.6.7)
at the price of an error that is bounded in terms of the rhs. of (17.6.7). In order to do so, we will
heavily exploit the symmetry of (17.6.7) in A and B (recall the discussion around (17.4.11)). That
is, we will prove the bound first only with d(X,Λ ∖Λgap) in the argument of χb,p and later obtain
their sum (like on the rhs. of (17.6.7)) by symmetry (modulo changing b→ b/2).

To begin with, by the triangle inequality, we have

∣⟨[JH∗JAK,B]⟩
ρ∗
− ⟨[JHJAK,B]⟩

ρ
∣

≤ ∣⟨[(JH∗ −JH)JAK,B]⟩
ρ
∣ + ∣tr((ρ − ρ∗)[B,JH∗JAK])∣ .

(17.6.8)

For the first term on the rhs. of (17.6.8), we estimate

∥∗∥ (JH∗ −JH)JAK ≤ ∫
R

dtwg(t) ∥∗∥ eitH∗Ae−itH∗ − eitHAe−itH . (17.6.9)

Recalling H =H∗ + J , the difference between the two time evolutions can be written as

eitH∗ A e−itH∗ − eitH A e−itH
= −i∫

t

0
ds eitH [J, eisH∗ A e−isH∗] e−itH .

We thus find that

(17.6.9) ≤ ∫
R

dtwg(t) ∣t∣ sup
s∈[0,t]

∥[J, eisH∗ A e−isH∗]∥

≤ C ∥A∥ diam(X)2d(χb,p(d(X,Λ ∖Λgap
))∫

I
dtwg(t) ∣t∣ (1 + ∣t∣)

d/p

+ ∫
R∖I

dtwg(t) ∣t∣ (1 + ∣t∣)
d/p
)

≤ C ∥A∥ diam(X)2d χb,p(d(X,Λ ∖Λgap
)),

(17.6.10)

where we denoted I ∶= {t ∈R ∶ ∣t∣ ≤ (d(X,Λ∖Λgap)/(2v))p/2}. Here, v is the Lieb-Robinson velocity
from Lemma 17.A.7, which we employed in the second step. In the final step, we used the stretched
exponential decay of wg (see (17.1.6) and Lemma 17.A.9 later) and possibly adjusted the constants
C, b, and p.

The second term on the rhs. of (17.6.8) can be estimated by means of (17.4.4), since

∣tr((ρ − ρ∗)[B,JH∗JAK])∣ ≤ ∥B∥ ∥[ρ − ρ∗,JH∗JAK]∥tr.

For JH∗JAK we now apply the local decomposition technique, analogously to the arguments
around (17.6.5)–(17.6.6). More precisely, taking A ∈ AX , we now write JH∗JAK = EXnJH∗JAK +
(1 −EXn)JH∗JAK for some n to be chosen below, where Xn ∶= { x ∈ Λ ∶ d(x,X) ≤ n } denotes the
n-fattening of the set X ⊂ Λ. We now estimate the two terms separately. For the first term, we
employ (17.4.4) to bound

∥[ρ − ρ∗,EXnJH∗JAK]∥tr ≤ C ∥A∥ (diam(X) + n)ℓ χb,p(d(Xn,Λ ∖Λgap
)) (17.6.11)

where we used that EXnJH∗JAK ∈ AXn (by definition) and ∥EXnJH∗JAK∥ ≤ ∥A∥. For the second
term, we simply use Lemma 17.A.6 together with (17.A.11) applied with I → J for estimating the
difference ∥(1 −EXn)JH∗JAK∥ to get

∥[ρ − ρ∗, (1 −EXn)JH∗JAK]∥tr
≤ 2 ∥ρ − ρ∗∥tr ∥(1 −EXn)JH∗JAK∥ ≤ C ∥A∥ diam(X)ℓ χb,p(n) .

(17.6.12)
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17.6. Local gap conditions: Proofs for Proposition 17.1.1 and Section 17.4

Using d(Xn,Λ ∖Λgap) ≥ d(X,Λ ∖Λgap) − n for (17.6.11), we can pick n = d(X,Λ ∖Λgap)/2, say,
to estimate

(17.6.11) + (17.6.12) ≤ C ∥A∥ diam(X)ℓ χb/2,p(d(X,Λ ∖Λgap
)).

Finally, as mentioned above, interchanging the roles of A and B (by symmetry of the original
expression; recall the discussion around (17.4.11)), we thus arrive at a bound on ∣⟨[JHJAK,B]⟩

ρ
∣ of

the form given by the rhs. of (17.6.7) (modulo changing b → b/2). Therefore, combining (17.6.7)
with (17.6.8), and (17.6.9)–(17.6.10) as well as (17.6.11)–(17.6.12), we conclude the desired.

Proof of (vii): Instead of (17.6.7), we start with (by assumption)

⟨[JH∗JAK,B]⟩
ρ∗
= 0 for all A,B ∈ A. (17.6.13)

Apart from this, the idea is identical to (iv) and (vi). Hence, by means of the triangle inequality,
we obtain the same two terms from (17.6.8). The first term can be estimated in exactly the same
way as in (17.6.9)–(17.6.10). The second term in (17.6.8) has to be treated a bit differently as
in (17.6.11)–(17.6.12), since we now assumed (17.4.5) instead of (17.4.4).

In fact, for this term, using ⟨ ⋅ ⟩ρ = ⟨τJ ⋅ K⟩ρ∗ , that τ is a ∗-automorphism, and (17.6.13), we get

∣tr((ρ − ρ∗)[B,JH∗JAK])∣ = ∣tr(ρ∗[τJBK, (τ − 1) ○JH∗JAK])∣ ≤ ∥(τ − 1) ○JH∗JAK∥ .

This can now be treated exactly as done in the argument around (17.6.11)–(17.6.12) (i.e. taking
A ∈ AX , writing JH∗JAK = EXnJH∗JAK+(1−EXn)JH∗JAK, and estimating the two terms separately
while optimizing in n).

Proof of (viii): Without loss of generality, we may assume that X ⊂ Λ in (17.4.8) is such that
C diam(X)ℓχb,p(d(X,Λ ∖Λgap)) < 1/2, say (otherwise there is nothing to prove), and diam(X) ≤
d(X,Λ ∖Λgap)β for some β < 1. By assumption, for such X ⊂ Λ and A ∈ AX , we have

i⟨ψ,A∗LJAKψ⟩ ≥
g

2
(⟨ψ,A∗Aψ⟩ − ∣⟨ψ,Aψ⟩∣

2
) with ∣ψ⟩ = ⊗x∈Λ ∣ψx⟩ , ∥ψx∥ = 1. (17.6.14)

Our claim will be a consequence of the following lemma.

Lemma 17.6.1 (cf. Proposition 14 in [596]). Take a Hermitian A ∈ AX as above and as-
sume (17.6.14). Denote the n-fattening of X by Xn ∶= { z ∈ Λ ∶ d(z,X) ≤ n }. Then, there exists a
Hermitian operator Ã ∈ AXn with n ∶= ⌊d(X,Λ ∖Λgap)/2⌋ such that (i) ψ is an eigenvector of Ã,
i.e. Ãψ = Ẽψ for some Ẽ ∈R, and (ii) we have the bound

∥EXnJ JAK − Ã∥ ≤ C ∥A∥χb,p(d(X,Λ ∖Λgap
)) (17.6.15)

with J being defined in (17.4.11).

Armed with Lemma 17.6.1, we now turn to estimating the lhs. of (17.4.12), which is given by
⟨[J JAK,B]⟩ρ = ⟨ψ, [J JAK,B]ψ⟩. By the triangle inequality, we have

∣⟨ψ, [J JAK,B]ψ⟩∣

≤ ∣⟨ψ, [(1 −EXn)J JAK,B]ψ⟩∣ + ∣⟨ψ, [EXnJ JAK − Ã,B]ψ⟩∣ + ∣⟨ψ, [Ã,B]ψ⟩∣
(17.6.16)

and estimate the three terms separately. The first term in (17.6.16) can be treated as in (17.6.12),
yielding the bound

C ∥A∥ ∥B∥ χb,p(d(X,Λ ∖Λgap
)), (17.6.17)

where we additionally used that diam(X) ≤ d(X,Λ ∖ Λgap)β. For the second term, we em-
ploy (17.6.15), yielding the same bound as for the first term. The third term in (17.6.16) vanishes since
Ãψ = Ẽψ. Therefore, (17.6.16) is bounded by (17.6.17) and we have proven Proposition 17.4.1 (viii).

It thus remains to give the proof of Lemma 17.6.1.
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17. Response theory for locally gapped systems

Proof of Lemma 17.6.1. The principal idea is similar to [596, Proposition 14]. To start with, we
assume w.l.o.g. that Hψ = 0, i.e. ψ is an eigenvector to the eigenvalue zero. Then, we note that,
since diam(X) ≤ d(X,Λ ∖Λgap)β , the bound in (17.6.12) implies that

∥(1 −EXn)J JAK∥ ≤ C ∥A∥ χb,p(d(X,Λ ∖Λgap
)). (17.6.18)

We continue by decomposing

(J JAK − ⟨ψ,J JAKψ⟩) ∣ψ⟩ = ∣ϕ≤n⟩ + ∣ϕ>n⟩ (17.6.19)

where we defined

∣ϕ≤n⟩ = ∣ϕ≤n⟩Xn
⊗ ∣ψ⟩Xc

n
∶= (EXnJ JAK − ⟨ψ,EXnJ JAKψ⟩) ∣ψ⟩

and ∣ϕ>n⟩, which is defined such that (17.6.19) holds, satisfies the bound

∥∣ϕ>n⟩∥ ≤ ∥((1 −EXn)J JAK − ⟨ψ, (1 −EXn)J JAKψ⟩) ∣ψ⟩∥

≤ ∥(1 −EXn)J JAK∥ ≤ C ∥A∥ χb,p(d(X,Λ ∖Λgap
)),

where in the last step we employed (17.6.18). Then, similarly to [596, Lemma 15, eq. (B49)], one
can compute ⟨ϕ≤n,H2ϕ≤n⟩ and use the Payley-Zygmund inequality to show that the norm of ∣ϕ≤n⟩
is essentially bounded by the norm of ∣ϕ>n⟩. That is, in our case, we find

∥∣ϕ≤n⟩∥ ≤ C ∥A∥ χb,p(d(X,Λ ∖Λgap
)), (17.6.20)

as always modulo adjusting the constants C, b and p. Hence, defining the Hermitian operator

Ã ∶= EXnJ JAK − (∣ϕ≤n⟩Xn
⟨ψ∣ + h.c.),

supported in Xn we easily see that Ã ∣ψ⟩ = ⟨ψ,EXnJ JAKψ⟩ ∣ψ⟩ =∶ Ẽ ∣ψ⟩ and the bound (17.6.15)
follows from (17.6.20).

Proof of (ix): This is obvious from the definitions (17.4.10) and (17.4.12).

This concludes the proof Proposition 17.4.1.

17.6.3 Local dynamical gap for the examples in Section 17.4.4
In this section, we prove the systems considered in Section 17.4.4 to have a local dynamical gap.

17.6.3.1 Perturbations of the classical Ising model with weak interactions

In this section, we prove the claim of a local dynamical gap from Section 17.4.4.1, where we
considered perturbations of the classical Ising model with weak interactions. First, the (unique)
ground state vector of (17.4.13) and the associated ground state energy is easily found as

ψ∗ = ⊗x∈Λ ∣↓⟩ satisfying H∗ψ∗ =
⎛

⎝
−∣Λ∣ + 1

2∑x,y
λ(x − y)

⎞

⎠
ψ∗,

and the associated spectral projection (ground state) is simply given by ρ∗ = P∗ = ∣ψ∗⟩ ⟨ψ∗∣. We
note that this is a globally gapped eigenstate of H∗, since the ground state energy corresponding to
ψ∗ is separated by a spectral gap g ≥ 2 − ∥λ∥1 > 0 from the first excited state.

For the following argument, it is important to observe that, for any given Λgap ⊂ Λ, the ground state
projection factorizes, i.e.

ρ∗ = ( ⊗
x∈Λgap

∣↓⟩ ⟨↓∣)⊗ ( ⊗
x∈Λ∖Λgap

∣↓⟩ ⟨↓∣) =∶ ρΛgap

∗ ⊗ ρΛ∖Λgap

∗ . (17.6.21)
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17.6. Local gap conditions: Proofs for Proposition 17.1.1 and Section 17.4

Indeed, since ∥λ∥1 < 2, every ground state ρ of H =H∗ + J , where J is a strictly Λ ∖Λgap-localized
SLT Hamiltonian, as described in Section 17.4.4.1, also factorizes as

ρ = ρΛgap

∗ ⊗ ρΛ∖Λgap
. (17.6.22)

In order to see this, first note that there exists an eigenbasis12 of H for which every eigenvector ψ of
H can be written as a linear combination ∑j cjej ⊗ φj , where ej ∈HΛgap are eigenvectors of

H ∣Λgap ∶= ∑
x∈Λgap

σ3
x +

1
2 ∑
x,y∈Λgap

λ(x − y)σ3
xσ

3
y

to a common eigenvalue and φj ∈ HΛ∖Λgap . Then, to see (17.6.22), it suffices to realize that, for
every x ∈ Λgap, starting from the unique ground state vector ψ∗∣Λgap = ⊗x∈Λgap ∣↓⟩ of H ∣Λgap , the
energy cost for flipping the spin ∣↓⟩ to ∣↑⟩ in the first term of (17.4.13) is two, whereas the potential
gain stemming from the second summand in (17.4.13) is bounded by ∥λ∥1 < 2, yielding (17.6.22).
In particular, any overall pure ground state of H can be obtained by tensorizing the unique separate
ground state vector of H ∣Λgap , i.e. ψ∣Λgap , with an appropriate (not necessarily unique) minimizer
φΛ∖Λgap of

min
φ∈HΛ∖Λgap
∥φ∥=1

⟨[⟩ ]ψ∗∣Λgap ⊗ φ, (H −H ∣Λgap)ψ∗∣Λgap ⊗ φ,

i.e. by conditioning on the first factor ψ∗∣Λgap . The pure ground state is then obtained as
∣ψ∗∣Λgap⟩ ⟨ψ∗∣Λgap ∣⊗ ∣φΛ∖Λgap

⟩ ⟨φΛ∖Λgap
∣.

Therefore, combining (17.6.21) and (17.6.22), we have the following: For ρ being a pure state,
i.e. ρΛ∖Λgap from (17.6.22) can be written as ρΛ∖Λgap

= ∣φΛ∖Λgap
⟩ ⟨φΛ∖Λgap

∣, there exists a unitary
U ≡ UΛ∖Λgap

∈ AΛ∖Λgap such that ∣φΛ∖Λgap
⟩ = U ⊗x∈Λ∖Λgap ∣↓⟩. In particular, ρ = Uρ∗U∗ and

hence we have a norm-preserving ∗-automorphism τJAK ∶= U∗AU on A ∈ A, which intertwines the
ground states, i.e. ⟨ ⋅ ⟩ρ = ⟨τJ ⋅ K⟩ρ∗ , and satisfies (17.4.5). By means of Proposition 17.4.1 (vii) (note
that, since ρ∗ is spectrally gapped, it fulfills the additional assumption of 17.4.1 (vii) by means
of Proposition 17.1.1), we thus find that ρ satisfies Assumption (LDGmain). Finally, for a general
(mixed) state ρ, we conclude the desired after noticing that Assumption (LDGmain) is invariant under
taking convex combinations.

17.6.3.2 Perturbations of gapped frustration free product states

In this section, we prove the claim of a local dynamical gap from Section 17.4.4.2, where we
considered perturbations of gapped frustration free Hamiltonians with a product ground state.

Similarly to Section 17.6.3.1, one can easily verify that H∗ from (17.4.15) is globally gapped with
its ground state vector being given by ⊗x∈Λ ∣ψ∗,x⟩. The same is true for all restrictions H∗∣Λ′ .

Moreover, for Λgap ⊂ Λ and a fixed exponent β > 0, consider X ⊂ Λ satisfying diam(X) ≤
d(X,Λ ∖ Λgap)β. Under Assumptions (A1), (A2), and (A3), the authors of [35] have proven the
following: Let ∣ψ⟩ be a ground state vector of H =H∗ + J , where J is a strongly Λ ∖Λgap-localized
SLT Hamiltonian, as described in Section 17.4.4.2, and P∗,X denote the projection onto the ground
state vector ∣ψ∗∣X⟩ of H∗∣X . Then it holds that

∥ρ − ρ̃∥tr ≤ C exp(−(d(X,Λ ∖Λgap
))
q
) (17.6.23)

for some C, q > 0 and ∥ ⋅ ∥tr being the trace norm. Here, ρ ≡ P and ρ̃ ≡ P̃ denote the orthogonal
projections on ∣ψ⟩ and P∗,X ∣ψ⟩, respectively, i.e. they are pure states.

12This is simply a common eigenbasis of H and H ∣Λgap ⊗ 1AΛ∖Λgap , which commute.
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Due to the product structure of the ground state vector of H∗ and its restrictions, we easily see that
ρ̃ can be written as

ρ̃ = ∣ψ∗∣X⟩ ⟨ψ∗∣X ∣⊗ ρ̃
Λ∖X

for some state ρ̃Λ∖X on Λ ∖X. This means that, analogously to Section 17.6.3.1, ⟨ ⋅ ⟩ρ∗ and ⟨ ⋅ ⟩ρ̃
can be intertwined by a norm preserving ∗-automorphism τ satisfying (17.4.5). In particular, by
means of Proposition 17.4.1 (vii) (note that, since ρ∗ is spectrally gapped, it fulfills the additional
assumption of 17.4.1 (vii) by means of Proposition 17.1.1), we thus find that ρ̃ satisfies Assumption
(LDGmain) – but only for observables supported in X ⊂ Λ with diam(X) ≤ d(X,Λ ∖ Λgap)β and
without d(Y,Λ ∖Λgap) in the argument of χb,p; that is, Assumption (LDGweak). This implies, by
means of Proposition 17.4.1 (i)+(vi) (trivially modified to the setting of (LDGweak)) and (17.6.23),
that ρ satisfies Assumption (LDGweak). Finally, for a general (mixed) state ρ, we conclude the
desired by taking convex combinations (as at the end of the argument in Section 17.6.3.1).

17.A Technical lemmata
In this section, we prove the technical lemmata required for the construction of the NEASS. We begin
with some general properties of the functions χb,p and Lieb-Robinson bounds for (b, p)-localized
SLT-operators in Appendix 17.A.1. In Appendix 17.A.2, we prove that the various operations used in
the construction of the NEASS preserve locality. In Appendix 17.A.3 we recall the construction of
the quasi-local inverse of the Liouvillian and prove that it also preserves locality of SLT-operators.
Finally, Appendices 17.A.4 and 17.A.5 are concerned with the proofs of Lemmata 17.2.1 and 17.5.1,
respectively.

In all proofs, C > 0 is a generic constant that might change within the computations. It can in
particular depend on all the parameters chosen in the statements, but it is uniform in the chosen
lattice and the operators appearing.

17.A.1 Properties of the decay function χb,p

Let us first collect some properties of the decay function χb,p we use in the definition of the interaction
norm. From [428, Lemma 7.2.3] we have the following Lemma, where we simplified the statements.

Lemma 17.A.1. For any b ≥ 0 and s ∈ (0,1], the function χb,p satisfies the following properties:

(a) χb,p is logarithmically superadditive, i.e. χb,p(x + y) ≥ χb,p(x)χb,p(y) for all x, y ≥ 0.

(b) For every b > 0 and k ≥ 0 there exists a constant C > 0 such that

sup
x≥0

xk χb,p(x) = C.

As a direct consequence of Lemma 17.A.1 (b), we get the following Lemma, which we write out to
fix the constant and recall it in later proofs.

Lemma 17.A.2. Let d ∈ N, Cvol > 0, b > 0, p ∈ (0,1] and k ∈ N. Then there exists a constant
Cvol,b,p,k > 0 such that for all lattices Λ ∈ G(d,Cvol) and sets Z ⊂ Λ

∣Z ∣k χb,p(diam(Z)) ≤ Cvol,b,p,k.

Before we state the Lieb-Robinson bound, which is a crucial ingredient in the proof, let us briefly
recall the time-dependent Heisenberg evolution. For a time-dependent interaction defined on an
interval I ⊂R with corresponding SLT operator H(t), let τt,s be the unique solution of

−i d
dt
τt,s(A) = τt,s([H(t),A]) and τs,s = Id for all s, t ∈ I.
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This was already used with a different time scaling for the Hamiltonian Hε(t) in the proof of
Theorem 17.5.2. Under locality assumptions on the Hamiltonian, one finds the following Lieb-
Robinson bound.

Lemma 17.A.3 (Lieb-Robinson bound [428, Theorem 7.3.3]). Let d ∈ N, Cvol > 0, b′ > b > 0,
p ∈ (0,1] and k ∈ N. There exists constants C and c > 0 such that for all lattices Λ ∈ G(d,Cvol),
intervals I ⊂R, time-dependent interactions Φ, disjoint subsets X, Y ⊂ Λ, observables A ∈ AX and
B ∈ AY , and s, t ∈ I it holds that

∥[τt,s(A),B]∥ ≤ C ∥A∥ ∥B∥ (eb v ∣t−s∣ − 1)D(X,Y ), (17.A.1)

where v = c ∥Φ∥b′,p /b is the Lieb-Robinson velocity and

D(X,Y ) ∶=min{ ∑
x∈X

χb,p(d(x,Y )),∑
y∈Y

χb,p(d(y,X))}

≤min {∣X ∣, ∣Y ∣}χb,p(d(X,Y )).

The Lieb-Robinson velocity is defined including the 1/b because (17.A.1) can be bounded by

C ∥A∥ ∥B∥ min {∣X ∣, ∣Y ∣} eb(v ∣t−s∣−d(X,Y )
p)
.

17.A.2 Commutators and dynamics of localized SLT-operators

Lemma 17.A.4 (Commutator with local observable). Let d ∈ N, Cvol > 0, b > 0, p ∈ (0,1] and
k ∈ N. There exists constants C and Ck > 0 such that for all lattices Λ ∈ G(d,Cvol), subsets Ω,
X ⊂ Λ, SLT operators A1 and observables O ∈ AX it holds that

∥[A1,O]∥ ≤ 2 ∥O∥ ∣X ∣χb,p(d(X,Ω)) ∥ΦA1∥b,p;Ω. (17.A.2)

For a second observable Õ ∈ AY , it holds that

∥[[A1,O], Õ]∥ ≤ 4 ∥O∥ ∥Õ∥ ∣X ∣χb,p(d(X,Y ))χb,p(d(X,Ω)) ∥ΦA1∥b,p;Ω. (17.A.3)

Finally, if additionally also A2, . . . ,Ak are SLT operators, then

∥adAk
⋯adA1(O)∥ ≤ Ck ∥O∥ ∣X ∣

k χb,p(d(X,Ω)) ∥ΦA1∥b,p;Ω
k

∏
j=2
∥ΦAj

∥
b,p
. (17.A.4)

All three bounds, in particular, also hold for Ω = Λ, where ∥ ⋅ ∥b,p;Ω = ∥ ⋅ ∥b,p and d(X,Ω) = 0.

Proof. We begin with the first statement and write A = A1. Since [ΦA(Z),O] vanishes whenever
Z ∩X = ∅, we find

∥[A,O]∥ ≤∑
Z⊂Λ∶
Z∩X≠∅

2 ∥ΦA(Z)∥ ∥O∥

≤ 2 ∥O∥ ∑
z∈X
∑
Z⊂Λ∶
z∈Z

∥ΦA(Z)∥

χb,p(diam(Z))χb,p(d(z,Ω))
χb,p(d(z,Ω))

≤ 2 ∥O∥ ∑
z∈X

χb,p(d(z,Ω)) ∥ΦA∥b,p;Ω

≤ 2 ∥O∥ ∣X ∣χb,p(d(X,Ω)) ∥ΦA∥b,p;Ω,
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where we just overcount in the second inequality. Clearly, the same statement also holds with Ω = Λ.
The proof of (17.A.3) is analogous to the proof of (17.A.2) and so omitted.

We conclude by proving (17.A.4) using induction. Note that the outer operators are all SLT-operators
on Λ. The k = 1 case is given in (17.A.2). We now assume (17.A.4) for some fixed k and with
Ω = Λ. Then, we add a further commutator with A0 to conclude

∥adAk
⋯adA1 adA0(O)∥

≤∑
Z⊂Λ∶
Z∩X≠∅

∥adAk
⋯adA1[ΦA0(Z),O]∥

≤∑
Z⊂Λ∶
Z∩X≠∅

Ck ∥[ΦA0(Z),O]∥ ∣X ∪Z ∣
k

k

∏
j=1
∥ΦAj

∥
b,p

≤ Ck 2k ∥O∥ ∣X ∣k ∑
z∈X

χb,p(d(z,Ω))
k

∏
j=1
∥ΦAj

∥
b,p

× ∑
Z⊂Λ∶
z∈Z

∥ΦA0(Z)∥

χb,p(diam(Z))χb,p(d(z,Ω))
χb,p(diam(Z)) ∣Z ∣k

≤ Cvol,b,p,k Ck 2k ∥O∥ ∣X ∣k+1 χb,p(d(X,Ω)) ∥ΦA0∥b,p;Ω

k

∏
j=1
∥ΦAj

∥
b,p
,

where we used Lemma 17.A.2 in the last step. This finishes the induction.

Lemma 17.A.5 (Multi-commutators). Let d ∈N, Cvol > 0, b > 0, p ∈ (0, 1], ε > 0 and k ∈N. There
exists a constant C > 0 such that for all lattices Λ ∈ G(d,Cvol), subsets Ω ⊂ Λ and SLT operators
A0, . . . ,Ak it holds that

∥ΦadAk
⋯adA1(A0)∥b,p;Ω ≤ C ∥ΦA0∥b+ε,p;Ω

k

∏
j=1
∥ΦAj

∥2b+ε,p . (17.A.5)

Proof. For the proof we first need to constructed an interaction for the commutator of two SLT
operators A and B. It turns out that it can be given as

Φ[A,B](Z) =∑
X,Y ⊂Λ∶
X∪Y =Z
X∩Y ≠∅

[ΦA(X),ΦB(Y )].

Then,

∑
Z⊂Λ∶
z∈Z

∥Φ[A,B](Z)∥
χb,p(diam(Z))χb,p(d(z,Ω))

≤∑
Z⊂Λ∶
z∈Z

∑
X,Y ⊂Λ∶
X∪Y =Z
X∩Y ≠∅

2 ∥ΦA(X)∥ ∥ΦB(Y )∥

χb,p(diam(X))χb,p(diam(Y ))χb,p(d(z,Ω))
,

where we used diam(Z) ≤ diam(X) + diam(Y ) and the properties of χb,p. The above sum can be
bounded by the sum of the terms where z ∈X or z ∈ Y . The latter can be upper bounded by

2∑
Y ⊂Λ∶
z∈Y

∥ΦB(Y )∥

χb,p(diam(Y ))χb,p(d(z,Ω))
∑
x∈Y
∑
X⊂Λ∶
x∈X

∥ΦA(X)∥

χb,p(diam(X))
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≤ 2∑
Y ⊂Λ∶
z∈Y

∥ΦB(Y )∥

χb+ε,p(diam(Y ))χb+ε,p(d(z,Ω))
χε,p(diam(Y )) ∣Y ∣ ∥ΦA∥b,p

≤ C Cvol,ε,p,1 ∑
Y ⊂Λ∶
z∈Y

∥ΦB(Y )∥

χb+ε,p(diam(Y ))χb+ε,p(d(z,Ω))
∥ΦA∥b,p

≤ C ∥ΦB∥b+ε,p;Ω ∥ΦA∥b,p,

where we used Lemma 17.A.2 in the third step. Using χb,p(d(z,Ω)) ≥ χb,p(diam(X))χb,p(d(x,Ω))
for all z, x ∈X, the part of the sum where z ∈X can be bounded by

2∑
X⊂Λ∶
z∈X

∥ΦA(X)∥

χ2b,p(diam(X))
∑
y∈X
∑
Y ⊂Λ∶
y∈Y

1
χb,p(d(y,Ω))

∥ΦB(Y )∥

χb,p(diam(Y ))

≤ 2∑
X⊂Λ∶
z∈X

∥ΦA(X)∥

χ2b+ε,p(diam(X))
χε,p(diam(X)) ∣X ∣ ∥ΦB∥b,p;Ω

≤ C ∥ΦA∥2b+ε,p ∥ΦB∥b,p;Ω.

Both bounds together prove the claim for k = 1. To proceed by induction we assume that the
statement holds for some fixed k. Then, applying first the statement for k = 1 and then k = k both
with ε/2 we obtain

∥ΦadAk+1 ⋯adA1(A0)∥b,p;Ω ≤ C ∥ΦadAk
⋯adA1(A0)∥b+ε/2,p;Ω ∥ΦAk+1∥2b+ε/2,p

≤ C ∥ΦA0∥b+ε,p;Ω
k+1
∏
j=1
∥ΦAj

∥2b+ε,p .

For the following statements we need to approximate the time evolution of local operators, which in
principle live on the whole lattice. This can be done by a so called conditional expectation, which is
just the partial trace in our case of finite spin systems. We collect its properties in the following
lemma.

Lemma 17.A.6 ([461, Lemma 4.1]). Let Λ be a lattice and X ⊂ Λ. Then there exists a unit-
preserving, completely positive linear map EX ∶AΛ → AΛ satisfying

(a) EX(AΛ) ⊂ AX ;

(b) EX(ABC) = AEX(B)C for all B ∈ AΛ and A,C ∈ AX ; This in particular implies EX(A) = A
for all A ∈ AX ;

(c) ∥EX∥ = 1;

(d) EX ○EY = EX∩Y , for X,Y ⊂ Λ;

(e) If A ∈ AΛ satisfies
∥[A,B]∥ ≤ η ∥A∥ ∥B∥ for all B ∈ AΛ∖X , (17.A.6)

for some η > 0, then
∥A −EX(A)∥ ≤ η ∥A∥. (17.A.7)

Together with the Lieb-Robinson bound we can now obtain the following.
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Lemma 17.A.7 (Dynamics). Let d ∈N, Cvol > 0, b, b′ > 0, and p, p′ ∈ (0, 1] satisfying p′ < 1 or b′ < b.
There exists constants C and c > 0 such that for all lattices Λ ∈ G(d,Cvol), the following holds:
Let I ⊂ R an interval, the interaction Φ generate the dynamics τt,s with Lieb-Robinson velocity
v = c ∥Φ∥b,p /b. For every χb′,p′-SLT operator A, subsets Ω, X ⊂ Λ, observables O ∈ AX , and t, s ∈ I
it holds that

∥[A, τt,s(O)]∥ ≤ C ∥O∥ ∣X ∣ ∣X(2v ∣t−s∣)1/p ∣ ∥ΦA∥b′,p′;Ω χb′,p′(d(X(2v ∣t−s∣)1/p ,Ω))

Proof. We use the local decomposition technique similar to [461, Section 5]. Therefore, let

∆0 ∶= EXv ∣t−s∣(τt,s(O))

and
∆k ∶= EX(v ∣t−s∣+k)1/p

(τt,s(O)) −EX(v ∣t−s∣+k−1)1/p
(τt,s(O)),

so that τt,s(O) = ∑∞k=0 ∆k, where the sum is finite since eventually X(v ∣t−s∣+k)1/p = Λ. By the
properties of the conditional expectation

∥∆0∥ ≤ ∥τt,s(O)∥ = ∥O∥

and for k ≥ 1 it holds that

∆k = EX(v ∣t−s∣+k)1/p
((1 −EX(v ∣t−s∣+k−1)1/p

) τt,s(O))

and thus
∥∆k∥ ≤ ∥(1 −EX(v ∣t−s∣+k−1)1/p

) τt,s(O)∥.

Furthermore, for all B ∈ AΛ∖X(v ∣t−s∣+k−1)1/p
by the Lieb-Robinson bound (Lemma 17.A.3)

∥[τt,s(O),B]∥ ≤ CLR ∥O∥ ∥B∥ ∣X ∣ eb(v ∣t−s∣−(v ∣t−s∣+k−1))
= CLR E ∥O∥ ∥B∥ ∣X ∣ e−bk

because d(X,Λ ∖Xv ∣t−s∣+k−1) ≥ v ∣t − s∣ + k − 1, and thus by Lemma 17.A.6

∥∆k∥ ≤ CLR E ∥O∥ ∣X ∣ e−bk.

Now we can apply Lemma 17.A.4 to each of the summands in the decomposition

∥[A, τt,s(O)]∥ ≤
∞
∑
k=0
∥[A,∆k]∥

≤
∞
∑
k=0

2 ∥∆k∥ ∣X(v ∣t−s∣+k)1/p ∣χb′,p′(d(X(v ∣t−s∣+k)1/p ,Ω)) ∥ΦA∥b′,p′;Ω

≤ C̃ ∥O∥ ∣X ∣ ∥ΦA∥b′,p′;Ω
∞
∑
k=0
∣X(v ∣t−s∣+k)1/p ∣χb′,p′(d(X(v ∣t−s∣+k)1/p ,Ω)) e−bk.

≤ C̃ ∥O∥ ∣X ∣ ∣X(2v ∣t−s∣)1/p ∣ ∥ΦA∥b′,p′;Ω χb′,p′(d(X(2v ∣t−s∣)1/p ,Ω))

×
∞
∑
k=0
(1 +Cvol (2k)d/p)χ−1

b′,p′(k) e−bk,

where we abbreviated C̃ = 2 max{1,CLR e} and used (v ∣t − s∣ + k)1/p ≤ (2v ∣t − s∣)1/p + (2k)1/p. To
conclude the result, we observe, that the series is bounded for p′ < 1 or b′ < b if p′ = 1.

Lemma 17.A.8 (Conjugation with unitaries). Let d ∈N, Cvol > 0, ε > 0, a, b > 0, and p, q ∈ (0,1]
satisfying p < q or p = q and a > (2p + 1) b. There exists constants C and c > 0 such that for all
lattices Λ ∈ G(d,Cvol), the following holds: For SLT operators D and S it holds that A ∶= eiSD e−iS

is an SLT operator as well. More precisely, there exists an interaction ΦA such that

∥ΦA∥b,p;Ω ≤ C ec ∥ΦS∥a,q ∥ΦD∥b+ε,p;Ω
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Proof. The proof uses the same technique as the proof of Lemma 17.A.7.

First fix X ⊂ Λ and O ∈ AX and denote τ(O) = eiS O e−iS . Then define

∆0(O) ∶= EX(τ(O))
and

∆k(O) ∶= EXk
(τ(O)) −EXk−1(τ(O)) = EXk

((1 −EXk−1) τ(O)).

By properties of the conditional expectation, Lemma 17.A.6, and the Lieb-Robinson bound, Lemma 17.A.3,
one can bound

∥∆0(O)∥ ≤ ∥O∥

and
∥∆k(O)∥ ≤ CLR ∥O∥ ∣X ∣ (ec ∥ΦS∥a,q − 1)χa′,q(k) (17.A.8)

for k ≥ 1 because d(X,Λ ∖Xk−1) = k in our geometry, where we chose a′ < a.

We now construct an interaction for A. First note, that

A = τ(A) =∑
Z⊂Λ

τ(ΦD(Z)) =∑
Z⊂Λ

∞
∑
k=0

∆k(ΦD(Z))

where ∆k(ΦA(Z)) ∈ AZk
and the sum is actually finite. For any function f ∶{Ω ⊂ Λ } → AΛ and

k ≥ 0 it holds that
∑
Y ⊂Λ

f(Y ) =∑
Y ⊂Λ
( ∑
Z⊂Λ

1Z=Yk
) f(Y ) =∑

Z⊂Λ
∑
Y ⊂Λ∶
Yk=Z

f(Y ).

Applying this with f ∶Z ↦∆k(ΦD(Z)) for each k we find

A =
∞
∑
k=0
∑
Z⊂Λ

∑
Y ⊂Λ∶
Yk=Z

∆k(ΦD(Y )) = ∑
Z⊂Λ

ΦA(Z) with ΦA(Z) ∶=
∞
∑
k=0
∑
Y ⊂Λ∶
Yk=Z

∆k(ΦD(Y )).

With this interaction for A and any z ∈ Λ we bound

∑
Z⊂Λ∶
z∈Z

∥ΦA(Z)∥

χb,p(diam(Z))χb,p(d(z,Ω))
≤ ∑
Z⊂Λ∶
z∈Z

∞
∑
k=0
∑
Y ⊂Λ∶
Yk=Z

∥∆k(ΦD(Y ))∥

χb,p(diam(Z))χb,p(d(z,Ω))

=
∞
∑
k=0
∑
Y ⊂Λ

1z∈Yk

∥∆k(ΦD(Y ))∥

χb,p(diam(Yk))χb,p(d(z,Ω))
.

The k = 0 term is bounded by ∥ΦD∥p,b;Ω. For k ≥ 0 we use (17.A.8). Moreover, diam(Yk) ≤
diam(Y ) + 2k and, since z ∈ Yk, there exists y ∈ Bz(k) ∩ Y , such that d(z,Ω) ≤ k + d(y,Ω). Hence,
the remaining sum is bounded by

CLR (ec ∥ΦS∥a,q − 1)
∞
∑
k=1

∑
y∈Bz(k)

∑
Y ⊂Λ∶
y∈Y

∣Y ∣ ∥ΦD(Y )∥

χb,p(diam(Y ))χb,p(d(y,Ω))
χa′,q(k)

χb,p(2k)χb,p(k)

= CLR (ec ∥ΦS∥a,q − 1)C ∥ΦD∥b+ε,p;Ω

∞
∑
k=1
(1 +Cvol k

d)
χa′,q(k)

χ(2p+1)b,p(k)
,

for some C > 0. The remaining sum is bounded if q > p, or q = p and a′ > (2p + 1) b. The last
condition is equivalent to a > (2p + 1) b, by our choice of a′. To conclude the statement, we choose
the total constant larger than 1 and add the k = 0 term ∥ΦD∥b,p;Ω ≤ ∥ΦD∥b+ε,p;Ω.
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17.A.3 Quasi-local inverse of the Liouvillian
In this section, we briefly recall the construction of the quasi-local inverse of the Liouvillian I
(see (17.1.4) and (17.A.10)) and a related operator J used in (17.4.11). Both of them use use
certain properties (recall (17.1.5)–(17.1.6)) of a weight function wg, which one can construct
explicitly.

