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1. Introduction

In non-relativistic quantum mechanics, a free spinless particle in the plane is

described by the self-adjoint realization of the Laplacian −∆ in L2(R2). It is well

known that the two-dimensional Laplacian is critical, in the sense that its spectrum

is unstable under small perturbations. More specifically, −∆+v possesses a negative

eigenvalue whenever v ∈ C∞0 (R2) is attractive (i.e. non-trivial and non-positive).

In physical terms, −∆ admits a virtual bound state at zero energy, meaning that,
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while the spectrum of −∆ is purely absolutely continuous, the singularity of the

Green function in the spectral parameter leads to the genuine eigenvalue under the

arbitrarily small attractive electric perturbations v. More specifically, the weakly

coupled asymptotics

inf σ(−∆ + εv) ∼ − exp

([
ε

4π

∫
R2

v

]−1
)

as ε→ 0+ (1)

holds true. As the amount of literature on the subject is vast, we mention only [37]

for the pioneering work, [3, 27] for the earlier papers and [8, 9, 12, 25] for the most

recent contributions.

Switching on the magnetic field, the situation changes dramatically because of

the diamagnetic effect. Mathematically, the magnetic Laplacian −∆a := (−i∇−a)2

in L2(R2) becomes subcritical for any smooth vector potential a : R2 → R2 such

that the magnetic field b := curl a is non-trivial. Here, the subcriticality means

the existence of a Hardy inequality −∆a ≥ ρ with positive ρ : R2 → R, which is

equivalent to the fact that the singularity of the Green function disappears. Then

inf σ(−∆a + εv) ≥ 0 for all sufficiently small ε, so there are no negative weakly

coupled eigenvalues. In fact, this change of game equally applies to the singular

Aharonov–Bohm potential

aα(x) := α
(x2,−x1)

|x|2
with α ∈ R (2)

whenever α 6∈ Z. This is particularly spectacular because bα := curl aα vanishes

almost everywhere in the plane. In fact, bα = −2παδ in the sense of distributions,

where δ is the zero-centered Dirac function. Again, we mention only [30] for the

pioneering work and [7, 10, 11, 16–19, 33] for the most recent contributions.

For particles with spin, however, a more realistic (yet still non-relativistic)

description is through the Pauli operator

Ha :=

(
−∆a − b 0

0 −∆a + b

)
in L2(R2,C2), (3)

subject to matrix-valued potential perturbations V : R2 → C2×2. It turns out that

these systems exhibit the paramagnetic effect. Indeed, it is known [39] (though

perhaps less than in the magnetic-free spinless case above) that Ha with any reg-

ular potential a does admit a virtual bound state at zero energy. Contrary to the

superfast exponential decay (1), however, the weak coupling is stronger now:

inf σ(Ha + εvIC2) ∼ −C ε1/|Φb| as ε→ 0+, (4)

where C is a constant depending on v and b, Φb := 1
2π

∫
R2 b is the total flux of b

and it is assumed that |Φb| ∈ (0, 1). The eigenvalue asymptotics (4) are due to [21]

and [2, 28] in radial and general cases, respectively. (See also [20] for related Lieb–

Thirring inequalities.) Of course, the existence of the one virtual bound state (and

thus correspondingly unique weakly coupled eigenvalue) is due to the fact that one
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(and only one) of the operators −∆a ∓ b appearing in (3) is critical (the choice ∓
depends on the sign of Φb, namely −∆a − b is critical if Φb > 0).

The objective of this paper is to analyze the criticality properties and weakly

coupled eigenvalues of the Pauli operator (3) in the highly singular situation of the

Aharonov–Bohm potential (2), formally acting by

Haα :=

(
−∆aα + 2παδ 0

0 −∆aα − 2παδ

)
in L2(R2,C2). (5)

Note that Φbα = −α for the choice (2). The operatorHaα is rigorously introduced by

considering a self-adjoint realization of the Aharonov–Bohm Laplacian with delta-

type interactions −∆aα ± 2παδ due to Šťov́ıček et al. [15, 22, 23]. Particularly, we

set Haα := H+
max ⊕H−max, where the chosen self-adjoint extensions H±max of −∆aα

initially defined on C∞0 (R2\{0}) are in some sense the maximal ones, see (10) below

for a precise characterization of its domain.

