
ID: pcbi.1012868 — 2025/5/4 — page 1 — #1

PLOS COMPUTATIONAL BIOLOGY

OPEN ACCESS

Citation: Kopfová L, Tkadlec J (2025)
Colonization times in Moran process on graphs.
PLoS Comput Biol 21(5): e1012868. https://doi.
org/10.1371/journal.pcbi.1012868

Editor: Mark Broom, City University of London,
UNITED KINGDOM OF GREAT BRITAIN AND
NORTHERN IRELAND

Received: November 20, 2024

Accepted: February 10, 2025

Published: May 5, 2025

Peer Review History: PLOS recognizes the
benefits of transparency in the peer review
process; therefore, we enable the publication of
all of the content of peer review and author
responses alongside final, published articles.
The editorial history of this article is available
here: https://doi.org/10.1371/journal.pcbi.
1012868

Copyright: © 2025 Kopfová, Tkadlec. This is
an open access article distributed under the
terms of the Creative Commons Attribution
License, which permits unrestricted use,
distribution, and reproduction in any medium,
provided the original author and source are
credited.

Data availability statement: Code for the
figures and the computational experiments is
available from the Figshare repository:
https://doi.org/10.6084/m9.figshare.27822720.

RESEARCH ARTICLE

Colonization times in Moran process on
graphs
Lenka Kopfová1,2, Josef Tkadlec

 

 

1∗

1 Computer Science Institute, Charles University, Prague, Czech Republic, 2 IST Austria, Klosterneuburg,
Austria

∗ josef.tkadlec@iuuk.mff.cuni.cz

Abstract
Moran Birth-death process is a standard stochastic process that is used to model natu-
ral selection in spatially structured populations. A newly occurring mutation that invades
a population of residents can either fixate on the whole population or it can go extinct
due to random drift. The duration of the process depends not only on the total popula-
tion size n, but also on the spatial structure of the population. In this work, we consider
the Moran process with a single type of individuals who invade and colonize an otherwise
empty environment. Mathematically, this corresponds to the setting where the residents
have zero reproduction rate, thus they never reproduce. The spatial structure is repre-
sented by a graph. We present two main contributions. First, in contrast to the Moran
process in which residents do reproduce, we show that the colonization time is always at
most a polynomial function of the population size n. Namely, we show that colonization
always takes at most 1

2n
3 – 1

2n
2 expected steps, and for each n, we identify the slowest

graph where it takes exactly that many steps. Moreover, we establish a stronger bound of
roughly n2.5 steps for undirected graphs and an even stronger bound of roughly n2 steps
for so-called regular graphs. Second, we discuss various complications that one faces
when attempting to measure fixation times and colonization times in spatially structured
populations, and we propose to measure the real duration of the process, rather than
counting the steps of the classic Moran process.

Author summary
Consider an invasive species that is about to colonize an otherwise empty environment.
In the absence of natural enemies, the species will eventually spread everywhere, but
the time until the colonization is completed will depend on the exact spatial layout of
the individual sites. In this work, we analyze this colonization time for various spatial
layouts. We give precise formulas for the average colonization time for several com-
monly studied spatial layouts (such as well-mixed populations, cycles, or stars). For each
population size n, we also identify the slowest layout and show that the corresponding
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(slowest possible) colonization time is cubic in the population size n. Moreover, we
prove an asymptotically tight general bound on the colonization time that applies to any
lattice-like layout, and another bound that applies to any layout in which all connections
are two-way. We conclude by discussing the implications of our results for further study
of a related, well-researched quantity called the fixation time.

Introduction
Natural selection is a stochastic process that acts on populations of reproducing individuals
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[1–4]. As time goes by, individuals acquire mutations that affect their reproductive rate. The
advantageous mutations generally tend to propagate through the population, whereas the fre-
quency of disadvantageous mutations tends to go down. When mutations are sufficiently rare,
the key question is to determine the fate of a single newly occurring mutation as it attempts
to invade a homogeneous population of residents. This fate depends on several factors, such
as the population size n or the relative fitness advantage r that the mutation grants onto its
bearer.

