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Abstract
MaxCut is a classical NP-complete problem and a crucial building block in many
combinatorial algorithms.The famousEdwards-Erdös bound states that any connected
graph on n vertices with m edges contains a cut of size at least m

2 + n−1
4 . Crowston,

Jones and Mnich [Algorithmica, 2015] showed that the MaxCut problem on simple
connected graphs admits an FPT algorithm, where the parameter k is the difference
between the desired cut size c and the lower bound given by the Edwards-Erdös
bound. This was later improved by Etscheid and Mnich [Algorithmica, 2017] to run
in parameterized linear time, i.e., f (k) · O(m). We improve upon this result in two
ways: Firstly, we extend the algorithm to work also for multigraphs (alternatively,
graphs with positive integer weights). Secondly, we change the parameter; instead of
the difference to the Edwards-Erdös bound, we use the difference to the Poljak-Turzík
bound. The Poljak-Turzík bound states that any weighted graph G has a cut of weight
at least w(G)

2 + wM SF (G)
4 , where w(G) denotes the total weight of G, and wM SF (G)

denotes the weight of its minimum spanning forest. In connected simple graphs the
two bounds are equivalent, but for multigraphs the Poljak-Turzík bound can be larger
and thus yield a smaller parameter k. Our algorithm also runs in parameterized linear
time, i.e., f (k) · O(m + n).
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1 Introduction

TheMaxCut problem is the problem of deciding whether a given graph G contains a
cut of size at least as large as a given integer c. It has been known for a very long time
that this problem isNP-complete, in fact it was one ofKarp’s 21NP-complete problems
[9]. The MaxCut problem has been intensely studied from various angles such as
random graph theory and combinatorics, but also approximation and parameterized
complexity. It has numerous applications in areas such as physics and circuit design;
for more background on the MaxCut problem we refer to the excellent survey by
Poljak and Tuza [14].

There are many lower bounds on the maximum cut sizeμ(G) of a given graph G. If
G is a graphwithm edges, a trivial lower bound isμ(G) ≥ m

2 . This can be shown easily
using the probabilistic method, as first done by Erdös [4]. Clearly, MaxCut(G, c) is
thus easily solvable if c ≤ m

2 . But what if c is larger? At which point does theMaxCut
problem become difficult? It turns out that already c = m

2 + εm for any fixed ε > 0
makes the problem NP-hard [7]. However, as long as the difference c − m

2 is just
a constant, MaxCut(G, c) is still polynomial-time solvable: Mahajan and Raman
showed in 1999 [11] that MaxCut(G, m

2 + k) is fixed-parameter tractable (FPT),
i.e., it can be solved in time f (k) · nO(1). This started off the study of parameterized
algorithms above guaranteed lower bounds.

By the time this FPT algorithm was found, m
2 was no longer the best-known lower

bound for μ(G). Already more than 20 years earlier, Edwards showed the following
lower bound that was previously conjectured by Erdös, and is thus now known as the
Edwards-Erdös bound.

Theorem 1 (Edwards-Erdös bound [2, 3]) For any connected simple graph G with n
vertices and m edges, μ(G) ≥ m

2 + n−1
4 .

Unlike the previous bound of m
2 , this bound is tight for an infinite class of graphs, for

example the odd cliques. It remained open for quite a while whetherMaxCut(G, m
2 +

n−1
4 + k) would also be fixed-parameter tractable, i.e., whether the parameter k could

be reduced by n−1
4 compared to the previous result byMahajan et al. This question was

answered in the positive by Crowston, Jones and Mnich, who proved the following
theorem.

Theorem 2 (Crowston et al. [1, Thm. 1]) There is an algorithm that computes, for any
connected graph G with n vertices and m edges and any integer k, in time 2O(k) · n4

a cut of G of size at least m
2 + n−1

4 + k, or decides that no such cut exists.

This algorithm has later been improved to run in linear time (in terms of m) by
Etscheid and Mnich [5]. However, they study only the problem of deciding the exis-
tence of such a cut. An algorithm for computing a cut if one exists could be obtained
by adding backtracking to their algorithm, however we believe that like our result
(Theorem 5), this would then run in time 2O(k) · n · m, and not parameterized linear
time.

We would like to highlight another classic lower bound on the size of the maximum
cut of a graph, nicknamed the “spanning tree” bound: Any connected graph on n
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vertices has a cut of size at least n −1, since it contains a spanning tree of this size and
trees are bipartite. Note that this bound is incomparable to the Edwards-Erdös bound.
In 2018, Madathil, Saurabh, and Zehavi [10] showed that MaxCut(G, n − 1 + k) is
also fixed-parameter tractable.

In 1986, Poljak and Turzík improved upon the Edwards-Erdös bound by replacing
the term n−1 with the weight of the minimum spanning tree (or forest in disconnected
graphs), thus obtaining the following lower bound for maximum cuts in weighted
graphs.

Theorem 3 (Poljak-Turzík bound [13]) For any graph G = (V , E) with weight func-
tion w : E → R>0, we have μ(G) ≥ w(G)

2 + wM SF (G)
4 , where w(G) = ∑

e∈E w(e)
and wM SF (G) denotes the weight of a minimum-weight spanning forest of G.

It is easy to see that Theorem 3 implies the bound in Theorem 1 both for
(unweighted) simple graphs and multigraphs. In unweighted simple graphs it is actu-
ally equivalent to Theorem 1, while on multigraphs and positive integer-weighted
graphs it can be strictly larger.

The authors of Theorem 2 thus posed as their major open question whether their
algorithm could be extended to solve MaxCut(G, m

2 + n−1
4 + k) on multigraphs

as well. We answer this question in the positive, and improve the result further by
replacing the Edwards-Erdös bound with the Poljak-Turzík bound.

1.1 Results

We provide a parameterized linear time algorithm for deciding MaxCut in multi-
graphs and positive integer-weighted (simple) graphs above the Poljak-Turzík bound.
A multigraph can be easily turned into a positive integer-weighted graph and vice
versa; in the rest of this paper we phrase all of our results and proofs in terms of
positive integer-weighted graphs for better legibility.

Theorem 4 There is an algorithm that decides for any graph G = (V , E) with weight
function w : E → N and any integer k, in time 2O(k) · O(|E | + |V |), whether a cut
of G of weight at least w(G)

2 + wM SF (G)
4 + k exists.

Using the same techniqueswecan also get a parameterizedquadratic-time algorithm
to compute such a cut, if one exists.

Theorem 5 There is an algorithm that computes for any graph G = (V , E) with
weight function w : E → N and any integer k, in time 2O(k) · O(|E | · |V |), a cut of
G of weight at least w(G)

2 + wM SF (G)
4 + k, if one exists.

We would like to point out that Theorem 4 is a strict improvement on the linear-
time algorithm of Etscheid and Mnich [5] in two ways: Firstly we increase the types
of graphs the algorithm is applicable to, and secondly we also strictly decrease the
parameter for some instances. The following observation shows that this decrease of
parameter can be significant.
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Observation 6 There exist sequences of positive-integer-weighted graphs (Gi )i∈N and
integers (ci )i∈N such that Theorem 4 yields a polynomial-time algorithm to solve
MaxCut(Gi , ci ), but when replacing wM SF (G) by n − 1, it does not.