Our motivation is two-fold. First, contrary to the case of regular potentials con-

sidered in [2, 21, 28], the resolvent kernel of the unperturbed Hamiltonian Haα is

known explicitly. Consequently, the standard Birman–Schwinger analysis for the

study of weakly coupled eigenvalues is available, so it is possible to avoid the

radial hypothesis on v as well as the necessity of advanced resolvent expansions due

to [21] and [2, 28], respectively. Second, inspired by a recent interest in quantum

Hamiltonians with complex electromagnetic fields, our setting allows for consid-

ering complex-valued v (and in fact more general matrix-valued perturbations V ,

though we do not pursue this research in this paper). In summary, comparing with

the precedent papers [2, 21, 28], our choice of the magnetic potential is special, but

the electric perturbations are allowed to be more general.

In agreement with the case of regular magnetic potentials, the main result of

our analysis shows Haα is critical whenever α 6∈ Z (by a unitary equivalence, one

may restrict to α ∈ (0, 1)). However, there are always two virtual bound states now.

Indeed, a variant of our main result can be stated as follows.

Theorem 1. Let α ∈ (0, 1) and v ∈ C∞0 (R2) be non-trivial and non-positive. Then

inf σ(H+
max + εv) ∼ −C+ ε1/(1−α),

inf σ(H−max + εv) ∼ −C− ε1/α,
as ε→ 0+, (6)

where C± are positive constants depending on v and α.

The asymptotics (6) remain essentially the same for complex-valued v, under

suitable hypotheses imposed on integrals involving v (the extension to non-diagonal

matrix-valued perturbations V of Haα is left open in this paper). At the same time,

we substantially relax the regularity and sign restrictions on real-valued potentials v

below. See Theorem 2 for our main general result.

The existence of two weakly coupled eigenvalues (6), contrary to the merely one

in the case of regular potentials considered in [2, 21, 28], might seem controversial at
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a first glance, arguing that the Aharonov–Bohm potential can be approximated by

the regular potentials. However, this approximation on the operator level is known

to be delicate [4, 5, 32, 34, 35] (see also [38] for Dirac operators). As a matter of fact,

there exist several realizations of the Pauli operator (5) with the Aharonov–Bohm

potential (5) (see [6] for a recent complete study), each has its pro and con from the

point of view of physical properties, however, no common agreement on the right

choice seems to exist in the community. In the language of [6] the extension we

explore here is the Friedrichs extension in the (s-wave, spin up) and (p-wave, spin

down) components, and the Krein extensions in the (p-wave, spin up) and (s-wave,

spin down) components (see also [6, Remark 2.4]). Our paper provides a negative

answer to a question of Persson’s [34, Sec. 4] about the possibility of the approx-

imation by regular potentials for our self-adjoint realization. On the positive side,

comparing the constant C− from the first of our asymptotics (6) with the constant C

of (4) due to [21, 28, 2], these weakly coupled eigenvalues quantitatively match.

The paper is organized as follows. The singular Pauli operator Haα formally

written in (5) is rigorously introduced in Sec. 2 via the method of self-adjoint exten-

sions of symmetric operators. Its Green function is determined in Sec. 3. In Sec. 4,

we start to develop the Birman–Schwinger analysis, which enables one to reduce the

study of eigenvalues of the differential operator Haα subject to perturbations to the

study of an integral operator. This is completed in Sec. 5 by reducing everything to

a matrix eigenvalue problem and further to an implicit equation, obtaining in this

way the asymptotics of the weakly coupled eigenvalues.

2. The Pauli Operator via The Extension Theory

The goal of this section is to rigorously introduce the singular Pauli operator (5)

and state its basic criticality properties. From now on, we abbreviate Hα := Haα .

