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Differentially private gradient descent (DP-GD) is a popular algorithm to train deep
learning models with provable guarantees on the privacy of the training data. In the last
decade, the problem of understanding its performance cost with respect to standard GD
has received remarkable attention from the research community, which has led to upper
bounds on the excess population riskRP in different learning settings. However, such
bounds typically degrade with overparameterization, i.e., as the number of parameters
p gets larger than the number of training samples n—a regime which is ubiquitous
in current deep-learning practice. As a result, the lack of theoretical insights leaves
practitioners without clear guidance, leading some to reduce the effective number of
trainable parameters to improve performance, while others use larger models to achieve
better results through scale. In this work, we show that in the popular random features
model with quadratic loss, for any sufficiently large p, privacy can be obtained for free,
i.e., |RP| = o(1), not only when the privacy parameter " has constant order but also
in the strongly private setting " = o(1). This challenges the common wisdom that
overparameterization inherently hinders performance in private learning.

differential privacy | deep learning | overparameterization | differentially private gradient descent |
random features model

Deep learning models are vulnerable to attacks directed to retrieve information about
the training dataset (1, 2), which is concerning when sensitive data are included in
the learning pipeline. To allow the usage of such data, differential privacy (DP) (3)
consolidated as the golden standard for privacy. This framework comes with algorithms
(4) that provide formal protection guarantees for each sample in the training set, which
is safeguarded (up to some level) by any adversary with access to the trained model and
the rest of the dataset. Specifically, neural networks are trained in a differentially private
way via e.g. DP (stochastic) gradient descent (DP-GD) (4). This involves minimizing the
training loss with additional “tweaks” to guarantee protection, which typically boil down
to i) clipping the per-sample gradients before averaging, ii) perturbing the parameters
updates with random noise, and iii) limiting the number of training iterations with
early stopping. However, privacy guarantees often come with a performance cost with
respect to standard GD (5). Furthermore, private training involves carefully tuning
additional hyperparameters, e.g., clipping constant, noise magnitude, and number of
training iterations, which increases the computational cost, also due to the higher training
times and memory loads of DP optimization (6).

The challenging problem of optimizing neural networks with an assigned privacy
guarantee has motivated a thriving field of research proposing architectures and training
algorithms (5, 7, 8). Concurrently, theoretical studies have emerged with the scope of
quantifying privacy–utility tradeoffs. Privacy is often defined via the pair of parameters
(", �): The impact of a single data point on the output of the algorithm is controlled
by " with probability 1 − �; see Definition 2.1. To provide meaningful protection,
practitioners pick constant-order values of " (" ∈ {1, 2, 4, 8}) and � < 1/n, where n is
the number of training samples (9). Utility is typically measured as the degradation in
generalization of the DP solution �p

∈ Rp compared to a nonprivate baseline �∗ ∈ Rp,
where p is the number of parameters of the model. Considering the standard supervised
setting and denoting by (x, y) ∼ PXY an input–label pair with distribution PXY , the
excess population risk is defined as

RP = E(x,y)∼PXY [`(x, y, �p)]− E(x,y)∼PXY [`(x, y, �∗)] , [1]

where ` (x, y, �) is the loss over the sample (x, y) of the model evaluated in �. Intuitively,
RP worsens with more stringent privacy requirements on �p (i.e., smaller values of ", �),
and a rich line of work spanning over a decade has investigated the trade-off (9–15).
Despite this flurry of research, existing results are unable to address the overparameterized
regime, i.e., p = Ω(n), as bounds on RP become vacuous (see the comparison with
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Fig. 1. Test accuracy of DP-GD on MNIST for a 2-layer, fully connected ReLU
network, plotted as a function of (Left) the number of parameters pwith fixed
n = 50,000, and (Right) the number of training samples n with fixed hidden
layer width = 1,000. Further details on the experimental setting can be found
in Section 3.

previous work below). This is sometimes understood via the
qualitative argument that the noise introduced by DP-GD
increases with the dimension of the parameter space (16, 17),
and it has lead to DP algorithms acting on lower dimensional
subspaces (7, 8, 18, 19).