Lemma 17.A.9 (Explicit weight function, cf. Lemma 2.3 from [39]). Let g > 0 and consider the
sequence (an)n≥1 of positive numbers, defined as an = a1(n(logn)2)−1 for n ≥ 2 and a1 chosen such
that ∑n≥1 an = γ/2. Then, the positive function wg ∈ L1(R) defined via the infinite product

wg(t) ∶= cg
∞
∏
n=1
(

sin(ant)
ant

)

2
(17.A.9)

and cg > 0 chosen such that ∫R dtwg(t) = 1, has Fourier transform wĝ with compact sup-
port supp(wĝ) ⊂ [−g, g] (cf. (17.1.5)) and satisfies the bound ∣wg(t)∣ ≤ Ce−∣t∣q for every q < 1
(cf. (17.1.6)).

Given the explicit weight function (17.A.9), the quasi-local inverse of the Liouvillian IH,gJ ⋅ K ∶ A → A
of the Hamiltonian H with gap parameter g > 0, acting on A ∈ A, is then defined as

IH,gJAK ∶= ∫
R

dtwg(t)∫
t

0
ds eiHsA e−iHs. (17.A.10)

Remark 17.A.10 (On the weight function). We point out, that, in principle and unless additional
conditions are given, any map IH,g with the properties (17.1.4)–(17.1.6) would work for all of our
proofs in this paper, in particular including the statements from Section 17.4.

Together with the map JH,g ∶A → A, again depending on the Hamiltonian H and gap parameter
g > 0, with action on A ∈ A defined as

JH,gJAK ∶= ∫
R

dtwg(t) eiHtA e−iHt,

one then has (recalling the Liouvillian LHJ ⋅ K = −i [H, ⋅ ]) the identity LH ○ IH,gJAK −A = JH,gJAK
for all A ∈ A; see (17.4.11).

The inverse Liouvillian IH,g is called quasi-local, since, if H satisfies the Lieb-Robinson bound from
Lemma 17.A.3, then it holds that, for A ∈ AX and B ∈ AY (see, e.g., [461, Example 5.7])

∥∗∥ [IH,gJAK,B] ≤ C ∥A∥ ∥B∥ min{∣X ∣, ∣Y ∣}χb̃,p̃(d(X,Y )) (17.A.11)

for some b̃ > 0 (depending on the Lieb-Robinson velocity v from Lemma 17.A.3) and p̃ ∈ (0, 1), which
can be chosen as p from (17.A.1) if p < 1. The estimate (17.A.11) holds verbatim with I replaced
by J .

Beside the classical quasi-locality estimate (17.A.11), the inverse Liouvillian even preserves locality
of SLT operators. This is the content of the following lemma, the special case for p = 1 without
localization (i.e. for Λ-localized SLT operators) already appeared in [428, Theorem 7.5.6] and is
based on [39, Theorem 4.8].

Lemma 17.A.11 (Quasi-local inverse of the Liouvillian on SLT operators). Let d ∈ N, Cvol > 0,
ε > 0, a, b > 0, p, q ∈ (0, 1] satisfying q < p, and Cint > 0. There exist a constant C > 0 such that for
all lattices Λ ∈ G(d,Cvol), the following holds: For SLT operators H and D it holds that IH,g(D) is
an SLT operator as well. More precisely if ∥ΦH∥b,p ≤ Cint, then there exists an interaction ΦIH,g(D)
such that

∥ΦIH,g(D)∥a,q;Ω ≤ C ∥ΦD∥a+ε,q;Ω.

The statement holds verbatim when replacing I by J from (17.4.11).
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In the proof of the Lemma we use the equality

IH,gJAK = ∫
R

dtWg(t) eiHtAe−iHt,

where the function Wg is given by Wg(t) = − ∫
t
−∞ dswg(s) + 1[0,∞)(t) with 1[0,∞) being the

characteristic function of [0,∞). In many works, e.g. [39, 36, 452, 556, 461], this is used as a
definition for the inverse Liouvillian. It can easily be checked that, by Lemma 17.A.9, also Wg

satisfies ∣Wg(t)∣ ≤ Ce−∣t∣q .

Proof. The proof uses the same technique as the proofs of Lemma 17.A.7 and 17.A.8.

First fix X ⊂ Λ and O ∈ AX and denote τ(O) = eiH O e−iH . Then, define

∆0(O) = i∫
R

dsWg(s)EX(τs(O))

and
∆k(O) = i∫

R
dsWg(s) (EXk

(τs(O)) −EXk−1(τs(O)))

= i∫
R

dsWg(s)EXk
((1 −EXk−1)(τs(O)))

for k ≥ 1. Then IH,g(O) = ∑k∈N ∆k(O) where the sum is eventually finite.

For k = 0 we have
∥∆0(O)∥ ≤ ∥Wg∥L1 ∥O∥.

For b′ ∈ (0, b), k ≥ 1 and some T > 0 to be chosen, Lemma 17.A.3 and the properties of the
conditional expectation, yield

∥i∫
T

−T
dsWg(s)EXk

((1 −EXk−1)(τs(O)))∥

≤ ∥Wg∥L∞ ∫

T

−T
ds ∥(1 −EXk−1)(τs(O))∥

≤ CLR ∥O∥ ∣X ∣ ∥Wg∥L∞ ∫

T

−T
ds (eb

′ v ∣s∣
− 1)χb′,p(k)

= 2CLR ∥O∥ ∣X ∣ ∥Wg∥L∞
eb′vT − b′vT − 1

b′ v
χb′,p(k)

≤ 2CLR ∥O∥ ∣X ∣ ∥Wg∥L∞ χb′/2,p(k)/(b
′ v)

where we chose T = kp/(2v) for the last step. Furthermore, by Lemma 17.A.9 and after integrating
twice, for any 0 < p̃ < 1 there exists C and b̃ > 0 such that

∥i∫
∣s∣≥T

dsWg(s)EXk
((1 −EXk−1)(τs(O)))∥

≤ 2 ∥O∥∫
∣s∣≥T

ds ∣Wg(s)∣

≤ C χb̃,p̃(T )

≤ C χ
b̃
′
,p̃p
(k),

where b̃′ = (1/(2v))p̃ b̃. Then, for all p′ ∈ (0, p) we can choose p̃ = p′/p < 1 and combine the two
bounds. Then, there exists C and η > 0 such that

∥∆k(O)∥ ≤ C ∣X ∣ ∥O∥χη,p′(k) for all k ≥ 0. (17.A.12)
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An interaction for A ∶= IH,g(D) is given by

ΦA(Z) =
∞
∑
k=0
∑
Y ⊂Λ∶
Yk=Z

∆k(ΦD(Y )).

It follows that

∑
Z⊂Λ∶
z∈Z

∥ΦA(Z)∥

χa,q(diam(Z))χa,q(d(z,Ω))
≤∑
Z⊂Λ∶
z∈Z

∞
∑
k=0
∑
Y ⊂Λ∶
Yk=Z

∥∆k(ΦD(Y ))∥

χa,q(diam(Z))χa,q(d(z,Ω))

=
∞
∑
k=0
∑
Y ⊂Λ

1z∈Yk

∥∆k(ΦD(Y ))∥

χa,q(diam(Yk))χa,q(d(z,Ω))
.

The k = 0 term is bounded by ∥Wg∥L1 ∥ΦD∥a,q;Ω. For k ≥ 1 and z ∈ Yk there exists y ∈ BΛ
z (k) ∩ Y

such that d(z,Ω) ≤ k + d(y,Ω). Furthermore, diam(Yk) ≤ 2k + diam(Y ). Hence, using (17.A.12)
the rest of the sum is bounded by

C
∞
∑
k=1

χη,p′(k) ∑

y∈BΛ
z (k)

∑
Y ⊂Λ∶
y∈Y

∥ΦD(Y )∥ ∣Y ∣

χa,q(diam(Yk))χa,q(d(z,Ω))

≤ C
∞
∑
k=1

χη,p′(k)

χa,q(2k)χa,q(k)
∑

y∈BΛ
z (k)
Cvol,ε,q,1 ∑

Y ⊂Λ∶
y∈Y

∥ΦD(Y )∥

χa+ε,q(diam(Y ))χa,q(d(y,Ω))

≤ C Cvol,ε,q,1 ∥ΦD∥a+ε,q;Ω

∞
∑
k=1

χη,p′(k)

χ(2q+1)a,q(k)
(1 +Cvol k

d).

The remaining sum is bounded if p′ > q, which we can ensure if p > q by choosing p′ ∈ (q, p). Thus,
there exists C such that

∑
Z⊂Λ∶
z∈Z

∥ΦA(Z)∥

χa,q(diam(Z))χa,q(d(z,Ω))
≤ C ∥ΦD∥a+ε,q;Ω

for some constant C depending on ∥ΦH∥p,b, p, b, q, a, ε and d which finishes the proof.

Remark 17.A.12 (Abstract properties of I needed in the proof of our main result). For the purpose
of proving our main result, Theorem 17.3.1, it is not necessary to work with the explicit IH,g
from (17.A.10). In fact, by inspecting the proof of Proposition 17.3.4 in Section 17.5, which is the
key input for our main result, we realize the following: For Theorem 17.3.1 being valid (up to minor
adjustments of constants), one only needs that there exists some operator Ĩ ∶ A → A for which
Assumption (LDGintro) is satisfied and such that

(i) for A ∈ AX and B ∈ AY it holds that (cf. (17.A.15))

∣⟨[LH ○ ĨJAK −A,B]⟩
ρ0
∣ ≤ C ∥A∥ ∥B∥ diam(X)ℓ exp(−d(X,Y )q)

for some positive constants C, q, ℓ > 0, i.e. the composition LH ○ Ĩ behaves as a quasi-local
operator if tested in the above way;

(ii) Lemma 17.A.11 holds, i.e. Ĩ maps localized SLT operators to localized SLT operators.

These relaxed abstract conditions are, however, not sufficient for showing the relations among the
various gap conditions outlined in Section 17.4.
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17.A.4 Localized SLT operators: Proof of Lemma 17.2.1
For (i), it suffices to realize that, since for strictly Ω-localized Φ it holds that Φ(Z) = 0 whenever
Z ∩ (Λ ∖Ω) ≠ ∅, we have

∥Φ∥b,p;Ω = sup
z∈Λ
∑
Z⊂Ω∶
z∈Z

∥Φ(Z)∥
χb,p(diam(Z))χb,p(d(z,Ω))

≤ sup
z∈Λ
∑
Z⊂Λ∶
z∈Z

∥Φ(Z)∥
χb,p(diam(Z))

= ∥Φ∥b,p ≤ C.

Next, for (ii) and strongly Ω-localized Φ, we have that

∥Φ∥b/2,p;Ω = sup
z∈Λ

∑
Z⊂Λ∶

Z∩Ω≠∅, z∈Z

∥Φ(Z)∥
χb/2,p(diam(Z))χb/2,p(d(z,Ω))

≤ sup
z∈Λ
∑
Z⊂Λ∶
z∈Z

∥Φ(Z)∥
χb,p(diam(Z))

= ∥Φ∥b,p ≤ C

since d(z,Ω) ≤ diam(Z) for z ∈ Z and Z ∩Ω ≠ ∅, together with monotonicity of χb/2,p and using
(χb/2,p)

2 = χb,p. This concludes the proof of Lemma 17.2.1.

17.A.5 Assumption (LDGweak) and SLT operators: Proof of Lemma 17.5.1
We write A = ∑Z⊂Λ ΦA(Z) (cf. (17.2.4)) and estimate

∣⟨[LH0 ○ IH0,gJAK −A,B]⟩
ρ0
∣

≤ ∑
Z⊂Λ
∣⟨[LH0 ○ IH0,gJΦA(Z)K −ΦA(Z),B]⟩

ρ0
∣.

(17.A.13)

For the ‘small’ Z ⊂ Λ satisfying diam(Z) ≤ d(Z,Λ ∖Λgap)β , we bound

∣⟨[LH0 ○ IH0,gJΦA(Z)K −ΦA(Z),B]⟩
ρ0
∣

≤ Cgap ∥ΦA(Z)∥ ∥B∥ diam(Y )ℓ χb,p(d(Z,Λ ∖Λgap
))

(17.A.14)

by means of Assumption (LDGweak). Additionally, we need the following alternative estimate
on (17.A.14) (recall (17.4.11)):

∣⟨[LH0 ○ IH0,gJΦA(Z)K −ΦA(Z),B]⟩
ρ0
∣

≤ ∫
R

dtwg(t) ∥[eitH0 ΦA(Z) e−itH0 ,B]∥

≤ C ∥ΦA(Z)∥ ∥B∥ diam(Z)d (χb/2,p(d(Z,Y ))∫
I

dtwg(t) + ∫
R∖I

dtwg(t))

≤ C ∥ΦA(Z)∥ ∥B∥ diam(Z)d χb/2,p(d(Z,Y )) (17.A.15)

where we denoted I ∶= {t ∈ R ∶ v∣t∣ ≤ d(Z,Y )p/3}. Here, v is the Lieb-Robinson velocity from
Lemma 17.A.3, which we employed in the second step with b → 3b/4. In the final step, we
used the stretched exponential decay of wg (see (17.1.6) and Lemma 17.A.9). Note that (17.A.14)
and (17.A.15) track two different relevant distances, namely those of Z to Λ∖Λgap and Y , respectively.

In fact, a weighted geometric mean of (17.A.14) and (17.A.15), that combines these two effects, can
now be summed up as (neglecting the factor C ∥B∥ diam(Y )ℓ, which will be put back in (17.A.17))

∑
Z⊂Λ∶

diam(Z)≤d(Z,Λ∖Λgap)β

diam(Z)d χb−ε,p(d(Z,Λ ∖Λgap
))χε/2,p(d(Z,Y )) ∥ΦA(Z)∥
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≤ ∑
z∈Λ
∑
Z⊂Λ∶
z∈Z

∥ΦA(Z)∥
χb−ε,p(diam(Z) + d(z,Ω) + d(Z,Λ ∖Λgap))

χb,p(diam(Z))χb,p(d(z,Ω))
χε/2,p(d(z, Y ))

≤ ∥ΦA∥b,p;Ω χb−ε,p(d(Ω,Λ ∖Λgap
))∑

z∈Λ
χε/2,p(d(z, Y ))

≤ C diam(Y )d ∥ΦA∥b,p;Ω χb−ε,p(d(Ω,Λ ∖Λgap
)). (17.A.16)

For the first bound, we used logarithmic superadditivity of χb,p together with elementary monotonicity
properties from Lemma 17.A.1 (a) and estimated diam(Z)d by 1/χε,p(diam(Z)). For the second
bound, we used the definition of ∥ΦA∥b,p;Ω from (17.2.7) and the fact that, for z ∈ Z, we have
diam(Z)+ d(z,Ω)+ d(Z,Λ∖Λgap) ≥ d(Ω,Λ∖Λgap). In the final step, we employed summability of
χε/2,p(d(z, Y )).

Therefore, combining (17.A.13) with (17.A.16), the contribution of those Z ⊂ Λ, for which diam(Z) ≤
d(Z,Λ ∖Λgap)β , to (17.A.13) is bounded by

C diam(Y )d+ℓ ∥B∥ ∥ΦA∥b,p;Ω χb−ε,p(d(Ω,Λ ∖Λgap
)). (17.A.17)

For the ‘large’ Z ⊂ Λ that satisfy diam(Z) > d(Z,Λ ∖ Λgap)β, we simply use the estimate
from (17.A.15), which we can sum up as

∑
Z⊂Λ∶

diam(Z)>d(Z,Λ∖Λgap)β

diam(Z)d χb/2,p(d(Z,Y )) ∥ΦA(Z)∥

≤ ∑
z∈Λ
∑
Z⊂Λ∶
z∈Z

∥ΦA(Z)∥
χb/2,pβ(diam(Z) + d(z,Ω) + d(Z,Λ ∖Λgap))

χb,p(diam(Z))χb,p(d(z,Ω))
χb/2,p(d(z, Y ))

≤ C diam(Y )d ∥ΦA∥b,p;Ω χb/2,pβ(d(Ω,Λ ∖Λgap
))

(17.A.18)

analogously to (17.A.16). In the second step we used that diam(Z) > d(Z,Λ∖Λgap)β and elementary
monotonicity properties of χb,p in b, p.

Therefore, by means of (17.A.18), also the large Z’s contribute only in a way that is controlled in
terms of (17.A.17) (but with worse constants b/2 and pmin{β,1}). This concludes the proof of
Lemma 17.5.1.
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ChapterA
Deformational rigidity of Liouville

metrics on the torus

This chapter includes (the extended arXiv:2210.02961 version of) the paper [334]:

J. Henheik. Deformational rigidity of integrable metrics on the torus. Ergod. Theory Dyn. Syst.,
45:467–503, 2025

Abstract. It is conjectured that the only integrable metrics on the two-dimensional torus are Liouville
metrics. In this paper, we study a deformative version of this conjecture: We consider integrable
deformations of a non-flat Liouville metric in a conformal class and show that for a fairly large class
of such deformations the deformed metric is again Liouville. The principal idea of the argument
is that the preservation of rational invariant tori in the foliation of the phase space forces a linear
combination on the Fourier coefficients of the deformation to vanish. Showing that the resulting
linear system is non-degenerate will then yield the claim. Since our method of proof immediately
carries over to higher dimensional tori, we obtain analogous statements in this more general case. In
order to put our results in perspective, we review existing results about integrable metrics on the
torus.
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A.1 Introduction
Let T2 = R2/Z2 be the two-dimensional torus being equipped with a C2-smooth global Liouville
metric g, i.e. having line element

ds2
= (f1(x

1
) + f2(x

2
)) ((dx1

)
2
+ (dx2

)
2) , (A.1.1)

where (x1, x2) ∈ T2 are the standard periodic coordinates and f1, f2 ∈ C
2(T) are positive Morse

functions1 or positive constants and thus ‘non-degenerate’. The corresponding geodesic flow (see
Section A.1.1) is well known to be integrable and a longstanding folklore conjecture says that Liouville
metrics are the only integrable metrics on T2. We emphasize that, in this context, integrability always
allows for singularities in the foliation of the phase space of the naturally associated Hamiltonian
system, which is made precise in Definition A.1.3 below.

Although the validity of the folklore conjecture appeared conceivable for a long time, there is strong
indication for it being false in its very general form, as shown in [182]: Here, the authors constructed
a Hamiltonian counterexample which is locally integrable in a p-cone in the cotangent bundle. This
means that, on a fixed energy level, there exists an analytic change of variables, transforming the
Hamiltonian with non-Liouville potential to the standard form (p2

1 + p
2
2)/2 but only for pi’s in a

certain cone in R2 (see also Theorem A.3.7 below for a more precise statement). However, despite
this delicate example, certain suitably weakened conjectures are still believed to be true, which is
supported by a variety of partial results obtained in this direction, starting from classical ones by
Dini [225], Darboux [196], and Birkhoff [84] and further developed in [34, 367, 374]. In particular,
several works by Bialy, Mironov [72, 77, 78, 76], Denisova, Kozlov, Treshev [212, 213, 214, 382, 215],
Mironov [449], and others [34, 374, 12, 547], strongly indicate the validity of the following (yet
unproven) conjecture:2 Every polynomially integrable metric g on T2 is of Liouville type. We refer
to Section A.3 for details.

In this paper, we are concerned with a perturbative version of the folklore conjecture: Let (gε)∣ε∣≤ε0

for some small ε0 > 0 be a family of perturbations of g ≡ g0 in the same conformal class3 having
line-element

ds2
ε = (f1(x

1
) + f2(x

2
) + ελ(x1, x2

)) ((dx1
)

2
+ (dx2

)
2) , (A.1.2)

where λ ∈ C2(T2) is assumed to be a Morse function (or constant) and have an absolutely convergent
Fourier series. We will assume that the perturbed family gε remains integrable, meaning that within
the foliation of the phase space for the unperturbed Liouville metric (A.1.1), the deformation (A.1.2)

1Recall that Morse functions on a manifold M are characterized by having no degenerate critical points. They
form a dense and open set in C2

(M) and are thus ‘generic’.
2See [131, 92] for recent surveys on open problems and questions concerning geodesics and integrability of

finite-dimensional systems.
3Note that on the torus there exist global isothermal coordinates [94, Chapter 11].
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preserves sufficiently many rational invariant tori (see Assumption (P) below for a precise formulation
of our requirement on the preservation of these tori). Then we obtain that λ is necessarily separable
in a sum of two single-valued functions, i.e.

λ(x1, x2
) = λ1(x

1
) + λ2(x

2
)

for some λ1, λ2 ∈ C
2(T). Therefore, our main results formulated (somewhat informally) below assert

the following:

The class of Liouville metrics is deformationally rigid under a fairly wide class of integrable
conformal perturbations.

To the best of our knowledge, this is the first instance of a rigidity result for (not necessarily
analytically) integrable dynamical systems allowing for singularities in the invariant foliation of
the unperturbed system. The precise statements of our main results are given in Theorem A.I,
Theorem A.II and Theorem A.III in Section A.2.

Main Result. Let g be a non-degenerate Liouville metric on T2 as in (A.1.1) and assume that the
family (gε)∣ε∣≤ε0 of perturbations defined in (A.1.2) remains integrable. Then we have the following:

(i) In case that f1, f2 ≡ const., then λ is separable.

(ii) In case that f1 ≡ const., λ is a trigonometric polynomial in x2 and the relative difference µ2
between f2 and its mean ∫T f2, i.e. µ2 ∶= ∥f2 − ∫T f2∥C0/ ∫T f2 is small, then λ is separable.
If, additionally, f2 is analytic, we have that λ is separable, irrespective of the size µ2 of the
fluctuations of f2 (but only for µ2 outside of an exceptional (Lebesgue) null-set).

(iii) In general, if λ is a trigonometric polynomial and the relative differences µi, i = 1,2, between
the fi’s and their means ∫T fi, i.e. the µi ∶= ∥fi − ∫T fi∥C0/ ∫T fi are small, then λ is separable.
If, additionally, fi is analytic (for one or both i = 1, 2), we have that λ is separable, irrespective
of the size µi of the fluctuations of fi (outside of an exceptional null-set).

It is straightforward to generalize our results to higher dimensional tori Td =Rd/Zd. In order to ease
notation and make the presentation clearer, we only mention it here and postpone a more detailed
discussion to Appendix A.A.

Remark A.1.1. (Generalization to higher dimensions)
Analogously to (A.1.1), let Td be equipped with a C2-smooth global Liouville metric g having line
element

ds2
= (f1(x

1
) + . . . + fd(x

d
)) ((dx1

)
2
+ . . . + (dxd)2) , (A.1.3)

where x = (x1, ..., xd) ∈ Td are standard periodic coordinates and fi ∈ C
2(T) for 1 ≤ i ≤ d are

positive Morse functions or constants. Again, it is easy to see that the geodesic flow is integrable.
Just as in (A.1.2), we now perturb (A.1.3) in the same conformal class by some λ ∈ C2(Td) having
an absolutely convergent Fourier series.
Under the assumption that the family of perturbed metrics (gε)∣ε∣≤ε0 remains integrable, we have the
following (somewhat informal) rigidity result:
Let fi ≡ const. for the first 0 ≤ dflat ≤ d indices, and fj be analytic for the last 0 ≤ danlyt ≤ d − dflat
indices. Then, if λ is a trigonometric polynomial in xk for k ∈ {dflat + 1, ..., d }, and the relative
differences between fdflat+1, ..., fd−danlyt and their mean values are small, we have that λ is separable,
irrespective of size µj of the fluctuations of fj (outside of a null-set).

This results unifies and generalizes the three separate statements given above. A precise formulation
is given in Theorem A.IV in Appendix A.A.
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A. Deformational rigidity of Liouville metrics on the torus

The present paper is not the first study on rigidity of important integrable systems: In [33, 362], Avila-
Kaloshin-de Simoi and Kaloshin-Sorrentino recently solved both, a deformative and a perturbative
version of the famous Birkhoff conjecture concerning integrable billiards in two dimensions. In a
nutshell, their result says that a strictly convex domain with integrable billiard dynamics sufficiently
close to an ellipse is necessarily an ellipse. This can be viewed as an analogue of the perturbative
version of the folklore conjecture formulated above [361]. More precisely, our main results concerning
general fi ∈ C2(T) are similar – in spirit – to the deformational rigidity for ellipses of small eccentricity
(cf. f1, f2 in (A.1.1) having small fluctuations), which has been shown first in [33], later extended by
Huang-Kaloshin-Sorrentino [352] to a local notion of integrability and finally significantly improved
in [378]. The overall strategy pursued in [33, 362, 352] also inspired the arguments employed in the
present paper.

In a more recent work, Arnaud-Massetti-Sorrentino [26] (replacing the earlier preprint [440]) studied
the rigidity of integrable symplectic twist maps on the 2d-dimensional annulus Td×Rd. More precisely,
they consider one-parameter families (fε)ε∈R of symplectic twist maps fε(x, p) = f0(x, p + ε∇G(x))
and prove two main rigidity results: First, in the analytic category for f0 and the perturbation G, if a
single rational invariant Lagrangian graph of fε exists for infinitely many values of ε (e.g. an interval
around zero), then G must necessarily be constant. Second, if f0 is analytic and completely integrable
(i.e. not plagued with singularities in the invariant foliation of the phase space, see [75, 543]), G is
of class C2, and sufficiently (infinitely) many rational invariant Lagrangian graphs of fε persist for
small ε ≠ 0, then G must necessarily be constant. Note that in this second result, the entire phase
space is foliated by invariant tori, and the perturbation solely depends on the angle variables of the
dynamical system. In this sense, Theorem A.I can – morally – be viewed as a special case of the
second result in [26] (see also [440, Theorem 2]), but Theorem A.II and Theorem A.III generalize
this statement to more general functional dependencies of the perturbation. Apart from this, our
general results (i.e. those not concerning analytic functions fi) do not require any regularity beyond
the standard C2.

As mentioned above, by assuming that the family of metrics (gε)∣ε∣≤ε0 remains integrable, we mean
that, in particular, sufficiently many rational invariant tori in an isoenergy manifold of the Hamiltonians
associated to the metric by the Maupertuis principle (see Section A.1.3) are preserved. This will
be made precise in Assumption (P) below. As we will show, the preservation of an (n,m)-rational
invariant torus ‘annihilates’ the Fourier coefficients λk1,k2 with indices (k1, k2) ∈ {(n,m)}

⊥ of

λ(x, y) = ∑
(k1,k2)∈Z2

λk1,k2e2πi(k1x+k2y) ,

or of the corresponding perturbing mechanical potential, denoted by U later on. We already noted
that, contrary to items (ii) and (iii), the unperturbed metric in our first result is guaranteed to be
completely integrable. Moreover, the perturbation λ depends solely on the angular but not the action
coordinates of the unperturbed problem (see Theorem A.1.6). Although the analog of this result
for symplectic twist maps in this peculiar setting has already been shown in [26, 440] by methods
similar to ours, we reprove it by pursuing an only slightly different but original strategy, which is
suitable for certain inevitable modifications for the proofs of the more general statements under
item (ii) and (iii). These two cases (corresponding to surfaces of revolution and general Liouville
metrics, see Section A.3) build on perturbative estimates for (possibly infinitely many) systems of
linear equations for the Fourier coefficients. These are obtained from the first order term of an
expansion in ε, somewhat similar to the (subharmonic) Melnikov potential in the Poincaré-Melnikov
method [303, 568, 30]. Establishing this expansion as well as proving that the resulting systems
of linear equations are of full rank requires perturbative estimates on action-angle coordinates and
certain basic objects from weak KAM theory [530]. Finally, the extension of our results for analytic
functions fi beyond the perturbative regime are proven by exploiting the analytic dependence of the
linear system on the size µi of the fluctuations of fi (see Appendix A.C).
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A.1. Introduction

In the remainder of this introduction, we recall basic notions in geometry and dynamical systems,
which are frequently used in this paper, and introduce the problem of classifying integrable metrics on
Riemannian manifolds, in particular the torus T2, as formulated in Questions (Q1) and (Q2) below.
In Section A.2 we formulate our main results in Theorem A.I, A.II, and A.III. In Section A.3 we
present related existing results and known partial answers on the classification problem for integrable
metrics on the torus T2 (a few of which have already been mentioned above) in order to put our
results into context. In Section A.4 we give the proofs of our main results, and, finally, comment on
possible generalizations, different approaches and a list of open problems in Section A.5. As already
mentioned above, the precise formulation of our result for higher dimensions is given in Theorem A.IV
in Appendix A.A. A fundamental perturbation theoretic lemma on action-angle coordinates, a concise
study on important analyticity properties of these, and a brief overview of the relevant aspects of
weak KAM theory are presented in three further appendices.

A.1.1 Geodesic flow on Riemannian manifolds
Let (M,g) be a (compact) C2-smooth n-dimensional connected Riemannian manifold without
boundary equipped with the Riemannian metric g = (gij(x))ij . Geodesics of the given metric g are
defined as smooth parameterized curves γ(t) = (x1(t), . . . , xn(t)) that are solutions to the system
of differential equations

∇γ̇ γ̇ = 0 , (A.1.4)

where γ̇ = dγ
dt denotes the velocity vector of the curve γ, and ∇ is the covariant derivative operator

related to the Levi-Civita connection associated with the metric g.

It is well known that for every point x ∈ M and for every tangent vector v ∈ TxM there exists a
unique geodesic γ with γ(0) = x and γ̇(0) = v, which allows to define the geodesic flow as a local
R-action on the tangent bundle TM via

R ∋ t↦ Ψt(V ) = γ̇V (t) ∈ TM ,

where γV denotes the geodesic with initial data γ̇V (0) = V ∈ TM .

The geodesic equation (A.1.4) can also be viewed as a Hamiltonian system on the cotangent bundle
T ∗M , and the geodesics γ themselves can be regarded as projections of trajectories of the Hamiltonian
system onto M . Therefore, let x and p be natural coordinates on the cotangent bundle T ∗M ,
where x = (x1, . . . , xn) are the coordinates of a point in M (position space), and p = (p1, . . . , pn)
are the coordinates of a covector from the cotangent space T ∗xM (momentum space) in the basis
dx1, . . . ,dxn. Let ω = dx ∧ dp on T ∗M denote the standard symplectic structure and define the
Hamiltonian function H ∈ C2(T ∗M) as

H(x, p) =
1
2∑ij

gij(x)pipj =
1
2
∣p∣2g . (A.1.5)

The related Hamiltonian vector field XH , defined via ω(XH , ⋅) = dH, governs the associated
Hamiltonian flow ΦXH

t as a local R-action on the cotangent bundle T ∗M . A trajectory (x(t), p(t))
is an integral curve for the Hamiltonian vector field, if and only if the Hamiltonian system of
differential equations

⎧⎪⎪
⎨
⎪⎪⎩

ṗi = − ∂H
∂xi

ẋi = ∂H
∂pi

, (A.1.6)

written in local coordinates, is satisfied. The Hamiltonian flow is also called a cogeodesic flow for
this special case of a Hamiltonian function (A.1.5), and the geodesic flow and the cogeodesic flow
are equivalent in the following sense.

Proposition A.1.2. (Geodesic flow and cogeodesic flow, Prop. 11.1 in [94])
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A. Deformational rigidity of Liouville metrics on the torus

(a) If (x(t), p(t)) is an integral curve for XH on T ∗M , then the curve x(t) in M is a geodesic
and its velocity vector ẋ(t) satisfies ẋi(t) = ∑j gij(x)pj(t).

(b) Conversely, if x(t) is a geodesic in M , then the trajectory (x(t), p(t)), where pi(t) =

∑j gij ẋ
j(t), is an integral curve for XH on T ∗M .

A.1.2 Integrable Hamiltonian systems
It is natural to ask for a classification of Riemannian manifolds (M,g), for which the geodesic
equations (A.1.4) can be solved explicitly. In the language of integrability of Hamiltonian systems
and using the equivalence between geodesic flow and cogeodesic flow from Proposition A.1.2, we
can formulate the following questions:

(Q1) On which manifolds do there exist Riemannian metrics whose (co-)geodesic flow is integrable?

(Q2) Given such a manifold, how to characterize the class of metrics with integrable geodesic flow?

Clearly, the answers and their complexity hinge on the notion of integrability for the Hamiltonian
system (see Section A.3). In this paper we will be concerned with the standard notion, that is
Liouville integrability, which we recall for the readers convenience.

Definition A.1.3. The geodesic flow on (M,g) is called Liouville integrable, if there exist n functions
F1, ..., Fn ∈ C

2(T ∗M) (called first integrals), that are

(i) functionally independent on T ∗M , i.e. the vector fields XF1(x, p), ...,XFn(x, p) are linear
independent in T(x,p)(T ∗M) for all (x, p) ∈M ⊂ T ∗M , whereM is some open and everywhere
dense set of full measure (cf. the restriction to Morse functions);

(ii) pairwise in involution, i.e.

{Fk, Fl} ∶= ω(XFk
,XFl

) =∑
i

(
∂Fk
∂xi

∂Fl
∂pi
−
∂Fk
∂pi

∂Fl
∂xi
) = 0 .

Whenever the geodesic flow on (M,g) is Liouville integrable, we call g an integrable metric on M .
Moreover, we call the Hamiltonian system (A.1.6) (or the corresponding Hamiltonian (A.1.5) itself)
integrable, whenever the associated metric g is integrable on M .

Remark A.1.4. Whenever the first integrals F1, ..., Fn can be chosen to be functions that are polyno-
mially in the momentum variables, the metric is often called polynomially integrable or algebraically
integrable. If we aim at indicating the order of the polynomial, we speak of linearly/quadratically/...
integrable metrics.

Remark A.1.5. Note that, since one can always choose H = F1 as a first integral for the geodesic
flow, the question of integrability for one-dimensional manifolds is completely answered. Therefore,
the simplest manifolds, for which the answers to (Q1) and (Q2) are non-trivial, are two-dimensional.

In this work, we are mainly concerned with a characterization of integrable metrics in the sense
of Question (Q2) for the two-dimensional torus T2. In this case, the largest known class of such
metrics g are so called Liouville metrics, where the line element takes the form

ds2
= (f1(x

1
) + f2(x

2
)) ((dx1

)
2
+ (dx2

)
2) , (A.1.7)

in appropriate global coordinates (x1, x2) and where f1 and f2 are sufficiently regular positive periodic
functions. See Section A.3.2 for more details.
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The most important result about integrable Hamiltonian systems is the following well known theorem,
establishing the existence of so-called action-angle coordinates, which shall be employed in our proofs
in Section A.4.

Theorem A.1.6. (Liouville-Arnold Theorem [29])
Let H be a Liouville integrable Hamiltonian on T ∗M and let

Tf = {(x, p) ∈ T
∗M ∶ Fi(x) = fi, i = 1, ..., n}

be a regular level surface of the first integrals F1, ..., Fn. Then we have the following:

(a) The level set Tf ⊂ T
∗M is a smooth submanifold of dimension n that is invariant under the

geodesic flow. Any compact connected component of Tf (again denoted by Tf ) is diffeomorphic
to an n-dimensional torus Tn, called a Liouville torus.

(b) There exists a neighborhood U of Tf and a coordinate system (θ, I) ∶ U → Tn ×Rn with
ω = ∑ni=1 dθi ∧ dIi, called action-angle variables, such that Tf = I

−1(0) is a level set of the
action variables and Fi = Fi(I). Therefore, the Hamiltonian equations (A.1.6) take the form

⎧⎪⎪
⎨
⎪⎪⎩

İi = 0
θ̇
i
= ωi(I1, ..., In) .

(A.1.8)

A.1.3 Maupertuis principle

In order to approach the questions (Q1) and (Q2), we will utilize the Maupertuis Principle (see, e.g.,
[96]): For a compact Riemannian manifold, (M,g), let

H(x, p) =
1
2∑ij

gij(x)pipj − V (x) (A.1.9)

be a natural mechanical Hamiltonian function on T ∗M , where V ∈ C2(M) denotes some potential
function. Moreover, let Th = {H(x, p) = h} be an isoenergy submanifold for some h > −minx V (x)
and note that Th is also an isoenergy submanifold for another system with Hamiltonian function

H̃(x, p) =
1
2∑ij

gij(x)

h + V (x)
pipj ,

i.e. Th = {H̃(x, p) = 1}. Now, the Maupertuis principle states that the integral curves for the
Hamiltonian vector fields XH and XH̃ on the fixed isoenergy submanifold Th coincide. Moreover, if
there exists an additional first integral F for H on Th, then there also exists a first integral F̃ for H̃
on the whole of T ∗M (except, potentially, at the zero section). Finally, note that the vector field
XH̃ gives rise to the geodesic flow of the Riemannian metric g̃ with

g̃ij(x) = (h + V (x))gij(x) , (A.1.10)

which is the correspondence between Hamiltonian systems and geodesic flows we will use.
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A. Deformational rigidity of Liouville metrics on the torus

A.2 Main results
The main results of this paper are rigidity results in the sense of Question (Q2) for classes of integrable
metrics on the two-torus T2 =R2/Γ, initially equipped with the flat metric, and hence obtained by
a Hamiltonian defined on T ∗T2 by means of the Maupertuis principle. In general, Γ ⊂ R2 is an
arbitrary lattice, but we focus on the case Γ = Z2 here. We define the Hamiltonian function

H0(x, p) =
p2

1
2
+
p2

2
2
− µ1 V1(x

1
) − µ2 V2(x

2
) (A.2.1)

on T ∗T2, where µi ∈ [0,∞) are parameters, and Vi ∈ C2(T) with Vi ≥ 0 and ∥Vi∥C0 ≤ Ci are Morse
functions (or constant). We may assume w.l.o.g. that minxi Vi(x

i) = 0. This includes, e.g., the
situation of two pendulums, i.e. Vi(xi) = 1 − cos(2πxi). The torus coordinates are denoted by
x = (x1, x2) ∈ T2 and the conjugate coordinate pairs are (x1, p1) and (x2, p2). By the Maupertuis
principle, for fixed e > 0, the Hamiltonian flow on the isoenergy manifold Te = {H0 = e} coincides
with the geodesic flow on T2 with the Liouville metric ge (see eq. (A.1.7) and Section A.3.2 for more
details) having line element

ds2
e = (e + µ1 V1(x

1
) + µ2 V2(x

2
)) ((dx1

)
2
+ (dx2

)
2) .