Recall that the magnetic field associated with the Aharonov–Bohm potential (2)

is the distribution bα := curl aα = ∂x1a2
α − ∂x2a1

α = −2παδ. It is therefore natural

to introduce the operator (5) via the methods of extension theory of symmetric

operators. We follow the approach of [22, 23], which is based on the factorizations

H+ = T−T+ and H− = T+T−,

considered as operator identities in D(R2\{0}) := C∞0 (R2\{0}), where

T± := −i(∂x1 ± i∂x2)− (a1
α ± ia2

α) = e±iϑ
(
−i∂r ± i

α

r
± ∂ϑ

r

)
.

Here, the second equality follows by the usage of polar coordinates (r, ϑ) ∈ [0,∞)×
(−π, π) defined by (x1, x2) =: (r cosϑ, r sinϑ). We use the same symbols T± for the

extensions (denoted by T̃± in [23]) to the space of distributions D′(R2\{0}).
The minimal realizations H±min := T ∗±T̄± are associated with the closure of the

quadratic forms

h±min[ψ] := ‖T±ψ‖2, D(h±min) := C∞0 (R2\{0}).
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It turns out (cf. [23, Lemma 5.2]) that H+
min = H−min = −∆aα , where −∆aα is the

usual magnetic Laplacian with the Aharonov–Bohm potential (i.e. the Friedrichs

extension of this operator initially defined on C∞0 (R2\{0}), see [29]). It is well

known [30] that −∆aα is subcritical (i.e. there is a Hardy-type inequality) whenever

α 6∈ Z.

The object of our interest are the maximal realizations H±max := T̄∓T
∗
∓ associ-

ated with the closure of the quadratic forms (cf. [23, Lemma 5.4])

h±max[ψ] := ‖T±ψ‖2, D(h±max) := {ψ ∈ L2(R2) : T±ψ ∈ L2(R2)}.

We then define

Hα := H+
max ⊕H−max in L2(R2,C2) ∼= L2(R2)⊕ L2(R2). (7)

Contrary to the case of regular magnetic fields [28] (when the Pauli operator

is essentially self-adjoint), it turns out that both H±max are critical (i.e. they satisfy

no Hardy-type inequality). To see it, let us restrict from now on, without loss

of generality (by a unitary equivalence, see [23, Sec. 6] and references therein or

[34, Proposition 3.1]), to

α ∈ (0, 1).

Then the virtual bound states ϕ± of H±max are given by (note that ϕ− is related

to Ω−0 of [21])

ϕ−(x) := r−α and ϕ+(x) := r−(1−α)e−iϑ. (8)

More specifically, it is easy to check that ϕ± ∈ L2
loc(R2) and T±ϕ

± = 0 in the sense

of distributions. Of course, ϕ± 6∈ L2(R2), however, the boundedness of ϕ± off the

origin enables one to apply the usual approximation procedure.

Lemma 1. There exists a sequence {ϕ±n }n∈N ⊂ D(h±max) converging to ϕ± point-

wise and satisfying

lim
n→∞

h±max[ϕ±n ] = 0.

Proof. Let us consider a radial function ξ ∈ C∞(R2) satisfying 0 ≤ ξ ≤ 1, ξ(r) = 1

if 0 ≤ r ≤ 1 and ξ(r) = 0 if r ≥ 2. Here, with an abuse of notation, we write

ξ(r) = ξ(x) when |x| = r. Set ξn(r) := ξ(r/n) for every n > 0. Since, T+(ϕ+ξn) =

rα−1(−i∂rξn) with ϕ+ from (8), we have

h+
max[ϕ+ξn] = 2π

∫ 2n

n

r2α−2|ξ′n(r)|2r dr

=
2π

n2

∫ 2n

n

r2α−1|ξ′(r/n)|2 dr ≤ π ‖ξ′‖2∞
4α − 1

α
n2α−2.
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Hence h+
max[ϕ+ξn] → 0 as n → ∞ whenever α ∈ (0, 1). Similarly, we have

T−(ϕ−ξn) = e−iϑr−α(−i∂rξn) and thus

h−max[ϕ−ξn] = 2π

∫ 2n

n

r−2α|ξ′n(r)|2r dr

=
2π

n2

∫ 2n

n

r−2α+1|ξ′(r/n)|2 dr ≤ π ‖ξ′‖2∞
41−α − 1

1− α
n−2α.