On the other hand, empirical evidence that larger models are
beneficial on down-stream tasks requiring private fine-tuning is
provided in refs. 20 and 21, which motivated theoretical studies
giving refined privacy–utility tradeoffs (22). Perhaps surprisingly,
the recent work (6) gives evidence of the benefits of scale even
in the absence of public pretraining data, as the generalization
performance improves with model size on CIFAR-10 and
ImageNet, following an accurate hyperparameter search. In the
Left panel of Fig. 1, we investigate the interplay between privacy
and overparameterization in a simpler and more controllable
setting: training a 2-layer, fully connected ReLU network on
MNIST with DP-GD (Algorithm 1). We vary the network width,
spanning both the underparameterized and overparameterized
regime, questioning whether the algorithm suffers as the number
of parameters grows. The plot shows that this is not the case:
The test accuracy increases until the network is wide enough and
then plateaus. Furthermore, the gap between the GD solution �∗
and the DP-GD one tends to vanish by increasing the number
of training samples n; see the Right panel of Fig. 1.

For nonprivate optimization, the apparent contradiction
between the excellent generalization of overparameterized
models and the classical bias–variance tradeoff has been the
subject of intense investigation, highlighting e.g. the role of
benign overfitting (23, 24) and double descent (25, 26).
The phenomenology discussed above is hard to explain given
the current theoretical understanding of overparameterized
private training. Thus, this calls for a framework able to i)
provide generalization guarantees, and ii) characterize how the
hyperparameters of DP-GD affect performance.

1.1. Informal Overview. In this work, we provide privacy–utility
guarantees RP = o(1) under overparameterization—not only
when " has constant order but also in the strongly private setting
" = o(1). We frame this result as achieving privacy for free in
the overparameterized regime.

We consider a family of models where the number of
parameters p can be significantly larger than the number of
samples n and the input dimension d , as in Fig. 1. Specifically,
we focus on the widely studied random features (RF) model (27)
with quadratic loss, which takes the form

`(x, y, �) = (fRF(x, �)− y)2 , fRF(x, �) = �(Vx)>�, [2]

where fRF is a generalized linear model,� : R→ R a nonlinearity
applied component-wise to the vector Vx ∈ Rp, and V ∈ Rp×d

a random weight matrix. The RF model can be regarded as a
2-layer network, where only the second layer � is trained and
V is frozen at initialization. Its appeal comes from the fact
that it is simple enough to be analytically tractable and, at the
same time, rich enough to exhibit properties occurring in more
complex deep learning models (23, 26). The DP-trained solution
�p is obtained via DP-GD (Algorithm 1), and the nonprivate
baseline �∗ in Eq. 1 via (nonprivate) GD. At this point, we
can present an informal version of our result (formally stated in
Section 2).

Theorem 1 (informal). Consider the RF model in Eq. 2 with
input dimension d and number of parameters p. Let n be the
number of training samples and RP be defined according to Eq. 1,
where �∗ is the solution of GD and �p is the (", �)-differentially
private solution of DP-GD (Algorithm 1). Then, for all sufficiently
overparameterized models, under some technical conditions, the
following holds with high probability

|RP| = Õ
(

d
n"

+

√
d
n

+
√

n
d3/2

)
= o(1). [3]

In words, in the regime d � n� d3/2—considered e.g. in refs.
28 and 29; see Eq. 6 for details—we show that |RP| = o(1) as
long as " � d/n. In fact, when d � n � d3/2 and " � d/n,

the three terms d
n" ,
√

d
n and

√
n

d3/2 appearing in the RHS of Eq. 3

become o(1). We make two observations: i) as d � n, our result
guarantees vanishing excess population risk, even with a strong
privacy requirement " = o(1); ii) the bound in Eq. 3 does not
depend on p as we only require a lower bound on it (Eq. 6). The
dependence ofRP on � is only logarithmic and it is neglected in
the notation Õ(·) that hides polylogarithmic factors in � and n.