The system with Hamiltonian function (A.2.1) is clearly integrable in the sense of Definition A.1.3,
since an additional conserved quantity can easily be found as

F1(x, p) =
p2

1
2
− µ1 V1(x

1
) . (A.2.2)

The Liouville foliation of Te has the following qualitative structure, that is similar to the phase
portrait of the pendulum. The common level surface

T(e,f) = {H0 = e, F1 = f}

differs in shape, depending on the values of e and f . Recall that e > 0 and Vi ≥ 0. If (i)
f ∈ (−µ1 maxx1 V1(x

1), 0) and e − f > 0, T(e,f) is an annulus ; if (ii) f > 0 and e − f > 0, T(e,f) is a
torus; if (iii) f > 0 and e − f ∈ (−µ2 maxx2 V2(x

2), 0), T(e,f) is an annulus. Therefore, if V1 and V2
are both non-constant, the foliation qualitatively exhibits a pendulum-like phase portrait (see Figure
A.1).

A.2.1 Definitions and assumptions
Our main results concern perturbations of the Hamiltonian function (A.2.1) in the class of mechanical
systems as

Hε(x, p) =H0(x, p) + εU(x) , (A.2.3)

where ε ∈ R and U ∈ C2(T2) denotes a perturbing potential, which is assumed to be a Morse
function (or a constant) and have an absolutely convergent Fourier series4

U(x) = ∑
k1∈Z

Uk1(x
2
) ei2πk1x1

= ∑
(k1,k2)∈Z2

Uk1,k2 ei2π(k1x1+k2x2) .

In the following, we introduce several subsets of Z2 in such a way, that their definitions immediately
carry over in arbitrary dimension d ∈ N (see Remark A.1.1). First, we define the spectrum of U ,
i.e. the set of non-vanishing Fourier coefficients, as

SU ∶= {k = (k1, k2) ∈ Z2 ∶ Uk ≠ 0} , (A.2.4)
4Note that in two dimensions, C2-regularity is not sufficient for ensuring an absolutely convergent Fourier series,

although in one dimension it is.
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Figure A.1: Schematic picture of the Liouville foliation of the phase space T ∗T ≅ T × R
for the classical one-dimensional pendulum system described by the Hamiltonian function

H(x, p) =
p2

2
− (1 − cos(2πx)) .

The horizontal direction covers slightly more than one period of length one.

while the non-singular spectrum is denoted by

SU,0 ∶= {k ∈ SU ∶ ∃i ≠ j s.th. ki ⋅ kj ≠ 0} . (A.2.5)

Moreover, we define the coprime set of the orthogonal complement of SU as well as its non-singular
subset via

B(S
⊥
U) ∶= {b ∈ S

⊥
U ∶ b coprime} and B0(S

⊥
U) ∶= {b ∈ B(S

⊥
U) ∶∏

i

bi ≠ 0} , (A.2.6)

respectively. Note that the orthogonal complement is taken within Z2. For the proofs in Section A.4
and the generalization in Appendix A.A it is important to observe that for every k ∈ SU,0 exists some
b ∈ B0(S

⊥
U) such that b ⋅ k = 0.

Our main results will be formulated under the following assumptions.

1. Assumptions on the perturbed Hamiltonian function (A.2.3).
Let H0 ∈ C

2(T ∗T2) denote the Hamiltonian function from (A.2.1) with minVi = 0, ∥Vi∥C0 ≤ Ci and
µi ∈ [0, µ̃i] for some µĩ ∈ [0,∞), i ∈ {1,2}, and U be a perturbing potential as in (A.2.3), which
satisfies one of the following assumptions.

(A1) If µ̃1 = µ̃2 = 0, we have U ∈ C2(T2).

(A2) If, w.l.o.g., µ̃1 = 0 and µ̃2 > 0, we have U ∈ C2(T2) and there exists d(2) ≥ 0 such that

SU ⊂ Z × [ − d(2), d(2)] , (A.2.7)
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A. Deformational rigidity of Liouville metrics on the torus

i.e. U is a trigonometric polynomial in the second variable x2.

(A3) If µ̃1, µ̃2 > 0, we have U ∈ C2(T2) and there exist d(1), d(2) ≥ 0 such that

SU ⊂ [ − d
(1), d(1)] × [ − d(2), d(2)] , (A.2.8)

i.e. U is a trigonometric polynomial.

We denote the minimum over all d(i) such that (A.2.7) resp. (A.2.8) holds as deg(i)U and call it the
i-degree of U . Whenever we refer to one of the Assumptions (A1), (A2), or (A3), we implicitly
assume that H0 ∈ C

2(T ∗T2) is of the form (A.2.1).

Note that the assumption on the spectrum (A.2.4) of U is more restrictive when we include more
general potentials µ1V1 and µ2V2 in the unperturbed Hamiltonian H0 (A.2.1).

The following basic proposition is fundamental for the precise formulation of our assumptions concern-
ing preservation of integrability. It rephrases certain aspects of the Liouville-Arnold Theorem A.1.6
in our concrete setting using standard notions from weak KAM theory (see Appendix A.D).

Proposition A.2.1. (Liouville-Arnold Theorem and weak KAM theory [530])
Let H0 ∈ C

2(T ∗T2) be the Hamiltonian function from (A.2.1).

(a) In the region of phase space, where f > 0 as well as e − f > 0, each of the two connected
component of a Liouville torus T(e,f) (again denoted by T(e,f)) is a Lipschitz5 Lagrangian
graph, i.e.

T(e,f) = {(x,c +∇xuc) ∶ x ∈ T2}

for a unique cohomology class c ∈H1(T2,R) ≅R2 with ∣ci∣ >
√
µi c(Vi) and uc ∈ C

1,1(T2),6
so we may equivalently write T(e,f) ≡ Tc. The function uc ∈ C

1,1(T2) is a classical solution of
the Hamilton-Jacobi equation

α(c) =H0(x,c +∇xuc(x)) ,

where the lhs. is Mather’s α-function (see Appendix A.D).

(b) The Hamiltonian flow on Tc is conjugated to a rotation on T2, i.e. there exists a diffeomorphism
φ ∶ T2 → Tc such that φ−1 ○ ΦXH

t ○ φ = Rω
t , ∀t ∈ R, where Rω

t ∶ T2 → T2, x ↦ (x + ωt
mod Z2) for some rotation vector ω ∈R2.

An invariant Liouville torus Tc is called irrational or non-resonant, if k ⋅ω ≠ 0 for all k ∈ Z2 ∖ {0}. If
this is not the case, the invariant torus is rational or resonant. For two-dimensional manifolds (and if
ω2 ≠ 0), this can be phrased as a distinction between ω1/ω2 ∉ Q and ω1/ω2 ∈ Q.

2. Assumptions on the preserved integrability of (A.2.3).
Let H0 ∈ C

2(T ∗T2) denote the Hamiltonian function from (A.2.1) satisfying one of the Assumptions
(A1) - (A3), and U a perturbing potential as in (A.2.3) such that the following statement concerning
the perturbed Hamilton-Jacobi equation (HJE)

αε(c) =Hε(x,c +∇xuε,c(x)) (A.2.9)

as well as the preserved integrability of Hε is satisfied.
5We will see in Appendix A.D that uc ∈ C

3
(T2
), so the regularity of T(e,f) is in fact C2.

6Here, c(Vi) ∶= ∫
1

0

√
2Vi(xi)dxi (see Appendix A.D) and C1,1 denotes the functions in C1 with Lipschitz derivative.
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(P) There exists an energy e > 0, such that for every (n,m) ∈ B0(S
⊥
U) (recall (A.2.6)) and

µi ∈ [0, µ̃i], i ∈ {1,2}, there exists a sequence (εk)k∈N with εk ≠ 0 but εk → 0 such that we
have the following:

(i) The resonant torus from Proposition A.2.1 characterized by c ∈H1(T2,R) with

∣ci∣ >
√
µi c(Vi) (A.2.10)

in the isoenergy submanifold Te having rotation vector proportional to (n,m) is preserved
under the sequence of deformations (Hεk

)k∈N.
(ii) For c ∈H1(T2,R) satisfying (A.2.10), Mather’s α-function and a solution uε,c ∶ T2 → R

of the HJE (A.2.9) can be expanded to first order in ε, i.e.

uε,c = u
(0)
c + εu

(1)
c +Oc(ε

2
) and αε = α

(0)
+ εα(1) +O(ε2

) , (A.2.11)

where u(0)c , u
(1)
c ∈ C1,1(T2) and Oc(ε

2) is understood in C1,1-sense.7

We comment on the validity of assuming (P) in Remark A.D.8 in Appendix A.D. Moreover, we shall
also discuss an alternative to (A.2.11) in Remark A.D.10. Finally, one can easily see from the proofs
given in Section A.4, that the condition on a fixed isoenergy manifold {Hε = e} can be relaxed to
having preservation of invariant tori in isoenergy manifolds characterized by energies e ≥ e0 for some
fixed e0 > 0.

Note that the rational invariant tori are the most ‘fragile’ objects of an integrable system as the
KAM Theorem [373, 27, 456] predicts that general (non-integrable) perturbations preserve only
‘sufficiently irrational’ (Diophantine) invariant tori.

A.2.2 Results

As mentioned above, our main results in Theorem A.I, Theorem A.II, and Theorem A.III concern
rigidity of certain deformations of integrable metrics (in the sense of Question (Q2)), which, by
means of the Maupertuis principle, correspond to perturbations of the form (A.2.3). More precisely,
under the assumptions formulated above, our results show that the perturbed Hamiltonian function
(A.2.3) has to be of the same general form as the unperturbed Hamiltonian function (A.2.1). This
means, that the potential U is separable, i.e. there exist U1, U2 ∈ C

2(T2) such that

U(x) = U1(x
1
) +U2(x

2
) .

Theorem A.I. Let Hε from (A.2.3) satisfy Assumption (A1) and Assumption (P) for some energy
e > 0. Then U is separable in a sum of two single-valued functions.

Put briefly, in view of of the Maupertuis principle, this means that integrable deformations in the same
conformal class of a flat metric are Liouville metrics. Now, Theorem A.II generalizes Theorem A.I to
Hamiltonian functions which depend on one toral position variable via a mechanical potential.

Theorem A.II. Let Hε from (A.2.3) satisfy Assumption (A2) and Assumption (P) for some energy
e > 0. Then the following holds:

7Having C1-regularity here would be sufficient for our proofs in Section A.4. However, we chose C1,1-regularity for
the formulation of Assumption (P) to be in agreement with the statement from Proposition A.2.1 (b). More precisely,
C1,1-regularity is kind of a compromise between the true C3-regularity of uc and the required C1-regularity of uε,c.
In addition, C1,1 is the optimal regularity for subsolutions of (A.2.9), which exist, even if the Hamiltonian Hε is not
integrable (see [256, 66]).
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(a) If µ̃2 = µ̃2(C2,deg(2)U , e) > 0 is small enough (see Lemma A.4.2), we have that U is separable
in a sum of two single-valued functions.

(b) If, additionally, V2 is analytic, then U is separable, irrespective of µ̃2 > 0, but only for µ2 ∈ [0, µ̃2]
outside of an exceptional null-set.

Therefore, by means of the Maupertuis principle, we infer that integrable deformations in the same
conformal class of metrics realizing surfaces of revolution (see Section A.3.2) are Liouville metrics.
Finally, Theorem A.III generalizes the above results to Hamiltonian functions, which correspond to
arbitrary Liouville metrics by means of the Maupertuis principle.

Theorem A.III. Let Hε from (A.2.3) satisfy Assumption (A3) and Assumption (P) for some energy
e > 0. Then the following holds:

(a) If µ̃1 = µ̃1(C1,deg(1)U ,deg(2)U , e) > 0 and µ̃2 = µ̃2(C2,deg(1)U ,deg(2)U , e) > 0 are small enough
(see Lemma A.4.3), we have that U is separable in a sum of two single-valued functions.

(b) If, additionally, V2 is analytic and µ̃1 = µ̃1(C2,deg(1)U ,deg(2)U , e) > 0 is small enough, then
U is separable, irrespective of µ̃2 > 0, but only for µ2 ∈ [0, µ̃2] outside of an exceptional
one-dimensional null-set (depending on µ1 ∈ [0, µ̃1]).

(c) If both, Vi for i = 1, 2, are analytic, then U is separable, irrespective of µ̃1, µ̃2 > 0, but only for
(µ1, µ2) ∈ [0, µ̃1] × [0, µ̃2] outside of an exceptional two-dimensional null-set.

Our results formulated in Theorem A.I, Theorem A.II, and Theorem A.III can each be viewed as a
verification of a special case of the following conjecture, saying that ‘(nice) integrable deformations
of Liouville metrics are Liouville metrics’.

Conjecture: Deformational rigidity of Liouville metrics.
Let g be a Liouville metric on T2 and let (gt)t∈[0,1] with g0 = g be a deformation that preserves all
rational invariant tori (except finitely many). Then gt is a Liouville metric for all t ∈ [0,1].
This conjecture is in strong analogy to the perturbative Birkhoff conjecture for integrable billiards,
which is discussed in Section A.3.4 below.

A.3 Literature review: Integrable metrics on the torus
As pointed out in Section A.1.2, integrability of metrics on one-dimensional manifolds is not
questionable and the first non-trivial examples occur whenever M has dimension two. Recall from
Definition A.1.3 that integrability of metrics on two-dimensional manifolds requires the existence of
only one additional first integral (beside the Hamiltonian).

A.3.1 Topological obstructions
The following Theorem due to Kozlov [380, 381] (see [74] for a strengthened version of this result)
categorizes two-dimensional compact manifolds regarding the possibility to endow them with an
integrable metric (see Question (Q1)).

Theorem A.3.1. (Kozlov [380, 381])
Let M be a two-dimensional compact and real-analytic manifold that is endowed with a real-analytic
Riemannian metric g. If the Euler characteristic χM of M is negative, then there exists no other
non-trivial real-analytic first integral.

A result similar to Theorem A.3.1 holds for polynomially integrable geodesic flows.
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Theorem A.3.2. (Kolokoltsov [374])
There exist no polynomially integrable geodesic flow on a closed two-dimensional Riemannian manifold
M with negative Euler characteristic χM .

Recall that any two-dimensional compact manifold M can be represented either as the sphere with
handles or the sphere with Möbius strips, in the orientable and non-orientable case, respectively. The
Euler characteristic χM can be computed as

χM = 2 − 2g resp. χM = 2 −m,

where g is the number of handles (the genus) and m is the number of Möbius strips. In order
to have integrability, the above theorem imposes the condition χM ≥ 0 on M and we thus know
that the number of handles is at most 1 and the number of Möbius strips is not greater than 2.
Therefore, any real-analytic two-dimensional compact Riemannian manifold (M,g) with real-analytic
(or polynomial) additional integral is either the sphere S2 or the torus T2 (in the orientable case), or
the projective plane RP2 or the Klein bottle K2 (in the non-orientable case).8

In this work, we focus on integrable metrics on the torus T2 and refer to works by Bolsinov, Fomenko,
Matveev, Kolokoltsov and others [95, 263, 374, 472] for studies on integrable metrics on the sphere,
the projective plane, and the Klein bottle. See [131, 92] for recent surveys on open problems and
questions concerning geodesics and integrability of finite-dimensional systems in general.

A.3.2 Linearly and quadratically integrable metrics
The first non-trivial class of integrable metrics on the torus T2 are surfaces of revolution. Consider a
two-dimensional surface M ⊂R3 given by the equation r = r(z) in standard cylindrical coordinates
(r,φ, z) ∈ (0,∞) × [0,2π) ×R. As local coordinates on M we take z and φ. In case that r(z) is
L-periodic and we identify 0 and L, then M is diffeomorphic to the torus T2 and the Riemannian
metric induced on M by the Euclidean metric on R3 has line element

ds2
= (1 + r′(z)2)dz2

+ r(z)2dφ2 . (A.3.1)

Since the corresponding Hamiltonian function (A.1.5) is independent of φ, its associated momentum
variable pφ is an additional first integral and thus the metric (A.3.1) is integrable. Note that the
additional first integral is linear in the momentum variables.

As discussed earlier, a Riemannian metric g on T2 is called a Liouville metric, whenever its line
element can be written in the form (A.1.1) in appropriate global coordinates (x1, x2) and where f1
and f2 are smooth positive periodic functions. The corresponding Hamiltonian function (A.1.5) is
given by

H(x1, x2, p1, p2) =
p2

1 + p
2
1

2 (f1(x1) + f2(x2))

and an additional first integral can easily be obtained as

F (x1, x2, p1, p2) = p
2
1 − f1(x

1
)H(x1, x2, p1, p2) .

Therefore, clearly, also Liouville metrics are integrable. Note that the additional first integral F
is quadratic in the momentum variables. It is not hard to see that a surface of revolution is just
a particular case of a Liouville metric, where one can choose, e.g., f2 ≡ 0, by employing a simple
change of variables.

8In [97], Bolsinov and Taimanov give a striking example of a real-analytic Riemannian manifold of dimension three,
whose geodesic flow has the peculiar property, that it is smoothly (but not analytically) integrable although it has
positive topological entropy [11]. The problem of proving (non-)existence of smoothly (but not analytically) integrable
geodesic flows on compact surfaces of genus g > 1 is widely open (see [131]).
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The following proposition also provides the converse to the observation that surfaces of revolution
and Liouville metrics admit additional first integrals which are linear and quadratic in the momenta,
respectively. It collects several statements that have been proven in early works by Dini [225],
Darboux [196], and Birkhoff [84], and were further developed by Babenko and Nekhoroshev [34],
Kiyohara [367], Kolokoltsov [374], and others.

Proposition A.3.3. (Linear and quadratic first integrals [225, 196, 84, 34, 367, 374])

(a) Let the metric g on T2 possess an additional first integral F that is linear in the momenta.
Then there exist global periodic coordinates (x1, x2) on the torus such that the line element
of g takes the form

ds2
= f(x1

) (a (dx1
)

2
+ cdx1 dx2

+ b (dx2
)

2) ,

where f is some positive periodic function and a, b, c ∈ R such that the quadratic form
a (dx1)2 + cdx1 dx2 + b (dx2)2 is positive definite.
Conversely, any such metric on the torus T2 admits an additional first integral that is linear in
the momentum variables.
In case a linear in momenta F exists locally near a point q ∈ T2, then there exists local
coordinates (x1, x2) near q such that the line element of g reads

ds2
= f(x1

) ((dx1
)

2
+ (dx2

)
2) .

(b) A metric g on T2 possess an additional first integral F that is quadratic in the momenta if
and only if there exists a finite-sheeted covering π ∶ T̃2

→ T2 by another torus, such that the
lifted metric g̃ = π∗g is globally Liouville, i.e. there exist global periodic coordinates (x1, x2)

on T̃2 and smooth positive periodic functions f1 and f2 such that the line element of g̃ takes
the form (A.1.1).
There exist Riemannian metrics g on T2 which are not globally Liouville but have an additional
first integral that is quadratic in the momentum variables.
In case a quadratic in momenta F exists locally near a point q ∈ T2, then there exist local
coordinates (x1, x2) near q such that the line element of g takes the form (A.1.1).

This classical result completely characterizes the integrable metrics g on T2 that admit an additional
first integral that is linear or quadratic in the momentum variables. Similar results hold for Riemannian
metrics on general two-dimensional manifolds [95, 263, 374, 472].

A.3.3 Polynomially integrable metrics of higher degree
In the case of a sphere S2, one can easily construct examples of metrics which admit an additional
first integral that is cubic resp. quartic in the momentum variables. Using the Maupertuis principle,
these can be obtained from the metrics constructed from Goryachev-Chaplygin [296, 142] and
Kovaleskaya [379] in the situation of the dynamics of a rigid body. Therefore, let h > 1 be large
enough (cf. (A.1.10)) and define the metrics g3 and g4 on R3 via their respective line elements

ds2
3 =

h − x1

4
(dx1)2 + (dx2)2 + 4(dx3)2

(x1)2 + (x2)2 + (x3)2/4
, ds2

4 =
h − x1

2
(dx1)2 + (dx2)2 + 2(dx3)2

(x1)2 + (x2)2 + (x3)2/2
.

By restriction of g3 and g4 to the unit sphere S2 ⊂R3, the resulting metrics admit an additional first
integral that is cubic resp. quartic in the momentum variables. It was shown by Bolsinov, Fomenko
and Kozlov [93, 96] that these cannot be reduced to first integrals that are polynomially in the
momentum variables of a lower degree, i.e. they are not linearly or quadratically integrable. Since
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all attempts to construct such examples for the case of the torus have failed so far, the following
folklore conjecture emerged.

Folklore Conjecture. Liouville metrics are the only integrable metrics on T2.

In this general form, there is strong indication for conjecture being false, as to be shown below (see
Theorem A.3.7). We will, however, provide existing results, which indicate that a certain weaker
version of this conjecture, also formulated below, is indeed true.

It was proven by Korn and Lichtenstein [377, 417] that on every point on a two-dimensional
Riemannian manifold (M,g) there exist locally isothermal coordinates, that is, locally, the line
element takes the form

ds2
= λ(x1, x2

) ((dx1
)

2
+ (dx2

)
2) , (A.3.2)

where λ is some smooth positive function. In the case of a torus, it can be shown (by virtue of the
uniformization theorem) that there exist global isothermal coordinates (not necessarily periodic),
so the metric g is conformal equivalent to the Euclidean metric geucl. In particular, assuming that
(x1, x2) are just the angular coordinates on the torus T2 and in the special case of λ being a
trigonometric polynomial,9 we have the following result due to Denisova and Kozlov.

Theorem A.3.4. (Denisova-Kozlov [212])
Let λ from (A.3.2) be a trigonometric polynomial and assume that the geodesic flow on T2 is
polynomially integrable. Then there exists an additional polynomial first integral of degree at most
two.

Note that by Weierstrass’s Theorem, any conformal factor λ can be approximated as closely as
required by a trigonometric polynomial. However, in the case of a general conformal factor λ, there
is the following Theorem, again due to Denisova and Kozlov [213].

Theorem A.3.5. (Denisova-Kozlov [213])
Assume that the geodesic flow on (T2, g) is polynomially integrable with first integral F of degree n
such that

(a) if n is even, then F is an even function of p1 and p2,

(b) if n is odd, then F is an even function of p1 (or p2) and an odd function of p2 (or p1).

Then there exists an polynomial first integral of degree at most two.

In the following Theorem we collect several results from Bialy [72], Denisova, Kozlov [214], and
Treshchev [215], Agapov and Aleksandrov [12], and Mironov [449].

Theorem A.3.6. Let H be a natural mechanical Hamiltonian (see (A.1.9)) on the torus T2 equipped
with the flat metric geucl. Assume that H is polynomially integrable of degree n. If n = 3,4, there
exists another polynomial first integral of degree at most two. Whenever H is a real-analytic
Hamiltonian, this is also true for n = 5.

Kozlov and Treshchev [382] considered the problem from yet another point of view. They investigated
the case of a mechanical Hamiltonian

H =
1
2∑ij

aijpipj + V (x
1, ..., xn) ,

9This means that the spectrum Sλ defined in (A.2.4) is bounded.

629



A. Deformational rigidity of Liouville metrics on the torus

where A = (aij)ij is a positive definite matrix and V is a trigonometric polynomial of (x1, ..., xn) ∈ Tn.
On the one hand, they show that there exist n polynomial first integrals if and only if the spectrum
SV of V is contained in m ≤ n mutually orthogonal lines meeting at the origin. On the other hand,
they showed that whenever there exist n polynomial integrals with independent forms of highest
degree, then there exist n independent involutive polynomial first integrals of degree at most two. In
case that aij = δi,j (which can be achieved by diagonalization and scaling), Combot [180] improved
the first result from the assumption of polynomial integrability to rational integrability, i.e. the
additional first integrals being rational functions of pi and ei2πxi . More recently [518, 331, 519],
the problem was rephrased in the language of Killing tensor fields on T2, where the order of an
additional (polynomial) first integral is replaced by the rank of a Killing tensor filed.

The results of Theorems A.3.4, A.3.5 and A.3.6 support the validity of the following weaker version
of the folklore conjecture formulated by Denisova and Kozlov [212].

Conjecture. [212] If g is a metric on T2 that is polynomially integrable, then there exists an
additional polynomial first integral of degree at most two.

By Proposition A.3.3 this means that polynomially integrable metrics on T2 are Liouville metrics.
However, beside the partial results given above, a proof of this conjecture is still open. The numerous
attempts on proving it used methods of complex analysis [84, 34] and the theory of PDEs [77, 78].
More precisely, it is shown by Kolokoltsov [374] that there exists an additional first integral quadratic
in the momenta if and only if there exists a holomorphic function R(z) = R1(z) + iR2(z), with real
valued R1 and R2 and z = x1 + ix2, which solves

R2(∂
2
x2λ − ∂

2
x1λ) +R1(∂x1∂x2λ) − 3(∂x1R2)(∂x1λ) + 3(∂x2R2)(∂x2λ) + 2(∂2

x2R2)λ = 0 , (A.3.3)

where λ denotes the conformal factor from (A.3.2). Note that the second term in (A.3.3) disappears
whenever λ is the conformal factor of a Liouville metric. In this situation, the linear PDE (A.3.3)
always has a holomorphic solution R = R1+ iR2. The existence of first integrals of higher degree turns
out to be equivalent to delicate questions about non-linear PDEs of hydrodynamic type [77, 76, 78].
The PDE-approach has also successfully been applied to generate new examples of integrable magnetic
geodesic flows as analytic deformations of Liouville metrics on T2 without magnetic field (see [13]).In
fact, the examples from [13] disprove the folklore conjecture when understood in the larger class of
magnetic geodesic flows.

However, even for the original folklore conjecture stated above, there is a result due to Corsi and
Kaloshin [182], which indicates it being false in the following (considerably weaker) sense.

Theorem A.3.7. (Corsi-Kaloshin [182])
There exists a real-analytic mechanical Hamiltonian

Hε(x
1, x2, p1, p2) =

p2
1 + p

2
2

2
+U(x1, x2; ε)

with a non-separable10 potential U and an analytic change of variables Φ such that Hε○Φ = (p2
1+p

2
2)/2

on the energy surface {Hε = 1/2} and p ∈ P , where P denotes a certain cone in the action space.

If one assumes that the whole phase space T ∗T2 is foliated by two-dimensional invariant Liouville
tori (which is often called C0-integrability or complete integrability), then it follows from Hopf
conjecture [350, 130] that the associated metric must be flat.11 This notion of integrability is thus
too strong for a meaningful characterization of integrable metrics on T2.

10The function U is called non-separable whenever it cannot be written as a sum of two single-valued functions.
11Similar results have been shown for geodesic flows of more general Finsler metrics on T2 preserving a sufficiently

regular foliation of the phase space [290, 289]
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A.3.4 Analogy to integrable billiards

The fundamental question (Q2) of characterizing integrable metrics on the torus T2 can be thought
of as an analogue of identifying the class of integrable billiards [361]. For billiards, integrability is
understood in a similar way as for the geodesic flow (see Definition A.1.3). More precisely, integrability
is characterized either through the existence of an integral of motion (near the boundary of the billiard
table) for the so called billiard ball map, or the existence of a foliation of the phase space (globally,
or near the boundary), consisting of invariant curves. The classical Birkhoff conjecture [85, 493]
states that the boundary of a strictly convex integrable billiard table is necessarily an ellipse. This
corresponds to the folklore conjecture formulated above. Remarkably, while the Birkhoff conjecture
is believed to be true, and there is strong evidence that this indeed the case [79, 285, 33, 362],12

the folklore conjecture in its general form was shown to be false by Theorem A.3.7.

However, recall that, if one assumes C0-integrability of a metric on T2, the metric is actually flat
[350, 130]. This corresponds to the following result from Bialy in the case of billiards.

Theorem A.3.8. (Bialy [73])
If the phase space of the billiard ball map is completely foliated by continuous invariant curves which
are all not null-homotopic, then the boundary of the billiard table is a circle.

Following a similar strategy leading to Theorem A.3.8, Bialy and Mironov [80] proved the Birkhoff
conjecture for centrally symmetric billiards, assuming only local C0-integrability, i.e. the foliation of
a suitable open proper subset of the phase space. Beside this, the weakened version of the folklore
conjecture (polynomial integrals can be reduced to integrals of degree at most two) corresponds to
the so called algebraic Birkhoff conjecture, which has recently been proven [79, 285].

The main results of this paper in Theorem A.I, Theorem A.II, and Theorem A.III prove special cases
of our conjecture that integrable deformations of Liouville metrics which preserve all (but finitely
many) rational invariant tori are again Liouville metrics. This is related to the following conjecture in
the case of billiards.

Perturbative Birkhoff conjecture. [361] A smooth strictly convex domain that is sufficiently close
to an ellipse and whose corresponding billiard ball map is integrable, is necessarily an ellipse.

A first result in this direction was obtained by Delshams and Ramírez-Ros [211]. More recently,
Avila, De Simoi, and Kaloshin [33] proved the conjecture for domains which are sufficiently close to
a circle. The complete proof for domains sufficiently close to an ellipse of any eccentricity is given by
Kaloshin and Sorrentino in [362]. Both works require the preservation of rational caustics13 which
can be thought of as an analogue for the preservation of rational invariant tori as a fundamental
assumption of our main results from Section A.2. The result in [33] was later extended by Huang,
Kaloshin, and Sorrentino [352] to the case of local integrability close to the boundary and finally
significantly improved by Koval [378].

Finally, as shown by Vedyushkina and Fomenko [580], linearly and quadratically integrable geodesic
flows on orientable two-dimensional Riemannian manifolds are Liouville equivalent to topological
billiards, glued from planar billiards bounded by concentric circles and arcs of confocal quadrics,
respectively.

12On the opposite side, Treschev constructed a non-elliptic billiard table which is formally integrable close to a
two-periodic orbit [565, 566, 567]. This formal power series has recently been shown to be of Gervey class of order
σ > 9/4 [584].

13A curve Γ is a caustic for the billiard in the domain Ω if every time a trajectory is tangent to it, then it remains
tangent after every reflection according to the billiard ball map.
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A.4 Proofs
In this Section we prove our main result as formulated in Theorem A.I, Theorem A.II, and Theo-
rem A.III. All proofs will, in general, follow the same three step strategy.

(i) Transform the unperturbed system H0 in action-angle coordinates (cf. Theorem A.1.6, in
particular eq. (A.1.8)).

(ii) Derive a first-order harmonic equation (i.e. concerning the Fourier coefficients) for the pertur-
bation by Assumption (P).

(iii) Annihilate sufficiently many Fourier coefficients of the perturbing potential by proving a certain
full-rank condition for a naturally associated linear system for each of the three theorems
separately (cf. Lemmas A.4.1, A.4.2, and A.4.3). Finally, for analytic potentials Vi, the
extensions of our results beyond the perturbative regime are proven by exploiting the analytic
dependence of the linear system on µi (see Appendix A.C).

A.4.1 Proof of Theorem A.I
Step (i). Fix an energy e > 0. Since the Hamiltonian is already in action-angle coordinates
(cf. (A.1.8)), we simply change notation and write (xi, pi) = (θi, Ii) for i = 1, 2 as well as θ = (θ1, θ2)
and I = (I1, I2), such that the perturbed Hamiltonian function Hε takes the form

Hε(θ, I) =
I2

1
2
+
I2

2
2
+ εU(θ) .

Step (ii). By Assumption (P), for any (n,m) ∈ B0(S
⊥
U) (recall (A.2.6)), we can find (in the isoenergy

manifold Teε with energy e = eε and ε = εk for some k ∈N) a rational invariant invariant Liouville
torus with rotation vector ω = (ω1, ω2) which satisfies

ω1
ω2
=
n

m
∈ Q . (A.4.1)

Moreover, we fix c ∈H1(T2,R) ≅R2 to be given by c = (ω1, ω2). We make this choice to cancel
the average over a trajectory (A.4.3) of the first term on the rhs. of (A.4.2) (cf. also (A.4.6)–(A.4.8)
below).

Using Assumption (P) again, we can expand the Hamilton-Jacobi equation (A.2.9) as

αε(c) =Hε(θ,c +∇uε,c(θ))

=
∣∂θ1uε,c(θ) + c1∣

2

2
+
∣∂θ2uε,c(θ) + c2∣

2

2
+ εU(θ)

=
c2

1
2
+
c2

2
2
+ ⟨c,∇uε,c(θ)⟩ + εU(θ) +

(∂θ1uε,c(θ))
2

2
+
(∂θ2uε,c(θ))

2

2
.

and it holds that
uε,c = u

(0)
c + εu

(1)
c +Oc(ε

2
)

with u
(0)
c = u0,c. Since H0(θ, I) is integrable (and written in action-angle coordinates), one can

choose u0,c ≡ 0. By (A.D.8) in Proposition A.D.9 (see also [288]) we have α(1)(c) = [U]0, where

[U]0 = ∫
T2
U(x1, x2

)dx1
∧ dx2 .

Since the sequence (εk)k∈N from Assumption (P) converges to zero, we compare coefficients and
establish the first order equation

[U]0 = α
(1)
(c) = ⟨c,∇u

(1)
c (θ)⟩ +U(θ) . (A.4.2)
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Averaging (A.4.2) over the trajectory θ(t) = θ0 +ωt ∈ T2, with initial position θ0 ∈ T2 and where
ω = c is chosen according to (A.4.1), such that the period Tω satisfies Tω ⋅ω = (n,m), we get

[U]0 =
1
Tω
∫

Tω

0

d
dt
u
(1)
ε,c (θ(t))dt +

1
Tω
∫

Tω

0
U(θ(t))dt . (A.4.3)

The first integral vanishes since θ(0) = θ(Tω) such that we are left with

∫

1

0
(U(θ1

0 + nt, θ
2
0 +mt) − [U]0)dt = 0 (A.4.4)

for all θ0 = (θ
1
0, θ

2
0) ∈ T2, which easily follows from (A.4.3) after a change of variables.

Before continuing with the third and final step, we have two important observation: First, by replacing
U → U − [U]0, we can assume w.l.o.g. that [U]0 = 0. Second, we define the separable part, Usep, of
U as

Usep(x
1, x2
) ∶= ∑

(k1,k2)∈SU∖SU,0

Uk1,k2ei2πk1x1
ei2πk2x2

(A.4.5)

(recall the definition of the spectrum and the non-singular spectrum in (A.2.4) and (A.2.5)). Then,
after a simple computation, we find that

∫

1

0
Usep(θ

1
0 + nt, θ

2
0 +mt)dt = [Usep]0 , ∀(θ1

0, θ
2
0) ∈ T2 ,

holds generally (i.e. independent of the first order relation (A.4.2)) by means of (A.D.8) in Propo-
sition A.D.9 (see also Remark A.D.8). We can thus split off the separable part and assume that
SU = SU,0 in the following. Hence, the third step consists of showing that SU = SU,0 = ∅.

Step (iii). The goal of this final step is to establish the following lemma.

Lemma A.4.1. Let (n,m) ∈ B0(S
⊥
U) as in (A.4.1) from Step (ii). Then Ujm,−jn = 0 for all

j ∈ Z ∖ {0}.

Since (n,m) ∈ B0(S
⊥
U) were arbitrary, this proves that

SU ⊂ ({0} ×Z) ∪ (Z × {0}) ,

or equivalently SU,0 = ∅ and we have shown Theorem A.I. It remains to prove Lemma A.4.1.

Proof of Lemma A.4.1. Starting from (A.4.4) we perform a Fourier decomposition to infer

∑
k1,k2≠0

[Uk1,k2 ∫

1

0
ei2πk1ntei2πk2mtdt] ei2πk1θ1

0 ei2πk1θ2
0 = 0 ∀(θ1

0, θ
2
0) ∈ T2 ,

which implies that
Uk1,k2 ⋅ δk1n+k2m,0 = 0 .

Applying Lemma A.4.1 for every (n,m) ∈ B0(S
⊥
U), we find that SU,0 = ∅, which finishes the proof of

Theorem A.I.
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A.4.2 Proof of Theorem A.II
For notational simplicity, we write µ ≡ µ2 > 0 and V ≡ V2 ∈ C

2(T).

Step (i). We fix an energy e > 0 and consider the region of the phase space, where the subsystem in
the second pair of coordinates is rotating, i.e.

p2
2

2
− µV (x2

) = e(2) > 0

and for p2
1
2 = e

(1) > 0 we have e = e(1) + e(2). In a neighborhood of each of the two Liouville tori
characterized by H0 = e and p2

1
2 = e

(1) we can find a change of variables (x2, p2) = Φ(2)µ (θ2, I2)
(and we denote (x1, p1) = (θ

1, I1)) such that the Hamiltonian function H0 gets transformed in
action-angle coordinates (see (A.1.8)), i.e.