Proof Let Gi be a tree on i + 1 vertices where each edge has weight 2. Then, the
Poljak-Turzík bound yields μ(Gi ) ≥ 2i

2 + 2i
4 = 6

4 i , while the Edwards-Erdös bound
only yields μ(Gi ) ≥ 2i

2 + i+1−1
4 = 5

4 i . Thus, if we set ci = 6
4 i + k for some constant

k, then Theorem 4 yields a 2O(k) · poly(i) = poly(i) algorithm forMaxCut(Gi , ci ),

while with the Edwards-Erdös bound it would yield a 2O(k+ 1
4 i) · poly(i) algorithm,

which is not polynomial. ��

1.2 AlgorithmOverview

Our algorithm works in a very similar fashion to the one in [1]. We use a series of
reduction rules that can reduce the input graph down to a graph with no edges. While
performing this reduction, we either prove that G has a cut of the desired weight, or
we collect a set S of O(k) vertices such that G − S is a uniform-clique-forest, i.e.,
a graph in which every biconnected component is a clique in which every edge has
the same weight. Given such a set S, we can then compute the maximum cut of G
exactly: We iteratively test all possibilities of partitioning the vertices in S between
the two sides of the cut, and then compute the maximum cut of G assuming that the
vertices of S are indeed partitioned like this. To do this, we use a similar approach as
in [1]: We compute the maximum cut of G − S with weighted vertices. In this setting,
each vertex v in G − S specifies a weight w0(v) and w1(v) for both possible sides of
the cut v may land in. The value of a cut is given by the total weight of the cut edges
plus the sum of the correct weight for each vertex. To use this problem to compute
the maximum cut of G, we set the weights of each vertex v in G − S according to the
total weight of the edges between v and S that are cut in the assumed partition of S.
Maximizing over all possible partitions for S gives the maximum cut of G.

While we use very similar techniques as Crowston et al. and Etscheid andMnich [1,
5], our main technical contribution lies in the reduction rules. Our reduction rules have
to be more specific, i.e., each reduction rule has a stronger precondition. This is due to
the fact that when performing any reduction, the change in the weight of a minimum
spanning forest (as needed for the Poljak-Turzík bound) is muchmore difficult to track
than the number of vertices in the graph (as needed for the Edwards-Erdös bound).
Since our rules are more specific, we also need twice as many rules as Crowston et al.
[1] (and one more rule than Etscheid and Mnich [5]) to ensure that always at least one
rule is applicable to a given graph.

2 Preliminaries

In the rest of this paper we consider every graph to be a simple graph G = (V , E),
where V is the set of vertices, and E ⊆ (V

2

)
is the set of edges. A graph is weighted if

it is equipped with a positive integer edge-weight function w : E → N. For any two
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disjoint subsets A, B ⊆ V we denote by E(A, B) the set of edges between A and B,
by w(A, B) the total weight of the edges in E(A, B), and by min(A, B) the minimum
weight of any edge in E(A, B). For a subset A ⊆ V , we denote by N (A) the set of
vertices in V \A that have a neighbor in A.

A spanning forest of G is the union of one spanning tree per connected component
of G. We denote the minimum weight of all spanning forests of G by wM SF (G).

A cut is a subset C ⊆ V , and the weight of a cut C is the total weight of the edges
connecting a vertex in C to a vertex in V \ C , i.e., w(C) = w(C, V \ C).

For any set A ⊆ V we write G[A] for the graph on A induced by G, and G − A
for the graph on V \ A induced by G.

We say that a graph is uniform if all of the edges have the same weight. More
specifically, we call a graph c-uniform if all edges have weight c.

Agraph (V , E) is calledbiconnected, if |V | ≥ 1, and for every vertexv ∈ V ,G−{v}
is connected. A biconnected component of a graph is amaximal biconnected subgraph,
also referred to as a block. It is well-known that the biconnected components of every
graph partition its edges. A vertex that participates in more than one biconnected
component is a cut vertex (usually defined as a vertex whose removal disconnects a
connected component). A graph can thus be decomposed into biconnected components
and cut vertices.

Definition 1 (Block-Cut Forest) The block-cut forest F of a graph G has vertex set
V (F) = C ∪B, where C is the set of cut vertices of G and B is the set of biconnected
components of G, and {B, c} is an edge in F if B ∈ B, c ∈ C, and c ∈ V (B).

It is not hard to see that the block-cut forest F of a graph G is indeed a forest, since
a cycle in it would imply a cycle in G going through multiple biconnected compo-
nents, thus contradicting their maximality. Moreover, each connected component of
F corresponds to a connected component of G, and all leaves of F are biconnected
components in G. We refer to the biconnected components of G that correspond to
leaves of F as leaf-blocks of G.

Definition 2 (Uniform-Clique-Forest) A weighted graph is a uniform-clique-forest if
each of its blocks B is a uniform clique.

Definition 3 The problem MaxCut- With- Vertex- Weights is given as follows.

Input: Aweighted graph (V , E)with edge-weight functionw, aswell as twovertex-
weight functions w0 : V → N, w1 : V → N.

Output: A cut C maximizing w(C) + ∑
v∈C w1(v) + ∑

v /∈C w0(v).

We show in Sect. 4 that MaxCut- With- Vertex- Weights is solvable in linear
time if the input graph is a uniform-clique-forest.

3 Reducing to a Uniform-Clique-Forest

In the first part of our algorithm, we wish to either already conclude that the input
graph has a cut of the desired weight, or to find some set S of vertices such that G − S
is a uniform-clique-forest.
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Lemma 7 For any graph G = (V , E) on n vertices with m edges and weight function
w : E → N and any integer k, in time O(n + k · m) one can either decide that G has
a cut of weight at least w(G)

2 + wM SF (G)
4 + k

4 , or find a set S ⊆ V such that |S| ≤ 3k
and G − S is a uniform-clique-forest.

Note that we write k
4 instead of just k. The reason for this is that with our reduc-

tion rules we make “progress” reducing the difference to the Poljak-Turzík bound in
increments of 1

4 .
To prove Lemma 7 we use eight reduction rules, closely inspired by the reduction

rules used in previous work [1, 5]. Each reduction rule removes some vertices from
the given graph, possibly marks some of the removed vertices to be put into S, and
possibly reduces the parameter k by 1. To prove Lemma 7, the reduction rules will be
shown to fulfill the following properties.

Firstly, each reduction rule ensures a one-directional implication: if the reduced
graph G ′ contains a cut of weight w(G ′)

2 + wM SF (G ′)
4 + k′

4 (where k′ is the possibly

reduced k), then the original graph G must also contain a cut of weight w(G)
2 +

wM SF (G)
4 + k

4 . By the Poljak-Turzík bound, if k ever reaches 0, it is clear that the
original graph G must have contained a cut of the desired weight.

Secondly, we need that to every graph with at least one edge, at least one of the
rules applies. To get our desired runtime, we also need that an applicable rule can be
found and applied efficiently.

Thirdly, every rule should only mark at most three vertices to be added to S. If a
rule does not reduce k, it may not mark any vertices. This ensures that at most 3k
vertices are added to S.

Lastly, we require that after exhaustively applying the rules and reaching a graph
with no more edges, the graph G − S is a uniform-clique-forest.

We will now state our reduction rules, and then prove these four properties in
Lemmas 8 and 9, Observation 10, and Lemma 11, respectively. For simplicity, each
reduction rule is stated in such a way that it assumes the input graph to be connected.
If the input graph is disconnected, instead consider G to be one of its connected com-
ponents. Each rule preserves connectedness of the connected component it is applied
to, which we also show in Lemma 8. Note further that if the connected component
the rule is being applied to is also biconnected, then if the precondition requires some
vertex to be a cut vertex, any vertex can play that role, although technically there are
no cut vertices. We state this once here for simplicity, instead of saying each time that
either v is a cut vertex or G is biconnected. We visualize the eight rules in Fig. 1.

Rule 1: Let {x, y}, {y, z} ∈ E be such thatw(x, y) > w(y, z) andG−{x, y}
is connected.

Remove: {x, y}
Mark: {x, y}
Reduce k: Yes, by 1

123



Algorithmica (2025) 87:983–1007 989

Rule 2: Let X ⊆ V , v ∈ V \ X be such that X ∪ {v} is a leaf-block of G
with cut vertex v, and G[X ∪ {v}] is a uniform clique.

Remove: X
Mark: ∅
Reduce k: No

Rule 3: Let X ⊆ V , v ∈ V \ X be such that X ∪ {v} is a clique and a
leaf-block of G with cut vertex v; G[X ] is uniform, and G[X ∪ {v}]
is not uniform.