1.2. Comparison with Previous Work. In the setting of convex
unconstrained optimization, (12) focuses on generalized linear
models (GLMs, i.e., `(x, y, �) is replaced by `('(x)>�, y),
where ' is the feature map), assumes L-Lipschitz loss
with strongly convex regularization, and bounds the excess
population risk with respect to the Bayes optimal solution �∗ as
RP = Õ(L‖�∗‖2/

√
n"). (14) lifts the assumption on the strong

convexity and improves the previous bound via the projector
M on the column space of Ex∼PX ['(x)'(x)>]. (22) considers
Lipschitz losses with `2 regularization and recovers the bound of
ref. 14 for GLMs. A similar approach is taken by Ma et al. (30)
that removes the dependence on p at the cost of an additional
factor tr(H̃), where H̃ � sup� ∇

2
� E(x,y)∼PXY [`(x, y, �)]. (31)

considers GLMs and it also recovers the result of ref. 14 in the
Lipschitz setting with " = Ω(1).

Importantly, even for an RF model, existing bounds do not
access the overparameterized regime: Taking " of constant order
makes the upper bounds on the excess population risk to read (at
best)RP = O(1), which is vacuous as the performance of a trivial
model outputting zero is of the same order. We now explain
why this is the case. First, note that the RF model in Eq. 2 has a
non-Lipschitz (quadratic) loss, which does not allow a direct ap-
plication of most previous bounds. To ensure a fair comparison,
one can estimate ‖�∗‖2 and evaluate the Lipschitz constant of
the training loss restricted to a bounded set B with radius ‖�∗‖2.
This provides the scaling of an effective Lipschitz constant of the
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Algorithm 1 DP-GD

Input: Number of iterations T , learning rate �, clipping
constant Cclip, noise �, initialization �0
for t ∈ [T ] do

g(xi, yi, �t−1)← ∇�`(xi, yi, �t−1)

gCclip(xi, yi, �t−1)←
g(xi, yi, �t−1)

max
(

1, ‖g(xi ,yi ,�t−1)‖2
Cclip

)
g�t−1 ←

1
n

∑
i

gCclip(xi, yi, �t−1)

�t = �t−1 − �g�t−1 +
√
�

2Cclip

n
�N (0, Ip)

Output: Model parameters �T

model, as if the optimization was bounded to the setB. From our
results in later sections, it can be shown that ‖�∗‖2 = Θ(

√
n/p),

which gives ‖�∗‖2 sup�∈B
∥∥∇�`(xi, yi, �)

∥∥
2 = Θ(n). This

trivializes the bound in ref. 12 to RP = Õ(
√

n/").
Furthermore, even by assuming that the loss function in
Eq. 2 is Lipschitz, the result improves only by a factor
√

n, i.e., RP = Õ(1/"), which is again trivial when
" = Θ(1). Similar considerations apply to the bounds in refs.
14, 22, and 31. As concerns the result in ref. 30, it can be
verified that tr(H̃) ≥ Ex

[∥∥'(x)
∥∥2

2

]
= Θ(p), which reintro

duces the dependence on the number of parameters p, preventing
an improvement upon (12). Finally, while (31) gives bounds
for quadratic losses, the reasoning resembles the one above on
the effective Lipschitz constant in B and it does not lead to an
improvement with respect to the Lipschitz case. The detailed
calculation of the quantities mentioned in this paragraph
is deferred to SI Appendix, section 1.A, together with an
additional review of the related literature [e.g., on constrained
optimization (9, 13), parameter estimation (32, 33), and linear
regression (15, 34)].

2. Setting and Main Result

2.1. Differential Privacy (DP) and DP-GD. The definition of DP
builds on the notion of adjacent datasets. In our setting, a dataset
D′ is said to be adjacent to a dataset D if they differ by only one
sample.

Definition 2.1 [(", �)-DP (3)]. A randomized algorithm A :
D → Rp satisfies (", �)-differential privacy if for any pair of
adjacent datasets D, D′ ∈ D and for any S ⊆ Rp, we have

P (A(D) ∈ S) ≤ e"P
(
A(D′) ∈ S

)
+ �. [4]

Here, the probability is with respect to the randomness induced
by the algorithm, and the inequality has to hold uniformly on all
the adjacent datasets D and D′.