H0(θ
1, I1,Φ(2)µ (θ2, I2)) =

I2
1
2
+ h(2)µ (I2)

for some smooth function h(2)µ agreeing with Mather’s α-function for the one-dimensional subsystem
described by the Hamiltonian p2

2
2 − µV (x

2) (see Appendix A.D). The change in the order of the four
arguments of H0 should not lead to confusion. Now, the perturbed Hamiltonian takes the form

Hε(θ
1, I1,Φ(2)µ (θ2, I2)) =

I2
1
2
+ h(2)µ (I2) + εU(θ

1, x2
(θ2, I2, µ)) ,

where we write x2
µ(θ

2, I2) for the first component of Φ(2)µ (θ2, I2).

Step (ii). Assume w.l.o.g. that the 2-degree deg(2)U of U is at least 1 (recall (A.2.7)), as otherwise
we had U(x) = U1(x

1) and Theorem A.II was proven. Then, for any (n,m) ∈ B0(S
⊥
U), in particular

with ∣n∣ ≤ deg(2)U , we can find (in the isoenergy manifold Teε with energy e = eε and ε = εk for some
k ∈N) a rational invariant Liouville torus with rotation vector ω = (ω1, ω2), which satisfies

ω1
ω2
=
n

m
∈ Q and ω = (c1,∇h

(2)
µ (c2)) (A.4.6)

for some c ∈ H1(T2,R) ≅ R2 with c1 = ω1 (as around (A.4.1)) and ∣c2∣ > γ +
√
µc(V ) for some

γ = γ(e,deg(2)U ) > 0, which we fix now. This new parameter γ quantifies a safe distance (depending
on the total energy e > 0 and the degree of the trigonometric polynomial) to the region, opposite to
where (i) the change of variables Φ(2)µ has bounded derivative (cf. (A.4.7)) and (ii) the function h(2)µ
is bounded from below (cf. (A.4.12)). In Section A.4.3 we will have two such parameters, γ1, γ2, for
both coordinates directions which get transformed by some Φ.

By Assumption (P) we have
uε,c = u

(0)
c + εu

(1)
c +Oc(ε

2
)

with u(0)c = u0,c and since H0(θ, I) is integrable (and written in action-angle coordinates), one can
choose u0,c ≡ 0. Therefore, by Assumption (P) again, we expand the Hamilton Jacobi equation
(A.2.9) as

αε(c) =Hε(θ,c +∇uε,c(θ)) (A.4.7)

=
∣∂θ1uε,c(θ) + c1∣

2

2
+ h(2)µ (∂θ2uε,c(θ) + c2) + εU(θ

1, x2
µ(θ

2, ∂θ2uε,c(θ) + c2))

=
c2

1
2
+ h(2)µ (c2) + ε ⟨(c1,∇h

(2)
µ (c2)) ,∇u

(1)
ε,c (θ)⟩ + εU(θ

1, x2
µ(θ

2, c2))

+O (∥(∇
2h(2)µ )∣{∣c2∣>γ+

√
µc(V )}∥C0ε2

) +O (∥(∂I2Φ(2)µ )∣{∣c2∣>γ+
√
µc(V )}∥C0ε2

)
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Since ∣c2∣ > γ +
√
µc(V ), both error terms are of the order Oγ(ε2).

Analogously to the proof of Theorem A.I we thus obtain the first order equation

[U]0 = ⟨(c1,∇h
(2)
µ (c2)) ,∇u

(1)
ε,c (θ)⟩ +U(θ

1, x2
µ(θ

2, c2)) (A.4.8)

where the constant α(1) ≡ [U]0 is given in (A.D.8) in Proposition A.D.9 (see also [288]). Just as
in the proof of Theorem A.I, after averaging (A.4.8) over the trajectory θ(t) = θ0 +ωt ∈ T2, with
initial position θ0 ∈ T2 and where ω is chosen according to (A.4.6), such that the period Tω satisfies
Tω ⋅ω = (n,m), we find

∫

1

0
(U(θ1

0 + nt, x
2
µ(θ

2
0 +mt, c2)) − [U]0)dt = 0 (A.4.9)

for all θ0 = (θ
1
0, θ

2
0) ∈ T2.

Finally, analogously to Section A.4.1, we may assume w.l.o.g. [U]0 = 0 and observe that

∫

1

0
Usep(θ

1
0 + nt, x

2
µ(θ

2
0 +mt, c2))dt = [Usep]0 ∀(θ1

0, θ
2
0) ∈ T2

holds generally (i.e. independent of the first order relation (A.4.8)) by a simple calculation based on
(A.D.8) in Proposition A.D.9 (see also Remark A.D.8). We can thus split off the separable part Usep
of U defined in (A.4.5) and assume that SU = SU,0 in the following. Hence, the third step consists
of showing that SU = SU,0 = ∅.

Step (iii). We begin this final step with performing a Fourier decomposition in (A.4.9), such that
we obtain

∑
k1≠0

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∑

0≠∣k2∣≤deg(2)U

Uk1,k2 ∫

1

0
ei2πk1ntei2πk2x2

µ(θ2
0+mt,c2)dt

⎤
⎥
⎥
⎥
⎥
⎥
⎦

ei2πk1θ1
0 = 0 , ∀(θ1

0, θ
2
0) ∈ T2 ,

which implies that [⋯] = 0 for every k1 ∈ Z ∖ {0} and θ2
0 ∈ T.

After having eliminated θ1
0 ∈ T, we now fix some k1 ∈ Z ∖ {0} and consider the family of functions

(f
(k1,µ)
k2

)0≠∣k2∣≤deg(2)U

in the Hilbert space L2(T), where

f
(k1,µ)
k2

∶ T→C , θ2
0 ↦ ∑

(n,m)∈B0(S⊥U )
∃0≠∣k̃2∣≤deg(2)U

∶k1n+k̃2m=0

∫

1

0
ei2πk1ntei2πk2x2

µ(θ2
0+mt,c2)dt . (A.4.10)

Note that the sum in (A.4.10) is finite by Assumption (A2) (more precisely, it ranges over at most
2 ⋅ deg(2)U elements from B0(S

⊥
U)) and we suppressed the dependence of ∣c2∣ > γ +

√
µc(V ) on

(n,m) ∈ B0(S
⊥
U) from the notation (recall (A.4.6)).

In this way, the problem of proving Theorem A.II, i.e. justifying SU,0 = ∅, reduces to a question
about linear independence for the family of functions (A.4.10) in the Hilbert space L2(T). Recall
that the family (f (k1,µ)

k2
)0≠∣k2∣≤deg(2)U

being linearly independent is equivalent to the Gram matrix

G(k1,µ) = (G
(k1,µ)
k2,k′2

)0≠∣k2∣,∣k′2∣≤deg(2)U

with G
(k1,µ)
k2,k′2

∶= ⟨f
(k1,µ)
k2

, f
(k1,µ)
k′2

⟩
L2(T) (A.4.11)

being of full rank, where ⟨g, h⟩L2(T) denotes the standard inner product of g, h ∈ L2(T).

Lemma A.4.2. There exists µ̃ = µ̃(C2,deg(2)U , e) > 0 such that for all µ ∈ [0, µ̃] the Gram matrix
G(k1,µ) from (A.4.11) is of full rank.
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Proof. Using the version of Lemma A.B.1 for the inverse function, we find that

∥ei2πk2x2
µ( ⋅ ,c2) − ei2πk2 ⋅∥

C0
= O(deg(2)U

µ∥V ∥C0

hµ(γ +
√
µc(V ))

) =∶ O(µ) (A.4.12)

uniformly in ∣k2∣ ≤ deg(2)U and (n,m) ∈ B0(S
⊥
U).

With a slight abuse of notation for the error term, the elements G(k1,µ)
k2,k′2

of the Gram matrix can thus
be computed as

∫

1

0
dθ2

0
⎛

⎝
[ ∑
(n,m)

∫

1

0
dt e−i2πk1nt (e−i2πk2mt +O(µ)) ]e−i2πk2θ2

0 ×

× ei2πk′2θ2
0[ ∑
(n′,m′)

∫

1

0
dt′ei2πk1n′t′ (ei2πk′2m′t′ +O(µ)) ]

⎞

⎠
,

where the summations over (n,m) and (n′,m′) are understood as in (A.4.10). Using that, for every
(k1, k2) ∈ SU,0 there exist exactly two elements from B0(S

⊥
U) (differing by a sign), we can evaluate

both brackets [⋯] being equal to 2 +O(deg(2)U µ).

From this we conclude that

G
(k1,µ)
k2,k′2

= ∫

1

0
dθ2

0 [2 +O(deg(2)U µ)] ei2π(k′2−k2)θ2
0 [2 +O(deg(2)U µ)] = 4 δk2,k′2

+O(deg(2)U µ) .

Therefore, going back to (A.4.12), we infer the existence of µ̃ = µ̃(C2,deg(2)U , e) > 0 such that for all
µ ∈ [0, µ̃] the Gram matrix G(k1,µ) from (A.4.11) is of full rank.

Since k1 ∈ Z ∖ {0} was arbitrary and Lemma A.4.2 is independent of k1, this concludes the proof of
Theorem A.II (a).

For part (b), we note that ei2πk2x2
µ(θ2

0+mt,c2) from (A.4.10) depends analytically on µ (see Ap-
pendix A.C). Therefore, the function µ↦ G(k1,µ) mapping to the Gram matrix (A.4.11), for every
fixed k1 ∈ Z∖ {0}, is also analytic.14 This in turn implies that det(G(k1,µ)) is analytic in µ and thus,
since det(G(k1,µ)) ≠ 0 for µ ∈ (0, µ̃) (see Lemma A.4.2), we find that the zero set

E
(k1)
0 ∶= {µ ∈ (0,∞) ∣ det(G(k1,µ)) = 0} ⊂ (µ̃,∞)

of µ↦ det(G(k1,µ)) is at most countable (finite in every compact subset), i.e. in particular a set of
zero measure. Finally, setting

E0 ∶= ⋃
k1∈Z∖{0}

E
(k1)
0 ,

we constructed the exceptional null set, for which the conclusion SU,0 = ∅ is not valid.

This finishes the proof of Theorem A.II (b).

A.4.3 Proof of Theorem A.III
Step (i). We fix an energy e > 0 and consider the region of the phase space, where both one-
dimensional subsystems are rotating, i.e.

p2
1

2
− µ1V1(x

1
) = e(1) > 0 and p2

2
2
− µ2V2(x

2
) = e(2) > 0 ,

14Using joint continuity of (u,µ)↦ ei2πk2x2
µ(u,c2), it is an elementary exercise to show that the integrals over t and

θ2
0 do not disturb the analyticity in µ.
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such that we have e = e(1) + e(2). In a neighborhood of each of the two Liouville tori characterized
by H0 = e and p2

1
2 − µ1V1(x

1) = e(1), we can find two changes of variables (x1, p1) = Φ(1)µ1 (θ
1, I1)

and (x2, p2) = Φ(2)µ2 (θ
2, I2) such that the Hamiltonian function H0 gets transformed in action-angle

coordinates (see (A.1.8)), i.e.

H0(Φ(1)µ1 (θ
1, I1),Φ(2)µ2 (θ

2, I2)) = h
(1)
µ1 (I1) + h

(2)
µ2 (I2)

for some smooth functions h(1)µ1 and h
(2)
µ2 , which agree with Mather’s α-functions for the one-

dimensional subsystem described by the Hamiltonians p2
1
2 − µ1V (x

1) resp. p2
2
2 − µ2V (x

2) (see Ap-
pendix A.D). As in the proof of Theorem A.II, the change in the order of the four arguments of H0
should not lead to confusion.

Now, the perturbed Hamiltonian takes the form

Hε(Φ(1)µ1 (θ
1, I1),Φ(2)µ2 (θ

2, I2)) = h
(1)
µ1 (I1) + h

(2)
µ2 (I2) + εU(x

1
µ1(θ

1, I1), x
2
µ2(θ

2, I2)) ,

where we write xiµi
(θi, Ii) for the first component of Φ(i)µi (θ

i, Ii), i ∈ {1,2}.

Step (ii). Analogously to the proof of Theorem A.II, we assume w.l.o.g. that the 1- and 2-degree
deg(1)U and deg(2)U of U are at least 1 (recall (A.2.8)), as otherwise we had U(x) = U2(x

2) or
U(x) = U1(x

1) and Theorem A.III was proven. Then, for any (n,m) ∈ B0(S
⊥
U), in particular with

∣m∣ ≤ deg(1)U and ∣n∣ ≤ deg(2)U , we can find (in the isoenergy manifold Teε with energy e = eε and
ε = εk for some k ∈N) a rational invariant Liouville torus with rotation vector ω = (ω1, ω2) which
satisfies

ω1
ω2
=
n

m
∈ Q and ω = (∇h(1)µ1 (c1),∇h

(2)
µ2 (c2)) (A.4.13)

for some c ∈ H1(T2,R) ≅ R2 with ∣c1∣ > γ1 +
√
µ1c(V1) and ∣c2∣ > γ2 +

√
µ2c(V2) for some

γ1 = γ1(e,deg(1)U ) > 0 resp. γ2 = γ2(e,deg(2)U ) > 0, which we fix now (see the paragraph below
(A.4.6) for a discussion of the γ parameters).

By Assumption (P) we have
uε,c = u

(0)
c + εu

(1)
c +Oc(ε

2
)

with u(0)c = u0,c and since H0(θ, I) is integrable (and written in action-angle coordinates), one can
choose u0,c ≡ 0. Therefore, by Assumption (P) again, we expand the Hamilton Jacobi equation
(A.2.9) as

αε(c) =Hε(θ,c +∇uε,c(θ))

= h(1)µ1 (∂θ1uε,c(θ) + c1) + h
(2)
µ2 (∂θ2uε,c(θ) + c2)

+ εU(x1
µ1(θ

1, ∂θ1uε,c(θ) + c1), x
2
µ2(θ

2, ∂θ2uε,c(θ) + c2))

=
2
∑
i=1
h(i)µi
(ci) + ε ⟨(∇h

(1)
µ1 (c1),∇h

(2)
µ2 (c2)) ,∇u

(1)
ε,c (θ)⟩ + εU(x

1
µ1(θ

1, c1), x
2
µ2(θ

2, c2))

+O(
2
∑
i=1
(∥(∇

2h(i)µi
)∣{∣ci∣>γi+

√
µic(Vi)}∥C0 + ∥(∂IiΦ

(i)
µi
)∣{∣ci∣>γi+

√
µic(Vi)}∥C0)ε2

)

Since ∣ci∣ > γi +
√
µic(Vi), the error term is of order Oγi(ε

2).

Analogously to the proofs of Theorem A.I and Theorem A.II we thus obtain the first order equation

[U]0 = ⟨(∇h
(1)
µ1 (c1),∇h

(2)
µ2 (c2)) ,∇u

(1)
ε,c (θ)⟩ +U(x

1
µ1(θ

1, c1), x
2
µ2(θ

2, c2)) (A.4.14)

where the constant α(1) ≡ [U]0 is again given by (A.D.8) in Proposition A.D.9 (see also [288]).
Just as in the proof of Theorem A.I and Theorem A.II, after averaging (A.4.14) over the trajectory
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θ(t) = θ0 +ωt ∈ T2, with initial position θ0 ∈ T2 and where ω is chosen according to (A.4.13), such
that the period Tω satisfies Tω ⋅ω = (n,m), we find

∫

1

0
(U(x1

µ1(θ
1
0 + nt, c1), x

2
µ2(θ

2
0 +mt, c2)) − [U]0) dt = 0 (A.4.15)

for all θ0 = (θ
1
0, θ

2
0) ∈ T2.

Finally, analogously to Section A.4.1 and Section A.4.2, we may assume w.l.o.g. [U]0 = 0 and observe
that

∫

1

0
Usep(x

1
µ1(θ

1
0 + nt, c1), x

2
µ2(θ

2
0 +mt, c2))dt = [Usep]0 ∀(θ1

0, θ
2
0) ∈ T2

holds generally (i.e. independent of the first order relation (A.4.14)) by a simple calculation based on
(A.D.8) in Proposition A.D.9 (see also Remark A.D.8). We can thus split off the separable part Usep
of U defined in (A.4.5) and assume that SU = SU,0 in the following. Hence, the third step consists
of showing that SU = SU,0 = ∅.

Step (iii). We begin this final step with performing a Fourier decomposition in (A.4.15), such that
we obtain

∑

0≠∣k1∣≤deg(1)U

0≠∣k2∣≤deg(2)U

Uk1,k2 ∫

1

0
ei2πk1x1

µ1(θ
1
0+nt,c1)ei2πk2x2

µ2(θ
2
0+mt,c2)dt = 0 , ∀(θ1

0, θ
2
0) ∈ T2 .

Analogously to the proof of Theorem A.II, we now consider the family of functions

(f
(µ1,µ2)
k1,k2

)0≠∣k1∣≤deg(1)U ,0≠∣k2∣≤deg(2)U

in the Hilbert space L2(T2), where

f
(µ1,µ2)
k1,k2

∶ T2
→C , (θ1

0, θ
2
0)↦ ∑

(n,m)∈B0(S⊥U )
∫

1

0
ei2πk1x1

µ1(θ
1
0+nt,c1)ei2πk2x2

µ(θ2
0+mt,c2)dt . (A.4.16)

Note that the sum in (A.4.16) is finite by Assumption (A3) (more precisely, it ranges over the at most
(2 deg(1)U )⋅(2 deg(2)U ) elements from B0(S

⊥
U)) and we suppressed the dependence of ∣ci∣ > γi+

√
µic(Vi)

on (n,m) ∈ B0(S
⊥
U) from the notation (recall (A.4.13)).

In this way, the problem of proving Theorem A.III, i.e. justifying SU,0 = ∅, reduces to a question
about linear independence for the family of functions (A.4.16) in the Hilbert space L2(T2). Recall
that the family (f (µ)k1,k2

)(k1,k2)
being linearly independent is equivalent to the Gram matrix G(µ) with

entries

G
(µ1,µ2)
(k1,k2),(k′1,k

′
2)
∶= ⟨f

(µ1,µ2)
k1,k2

, f
(µ1,µ2)
k′1,k

′
2
⟩
L2(T2) for 0 ≠ ∣ki∣, ∣k′i∣ ≤ deg(i)U , i ∈ {1,2} , (A.4.17)

being of full rank, where ⟨g, h⟩L2(T2) denotes the standard inner product of g, h ∈ L2(T2).

Lemma A.4.3. There exist µ̃i = µ̃(Ci,deg(1)U ,deg(2)U , e) > 0 such that for all µi ∈ [0, µ̃i], i ∈ {1,2},
the Gram matrix G(µ1,µ2) from (A.4.17) is of full rank.

Proof. Using the version of Lemma A.B.1 for the inverse function, we find that

∥ei2πkix
i
µi
( ⋅ ,ci) − ei2πki ⋅∥

C0
= O(deg(i)U

µi∥Vi∥C0

h
(i)
µi (γi +

√
µic(Vi))

) =∶ O(µi) (A.4.18)

uniformly in ∣ki∣ ≤ deg(i)U and (n,m) ∈ B0(S
⊥
U).
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Similarly to Lemma A.4.2, with a slight abuse of notation for the error term, the elements
G
(µ1,µ2)
(k1,k2),(k′1,k

′
2)

of the Gram matrix can thus be computed as

∫

1

0
dθ1

0 ∫
1

0
dθ2

0
⎛

⎝
[ ∑
(n,m)

∫

1

0
dt (e−i2πk1nt +O(µ1)) (e−i2πk2mt +O(µ2)) ]e−i2πk1θ1

0 e−i2πk2θ2
0 ×

× ei2πk′1θ1
0 ei2πk′2θ2

0[ ∑
(n′,m′)

∫

1

0
dt′ (ei2πk′1n′t′ +O(µ1)) (ei2πk′2m′t′ +O(µ2)) ]

⎞

⎠
,

where the summations over (n,m) and (n′,m′) are understood as in (A.4.16). Using that for every
(k1, k2) ∈ SU,0 there exist exactly two elements from B0(S

⊥
U) (differing by a sign), we can evaluate

both brackets [⋯] being given by

2 +O(deg(1)U deg(2)U µ1) +O(deg(1)U deg(2)U µ2) =∶ 2 +O(deg(1)U deg(2)U (µ1 + µ2)) ,

after absorption of the second order error in the first order ones.

From this we conclude that

G
(µ1,µ2)
(k1,k2),(k′1,k

′
2)
= ∫

1

0
dθ1

0 ∫
1

0
dθ2

0( [2 +O(deg(1)U deg(2)U (µ1 + µ2))] ei2π(k′1−k1)θ1
0 ×

× ei2π(k′2−k2)θ2
0 [2 +O(deg(1)U deg(2)U (µ1 + µ2))])

= 4 δk1,k′1
δk2,k′2

+O(deg(1)U deg(2)U (µ1 + µ2)) .

Therefore, going back to (A.4.18), we infer the existence of µ̃i = µ̃(Ci,deg(1)U ,deg(2)U , e) > 0, i ∈ {1, 2},
such that for all µi ∈ [0, µ̃i] the Gram matrix G(µ1,µ2) from (A.4.17) is of full rank.

This finishes the proof of Theorem A.III (a). For part (b), similarly to the proof of Theorem A.II (b),
we observe that for every fixed µ1 ∈ [0, µ̃1] the function µ2 ↦ det (G(µ1,µ2)) is analytic. Since
det(G(µ1,µ2)) ≠ 0 for µ2 ∈ (0, µ̃2) (see Lemma A.4.3), we find that the zero set

E
(µ1)
0 ∶= {µ2 ∈ (0,∞) ∣ det(G(µ1,µ2)) = 0} ⊂ (µ̃2,∞)

of µ2 ↦ det(G(µ1,µ2)) is at most countable (finite in every compact subset), i.e. in particular a
(one-dimensional) set of zero measure.

Finally, for part (c), we note that, similarly to the proof of Theorem A.II (b) and by means of Hartogs’s
theorem on separate analyticity [322] (a separately analytic function is jointly analytic), the function
(µ1, µ2)↦ det (G(µ1,µ2)) is (jointly) analytic. Since det(G(µ1,µ2)) ≠ 0 for (µ1, µ2) ∈ (0, µ̃1)×(0, µ̃2)
(see Lemma A.4.3), we find that the zero set

E0 ∶= {(µ1, µ2) ∈ (0,∞) × (0,∞) ∣ det(G(µ1,µ2)) = 0} ⊂ (µ̃1,∞) × (µ̃2,∞)

of (µ1, µ2)↦ det(G(µ1,µ2)) is a (two-dimensional) set of zero measure.

This concludes the proof of Theorem A.III (c).

A.5 Concluding remarks and outlook
We have shown that integrable deformations of Liouville metrics on T2 are Liouville metrics – at
least when more restrictive conditions on the unperturbed metric are balanced with more general
conditions on the perturbation. Removing this balancing, i.e. showing that arbitrary integrable
deformations of arbitrary Liouville metrics remain of Liouville type, is an interesting problem for
future investigations resolving the conjecture proposed at the end of Section A.2. This would require
stronger versions of Lemmas A.4.2 and A.4.3 in two senses:
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A. Deformational rigidity of Liouville metrics on the torus

(a) Allow for possibly infinitely many non-zero Fourier coefficients and refrain from restricting to
trigonometric polynomials. A resolution of this issue has been found in the context of the
perturbative Birkhoff conjecture [33, 362] concerning integrable billiards. Here, the authors
studied the matrix of correlations between the standard basis (ei2πkx)k∈Z of L2(T) and certain
deformed dynamical modes (given as some kind of Jacobi elliptic function, see Appendix A.C),
corresponding to ei2πkix

i
µi
( ⋅ ,ci) in Lemma A.4.2 and Lemma A.4.3. Exponential estimates for

the entries of this matrix (obtained from considering the maximal width of a strip of analyticity
around the real axis for the dynamical modes), allowed to prove a suitable full-rank lemmas,
also for infinitely many coefficients.

(b) Allow arbitrary µĩ > 0 and refrain from restricting to small ones. Also for this issue, a potential
resolution might be found by analytically extending action-angle coordinates to the complex
plane and exploiting their singularities away from the real axis. However, this requires the
potentials Vi in the unperturbed Hamiltonian to be restrictions of holomorphic functions and
as such way more special than generic Vi ∈ C2(T).

Moreover, we note that, in [362] the authors also outlined a potential strategy for proving the
classical (non-perturbative) Birkhoff conjecture, which might possibly be adapted for proving a
suitably weakened version of the folklore conjecture given in Section A.3.

We end this section with a brief list of open problems being related to the main results of the present
paper:

(i) As described above, it is an natural follow-up problem to extend our results to the situation,
where arbitrary integrable deformations of arbitrary Liouville metrics remain of Liouville type,
i.e. remove the restricting assumptions from (A1) - (A3) and prove the conjecture formulated
at the end of Section A.2.

(ii) In particular, starting with (the time-independent version of) Arnold’s example [28] for diffusion,

H0(x, p) =
p2

1
2
+
p2

2
2
− µ(1 − cos(2πx2

)) ,

is it possible do deduce rigidity, similarly to Theorem A.II, but without restricting to the
perturbation being a trigonometric polynomial in x2 and any smallness condition on µ ∈ [0, 1]?
In this case, the full rank lemma might be obtained by proving non-degeneracy of certain
infinite-dimensional matrices, which have Fourier coefficients of powers of Jacobi elliptic
functions (see Appendix A.C) as their entries.

(iii) In view of the non-trivial examples of magnetic geodesic flows found in [13] and the potential
counterexample constructed in [182], it is a major task to completely settle the Folklore
Conjecture mentioned in Sections A.1 and A.3, i.e. clarify which part is only ’folklore’ and
which part is ’real’.

(iv) In particular, the main result of [182], which we stated in Theorem A.3.7, should be extended
to showing that the system is really integrable on an open set in the phase space and not only
on an isoenergy manifold. Furthermore, it remains open, whether the PDEs underlying the
examples in [13] can be solved with zero magnetic fields or not and thus potentially disproves
the folklore conjecture.

(v) For our main results, we assumed the preservation of rational invariant tori ’outside the eye of
the pendulum’ (cf. Figure A.1). Can one obtain the same result, if only tori ’inside the eye’ are
preserved?
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(vi) An alternative approach to the one chosen here, could be to study perturbations of the
additional first integral (A.2.2), i.e. write Fε = F0 + εF1 +O(ε

2) and use the vanishing of the
Poisson bracket {Hε, Fε} = 0 with Hε =H0 + εU to obtain the first-order equation

{H0, F1} + {U,F0} = 0

for the perturbing potential U .

(vii) Does there exist a Riemannian metric g on T2, such that its geodesic flow admits hyperbolic
periodic orbits of at least three different homotopy types? If yes, does there exist a Liouville
metric with this property?15

A.A Generalization to higher dimensions
Our results from Section A.2 immediately generalize to higher dimensions d ≥ 3. In this setting, we
define the Hamiltonian function

H0(x, p) =
d

∑
i=1
(
p2
i

2
− µi Vi(x

i
)) (A.A.1)

on T ∗Td, where µi ∈ [0,∞) are parameters, and Vi ∈ C
2(T) with ∥Vi∥ ≤ Ci, Vi ≥ 0 are Morse

functions (or constant). We may assume w.l.o.g. that minxi Vi(x
i) = 0. The system (A.A.1) is

clearly integrable, since additional first integrals can easily be found as

Fi(x, p) =
p2
i

2
− µi Vi(x

i
) , i ∈ {1, ..., d − 1} .

Completely analogous to Section A.2, we perturb the integrable system (A.A.1) as Hε = H0 + εU
with ε ∈R by an additive potential U ∈ C2(Td), which we assume to have an absolutely convergent
Fourier series.

Now, the analogs of the assumptions in Section A.2 read as follows.

1. Assumptions on the perturbed Hamiltonian function Hε.
Let H0 ∈ C

2(T ∗Td) denote the Hamiltonian function from (A.A.1) with ∥Vi∥ ≤ Ci and µi ∈ [0, µ̃i]
for some µĩ ∈ [0,∞), i ∈ {1, ..., d}, and U ∈ C2(Td) be a perturbing potential, which satisfies the
following assumption.

(A4) If µ̃i = 0 for the first 0 ≤ dflat ≤ d indices, there exist d(k) ≥ 0 for k ∈ {dflat + 1, ..., d } such that

SU ⊂ Zdflat × ([−d(dflat+1), d(dflat+1)
] ×⋯ × [−d(d), d(d)]) (A.A.2)

i.e. U ∈ C2(Td) is a trigonometric polynomial in the last (d − dflat) variables.

As in Section A.2, we denote the minimum over all d(i) such that (A.A.2) holds as deg(i)U and call it
the i-degree of U .

Note that Proposition A.2.1 immediately generalizes to higher dimensions, such that we can formulate
the analog of Assumption (P) as follows.

2. Assumptions on the preserved integrability of Hε.
Let H0 ∈ C

2(T ∗Td) denote the Hamiltonian function from (A.A.1) satisfying Assumption (A4), and
15These questions were suggested by Vadim Kaloshin.
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U a perturbing potential, such that the following statement concerning the perturbed Hamilton-Jacobi
equation (HJE)

αε(c) =Hε(x,c +∇xuε,c(x)) (A.A.3)
as well as the preserved integrability of Hε is satisfied.

(P’) There exists an energy e > 0, such that for every b ∈ B0(S
⊥
U) (recall (A.2.6)) there exists a

sequence (εk)k∈N with εk ≠ 0 but εk → 0 such that for any µi ∈ [0, µ̃i] we have the following:

(i) The b-torus from (the analog of) Proposition A.2.1 characterized by c ∈H1(Td,R) ≅Rd

with
∣ci∣ >

√
µi c(Vi) (A.A.4)

in the isoenergy submanifold Te is preserved under the sequence of deformations (Hεk
)k∈N,

where c(Vi) is defined in (A.D.4).
(ii) For c ∈H1(Td,R) satisfying (A.A.4), Mather’s α-function and a solution uε,c ∶ Td → R

of the HJE (A.A.3) can be expanded to first order in ε, i.e.

uε,c = u
(0)
c + εu

(1)
c +Oc(ε

2
) and αε = α

(0)
+ εα(1) +O(ε2

) ,

where u(0)c , u
(1)
c ∈ C1,1(Td) and Oc(ε

2) is understood in C1,1-sense.

We can now formulate our generalized main result.

Theorem A.IV. Let Hε satisfy Assumption (A4) and Assumption (P’) for some energy e > 0. If Vj is
analytic for j ∈ {d − danlyt + 1, ..., d }, where 0 ≤ danlyt ≤ d−dflat, and µ̃k = µ̃k(Ck,deg(dflat+1)

U , ...,deg(d)U , e) >
0 for k ∈ {dflat + 1, ..., d − danlyt } are small enough, then U is separable, i.e. there exist U1, ..., Ud ∈
C2(T) such that

U(x1, ..., xd) = U1(x
1
) + ... +Ud(x

d
) ∀(x1, ..., xd) ∈ Td .

This is irrespective of µ̃j > 0 for j ∈ {d − danlyt + 1, ..., d }, but only for

(µd−danlyt+1, ..., µd) ∈ [0, µ̃d−danlyt+1] × ... × [0, µ̃d]

outside of an exceptional danlyt-dimensional null-set (depending on (µdflat+1, ..., µd−danylt)).

A.B Basic perturbation lemma
In this appendix, we state and prove a basic perturbation lemma, which is instrumental in the
continuity arguments required for the proofs of Lemma A.4.2 and Lemma A.4.3.

Lemma A.B.1. Let V ∈ C1(T) be a non-negative function with minV = 0, µ ∈ [0,1], and define
the Hamiltonian function

Hµ(p, x) =
p2

2
− µV (x) (A.B.1)

on the cotangent bundle T ∗T. In the neighborhood of a fixed energy E > 0, we can find action-angle
coordinates (I, θ) of (A.B.1) as

I = ±∫
1

0

√
2(E + µV (x))dx , θ = ±

∫
x

0
dx′√

1+µV (x′)/E

∫
1

0
dx′√

1+µV (x′)/E

. (A.B.2)

Regarding θ = θ(x) as a function on T, we have θ ∈ C1(T) and

∥θ ∓ x∥C1 = O (
µ∥V ∥C0

E
) as µ→ 0 . (A.B.3)

The same holds true if we regard x = x(θ) as a function on T.
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Proof. In the whole proof, we focus on the first sign choice in (A.B.2) and (A.B.3), the second one
is completely analogous and hence omitted.

The time-independent Hamiltonian (A.B.1) is a conserved quantity along the Hamiltonian flow. By
restricting to the neighborhood of an isoenergy manifold with E > 0, which is topologically T and
puts us in the rotating phase of the system (A.B.1), the local action-angle coordinates can be found
in the following way. The action coordinate is obtained by integrating the momentum p as a solution
of

p2

2
− µV (x) = E

over a full rotation, i.e.
Iµ = ∫

1

0

√
2(E + µV (x))dx .

This quantity is preserved along the Hamiltonian flow and one can express E in terms of I by the
implicit function theorem. This allows us to calculate the time-derivative of the conjugate coordinate
θ of I as

θ̇ =
∂E

∂I
= (

∂I

∂E
)

−1
=
⎛

⎝
∫

1

0

dx
√

2(E + µV (x))
⎞

⎠

−1

=∶ ω . (A.B.4)

Integrating the equation of motion ẋ = p =
√

2(E + µV (x)) and using θ = ωt (obtained by integrating
(A.B.4) w.r.t. t starting from t = 0), we find θ = θ(x) as a function of x being given by

θ = ω∫
x

0

dx′
√

2(E + µV (x′))
=
∫
x

0
dx′√

1+µV (x′)/E

∫
1

0
dx′√

1+µV (x′)/E

.

From this, the approximation (A.B.3) can now easily be derived by expanding the square roots using
√

1 + y = 1 + y
2 +O(y

2) and 1
1+y = 1 − y +O(y2) for ∣y∣→ 0. The reversed statement for x = x(θ) is

a simple consequence. This finishes the proof of Lemma A.B.1.

A.C Action-angle coordinates and analyticity
This appendix is concerned with analyticity properties of action-angle coordinates for one-dimensional
Hamiltonian system

Hµ(p, x) =
p2

2
− µV (x) (A.C.1)

being defined on the cotangent bundle T ∗T, where µ is a positive parameter and V ≥ 0 an analytic
function. Just as in Appendix A.B, in the neighborhood of a fixed energy E > 0, we can find
action-angle coordinates (I, θ) of (A.C.1) as

I = ±∫
1

0

√
2(E + µV (x))dx , θ = ±

∫
x

0
dx′√

1+µV (x′)/E

∫
1

0
dx′√

1+µV (x′)/E

. (A.C.2)

From now on, we shall restrict to the first sign choice in (A.C.2).

In our proofs of the analyticity cases in Theorem A.II and Theorem A.III, we shall exploit the fact
that the function

θ ∶ (x,µ)↦
∫
x

0
dx′√

1+µV (x′)/E

∫
1

0
dx′√

1+µV (x′)/E

(A.C.3)

is analytic in both variables. (Note that the further implicit dependence on µ via E = E(I) is
also analytic.) Now, for every fixed µ > 0, the function x ↦ θ(x,µ) is analytic and invertible,
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and we denote its analytic inverse by θ ↦ xµ(θ) (cf. Step (i) in the proofs of Theorem A.II and
Theorem A.III). Moreover, most importantly, also the function

(θ, µ)↦ xµ(θ)

is analytic in µ, as shown in the following simple lemma applied to f(z,w) ≡ θ(x,µ) in (A.C.3).

Lemma A.C.1. Let Dz,Dw ⊂R be open sets and

f ∶Dz ×Dw →R , (z,w)↦ f(z,w) (A.C.4)

an analytic function. Moreover, assume that the one-variable restriction f(⋅,w) ∶Dz →R is invertible
and satisfies f(Dz,w) =D for every fixed w ∈Dw and some open D ⊂R, such that we can write its
analytic inverse function as

f−1
(⋅,w) ∶D →Dz , ζ ↦ f−1

(ζ,w) .

Then it holds that, with a slight abuse of notation, also

f−1 ∶D ×Dw →Dz , (ζ,w)↦ f−1
(ζ,w)

is an analytic function.

Proof. Since f−1(⋅,w) ∶D →Dz is analytic for every fixed w ∈Dw, it can be represented as

f−1
(ζ,w) =

1
2πi ∮C

z ⋅ (∂zf)(z,w)

f(z,w) − ζ
dz (A.C.5)

by Cauchy’s integral formula, where C is a closed contour for which ∣f(z,w) − ζ ∣ ≥ ρ > 0. In this
form, since f from (A.C.4) is itself analytic and by involving Hartogs’s theorem [322] (a separately
analytic function is jointly analytic), the rhs. of (A.C.5) defines (locally) a jointly analytic function
in both variables (ζ,w).

We note that, although θ from (A.C.3) is always analytic in µ, the lower regularity in x for a general
V ∈ C2(T) prevents the analyticity in µ to carry over to the inverse function.

We conclude this appendix, by showing analyticity for the important special case of a pendulum,
i.e. V (x) = 1 − cos(2πx), in a more explicit way. In this particular situation, θ can be represented as

θ =
1
2
−
F (π(1

2 − x) ∣mµ)

2K(mµ)
, (A.C.6)

where we introduced the shorthand notation mµ =
2µ

E+2µ . Here, F (φ ∣m) (resp. K(m)) for k ∈ [0, 1)
denotes the incomplete (resp. complete) elliptic integral of the first kind, i.e.

F (φ ∣m) = ∫
φ

0

dϑ
√

1 −m sin2(ϑ)
and K(m) = F (π2 ∣m) . (A.C.7)

The quantity m is called the parameter, φ the amplitude.