Another important factor that greatly affects the evolutionary dynamics is the spatial struc-
ture of the population [5,6]. Evolutionary graph theory is a framework developed to study
those effects [7]. The individuals are represented as nodes of a graph (network), and the con-
nections between the nodes represent the possible dispersal patterns. The connections can be
one-way or two-way. Graphs can represent arbitrary spatial structures, including well-mixed
populations, metapopulations [8–11], or lattices [12,13]. The evolutionary dynamics is com-
monly governed by the Moran Birth-death process [7,14]. That is, in each step, first an indi-
vidual is selected for reproduction with probability proportional to its fitness, and then the
offspring migrates and replaces a random neighbor, see Fig 1. (For comments on death-Birth
updating, see S1 Text.)

Two key quantities that describe the fate of a new mutation are fixation probability and fix-
ation time [15–18]. Fixation probability is the chance that the mutation eventually spreads
throughout the population. Fixation time is the number of steps of the Moran process until
this happens, and it captures the duration of the process. Both quantities have been studied
extensively [19–27]. For example, it is known that certain graphs dramatically increase the fix-
ation probability of even mildly advantageous mutations [28–30], though such a boost must
always come at the cost of an increase in fixation time [31].

The fixation time crucially depends on the graph of the population. For example, when
the initial mutant has a constant fitness advantage r > 1, the number of steps is roughly n logn
for the well-mixed population [32], roughly n2 for a population arranged along a cycle [33],
and roughly n3 for a population organized as a so-called double star [34]. The double stars
are known to be essentially the slowest possible structures among those where all connections
are two-way [34]. However, when some connections are one-way, the fixation time can be as
large as exponential in n [35]. In general, no efficient algorithm is known to compute or even
approximate the fixation time on a given graph that contains one-way edges.

Given those difficulties, Moran process on population structures is often studied in differ-
ent limits that make the analysis more tractable. The limit r→ 1 is called weak selection. It cor-
responds to settings where the mutation grants only a marginal advantage. That is, the invad-
ing mutants reproduce only barely more frequently than the existing residents. Evolutionary
dynamics under weak selection can be approximated for any population structure [36–39].
Moreover, formulas for fixation times are known [40,41].
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Fig 1. Moran Birth-death process on a spatial structure. a,The spatial structure is given as a network (graph),
where nodes represent sites and arrows represent possible migration patterns. Nodes occupied by mutants are green
(here u and v). b, In each step of the Moran process, first, a random node is selected for reproduction, and then the
offspring migrates along a random outgoing edge. Here, the offspring of umigrated to w.

https://doi.org/10.1371/journal.pcbi.1012868.g001

In the opposite limit, mutants reproduce at a much higher rate than the residents. This
limit is called the ecological scenario [42]. It has been studied, for instance, in the context of
death-Birth updating [43,44], in order to obtain approximations for the fixation probabili-
ties [45], or when analyzing range expansion [46]. Mathematically, the ecological scenario
corresponds to the setting in which residents have a reproductive rate 0, thus the mutant rela-
tive fitness advantage r satisfies r→∞. Biologically, this regime thus models situations such as
a new invasive species colonizing an initially empty spatially structured environment. In the
ecological scenario, mutants eventually expand to all reachable parts of the environment. The
colonization time is the expected number of steps until this happens. That is, colonization time
is a direct analogue of the fixation time in the limit r→∞.

In this work, we consider colonization times on arbitrary graphs, with or without one-way
edges. As our main theoretical result, for every population size n we precisely pinpoint the
unique population structure with the slowest colonization time, and we show that this slow-
est colonization time is of the order of n3 steps. Thus, while fixation times on some graphs
with fixed r > 1 may be exponentially long, colonization time on any graph is always at most
polynomial. Moreover, we present a stronger bound of n2.5 steps for the undirected graphs
(where all connections are two-way) and an even stronger bound of n2 steps for those graphs
in which each node in the network has the same number of neighbors. To conclude, we dis-
cuss and compare several possible ways to measure colonization times and fixation times in
spatially structured populations.

Model
In this section, we describe the notions of our model in detail.

Spatial structure
The population structure is represented by a directed graph G. The nodes of G represent indi-
viduals, and the graph edges correspond to the connections between them. At any point in
time, each node is either amutant or a resident. Initially, there is only a single mutant at node
v. We require that there exists a directed path from v to any other node. This guarantees that
in the limit r→∞ the process terminates with mutant fixation, with probability 1 in finite
expected time. At any given time, we denote byM the set of nodes that are mutants, and we
refer to the tuple (G,M) denoting the graph and its current set of mutants as a state of the
process. A special case of graphs we concentrate on is the class of undirected graphs in which
all connections are two-way. For a vertex v, we define its (out)degree denoted as deg(v) to be
the number of outgoing edges incident with v. An even more special case is the class of regular
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graphs in which all vertices have the same degree. This class includes, for example, lattices of
any degree.