A popular choice to enforce (", �)-DP relies on DP-GD
algorithms, which perturb individual updates during training,
providing privacy guarantees based on the size of the perturbation
and the number of iterations (4, 13, 35). In this work, we consider
Algorithm 1, a variant of the well-established method in ref.
4 without stochastic batching (not considered for simplicity).
Its privacy guarantees are below, with the complete argument
deferred to SI Appendix, section 2.

Proposition 2.2. For any � ∈ (0, 1), " ∈ (0, 8 log(1/�)), if
we set

� ≥
√
�T

√
8 log(1/�)

"
, [5]

then Algorithm 1 is (", �)-differentially private.

2.2. Problem Setup. We consider Algorithm 1 in an overpa-
rameterized RF model. For simplicity, we set the initialization
�0 = 0. The random features matrix V ∈ Rp×d is i.i.d.
Gaussian, i.e., Vi,j ∼i.i.d. N (0, 1/d). We assume the n training
samples {(x1, y1), . . . , (xn, yn)} to be i.i.d. taken from the joint
distribution PXY , such that the labels (y1, . . . , yn) are bounded
and the marginalPX satisfies the following properties: i) x ∼ PX
is sub-Gaussian, with ‖x‖ = O(1); ii) the data x ∼ PX are nor-
malized, i.e., ‖x‖2 =

√
d ; iii) �min

(
Ex∼PX

[
xx>

])
= Ω(1), i.e.,

the second-moment matrix is well conditioned. Taken together,
these requirements are implied by the stronger conditions in
refs. 26 and 28. Furthermore, they are fulfilled by normalized
multivariate Gaussians with well-conditioned covariance and
by the normalized features of a class of fully connected neural
networks (36). We note that the adjacency of Definition 2.1 is
not subject to our distributional assumptions and Proposition 2.2
holds with D and D′ differing by a sample in any arbitrary way.

The scaling of input data and random features V guarantees
that the preactivations of the model (i.e., the entries of Vx) are of
constant order. We then process the entries of Vx via an activation
function� : R→ R, which we require to be nonlinear, Lipschitz
continuous, and such that �0 = �2 = 0, and �1 6= 0, where �k
denotes its k-th Hermite coefficient. This choice is motivated by
theoretical convenience, and it covers a wide family of activations,
including all odd ones (e.g., tanh). We believe that our result can
be extended to a more general setting, as the one in ref. 28, at the
cost of a more involved analysis.

We further consider the following scaling of the problem

n = O (
√

p) , n = !
(
d log2 d

)
, n = o

(
d3/2

log3 d

)
. [6]

To guarantee that the RF model interpolates the data, it suffices
that p � n (see e.g. refs. 28 and 37), and we expect our result
to hold under this milder assumption on p as well. We also
assume log n = Θ (log p), which is mild and could be relaxed
at the expenses of a polylogarithmic dependence on p in our
final result in Theorem 2. We finally remark that the regime
d � n � d3/2 corresponds to standard datasets, such as
CIFAR-10 (n = 5 ·104, d ≈ 3 ·103), or ImageNet as considered
in ref. 38 (n ≈ 1.3 · 106, d ≈ 9 · 104).

According to Proposition 2.2, we consider values of the privacy
budget � ∈ (0, 1), " ∈ (0, 8 log(1/�)), and

"√
log(1/�)

= !

(
d log5 n

n

)
. [7]

This lower bound on " still allows for strong privacy regimes with
" = o(1), as n � d from Eq. 6. We set the hyperparameters of
Algorithm 1 as

T =
d log2 n
�p

, Cclip =
√

p log2 n, [8]

with � given by the RHS in Proposition 2.2, which guarantees that
Algorithm 1 is (", �)-DP. We also define the nonprivate baseline
as the solution of the gradient flow equation
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d�̂(t) = −∇L(�̂(t))dt, �∗ = lim
t→+∞

�̂(t), [9]

where L(�) = 1
n
∑n

i=1 `('(xi)>� − yi) with '(xi) := �(Vxi)
is the training loss (see section 5.1 of ref. 23 for details on the
convergence). Then, our main result is formally stated below.