Now, the so-called Jacobi elliptic function are obtained by inverting the incomplete elliptic integral
(A.C.7). More precisely, if u ∶= F (φ ∣m) denotes the argument, and u and φ are related in this way
(we also write φ = am(u ∣m) for the amplitude), then we define the Jacobi elliptic functions as

sn(u ∣m) ∶= sin (am(u ∣m)) , cn(u ∣m) ∶= cos (am(u ∣m)) ,
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which are called the elliptic sine and elliptic cosine, respectively. Moreover, using the notation
introduced above, we can invert the relation (A.C.6) to find that

x =
1
2
−

1
π

am(K(mµ)(1 − 2θµ) ∣mµ) . (A.C.8)

Most commonly, the elliptic sine and cosine are considered for fixed parameter m as functions of u,
in which way they in fact behave as elliptic functions, i.e. doubly-periodic meromorphic function on
the complex plane. However, as a function of the parameter parameter m (see [583]), we have that

m↦ sn(K(m)u ∣m) and m↦ cn(K(m)u ∣m) (A.C.9)

are analytic for m ∈C ∖ [1,∞) and fixed u ∈R. This easily follows by representing sn(K(m)u ∣m)
and sn(K(m)u ∣m) as ratios of Jacobi theta functions [4, Eq. 16.36.3] (see also [524, Eq. 5]), whose
zeros are known explicitly [4, Eq. 16.36.2].

A.D Weak KAM theory
In this appendix, we provide an overview on basic concepts and results of weak KAM theory and
Aubry-Mather theory, which are relevant in the proofs of our main results. In particular, we discuss
separable Hamiltonian systems on T ∗T2, i.e. sums of two independent systems on T ∗T. The
presentation partly follows lecture notes from Sorrentino [530], which build on seminal works from
Mather [441, 442, 443], Aubry [32], Mañé [445], Fathi [254, 255] and others.

In the following, let (M,g) be a compact and connected smooth Riemannian manifold without
boundary, e.g. the torus T2. As in Section A.1.1, TM denotes its tangent bundle and T ∗M its
cotangent bundle. While a point in TM is denoted by (x, v), where x ∈M and v ∈ TxM , a point
in T ∗M is denoted by (x, p), where x ∈ M and p ∈ T ∗xM is a linear functional on TxM . The
Riemannian metric g induces a metric d on M as well as a norm ∥ ⋅ ∥x on TxM . We shall use
the same notation for the norm induced on T ∗xM . The standard assumptions on a Hamiltonian
H ∶ T ∗M →R are summarized as follows.

Definition A.D.1. (Tonelli Hamiltonians)
A function H ∶ T ∗M → R is called a Tonelli Hamiltonian if and only if H is (i) of class C2; (ii)
strictly convex in each fiber in C2-sense, i.e. the quadratic form (∂2H/∂p2)(x, p) is positive definite
for any (x, p) ∈ T ∗M ; (iii) superlinear in each fiber, i.e. lim

∥p∥x→∞
H(x,p)
∥p∥x =∞.

A Hamiltonian H ∶ T ∗M →R is canonically associated to a Lagrangian L ∶ TM →R as being each
others Fenchel-Legendre transforms (x, p) = L(x, v), i.e.

H ∶ T ∗M →R, (x, p)↦ sup
v∈TxM

[⟨p, v⟩x −L(x, v)] ,

L ∶ TM →R, (x, v)↦ sup
p∈T ∗xM

[⟨p, v⟩x −H(x, p)] .

It is easy to check that the Lagrangian associated to a Tonelli Hamiltonian is also of Tonelli type
(defined analogously to Definition A.D.1).

Piecewise C1 curves γ ∶ [0,1]→M , which minimize the action functional

AL(γ) ∶= ∫
1

0
L(γ(t), γ̇(t))dt ,

satisfy the associated Euler-Lagrange equation

d
dt
∂L

∂v
(γ(t), γ̇(t)) =

∂L

∂x
(γ(t), γ̇(t)) , t ∈ [0,1] .
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In case that det ∂2L
∂v2 ≠ 0 (Legendre condition), the Euler-Lagrange equation is equivalent to an

equation, which can be solved for γ̈(t), which allows to define a vector field XL on TM , such that
the solutions of γ̈(t) =XL(γ(t), γ̇(t)) precisely satisfy the Euler-Lagrange equation. The associated
flow ΦL

t is called the Euler-Lagrange flow, which is C1 for L of class C2.

A.D.1 Basic notions of Aubry-Mather theory

The central objects of study in Aubry-Mather theory are invariant probability measures on TM
having finite average action,

M(L) ∶= {ν prob. meas. on TM with ν ○ΦL
t = ν , ∀t ∈R , ∫

TM
Ldν <∞} ,

which shall be endowed with the vague topology, i.e. the weak∗ topology induced by the continuous
functions f ∶ TM →R having at most linear growth.

Proposition A.D.2. Every non-empty energy level {H ○L(x, v) = E} contains at least one invariant
probability measure of ΦL

t , i.e. M(L) ≠ ∅.

For every ν ∈M(L) we now define its average action

AL(ν) ∶= ∫
TM

Ldν .

Since AL ∶M(L) → R is lower semicontinuous w.r.t. the vague topology on M(L), we have the
following.

Proposition A.D.3. There exists ν ∈M(L), which minimizes AL over M(L).

A measure ν ∈M(L) minimizing AL is called an action-minimizing measure of L. The principal
goal in Aubry-Mather theory is to characterize invariant sets of the dynamics via action minimizing
measures. Since – at least for integrable systems – the phase space is foliated by invariant tori
(cf. Theorem A.1.6) and minimizing a single functional will not be sufficient to characterize all of
them, one considers certain modifications of the Lagrangian: Let η be a 1-form on M and interpret
it as a functional on the tangent space as

η̂ ∶ TM →R , (x, v)↦ ⟨η(x), v⟩x .

One can easily verify that, if η is closed (i.e. dη = 0), then L and Lη ∶= L − η̂ have the same
Euler-Lagrange flow. Moreover, if η = df is an exact 1-form, then ∫ df̂dν = 0 for any ν ∈M(L).
Therefore, for fixed L, the minimizing measures of Lη will depend only on the de Rham cohomology
class c = [η] ∈ H1(M,R). Hereafter, ηc shall denote a closed 1-form with cohomology class
c ∈H1(M,R).

Definition A.D.4. We define Mather measures, Mather’s α-function, and Mather sets as follows:

• If ν ∈M(L) minimizes ALηc
, we call ν a Mather measure with cohomology c.

• The map
α ∶H1

(M,R)→R , c↦ − min
ν∈M(L)

ALηc
(ν) (A.D.1)

is called Mather’s α-function. It is well defined and easily seen to be convex.
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• For c ∈H1(M,R), we define the Mather set of cohomology class c as

M̃c ∶= ⋃
ν∈Mc(L)

supp ν ⊂ TM ,

where we denoted Mc(L) ∶= {ν ∈ML ∶ ALηc
(ν) = −α(c)}. The projection Mc = π(M̃c) ⊂

M on the base manifold is called the projected Mather set with cohomology class c.

By duality, one can also define Mather’s β-function: Since ∫TM η̂dν = 0 for exact 1-forms η, the
linear functional

H1
(M,R)→R , c↦ ∫

TM
ηĉdν

is well defined. By duality, there exists ω(ν) ∈H1(M,R) such that

∫
TM

η̂cdν = ⟨c,ω(ν)⟩ ∀c ∈H1
(M,R) ,

where we call ω(ν) the rotation vector of ν, which will turn to out to be matching the earlier
definition in Proposition A.2.1. The map ω ∶ ML → H1(M,R) is continuous, affine linear and
surjective. In combination with the lower semicontinuity of AL, this shows that Mather’s β-function

β ∶H1(M,R)→R , h↦ min
ν∈M(L)∶ω(ν)=h

AL(ν) (A.D.2)

is well defined. It can easily seen to be the convex and, in fact, being the convex conjugate (Fenchel
transform) of the α-function, showing that both, α and β, have superlinear growth.

We will see below, that the Liouville tori Tc with ∣ci∣ >
√
µic(Vi) from Proposition A.2.1 agree with

the Mather set of cohomology class c ∈H1(T2,R) ≅R2, i.e. M̃c = L
−1(Tc). Basically, this will be

concluded from the following two fundamental results.

Theorem A.D.5. (Mather’s graph Theorem [442])
The Mather set M̃c is compact, invariant under the Euler-Lagrange flow and π∣M̃c

∶ M̃c →M is an
injective map, whose inverse π−1 ∶Mc → M̃c is Lipschitz.

Theorem A.D.6. (Carneiro [138])
The Mather set M̃c is contained in the energy level {H ○L(x, v) = α(c)}.

A.D.2 Aubry-Mather theory in one dimension

In the following, we discuss the basic objects introduced above for the one-dimensional example
of a mechanical Hamiltonian on M = T. Note that the unperturbed Hamiltonian (A.2.1) in the
formulation of our main results is a sum of two such one-dimensional systems. Let V ∈ C2(T) be a
non-negative Morse function with minx∈T V (x) = 0, µ ∈ (0,1], and consider the Hamiltonian

H ∶ T ∗T→R , (x, p)↦
p2

2
− µV (x) , (A.D.3)

whose corresponding Lagrangian can easily be obtained as L(x, v) = v2

2 + µV (x). We note that

TT ≅ T ∗T ≅ T ×R and H1(T,R) ≅H1
(T,R) ≅R .

First of all, we study invariant probability measures of the system (A.D.3).
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A. Deformational rigidity of Liouville metrics on the torus

• Since V is a Morse functions, the sets of local (isolated) minima and maxima, Xmin and Xmax,
respectively, contain only finitely many elements. This shows that each of the measures

(δ(x∗,0))x∗∈Xmin
, (δ(x∗,0))x∗∈Xmax

are invariant probability measures of the system, all having zero rotation vector. They
correspond to unstable and stable fixed points with respective energies H(x∗,0) = −µV (x∗)
for x∗ ∈ Xmin and H(x∗,0) = −µV (x∗) for x∗ ∈ Xmax.

• For E > 0, the energy level {H(x, p) = E} consists of two homotopically non-trivial periodic
orbits

P
±
E ∶= {(x, p) ∶ p = ±

√
2(E + µV (x)) , x ∈ T} .

The probability measures evenly distributed along these orbits – denoted by ν±E – are invariant
probability measures of the system. If we denote by

T (E) ∶= ∫
1

0

1
√

2(E + µV (x))
dx

the period of such an orbit, one can easily see that ω(ν±E) = ±
1

T (E) . Moreover, we have
that T ∶ (0,∞) → (0,∞) is continuous, strictly decreasing, and T (E) → ∞ as E → 0,
i.e. ω(ν±E)→ 0 as E → 0.

• For every E ∈ (−µmaxx∈T V (x),0) ∖ ((−µV (Xmax)) ∪ (−µV (Xmin))), the energy level
{H(x, p) = E} consists of NE <∞ disjoint contractible periodic orbits. A probability measure
ν
(k)
E , k ∈ {1, ...,NE}, evenly distributed along such an orbit, is invariant for the system. Since

the orbit is contractible, the rotation vector of ν(k)E is zero, ω(ν
(k)
E ) = 0.

The support of the measures ν(k)E for E ∈ (−µmaxx∈T V (x),0) ∖ ((−µV (Xmax)) ∪ (−µV (Xmin)))
is not a graph over T. Therefore, by means of Mather’s graph Theorem A.D.5, they cannot be
action minimizing. Moreover, we also have that the α-function is even, α(c) = α(−c) for all c ∈R,
which follows by the symmetry H(x, p) =H(x,−p) of the system (A.D.3). In combination with the
convexity of α, this shows that minR α(c) = α(0). Since V ≥ 0, we have AL(ν) ≥ 0 for all ν ∈ML

and thus α(c) ≥ 0 for all c ∈R. By taking x∗ ∈ Xmin with V (x∗) = 0 (a global minimum), we have
AL(δ(x∗,0)) = 0, which shows that minR α(c) = α(0) = 0. It follows from Theorem A.D.6, that only
energy levels with E ≥ 0 are capable of containing a Mather set. The Mather set of cohomology
c = 0 is contained in the energy level with E = 0 and we have M̃0 = {V = 0} × {0}.

For cohomology classes different from zero, a first observation is that, since α is superlinear and
continuous, all energy levels with E > 0 must contain some Mather set. Let E > 0 and consider the
periodic orbit P+E with the invariant probability measure ν+E evenly distributed. The graph of this
orbit can be viewed as the graph of the closed 1-form η+E ∶=

√
2(E + µV (x))dx, having cohomology

class
c+(E) = [η+E] = ∫

1

0

√
2(E + µV (x))dx .

This function is continuous, strictly increasing for E > 0 and we have

c+(E)Ð→
√
µ∫

1

0

√
2V (x)dx =∶√µ c(V ) , as E → 0 . (A.D.4)

Therefore, this defines an invertible function c+ ∶ (0,∞)→ (√µ c(V ),∞), whose inverse we denote
by E(c). Using Mather’s graph Theorem A.D.5 and the Fenchel-Legendre inequality, ⟨v, p⟩x ≤
L(x, v) +H(x, p), one can show that ν+E is the unique c+(E)-action minimizing measure and we
thus have

M̃c+(E) = P
+
E , and similarly M̃c−(E) = P

−
E ,
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where c−(E) = −c+(E) is the cohomology class of η−E = −η+E .

It remains to study the non-zero cohomology classes in [−√µc(V ),√µc(V )]. Observe that, by
Theorem A.D.6, we have α(c±(E)) = E and thus, using continuity of α, it follows that α(±√µc(V )) =
0. By convexity of α and minR α(c) = α(0) = 0, this implies α(c) ≡ 0 for c ∈ [−√µc(V ),√µc(V )].
Consequently, the corresponding Mather measures lie in the zero energy level, such that we have

M̃c = {V = 0} × {0} for all c ∈ [−
√
µc(V ),

√
µc(V )] .

Summarizing the above considerations, we have shown that

M̃c =

⎧⎪⎪
⎨
⎪⎪⎩

{V = 0} × {0} if ∣c∣ ≤√µc(V )
P

sgn(c)
E(∣c∣) if ∣c∣ >√µc(V )

, α(c) =

⎧⎪⎪
⎨
⎪⎪⎩

0 if ∣c∣ ≤√µc(V )
E(∣c∣) if ∣c∣ >√µc(V )

, (A.D.5)

where sgn(c) denotes the sign of c.

Remark A.D.7. We note that α from (A.D.5) is globally C1 (which follows from strict convexity of
its Fenchel transform β defined in (A.D.2)) and C∞, even analytic, for ∣c∣ >√µc(V ) (which follows
from the implicit function theorem as E(⋅) = (c+)−1(⋅)). Also, α is symmetric around 0 and (strictly)
increasing for c ≥ 0 (for c ≥√µc(V )).

Remark A.D.8. By arguing as above for the two independent dimensions of (A.2.1), this demon-
strates the connection between part (a) of Theorem A.1.6 and part (a) of Proposition A.2.1. More
precisely, the graph property follows from Theorem A.D.6 and the results in (A.D.5). The re-
maining part of the statement follows after realizing that α(c) = α1(c1) + α2(c2), where αi is the
α-function of the one-dimensional system with coordinates labeled by i, and taking uc ∈ C

3(T2)
with ∣ci∣ >

√
µic(Vi) according to

∇xuc(x) = −c ±

⎛
⎜
⎜
⎝

√
2(α1(c1) + µ1V1(x1))
√

2(α2(c2) + µ2V2(x2))

⎞
⎟
⎟
⎠

,

(recall Vi ∈ C2(T) is a non-negative Morse function and αi(ci) > 0) such that the Hamilton-Jacobi
equation

α(c) =H0(x,c +∇xuc(x))

is satisfied. Moreover, in case that U as in (A.2.3) is actually separable, one can employ the explicit
forms for c+(E) as the inverse of the α-function and ∇uc to prove the validity of Assumption (P),
simply by using the same expansions leading to the proof of Lemma A.B.1. This means that separable
systems satisfy Assumption (P), which shows consistency with our main results.

A.D.3 Fathi’s weak KAM theory and perturbations
For concreteness, we specialize to M = T2, in which case H1(T2,R) ≅ T ∗xT2 ≅R2 for every x ∈ T2,
such that we can identify c ∈H1(T2,R) with a closed 1-form of cohomology class c. The central
object of investigation in Fathi’s weak KAM theory [254, 255] (with important contributions from
Siconolfi [256, 257], Bernard [66] and others [184, 426]) is the Hamilton-Jacobi equation (HJE)

H(x,c +∇xu) = k , k ∈R , (A.D.6)

where H is a Tonelli Hamiltonian on T ∗T2 with associated Tonelli Lagrangian L.

For classical solutions, i.e. C1-functions u ∶ T2 → R solving (A.D.6), it is immediate to check,
that there is at most one value k ∈R, for which such a C1-solution may exist. In fact, this value
agrees with Mather’s α-function defined in (A.D.1). The primary goal of the theory is to define a
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A. Deformational rigidity of Liouville metrics on the torus

weaker notion of (sub)solution (so called weak KAM solutions), whose existence is always guaranteed
[255, 254], even if the Tonelli Hamiltonian H is not integrable. See [184, 426, 257] for approaches
to the problem from the theory of partial differential equations.

The following proposition contains perturbative properties of weak KAM solutions uε and Mather’s
α-function αε for systems of the form

Hε(x, p) =H0(x, p) + εH1(x, p) .

Proposition A.D.9. (Gomes [288])
Let H0 ∶ T

∗T2 → R be an integrable Hamiltonian and u(0) a (classical) C1-solution of the HJE
H0(x,c + ∇xu

(0)) = α(0)(c). Moreover, let ν(0) denote the projection of a Mather measure with
cohomology c. Suppose there exists a function u(1) ∈ C1(T2) and a number α(1)(c) such that

α(1)(c) = ⟨(∇pH0)(x,c +∇xu
(0)
),∇xu

(1)
⟩ +H1(x,c +∇xu

(0)
) , ∀x ∈ T2 . (A.D.7)

Then

α(1)(c) = ∫
T2
H1(x,c +∇xu

(0)
)dν(0) and αε(c) = α

(0)
(c) + εα(1)(c) +Oc(ε

2
) . (A.D.8)

Remark A.D.10. The above proposition provides a converse to (A.2.11) in Assumption (P). In fact,
the transport-type equation (A.D.7) for the unknown u(1) (with so far unspecified constant α(1)(c))
is exactly the first-order expansion obtained in (A.4.2), (A.4.8), and (A.4.14) in Section A.4 and also
fixes α(1)(c) to be given by (A.D.8). Moreover, the equation (A.D.7) coincides with the relation,
which the correction term u(1) of an approximate solution ũε = u(0) + εu(1) to the HJE

Hε(x,c +∇xuε) = k

of order one has to satisfy (see [288]). The approximate solution ũε = u
(0) + εu(1) also coincides

with the first order truncation of the so-called Lindstedt series [30, 287], a not necessarily convergent
perturbative expansion similar to the ones in KAM theory [373, 27, 456] or the Poincaré-Melnikov
method [30, 303, 568]. Finally, it is interesting to note that, if H1(x, p) =W (x) is independent of
the x-variables, then αε(c) is a convex function of ε and thus a.e. twice differentiable – yielding the
expansion (A.D.8) at every such point.
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ChapterB
Creation rate of Dirac particles at a

point source

This chapter contains the paper [345]:

J. Henheik and R. Tumulka. Creation Rate of Dirac Particles at a Point Source. J. Phys. A: Math.
Theor., 56(44):445201, 2023

Abstract. Only recently has it been possible to construct a self-adjoint Hamiltonian that involves
the creation of Dirac particles at a point source in 3d space. Its definition makes use of an
interior-boundary condition. Here, we develop for this Hamiltonian a corresponding theory of the
Bohmian configuration. That is, we (non-rigorously) construct a Markov jump process (Qt)t∈R in
the configuration space of a variable number of particles that is ∣ψt∣2-distributed at every time t
and follows Bohmian trajectories between the jumps. The jumps correspond to particle creation or
annihilation events and occur either to or from a configuration with a particle located at the source.
The process is the natural analog of Bell’s jump process, and a central piece in its construction
is the determination of the rate of particle creation. The construction requires an analysis of the
asymptotic behavior of the Bohmian trajectories near the source. We find that the particle reaches
the source with radial speed 0, but orbits around the source infinitely many times in finite time before
absorption (or after emission).
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B. Creation rate of Dirac particles at a point source

B.1 Introduction
It is notoriously difficult to construct quantum Hamiltonians with particle creation and annihilation at
a point source. Sometimes, such Hamiltonians can be obtained through renormalization [470, 216].
A more recent approach is based on interior-boundary conditions (IBCs) [558, 557], which are
mathematically related to point interactions [19, 68]. Here, we are concerned with a particular family
of self-adjoint Hamiltonians H that we constructed in [344] using IBCs.

Another ingredient in this work is Bell’s jump process [58, 230], which is an extension of Bohmian
mechanics [90, 232, 231] to quantum theories with particle creation and annihilation. These
processes have been developed for theories on a lattice [58], with UV cut-off [230], and with IBCs
[229]. However, the processes in [229] were devised for non-relativistic Schrödinger operators (based
on the Laplacian operator) or codimension-1 boundaries (such as a surface in R3), whereas our H is
based on the Dirac operator and involves a codimension-3 boundary (corresponding to a point source
in R3). Here, we (non-rigorously) construct an analog of Bell’s jump process for H ; its construction
is somewhat more involved than the cases analyzed in [229], and it has some curious features that
we report below and that are absent in the non-relativistic case.

Generally speaking, the advantage of the Bohmian approach is that it allows for an observer-
independent “realist” formulation of quantum theories. While it agrees with all of the standard
predictions for observations, it avoids the inconsistencies that arise from the orthodox formulation
in the analysis of the measurement process and the vagueness in the orthodox definition of the
theory. In fact, it does so in a remarkably simple and natural way, essentially by following the thought
that what we usually call “particles” actually are particles in the literal sense. Since the problems
just mentioned with the orthodox version persist in quantum field theories, it is very relevant to
extend Bohmian mechanics also to this realm, and in this paper we take some further steps in this
direction. The key element of defining a Bohm-style theory with particle trajectories is to specify
the laws governing the particles’ motion, that is, to uniquely define a deterministic or stochastic
process in configuration space. For non-relativistic quantum mechanics, the deterministic motion
defined by Bohm’s ODE has proven most convincing, and a variant of it is known also for the Dirac
equation [91]. Other prior work [230] has made it plausible that particle creation events correspond
to stochastic jumps of the configuration, but still the explicit models studied so far were almost
exclusively non-relativistic. Since, in setups with particle creation, cut-offs (i.e., extended sources)
disturb the relativistic symmetry and IBCs are key to treating point sources, the Dirac equation with
IBCs forms the natural setting for such a model; however, such Hamiltonians have been rigorously
available only recently [344].

Our Hamiltonian H is devised for a model of creation and annihilation of Dirac particles in 3 space
dimensions by a point source fixed at the origin 0 ∈R3. For simplicity, our Hilbert space H is a
mini-Fock space with only two sectors, corresponding to 0 or 1 particles,

H =H (0)
⊕H (1)

=C⊕L2
(R3,C4

) . (B.1.1)

Correspondingly, the configuration space Q also consists of two sectors,

Q = Q
(0)
∪Q

(1)
= {∅} ∪ (R3

∖ {0}) . (B.1.2)

The process (Qt)t∈R that we construct moves in Q. In the upper sector, it moves along a Bohmian
trajectory until it hits the origin, at which time it jumps to the empty configuration ∅, where it
remains for a random time and then jumps back to the upper sector, where it follows a Bohmian
trajectory starting from 0 until it reaches 0 again, and so on. In particular, the process is piecewise
deterministic (because the Bohmian trajectories are deterministic), and the only stochastic elements
are the jumps between ∅ ∈ Q(0) and 0 ∈ ∂Q(1). More precisely, while the absorption events (jumps
to ∅) are deterministic and occur whenever Qt reaches 0 ∈ ∂Q(1), the emission events (jumps from
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∅) are stochastic in two ways: (i) when they occur and (ii) onto which trajectory the process jumps
(because there can be several trajectories starting from 0 at the same time).

The trajectories here are the solutions of Bohm’s equation of motion for the Dirac equation [91],

dQ(t)

dt
=

j

ρ
(Q(t)) (B.1.3)

(boldface symbols denoting 3d vectors) with probability current

j = (ψ(1))†αψ(1) , (B.1.4)

where ψ(1) is the H (1)-component of a wave function ψ = (ψ(0), ψ(1)) in H and α = (α1, α2, α3)
denotes the vector of the standard Dirac α-matrices (see (B.3.8)), and density

ρ = j0
= (ψ(1))†ψ(1) = ∣ψ(1)∣

2
. (B.1.5)

As mentioned, the process jumps to ∅ when it reaches 0. The other law needed to define the process
(see Section B.5) specifies the jump rate that applies whenever Qt = ∅. The process is designed so
that

Qt is ∣ψt∣2-distributed (B.1.6)

at every time t. We will see in Section B.5 that the jump rate is in fact uniquely determined by the
wish that (B.1.6) holds for all t.1

Away from the origin in R3, H acts like the Dirac operator with a Coulomb potential of strength q,

(Hψ)(1)(x) = (−ich̵α ⋅ ∇ +mc2β + ch̵
q

∣x∣
)ψ(1)(x) (x ≠ 0) , (B.1.7)

where β = diag(1,1,−1,−1) denotes the standard Dirac β-matrix. On the other hand, H couples
the two sectors of H , i.e., none of them stays invariant under the evolution generated by H. We
assume that √

3/2 < ∣q∣ < 1 . (B.1.8)

For ∣q∣ ≤
√

3/2, there is no self-adjoint operator that couples the sectors and obeys (B.1.7), and the
case ∣q∣ ≥ 1 was not studied in [344]. We will give a full description of H, and write down the IBC,
in Section B.2. IBCs for Dirac operators on codimension-1 boundaries (as opposed to codimension 3
considered here) were studied in [420, 513].

The construction of a Bell-type jump process for a similar model in curved space-time was outlined
by one of us in [571]. While that construction is very analogous in spirit to the one presented here, a
relevant difference is that for the present model, a rigorously defined self-adjoint Hamiltonian H is
known, which allows for a precise and detailed description of the process that was not possible in
[571].

It is of interest to compare (see Table B.1 below) our model with a non-relativistic variant [389], in
which (B.1.1) is replaced by C⊕L2(R3,C), H with another operator Hnr (where the subscript nr
stands for “non-relativistic”), and (B.1.7) by

(Hnrψ)
(1)
= − h̵

2

2m∆ . (B.1.9)

The natural variant of Bell’s jump process for Hnr is described in [229]. For ψ from the domain of
Hnr, the probability current

j(x) = h̵
m Im ψ(1)(x)∗∇ψ(1)(x) (B.1.10)

1However, our considerations make use of the (plausible and common [229]) approximation that the Bohmian
velocity field j/ρ varies slowly in time, more specifically that the short-time asymptotics of the Bohmian trajectories
coincide with those one would obtain from a time-independent velocity field (as in (B.4.2) below). Further justification
is outlined in Remark B.4.2 below.
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is, for every unit vector ω ∈R3, of the form

j(rω) = jrad ω + o(r0
) (B.1.11)

as r ↘ 0 (i.e., to 0 from the right) with a constant jrad independent of r and ω. Put differently, the
angular components of j (perpendicular to ω) converge to 0 as r ↘ 0, while the radial component
(along ω) converges to a generally nonzero value. As a consequence, the Bohmian trajectory, when
drawn in spherical coordinates as in Figure B.1, hits the r = 0 surface perpendicularly at nonzero
speed.

r

ω

Figure B.1: For the non-relativistic case, the trajectory in R3 before absorption is shown, represented
in spherical coordinates, with only one of the two angles of ω = (φ,ϑ) drawn (shaded region =
admissible values r > 0, 0 ≤ φ < 2π, 0 ≤ ϑ ≤ π). The trajectory ends at r = 0 at a particular value of
ω; the corresponding point (0,ω) in the diagram is marked.

Certain features are different in the relativistic case of our H. Let

B ∶=
√

1 − q2 , (B.1.12)

where q is the strength of the Coulomb potential as in (B.1.7); note that, due to (B.1.8), 0 < B < 1
2 .

We will argue that for ψ from a certain subspace of H , a Bohmian trajectory t↦Q(t) ∈R3 that
reaches r = 0 does so at radial velocity 0 and only after orbiting the z axis infinitely many times.2 In
fact, as depicted in Figure B.2, almost surely,

∣Q(t)∣ ∼ (const.) ∣t − t0∣1/(1−2B) (B.1.13)

as t↗ t0, where t0 is the time it reaches r = 0 and ∼ means asymptotically equal, i.e.

f(t) ∼ g(t) ∶⇔
f(t)

g(t)
→ 1 ⇔ f(t) = g(t) + o(g(t)). (B.1.14)

Since 1/(1−2B) > 1, one would expect (and it is the case) that the curve, as a function of t, touches
r = 0 at t0 with

dr
dt
(t0) = 0 . (B.1.15)

Moreover, the polar angle becomes constant at leading order in the limit r ↘ 0,

ϑ(r) ∼ (const.) , (B.1.16)

while the dependence φ(r) of the azimuthal angle on the radius is asymptotically of the form

φ(r) ∼ (const.) r−2B (B.1.17)

as r ↘ 0, see Figure B.3.
2Note that H is not rotationally invariant; it commutes with the z component Jz of angular momentum but not

with other components. In fact, the model cannot be rotationally invariant, given that the source is fixed at the origin,
and the emission of a spin- 1

2 particle by a spinless source cannot conserve angular momentum (see [344, Sec 2.D and
Ref. 17] for more details).
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r

t
t0

Figure B.2: Asymptotic dependence r(t) of a Bohmian trajectory before absorption, drawn here for
q =
√

187/196, i.e., 1/(1 − 2B) = 7/4

r

φ

x

y

x

z

Figure B.3: For the relativistic case, an asymptotic trajectory before absorption is shown for the same
q value as in Figure B.2. LEFT: Drawn in spherical coordinates; of the two angles of ω = (ϑ,φ),
only the azimuthal angle φ is shown. Its dependence on r is given by (B.1.17). MIDDLE: Drawn in
Cartesian coordinates, seen along the z axis. RIGHT: Drawn in Cartesian coordinates, seen along
the y axis (dashed = outline of the cone containing the curve).

As a consequence of (B.1.16), the asymptotic trajectory lies on a cone with (random) opening angle
ϑ(t0), and φ increases by an infinite amount before r = 0 is reached, so it circles the z axis infinitely
often; see Figure B.4. In particular, the trajectory does not have a limiting point on the 2-sphere
{r = 0}. Moreover, for each Hamiltonian H from our family (i.e., for each choice of the parameters
described in Section B.2), there is a fixed sense of circling the z axis: either, for all ψ, all trajectories
asymptotically circle clockwise, or, for all ψ, all trajectories circle counter-clockwise. Likewise, the
“speed” of orbiting, meaning here the exponent of r−2B, is fixed by the choice of H and does not
depend on ψ. The time dependence φ(t) can be obtained by inserting (B.1.13) in (B.1.17), which
yields that

φ(t) ∼ (const.) ∣t − t0∣−2B/(1−2B) (B.1.18)

as t↗ t0; see Figure B.5.

The reverse trajectories that emerge from r = 0 display the same behavior, i.e., (B.1.17) (with the
reverse orientiation of the trajectory) and (B.1.13) as t ↘ t0. (If the ingoing trajectories circle
clockwise, then so do the outgoing ones.)

This behavior, in particular the absence of a limit point on {r = 0}, creates the following difficulty
for the definition of a Bell-type jump process for this Hamiltonian. In the non-relativistic case, we
could define a rate for jumping to the point (0,ω), and then there is either a unique trajectory
starting from there or a unique trajectory ending there. The rate was set to 0 when a trajectory ends
there. Now, in the relativistic case, the trajectories emerging from r = 0 do not possess a starting
(limiting) point. We will be able to define a Bell-type jump process nevertheless by defining the rate
for jumping onto a particular trajectory. In fact, the different trajectories can be characterized by
their limiting ϑ(r = 0) ≡ ϑ0 values and their offsets (differences) φ0 in the azimuthal angle. It turns

655



B. Creation rate of Dirac particles at a point source

Figure B.4: The same curve as in Figure B.3 is shown as a curve in R3, seen in a perspective view.
The curve lies on a cone of constant ϑ (not related to the light cone).

non-rel. rel.

dr
dt
(t0) ≠ 0 0

ϑ(t0) const. const.

φ(t0) const. → ±∞

Table B.1: Comparison between the processes in the non-relativistic and the relativistic case; t0 is
the time of absorption or emission.

out that the jump rate will be uniform over φ0, so all trajectories with a given ϑ0 starting from r = 0
at a given time are equally probable.

We will only consider wave functions ψ from a certain subspace D̂ ⊂H that is invariant under the
time evolution; D̂ is the part of the domain D of H for which the component ψ(1) of ψ = (ψ(0), ψ(1))
in the upper sector lies in a certain angular momentum eigenspace (see Section B.2 for details). In
fact, as we will see, the coupling between H (0) and H (1) happens only within D̂, so D̂ is the most
relevant or interesting part of D. By focusing on D̂, we avoid unnecessarily tedious computation for
extracting the qualitative behavior, which we believe will not change much for ψ ∈D ∖ D̂. Finally,
we remark that both, D̂ and D, contain wavefunctions of negative energy.

The remainder of this paper is organized as follows. In Section B.2, we report the relevant properties
of H. In Section B.3, we derive the asymptotic behavior of the current for ψ ∈ D̂. In Section B.4,
we derive from that the (approximate) asymptotics of the Bohmian trajectories and justify the
statements made above. In Section B.5, we define the Bell-type jump process and justify the claim
that it is equivariant. In Section B.6, we conclude.
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φ

t
t0 1

2
B

Figure B.5: LEFT: Asymptotic dependence φ(t) as in (B.1.18), drawn for the same value of B as in
Figures B.2–B.4. RIGHT: The exponent in (B.1.18), −2B/(1 − 2B), as a function of B.
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B.2 The Hamiltonian
Let S2 denote the unit sphere in R3. We will make use of a widely used orthonormal basis of
L2(S2,C4), traditionally denoted Φ±mj ,κj

, for which we have

L2
(S2,C4, dΩ) = ⊕

j∈N0+ 1
2

j

⊕
mj=−j

⊕
κj=±(j+ 1

2 )
Kmjκj (B.2.1)

with
Kmjκj = span(Φ+mjκj

,Φ−mjκj
) . (B.2.2)

The Φ±mj ,κj
are simultaneous eigenvectors of J

¯
2,K, J3 with J

¯
= L

¯
+S the total angular momentum

and K = β(2S ⋅ L
¯
+ 1) the “spin-orbit operator.” In the standard representation of Dirac spin space,

they are explicitly given by [559, (4.111)]

Φ+mj ,∓(j+1/2) =

⎛
⎜
⎜
⎝

iΨmj

j∓1/2

0

⎞
⎟
⎟
⎠

, Φ−mj ,∓(j+1/2) =

⎛
⎜
⎜
⎝

0

Ψmj

j±1/2

⎞
⎟
⎟
⎠

(B.2.3)

with

Ψmj

j−1/2 =
1
√

2j

⎛
⎜
⎜
⎝

√
j +mj Y

mj−1/2
j−1/2

√
j −mj Y

mj+1/2
j−1/2

⎞
⎟
⎟
⎠

(B.2.4a)

Ψmj

j+1/2 =
1

√
2j + 2

⎛
⎜
⎜
⎝

√
j + 1 −mj Y

mj−1/2
j+1/2

−
√
j + 1 +mj Y

mj+1/2
j+1/2

⎞
⎟
⎟
⎠

(B.2.4b)

and Y m
l the usual spherical harmonics (defined for l ∈ N0 and m ∈ {−l, . . . , l }), given by

Y m
l (ϑ,φ) =

√
2l + 1

4π

¿
Á
ÁÀ(l −m)!
(l +m)!

Pml (cos(ϑ)) eimφ, (B.2.5)

where
Pml (x) =

(−1)m

2ll!
(1 − x2

)
m/2 dl+m

dxl+m
(x2
− 1)l (B.2.6)
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are the associated Legendre polynomials.

The Hamiltonian H depends on parameters g ∈C ∖ {0}, a1, a2, a3, a4 ∈R with

a1a4 − a2a3 = 4B(1 + q) , (B.2.7)

and a fixed
(m̃j , κ̃j) ∈ A ∶= {(−1

2 ,−1), (−1
2 ,1), (

1
2 ,−1), (1

2 ,1)} . (B.2.8)

As established in [344] (using in particular results of [348, 275, 277] about Dirac operators with
Coulomb potential), the Hamiltonian H and its domain D have the following properties (which
characterize the pair (H,D) uniquely):

• For every ψ ∈D, the upper sector is of the form

ψ(1)(x) = c− f
−
m̃j κ̃j
( x
∣x∣) ∣x∣

−1−B
+ ∑
(mj ,κj)∈A

c+mjκj f
+
mjκj
( x
∣x∣) ∣x∣

−1+B
+ o(∣x∣−1/2

) (B.2.9)

as x → 0 with (uniquely defined) short distance coefficients c−, c+mjκj ∈ C and particular
functions f±mjκj

∶ S2 →C4 given by

f+mjκj
= (1 + q −B)Φ+mjκj

− (1 + q +B)Φ−mjκj
(B.2.10a)

f−mjκj
= (1 + q +B)Φ+mjκj

− (1 + q −B)Φ−mjκj
. (B.2.10b)

• Every ψ ∈D obeys the IBC
a1 c− + a2 c+m̃j κ̃j = g ψ

(0) , (B.2.11)
and H acts on ψ ∈D according to (B.1.7) and

(Hψ)(0) = g∗ (a3 c− + a4 c+m̃j κ̃j) . (B.2.12)

We note that by rotational invariance of the Dirac operator with Coulomb potential, H is block
diagonal relative to the sum decomposition

H ≅ Ĥ ⊕ ⊕
(j,mj ,κj)≠(ȷ̃,m̃j ,κ̃j)

L2
((0,∞))⊗Kmjκj (B.2.13)

(recall (B.2.2) and note that j is determined by κj through j = ∣κj ∣ −
1
2), but, by means of the

coupling in (B.2.11) and (B.2.12), not relative to

Ĥ =H (0)
⊕L2

((0,∞))⊗Km̃j κ̃j . (B.2.14)

Therefore, the subspace
D̂ ∶=D ∩ Ĥ (B.2.15)

is invariant under the time evolution generated by H . Henceforth, we will only consider ψ’s from this
set. Since the coupling between H (0) and H (1) essentially happens within D̂ (it is independent of
c+mjκj for (mj , κj) ≠ (m̃j , κ̃j)), we expect that the trajectories for other ψ’s will be qualitatively
similar; although the formulas (B.1.13), (B.1.16), (B.1.17), (B.1.18) may not apply literally, slight
modifications of them should.