Hence, again h−max[ϕ−ξn]→ 0 as n→∞ whenever α ∈ (0, 1).

With this auxiliary lemma, we now establish the desired claim.

Proposition 1. The operators H±max are critical.

Proof. By contradiction, let us assume that there exists a non-trivial non-negative

function ρ± ∈ L1
loc(R2) such that H±max ≥ ρ± in the sense of forms in L2(R2). Then,

for any compact set K ⊂ R2\{0}, Lemma 1 implies
∫
K
ρ±|ϕ±|2 = 0. Since |ϕ±| are

positive on arbitrary K, we conclude with the contradiction that ρ± = 0 almost

everywhere in R2.

Let us now characterize the domain of the Pauli operator Hα via boundary

conditions at the singularity r = 0. The action of the operators H±max and −∆aα

coincide on C∞0 (R2\{0}). Hence, they are two different self-adjoint extensions of

the symmetric operator

X̃ := −∆aα = −∂2
r − r−1∂r + r−2(−i∂ϑ + α)2, D(X̃) := C∞0 (R2\{0}). (9)

Due to [22], one has the characterization

D(H+
max) = {f ∈ D(X̃∗) : Φ−1

2 (f) = Φ0
1(f) = 0}, (10a)

D(H−max) = {f ∈ D(X̃∗) : Φ−1
1 (f) = Φ0

2(f) = 0}, (10b)

where

Φ−1
1 (f) := lim

r→0
r1−α 1

2π

∫ 2π

0

f(r, ϑ)eiϑ dϑ,

Φ−1
2 (f) := lim

r→0
r−1+α

(
1

2π

∫ 2π

0

f(r, ϑ)eiϑ dϑ− r−1+αΦ−1
1 (f)

)
,

Φ0
1(f) := lim

r→0
rα

1

2π

∫ 2π

0

f(r, ϑ) dϑ,

Φ0
2(f) := lim

r→0
r−α

(
1

2π

∫ 2π

0

f(r, ϑ) dϑ− r−αΦ0
1(f)

)
.

It is not difficult to find the spectrum of the Pauli operator.

Proposition 2. σ(Hα) = σess(Hα) = [0,+∞).
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Proof. Since H±max are non-negative, we immediately have σ(Hα) ⊂ [0,+∞). To

prove the opposite inclusion, we construct a Weyl sequence. Given ϕ ∈ C∞0 ((0,∞)×
R) with ‖ϕ‖ = 1, for every positive n we define

ϕn(x) :=
1

n
ϕ

(
x1

n
− n, x

2

n

)
.

Note that the normalization factor is chosen in such a way that ‖ϕn‖ = 1 for

every n. Moreover, the scaling ensures that the derivatives of ϕn vanish as n→∞,

namely

‖∇ϕn‖ = n−1 ‖∇ϕ‖ and ‖∆ϕn‖ = n−2 ‖∆ϕ‖. (11)

Finally, the shift guarantees that the support of ϕn never intersects the origin where

the operator is singular, in fact the support is “localized at infinity” in the sense that

suppϕn = (n2, 0) + n suppϕ. Now we define ψn(x) := ϕn(x)eik·x, where k ∈ R2.

Note that ψn ⊂ C∞0 (R2\{0}) ⊂ D(H±max) and ‖ψn‖ = 1 for every n, while both

H±max act on C∞0 (R2\{0}) as X̃ introduced in (9). Using that aα is divergence-free

outside the origin, one has

‖(X̃ − k2)ψn‖ ≤ ‖∆ϕn‖+ 2|k|‖∇ϕn‖+ ‖|aα|2ϕn‖+ 2‖aα · ∇ϕn‖ −−−−→
n→∞

0.