Theorem 2. Consider the RF model in Eq. 2 with input dimension
d and number of features p. Let n be the number of training samples
andRP be defined in Eq. 1, where �p is the solution �T of Algorithm
1, and �∗ is defined in Eq. 9. Then, as � goes to 0, we have that

|RP| = O

 d
n"

log5 n
√

log(1/�) +

√
d
n

+

√
n log3 d

d3/2

 ,

with probability at least 1 − 2 exp
(
−c log2 n

)
, where c is an

absolute constant.

Existing work studiesRP by i) bounding the excess empirical risk
of �p via convex optimization techniques, and by ii) extending
the result to the excess population risk via stability arguments
(9, 14, 22). In contrast, we consider the continuous process de-
fined by Algorithm 1 as �→ 0, for the RF model [Proposition 2.7
of SI Appendix, section 2 ensures that the limit is (�, �)-DP]. This
allows the use of probabilistic tools that provide a refined control
on the trajectory of DP-GD. This approach has proven useful in
the non private setting (28, 39), and in this work we apply it to DP
learning. We also note that obtaining Theorem 2 still required
overcoming significant technical barriers: While Mei et al.
and Hu et al. (28, 39) establish the asymptotic test error of
�∗ at convergence, we need a nonasymptotic control (in terms
of n, d, p) on the whole DP-GD trajectory to understand the
impact of clipping and early stopping. This in turn leads to a
completely different proof strategy, as discussed in Section 4.

3. Numerical Results and Discussion

3.1. Overparameterization Not at Odds with Privacy.
Theorem 2 proves that, in the RF model, overparameterization
is not inherently detrimental to private learning. The first panel
of Fig. 2 verifies this by plotting the test loss of an RF model
trained on a synthetic dataset via DP-GD, as the number

of parameters p increases. We also report the performance
achieved by (nonprivate) GD, which provides the baseline �∗.
While the test loss of �∗ displays the typical double-descent
curve (25, 26, 40), with the expected peak at the interpolation
threshold (p = n), the performance of �p steadily improves
and, as p increases, it plateaus to a value close to the loss of �∗.
This is in agreement with Theorem 2, which predicts a small
performance gap between �p and �∗ for overparameterized
models. Furthermore, the lack of an interpolation peak in the
test loss of DP-GD points to the regularization offered by this
algorithm and it resembles the effect of a ridge penalty; see ref.
41 for a connection between ridge and early stopping and also
the discussion after Lemma 3.4 of SI Appendix, section 3.

3.2. Role of Hyperparameters. Both in Fig. 1 and in the first
panel of Fig. 2, the hyperparameters in DP-GD are chosen
to maximize the validation performance. In the second panel
of Fig. 2, we take Cclip = 0.5√p and report the test loss as
a function of the number of iterations T , setting the noise
according to Proposition 2.2 to guarantee the desired privacy
budget. As suggested by Eq. 8, the optimal T minimizing the
test error decreases with p. More specifically, as we rescale the
plot putting �Tp/d on the x-axis of the third panel, the curves
collapse onto each other, confirming the accuracy of the proposed
scaling. The heat-map in the fourth panel displays the results of a
full hyperparameter grid search over (Cclip, T ) for a fixed p and ".
We distinguish 4 regions in hyperparameters space: In the 1) Top-
Right, we have very low utility due to the large noise, in the 2)
Bottom-Left the test loss is close to 1 as at initialization, since the
model does not have the time to learn, in the 3) Bottom-Right,
we have larger Cclip which could allow for faster convergence.
However, as Cclip becomes larger than the typical per-sample
gradient size (Cclip �

√p), the overly pessimistic injection of
noise ultimately undermines utility. At the center of the panel,
we have Cclip ∼