For ψ ∈ D̂, we can simplify and refine (B.2.9) as follows:

ψ(1)(x) = c− f
−
m̃j κ̃j
( x
∣x∣) ∣x∣

−1−B
+ c+m̃j κ̃j f

+
m̃j κ̃j
( x
∣x∣) ∣x∣

−1+B

+ f−m̃j κ̃j
( x
∣x∣) o(∣x∣

−1/2
) + f+m̃j κ̃j

( x
∣x∣) o(∣x∣

−1/2
) . (B.2.16)

That is, apart from the fact that c+mjκj = 0 for (mj , κj) ≠ (m̃j , κ̃j), also the error terms must lie
in Km̃j κ̃j . Indeed, this follows from (B.2.9) by projecting to Ĥ . In the following sections, we use
(B.2.16) instead of (B.2.9).
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B.3 The Current
Our goal in this section and the next is to compute the asymptotic behavior of the solutions of the
equation of motion (B.1.3) in Q(1) =R3 ∖ {0} that either reach 0 or come out of 0 at some time
t0. That is, we consider t near t0 and r near 0. To this end, we replace ψt by ψt0 and determine the
asymptotics of the solutions Q(t) of (B.1.3) for fixed ψ(1) = (ψt0)(1). We first need to establish the
asymptotic behavior of the probability current

j(x) = ψ(1)(x)†αψ(1)(x) (B.3.1)

from the short-distance asymptotics of ψ(1) given in (B.2.16). We already noted in the previous
section that the coupling between the 0–particle sector and the 1–particle sector described by
(B.2.11) and (B.2.12) is independent of c+mjκj for (mj , κj) ≠ (m̃j , κ̃j). Since we assume ψ ∈ D̂, we
henceforth write c+ instead of c+m̃j κ̃j for ease of notation.

Proposition B.3.1. For ψ ∈ D̂, the components of the probability current in spherical coordinates
obey the following asymptotics as x→ 0:

jr(rω) = Crad r
−2
+ o(r−3/2−B

) (B.3.2a)

jϑ(rω) = o(r
−3/2−B

) (B.3.2b)

jφ(rω) = Caz sinϑ r−2−2B
+ sinϑO(r−2

) (B.3.2c)

where ω ∈ S2, Crad and Caz are real constants (that depend on ψ but not on rω), jk ∶= ek ⋅ j
(k = r, ϑ,φ), and ek is the unit vector in the k direction,

er = (sinϑ cosφ, sinϑ sinφ, cosϑ) = x

∣x∣
= ω (B.3.3a)

eϑ = (cosϑ cosφ, cosϑ sinφ,− sinϑ) (B.3.3b)

eφ = (− sinφ, cosφ,0) . (B.3.3c)

More explicitly, we have that

jr(rω) =
2(1 + q)B

π
Im [c∗−c+] r−2

+ o(r−3/2−B
) (B.3.4a)

jϑ(rω) = o(r
−3/2−B

) (B.3.4b)

jφ(rω) = −
q(1 + q)

π
∣c−∣

2 sgn(m̃j κ̃j) sinϑ r−2−2B

−
2(1 + q)

π
Re [c∗−c+] sgn(m̃j κ̃j) sinϑ r−2 (B.3.4c)

−
q(1 + q)

π
∣c+∣

2 sgn(m̃j κ̃j) sinϑ r−2+2B
+ sinϑ o(r−3/2−B

) .

Proof. From (B.2.16) and (B.3.1), using c+mjκj = 0 for (mj , κj) ≠ (m̃j , κ̃j),

j(rω) = ψ(1)(rω)† αψ(1)(rω) (B.3.5a)

= ∣c−∣
2
⟨f−m̃j ,κ̃j

(ω),αf−m̃j ,κ̃j
(ω)⟩

C4 r
−2−2B

+ 2 Re [c∗−c+ ⟨f−m̃j ,κ̃j
(ω),αf+mjκj

(ω)⟩
C4] r

−2 (B.3.5b)

+ ∣c+∣
2
⟨f+m̃j ,κ̃j

(ω),αf+m̃j ,κ̃j
(ω)⟩

C4 r
−2+2B
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+ ∑
ν,π=±

⟨fνm̃j ,κ̃j
(ω),αfπm̃j ,κ̃j

(ω)⟩
C4 o(r

−3/2−B
) .

In Lemma B.3.2 below, we evaluate the coefficients of r−2−2B and r−2+2B and in particular show that
they vanish in the r and ϑ components. Afterwards, in Lemma B.3.3, we evaluate the coefficient
of r−2 and in particular show that it is independent of ω in the r component and vanishes in the
ϑ component. Lemmas B.3.2 and B.3.3 also show that all terms of the φ component of (B.3.5b)
contain a factor of sinϑ. This yields (B.3.2). Inserting the precise results for the coefficients in
Lemma B.3.2 and Lemma B.3.3 we arrive at (B.3.4). We remark about the last two lines of (B.3.5b)
that it depends on B which of the exponents −2+ 2B and −3/2−B is greater; for B > 1/6, −2+ 2B
is greater, so r−2+2B < r−3/2−B, and the r−2+2B term could be included in the o(r−3/2−B).

Lemma B.3.2. For every ω ∈ S2, we have that

⟨f∓m̃j ,κ̃j
(ω), αrf

∓
m̃j ,κ̃j

(ω)⟩
C4 = 0, (B.3.6a)

⟨f∓m̃j ,κ̃j
(ω), αϑf

∓
m̃j ,κ̃j

(ω)⟩
C4 = 0, (B.3.6b)

⟨f∓m̃j ,κ̃j
(ω), αφf

∓
m̃j ,κ̃j

(ω)⟩
C4 = −

q(1 + q)
π

sgn(m̃j κ̃j) sinϑ , (B.3.6c)

where the f±m̃j ,κ̃j
were defined in (B.2.10) and αk ∶= ek ⋅α for k = r, ϑ,φ.

Proof. We omit the subscript m̃j , κ̃j for ease of notation. By (B.2.10b) (using that all components
of α are self-adjoint),

⟨f∓(ω),αf∓(ω)⟩C4 = (1 + q +B)2 ⟨Φ±(ω),αΦ±(ω)⟩C4

− 2(1 + q +B)(1 + q −B)Re ⟨Φ+(ω),αΦ−(ω)⟩C4 (B.3.7)
+ (1 + q −B)2 ⟨Φ∓(ω),αΦ∓(ω)⟩C4 .

Since in the standard representation

α =

⎛
⎜
⎜
⎝

0 σ

σ 0

⎞
⎟
⎟
⎠

(B.3.8)

with σ = (σ1, σ2, σ3) the Pauli matrices, we can read off from the form (B.2) that

⟨Φ±(ω),αΦ±(ω)⟩C4 = 0 (B.3.9)

for every ω ∈ S2. Thus, the first and the third line of (B.3.7) vanish identically.

We will now compute

⟨Φ+(ω), αkΦ−(ω)⟩C4 = −i ⟨Ψmj

j∓1/2(ω),ek ⋅σΨmj

j±1/2(ω)⟩C2
. (B.3.10)

For us j = 1/2, so we recall that the first few spherical harmonics are

Y 0
0 (ϑ,φ) =

1
√

4π
, Y 0

1 (ϑ,φ) =

√
3

4π
cosϑ , Y ±1

1 (ϑ,φ) = ∓

√
3

8π
sinϑe±iφ (B.3.11)

and verify:

⟨Ψ±1/2
1 (ω), σ1Ψ±1/2

0 (ω)⟩
∗
C2 = ⟨Ψ±1/2

0 (ω), σ1Ψ±1/2
1 (ω)⟩C2 =

1
4π

sinϑ e±iφ (B.3.12a)

⟨Ψ±1/2
1 (ω), σ2Ψ±1/2

0 (ω)⟩
∗
C2 = ⟨Ψ±1/2

0 (ω), σ2Ψ±1/2
1 (ω)⟩C2 = ∓

i
4π

sinϑ e±iφ (B.3.12b)

⟨Ψ±1/2
1 (ω), σ3Ψ±1/2

0 (ω)⟩
∗
C2 = ⟨Ψ±1/2

0 (ω), σ3Ψ±1/2
1 (ω)⟩C2 =

1
4π

cosϑ . (B.3.12c)
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Thus, we arrive at

⟨Φ+m̃j ,κ̃j
(ω), αrΦ−m̃j ,κ̃j

(ω)⟩
C4 = −

i
4π

(B.3.13a)

⟨Φ+m̃j ,κ̃j
(ω), αϑΦ−m̃j ,κ̃j

(ω)⟩
C4 = 0 (B.3.13b)

⟨Φ+m̃j ,κ̃j
(ω), αφΦ−m̃j ,κ̃j

(ω)⟩
C4 = sgn(m̃j κ̃j)

1
4π

sinϑ . (B.3.13c)

Now (B.3.6b) follows from (B.3.13b), (B.3.6a) follows from the fact that (B.3.13a) has vanishing
real part, and (B.3.6c) is obtained from the middle row of (B.3.7) and (B.3.13c).

We can also read off from Lemma B.3.2 that the leading order coefficient of jφ in (B.3.4c) is given
by

−∣c−∣
2 sgn(m̃j κ̃j)

q(1 + q)
π

sinϑ , (B.3.14)

showing that the sign of jφ near r = 0 is fixed for fixed parameters q, m̃j , κ̃j .

Lemma B.3.3. For every ω ∈ S2, we have that

⟨f−m̃j ,κ̃j
(ω), αrf

+
m̃j ,κ̃j

(ω)⟩
C4 = −i(1 + q)B

π
, (B.3.15a)

⟨f−m̃j ,κ̃j
(ω), αϑf

+
m̃j ,κ̃j

(ω)⟩
C4 = 0 , (B.3.15b)

⟨f−m̃j ,κ̃j
(ω), αφf

+
m̃j ,κ̃j

(ω)⟩
C4 = −

1 + q
π

sgn(m̃j κ̃j) sinϑ , (B.3.15c)

where the f±m̃j ,κ̃j
were defined in (B.2.10) and αk = ek ⋅α for k = r, ϑ,φ.

Proof. We omit the subscript m̃j , κ̃j again and argue exactly as in the proof of Lemma B.3.2 to find
that ⟨f−(ω),αf+(ω)⟩C4 equals

−(1 + q +B)2 ⟨Φ+(ω),αΦ−(ω)⟩C4 − (1 + q −B)2 ⟨Φ+(ω),αΦ−(ω)⟩∗C4 . (B.3.16)

Now, using (B.3.13) and B =
√

1 − q2, the claim follows.

B.4 The Trajectories
From the asymptotic behavior (B.3.2) resp. (B.3.4) of the current and the fact that the probability
density

ρ(x) = ψ(1)(x)†ψ(1)(x) (B.4.1)

is asymptotically proportional to ∣x∣−2−2B, we will now draw conclusions about the asymptotic
Bohmian trajectories.

To this end, we study approximate solutions of (B.1.3) by neglecting the time dependence of the
velocity field j/ρ on the right-hand side of (B.1.3). This means, if t ↦ ψt = e−iHtψ0 denotes the
(strongly differentiable) time–evolution of ψ0 ∈ D governed by our Hamiltonian H, we make the
simplifying assumption that Q(t) is guided by a constant velocity field; that is, we approximate
ψt ≈ ψt0 and solve the differential equation

dQ(t)

dt
=

j

ρ
∣
t=t0
(Q(t)) (B.4.2)

instead of (B.1.3) for times t close to t0. This approximation has already been employed in prior
studies of Bohmian trajectories in the context of IBCs [229]; see Remark B.4.2 below for a possible
general strategy of rigorously justifying it.

661



B. Creation rate of Dirac particles at a point source

Proposition B.4.1. Let ψ0 ∈ D̂ and t0 ∈R be any time for which

Im [c∗−(t0)c+(t0)] ≠ 0 (B.4.3)

(in particular, c−(t0) ≠ 0). By simple time shifts, we may assume without loss of generality that
t0 = 0 and drop the argument t0 in (B.4.3) from now on.
Then the trajectories t ↦ Q(t) solving (B.4.2) (as an approximation of (B.1.3)) and reaching
r = 0 at time t0 = 0 (or emanating from r = 0 at t0 = 0) can occur only if Im [c∗−c+] < 0 (resp.,
Im [c∗−c+] > 0) and obey for t < 0 (resp., t > 0) in spherical coordinates the asymptotics

r(t) =
⎡
⎢
⎢
⎢
⎣
2B (1 − 2B)

∣Im [c∗−c+]∣
∣c−∣2

⎤
⎥
⎥
⎥
⎦

1
1−2B

∣t∣
1

1−2B +O(∣t∣min{ 1+2B
1−2B

,
3/2−B
1−2B

}
) (B.4.4a)

ϑ(t) = ϑ0 + o(∣t∣
1
2 ) (B.4.4b)

φ(t) = φ0 − q sgn(m̃j κ̃j)4B2
⎡
⎢
⎢
⎢
⎣
[

2B
1 − 2B

]

2B ∣c−∣
2

∣Im [c∗−c+]∣

⎤
⎥
⎥
⎥
⎦

1
1−2B

∣t∣
−2B

1−2B (B.4.4c)

+ CH,c± log ∣t∣ +O(∣t∣min{ 2B
1−2B

, 1
2})

as t→ 0 with some (unique) constants 0 ≤ φ0 < 2π and 0 ≤ ϑ0 ≤ π. Here, CH,c± denotes a constant
depending on the chosen Hamiltonian H (i.e., on q, m̃j , κ̃j) and the short–distance coefficients c± of
ψ0 ∈ D̂. Moreover,

dr
dt
= O(∣t∣

2B
1−2B )

t→0
Ð→ 0 . (B.4.5)

Recall that
√

3/2 < ∣q∣ < 1 and thus B =
√

1 − q2 ∈ (0, 1/2) as defined in (B.1.12). It follows that for
every B, the error term in (B.4.4a) has exponent greater than 1/(1 − 2B) > 0 and thus is smaller
than the explicitly given first term. Likewise in (B.4.4c), the error term is actually smaller than the
terms before because 2B/(1 − 2B) is always positive.

The condition (B.4.3) can be thought of as ensuring non-degeneracy of the Bohmian dynamics. Since
D̂ is invariant under the time evolution generated by H, all the other short–distance coefficients
apart from c± remain zero for all times.

Moreover, observe that, by plugging (B.4.4a) into (B.4.4b) and (B.4.4c), we arrive at (B.1.16) and
(B.1.17), respectively. Since the leading order coefficient of (B.4.4c) is given by −q sgn(m̃j κ̃j) times
a positive factor depending also on c±, we see that the sense of circling the z–axis depends on the
choice of the Hamiltonian (viz., on q, m̃j , κ̃j) but not on ψ, while the speed of circulation (meaning
not just the exponent of ∣t∣ but also the prefactor) depends on ψ but is the same for all trajectories.

Remark B.4.2. (On the approximation by a constant velocity field)
The approximate form (B.4.2) of the equation of motion (B.1.3) has already been used in the
derivation of Bohmian trajectories for the non-relativistic case in [229]. Although the simplified ODE
(B.4.2) (and its non-relativistic analog in [229]) most likely yield the correct leading order behavior
of Bohmian trajectories shortly after (before) particle creation (annihilation), both [229] and the
present work are lacking a rigorous justification of this approximation. In the following, we shall
thus briefly outline a potential general strategy of how one could prove the validity of approximating
the full guiding equation (B.1.3) by the one with a constant velocity field (B.4.2). We will focus
on the present relativistic setting, but the principal argument can immediately be translated to the
non-relativistic setting [229].
The basic idea to make the approximation rigorous is to show that for ψ0 ∈ D̂, the three terms in
the asymptotic expansion for the 1–particle component of the time–evolved wave function

ψ
(1)
t (rω) = c−(t) f

−
m̃j κ̃j
(ω) r−1−B

+ c+(t) f
+
mjκj
(ω) r−1+B

+ ot(r
−1/2
) (B.4.6)
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are well–behaved in t. More precisely, one needs to show that (i) c−(t) is a C1–function of time, (ii)
c+(t) is a C1–function of time, and (iii) the implicit constant in ot(∣x∣

−1/2) is uniformly bounded
for small enough times. First, assuming that we have a1 = 1, a4 = 4B(1 + q), and a2 = a3 = 0
in (B.2.7), the IBC (B.2.11) yields that c− ∈ C1 since ψ(0)t is C1 in time and we have proven (i).
Note that, if we had chosen different a1, ..., a4, we could have drawn the same conclusion for a
certain linear combination of c− and c+. For (ii) we propose to take the scalar product of ψ(1)t with
gt(rω) = f

+
mjκj
(ω)x(t)−1/21{r<x(t)} with x(t) → 0 as t → 0. Using that ∣⟨(ψ(1)t − ψ

(1)
0 ), gt⟩∣ ≤ C ∣t∣

in combination with c− being C1, one should be able to deduce the same regularity for c+ by taking
x(t) → 0 as t → 0 arbitrarily slow. For (iii) we note that the ot(r−1/2)–error in (B.4.6) originates
from integrating a H1

0((0,∞)) function from 0 to r by the fundamental theorem of calculus [277]
and dividing by r afterwards. Therefore, in order to show the error term to be bounded uniformly in
short times, one could employ Sobolev–to–Sobolev estimates showing that the time evolution e−iHt

is a bounded operator from one Sobolev space to another, uniformly for times t in compact intervals
(see, e.g., [439]).

It remains to give the proof of Proposition B.4.1.

Proof of Proposition B.4.1. By the short–distance asymptotics (B.2.16) or (B.2.9), we have that

ρ(rω) = ∣c−∣
2 ∣f−m̃j κ̃j

(ω)∣
2
r−2−2B

+ 2Re [c∗−c+⟨f−m̃j ,κ̃j
(ω), f+m̃j ,κ̃j

(ω)⟩]r−2
+O(rmin{−2+2B,−3/2−B}) . (B.4.7)

An easy computation yields that

⟨Φ±m̃j κ̃j
(ω),Φ∓m̃j κ̃j

(ω)⟩C4 = 0 and ∣Φ±m̃j κ̃j
(ω)∣

2
=

1
4π

, (B.4.8)

which in particular shows that the r−2 term in (B.4.7) is independent of ω, and allows us to infer
that

∣f−m̃j κ̃j
(ω)∣

2
=

1 + q
π

and ⟨f−m̃j ,κ̃j
(ω), f+m̃j ,κ̃j

(ω)⟩ =
q(1 + q)

π
. (B.4.9)

In this way we arrive at

ρ(rω) = ∣c−∣
2 1 + q
π

r−2−2B
+ 2Re [c∗−c+]

q(1 + q)
π

r−2
+O(rmin{−2+2B,−3/2−B}) , (B.4.10)

where the explicit terms are independent of ω. Combining the asymptote (B.4.10) with Proposition
B.3.1 (and using that

1
A + ε

=
1
A
−
ε

A2 + o(ε) =
1
A
+O(ε) (B.4.11)

as ε→ 0 for A ≠ 0 independent of ε), we obtain from the simplified equation of motion (B.4.2) the
following asymptotic system of ODEs for the spherical coordinates (r(t), ϑ(t), φ(t)) of Q(t),

dr
dt
= 2B Im [c∗−c+]

∣c−∣2
r2B
+O(rmin{4B,1/2+B}) (B.4.12a)

r
dϑ
dt
= o(r1/2+B

) (B.4.12b)

r
dφ
dt
= −q sgn(m̃j κ̃j) + C̃H,c±r

2B
+O(rmin{4B,1/2+B}) . (B.4.12c)

As in (B.4.4c), C̃H,c± denotes a constant depending on the choice of Hamiltonian H (i.e., on q, m̃j ,
and κ̃j) and the short–distance coefficients c±. In the last equation, we have already divided by sinϑ.
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We are now left with the task of solving the system (B.4.12). Using the initial condition r(0) = 0,
the first equation (B.4.12a) can be integrated by separation of variables, leaving us with

r(t)1−2B
(1 +O(r(t)min{2B,1/2−B})) =

⎡
⎢
⎢
⎢
⎣
2B (1 − 2B)

∣Im [c∗−c+]∣
∣c−∣2

⎤
⎥
⎥
⎥
⎦
∣t∣ (B.4.13)

for sgn(t) = sgn(Im [c∗−c+]). Generally, from a relation of the form t = crα +O(rβ) with 0 < α < β
and c, t, r > 0, we can conclude that every O(rγ) is an O(tγ/α) and vice versa for every γ > 0. Thus,
rα = c−1t+O(tβ/α) and r = c−1/αt1/α+O(t1/α−1+β/α), which yields (B.4.4a). For (B.4.12b), we make
the change of variables t→ r(t), insert the differential (B.4.12a) to obtain that dϑ/dr = o(r−1/2−B),
and again integrate by separation of variables, where we now use the initial condition ϑ(0) = ϑ0.
In this way, we arrive at (B.4.4b) after inverting the change of variables with the aid of (B.4.4a).
In order to get (B.4.4c) from (B.4.12c), we pursue the same strategy, i.e., replace t → r(t) and
integrate by separation of variables. However, this time we need to choose the initial condition
according to φ(r = r0) = φ̃0 for some sufficiently small but fixed r0 > 0 and φ̃0 ∈R. Absorbing φ̃0
and all terms depending only on r0 into a new constant φ0 ∈R, we arrive at (B.4.4c), again after
inverting the change of variables with the aid of (B.4.4a).

B.5 The Jump Process

B.5.1 Definition
We define the process (Qt) for t ≥ τ for some time τ regarded as the initial time. Given that, as we
will argue in Section B.5.2, the process is equivariant (i.e., ∣ψt∣2 distributed at every t), it follows that
the processes defined for τ1 and τ2 > τ1 are equal in distribution on [τ2,∞), so (by the Kolmogorov
extension theorem) the processes for all τ ’s can be combined into a single process (Qt)t∈R defined
on the whole time axis.

Here is the definition of the process. We assume that the initial wave function ψτ lies in D̂; it
follows that ψt ∈ D̂ for all t. The initial configuration Qτ is chosen to be ∣ψτ ∣2 distributed. Once
Qt ∈ Q

(1) =R3 ∖ {0}, it follows the Bohmian trajectory, i.e., the equation of motion (B.1.3). If the
trajectory reaches 0 at some time t0, the process jumps to

Qt0 ∶= ∅ ∈ Q
(0) . (B.5.1)

The process is required to be a Markov process, so it only remains to specify the jump rate
σt0(ϑ0, φ0)dϑ0 dφ0 from the 0-particle configuration ∅ ∈ Q(0) to the trajectory in Q(1) emanating
at any given time t0 from 0 with parameters ϑ0 and φ0. As we will explain, the natural choice
analogous to Bell’s jump rate formula [58] (and to the jump rates in the non-relativistic case [229]) is

σt0(ϑ0, φ0) =
2(1 + q)B

π

max{0, Im [c∗−(t0) c+(t0)]}

∣ψ
(0)
t0
∣2

sinϑ0 . (B.5.2)

Here, it is relevant to observe from (B.4.12a) that if Im [c∗−c+] < 0, then (according to Proposi-
tion B.4.1) all trajectories are ingoing, and if Im [c∗−c+] > 0, then all are outgoing. In the former case,
it is not possible to jump onto an outgoing trajectory because there is no outgoing trajectory, and
indeed σt0 = 0. In the latter case, there is a 2-parameter family of outgoing trajectories parameterized
by ϑ0 and φ0. The total jump rate (i.e., the rate of leaving ∅) is

∫

π

0
dϑ0∫

2π

0
dφ0 σt0(ϑ0, φ0) = 8(1 + q)B

max{0, Im [c∗−(t0) c+(t0)]}

∣ψ
(0)
t0
∣2

. (B.5.3)

Given that a jump occurs at t0, the distribution of the chosen values of ϑ0 and φ0 (i.e., of which
trajectory to jump to) has density (4π)−1 sinϑ0, which means that if we think of ϑ0 and φ0 as
coordinates on a sphere, then the distribution is uniform over the sphere. For definiteness, we set
that at the time t0 of the jump, Qt0 ∶= ∅. This completes the definition of the process.
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B.5.2 Equivariance and Uniqueness of the Rate
We now give a non-rigorous justification of the claim that Qt will be ∣ψt∣2 distributed at every t.
Since in Q(1) (away from 0),

∂ρ

∂t
= −∇ ⋅ j , (B.5.4)

no ρ is gained or lost there. It follows, first, that away from 0 probability gets transported by Qt so
as to maintain the density ρ (as usual in Bohmian mechanics [91, 232]), and second, that the only
place in Q(1) where ρ is gained or lost is 0. We now want to express the rate at which ρ is gained or
lost there; for simplicity, we write ψt0 = ψ. As before, we neglect how ψ changes near t0. Consider
first the flux of probability through the surface element d2ω of the sphere around 0 of small but
nonzero radius r: it is

jr(rω) r
2 d2ω . (B.5.5)

From Proposition B.3.1, we obtain that for small r, this is equal to

(Crad + o(r
1/2−B

))d2ω , (B.5.6)

which for r → 0 converges to Crad d
2ω. Since Crad = 2π−1(1 + q)B Im [c∗−c+] is independent of ω,

the rate of gain (positive or negative) of ρ at 0 is given by 4πCrad.

This agrees with the rate of gain (positive or negative) of probability at 0 of Qt: Indeed, if Crad > 0
then no trajectories end at 0 at t0 (so no probability is lost there), and the amount transported by
jumps from ∅ to trajectories emanating from 0 at t0 is the probability at ∅ times the total jump
rate from ∅, or

∣ψ(0)∣2∫
π

0
dϑ0∫

2π

0
dφ0 σt0(ϑ0, φ0)

(B.5.3)
= 8(1 + q)B Im [c∗− c+] = 4πCrad . (B.5.7)

If, however, Crad < 0 then no upward jumps occur (so no probability is gained at 0), while the
amount lost automatically agrees (since Qt is ∣ψt∣2 distributed) with the flux across the sphere in the
limit r → 0.

Finally, to ensure preservation of the ∣ψ∣2 distribution, it remains to verify that the distribution of Qt
over the emanating trajectories agrees with that required for ∣ψt∣2, i.e., yields the flux (B.5.5) through
r d2ω in the limit r → 0: Indeed, using that (i) the leading terms in the radial velocity (B.4.12a) and
the azimuthal velocity (B.4.12c) are independent of ω, (ii) the polar velocity (B.4.12b) is essentially
0, and (iii) the distribution defined by σt0(ϑ0, φ0) over the sphere with coordinates ϑ0 and φ0 is
uniform as remarked after (B.5.3), we obtain that the distribution of Qt over the r-sphere is uniform
to leading order as r → 0. Using again that the leading term in the radial velocity (B.4.12a) is
independent of ω, we obtain that the radial current of Qt is independent of ω in the limit r → 0.
Since the total current agrees with 4πCrad, the flux of Qt through r d2ω agrees with (B.5.5) in the
limit r → 0, as desired. This completes the argument for equivariance.

As a byproduct of this reasoning, we see that conversely, the formula (B.5.2) is uniquely determined
by the demand for equivariance (and Markovianity): Whenever Crad < 0, σt0 must vanish because
there are no outgoing trajectories, and whenever Crad ≥ 0, σt0 must be given by Crad∣ψ

(0)∣−2d2ω in
order to feed the correct probability distribution into the Bohmian flow.

A further observation is that (B.5.2) is analogous to the jump rate formula determined in [229,
Sec. 3.1 and 7.2] for the non-relativistic case; in fact, both formulas can be expressed in a common
form if we write σt0(r,ω)d2ω for the rate, at time t0, for jumping from ∅ to a trajectory that at
radius r will have position in rd2ω:

lim
r→0

σt0(r,ω) = lim
r→0

r2 max{0, ψ(1)(rω)† αr ψ(1)(rω)}
∣ψ(0)∣2

(B.5.8)
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with ψ = ψt0 . It also becomes evident that the jump rate formula (B.5.2) is analogous to Bell’s jump
rate formula [58, 230]. Presumably, it also arises as a limit of Bell’s rate if we can obtain the IBC
Hamiltonian as a limit of Hamiltonians with UV cut-off.

B.6 Conclusions
We have studied a model of creation and annihilation of a Dirac particle at a point source at the
origin 0 in R3 and constructed, in a non-rigorous way, a Markov process (Qt)t∈R in the configuration
space Q(0) ∪Q(1) = {∅} ∪ (R3 ∖ {0}) that is ∣ψt∣2 distributed at every time t. Since a UV cutoff
has the unphysical consequence that a particle can be created at non-zero distance from the source
[230, 229], we have used instead an interior-boundary condition (IBC), which has the reasonable
consequence that particles can only be created and annihilated directly at the point source. The
key element of the definition of the process (Qt)t∈R was the law (B.5.2) specifying the creation
rate. It is analogous to Bell’s jump rate formula [58, 230]. This process is the first example of
a configuration process for a Dirac Hamiltonian with IBC; non-relativistic versions were described
in [229]. We believe that this work might contribute to the extension of Bohmian mechanics to
relativistic quantum field theory.

The Hamiltonian H we use was recently constructed rigorously in [344] based on prior work in
[348, 275, 277]. Some of our considerations here were not rigorous, although all Propositions and
Lemmas were proven rigorously. But even the non-rigorous conclusions have benefited from the
rigorous construction of H; in fact, certain features and details of the process (Qt)t∈R (such as the
fact that a newly created particle circles the z axis infinitely often) have only become accessible due
to the detailed information about H (such as the near-0 asymptotics of the functions in the domain)
provided by its rigorous construction. We have also outlined where we see the biggest hurdle for a
full rigorous treatment, and which strategies could be applied to overcome it.

Further questions that would be of interest for future research include whether other models based
on Dirac Hamiltonians and IBCs, such as the model of [571] in curved space-time, could also be
defined rigorously, whether other Dirac Hamiltonians (such as the model of [365]) would allow for
IBCs, what the corresponding Bell-type jump processes look like, and whether there are examples in
which the process is qualitatively different from the one described here; in particular, whether there
are models for which the jump rate is angle dependent.
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ChapterC
How a Space-Time Singularity Helps

Remove the Ultraviolet Divergence
Problem

This chapter contains the paper [339]:

J. Henheik, B. Poudyal, and R. Tumulka. How a Space-Time Singularity Helps Remove the Ultraviolet
Divergence Problem. arXiv:2409.00677, 2024

Abstract. Particle creation terms in quantum Hamiltonians are usually ultraviolet divergent and thus
mathematically ill defined. A rather novel way of solving this problem is based on imposing so-called
interior-boundary conditions on the wave function. Previous papers showed that this approach works
in the non-relativistic regime, but particle creation is mostly relevant in the relativistic case after all.
In flat relativistic space-time (that is, neglecting gravity), the approach was previously found to work
only for certain somewhat artificial cases. Here, as a way of taking gravity into account, we consider
curved space-time, specifically the super-critical Reissner-Nordström space-time, which features a
naked timelike singularity. We find that the interior-boundary approach works fully in this setting; in
particular, we prove rigorously the existence of well-defined, self-adjoint Hamiltonians with particle
creation at the singularity, based on interior-boundary conditions. We also non-rigorously analyze
the asymptotic behavior of the Bohmian trajectories and construct the corresponding Bohm-Bell
process of particle creation, motion, and annihilation. The upshot is that in quantum physics, a
naked space-time singularity need not lead to a breakdown of physical laws, but on the contrary
allows for boundary conditions governing what comes out of the singularity and thereby removing
the ultraviolet divergence.
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C.1 Introduction
It is a notoriously difficult problem [478, 470, 284] (and still active [494, 422]) to rigorously implement
particle creation and annihilation in quantum Hamiltonians at point sources, as they are usually
plagued by ultraviolet (UV) divergences. The traditional way of resolving this issue is to employ
so-called UV cut-offs (e.g., [470], see also [572, Sec. 6.2.5]), corresponding to smearing out the
source of particle creation to a positive volume, and (if possible) defining a renormalized Hamiltonian
[577, 470, 216, 300] in a limiting procedure removing the cut-off. A different, rather novel approach
to this problem is based on interior boundary conditions (IBCs) [558, 557]: These relate the wave
function ψ, defined on a configuration space of a variable number of particles, at the interior of
the n-particle sector to the boundary (i.e., where creation/annihilation occurs) of the n + 1 particle
sector.

The IBC approach has previously successfully been applied in the non-relativistic setting [389, 388],
i.e., for the Schrödinger equation involving the Laplacian. However, since particle creation is mostly
relevant in the relativistic case, it is of particular importance to study the IBC approach in that
setting, for example for the Dirac equation. In flat relativistic space-time (i.e., neglecting gravity),
two of us have shown the following no-go result (see [344, Theorem 1]): In three spatial dimensions,
there exists no self-adjoint Hamiltonian on Fock space that involves particle creation and annihilation
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at the origin but otherwise acts like the free Dirac Hamiltonian. As a positive, but somewhat artificial
result [344, Theorem 6], it was shown that IBC Hamiltonians with particle creation at the origin can
in fact be implemented in that setting upon adding a sufficiently strong Coulomb potential at the
origin. Here, we obtain an IBC Hamiltonian without coupling to a Coulomb potential; we do so by
relying only on gravity in a general-relativistic way. In fact, the presence of a space-time singularity
makes the IBC approach work without the assumption of a strong Coulomb potential. For further
works on IBCs, see [364, 420, 513, 494, 83].

In another recent work [345], some of us studied the corresponding Bohmian trajectories and (non-
rigorously) constructed a ∣Ψ∣2-distributed Markov jump process (the Bohm-Bell process [58, 230]) in
the configuration space of a variable number of particles. Here, we provide the analogous construction
with gravity (see Sections C.1.1.2 and C.2.4).

In this paper, as a way of taking gravity into account, we consider curved space-time, specifically
the super-critical Reissner-Nordström (sRN) space-time [475, 497, 585, 476, 327], which is the
static curved space-time surrounding a single charged point mass, a solution of the Einstein-Maxwell
equations with mass M ≥ 0, charge Q ∈R, and angular momentum 0, where “super-critical” means

∣Q∣ >M . (C.1.1)

More precisely, the general Reissner-Nordström space-time is given by the manifold M =R × (R3 ∖
{0}) ≅R × (0,∞) × S2, where 0 denotes the origin of R3, equipped with the Lorentzian metric g
with line element

ds2
= A2
(r)dt2 − 1

A2(r)
dr2
− r2 dω2 (C.1.2)

in spherical coordinates (t ∈R; r ∈ (0,∞); ω ∈ S2). Here, dω2 = dϑ2+sin2 ϑdφ2 in terms of the polar
angle ϑ and the azimuthal angle φ, and we used natural units h̵ = c = G = 1 and the abbreviation

A2
(r) ∶= 1 − 2M

r
+
Q2

r2 (C.1.3)

with parameters M and Q representing the mass and charge at r = 0. Finally, the electromagnetic
field is denoted by

Aµ = (Q/r,0,0,0) , (C.1.4)

not to be confused with the scalar A function introduced in (C.1.3). In the super-critical regime
(C.1.1), where A2(r) > 0 for all r, the singularity is timelike and naked (i.e., not surrounded by a
horizon), and the metric is static and asymptotically flat. We also take A(r) > 0. The singularity
will be regarded here as the boundary of M , i.e., ∂M = {r = 0} =R × {0} × S2.

We note in passing that the charge and mass value of an electron satisfy the super-criticality condition
(C.1.1), so the classical space-time surrounding an electron would be sRN, provided that the electron
spin does not contribute to the angular momentum of the space-time. While it is not known whether
real electrons contain space-time singularities, we are in part motivated by the possibility that they
might (see Section C.2.1 for more discussion).

The basic physical picture, illustrated in Figure C.1 and underlying the entire paper, is that a
relativistic quantum-mechanical spin-1/2 particle of mass m ≥ 0 and charge q ∈R can be emitted
and absorbed at the singularity ∂M . In our setting, this can naturally be associated with a “source
particle" of mass M ≥ 0 and charge Q ∈R obeying (C.1.1) (see Section C.2.5 for further details).
Away from the singularity, the wave function of the quantum particle is governed by the Dirac
equation on sRN space-time with Hamiltonian H1 explicitly given in (C.2.15) below.

As our results, briefly described in Section C.1.1 below, we (i) rigorously construct a self-adjoint
Hamiltonian H with particle creation, based on IBCs (see Theorem C.3.1 in Section C.3.1), and (ii)
non-rigorously analyze the asymptotic behavior of the Bohmian trajectories close to the space-time
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q,m

Q,M

Figure C.1: Qualitative depiction of the setup in this paper: A relativistic quantum mechanical
spin-1/2 particle of charge q and mass m moves in a curved space representing the gravitational
field of a “source particle” with charge Q and mass M (and fixed location, which then is a curvature
singularity). The quantum particle can be absorbed and emitted by the source particle. The trajectory
shown is a Bohmian trajectory of the quantum particle shortly before absorption or after emission by
the source particle.

singularity in sRN and construct the corresponding Bohm-Bell process (see Section C.3.2, in particular
Proposition C.3.7) for a particular choice of H and “nice” wave functions.

It follows that the quantum particle has nonzero probability to hit the singularity, although the latter
could be thought of as a 0d set in 3d space, and the probability of hitting a generic 0d or 1d set
vanishes. (The reason for this kind of effective attraction to the singularity ∂M is that at ∂M , the
arriving wave function will be transported to the 0-particle sector of Fock space, thereby effectively
exerting a kind of suction on the nearby wave function.)