Here, in addition to (11), we have used that ‖aα‖L∞(suppϕn) → 0 as n→∞. This

argument shows that σ(H±max) = σess(H
±
max) = [0,+∞). The same spectral result

for Hα now follows by the fact that the spectrum of Hα is the union of the spectra

of H+
max and H−max due to (7).

In parallel with the Friedrichs extension −∆aα of X̃, the authors of [40, 22]

consider the unitarily equivalent operator

H := Uα(−∆aα)U−1
α , where Uαϕ(r, ϑ) := eiαϑϕ(r, ϑ). (12)

The operator H acts as the Laplacian in R2\{0} and functions ψ in its domain

satisfy the following boundary conditions at the origin and on the cut ϑ = π:

ψ(0) = 0, (13a)

lim
ϑ→π−

ψ(r, ϑ) = e2πiα lim
ϑ→−π+

ψ(r, ϑ), (13b)

lim
ϑ→π−

∂rψ(r, ϑ) = e2πiα lim
ϑ→−π+

∂rψ(r, ϑ). (13c)

3. The Green Function

The goal of this section is two-fold. First, we apply Krein’s formula to the Green

function Gz of the operator H from (12) to find the Green function of the Pauli

operator Haα . Second, we study the singularities of the Green function.
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3.1. Krein’s formula

The Green function Gz is presented in [40, Eq. (7)]. Denoting by z ∈ C\[0,∞) the

spectral parameter and choosing the branch of the square root so that <
√
−z > 0

and recalling that we assume α ∈ (0, 1) (without loss of generality), it reads

Gz(r, ϑ; r0, ϑ0) = Ĉ(ϑ− ϑ0)K0(
√
−z |x− x0|) (14a)

− sin(πα)

π

∫ ∞
−∞

1

2π
K0(
√
−z R(s))

e−αs+iα(ϑ−ϑ0)

1 + e−s+i(ϑ−ϑ0)
ds. (14b)

Here, K0 is the zeroth modified Bessel function of the second kind

|x− x0|2 = r2 + r2
0 − 2rr0 cos(ϑ− ϑ0), R(s)2 := r2 + r2

0 + 2rr0 cosh(s) (15)

and

Ĉ(ϑ− ϑ0) :=
1

2π


1 if ϑ− ϑ0 ∈ (−π, π),

e−2πiα if ϑ− ϑ0 ∈ (−2π,−π),

e2πiα if ϑ− ϑ0 ∈ (π, 2π).

(16)

Remark 1. Despite the three-fold description, Gz is continuous at ϑ − ϑ0 = ±π.

Indeed, the continuity of the first line (14a) follows from the equality [24, § 6.791-1]

πK0(a+ b) =

∫ ∞
−∞

Kiτ (a)Kiτ (b) dτ

for |ph(a)|+ |ph(b)| ≤ π. To see the continuity of the second line (14b), we use the

identity ∫ ∞
−∞

Kiτ (a)K−iτ (b)
eϕτ

sin(π(α+ iτ))
dτ

=

∫ ∞
−∞

K0(
√
a2 + b2 + 2ab cosh(u))

e−α(u−iϕ)

1 + e−u+iϕ
du, (17)

for ph(a),ph(b) < π, α ∈ (0, 1) and |ϕ| < π. Its validity can be checked from

formula [24, § 6.792-2]∫ ∞
−∞

eiuτKiτ (a)Kiτ (b) dτ = πK0(
√
a2 + b2 + 2ab cosh(u)). (18)

Using the fact that for |ϕ| < π the integral
∮
γ

eiuτ e−α(u−iϕ)

1+e−u+iϕ du vanishes along the

rectangle γ := (−R,R) ∪ (R,R− iϕ) ∪ (R− iϕ,−R− iϕ) ∪ (−R− iϕ,−R) for any

R > 0 by the residue theorem, we further compute∫ ∞
−∞

eiuτ e−α(u−iϕ)

1 + e−u+iϕ
du =

∫ ∞
−∞

eiτ(s+iϕ) e−αs

1 + e−s
ds = e−τϕB(α− iτ, 1− (α− iτ)).