Remove: X
Mark: {v}
Reduce k: Yes, by 1

Rule 4: Let X ⊆ V , v ∈ V \ X be such that X ∪{v} is a leaf-block of G with
cut vertex v; v has at least two neighbors in X ; G[X ] is a uniform
clique; G[X ∪ {v}] is not a clique.

Remove: X
Mark: {v}
Reduce k: Yes, by 1

Rule 5: Let X ⊆ V , v ∈ V \ X be such that X ∪{v} is a leaf-block of G with
cut vertex v; G[X ] is a clique; v has exactly two neighbors x, y in
X ; all edges in G[X ] have weight c, except {x, y}, which has weight
w(x, y) > c; w(v, x), w(v, y) ≥ c.

Remove: X
Mark: {v, x, y}
Reduce k: Yes, by 1

Rule 6: Let a, b, c ∈ V be such that {a, b}, {b, c} ∈ E ; {a, c} /∈ E ;
G − {a, b, c} is connected; w(a, b) = w(b, c); and 2w(a, b) >

min({a, b, c}, V \ {a, b, c}).
Remove: {a, b, c}
Mark: {a, b, c}
Reduce k: Yes, by 1

Rule 7: Let v, a, b, c ∈ V be such that {a, b, c, v} is a leaf-block of G
with cut vertex v; {a, b}, {b, c}, {a, v}, {c, v} ∈ E ; {a, c} /∈ E ;
w(a, b) = w(b, c); w(a, v), w(c, v) ≥ 2w(a, b); and if {b, v} ∈ E
then w(b, v) ≥ 2w(a, b).

Remove: {a, b, c}
Mark: {a, b, c}
Reduce k: Yes, by 1
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Fig. 1 The eight reduction rules. An edge is drawn normally if it must exist for the rule to apply. Some
edges are drawn dashed to emphasize that they must not exist for the rule to apply. Some additional edges
are drawn dotted to emphasize that they may exist but do not have to. Red shading indicates the vertices
removed by the rule, while vertices marked by the rule are drawn using a green square

Rule 8: Let x, y ∈ V be such that {x, y} /∈ E ; G − {x, y} has exactly two
connected components X and Y ; G[X ∪ {x}] and G[X ∪ {y}] are
both c-uniform cliques; and N (x) ∩ Y = N (y) ∩ Y = {v} for some
v ∈ Y .

Remove: X ∪ {x, y}
Mark: {x, y}
Reduce k: Yes, by 1

We first state the formalizations of our four properties, then prove Lemma 7, and
only then prove each of our properties.

Lemma 8 Let G = (V , E) be a graph with weights w, and let k be any positive integer.
Let G ′ be the result of one application of one of the rules 1–8 to G, and k′ the resulting
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parameter. Then, if G ′ has a cut of weight at least w(G ′)
2 + wM SF (G ′)

4 + k′
4 , then G must

contain a cut of weight at least w(G)
2 + wM SF (G)

4 + k
4 . Furthermore, if G is connected,

then G ′ is connected.

Lemma 9 Let G = (V , E) be a weighted graph with at least one edge. Given the
block-cut forest of G we can either apply Rule 2 in time O(|EX |) where EX is the set
of edges removed by applying Rule 2, or we can find and apply another rule in time
O(|E |). In the same time we can also make the necessary changes to the block-cut
forest to obtain the block-cut forest of the resulting graph G ′.

Observation 10 Each rule marks at most three vertices. Rule 2, the only rule that does
not reduce k, does not mark any vertices.

Lemma 11 Let S be the set of vertices marked when exhaustively (i.e., until G has no
edges) applying Rules 1–8 to a graph G. Then G − S is a uniform-clique-forest.

Let us now prove Rule 7 using these properties.

Proof of Lemma 7 We begin by computing the block-cut forest of G in O(n +m) time
[8]. Then, we apply rules until we either reach k = 0 or until we reach a graph with
no edges. Whenever we apply a rule, we locally adapt the block-cut forest. In total we
apply rules other than Rule 2 at most k times. By Lemma 9 this takes at most O(k ·m)

time. Since applying Rule 2 takes time O(|E ′|) where E ′ is the set of edges removed,
all applications of Rule 2 together use time O(m). The reduction step can thus be
performed in O(k · m).

If we have reached k = 0, by the Poljak-Turzík bound and by Lemma 8 we
can decide that our input graph contains a cut of the desired weight. Otherwise, by
Observation 10, S contains at most 3k vertices. By Lemma 11, G − S then forms a
uniform-clique-forest, and we have proven our desired statement. ��

We will now proceed to prove Lemmas 8 9 and 11. The main technical challenges
are the proofs of Lemmas 8 and 9. These proofs are more technically involved than the
corresponding proofs by Etscheid and Mnich [5]. For Lemma 8 this is due to the fact
that the weight of a minimum spanning forest is much more difficult to track through a
reduction than the number of vertices. For Lemma 9 the proof is more involved since
our rules are more specific, and thus more case distinction is needed. We present the
proof of Lemma 8 in Section A, since despite its technicality, it is not very insightful.

To prove Lemma 9 we use the following lemma, the proof of which follows from
the proof of [5, Lemma 3] rather directly.

Lemma 12 Let G = (V , E) be a connected graph with at least one edge, and let
B ⊆ V be a biconnected component that is a leaf in the block-cut forest of G. Now, we
write B as X ∪ {v}, where v is the cut vertex disconnecting B = X ∪ {v} from V \ B
(if B is an isolated vertex in the block-cut forest, i.e., it forms a connected component
of G that is also biconnected, then let v be an arbitrary vertex in B). Then at least one
of the following properties holds.

A) G[X ∪ {v}] is a clique.
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B) G[X ] is a clique but G[X ∪ {v}] is not a clique.
C) v has exactly two neighbors in X, x and y. Furthermore, {x, y} /∈ E, and G[X\{x}]

and G[X \ {y}] are cliques.
D) X ∪ {v} contains vertices a, b, c such that {a, b}, {b, c} ∈ E, {a, c} /∈ E, and

G − {a, b, c} is connected.

Furthermore, such a property (including the vertices x, y and a, b, c for cases C and
D, respectively) can be found in linear time in the number of edges in G[X ].
Proof (sketch) One can check whether G[X ] is a clique for some X ⊆ V in time linear
in the number of edges in G[X ]. To do this, we simply check whether each edge is
present in some fixed order. It is thus easy to check for cases A), B), and C) in linear
time.

In the proof of [5, Lemma 3] it is shown that if none of the cases A), B), and C)
apply, then vertices a, b, c certifying case D) can be found in linear time. ��
Proof of Lemma 9 Without loss of generality we can assume that G is connected; oth-
erwise, we consider G to be an arbitrary connected component of our input graph that
contains at least one edge. We first apply Lemma 12 on a leaf-block X ∪ {v} to find
one of the four properties.
Property A If property A holds, we can check whether G[X ∪ {v}] is uniform in time
O(|E ′|) where E ′ is the set of edges in G[X ∪ {v}]. In this process we can track also
whether G[X ] is uniform. If G[X ∪ {v}] is uniform we apply Rule 2. Else, if only
G[X ] is uniform, we apply Rule 3. If not even G[X ] is uniform, we can find two
edges {x, y}, {y, z} in G[X ] such that w(x, y) > w(y, z). Since X ∪ {v} is a clique,
G − {x, y} must be connected. We can therefore apply Rule 1.
Property B We can handle property B in a similar way. If G[X ] is uniform, we can
apply Rule 4. Else, we apply case distinction on the number of vertices in X adjacent
to v. We first consider the case if vertex v is adjacent to exactly two vertices in X .
Since X is not uniform, there exist vertices x, y ∈ X and a vertex u ∈ X ∪ {v} such
thatw(x, y) > w(x, u). If the only such choice of x, y is such that x and y are exactly
the two vertices in X adjacent to v, then we can apply Rule 5. Else we can see that
G − {x, y} must be connected and apply Rule 1. Let us now consider the other case,
that vertex v is adjacent to at least three vertices in X . There must again exist vertices
u, x, y ∈ X so that w(x, y) > w(x, u). Since v is adjacent to at least three vertices
and G[X ] is a clique, G − {x, y} is connected and we can apply Rule 1.
Property C To handle Property C we first check whether G[X ] is uniform. If it is
not, we can apply Rule 1, since for any edge {a, b} in G[X ], G − {a, b} is connected.
Knowing that G[X ] is uniform, and that v has exactly two neighbors, we can apply
Rule 8.
Property DNote that since G−{a, b, c} is connected, and since by its biconnectedness
B 
= {a, b, c}, if G − B is non-empty, then v /∈ {a, b, c}. Next, again since G[B] is
biconnected, we must have the following. ��
Assumption 1 We have E({a}, B \ {a, b, c}) 
= ∅ and E({c}, B \ {a, b, c}) 
= ∅.