Moran process at r→∞
We consider a modified version of the classic Moran birth-death process in which only
mutants reproduce. In other words, mutants have fitness 1 and residents have fitness 0, thus
the relative mutant advantage is r→∞. This process models situations in which an invading
type colonizes an otherwise empty environment. In each step of this modified Moran process,
we first pick a uniformly random node. If the node is a mutant, it reproduces onto a random
neighbor; otherwise, nothing happens. More formally, suppose we pick a node u:

1. If u is a mutant, we select another node u′ uniformly at random from among the deg(u)
nodes connected to u, and we set u′ to be a mutant too. (Note that this changes the state
of the population if and only if u′ used to be a resident.)

2. If u is a resident, no change occurs.

Colonization time
Given a graph structure G and a starting node v, we define the colonization time T(G, v) to
be the expected number of steps until mutants fixate when the modified Moran Birth-death
process is run on the graph G. Our primary goal here is to prove upper bounds on the quan-
tity T(G, v). Thus, we also denote by T(G) =maxv∈V(G) T(G, v) the maximum expected col-
onization time over all possible starting nodes v. Note that the colonization time accounts
for all the steps of the process, including those steps in which a resident node was picked and
did not reproduce. While perhaps counter-intuitive at first, this way of measuring time turns
out to better correspond to the “real” duration of the process. See section Discussion, for an
in-depth discussion of the connections among different ways of measuring time.

Asymptotic notation
Throughout this text, we use the asymptotic notation o(⋅), O(⋅),Ω(⋅) and Θ(⋅) to denote
that some function f is asymptotically strictly smaller than some other function g (denoted
f = o(g)), asymptotically smaller than or equal to g (f =O(g)), asymptotically larger than g (f =
Ω(g)) and asymptotically equal to g (f =Θ(g)). When f =Θ(g) we say that f is roughly equal
to g. We will also use the symbol ≈ to denote “approximately equal to”, meaning f(n)≈ g(n) if
f(n) = g(n) + o(g(n)). For example 1

2n
2 + 3n = o(n3) =O(n2) =Ω(n logn) =Θ(n2). See [47].

Results
Our main analytical results are bounds on the colonization time for different classes of graphs.
In particular, we show a general upper bound of O(n3) that applies to all graphs and we prove
that it is tight. Then, we proceed by improving this upper bound to O(n2.5) for undirected
graphs and to O(n2) for regular graphs. We also compute asymptotically precise colonization
times for specific graph classes such as the complete graphs Kn, the cycle graphs Cn, the star
graphs Sn, and other graphs.

General bounds
First, we consider the general setting with no constraints on the population structure. We
prove that, in this case, the colonization time is always at most cubic in the population size n.
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Theorem 1 (General upper bound). Let Gn be a graph (directed or undirected) with n nodes.
Then T(Gn)≤ 1

2n
3 – 1

2n
2.

In particular, the colonization time on any population structure is at most polynomial in
the population size n. Note that this contrasts with the regime of finite r > 1. In that regime,
the fixation time on some graphs is known to be exponential [35].

The idea behind the proof is to decompose the process into stages such that each stage lasts
until we gain a new mutant. We then argue that for any graph, each individual stage can take
at most O(n2) steps on average. Since in total, there are n–1 stages, by linearity of expectation
this gives a cubic upper bound for the total number of steps. See S1 Text for details.

Somewhat surprisingly, we show that the upper bound inTheorem 1 is exactly tight. That
is, we identify a population structure which we call a backward graph Bn for which the bound
is achieved with equality, see Fig 2a.

Theorem 2. For every n there exists a directed graph Bn and an initial mutant node v of Bn

such that T(Bn, v) = 1
2n

3 – 1
2n

2.

To sum up, the longest possible colonization time on any population structure is equal to
1
2n

3 – 1
2n

2. We also show that the shortest possible colonization time is of the order of at least
n logn steps and that this is the case e.g. for the complete graph Kn. See Theorems 8 and 11 in
the S1 Text for details. Finally, we show that the colonization time on a so-called total order
graph TOn is of the order of n2 steps, see Fig 2b.