For the last equality we have used [24, § 3.313-2]. On the right-hand side the Beta

function B can be further evaluated as B(α− iτ, 1− (α− iτ)) = π
sin(π(α−iτ)) . Now
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we apply this result to the left-hand side of the e−α(u−iϕ)

1+e−u+iϕ multiple of (18) integrated

over u ∈ (−∞,∞) and arrive at (17).

To obtain the Green functions G±z of the extensions H±max, we mimic the steps

in [22, Sec. IV] and use the Krein’s formula (cf. [14, Eq. (2.6)]). Recalling the unitary

transformation Uα from (12), Krein’s formula yields

eiαϑG±z (x, x0)e−iαϑ0 = Gz(x, x0) +
∑

j,k=1,2

(M±z )j,kf jz (x)fkz̄ (x0). (19)

The coefficient matrices M±z are determined below. Functions f1
z , f

2
z form a basis

of the deficiency subspaces ker (X∗−z), where X is the Laplacian on test functions

on R2\{0}. In particular, we set (cf. [15])

{f1
z (r, ϑ), f2

z (r, ϑ)} := {K1−α(
√
−zr)ei(α−1)ϑ,Kα(

√
−zr)eiαϑ}

with Kν denoting the νth modified Bessel function of the second kind.

As Gz is the integral kernel of the resolvent of H, the range of the corresponding

integral operator is D(H) determined by the boundary conditions (13). The sum

in (19) is the integral kernel of a finite-rank operator. Since upon integration over

x0 ∈ R2 the Green function G±z (x, x0) has to map square integrable functions

to the domain D(H±max), we need to choose the matrices M±z in such a manner

that G±z (x, x0) satisfy (as functions of x ∈ R2) the respective boundary conditions

of H±max given in (10). To check these conditions, we investigate the behavior of

Gz(x, x0) and that of f1
z , f

2
z for |x| = r → 0. As for the former, one has [22, Eq. (29)]

Gz(r, ϑ, r0, ϑ0) =
sin(πα)

2π2

Γ(α)

1− α

(√
−zr
2

)1−α

f1
z̄ (r0, ϑ0)e−i(1−α)ϑ

+
sin(πα)

2π2

Γ(1− α)

α

(√
−zr
2

)α
f2
z̄ (r0, ϑ0)eiαϑ + O(r)

as r → 0. The asymptotics of f1
z , f

2
z follow from the behavior of the Bessel functions

Kν(w) =
Γ(ν)

2

(w
2

)−ν
(1 + O(w2))− Γ(1− ν)

2ν

(w
2

)ν
(1 + O(w2)), (20)

as |w| → 0, where <(ν) > 0 and ph(w) 6= ±π. In particular, we arrive at

G±z (r, ϑ, r0, ϑ0)e−iαϑ0

=
∑
j=1,2

(M±z )j,1f jz̄ (r0, ϑ0)

×
[

Γ(1− α)

2

(r
2

)α−1

(
√
−z)α−1 − Γ(α)

2(1− α)

(r
2

)1−α
(
√
−z)1−α

]
e−iϑ

+
∑
j=1,2

(M±z )j,2f jz̄ (r, ϑ)

[
Γ(α)

2

(r
2

)−α
(
√
−z)−α − Γ(1− α)

2α

(r
2

)α
(
√
−z)α

]
2550011-9
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+
sin(πα)

2π2

Γ(α)

1− α

(r
2

)1−α
(
√
−z)1−αe−iϑf1

z̄ (r0, ϑ0)

+
sin(πα)

2π2

Γ(1− α)

α

(r
2

)α
(
√
−z)αf2

z̄ (r0, ϑ0) + O(r)

as r → 0.