From this we get that G − {a, b} and G − {b, c} must be connected. Thus, we can
compare w(a, b) and w(b, c), and apply Rule 1 if w(a, b) 
= w(b, c). We can also
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compute the value m = min({a, b, c}, B \ {a, b, c}). If 2w(a, b) > m we can apply
Rule 6. Thus, we can make the following assumptions.

Assumption 2 We can assume w(a, b) = w(b, c).

Assumption 3 We can assume 2w(a, b) ≤ min(B − {a, b, c}, {a, b, c}).
Next, we compute the block-cut forests for the four graphsGabc := G[B]−{a, b, c}

and Gu := G[B] − {u} for all u ∈ {a, b, c}. This can be performed in the required
time, and yields the set of cut vertices for all these graphs. We now test for every
u ∈ {a, b, c} and for every vertex z ∈ B\{a, b, c} with {z, u} ∈ E whether z is a cut
vertex in Gu . If for any such pair z, u we have that z is not a cut vertex in Gu , this
means that G − {u, z} is connected because if G − B is non-empty, v /∈ {a, b, c};
we can thus apply Rule 1 to that edge (since by Assumptions 2 and 3, every edge in
E({a, b, c}, B \ {a, b, c}) has weight at least twice as large as w(a, b) = w(b, c)).
From now on, we can make the following assumption.

Assumption 4 For every pair of vertices z ∈ B\{a, b, c} andu ∈ {a, b, c}with {z, u} ∈
E , z is a cut vertex of Gu .

We now check whether any vertex z ∈ B \ {a, b, c} that is adjacent to some
u ∈ {a, b, c} is not a cut vertex in Gabc.

Case 1: There is a vertex z ∈ B \ {a, b, c} adjacent to some u ∈ {a, b, c} such that
z is a cut vertex of Gu but not of Gabc. We claim that we can apply Rule 7. We prove
this by distinguishing two cases, depending on u:

• u ∈ {a, c}: Suppose without loss of generality that u = a. Since z is a cut vertex of
Ga , it follows that Ga − z has t ≥ 2 connected components C1, . . . , Ct . Suppose
without loss of generality that b, c ∈ C1. If C1\{b, c} 
= ∅, then C1\{b, c} and
C2 lie in different connected components of Gabc − z, implying that z is a cut
vertex of Gabc, which contradicts the assumption of Case 1. Thus C1 = {b, c},
implying that b and c have no neighbours in B\{a, b, c, z}. Therefore {c, z} ∈ E by
Assumption 1, so c can also play the role of u. By symmetry, a has no neighbours
in B\{a, b, c, z} and {a, z} ∈ E . It follows that {a, b, c, z} is a leaf-block of G and
so Rule 7 applies.

• u = b: Let S := B \ {a, b, c, z}. Recall that by Assumption 1, E({a}, S ∪ {z})
and E({c}, S ∪ {z}) are both non-empty. We will show that either {a, z} ∈ E
or {c, z} ∈ E (or both hold). Suppose that is not the case. Then E({a}, S) and
E({c}, S) are both non-empty. Since z is not a cut vertex in Gabc (as we are in Case
1), the graph G[S]must be connected. That implies G[S ∪{a, c}] = G[B]−{b, z}
is also connected, which contradicts our assumption that z is a cut vertex of Gb

(Assumption 4).
We have shown that at least one of {a, z} and {c, z} is in E , say {a, z}. Thus, without
loss of generality, the case u ∈ {a, c} applies, since z must be a cut vertex of Ga

by Assumption 4. We have thus reduced the case u = b to u ∈ {a, c}, which we
already handled.

Case 2: There is no vertex z ∈ B \ {a, b, c} adjacent to some u ∈ {a, b, c} such that
z is a cut vertex of Gu but not of Gabc. Together with Assumption 4, this implies we
can assume the following.
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Assumption 5 For every vertex z ∈ B\{a, b, c} that has a neighbor in {a, b, c}, we
have that z is a cut vertex of Gabc.

One can now show that if this point is reached without having found an applicable
rule, then Rule 7 must be applicable to the graph. We will use the following claim that
we will prove later.

Claim 13 Let G be a connected graph with X ⊂ G where X and G − X are connected,
and for all v ∈ V (G − X) it holds that if v has a neighbor in X, then v is a cut vertex
of G − X. If |N (X)| ≥ 2, then there are two distinct vertices v1, v2 ∈ N (X) that are
both cut vertices of G.

We apply Claim 13 on the set X := {a, b, c} and the graph G, which we can do by
Assumption 5. Observe that since B is biconnected containing at most one cut vertex
of G, it follows that N ({a, b, c}) contains at most one cut vertex of G. This, together
with Assumptions 4 and 5 and Claim 13, implies that |N ({a, b, c})| = 1. The vertex in
N ({a, b, c}) must be the cut vertex v, as removing it would disconnect {a, b, c} from
the rest of G. By Assumption 1, we know that {a, v}, {c, v} ∈ E . By Assimptions 2
and 3, all the weight restrictions of Rule 7 are satisfied, which can thus be applied. ��
Proof of Claim 13 Let H be the block-cut forest of G − X and suppose V (H) = C∪B,
where C are the cut vertices of G − X andB are the biconnected components of G − X .
Since |N (X)| ≥ 2, we get that |C| ≥ 2. Note that all leaves of H are inB. Consider the
forest F that we obtain by removing all leaves of H , and note that F has at least two
vertices since C ⊆ V (F). Thus, F has at least two leaves, say �1, �2, each of which
must be in C, since its neighbors in H \ F are in B. Let B ′ ∈ B be a leaf of H that is a
neighbor of �i for some i ∈ {1, 2}. Since every vertex in N (X) is in C, it follows that
E(X , B ′ \ {�i }) = ∅, so �i is a cut vertex in G. ��

For this section, it only remains to prove Lemma 11.

Proof of Lemma 11 Let G1, G2, . . . , Gq be the sequence of graphs obtained while
exhaustively applying rules 1–8 to G1 (G2 is the graph obtained after applying one
rule to G1, G3 is the graph obtained after applying one rule to G2, and so on). We
prove that for any graph Gi in the sequence, Gi − S is a uniform-clique-forest. We
run this proof by induction over the sequence of graphs in reverse order (in the order
Gq , Gq−1,…,G2,G1).

Base Case: By Lemma 9, we know that Gq is a graph without edges, therefore
Gq − S is trivially a uniform-clique-forest.

Induction Hypothesis: Assume Gi − S is a uniform-clique-forest.
Step Case: We prove that Gi−1 − S is a uniform-clique-forest. We know that one

rule among rules 1–8 was applied to Gi−1 to obtain Gi . We do a case distinction over
which rule was applied:

• Rule 1, 6, or 7was applied toGi−1. Every vertex these rules remove is alsomarked,
therefore Gi−1 − S = Gi − S.