√p and �T ∼ d/p as in Eq. 8, which lead
to low test loss. Moving toward the 4) Top-Left there is no
decrease in performance, which is in line with earlier empirical
work (6, 20) noting that wide ranges of Cclip result in optimal
performance. A similar picture emerges from the training of
2-layer neural networks with DP-GD and cross-entropy loss on
MNIST, as shown in the rightmost panel. The implementation

Fig. 2. Experiments on RF models with tanh activation and synthetic data sampled from a standard Gaussian distribution with d = 100 (first four panels), and
on a 2-layer fully connected ReLU network trained with cross-entropy loss on MNIST (d = 768, n = 50,000) with privacy budget " = 1, � = 1/n (last panel). For
the RF model, the learning task is given by y = sign(u>x), where u ∈ Rd is a fixed vector sampled from the unit sphere, and we consider a fixed number of
training samples n = 2,000; �p is the solution of Algorithm 1 with " = 4, � = 1/n, and �∗ is the solution of GD, both with small enough learning rate �. First panel:
Test loss of �p and �∗ for different number of parameters p. Second panel: Test loss of �p as a function of the number of training iterations T . Third panel: Same
plot as in the second panel, with x-axis set to �Tp/d. Fourth panel: Test loss of �p for a fixed p = 40,000, as a function of the hyperparameters (Cclip , T), in dark
blue all values of the loss above 1.6. Fifth panel: Validation error for a fixed hidden-layer width set to 1,000 (p ∼ 106), as a function of the hyperparameters
(Cclip , T).
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of the experiments is publicly available at the GitHub repository
https://github.com/simone-bombari/privacy-for-free.

3.3. Privacy for Free. Theorem 2 proves that we can achieve
privacy for free, which may seem surprising. The intuition is that
in the RF model, when n� d , there is a surplus of samples that
can be used to learn privately. In fact, the test error of (nonprivate)
GD plateaus when n is between d and d3/2 (28, 39), hence Θ(d)
samples are enough to achieve utility, with the remaining ones
leading to privacy. The Right panel of Fig. 1 displays the phe-
nomenon. On the Left, the performance of �∗ increases with n,
while private algorithms have low utility. Moving toward the
right, the performance of GD saturates, and the utility of DP-
GD increases, approaching the nonprivate baseline. The plateau
in the test loss of GD has been shown for kernel ridge regression
(28, 39, 42) and the RF model exhibits it when d l

� n� d l+1

for any l ∈ N, as long as p� n; see figure 1 of ref. 39. We expect
that DP-GD catches up with the performance of GD in any of
these plateaus. However, as n approaches d l+1, the test loss of
GD sharply decreases and it is unclear whether DP-GD has the
same rate of improvement. This suggests that our result could
be extended to the regime d l

� n � d l+1 with p � n. In the
present paper, we focus on d � n � d3/2 and p = Ω(n2) due
to the additional challenges in the analysis of clipping; see the
discussion after Lemma 3.5 in SI Appendix, section 3.

4. Methods

4.1. A Continuous View on DP-GD. Two challenges arise in the analysis of
DP-GD as � → 0: i) gradient clipping, and ii) noise injection. To overcome the
former, we define a clipped loss LCclip

(�). As for the latter, we consider the
stochastic differential equation (SDE) obtained by adding a Wiener process to
the gradient flow. This motivates the scaling

√� of the SD of the noise, as done
e.g. in ref. 43.

As in ref. 14, we note that clipping in Algorithm 1 can be reformulated as
optimizing the surrogate loss `i,Cclip

('(xi)
>� − yi), whose derivative for the

i-th training sample reads

`′i,Cclip
(z) = `′(z) min

(
1,

Cclip∣∣`′(z)
∣∣ ∥∥'(xi)

∥∥
2

)
. [10]

In other words, running Algorithm 1 is equivalent to running the same
algorithm, without the clipping step, on the clipped loss LCclip

(�) =

1
n
∑n

i=1 `i,Cclip
('(xi)

>� − yi). Hence, we can write the t-th iteration of
Algorithm 1 as

�t − �t−1 = −�∇LCclip
(�t−1) +

√
�

2Cclip

n
�N (0, Ip). [11]