Stronger bound for undirected graphs
Our first result shows that the colonization times range from roughly n logn steps to roughly
n3 steps. Here we show that when the graph is undirected, that is, all connections are two-way,
then the upper bound can be improved to roughly n2.5 steps.

Theorem 3. Let Gn be an undirected graph with n nodes. Then T(Gn)≤ 4n2
√
n+ o(n2

√
n) =

O(n2
√
n).

Recall that in the regime of finite r > 1, the undirected graph with the largest known fixa-
tion time is the so-called double star Dn [34], see Fig 3a. The fixation time is of the order of
roughly n3 steps. Thus, Theorem 3 shows that even in the special case of undirected graphs,
the colonization times could generally be asymptotically shorter than the fixation times in the
regime of finite r > 1.

The idea behind the proof is again to divide the process into stages. While a single stage
can be relatively long, we are able to argue that any such “long” stage must be balanced off by
several subsequent “short” stages. By amortization, we then prove that the stages take at most
O(n
√
n) steps, on average. See S1 Text for details.

We also compute colonization times on several specific undirected graphs. We show that
for both the star Sn and the double star Dn the colonization time is of the order of n2 logn
steps. In fact, we show that the colonization time on the star is a constant factor larger than
the time on the double star. This is in contrast to the regime of fixed r > 1, where the fixation
time on the star is also of the order of n2 logn steps [25], whereas the fixation time on the
double star is of the order of roughly n3 steps [34]. For the cycle graph Cn, we show that the
colonization time is of the order of n2 steps, the same as its fixation time in the regime r > 1.
See Fig 2 for an illustration and the S1 Text for details.
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Even stronger bound for regular graphs
Previous research has highlighted the importance of regular graphs, that is, graphs in which
each node is connected to the same number of neighbors. Such graphs are also sometimes
called isothermal graphs, since in the neutral evolution, each node is on average replaced
equally often by its neighbors. The class of regular graphs includes lattice-like structures of any
degree d. The Isothermal theorem states that the fixation probability of a single mutant with
relative fitness advantage r > 1 is the same for all regular graphs [32].

As our final analytical result, for regular graphs we improve the upper bound on the colo-
nization time to O(n2).

Theorem 4. Let Gn be a regular undirected graph with n nodes. Then T(Gn) =O(n2).

Note that the upper bound is asymptotically shorter than the colonization time on the star
graph, which is of the order of n2 logn. Thus, regular undirected graphs generally have shorter
colonization times than undirected graphs, which in turn have shorter colonization times
than arbitrary graphs.

The idea behind the proof is similar to the proof of Theorem 3. We again split the process
into stages. Since the graph is regular, we are able to argue that any single “long” stage must
be followed by “many” short stages. The amortization argument then gives a stronger upper
bound as compared to the case of undirected graphs. See S1 Text for details.

Fig 2. Colonization times on directed graphs. a, In the complete graph Kn, each two nodes are connected by a two-way edge. In the total order graph TOn, the nodes
are arranged left to right and all edges going left to right are included. The backward graph Bn consists of a directed path going left to right, plus all one-way edges
going in the opposite direction, right to left. The half-path graph is a certain variation of the backward graph in which all edges go left to right (see S1 Text for details).
b, For each n, the backward graph Bn (blue) is the graph with maximal colonization time. We have T(Bn) = 1

2n
3 – 1

2n
2. The shortest possible colonization time is of

the order of n logn steps (see Theorems 8 and 11 in the S1 Text), which is achieved for the complete graph Kn (orange). For the total order graph TOn (red) we have
T(TOn) =Θ(n2). Here the lines show the proved analytical results, the dots show the simulations, and the axes are log-scale.

https://doi.org/10.1371/journal.pcbi.1012868.g002
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We note that the dependence on n in Theorem 4 can not be improved. This is because for
the cycle graph Cn the colonization time is of the order of n2 steps.

Discussion
The fixation time of a newly occurring mutation is a key factor in evolutionary dynamics.
Apart from depending on the population size n, the fixation time also depends on the relative
mutant fitness advantage r and on the spatial structure of the population. When the mutant
fitness advantage r > 1 is fixed, there exist large graphs for which the fixation time is exponen-
tially large in the population size n [35]. However, as we show in this work, this kind of long-
term coexistence of invading mutants and existing residents can not occur in the limit of large
mutant fitness advantage r→∞, which corresponds to a species colonizing an empty envi-
ronment. In this regime, the colonization time on the slowest possible graph, which we call a
backward graph, is only 1

2n
3 – 1

2n
2 steps.