• Rule 2 was applied to Gi−1. We can create Gi−1 − S from Gi − S by connecting
a clique X to a vertex v ∈ V (Gi ) such that X ∪ {v} is a uniform clique. If v is
in S, this is instead adding a disjoint uniform clique. Observe that this just adds a
uniform leaf-clique in either case.
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• Rule 3, 4, 5, or 8 was applied to Gi−1. We can create Gi−1 − S from Gi − S by
adding a disjoint uniform clique.

We conclude that in all cases Gi−1 − S consists of one or zero uniform cliques added
to Gi − S as a leaf, and thus by the induction hypothesis Gi−1− S is a uniform-clique-
forest. ��

4 SolvingMAXCUT-WITH-VERTEX-WEIGHTS on
Uniform-Clique-Forests

Lemma 14 MaxCut- With- Vertex- Weights on a uniform-clique-forest G with n
vertices and m edges can be solved in O(n + m) time.

Proof This proof loosely follows the proof of [5, Lemma 4]. We first compute the
cut-block forest of G. We know that every graph contains at least one leaf-block. Let
X ∪ {v} be a leaf-block of G where v ∈ V (G) is the cut vertex of X (if a connected
component of G consists of a single biconnected component B, then X = B − {v}
where v is an arbitrary vertex in B). Let n′ = |X | and m′ be the number of edges in
G[X ∪{v}]. Since G is a uniform-clique-forest, we know that G[X ∪{v}] is c-uniform
for some c. We now consider the maximum weighted cut C in G[X ∪ {v}] under both
possible restrictions v /∈ C and v ∈ C .

We first consider v /∈ C . Let δ(x) = w1(x) − w0(x) for every vertex x ∈ X .
We can sort the vertices in X in the order x1, x2, .., xn′ with decreasing δ-value, i.e.,
δ(x1) ≥ . . . ≥ δ(xn′). For any p ∈ {0, . . . , n′}, we let Ap be the set {x1, . . . , x p}. Ap

is the best cut among all cuts C ′ with |C ′ ∩ X | = p, since by uniformity of G[X ∪{v}]
all such cuts have the same weight w(C ′), and the value of such a cut C ′ is equal
to w(C ′) + ∑

v∈X w0(x) + ∑
v∈C (w1(v) − w0(v)). Now we can find the maximum

weighted cut in X ∪ {v} by comparing the n′ + 1 cuts A0, .., An′ . Letting λ be the
value of this cut, we update w0(v) = λ.

We can perform the same process for v ∈ C . We instead consider Ap =
{v, x1, . . . , x p}, and update w1(v) to the optimum value found. After having updated
both weights for v, we can now delete all vertices in X .

We can apply this method to G exhaustively until we are left with a graph with no
edges. The desired value of the maximum weighted cut on the entire graph G is the
sum of the greater values of w0(v) or w1(v) for all remaining vertices v.

Wenowcalculate the runtime of thismethod applied to one leaf-block X . Sorting the
vertices takes O(n′ log(n′)) time. Since X is a clique, we have n′ log(n′) ≤ n′(n′+1)

2 =
m′ for all n′ ≥ 4. We can calculate the value of the assignment A0 in O(m′) time.
Observe that the difference between cuts Ai and Ai+1 for any i ∈ {0, .., n − 1} is in
only one vertex. By only considering these local modifications we can calculate the
values of the cuts A0, .., An′ in O(m′) time. Since in every iteration we perform this
process on a different block, in total we can bound our runtime with O(n + m), since
for blocks with n′ < 4 the runtime of O(n′ log(n′)) = O(1) can be charged to some
vertex in the block, while for blocks with n′ ≥ 4 the runtime of O(n′ log(n′)) can be
expressed as O(m′). ��
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5 Conclusion

With Lemmas 7 and 14, our main result now follows easily:

Proof of Theorem 4 Given any instanceMaxCut(G,
w(G)
2 + wM SF (G)

4 + k′
4 )with k′ :=

4k, by Lemma 7 we can in time O(n + k · m) either decide that the instance is a
“yes”-instance, or find a set S ⊆ V with |S| ≤ 3k′ = 12k such that G − S is a
uniform-clique-forest. For each subset S′ ⊆ S we can then in time O(n + m) build a
MaxCut- With- Vertex- Weights instance on the graph G −S, such that the vertex
weights w0(v) and w1(v) of a vertex v ∈ G − S denote the sum of the weights of
edges to vertices in S′ and S\S′ respectively. By Lemma 14, each of these instances
can be solved in O(n + m) time. The maximum cut found in any instance given by
a set S′ corresponds to the maximum cut C of G obtainable under the condition that
C ∩ S = S′. Taking into account the edges between S and S′ and taking the maximum
over all instances thus computes the maximum cut weight of G.

To compute the overall runtime, note that since |S| ≤ 12k, we solve at most 212k

MaxCut- With- Vertex- Weights instances. Thus, the overall runtime is O(n +k ·
m + 2O(k) · (n + m)) = O(2O(k) · (n + m)). ��

If we want to find a cut instead of deciding the existence of a cut, we can use very
similar techniques.

Proof of Theorem 5 Theproof ofLemma8 is constructive: given a cutC ′ on the reduced
graph G ′ of the assumedweight, a cutC on the original graph G of the required weight
can be found in linear time in the number of removed edges and vertices. Thus, instead
of applying reduction rules only until k ≤ 0 or until the graph has no edges, we always
apply rules until the graph contains no edges. This requires at most O(n · m) time.
Note that when we have removed all edges from the graph, the required weight of a
cut (k larger than the Poljak-Turzík bound) is simply 0

2 + 0
4 + k = k. Thus, if k ≤ 0 is

reached, the required cut weight is non-positive, thus we can start with any arbitrary
cut C ′ of the remaining independent set. We can then apply the cut extensions from
the proof of Lemma 8 for all applied rules in reverse. This yields a cut of G of the
desired weight. If otherwise we have k > 0 when we reached a graph with no edges,
we know that |S| ≤ 12k, and we can again solve 2|S| instances of MaxCut- With-
Vertex- Weights on G − S. ��

5.1 Open Problems

Our result leaves a few interesting open problems.

5.1.1 Other �-extendible properties

In [13], Poljak and Turzík actually not only show the lower bound for MaxCut
(Theorem 3) but in fact they prove a very similar bound for the existence of large
subgraphs fulfilling any so-called λ-extendible property.1 Mnich, Philip, Saurabh, and

1 For MaxCut this property would be bipartiteness.
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Suchý [12] generalize the approach of Crowston et al. [1] for MaxCut to work for a
large subset of these λ-extendible properties. Note that while the title of [12] includes
“above the Poljak-Turzík bound”, the authors restrict their attention to unweighted
simple graphs, and thus their result applied to MaxCut only implies the result of
Crowston et al. [1], but not our result. We find it a very interesting direction to see
if our result can be extended to also cover some more λ-extendible properties in
multigraphs or positive integer-weighted graphs.

5.1.2 Kernelization

Many previous works on MaxCut parameterized above guaranteed lower bounds
have also provided kernelization results [1, 5, 10]. In particular, together with their
linear-time algorithm parameterized by the distance k to the Poljak-Turzík bound,
Etscheid and Mnich [5] also provide a linear-sized (in k) kernel. We are not aware
of any kernelization results for MaxCut on multigraphs or positive integer-weighted
graphs. It would thus be very interesting to explore whether these results can also be
extended to our setting.

5.1.3 FPT above better lower bounds

Recently, Gutin and Yeo [6] proved new lower bounds for μ(G) for positive real-
weighted graphs. In particular, they prove μ(G) ≥ w(G)

2 + w(M)
2 where M is a

maximum matching of G, and μ(G) ≥ w(G)
2 + w(D)

4 for any DFS-tree D (which
implies the Poljak-Turzík bound). Both of these bounds are consequences of a more
general bound involving disjoint bipartite induced subgraphs, but the value of this
bound is NP-hard to compute [6]. The weight of the largest DFS-tree is also NP-hard
to compute [6]. These two bounds are thus not very suitable for an FPT algorithm, but
the bound involving the maximum matching may be, since the maximum matching
in a weighted graph can be computed in polynomial time using Edmonds’ blossom
algorithm.