This update rule corresponds to the Euler–Maruyama discretization scheme of
the SDE

dΘ(t) = −∇LCclip
(Θ(t))dt + Σ dB(t), [12]

with discretization � (see section 10.2 of ref. 44). Here, B(t) is a p-dimensional
Wiener process,Σ := 2Cclip�/n, and the initial condition of Eq.12 corresponds
to the initialization of Algorithm 1, i.e., Θ(0) = �0. The strong convergence
of the Euler–Maruyama method guarantees that, for any � = �T , �T from
Algorithm 1 approaches Θ(�) from Eq. 12 as � gets smaller. We note that
previous work (45) has considered a similar SDE to analyze the effects of stochastic
batching, separating the dynamics in a gradient flow plus a Wiener process.
Thus, the approach developed here could prove useful also to study DP-SGD,
after incorporating an additional independent Wiener process in Eq. 12.

Going back to DP-GD, to circumvent the difficulty in explicitly solving Eq. 12,
we consider

dΘ̂(t) = −∇L(Θ̂(t))dt + Σ dB(t), [13]

whereL(�) is the original (quadratic) training loss and B(t) is the same Wiener
process as in Eq. 12. The solution of the SDE in Eq. 13 is a multidimensional
Ornstein–Uhlenbeck (OU) process which admits a closed form (see, e.g., section
4.4.4 in ref. 46). Let us then define

C :=
{
� s.t. ‖∇�`('(xi)

>� − yi)‖2 < Cclip, ∀i ∈ [n]
}

, [14]

where [n] = {1, . . . , n}. The set C contains the parameters such that clipping
does not happen, i.e., LCclip

(�) = L(�). If the entire path of Θ(t) happens

in this region (i.e. Θ(t) ∈ C for all t ∈ [0, �]), then Θ(�) = Θ̂(�). This is
equivalent to

Θ̂(t) ∈ C, for all t ∈ [0, �], [15]

which is an easier event to control, as Θ̂(t) is an OU process.

4.2. Analysis of Clipping. We show that, by choosing the hyperparameters as
in Eq. 8 and setting � = T�, the event in Eq. 15 happens with high probability.
To do so, we decompose Θ̂(t) = EB

[
Θ̂(t)

]
+ Θ̃(t) = �̂(t) + Θ̃(t), where

Θ̃(t) := Θ̂(t)− EB[Θ̂(t)] and we use that the expectation of an OU process
corresponds to the gradient flowEB[Θ̂(t)] = �̂(t)of Eq.9. Then, the probability
of the event in Eq. 15 is lower bounded by the probability that∣∣∣'(xi)

>Θ̃(t)
∣∣∣+ ∣∣∣'(xi)

>�̂(t)− yi

∣∣∣ ≤ Cclip

2
∥∥'(xi)

∥∥
2

, [16]

for all i ∈ [n] and t ∈ [0, �]. As Cclip =
√

p log2 n (Eq. 8) and
∥∥'(xi)

∥∥
2 =

Θ(
√

p) with high probability (SI Appendix, Eqs. 296 and 297), Eq. 16 follows
from

|'(xi)
>�̂(t)− yi| = o(log2 n), |'(xi)

>Θ̃(t)| = o(log2 n). [17]

To obtain the first inequality in Eq.17, we show in Lemma 3.1 of SI Appendix,
section 3, that, jointly for all i ∈ [n],

sup
t∈[0,�]

∣∣∣'(xi)
>�̂(t)− yi

∣∣∣ = O (log n) , [18]

with high probability. First, we study the stability of GD by proving that∥∥∥�∗ − �∗
−i

∥∥∥
2

= Õ
(

p−1/2
)

, where �∗
−i is obtained after removing the

i-th sample from the training set. Then, we control the entire trajectory of
gradient flow for t ∈ [0, �] via i) an explicit computation based on Lie’s product
formula for the matrix exponential, and ii) a concentration bound over xi based
on Dudley’s (chaining tail) inequality.