C.1.1 Description of Our Main Results

In this section, we briefly describe the main results of the present paper and provide some comments
on them. Full details are given in Section C.3.

C.1.1.1 IBC Hamiltonian with Particle Creation

As our first main result, Theorem C.3.1, we devise a certain Hamiltonian H with particle creation
and annihilation, and prove that it is self-adjoint. As mentioned above, emission/absorption of a
particle occurs at a single point in space (or world line in space-time), the naked singularity in sRN
space-time (C.1.2). Thus, on the one hand, the present work rigorously extends the IBC approach to
curved space-time (with fixed background metric), and on the other hand, our treatment deals with
(and gives physical meaning to) the well-known fact [175] that the 1-particle Dirac Hamiltonian H1
on the sRN space-time is not essentially self-adjoint, and thus does not uniquely define a unitary
time evolution. Our Hamiltonian H is based on H1 but is defined on a version of Fock space, as
appropriate for particle creation. For simplicity, we consider only the 0-particle and 1-particle sectors
of Fock space (but our approach could be extended to the full Fock space along the lines of [389]).
It is common to exclude wave functions of negative energy as unphysical, but we will not exclude
them in our model. Our proofs make particular use of mathematical results of Cohen and Powers
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[175] about the domain of the adjoint of H1, in particular described by the asymptotic behavior of
wave functions near the singularity. These asymptotics are then exploited to devise an IBC, coupling
the 1-particle to the 0-particle sector and thus constituting the Hamiltonian H.

We finally remark that, in [571, Eq. (52)], one of us already conjectured an IBC for this case; the IBC
investigated here is similar but not identical, and we leave open the question whether a self-adjoint
Hamiltonian can be devised for the IBC of [571]. For a comparison of the two IBCs, see Remark C.3.3
in Section C.3.1.

C.1.1.2 Bohmian Trajectories and Bohm-Bell Jump Process

As our second main result (see Section C.3.2, in particular Proposition C.3.7), in addition to the
Hamiltonian H, we construct the Bohm-Bell process [58, 230] for a particular choice of H (viz.,
κ̃j = ±1 in the notation of Section C.3.1) and an initial wave function Ψ0 from a suitable subspace
of Hilbert space. It is a piecewise-deterministic Markovian jump process in the configuration space
of a variable number of particles that is ∣Ψt∣

2 distributed at every coordinate time t, and its jumps
correspond to the creation or annihilation events. Similar processes were devised in [229] for non-
relativistic space-time and in [345] for Minkowski space-time with a Coulomb field. While we do not
rigorously prove the existence of the process, we can specify what its defining equations must be, in
particular the law (C.3.25) for the rate of particle creation at the singularity. This rate depends on
the wave function and thus on time, while the direction of emission is uniformly distributed over all
directions. A similar law had been conjectured in [571].

Here is a comparison between the non-relativistic [389], the special-relativistic [345], and the present
general-relativistic case (summarized in Table C.1). While the special-relativistic process circles the
origin infinitely many times before hitting it, our process does not, and thus is similar in this respect
to the non-relativistic process. Another such similarity concerns the radial speed with which the
quantum particle hits the origin: while it does with speed 0 in the special-relativistic case, it does
with nonzero speed in our and the non-relativistic case. (Note that the geometrically appropriate way
of measuring this speed is dR/dt, where R denotes the radial metric distance from the singularity,
which is not the same as r, as the latter is defined so that 4πr2 is the surface area of the sphere
with coordinate r, see Section C.4.2.)

C.1.2 Structure of the Paper

The remainder of this paper is organized as follows. In Section C.2, we put the results into context and
provide relevant background information. In Section C.3, we state our main results. In Section C.4,
we review the known facts about the Dirac equation in the sRN space-time. In Section C.5, we prove
our theorem about the existence of the IBC Hamiltonian. In Section C.6, we give the details about
the construction of the associated Bohm-Bell process. In Section C.7, we conclude. In Appendix C.A,
we provide the explicit form of the angular momentum eigenfunctions in a spinor basis corresponding
to spherical coordinates.
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C.2 Motivation, Significance, and Background

In this section, we further motivate our paper, connect our results to existing literature, and provide
additional background information.
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non-rel. [389] SR [345] GR (here)

dr
dt
(t0) ≠ 0 0 dR

dt
(t0) ≠ 0

ϑ(t0) const. const. const.

φ(t0) const. → ±∞ const.

Table C.1: Comparison between the Bohm-Bell processes in the non-relativistic, the special-relativistic,
and the general-relativistic case; t0 is the time of absorption or emission, and R means the “tortoise
coordinate” (radial metric distance) defined in (C.4.8); see (C.4.17) for the relation R(t) and (C.3.21)
for ϑ(t) and φ(t).

C.2.1 Space-Time Singularities

One motivation for this research concerns the status of space-time singularities (i.e., of points of
infinite space-time curvature): It would seem that the laws of physics break down at singularities, as
anything could come out of a singularity if it is timelike (as it is for the sRN space-time). However, in
the model considered here, certain laws of nature (the IBC and the law determining the creation rate)
govern what comes out of the singularity. That is, the singularity does not lead to a breakdown of
physical laws, it provides just the room needed for imposing laws for particle creation and annihilation;
this point is discussed further in [571].

Here is how that is related to Roger Penrose’s cosmic censorship conjecture [489], which states
that naked singularities do not form according to general relativity and classical evolution through
gravitational collapse from non-singular initial data. Even if that is true, it leaves open whether
elementary particles might contain naked singularities, and whether naked singularities might occur
in the quantum world. Anyway, we find the possibility of naked singularities worthy of study, in part
because our results show that they need not entail a breakdown of physical laws, but rather a gap in
the physical laws that can be filled by the laws studied here.

C.2.2 Ultraviolet Divergence

Another aspect concerns the problem of ultraviolet infinities. Terms in a Hamiltonian representing
particle creation and annihilation at a point source usually diverge, which keeps the Hamiltonian
from being rigorously defined. Sometimes, renormalization can provide a way of rigorously defining
a Hamiltonian [470, 216] by means of a limiting procedure. Here, we follow a different approach
based on IBCs [558, 557], which allow us to directly characterize the Hamiltonian and its domain
without a limiting procedure; IBCs are mathematically related to point interactions [19, 68]. We
limit ourselves to the (easier) case in which the source (i.e., the emitting and absorbing particle) is
fixed at some point (taken to be the coordinate origin). This case was studied for non-relativistic
Hamiltonians (based on the Laplacian) in [389].
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For the question of whether IBCs can be relevant to realistic quantum field theories, it matters
whether they can be applied in a relativistic setting. As a test case, we assume that the particles
created are spin- 1

2 particles governed by the Dirac equation. (Photons would be even more interesting,
but no general formula is known for their probability current [572, Sec. 7.3.9], which is why we prefer
the Dirac equation.) It has been shown [344] that in Minkowski space-time, IBCs can work in the
(somewhat artificial) setting of the Dirac particles feeling a sufficiently strong Coulomb potential
around the source, but not if the Coulomb potential is absent or too weak. That sounds not very
encouraging; it sounds as if IBCs often failed to work, and as if we should not expect that IBCs
could one day be found to work for uncharged relativistic particles such as photons.

However, the picture changes a lot with the results of the present paper. Basically, the gravitational
field of the source (which would also apply to photons) makes the IBC approach work in a similar
way as for a strong Coulomb field, regardless of how big the charge q and the mass m of the Dirac
particles are. In particular, it also works for uncharged and/or massless particles.1 That is, the
present paper provides support for expecting the applicability of the IBC approach in more realistic
models.

C.2.3 Self-adjoint Extensions on Fock Space
Mathematically, our problem can be expressed in terms of self-adjoint extensions. This is because,
apart from particle creation and annihilation (which happens only at certain places), the Hamiltonian
H acts as the Dirac Hamiltonian H1 and we thus devise a self-adjoint extension of H1 to an enlarged
Hilbert space, a (truncated) Fock space. (Note, however, that unlike usual self-adjoint extensions,
which start from a densely defined operator, H1 in our case is not densely defined, see below.)

In curved space-time, a 1-particle wave function ψ is a cross-section of a smooth complex vector
bundle S over M (called the spinor bundle) with fibers Sx (called the Dirac spin space) for x ∈M
that are 4-dimensional complex vector spaces.

For the construction of our H, we are building on previous work on the Dirac Hamiltonian on sRN
space-time [175, 55, 56, 260, 474, 365], particularly on [175]. A crucial difference to these prior
works is that, since we consider a mini-Fock space consisting of merely the 0-particle and 1-particle
sector, our Hilbert space is 1 dimension larger than what was considered in the prior works: If Σ is a
t = const. surface for the Reissner-Nordström time coordinate t, then the prior works considered the
1-particle Hilbert space H (1) of functions ψ ∶ Σ→ S that are cross-sections (i.e., ψ(x) ∈ Sx) with
⟨ψ,ψ⟩ <∞ for the inner product

⟨ψ,ϕ⟩ = ∫Σ
V (d3x)ψ(x)nµ(x)γ

µ
x ϕ(x) , (C.2.1)

where V is the Riemann volume measure arising from the 3-metric on Σ and nµ(x) the future unit
normal vector to Σ at x (see [572, Sec. 7.3.4] for why this is a Hilbert space).

In contrast, since we consider particle creation, our Hilbert space is the orthogonal sum

H =H (0)
⊕H (1) (C.2.2)

of the 0-particle space H (0) and the 1-particle space H (1) and thus constitutes a truncated Fock
space. The 0-particle space H (0) = C is 1-dimensional (because it is spanned by the vacuum
state). The Dirac Hamiltonian is at first defined as a differential operator H0

1 on a dense domain
1On the other hand, we use here that the source has sufficiently large charge, ∣Q∣ >M , but that is, first, actually

satisfied for the charge and mass of an electron (as we often think of the sRN space-time as the gravitational field of
an elementary particle), and second, it is not so much an issue of the IBC approach as one of the Einstein equation,
as the Reissner-Nordström space-time for 0 < ∣Q∣ ≤M has a complicated structure with infinitely many singularities,
wormholes, and asymptotically flat regions [327, Fig.s 25 and 26(i)], while for Q = 0 it becomes the Schwarzschild
space-time, for which the singularity becomes spacelike and thus not at all like the world line of a particle.
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D0
1 in H (1); while the prior works were studying self-adjoint extensions in H (1), we are looking at

self-adjoint extensions in H =H (0) ⊕H (1); in particular, the operator H0
1 we extend is densely

defined in H (1) but not in H . If H0
1 were essentially self-adjoint in H (1), it would have a unique

self-adjoint extension in H (1), and that would be bad for our purpose because it would entail [344,
Theorem 1] that all self-adjoint extensions in H are block diagonal, which means that no transitions
between H (0) and H (1) ever occur, and thus no particle creation or annihilation. However, as
found in [175], H0

1 is not essentially self-adjoint in H (1), which gives us room to impose an IBC to
obtain a self-adjoint extension H in H .

The situation here is different from that in Minkowski space-time: In the latter case, for an uncharged
particle (q = 0) on Euclidean 3-space with one point (say, the origin 0) removed, the Dirac Hamiltonian
is essentially self-adjoint [545]. This roughly means that no probability can flow into or out of the
point 0 and has the consequence [344] that no IBC Hamiltonian with particle creation exists. As
mentioned in the introduction, that changes when a sufficiently strong Coulomb field is added to the
Hamiltonian: then the Dirac Hamiltonian is not essentially self-adjoint, and IBC Hamiltonians exist
[344]. In the present paper, the action of a Coulomb field on the quantum particle is not necessary
(i.e., we can allow q = 0), as the graviational field alone already lifts the essential self-adjointness
of the Dirac Hamiltonian. In fact, we can even allow m = 0, and the gravitational field created by
Q,M is still sufficient to ensure that the Dirac Hamiltonian is not essentially self-adjoint, and an
IBC Hamiltonian exists.

We do not aim here at identifying all possible IBC Hamiltonians on the sRN space-time; we limit
ourselves to a few examples.

For Reissner-Nordström space-times in the subcritical regime ∣Q∣ <M or the critical regime ∣Q∣ =M ,
an IBC should be implementable as well because they have neighborhoods of the singularities that look
qualitatively similar to the sRN space-time; however, due to wormholes and several asymptotically
flat regions, they are more complicated (and less natural as a model of a point source).

C.2.4 Trajectories

We also introduce the natural analog of the Bohm-Bell process for our Hamiltonian H (see Sec-
tion C.3.2). The Bohm-Bell process [58, 230] is the natural extension of Bohmian mechanics
[90, 232, 572] to include particle creation and annihilation. The process is a Markov process in
configuration space; the creation and annihilation events correspond to jumps, as the number of
particles changes at these events. Between the jumps, the process is deterministic and follows the
Bohmian equation of motion.

The value of Bohmian mechanics lies in the fact that it provides a realist version of quantum theory
[572] while its empirical predictions agree with the standard ones. In fact, Bohmian mechanics resolves
the paradoxes and inconsistencies of orthodox quantum mechanics and introduces precision where
orthodox quantum mechanics is vague, specifically in the theory of measurement. The Bohm-Bell
process that we develop here contributes a further step towards a convincing extension of Bohmian
mechanics to quantum field theory.

C.2.5 On the Structure of the Model

Here is how our model fits into a wider class of models. It involves two kinds of particles, let
us call them x-particles and y-particles. The x-particles can emit and absorb y-particles as in
the scheme x ⇆ x + y. The x-particles have mass M and charge Q, the y-particles mass m and
charge q. We treat the y-particles quantum-mechanically, whereas the x-particles (the sources of
emission and absorption) are treated here as non-dynamical and just sit at fixed positions. We limit
ourselves to the case of a single x-particle and include the classical, general-relativistic gravitational
and electromagnetic fields generated by x, which is the Reissner-Nordström space-time (C.1.2),
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considered here for ∣Q∣ > M (sRN); recall (C.1.1). The metric is singular at the location of the
x-particle, which is why the x-particle can be identified with the sRN singularity. If we wanted to
treat the x-particles quantum-mechanically, while including their general-relativistic gravitational
fields, we would presumably need a quantum gravity theory. A non-relativistic IBC-model with
quantum-mechanical x-particles was defined in [388].

We remark that our model breaks rotational invariance (which would imply conservation of angular
momentum) because under the simplifying assumptions made here, that x has spin 0 and y spin
1/2, local conservation of angular momentum during creation or annihilation events is impossible
(already in flat space-time [344, Sec. 2.4]). We expect that IBC Hamiltonians will respect rotational
symmetry in more realistic models. The model also violates interaction locality, i.e., the condition
that the Hamiltonian contains no interaction between spacelike separated regions. The simple reason
is that we allow only 0 or 1 y-particles, so once a y-particle has been created, and perhaps traveled
far away, another creation event at the origin is not possible. We expect that the corresponding
model on a full Fock space, allowing all n ∈ N ∪ {0} for the number of y-particles, will respect
interaction locality.

C.2.6 Dirac Equation in Curved Space-Time
There is a standard way of defining the 1-particle Dirac equation in a curved space-time (M , g) (see,
e.g., [262, 355, 149, 490, 404]), which we recall here for convenience of the reader.

C.2.6.1 Coordinate-free Form

As mentioned already in Section C.2.3, the 1-particle wave function ψ is a cross-section of a vector
bundle S over M whose fibers Sx are the Dirac spin spaces. The vector bundle S is equipped
with an irreducible representation of the (complexified) Clifford algebra ClC(TxM , g) on the spin
spaces, ClC(TxM , g)→ End(Sx), where TxM is the tangent space at x ∈M ; since TxM is itself
embedded in the Clifford algebra, the representation includes a linear mapping γx ∶ TxM → End(Sx),
called the general-relativistic gamma matrices and subject to the Clifford relation

γµxγ
ν
x + γ

ν
xγ

µ
x = 2gµν(x) Ix , (C.2.3)

where γµx = γx(eµ) for any basis e0, e1, e2, e3 of TxM and Ix denotes the identity operator in Sx. If
(M , g) is orientable, time-orientable, and possesses spin structure [490, (1.5.3)], which sRN does
[490, (1.5.6)], then the bundle S and the above-mentioned representation exist; if M is simply
connected, which the sRN manifold is, then they are unique up to isomorphism [490, p. 54]. We also
need the appropriate connection on S or covariant derivative

∇ ∶ Γ(S)→ Γ(T ∗M ⊗ S) , (C.2.4)

where Γ(S) denotes the set of smooth cross-sections of the bundle S; ∇ is uniquely defined by the
metric [490, Sec. 4.4]. The 1-particle Dirac equation in (M , g) is then

(iγµx∇µ − qγµxAµ(x) −m)ψ(x) = 0 , (C.2.5)

where m ≥ 0 is called the mass of the particle and q ∈R its charge. Finally, Sx is equipped with an
“overbar” operation ψ ↦ ψ, a conjugate-linear mapping from Sx to its dual space S∗x , and the Born
distribution (“∣ψ∣2 distribution”) on a spacelike surface Σ is the measure given by

nµ(x) j
µ
(x)V (d3x) (C.2.6)

with the probability current 4-vector field

jµ(x) = ψ(x)γµx ψ(x) . (C.2.7)
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C.2.6.2 Expression in Spherical Coordinates

The Dirac equation in the sRN space-time has been studied before in many works, e.g., [175, 55,
260, 56, 474, 365]. We adopt a widely used basis bx in spin space Sx defined as follows: From the
coordinate basis2 (∂t, ∂r, ∂ϑ, ∂φ) of TxM , we obtain an orthonormal basis (Lorentz frame) ex by
normalizing the vectors,

ex = (e
0
x, e

1
x, e

2
x, e

3
x) = (A

−1∂t,A∂r, r
−1∂ϑ, (r sinϑ)−1∂φ) . (C.2.8)

To this orthonormal basis there corresponds a basis bx of Sx; the correspondence is canonical up
to an overall sign which we choose continuously in x; bx is an orthonormal basis relative to the
scalar product ψ γµ(x) gµν(x)nν(x)ϕ in Sx associated with the surface {t = const.} or its future
unit normal vector n(x) = A−1∂t. Relative to the bases ex and bx, the gamma matrices have their
standard entries [559],

γ0
=

⎛
⎜
⎜
⎝

I2 0

0 −I2

⎞
⎟
⎟
⎠

, γi =

⎛
⎜
⎜
⎝

0 σi

−σi 0

⎞
⎟
⎟
⎠

(C.2.9)

with σi the i-th Pauli matrix. That is, in these bases the general-relativistic gamma matrices γµx
reduce to the special-relativistic gamma matrices, to which the symbol γµ will henceforth refer.
Likewise, in the basis bx, the overbar operation is represented in the same way as in any Lorentz
frame,

ψ = ψ†γ0 . (C.2.10)

The Hilbert space H (1) of 1-particle wave functions on Σ = {t = 0} can therefore be represented in
coordinates as

H (1)
= L2
((0,∞) × S2,C4,A−1r2 dr d2ω) (C.2.11)

with d2ω = sinϑdϑdφ and inner product

⟨ψ,ϕ⟩ = ∫
∞

0
dr∫

S2
d2ωA−1 r2ψ(r,ω)† ϕ(r,ω) . (C.2.12)

(Note for comparison that L2 of 3d Euclidean space is equivalent to L2((0,∞) × S2, r2 dr d2ω)
in spherical coordinates.) Indeed, (C.2.12) follows from the general expression (C.2.3), as the
Riemannian volume measure V on Σ has in general density ∣det 3g∣

1/2 in coordinates and is in this
case given by V (dr × d2ω) = A−1r2 dr d2ω, while nµ = (1,0,0,0) in the basis ex.

Correspondingly, the Born distribution is given in coordinates by

∣ψ(r,ω)∣2A−1 r2 dr d2ω , (C.2.13)

where ∣ψ∣2 means ψ†ψ or, equivalently, the sum of the absolute squares of the four complex
components of ψ.

The Dirac equation on sRN space-time then reads in coordinates

i∂tψ =H1ψ (C.2.14)

with Hamiltonian [175, (2.10)]3

H1 = −iα1A2
(∂r + r

−1
+ 1

2A
−1A′) − iα2r−1A∂ϑ

− iα3
(r sinϑ)−1A∂φ +mAβ + qQr

−1, (C.2.15)

where A′ = ∂rA is the derivative of A and, as usual, β = γ0 and αi = γ0γi. This operator is defined
on C∞c ((0,∞) × S2,C4), the space of smooth functions with compact support, which is a dense
subspace of H (1).

2We follow here the convention of identifying a tangent vector with the directional derivative operator in that
direction.

3Cohen and Powers [175] write γµ for our −iγµ, q for our −qQ, and χ for our ψ.
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C.3 Main Results
In this section, we formulate our main results. Recall that the Hilbert space of our model is the
mini-Fock space H =H (0) ⊕H (1) corresponding to 0 or 1 y-particles (see Section C.2.5 for the
terminology of x- and y-particles) with H (0) =C and H (1) given by (C.2.11). The corresponding
configuration space is

Q = Q
(0)
∪Q

(1)
= {∅} ∪Σ . (C.3.1)

Here, ∅ is the 0-particle configuration and Σ is any one of the {t = const.} surfaces; these surfaces
can be identified with each other in a canonical way (as the mapping connecting points with
equal (r, ϑ,φ) coordinates is an isometry) and represented in coordinates (r,ω) as the Riemannian
3-manifold

Σ = (0,∞) × S2 (C.3.2)
with the metric

ds2
= A−2dr2

+ r2dω2 . (C.3.3)
The Born distribution on Q for Ψ ∈H is the measure PΨ with

PΨ({∅}) = ∣Ψ(0)∣2 (C.3.4a)
PΨ(dr × d2ω) = ∣Ψ(1)(r,ω)∣2A−1 r2 dr d2ω . (C.3.4b)

C.3.1 IBC Hamiltonian with Particle Creation
In order to formulate our first main result, the existence of the Hamiltonian, we use a certain
orthonormal basis of L2(S2,C4,d2ω) traditionally denoted Φ±mj ,κj

, where (mj , κj) varies in the set

A ∶= {(mj , κj) ∶ κj ∈ Z ∖ {0}, mj +
1
2 ∈ Z, ∣mj ∣ ≤ ∣κj ∣ −

1
2} . (C.3.5)

Without going into details (see Appendix C.A or [559, Sec. 4.6.4] for the definition), we remark that
the Φ±mjκj

are the joint eigenfunctions of JJJ2, Jz,K, and β, viz.,

JJJ2Φ±mjκj
= j(j + 1)Φ±mjκj

(C.3.6a)
J3Φ±mjκj

=mjΦ±mjκj
(C.3.6b)

KΦ±mjκj
= κjΦ±mjκj

(C.3.6c)
βΦ±mjκj

= ±Φ±mjκj
(C.3.6d)

with j = ∣κj ∣− 1
2 , where (again without going into details) JJJ = LLL+SSS is the triple of angular momentum

operators, LLL the orbital angular momentum, SSS the spin angular momentum, and K = β(2SSS ⋅LLL + 1)
the spin-orbit operator.

We also note for use in the IBC (C.3.7) that since the β matrix has eigenvalues ±1, the projection to
the eigenspace with eigenvalue −1 is 1

2(I − β).

We define a Hamiltonian H in H for every choice of (m̃j , κ̃j) ∈ A and of a coupling constant
g ∈C ∖ {0}; H acts on wave functions subject to the interior-boundary condition

lim
r↘0

1
2(I − β)r

1/2 Ψ(1)(r,ω) = g ∣Q∣−1/2Φ−m̃j κ̃j
(ω)Ψ(0) ∀ω ∈ S2 (C.3.7)

according to

(HΨ)(0) = g∗ ∣Q∣1/2 lim
r↘0∫S2

d2ω Φ+m̃j κ̃j
(ω)† r1/2Ψ(1)(r,ω) (C.3.8a)

(HΨ)(1)(r,ω) =H1Ψ(1)(r,ω) (r > 0) (C.3.8b)

with H1 the Dirac Hamiltonian as in (C.2.15).

Here is the precise statement about the IBC Hamiltonian H:
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Theorem C.3.1 (IBC Hamiltonian with particle creation). For every choice of the parameters
(m̃j , κ̃j) ∈ A and g ∈C ∖ {0}, there is a self-adjoint operator H with domain D ⊂H such that

1. For every Ψ ∈D, the upper sector is of the form

Ψ(1)(r,ω) = f(ω) r−1/2
+O(r1/2

) (C.3.9)

as r → 0 for some (uniquely determined, Ψ-dependent) f ∈ L2(S2,C4,d2ω). In particular, the
limit on the left-hand side of (C.3.7) exists and is the part of f in the eigenspace of β with
eigenvalue −1.

2. Every Ψ ∈D satisfies the IBC (C.3.7).

3. For every Ψ(1) ∈ C∞c ((0,∞) × S2,C4), (0,Ψ(1)) ∈ D, and H(0,Ψ(1)) = (0,H1Ψ(1)) with
H1 as in (C.2.15). Put differently, (H,D) is a self-adjoint extension of (H0

1 ,D
0) with

D0 = {0}⊕C∞c ((0,∞) × S2,C4) and H0
1(0, ψ) = (0,H1ψ).

4. The 0-particle action of H is given by (C.3.8a), which holds in the precise sense that

(HΨ)(0) = g∗∣Q∣1/2⟨Φ+m̃j κ̃j
, f⟩L2(S2,C4,d2ω) . (C.3.10)

5. Particle creation occurs, i.e., H is not block diagonal in the decomposition H (0) ⊕H (1).

Theorem C.3.1 will follow as a special case of the slightly reformulated and more general Theorem C.5.1,
formulated in Section C.5.1. We give the proof of Theorem C.5.1 in Section C.5.2.

Remark C.3.2 (Boundary conditions for the Dirac equation). While a boundary condition for the
Laplacian usually specifies the value of ψ on the boundary (as in a Dirichlet boundary condition)
or its normal derivative (as in a Neumann boundary condition), boundary conditions for the Dirac
equation usually specify two of the four components of the wave function on the boundary, leaving
the other two unspecified (e.g., [259]). Likewise, except for the scaling factor r (which has to do
with how to extend the bundle S to the boundary [571, Sec. 5.3]), (C.3.7) specifies two of the four
components of Ψ(1) at r = 0 (those in the eigenspace of β with eigenvalue −1), leaving the other
two unspecified (those in the eigenspace of β with eigenvalue +1).

Remark C.3.3 (Comparison to [571]). In [571], one of us conjectured what a Hamiltonian on a
sRN space-time with an IBC at the singularity and the corresponding Bohm-Bell process might
look like. The description there was based on plausibility rather than rigorous analysis, but gets
qualitatively confirmed by Theorem C.3.1 above. Since our proof technique for Theorem C.3.1 makes
use of the angular momentum eigenspaces Kmjκj spanned by Φ+mjκj

and Φ−mjκj
, while the IBC and

Hamiltonian in [571] were not related to these subspaces, the H provided by Theorem C.3.1 is not
the same as the one described in [571], and we cannot answer whether the equations in [571] for
the IBC and the action of the Hamiltonian do or do not define a self-adjoint operator. But the H
of Theorem C.3.1 is similar to the one described in [571] in that (i) the IBC (C.3.7), just as [571,
(52)], concerns two components of the limiting values of Ψ(1) on the singularity, rescaled by r1/2,
and requires them to be Ψ(0) times a certain spinor function of ω; (ii) the expression (C.3.8a) for
(HΨ)(0), just as [571, last line of (53)], is the inner product over S2 of the rescaled Ψ(1) at the
singularity with another spinor function of ω; and (iii) H acts like the Dirac Hamiltonian away from
the singularity.

Remark C.3.4 (Comparison to [344]). In [344, Thm. 6], two of us proved the existence of a
self-adjoint IBC Hamiltonian in flat Minkowski space-time under the assumption of a sufficiently
strong Coulomb potential acting on the quantum particle. Some elements of the construction and
the proofs were similar; some differences are that the asymptote (C.3.9) of Ψ(1) as r → 0 had a
different form involving different powers of r, thus requiring a different power of r in the IBC; that
only few choices of m̃j , κ̃j worked; and the IBC involved a different spinor field instead of Φ−m̃j κ̃j

.
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Remark C.3.5 (Full Fock space). Along the lines of [389], our construction could be extended to
full Fock space F with an arbitrary number n ∈ {0,1,2,3, . . .} of y-particles. For each value τ ∈R
of the time coordinate t, let Στ ∶= {t = τ} and the configuration space be Qτ ∶= ⋃∞n=0 Σn

τ . The
boundary of configuration space consists of those configurations with at least one y-particle at r = 0,
and the IBC will relate the n-particle sector ψ(n) of ψ ∈F to the values of ψ(n+1) on the boundary.

Remark C.3.6 (Multi-time wave functions). In relativistic space-time, it is usually possible and of
interest to extend the domain of definition of wave functions so as to make them multi-time wave
functions [421, 420], i.e., defined not only for simultaneous n-particle configurations but for any
spacelike n-particle configuration or even any n-particle configuration at all. This is also possible
for the present model, including states of arbitrary particle number n as in Remark C.3.5, but the
x-particle, serving as the source at the singularity, needs to be taken into account: while it cannot
occupy other locations than the origin r = 0, it should be given its own time variable tx in a multi-time
approach, leading to wave functions of the form

ψ(n)(tx, t1, r1, ϑ1, φ1, . . . , tn, rn, ϑn, φn) , (C.3.11)

where tj , rj , ϑj , φj are the coordinates of the j-th y-particle. Since for multi-time wave functions,
the space-time points of two interacting particles need to be spacelike separated, each (tj , rj , ϑj , φj)
is constrained to the region spacelike from (tx, r = 0) (shaded in Figure C.1). In fact, for any n
points in this region, the function (C.3.11) is uniquely determined from the n-particle wave function
on Σtx (provided by the single-time evolution) as the solution of the free Dirac equation in each
(tj , rj , ϑj , φj) away from the singularity.

(tx, r = 0)

i0

I +

I −

Σtx

Figure C.1: Penrose conformal diagram of sRN space-time M , shown with the spacelike coordinate
surface Σtx = {t = tx} bordering on the point (tx, r = 0) on the singularity ∂M = {r = 0} (shown as
the vertical double line); the value of tx was chosen arbitrarily; I ± is the future (past) null infinity,
i0 is the spacelike infinity, and the shaded region comprises the points spacelike separated from
(tx, r = 0).

C.3.2 Bohmian Trajectories and Bohm-Bell Jump Process

In Theorem C.3.1, we constructed a self-adjoint Hamiltonian involving the creation of Dirac particles
at the sRN singularity using an IBC (C.3.7). In this section, we construct a Markov process Qt (the
“Bohm-Bell process”) in the configuration space Q as in (C.3.1) that is Born (“∣Ψt∣

2”) distributed at
every t ∈R. Our approach is analogous to “Bell-type quantum field theory” [58] in which motion of
the configuration along deterministic trajectories are interrupted by stochastic jumps. That is, Qt
follows Bohmian trajectories between the jumps, and the latter correspond to the creation/annihilation
of particles. A key element of this construction is to determine the rate of particle creation that
ensures equivariance of the process (i.e., preservation of the Born distribution), and to this end it is
relevant to determine the asymptotic Bohmian trajectories near the singularity for this Hamiltonian.
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C.3.2.1 Bohmian Trajectories

We now review the definition of the Bohmian trajectories and determine the coordinate form of their
equation for our setup.

The Bohmian trajectories X ∶R →M are solutions to Bohm’s equation of motion [90] for the Dirac
equation [91], given by

dXµ

ds
∝ jµ(X(s)) , (C.3.12)

where s is any curve parameter and jµ given by (C.2.7). In words, the world line is everywhere
tangent to the vector field jµ.

We now want to express the equation of motion in coordinates. A subtle point is that there are
two relevant bases in the tangent space TxM in which j(x) can be expressed: the coordinate basis
(∂t, ∂r, ∂ϑ, ∂φ) and the basis ex of (C.2.8) (the normalized coordinate basis). We write (jt, jr, jϑ, jφ)
for the components of j(x) relative to the former and (j0, j1, j2, j3) for those relative to the latter,

j(x) = jt∂t + j
r∂r + j

ϑ∂ϑ + j
φ∂φ (C.3.13a)

j(x) = j0e0
x + j

1e1
x + j

2e2
x + j

3e3
x . (C.3.13b)

One can read off from (C.2.8) that jt = j0A−1, jr = j1A, jϑ = j2r−1, and jφ = j3(r sinϑ)−1. Since
the world line X is tangent to the vector field j on M , the image of the world line in coordinate space
with axes t, r, ϑ,φ is tangent to the image of j, which has components (jt, jr, jϑ, jφ). Therefore,
(C.3.12) reduces to

d
dt

⎛
⎜
⎜
⎜
⎜
⎜
⎝

r(t)

ϑ(t)

φ(t)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

= v(t, r(t), ϑ(t), φ(t)) (C.3.14)

with

v1
=
jr

jt
=

j1A

j0A−1 = A
2 (Ψ(1))†α1Ψ(1)

∣Ψ(1)∣2
(C.3.15a)

v2
=
jϑ

jt
=
j2r−1

j0A−1 =
A

r

(Ψ(1))†α2Ψ(1)

∣Ψ(1)∣2
(C.3.15b)

v3
=
jφ

jt
=
j3(r sinϑ)−1

j0A−1 =
A

r sinϑ
(Ψ(1))†α3Ψ(1)

∣Ψ(1)∣2
. (C.3.15c)

C.3.2.2 Asymptotics of Bohmian Trajectories

We now determine the asymptotic form of the trajectories just before reaching (or after emanating
from) the singularity. In the following, we assume that

κ̃j = ±1 , (C.3.16)

and we will only consider wave functions Ψ lying in a certain subspace D̂ ⊂H which is invariant
under the time evolution generated by H. More precisely, we take D̂ to be the part of the domain
D of H whose 1-particle component Ψ(1) has angular momentum corresponding to the chosen
(m̃j , κ̃j) ∈ A . In the notation of Sections C.4.2 and C.5.2.1,

D̂ ∶= (1⊕U−1
)D̂m̃j κ̃j (C.3.17)

involving the unitary transformation U as in (C.4.13) and the subspace D̂m̃j κ̃j as in (C.5.13). As
becomes apparent from the proof of Theorem C.3.1 in Section C.5, the coupling between H (0)
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and H (1) happens only within D̂, hence D̂ is the most relevant or interesting part of D. Thus, by
focusing on D̂, we avoid unnecessarily tedious computation for extracting the qualitative behavior,
which we believe will not change much for general Ψ ∈D ∖ D̂; cf. [345].

Moreover, in the following asymptotic analysis of the Bohmian trajectories, we will also make use of
a (plausible and common [229, 345]) approximation for Bohm’s equation of motion: We assume that
the Bohmian velocity field v as in (C.3.15) varies slowly in time. More specifically, we assume that
for times t close to the reference time t0 ∈R, the asymptotics of the true Bohmian trajectories as
solutions of (C.3.14) coincide (to leading order) with those one would obtain from a time-independent
velocity field v(t0, ⋅), i.e., with solutions of

d
dt

⎛
⎜
⎜
⎜
⎜
⎜
⎝

r(t)

ϑ(t)

φ(t)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

= v(t0, r(t), ϑ(t), φ(t)) . (C.3.18)

This approximation corresponds to approximating Ψt ≈ Ψt0 in a suitable topology; see [345, Remark 1]
for a possible general strategy of rigorously justifying it.

This is our main result on the asymptotics of the Bohmian trajectories.

Proposition C.3.7 (Asymptotics of Bohmian trajectories). Let κ̃j = ±1, Ψ0 ∈ D̂, denote the
time-evolved state by Ψt ∶= e−iHtΨ0 ∈ D̂ and write

c±(t) = ∣Q∣
1/2
⟨Φ±m̃j κ̃j

, ft⟩ = ∣Q∣
1/2 lim

r↘0∫S2
d2ω Φ±m̃j κ̃j

(ω)† r1/2 Ψ(1)t (r,ω) , (C.3.19)

where ft is the analog of f from (C.3.9) obtained from Ψt. Let t0 ∈R be any time for which

Im [c∗−(t0) c+(t0)] ≠ 0 (C.3.20)

and abbreviate c± ∶= c±(t0).
Then the solution to (C.3.18) with r(t0) = 0, i.e., the trajectories emanating from/reaching the
singularity at time t0, occur only if Im [c∗−c+] < 0 (resp. Im [c∗−c+] > 0) and they obey for t > t0
(resp. t < t0) the following asymptotics as t→ t0:

r(t) = Crad ∣t − t0∣
1/3
+O(∣t − t0∣

2/3
) (C.3.21a)

ϑ(t) = ϑ0 +O(∣t − t0∣
2/3
) (C.3.21b)

φ(t) = φ0 + sgn(t − t0)Caz ∣t − t0∣
1/3
+O(∣t − t0∣

2/3
) (C.3.21c)

for some constants ϑ0 ∈ [0, π] and φ0 ∈ [0,2π) and with coefficients

Crad =
⎛

⎝

6Q2 ∣Im [c∗−c+]∣
∣c+∣2 + ∣c−∣2

⎞

⎠

1/3

(C.3.22a)

Caz =
61/3sgn(Qm̃j κ̃j)Re [c∗−c+]

∣Q∣1/3(∣c+∣2 + ∣c−∣2)1/3∣Im [c∗−c+]∣2/3
. (C.3.22b)

Moreover,
φ(r) = φ0 −

sgn(m̃j κ̃j)

Q

Re [c∗−c+]
Im [c∗−c+]

r +O(r2
) (C.3.23)

as r → 0.