5.1.4 General weights

After going from simple graphs to multigraphs and thus positive integer-weighted
graphs, it would be interesting to further generalize to positive real-weighted graphs.
Here, it is not directly clear what the parameter k exactly should be. Generalizing
our algorithm may require completely new approaches since we cannot discretize the
decrease of k.

Appendix A Proof of Lemma 8

Wewill often use the following claim that slightly strengthens the Poljak-Turzík bound
in certain cases:
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Claim 15 Let G = (V , E) be a weighted graph with weights w : E → N such that
there exist edges {u, v}, {v, x} with w(u, v) > w(v, x) and G − {u, v} is connected.
Then G has a cut of weight at least w(G)

2 + wM SF (G)
4 + 1

4 .

Proof LetG ′ =G−{u, v}. By the Poljak-Turzík boundwe knowwe have a cutC ′ ofG ′
ofweight at least w(G ′)

2 + wM SF (G ′)
4 .We can extend this to a cutC inG by adding exactly

one of u and v. We choose the one such that at least half of the weight in E({u, v}, V ′)
goes over the cut, where V ′ = V −{u, v}. We have that M SF(G ′)∪{u, v}∪ {v, x} is
a spanning forest of G, therefore wM SF (G ′) + w(u, v) + w(v, x) ≥ wM SF (G). The
cut C has weight at least

w(C) ≥ w(G ′)
2

+ wM SF (G ′)
4

+ w({u, v}, V ′)
2

+ w(u, v)

= w(G)

2
+ wM SF (G ′)

4
+ w(u, v)

2

≥ w(G)

2
+ wM SF (G ′)

4
+ w(u, v)

4
+ w(v, x) + 1

4

≥ w(G)

2
+ wM SF (G)

4
+ 1

4
,

where on the second line we used that w(G) = w(G ′)+w({u, v}, V ′)+w(u, v), and
on the third line we used that w(u, v) > w(v, x). ��

Let us now prove Lemma 8.

Proof of Lemma 8 We first see that each rule preserves connectedness simply by their
preconditions. Each rule either explicitly requires that the resulting graph is connected
(Rules 1,6 and 8), or removes a whole leaf-block of G, except for the cut vertex (Rules
3to 2,7).

We now prove the required cut weight implication for each rule independently.
We need to prove that if there exists a cut C ′ in G ′ that produces a cut of weight
w(G ′)

2 + wM SF (G ′)
4 + k′

4 , then this can be extended to a cut C of G of weight w(G)
2 +

wM SF (G)
4 + k

4 . We thus assume that such a cut C ′ exists, and then extend it in such a
way that C ∩ V ′ = C ′. We perform a case distinction on the rule that we applied to G
to obtain G ′. Recall that for all rules except Rule 2, k′ = k − 1.

Rule 1: We extend C ′ by putting x and y on different sides of the cut. Among the
two possibilities, we choose the one such that at least half the weight in E({x, y}, V ′)
goes over the cut. We get a cut of weight at least

w(C) ≥ w(G ′)
2

+ wM SF (G ′)
4

+ k′

4
+ w(x, y) + w(E({x, y}, V ′))

2

= w(G)

2
+ wM SF (G ′)

4
+ k′

4
+ w(x, y)

2

≥ w(G)

2
+ wM SF (G ′)

4
+ k′

4
+ w(x, y)

4
+ w(y, z) + 1

4
,

123



Algorithmica (2025) 87:983–1007 999

where we used that w(G) = w(G ′) + w(E({x, y}, V ′)) + w(x, y) in the second
step, and that w(x, y) > w(y, z) in the third step. We now see that wM SF (G) ≤
wM SF (G ′) + w(x, y) + w(y, z), and we thus get

w(C) ≥ w(G)

2
+ wM SF (G)

4
+ k

4
.

Rule 2: We can assume without loss of generality that v ∈ C ′. Let n′ := |X ∪ {v}|.
Observe that the sum of the total weight in G[X ∪ {v}] is c

(
n′(n′−1)

2

)
for the integer c

such that all edges in G[X ∪ {v}] have weight c. If n′ is odd, |X | is even, and we can
add exactly half its vertices to C . This way we have a cut C ′′ in G[X ∪ {v}] of weight
at least

w(C ′′) ≥ c
(n′ + 1

2

)(n′ − 1

2

)

= c
(n′(n′ − 1)

4

)
+ c

(n′ − 1

4

)

= w(G[X ∪ {v}])
2

+ wM SF (G[X ∪ {v}])
4

.

If n′ is even, we add n′
2 − 1 of the vertices of X to C , and leave n′

2 vertices out of C .
In this case, we have a cut C ′′ in G[X ∪ {v}] of weight at least

w(C ′′) ≥ c
(n′

2

)(n′

2

)

= c
(n′(n′ − 1)

4

)
+ c

(n′

4

)

≥ w(G[X ∪ {v}])
2

+ wM SF (G[X ∪ {v}])
4

.

In either case, we can see that we can combine C ′ and C ′′ to a cut C in G of weight
at least

w(C) ≥ w(G[X ∪ {v}])
2

+ wM SF (G[X ∪ {v}])
4

+ w(G ′)
2

+ wM SF (G ′)
4

+ k′

4

= w(G)

2
+ wM SF (G)

4
+ k

4
,

where in the last equality we used that w(G) = w(G[X ∪ {v}]) + w(G ′), that
wM SF (G) = wM SF (G[X ∪ {v}] + wM SF (G ′), and that k′ = k for this rule.

Rule 3: Since G[X ∪ {v}] is not uniform, we can apply Claim 15 to G[X ∪ {v}] to
obtain a cut C ′′ in G[X ∪ {v}] of weight at least w(G[X∪{v}])

2 + wM SF (G[X∪{v}])
4 + 1

4 .
We now assume without loss of generality that v ∈ C ′′ ⇔ v ∈ C ′, i.e., both C ′ and
C ′′ put v on the same side of the cut. In this case we can combine C ′ and C ′′ to a cut
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C of weight at least

w(C) ≥ w(G[X ∪ {v}])
2

+ wM SF (G[X ∪ {v}])
4

+ 1

4
+ w(G ′)

2
+ wM SF (G ′)

4
+ k′

4

= w(G)

2
+ wM SF (G)

4
+ k

4
,

where we used that wM SF (G) = wM SF (G[X ∪ {v}]) + wM SF (G ′), that k = k′ + 1,
and that w(G) = w(G[X ∪ {v}]) + w(G ′).

Rule 4: We know that v must be adjacent to more than 1 and fewer than |X | vertices
of X . We first do a case distinction on whether G[X ∪ {v}] is uniform or not.

If G[X ∪{v}] is not uniform, we use the same argument as for the previous rule. Let
y ∈ X be a vertex not adjacent to v. Observe that for any x ∈ X such that {v, x} ∈ E ,
G[X ∪ {v}− {v, x}] and G[X ∪ {v}− {x, y}] are both connected. Since G[X ∪ {v}] is
not uniform but G[X ] is, we can find such an x such that either w(x, y) > w(x, v) or
w(x, y) < w(x, v). Therefore, we can use Claim 15 on G[X ∪ {v}]. This gives us a
cut C ′′ in G[X ∪{v}] of weight at least w(G[X∪{v}])

2 + wM SF (G[X∪{v}])
4 + 1

4 . Combining
this cut with C ′, we get a cut C in G of weight at least

w(C) ≥ w(G ′)
2

+ wM SF (G ′)
4

+ k′

4
+ w(G[X ∪ {v}])

2
+ wM SF (G[X ∪ {v}])

4
+ 1

4

≥ w(G)

2
+ wM SF (G)

4
+ k

4
,

where we used that w(G) = w(G ′) + w(G[X ∪ {v}]), that k = k′ + 1, and that
wM SF (G) = wM SF (G[X ∪ {v}]) + wM SF (G ′).