To obtain the second inequality in Eq. 17, we show in Lemma 3.2 of SI
Appendix, section 3 that, jointly for all i ∈ [n],

sup
t∈[0,�]

∣∣∣'(xi)
>Θ̃(t)

∣∣∣ = O (log n) , [19]

with high probability. We start by noticing that '(xi)
>Θ̃(t) evolves as a

Gaussian random variable with time-dependent variance. The idea is to upper
bound this variance with that of the auxiliary process dzi(t) = '(xi)

>Σ dB(t),
which removes the attractive drift −∇L(Θ̂(t)) from Eq. 13. Then,

Sudakov-Fernique inequality gives that EB

[
supt∈[0,�]

∣∣∣'(xi)
>Θ̃(t)

∣∣∣] ≤
Ezi

[
supt∈[0,�]

∣∣zi(t)
∣∣]. Since zi(t) is a Wiener process, the RHS of the previous

equation is O
(
Σ2�

∥∥'(xi)
∥∥2

2

)
via the reflection principle, and this upper

bound is of constant order by Eqs. 7 and 8. An application of the Borell-
TIS inequality concludes the argument by giving that, with high probability,
supt∈[0,�] |'(xi)

>Θ̃(t)| ≤ EB[supt∈[0,�] |'(xi)
>Θ̃(t)|] + log n.
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4.3. Analysis of Noise and Early Stopping. As Θ(�) = Θ̂(�) with high
probability (Eq. 15), we study the utility of Θ(�) via the closed form of the
OU process Θ̂(�). This boils down to controlling the effects of noise and early
stopping, which are decoupled by the decomposition Θ̂(�) = �̂(�) + Θ̃(�).
In fact, Θ̃(�) is a mean-0 random variable (in the probability space of B)
that captures the noise and �̂(�) is the deterministic component (with respect
to B) that captures the early stopping. As'(xi)

>Θ̃(�) is Gaussian with variance
increasing linearly in

∥∥'(xi)
∥∥2

2, � , and Σ2, we have that (see Lemma 3.3 of
SI Appendix, section 3 for details)

Ex∼PX

[(
'(x)>Θ̃(�)

)2
]

= Õ
(

d2

"2n2

)
, [20]

which implies that noise does not damage utility. It remains to show that
early stopping is not detrimental. This is proved in Lemma 3.4 of SI Appendix,
section 3, which informally states that

Ex∼PX

[(
'(x)>

(
�̂(�)− �∗

))2
]

= Õ
(

d
n

+
n

d3/2

)
. [21]

The idea of the argument is to decompose the LHS of Eq. 21 in two orthogonal
subspaces, i.e., '(x)>PΛ(�̂(�) − �∗) and '(x)>P⊥Λ (�̂(�) − �∗). Here,
PΛ ∈ Rp×p is the projector on the space spanned by the top d eigenvectors
of Φ>Φ and Φ ∈ Rn×p is the feature matrix containing '(xi) in its i-th row.
The rationale is that there is a spectral gap between the d-th and the (d + 1)-th

eigenvalue of the kernel K = ΦΦ>, as proved in Lemma 4.5 of SI Appendix,
section 4. We note that this result also uses the well conditioning of the data
covariance (�min

(
Ex∼PX

[
xx>

])
= (1)); see the discussion right after the

proof of Lemma 3.4 in SI Appendix, section 3. As a consequence of the spectral
gap, ‖PΛ(�̂(�) − �∗)‖2 is negligible, since in this subspace �̂(�) is already
close to convergence, despite the early stopping. To control the other subspace,
we resort to the bounds in Lemmas 4.14 and 4.15 of SI Appendix, section 4.

To conclude, denoting by R̂ and R∗ the generalization error of Θ̂(�)
and �∗ respectively, Eqs. 20 and 21 guarantee that |R̂ − R∗| =

Õ
(

d
n" +

√
d
n +

√
n

d3/2

)
. As Θ(�) = Θ̂(�) (due to Eq. 15), the result

of Theorem 2 follows.

Data, Materials, and Software Availability. All codes for generating the
figures have been deposited in GitHub (https://github.com/simone-bombari/
privacy-for-free) (47).
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