Existing literature in the field of evolutionary graph theory highlighted the role of spatial
structures in which all connections are two-way [19,23,30]. Those structures are described by
undirected graphs. The slowest known undirected graphs are the so-called double stars Dn.
For any fixed r > 1, the expected fixation time on a double star Dn is roughly n3 steps [34]. In
contrast, here we show that in the regime r→∞, the expected fixation time on any undirected
graph is of the order of at most n2.5 steps. In particular, the fixation time on double stars drops

Fig 3. Colonization times on undirected graphs. a, In the star graph Sn, one node is the center, and all the other nodes are connected to it by a two-way edge. The dou-
ble star graph D2k is obtained by joining the centers of two star graphs Sk using a two-way edge. b,The proved upper bound for undirected graphs is 4n2

√
n + o(n2

√
n).

Here we plot the function 4n2
√
n with blue color. The graph with the largest colonization time we found is the star graph Sn (green). Again the shortest possible colo-

nization time is of the order of n logn steps (see Theorems 8 and 11 in the S1 Text), which is achieved for the complete graph Kn (orange). For the double star graph Dn
(yellow) we have T(Dn) =Θ(n2 logn). For the cycle Cn (red) we have T(Cn) =Θ(n2). Here the lines show the proved analytical results, the dots show the simulations,
and the axes are log-scale.

https://doi.org/10.1371/journal.pcbi.1012868.g003
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to roughly n2 logn. Moreover, we show that double stars cease to be the slowest graphs since
(plain) stars are a constant factor slower (see S1 Text for details). While stars are the slowest
undirected graphs that we found, in principle there could exist undirected graphs with colo-
nization times as long as n2.5. Identifying the exact slowest undirected graphs is an interesting
problem left for future work. We note that any such graphs, if they exist at all, would have to
be irregular, since for regular graphs we proved an even stronger upper bound of at most n2

steps.
Rigorous analysis of fixation times on graphs is made difficult by several factors. In what

follows we elaborate on four of them.
First, the fixation time is not a number but a random variable (unlike e.g. the fixation prob-

ability). That is, depending on what individuals are selected for reproduction at each step, the
total number of steps could be very small or very large. The standard approach to treat this is
to study the expected fixation time, that is, to replace the random variable with its expectation
(a number). This is often quite sufficient since the random variable is typically well concen-
trated [22,33]. (We note that for special graphs such as cycles or complete bipartite graphs the
full distribution of the fixation time is understood [33,48].)

Second, there are in fact two competing notions of fixation time that differ in what evolu-
tionary trajectories are taken into account. One notion is the unconditional fixation time (also
known as the absorption time) which averages over all evolutionary trajectories, regardless
of whether the mutants have fixated or gone extinct. Alternatively, one can consider the con-
ditional fixation time which averages over only those trajectories in which the mutants have
fixated. The two times could be quite different. For example, for a single mutant with fitness
r = 1 + 𝜀 who is invading a large well-mixed population the absorption time is roughly 2n logn
steps, whereas the conditional fixation time is roughly 2

𝜀 ⋅ n logn steps [25,Theorem 4]. When
𝜀 = 0.01, the second quantity is 100× larger than the first one. In this work, we deal with the
limit r→∞ in which the two notions coincide, since all evolutionary trajectories terminate
with the mutants fixating.

Third, the fixation time generally depends on the starting location of the mutant. For
example, on a large star graph Sn with r > 1 fixed, the absorption time of a mutant starting at
the center node is roughly n logn steps, whereas for the mutant starting at any of the leaves it
is roughly n2 logn steps. One natural approach to handle this is to average over the possible
starting positions (either uniformly, or according to some distribution such as the so-called
temperature [49]). Alternatively, as we do in this work, one can specify the starting node. Any
bounds that hold regardless of the starting node also apply to initializations that average over
the starting nodes (including the uniform and temperature initialization).

Fourth, one should specify the units in which the time is measured. This issue is more sub-
tle than it might seem at first glance. In this work, we count steps of a certain slightly modified
Moran process (see section Model). However, by far the most popular approach is to count
the steps of the classic Moran process [7] and, possibly, in the end normalize by a factor of n
to get to “generations” [31]) to capture the fact that the n individuals are reproducing in par-
allel. The disadvantage of using the steps of the classic Moran process as a basis for measuring
time is that it leads to certain counter-intuitive results, see e.g. [35,50].