Otherwise G[X ∪{v}] is c-uniform. Let m′ = w(G[X ∪{v}]) and n′ = |X |. We can
order the vertices in X as x1, x2, . . . , xn′ such that v is adjacent to exactly x1, . . . , xr ,
but not xr+1, . . . , xn′ . Assume without loss of generality that v ∈ C ′. We add v and
all xi for i > � n′

2 � to a cut C ′′ of G[X ∪ {v}]. This cut has weight s := c(� n′
2 � · � n′

2 � +
min{r , � n′

2 �}). Note that m′ = c( n′(n′−1)
2 + r), thus we can rephrase s:

s = m′

2
− m′

2
+ c(�n′

2
� · �n′

2
� + min{r , �n′

2
�})

= m′

2
+ c(

n′

4
− n′2

4
− r

2
) + c(�n′

2
� · �n′

2
� + min{r , �n′

2
�})

= m′

2
+ c(

n′

4
− n′2

4
+ �n′

2
� · �n′

2
� + min{ r

2
, �n′

2
� − r

2
}).

If n′ is even, � n′
2 � · � n′

2 � = n′2
4 , and then, similarly,

s ≥ m′

2
+ c

n′

4
+ c

2
≥ m′

2
+ c

n′

4
+ 1

4
.
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If n′ is odd, � n′
2 � · � n′

2 � = (n′+1)(n′−1)
4 = n′2

4 − 1
4 , and then

s ≥ m′

2
+ c

n′

4
+ c

2
− c

4
≥ m′

2
+ c

n′

4
+ 1

4
.

In either case we can combine C ′′ on G[X ∪ {v}] and C ′ on G ′ to get a cut C of G
of weight at least

w(C) ≥ w(G ′)
2

+ wM SF (G ′)
4

+ k′

4
+ m′

2
+ c

n′

4
+ 1

4

≥ w(G)

2
+ wM SF (G)

4
+ k

4
,

where we used that an MSF of G ′ can be turned into a spanning forest of G by adding
n′ edges of weight c, so wM SF (G) ≤ wM SF (G ′) + cn′; that k = k′ + 1, and that
w(G) = w(G ′) + m′.

Rule 5: Let X ′ = X −{x, y}. Ifw(x, v) > c orw(y, v) > c, since G[X ∪{v}−{v, x}]
and G[X ∪ {v} − {v, y}] are connected, we know by Claim 15 that G[X ∪ {v}] has a
cut C ′′ of weight at least w(G[X∪{v}])

2 + wM SF (G[X∪{v}])
4 + 1

4 . Since G ′ and G[X ∪ {v}]
overlap in only one vertex v we can w.l.o.g. assume that v ∈ C ′′ ⇔ v ∈ C ′, and we
can combine C ′′ and C ′ to a cut C of G of weight at least

w(C) ≥ w(G ′)
2

+ wM SF (G ′)
4

+ k′

4
+ w(G[X ∪ {v}])

2
+ wM SF (G[X ∪ {v}])

4
+ 1

4

= w(G)

2
+ wM SF (G)

4
+ k

4
,

where we used that w(G) = w(G ′) + w(G[X ∪ {v}]), that k = k′ + 1, and that
wM SF (G) = wM SF (G[X ∪ {v}]) + wM SF (G ′).

Thus, from now on we may assume w(x, v) = w(y, v) = c, i.e., the only edge
in G[X ∪ {v}] that does not have weight c is the edge {x, y} of weight > c. For the
remaining cases, we perform a case distinction over the size of X ′. Without loss of
generality we assume that v /∈ C ′.

• Case 1: |X ′| = 1. Let u be the only vertex in X ′. Observe

wM SF (G ′) + w(x, v) + w(y, v) + w(u, x) ≥ wM SF (G). (A1)

– Assume w(x, y) > 2c. We create C by only adding x to C ′, i.e., y, u /∈ C .
Then C has weight at least

w(C) ≥ w(G ′)
2

+ wM SF (G ′)
4

+ k′

4
+ w(x, y) + w(x, v) + w(x, u)

≥ w(G)

2
+ wM SF (G ′)

4
+ k′

4
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+ w(x, y) + w(x, v) + w(x, u) − w(y, v) − w(y, u)

2

= w(G)

2
+ wM SF (G ′)

4
+ k′

4
+ w(x, y)

2

>
w(G)

2
+ wM SF (G ′)

4
+ k′

4
+ 2c

2

≥ w(G)

2
+ wM SF (G ′)

4
+ k′

4
+ 3c

4
+ 1

4

≥ w(G)

2
+ wM SF (G)

4
+ k

4
,

where in the last inequality we used thatwM SF (G ′)+3c ≥ wM SF (G) by (A1)
and w(x, v) = w(y, v) = w(u, x) = c, and that k = k′ + 1.

– Assume w(x, y) ≤ 2c. We create C by adding only x and y to C ′, i.e., u /∈ C .
Then C has weight at least

w(C) ≥ w(G ′)
2

+ wM SF (G ′)
4

+ k′

4
+w(y, v)+w(y, u)+w(x, v) + w(x, u)

≥ w(G ′)
2

+ wM SF (G ′)
4

+ k′

4
+ 3c + w(x, y)

2

≥ w(G)

2
+ wM SF (G ′)

4
+ k′

4
+ c

≥ w(G)

2
+ wM SF (G)

4
+ k′

4
+ c

4

≥ w(G)

2
+ wM SF (G)

4
+ k

4
,

where we used that wM SF (G ′) + 3c ≥ wM SF (G) by (A1) and w(x, v) =
w(y, v) = w(u, x) = c in the penultimate step, and that k′ + c ≥ k′ + 1 = k
in the last step.

• Case 2: |X ′| =: n′ > 1. Observe

w(G) = w(G ′) + c(
n′(n′ − 1)

2
+ 2n′ + 2) + w(x, y) (A2)

and

wM SF (G ′) + c(n′ + 2) ≥ wM SF (G). (A3)

– Assume w(x, y) ≥ 2c. We start with a cut on G[X ′] of weight at least
w(G[X ′])

2 + wM SF (G[X ′])
4 = w(G[X ′])

2 + c( n′−1
4 ) as guaranteed by the Poljak-

Turzík bound. Then we extend this to a cut on G[X ′ ∪ {x, y}] by adding
exactly one of x and y, choosing of the two possibilities the one that cuts at
least half the weight in E(X ′, {x, y}). We combine this cut with the cut C ′.
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The resulting cut C has weight at least

w(C) ≥ w(G ′)
2

+ wM SF (G ′)
4

+ k′

4
+ w(G[X ′])

2
+ c

(n′ − 1

4

)

+ |E(X ′, {x, y})|
2

+ w(x, y) + c

≥ w(G)

2
+ wM SF (G ′)

4
+ k′

4
+ c

(n′ − 1

4

)
+ w(x, y)

2

≥ w(G)

2
+ wM SF (G ′)

4
+ k′

4
+ c

(n′ + 3

4

)

≥ w(G)

2
+ wM SF (G)

4
+ k′

4
+ c

4

≥ w(G)

2
+ wM SF (G)

4
+ k

4
,

where in the second step we used that w(G) = w(G ′) + w(G[X ′]) +
E(X ′, {x, y}) + w(x, y) + 2c, in the penultimate step we used (A3), and in
the last step we used that k′ + c ≥ k′ + 1 = k.