The proof is given in Section C.6.2. Note that the denominators in (C.3.22) and (C.3.23) are nonzero
by (C.3.20) and (C.1.1).
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r

φ

x

y

x

z

Figure C.2: Illustrated is a Bohmian trajectory shortly before/after absorption/emission, asymptotically
obeying (C.3.21); the figure is analogous to [345, Figure 3] but shows quite different behavior. LEFT:
Drawn in spherical coordinates, with only the azimuthal angle φ shown; to leading order near r = 0,
φ(r) = φ0 + Cr as in (C.3.23); the dot marks (r = 0, φ0). MIDDLE: The curve φ(r) = φ0 + Cr
drawn in 2d cartesian coordinates. RIGHT: The curve φ(r) = φ0 +Cr, ϑ = ϑ0 drawn in 3d cartesian
coordinates, seen along the y-axis. Dashed is the cone {ϑ = ϑ0}.

C.3.2.3 Bohm-Bell Jump Process

We now give the definition of the Bohm-Bell jump process (Qt)t≥0 in Q assuming κ̃j = ±1 and
Ψ0 ∈ D̂. It is a Markov process with the following structure (similar to the ones considered in
[571, 229, 345]):

Initial Distribution. The initial configuration Q0 has probability distribution given by the Born
distribution PΨ0 as in (C.3.4).

Deterministic Evolution by Bohm’s Equation of Motion. At any time t at which Qt lies in the
upper sector Q(1), it moves according to Bohm’s equation of motion (C.3.14); that is, the world line
is tangent to the 4-vector field jµ.

Deterministic Jumps. When Qt reaches the singularity r = 0 at time t0, it jumps to the lower
sector, Qt0+ = ∅, and stays there for some time interval.

Stochastic Jumps. When Qt sits in the lower sector, it jumps to a trajectory leaving the singularity
with a certain jump rate. The general formula for the rate of jumping at time t, given that Qt− = q′,
to anywhere in an infinitesimal set dq can be derived [281] to be

σt(q
′
→ dq) =

max{0, J⊥Ψt
(q)}

ρΨt(q
′)

ν(dq, q′) , (C.3.24)

where J⊥ is the component of probability current in coordinates orthogonal to the boundary of
configuration space (in our case, the radial component), ρ is the probability density and ν the surface
area measure on the part of the boundary allowed for jumps from q′. In our case, only q′ = ∅ can
occur, ρΨt(q

′) = ∣Ψ(0)t ∣2, and ν(⋅,∅) is the surface area measure on S2 [571]. The trajectory onto
which to jump gets characterized by the boundary point q at which it starts; in our case, q lies on
the boundary {0} × S2 of [0,∞) × S2 and thus represents the direction of emission. As we will show
in Section C.6.3, (C.3.24) asserts in our case that the rate of jumping to a point q in the surface
element {0} × d2ω is

σt(∅→ d2ω) =
max{0,−Im[c∗−(t)c+(t)]}

2π∣Q∣ ∣Ψ(0)t ∣
2 d2ω (C.3.25)
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with c±(t) from (C.3.19). The total jump rate (or the rate of leaving ∅) at t is thus given by

σt(∅→ S2
) = ∫

ω∈S2
σt(∅→ d2ω) = 2max{0,−Im[c∗−(t)c+(t)]}

∣Q∣ ∣Ψ(0)t ∣
2 . (C.3.26)

As we elucidate in Section C.6.3, the rate (C.3.25) ensures equivariance. Since the fraction in
(C.3.25) does not depend on ω, the probability distribution of the direction of emission, given that a
jump occurs at t, is uniform over the sphere.

This completes the definition of the process. We briefly note that the description just given agrees
with what was conjectured in [571] about the form of the Bohm-Bell process (except that the IBC
considered there is not the same as our (C.3.7)). We conclude this section with two remarks.

Remark C.3.8 (Negative times). The definition can be extended to provide a process (Qt)t∈R also
for negative times by choosing the initial time to be any t0 instead of 0, noting that different choices
of t0 are compatible with each other (in the sense that the two processes are equal in distribution
after the later of the two choices of t0), and letting t0 → −∞.

Remark C.3.9 (Foliation). We define the process relative to the foliation given by the Reissner-
Nordström time coordinate, but the random path in space-time is actually indendent of the choice of
the foliation. The situation will be different for more than 1 y-particle [228].

C.3.3 Structure of the Following Sections
The rest of the paper is devoted to proving Theorem C.3.1 and justifying our claims on the trajectories
and the jump process from Section C.3.2, in particular proving Proposition C.3.7. In order to do so,
we first recall some preliminaries in Section C.4. Afterwards, in Section C.5 we construct the IBC
Hamiltonian and thus prove Theorem C.3.1.The following Section C.6 deals with the trajectories and
the jump process. The ultimate Section C.7 contains some concluding remarks.

C.4 Preparation of Proofs: Symmetries and Transformations
In this section we gather some preliminary information regarding the Dirac Hamiltonian in the sRN
background. The principal goal of this section is to transform the Hamiltonian in a simple form,
thereby exploiting its built-in spherical symmetry (see Section C.4.1 and [175, 559, 56, 365]) and a
convenient scalar change of variables (see Section C.4.2). We follow mostly Cohen and Powers [175]
and Thaller [559].

C.4.1 Radial Symmetry: Hilbert Space Decomposition
We write the Hilbert space H (1), given by (C.2.11), in the form

H (1)
= L2((0,∞),C,A−1r2dr)⊗L2(S2,C4,d2ω) . (C.4.1)

As a consequence of its rotational symmetry, H1 leaves angular momentum eigenspaces invariant; in
particular, it leaves the specific eigenspaces L2((0,∞),C,A−1r2dr)⊗Kmjκj invariant, where

Kmj ,κj = {c
+Φ+mj ,κj

+ c−Φ−mj ,κj
∶ c± ∈C} (C.4.2)

and the Φ±mjκj
form an ONB of L2(S2,C4,d2ω) given explicitly in Appendix C.A. As a consequence,

with respect to the decomposition

L2
(S2,C4,d2ω) =

∞
⊕

j= 1
2 ,

3
2 ,...

j

⊕
mj=−j

⊕
κj=±(j+ 1

2 )
Kmj ,κj , (C.4.3)
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H1 is block diagonal,

H1 =
∞
⊕

j= 1
2 ,

3
2 ,...

j

⊕
mj=−j

⊕
κj=±(j+ 1

2 )
Hred

1mjκj
. (C.4.4)

We consider each block Hred
1mjκj

individually. Relative to the basis {Φ+mjκj
,Φ−mjκj

}, it can be written as
a 2×2 matrix whose entries are operators acting on the radial Hilbert space L2((0,∞),C,A−1r2dr),
in fact

Hred
1mjκj

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

qQr−1 +mA −A2(∂r +
1
r ) −

AA′

2
+
κjA

r

A2(∂r +
1
r ) +

AA′

2
+
κjA

r
qQr−1 −mA

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (C.4.5)

(Recall that A is a function of r and A′ its derivative.) To see this, we note first that the operators
α1 (which in our spinor basis bx is the α associated with the radial direction) and β (and thus also
γ1 = βα1) leave the subspaces Kmjκj invariant; with respect to the basis {Φ+mjκj

,Φ−mjκj
}, they take

the form

α1
=

⎛
⎜
⎜
⎝

0 −i

i 0

⎞
⎟
⎟
⎠

, β =

⎛
⎜
⎜
⎝

1 0

0 −1

⎞
⎟
⎟
⎠

, γ1
=

⎛
⎜
⎜
⎝

0 −i

−i 0

⎞
⎟
⎟
⎠

. (C.4.6)

Second, we note that [175, (2.9)]

γ1K = −α2∂ϑ − α
3
(sinϑ)−1∂φ . (C.4.7)

With these relations and (C.3.6), (C.4.5) follows from (C.2.15).

C.4.2 The R Coordinate
It turns out useful to change coordinates from r to the “tortoise coordinate” R(r), defined for r ≥ 0
to be the solution to

dR
dr
=

1
A(r)2

with R(r = 0) = 0 (C.4.8)

and A from (C.1.3) (see Figure C.1); R is called x in [175, 55, 56] and r∗ in [327]. The physical
meaning of R of a space-time point x is the length of the radial spacelike curve along {t = const.}
connecting x to {r = 0}, or the metric distance of x from the singularity (while the r coordinate is
set up so that 4πr2 is the area of the sphere through x obtained by varying ϑ and φ). Although we
do not need the explicit form of the solution, we mention that it is given by [55, 56]

R(r) = r +M log(r
2 − 2Mr +Q2

Q2 ) +
2M2 −Q2
√
Q2 −M2

arctan
⎛

⎝

r −M
√
Q2 −M2

⎞

⎠
+C (C.4.9)

with suitable integration constant C.4

Lemma C.4.1 (The R-coordinate transformation). Let R, r > 0 be related by (C.4.8). Then

lim
R→0

R−1/3 r(R) = (3Q2
)

1/3 (C.4.10a)

lim
R→0

r2
(R)A2

(r(R)) = Q2 . (C.4.10b)

In particular, as R → 0 (or, equivalently, r → 0),

R ∼ r3 (C.4.11)

and
A2
(r(R)) ∼ R−2/3. (C.4.12)

4The expression given in [327, p. 157] has incorrect constant prefactors.
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r

R

Figure C.1: Graph of the function R(r) defined in (C.4.8) and given explicitly in (C.4.9) for M = 1
and Q = 2; in this case, C ≈ −0.601.

Proof. This follows from (C.4.8) and the definition of A(r).

Next, we make use of the R coordinate to define a unitary transformation U of the radial Hilbert
space as in [175]:

U ∶ L2
((0,∞),C,A−1r2dr)→ L2

((0,∞),C,dR)
Ψ(r)↦ ϕ(R) ∶= r(R)A(r(R))1/2 Ψ(r(R))

(C.4.13)

It is unitary because dR = A−2 dr, so ∣ϕ∣2dR = r2A∣Ψ∣2A−2dr = ∣Ψ∣2A−1r2dr.

The main advantage of introducing the R coordinate is that it removes the A2-factor in front of the
differential operator in (C.4.5):

Lemma C.4.2 (Transformed Hamiltonian). Under the unitary transformation U defined by (C.4.13),
the reduced Hamiltonian acting on each subspace is given by hmj ,κj = UH

red
1mjκj

U−1 with

hmj ,κj =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

qQr(R)−1 +mA(r(R)) −∂R + κjA(r(R))r(R)
−1

∂R + κjA(r(R))r(R)
−1 qQr(R)−1 −mA(r(R))

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (C.4.14)

which is well defined on the domain

D(hmj ,κj) = C
∞
0 ((0,∞),Kmj ,κj

) ≅ C∞0 ((0,∞),C2) . (C.4.15)

Proof. This follows from

∂R(U(Ψ)) = U((A2∂r +
A2

r
+
AA′

2
)Ψ) , (C.4.16)

which can be easily verified using ∂R = A2∂r.

Remark C.4.3. From (C.3.21a) and (C.4.10a), it follows that

R(t) =
C3

rad
3Q2 ∣t − t0∣ +O(∣t − t0∣

4/3
) . (C.4.17)

C.5 Constructing an IBC: Proof of Theorem C.3.1
In this section, we construct an IBC Hamiltonian with particle creation and thereby prove Theo-
rem C.3.1.
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C.5.1 A Family of IBC Hamiltonians: Proof of Theorem C.3.1
Our main result, Theorem C.3.1, will be directly obtained from the following slightly reformulated
and generalized version of it. Recall that, the Hilbert space of our model is the mini-Fock space
H =H (0) ⊕H (1) with H (0) =C and H (1) given by (C.2.11).

Theorem C.5.1 (Generalized reformulation of Theorem C.3.1). For every (m̃j , κ̃j) ∈ A , g ∈ C∖{0},
and real numbers a1, ..., a4 ∈ R satisfying a1a4 − a2a3 = 1, there is a self-adjoint operator H with
domain D ⊂H such that

1. For every Ψ ∈D, the upper sector is of the form

Ψ(1)(r,ωωω) = c−

∣Q∣1/2
r−1/2Φ−m̃j ,κ̃j

(ωωω) + ∑
(mj ,κj)∈A

c+mjκj

∣Q∣1/2
r−1/2Φ+mj ,κj

(ωωω) +O(r1/2
) (C.5.1)

as r → 0 for some (uniquely determined) short-distance coefficients c−, c+mjκj ∈ C and Φ±
from (C.A.5).

2. Every Ψ ∈D satisfies the IBC
a1c− + a2c+m̃j κ̃j = gΨ(0) (C.5.2)

3. For every Ψ(1) ∈ C∞c ((0,∞) × S2,C4), (0,Ψ(1)) ∈ D, and H(0,Ψ(1)) = (0,H1Ψ(1)) with
H1 as in (C.2.15). Put differently, (H,D) is a self-adjoint extension of (H0

1 ,D
0) with

D0 = {0}⊕C∞c ((0,∞) × S2,C4) and H0
1(0, ψ) = (0,H1ψ).

4. The 0-particle action of H is given by

(HΨ)(0) = g∗(a3c− + a4c+m̃j κ̃j) (C.5.3)

5. Particle creation occurs, i.e., H is not block diagonal in the decomposition H (0) ⊕H (1).

Proof of Theorem C.3.1. Theorem C.3.1 follows from Theorem C.5.1 by taking a1, a4 = 1, a2, a3 = 0,
and invoking the particular form of Φ± from (C.A.5) and β = diag(1,1,−1,−1). In particular, the
IBC Hamiltonian presented in Theorem C.3.1 is in fact part of an entire family of Hamiltonians
described by the four real parameters a1, ..., a4 under the constraint a1a4 − a2a3 = 1. This concludes
the proof of Theorem C.3.1.

The rest of this section is devoted to proving Theorem C.5.1.

Remark C.5.2 (Outline of the proof of Theorem C.5.1). In constructing the self-adjoint H in
Theorem C.5.1, we will decompose the domain D0 into fixed angular momentum sectors Kmj ,κj as
in Section C.4. That is, we will exploit that D0 is unitarily equivalent to

{0}⊕ ⊕
j,mj ,κj

C∞c ((0,∞),C,dR)⊗Kmj ,κj . (C.5.4)

The construction of H now proceeds separately for each sector. We couple one chosen angular
momentum sector Km̃j ,κ̃j to the 0-particle sector H (0) of H while all the other angular momentum
sectors do not couple to the 0-particle part. In particular, H is block diagonal relative to the
decomposition

H ≅ Ĥ ⊕ ⊕
(mj ,κj)≠(m̃j ,κ̃j)

L2
((0,∞),C,dR)⊗Kmj ,κj , (C.5.5)

but not relative to
Ĥ =H (0)

⊕L2
((0,∞),C,dR)⊗Km̃j ,κ̃j (C.5.6)
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In the proof, we construct a self-adjoint Ĥ acting on Ĥ using interior boundary conditions. This is
done by connecting the near-origin behavior of functions in the adjoint domain of C∞c ((0,∞),C,dR)⊗
Km̃j ,κ̃j (see [175, Theorem 5.2]) to the 0-particle sector H (0). In a similar way, we will choose
self-adjoint extensions of hmj ,κj on C∞c ((0,∞),C,dR)⊗Kmj ,κj for (mj , κj) ≠ (m̃j , κ̃j) which do
not couple to H (0). This completes the construction of a self-adjoint H.

C.5.2 Proof of Theorem C.5.1
Throughout the entire proof of Theorem C.5.1, we will heavily use the change of variables from
Section C.4.2, i.e., use the coordinate R instead of the usual radial variable r, which amounts to
the unitary transformation in (C.4.13). Moreover, as a preparation of our proof, we state and prove
the following lemma concerning the asymptotic behavior of wave functions ϕ in the adjoint domain
D(h∗mjκj

) of D(hmjκj) from (C.4.14)–(C.4.15)

Lemma C.5.3. Let ϕ = (ϕ+, ϕ−) ∈ D(h∗mjκj
). Then ϕ is continuous at R = 0, i.e., lim

R→0
ϕ±(R) =

ϕ±(0) exists, and
ϕ±(R) = ϕ±(0) +O(R1/3

) as R → 0 . (C.5.7)

Proof. In [175, Lemma 5.1], Cohen and Powers prove that the functions in D(h∗mjκj
) are continuous

at R = 0. Here, we obtain more precise information on their asymptotics. From [175, Eq. (5.3)],
ϕ±(R) can be expressed as

ϕ+(R) = eη(R)(ϕ+(0) − ∫
R

0
e−η(y)(h2(y) − (m − v2(y))ϕ−(y))dy) (C.5.8a)

ϕ−(R) = e−η(R)(ϕ−(0) + ∫
R

0
eη(y)(h1(y) − (m + v1(y))ϕ+(y))dy) , (C.5.8b)

where we denoted h∗mjκj
ϕ = (h1, h2) and

u(R) =
κjA(r(R))

r(R)
(C.5.9a)

η(R) = ∫
R

0
u(y)dy (C.5.9b)

v1(R) = qQr(R)
−1
+mA(r(R)) −m (C.5.9c)

v2(R) = qQr(R)
−1
−mA(r(R)) +m (C.5.9d)

By Lemma C.4.1, we have, asymptotically as R → 0+, vi(R) ∼ R−1/3 and u(R) ∼ R−2/3. Hence,
η(R) = O(R1/3) and further eη(R) = 1 +O(R1/3). Now we show that the integral term in (C.5.8a)
contributes only O(R1/2) by estimating the three summands in the integral in (C.5.8a) separately.

First, note that since ϕ−(y) is a continuous function on the compact interval [0,R], it is bounded.
Moreover, since η is also bounded, we find that ∫

R
0 dy∣e−η(y)mϕ−(y)∣ = O(R). Next, as v2(R) =

O(R−1/3), we obtain ∫
R

0 dy∣e−η(y) v2(y)ϕ−(y)∣ = O(R
2/3). It thus remains to estimate ∫

R
0 dy e−η(y) h2(y).

Instead of the previous L∞-bounds on the other integrands, we now apply the Cauchy-Schwarz
inequality to get

∣∫

R

0
e−η(y)h2(y)dy∣ ≤ ∥e−η∥L2[0,R]∥h2∥L2[0,R] = O(R

1/2
) , (C.5.10)

where we used that ∥e−η∥L2[0,R] = O(R
1/2), since η is bounded, and h2 ∈ L

2[0,∞), which certainly
implies ∥h2∥L2[0,R] = O(1).5

5By the dominated convergence theorem, this can in fact be strengthened to ∥h2∥L2[0,R] = o(1) as R → 0, but we
do not follow this improvement for simplicity.
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Combining all the estimates above, we finally conclude that

ϕ+(R) = ϕ+(0) +O(R1/3
) as R → 0 (C.5.11)

as desired. Similarly, we also get ϕ−(R) = ϕ−(0) +O(R1/3) as R → 0.

Armed with Lemma C.5.3, we can now turn to the actual proof of Theorem C.5.1. This is divided in
three steps:

(i) First, in Section C.5.2.1, we define the domain D of H and show that every Ψ ∈D satisfies
the asymptotics in (C.5.1) and obeys the IBC (C.5.2).

(ii) In Section C.5.2.2, we then proceed to show that H acting as in items 3 and 4 of Theorem C.5.1
is in fact self-adjoint on D.

(iii) Finally, in Section C.5.2.3, we prove that particle creation occurs with the so defined Hamiltonian,
i.e., it is not block diagonal in the decomposition H (0) ⊕H (1).

C.5.2.1 Definition of the Domain D

We define the domain D ⊂H of our Hamiltonian H (to be devised) as

D ∶= ((1⊕U−1
)D̂m̃j κ̃j

)⊕ ⊕
j,mj ,κj

(mj ,κj)≠(m̃j ,κ̃j)

U−1Dθ=0
mjκj

, (C.5.12)

where we denoted (recall (C.5.6) for the definition of Ĥ )

D̂m̃j κ̃j
∶= {(Ψ(0), ϕ(1)) ∈ Ĥ ∶ ϕ(1) ∈D(h∗m̃j ,κ̃j

) and a1ϕ
(1)
− (0) + a2ϕ

(1)
+ (0) = gΨ(0)} . (C.5.13)

Moreover, for θ ∈ [0,2π), we denoted

Dθ
mjκj

∶= {ϕ = (ϕ+, ϕ−) ∈D(h
∗
mj ,κj

) ∶ ϕ+(0) sin θ + ϕ−(0) cos θ = 0} . (C.5.14)

This means that, for θ = 0 and (mj , κj) ≠ (m̃j , κ̃j), c−mjκj
∶= ϕ−(0) = 0 and c+mjκj

∶= ϕ+(0) ∈ C
is free. We also denote c±m̃j ,κ̃j

∶= ϕ
(1)
± (0) for (m̃j , κ̃j) as in (C.5.13) and abbreviate c− ≡ c−m̃j ,κ̃j .

Therefore, inverting the unitary transform U from (C.4.13) in (C.5.12) and invoking Lemma C.4.1,
we find that for every Ψ ∈ D, the upper sector part Ψ(1) obeys the asymptotics given in (C.5.1).
Moreover, inverting U again, we also find that, by definition of D̂m̃j κ̃j , every Ψ ∈D obeys the IBC
from (C.5.2). This proves items 1 and 2 of Theorem C.5.1.

C.5.2.2 Self-adjointness of H on D

First, we have that hmj ,κj on D(hmjκj) from (C.4.15) has self-adjoint extensions parametrized by
θ ∈ [0,2π) as [175, Theorem 5.2]

hθmj ,κj
= h∗mj ,κj

∣
Dθ

mj κj

, (C.5.15)

where Dθ
mjκj

is defined in (C.5.14). Therefore, since H leaves the decomposition into angular
momentum subspaces invariant, the task of proving self-adjointness of H on D immediately simplifies:
It reduces to proving that the Hamiltonian Ĥ ≡ Ĥm̃j κ̃j acting on ϕ = (ϕ(0), ϕ(1)) ∈ D̂ ≡ D̂m̃j κ̃j from
(C.5.13) with ϕ(0) ≡ Ψ(0) as (recall the notation below (C.5.14))

(Ĥϕ)(0) = g∗[a3c− + a4c+] (C.5.16a)
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(Ĥϕ)(1) = h∗ϕ(1) , (C.5.16b)

is self-adjoint. Here and in the following, to ease notation, we denote h ≡ hm̃j ,κ̃j as well as
K =Km̃j ,κ̃j

The proof of (Ĥ, D̂) being self-adjoint is very similar to [344, p. 12–13], hence we will be quite brief.
First, the fact that D̂ ⊂ Ĥ is dense, can be seen in exactly the same way as in [344].

Next, in order to show that Ĥ is symmetric on D̂, we take, completely analogously to [344, Eqs. (73)–
(86)], some ϕ, η ∈ D̂ and compute the difference ⟨ϕ, Ĥη ⟩Ĥ − ⟨Ĥϕ, η ⟩Ĥ . Denoting c± = η±(0) and
d± = ϕ±(0), and using that a1a4 − a2a3 = 1, we find

⟨ϕ, Ĥη ⟩Ĥ − ⟨Ĥϕ, η ⟩Ĥ

= ⟨ϕ(1), h∗η(1)⟩L2((0,∞),K ) − ⟨h
∗ϕ(1), η(1)⟩L2((0,∞),K ) − [d

∗
+c− − d

∗
−c+] ,

(C.5.17)

just as in [344]. To se that ⟨ϕ, Ĥη ⟩Ĥ = ⟨Ĥϕ, η ⟩Ĥ , we are now left to compute

⟨ϕ(1), h∗η(1)⟩L2((0,∞),K ) − ⟨h
∗ϕ(1), η(1)⟩L2((0,∞),K )

= ∫

∞

0
dR ∂R[ϕ

(1)
− (R)

† η
(1)
+ (R) − ϕ

(1)
+ (R)

† η
(1)
− (R)]

= [ϕ
(1)
− (R)

† η
(1)
+ (R) − ϕ

(1)
+ (R)

† η
(1)
− (R)]

∞

0

= lim
R↘0
[ϕ
(1)
+ (R)

† η
(1)
− (R) − ϕ

(1)
− (R)

† η
(1)
+ (R)]

= d∗+c− − d
∗
−c+ ,

where in the first step we employed that all the terms not involving the derivative ∂R cancel (cf. [344,
Eqs. (75)–(79)]). In the penultimate step, we used that ϕ(1)± , η

(1)
± vanish at infinity (as follows from

them being continuous and in L2). Finally, in the last step we used the IBC in the form of (C.5.13).

After having proven that Ĥ is symmetric on D̂, it remains to show that D̂ = D(Ĥ∗). In order to
do so, first note that D̂ ⊆ D(Ĥ∗) ⊆ C ⊕D(h∗). Any given ϕ ∈ C ⊕D(h∗) lies in D(Ĥ

∗
) if and

only if there exists some ξ ∈ Ĥ such that for every η ∈ D̂, it holds that ⟨ξ, η⟩Ĥ = ⟨ϕ, Ĥη⟩Ĥ . The
right-hand side can now be computed, completely analogously to [344, Eqs. (89)–(94)], as

⟨ϕ, Ĥη⟩Ĥ = [−(d−a1+d+a2) + gϕ
(0)]

∗
(a3c− + a4c+)

+ ⟨h∗ϕ(1), η(1)⟩L2((0,∞),K ) + ⟨g
∗
(a3d− + a4d+), η

(0)
⟩C

(C.5.18)

where we again abbreviated c± = η±(0) and d± = ϕ±(0). From (C.5.18) we conclude that ⟨ξ, η⟩Ĥ =
⟨ϕ, Ĥη⟩Ĥ is true for all η ∈ D̂, if and only if

ξ(0) = g∗(a3d− + a4d+) and ξ(1) = h∗ϕ(1), (C.5.19)

and ϕ satisfies the IBC
a1d− + a2d+ = gϕ

(0) . (C.5.20)
This means, ϕ ∈ D̂ and ξ = Ĥϕ, i.e., Ĥ is self-adjoint on D̂.

C.5.2.3 Particle Creation

Assume that particle creation did not occur, i.e., that the Hamiltonian were block diagonal in the
decomposition H (0) ⊕H (1), say

H =

⎛
⎜
⎜
⎝

F0 0

0 F1

⎞
⎟
⎟
⎠

, (C.5.21)
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where F0 and F1 are blocks that act on H 0 and H (1) respectively. Under this assumption, the
domain of H would be the Cartesian product of the domain of F0 (which must be H (0)) and the
domain of F1 (a dense subspace of H (1)). Thus, for any Ψ(0) ∈C ∖ {0}, (Ψ(0),Ψ(1) ≡ 0) is in the
domain of a block-diagonal H. On the other hand, wave functions in the domain of H must satisfy
the IBC (C.5.2), which implies that, since Ψ(0) ≠ 0, Ψ(1) cannot be identically equal to zero. This is
a contradiction, and hence the IBC forces H to be non block-diagonal and we have thus proven item
5 of Theorem C.5.1.

This concludes the proof of Theorem C.5.1.

C.6 Creation Rate and Trajectories: Proof of Proposition C.3.7
In this section, we verify the claims from Section C.3.2. To this end, we compute the asymptotics of
the probability current jµ in Proposition C.6.1 in Section C.6.1. Afterwards, in Section C.6.2, we
give the proof of Proposition C.3.7, yielding the asymptotic behavior of the trajectories as solutions
to the simplified Bohmian equation of motion (C.3.18). Finally, in Section C.6.3, we (non-rigorously)
verify that the Bohm-Bell jump process defined in Section C.3.2.3 is equivariant.

As in Section C.3.2.1, we will consider only the Hamiltonian provided by Theorem C.3.1 (i.e.,
a1 = 1 = a4, a2 = 0 = a3 in the notation of Theorem C.5.1) and only wave functions Ψ from D̂ ⊂H
as in (C.3.17), an invariant subspace comprising H (0) and Km̃j κ̃j .

C.6.1 Probability Current

In the following proposition, we provide the asymptotic behavior of the probability current jµ. Recall
that

j0
= ∣Ψ(1)∣2 , ji = Ψ(1)†αiΨ(1) for i = 1,2,3. (C.6.1)

Proposition C.6.1 (Asymptotic behavior of the current). Let Ψ ∈ D̂ and let c± be defined as in
(C.3.19). Then the components of the probability current jµ defined in (C.2.7) in the basis ex of
(C.2.8) obey the asymptotics (as r → 0)

j0
(r, ϑ,φ) =

∣c+∣
2 + ∣c−∣

2

4π∣Q∣
r−1
+O(r0

) (C.6.2a)

j1
(r, ϑ,φ) = −

Im[c∗−c+]
2π∣Q∣

r−1
+O(r0

) (C.6.2b)

j2
(r, ϑ,φ) = O(r0

) (C.6.2c)

j3
(r, ϑ,φ) = sgn(m̃j κ̃j) sinϑ

Re[c∗−c+]
2π∣Q∣

r−1
+ sinϑO(r0

) . (C.6.2d)

Proof. By (C.5.1) and Ψ ∈ D̂,

Ψ(1)(r,ω) = ( c−

∣Q∣1/2
Φ−m̃j κ̃j

(ω) +
c+

∣Q∣1/2
Φ+m̃j κ̃j

(ω))r−1/2
+O(r1/2

) . (C.6.3)

Eq. (C.6.2a) follows from the facts that

⟨Φ+mjκj
(ω),Φ−mjκj

(ω)⟩C4 = 0 ∀ω ∈ S2 , (C.6.4)

that {w1,w2} is orthonormal in C2, and that

∣Φ±m̃j κ̃j
(ω)∣

2
=

1
4π

∀ω ∈ S2 (C.6.5)

690



C.6. Creation Rate and Trajectories: Proof of Proposition C.3.7

for κ̃j = ±1 (so j = 1
2), which can be easily verified from the definition (C.A.6) using

Y 0
0 (ϑ,φ) =

1
√

4π
, Y ±1

1 (ϑ,φ) = ±

√
3

8π
e±iφ sinϑ, Y 0

1 (ϑ,φ) =

√
3

4π
cosϑ . (C.6.6)

We turn to (C.6.2b)–(C.6.2d). Recalling that

ααα =

⎛
⎜
⎜
⎝

0 σσσ

σσσ 0

⎞
⎟
⎟
⎠

, (C.6.7)

one sees from (C.A.5) that

⟨Φ±mjκj
(ω), αiΦ±mjκj

(ω)⟩C4 = 0 ∀ω ∈ S2
∀i = 1,2,3. (C.6.8)

Further calculations show that

⟨Φ+m̃j ,κ̃j
(ωωω), α1Φ−m̃j ,κ̃j

(ωωω)⟩C4 =
−i
4π

, (C.6.9a)

⟨Φ+m̃j ,κ̃j
(ωωω), α2Φ−m̃j ,κ̃j

(ωωω)⟩C4 = 0 , (C.6.9b)

⟨Φ+m̃j ,κ̃j
(ωωω), α3Φ−m̃j ,κ̃j

(ωωω)⟩C4 = sgn(m̃j κ̃j) sinϑ 1
4π

. (C.6.9c)

(In fact, this follows from [345, Eq. (47)] and (C.A.4).) From these relations, (C.6.2b)–(C.6.2d)
follow.

C.6.2 Bohmian Trajectories: Proof of Proposition C.3.7

From (C.6.2) at t0 while assuming (C.3.20) (in particular c− ≠ 0 ≠ c+) together with (C.3.15), we
obtain for the approximate trajectories (i.e., the solutions to (C.3.18)), analogously to [345, Eq. (60)],
that

dr(t)
dt
= −

2Q2 Im [c∗−c+]
∣c+∣2 + ∣c−∣2

r−2
+O(r−1

) (C.6.10a)

dϑ(t)
dt

= O(r−1
) (C.6.10b)

dφ(t)
dt

= sgn(m̃j κ̃j)
2QRe [c∗−c+]
∣c+∣2 + ∣c−∣2

r−2
+O(r−1

) . (C.6.10c)

Similarly to the arguments given at the end of Section 4 in [345], the differential equations (C.6.10)
can be solved by a simple separation of variables, where one first solves (C.6.10a) and then feeds the
result into the other two relations, eventually yielding (C.3.21).

C.6.3 Equivariance of the Bohm-Bell Process

In this section, we non-rigorously verify that the process Qt is equivariant.

First, away from the origin, we must have equivariance by conservation of probability expressed
through the continuity equation

∇µj
µ
= 0 . (C.6.11)

Therefore, the only place where probability is gained or lost is at the singularity r = 0. Consider the
probability flux through the surface element d2ωωω near r = 0 in coordinate space [0,∞) × S2, which
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is v1(r,ω)ρ(r,ω)d2ω with probability density ρ in coordinate space given by ∣Ψ(1)(r,ω)∣2A−1r2

according to (C.3.4b). By (C.3.15), v1 = A2j1/j0. Thus, the flux is

Ar2Ψ(1)(r,ω)†α1 Ψ(1)(r,ω)d2ω (C.6.12)

which converges, as r → 0, to

Jrad d2ω ∶= −
Im [c∗−c+]

2π∣Q∣
d2ω (C.6.13)

by (C.6.2b). This is the quantity J⊥Ψt
(q) ν(dq, q′) of (C.3.24). Thus, the rate of gain (positive or

negative) of probability at the singularity is given by 4πJrad.

This agrees with the rate of gain (positive or negative) of probability at r = 0 of Qt: Indeed, in
case that Jrad > 0, then no trajectory ends at the origin (so no probability is lost) and the amount
transported by jumps from ∅ to the trajectories emanating at time t0 is given by the probability at
∅ times the total jump rate (C.3.26) from ∅, i.e.,

∣Ψ(0)t0 ∣
2
σt0(∅→ S2

) =
2
∣Q∣

max{0,−Im[c∗−(t0)c+(t0)]} = 4πJrad . (C.6.14)

In the contrary case, Jrad < 0, then no upward jump occurs (and thus no probability is gained at the
origin) and the lost amount of probability automatically agrees with the flux across the sphere (since
Qt is ∣Ψt∣

2-distributed).

Finally, in order to ensure preservation of the ∣Ψ∣2-distribution, it remains to check that the distribution
of Qt over the emanating trajectories yields the flux (C.6.13) through d2ωωω in the r → 0 limit. This
follows from the fact that both the flux (C.6.13) and the jump rate (C.3.25) are uniform over the
sphere. This concludes our argument for equivariance.

C.7 Conclusions
In this work, we have considered a model of particle creation and annihilation at the singularity of
the sRN space-time that avoids the problem of ultraviolet divergence by using interior-boundary
conditions. Furthermore, we constructed the corresponding Bohm-Bell process, an equivariant Markov
jump process defined through 2 equations: Bohm’s equation of motion (C.3.12) and the formula
(C.3.25) which dictates the rate at which particle creation occurs.

For further research, one can consider full Fock space, including particle sectors with more than 1
particle. It would also be of interest to prove the existence of the Bohm-Bell process, and to define
it also for κ̃j ≠ ±1 and/or wave functions outside the subspace D̂. We expect the process to be
qualitatively similar in these other cases. Furthermore, it would be interesting to consider the case of
space-time singularities other than that of sRN.

C.A The Φmjκj
in Spherical Coordinates

In Minkowski space-time, let ẽ be an orthonormal basis (Lorentz frame) and b̃ the corresponding
basis in 4d Dirac spin space S. Now for spherical coordinates r ∈ (0,∞), ϑ ∈ [0, π], φ ∈ [0,2π), let

er = (sinϑ cosφ, sinϑ sinφ, cosϑ) (C.A.1a)
eϑ = (cosϑ cosφ, cosϑ sinφ,− sinϑ) (C.A.1b)
eφ = (− sinφ, cosφ,0) (C.A.1c)

be the orthonormal basis of R3 whose vectors point in the directions of increasing r, ϑ,φ coordinates.
Together with the timelike vector of ẽ, they form another, (r, ϑ,φ)-dependent Lorentz frame e; let
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C.A. The Φmjκj in Spherical Coordinates

b be the corresponding basis of S. Then, for any element of S, its (spherical) b-coefficients are
obtained from the (Cartesian) b̃-coefficients through multiplication by

⎡
⎢
⎢
⎢
⎢
⎢
⎣

W 0

0 W

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(C.A.2)

with the unitary 2 × 2 matrix

W ∶=
1
√

2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

iei(ϑ+φ)/2 ei(ϑ−φ)/2

iei(−ϑ+φ)/2 −ei(−ϑ−φ)/2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (C.A.3)

(whose columns will be denoted by w1 and w2). This follows from the easily verifiable facts that, for
σ = (σ1, σ2, σ3) the triple of Pauli matrices,

W −1σ1W = er ⋅σ (C.A.4a)
W −1σ2W = eϑ ⋅σ (C.A.4b)
W −1σ3W = eφ ⋅σ , (C.A.4c)

which shows that 2-spinors transform according to W , together with the fact that spatial rotations
are implemented on 4-spinors as block diagonal 4 × 4 matrices with 2 × 2 blocks that are equal to
each other and given by the action of the rotation on 2-spinors [559, (2.172) and (1.38)].

Relative to the Cartesian basis b̃ in S, the explicit form of the functions Φ±mjκj
is given in [559,

Sec. 4.6.4]; translated into the spherical basis b, they are given as follows:

Φ+
mj ,∓(j+ 1

2 )
=

⎛
⎜
⎜
⎝

iΨmj

j∓ 1
2

0

⎞
⎟
⎟
⎠

, Φ−
mj ,∓(j+ 1

2 )
=

⎛
⎜
⎜
⎝

0

iΨmj

j± 1
2

⎞
⎟
⎟
⎠

, (C.A.5)

where

Ψmj

j− 1
2
=

√
j +mj

2j
Y
mj−1/2
j−1/2 w1 +

√
j −mj

2j
Y
mj+1/2
j−1/2 w2 (C.A.6a)

Ψmj

j+ 1
2
=

√
j + 1 −mj

2j + 2
Y
mj−1/2
j+1/2 w1 −

√
j + 1 +mj

2j + 2
Y
mj+1/2
j+1/2 w2 (C.A.6b)

with Y m
ℓ the usual spherical harmonics (e.g., [559, Sec. 4.6.4]), defined for ℓ ∈ N ∪ {0} and

m ∈ {−ℓ, . . . , ℓ} (not to be confused with the mass in the Dirac equation).
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