To present yet another paradoxical consequence of counting the steps of the classic Moran
process, consider the population structured as a so-called lollipop graph Ln with

√
n nodes

along a directed path and the remaining nodes in a fully connected cluster (see Fig 4). Biologi-
cally, such a structure could represent a stream leading to a pond. If the initial mutant appears
at the start of the path, the mutants eventually fixate with probability one – they simply make
their way along the path and then they repeatedly invade the cluster until one such attempt
succeeds. On average, this happens after a certain number of steps. However, if we initially

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1012868 May 5, 2025 8/ 12

https://doi.org/10.1371/journal.pcbi.1012868


ID: pcbi.1012868 — 2025/5/4 — page 9 — #9

PLOS COMPUTATIONAL BIOLOGY Colonization times in Moran process on graphs

Fig 4. Starting with more mutants causes more classic Moran steps. a,The lollipop graph Ln consists of
√
n nodes arranged along a directed path, and the remaining

nodes in a fully connected cluster (here n = 16). b,The classic fixation time on a lollipop graph Ln with two different initializations: either a single mutant at the start of
the path (blue), or additionally all mutants in the fully connected cluster (orange). For r > 2.2 the first initialization leads to fewer classic Moran steps, despite having a
strict subset of nodes that are initially mutants. Here n = 1600, r∈ [2, 10], and at least 103 simulations per data point.

https://doi.org/10.1371/journal.pcbi.1012868.g004

place additional mutants in the cluster, then the expected number of steps may increase. Intu-
itively, this is because mutants in the cluster are selected for reproduction more often than the
residents would be, and this slows down the progress of the mutants along the path. This effect
becomes especially pronounced in the limit r→∞. In S1 Text we show that with the first ini-
tial condition, the process terminates after roughly n logn expected Moran steps, whereas
with the second one it terminates after roughly n1.5 expected Moran steps. Since for large n,
we have n1.5 ≫ n logn, we conclude that adding initial mutants might substantially increase
the number of steps of the classic Moran process.

To circumvent those paradoxical results, we propose to define the time units in a vari-
able way depending on the total fitness of the population. Formally, if the total fitness of the
population is F, then we propose that one step of the classic Moran process accounts for 1/F
units of “real” time. Mathematically, this way of measuring time exactly corresponds to the
situation in which Moran process is run in continuous time, and the reproduction time of
any individual with fitness f is an exponentially distributed random variable with parameter
1/f [51].

In the case of constant selection (r > 1 fixed), we have n ≤ F ≤ r ⋅ n, therefore each step lasts
at least 1/(rn) and at most 1/n units of real time. Thus, up to a constant factor at most r, the
real time corresponds to the the standard fixation time measured in generations (rather than
in steps).

However, the difference might become much more pronounced in other regimes. For
example, consider again the lollipop graph Ln with initially a single mutant at the start of the
path (that is, consider the first initial condition from Fig 4). Suppose that mutants have fit-
ness 1 and that residents have fitness 0 (thus we are in the regime r→∞). In the S1 Text we
show that the classic Moran process then takes roughly n logn steps, which is roughly logn
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generations, whereas the real time is roughly
√
n units. (Intuitively, this is because each of the√

n nodes along the directed path must become a mutant, and each one of them becomes a
mutant after 1 unit of real time, on average.) Thus, neither classic Moran steps nor genera-
tions correctly represent the total duration of the process. On the other hand, we show that
the colonization time, which is based on the modified Moran process (see section Model) is
roughly n

√
n steps, which is exactly a factor nmore than the real time. In fact, we show that

this connection between the colonization time and the real time exists for any graph: in order
to compute the real time in the regime where mutants have fitness 1 and residents have fitness
0, one should compute the colonization time (in steps, based on the modified Moran process),
and then divide by n. This connection is the reason that in the limit r→∞ we work with the
modified Moran process in the first place. See S1 Text for details. To summarize, our bounds
on colonization time yield the following bounds on real time: The colonization process ter-
minates after at most n2 units of real time on any graph, after at most n1.5 units of real time on
any undirected graph, and after at most n units of real time on any regular graph.

Supporting information
S1 Text. Formal proofs of the mathematical claims from the main text.
(PDF)
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