– Assume w(x, y) < 2c. We add both x and y to the cut C ′.
If n′ is odd we add n′−1

2 vertices of X ′ to C ′. The resulting cut C has weight
at least

w(C) ≥ w(G ′)
2

+ wM SF (G ′)
4

+ k′

4
+ c

((n′ + 3

2

)(n′ + 1

2

)
+ 2

)

≥ w(G ′)
2

+ wM SF (G ′)
4

+ k′

4
+ c

(n′2 + 4n′ + 3

4
+ 1

)
+ w(x, y) + 1

2

= w(G)

2
+ wM SF (G ′)

4
+ k′

4
+ c

(n′ − 1

4
+ 1

)
+ 1

2

= w(G)

2
+ wM SF (G ′)

4
+ k′

4
+ c

(n′ + 3

4

)
+ 1

2

≥ w(G)

2
+ wM SF (G)

4
+ k′

4
+ 1

2

≥ w(G)

2
+ wM SF (G)

4
+ k

4
,

where in the third step we used (A2), in the penultimate step we used (A3),
and in the last step we used k′ + 1 = k.
If n′ is even we add n′

2 − 1 vertices of X ′ to C ′. The resulting cut C has weight
at least

w(C) ≥ w(G ′)
2

+ wM SF (G ′)
4

+ k′

4
+ c

((n′ + 2

2

)(n′ + 2

2

)
+ 2

)

,

which is strictly larger than in the n′ odd case.
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Rule 6: Let min = min(V \{a, b, c}, {a, b, c}), and let emin be an edge of weight min
in E(V \{a, b, c}, {a, b, c}). Observe that M SF(G ′) together with emin, {a, b}, and
{b, c} forms a spanning forest of G. Therefore

wM SF (G ′) +min+w(a, b) + w(b, c) = wM SF (G ′) +min+2w(a, b) ≥ wM SF (G).

(A4)
We consider two subsets of {a, b, c}: A1 = {a, c}, and A2 = {b}. Considering these

as cuts of G, both cuts cut the edges {a, b} and {b, c}, and at least one of these cuts
gets at least half of the total weight in E(V (G ′), {a, b, c}). Enhancing C ′ by that set,
we therefore get a cut C of G of weight at least

w(C) ≥ w(G ′)
2

+ wM SF (G ′)
4

+ k′

4
+ w(V (G ′), {a, b, c})

2
+ w(a, b) + w(b, c)

≥ w(G)

2
+ wM SF (G ′)

4
+ k′

4
+ w(a, b)

2
+ w(b, c)

2

≥ w(G)

2
+ wM SF (G ′)

4
+ k′

4
+ w(a, b)

2
+ min+1

4

≥ w(G)

2
+ wM SF (G)

4
+ k′

4
+ 1

4

≥ w(G)

2
+ wM SF (G)

4
+ k

4
,

where in the second step we used that w(G) = w(G ′) + w(V (G ′), {a, b, c}) +
w(a, b) + w(b, c), in the third step we used that 2w(b, c) > min, in the penulti-
mate step we used (A4), and in the last step we used that k′ + 1 = k.

Rule 7: If b is adjacent to v we can augment C ′ by adding a, b, c to C if and only if
v /∈ C ′. Observe M SF(G ′) ∪ {a, v} ∪ {b, v} ∪ {c, v} is a spanning forest of G, so

wM SF (G) ≤ wM SF (G ′) + w(a, v) + w(b, v) + w(c, v). (A5)

Also by the conditions of Rule 7 we have

w(a, v)

4
+ w(b, v)

4
≥ w(a, b)

2
+ w(a, b)

2
= w(a, b)

2
+ w(b, c)

2
. (A6)

We can thus analyze the cut C to have weight at least

w(C) ≥ w(G ′)
2

+ wM SF (G ′)
4

+ k′

4
+ w(a, v) + w(b, v) + w(c, v)

≥ w(G ′)
2

+ wM SF (G ′)
4

+ k′

4
+ 3w(a, v)

4
+ 3w(b, v)

4
+ w(a, b)

2

+ w(b, c)

2
+ w(c, v)

≥ w(G)

2
+ wM SF (G ′)

4
+ k′

4
+ w(a, v)

4
+ w(b, v)

4
+ w(c, v)

2
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≥ w(G)

2
+ wM SF (G)

4
+ k′

4
+ w(c, v)

4

≥ w(G)

2
+ wM SF (G)

4
+ k

4
,

where in the second step we used (A6), in the third step we used thatw(G) = w(G ′)+
w(a, b) + w(b, c) + w(a, v) + w(b, v) + w(c, v), in the fourth step we used (A5),
and in the last step we used that k′ + w(c, v) ≥ k′ + 1 = k.

If b is not adjacent to v, add a, c to C if and only if v /∈ C ′, and we add b to C if
and only if v ∈ C ′. Thus the edges {a, b}, {b, c}, {a, v}, {c, v} are all cut. Note that
M SF(G ′) ∪ {c, v} ∪ {a, b} ∪ {b, c} is a spanning forest of G, so

wM SF (G) ≤ wM SF (G ′) + w(c, v) + w(a, b) + w(b, c). (A7)

The cut C has weight at least

w(C) ≥ w(G ′)
2

+ wM SF (G ′)
4

+ k′

4
+ w(a, v) + w(a, b) + w(b, c) + w(c, v)

≥ w(G)

2
+ wM SF (G ′)

4
+ k′

4
+ w(a, v)

2
+ w(c, v)

2
+ w(a, b)

2
+ w(b, c)

2

≥ w(G)

2
+ wM SF (G)

4
+ k′

4
+ w(a, v)

2
+ w(c, v)

4
+ w(a, b)

4
+ w(b, c)

4

≥ w(G)

2
+ wM SF (G)

4
+ k

4
,

where in the second step we used thatw(G) = w(G ′)+w(a, v)+w(a, b)+w(b, c)+
w(c, v), in the third step we used (A7), and in the last step we used that k′ +w(a, v) ≥
k′ + 1 = k.

Rule 8: Let v be the only neighbor of {x, y} in Y and let n = |X |. We first extend C ′
to C ′′ by adding x, y to C ′′ if and only if v /∈ C ′. We then extend C ′′ to C as follows.

Without loss of generality, assume x, y /∈ C ′′. We perform a case distinction on the
parity of n. Note that w(G[X ∪ {x, y}]) = c( n(n−1)

2 + 2n).

• If n is odd, we add n+1
2 of the vertices in X to C . In G[X ∪ {x, y}] this cuts in

total a weight of

c

((n + 1

2

)(n − 1

2

)
+ 2

n + 1

2

)

= c
(n(n − 1)

4
+ n − 1

4
+ n + 1

)

= w(G[X ∪ {x, y}])
2

+ c
(n

4
+ 3

4

)
.
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• If n is even, we add n
2 + 1 vertices in X to C . In G[X ∪ {x, y}] this cuts in total a

weight of

c

((n

2
+ 1

)(n

2
− 1

)
+ 2

(n

2
+ 1

))

= c
(n2

4
+ n + 1

)

= c
(n2

4
+ 3

4
n + n

4
+ 1

)
= w(G[X ∪ {x, y}])

2
+ c

(n

4
+ 1

)
.

In either case we thus have that C cuts at least half of the weight in G[X ∪{x, y}] plus
c( n

4 + 3
4 ).

Observe that

wM SF (G) ≤ wM SF (G ′) + cn + w(x, v) + w(y, v). (A8)

In total we can thus bound the weight of the cut C as

w(C) ≥ w(G ′)
2

+ wM SF (G ′)
4

+ k′

4
+ w(G[X ∪ {x, y}])

2
+ c(

n

4

+ 3

4
) + w(x, v) + w(y, v)

= w(G)

2
+ wM SF (G ′)

4
+ k′

4
+ c(

n

4
+ 3

4
) + w(x, v)

2
+ w(y, v)

2

≥ w(G)

2
+ wM SF (G)

4
+ k′

4
+ 3c

4
+ w(x, v)

4
+ w(y, v)

4

≥ w(G)

2
+ wM SF (G)

4
+ k

4
,

where in the second step we used w(G) = w(G ′) + w(G[X ∪ {x, y}) + w(x, v) +
w(y, v), in the third step we used (A8), and in the last step we used that k′ +w(x, v) ≥
k′ + 1 = k.

We conclude that for every rule, from a cut C ′ of G ′ of the guaranteed weight we
can build a cut C of G of the required weight, and thus the lemma follows. ��
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