Now we are able to check when G±z (r, ϑ, r0, ϑ0) satisfy the boundary condi-

tions (10). We first consider D(H+
max). The need of the functional Φ0

1(·) to vanish

means that the coefficients in front of r−α have to vanish. This leads to (M+
z )j,2 = 0

for all j = 1, 2 (since f1,2
z are linearly independent). From vanishing of the func-

tional Φ−1
2 (·) we conclude that the coefficient in front of the term r1−αe−iϑ is zero.

Therefore

(M+
z )2,1 = 0 and (M+

z )1,1 =
sin(πα)

π2
.

Second, we deal with the conditions in D(H−max) and obtain

(M−z )j,1 = 0, j = 1, 2,

by vanishing coefficients in front of rα−1e−iϑ coming from the requirement

Φ−1
1 (·) = 0, and, finally,

(M−z )1,2 = 0 and (M−z )2,2 =
sin(πα)

π2

as Φ0
2(·) = 0 implies vanishing coefficients in front of rα.

We summarize our investigation in the following proposition.

Proposition 3. Let α ∈ (0, 1). For every z ∈ C\[0,+∞), the resolvent of Hα

satisfies

(Hα − z)−1 =

(
(H+

max − z)−1 0

0 (H−max − z)−1

)
,

where the integral kernels G±z of the operators (H±max − z)−1 are given by

G+
z (r, ϑ, r0, ϑ0) = e−iαϑGz(r, ϑ, r0, ϑ0)eiαϑ0

+
sin(πα)

π2
K1−α(

√
−zr)K1−α(

√
−z̄r0)e−i(ϑ−ϑ0),

G−z (r, ϑ, r0, ϑ0) = e−iαϑGz(r, ϑ, r0, ϑ0)eiαϑ0

+
sin(πα)

π2
Kα(
√
−zr)Kα(

√
−z̄r0),

with Gz being given in (14).

3.2. The singularities

It is well known that the criticality of an operator is related to the singularity of its

Green function. Moreover, the weak-coupling asymptotics are determined by the
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nature of the singularity. To apply the Birman–Schwinger analysis below, we need

to have precise information about the singularities of the Green functions G±z as

z → 0.

Note that the functions z 7→ G±z are analytic outside of the cut [0,+∞). More-

over, for any fixed r, ϑ, r0, ϑ0, the limits G±k+iε(r, ϑ, r0, ϑ0) as ε→ 0± are well defined

for every positive k. Therefore, the singularities indeed occur only as |z| approaches

zero.

First of all, we establish a technical identity.

Lemma 2. Let α ∈ (0, 1). For every ϕ ∈ (−2π,−π) ∪ (−π, π) ∪ (π, 2π), one has

2πĈ(ϕ)− sin(πα)

π
eiαϕ

∫ ∞
−∞

e−αs

1 + e−s+iϕ
ds = 0, (21)

where Ĉ(ϕ) is given in (16).

Proof. Note that the integral converges under the restrictions on ϕ and α. To com-

pute its value we use the residue theorem. To that aim we consider the regularized

integrand of (21) by multiplying it by e−iεs for some ε > 0. Then we integrate

along the oriented contour CR consisting of the real interval [−R,R] and the arc ΓR
of radius R centered at the origin placed in the top half of the complex plane. In

summary, we are considering

Jε :=

∮
CR

eiεs e−αs

1 + e−s+iϕ
ds.

This integral can be evaluated by summing its residua {exp[−(ε + iα)(ϕ + (2k +

1)π)]}∞k=kmin
corresponding to the simple poles sk := i(ϕ+ (2k + 1)π) in the upper

half of the complex plane as follows:

Jε = e−(ε+iα)(ϕ+π)
∞∑

k=kmin

e−(ε+iα)2πk with kmin :=


0 if ϕ ∈ (−π, π),

1 if ϕ ∈ (−2π,−π),

−1 if ϕ ∈ (π, 2π).

Here kmin is given by the condition that =(sk) > 0 for all k ≥ kmin. Note also that

the sum is well defined as for all such k the absolute value of the summands is less

than one. The integral over the arc of the loop vanishes in the limit R→∞ since∣∣∣∣∫
ΓR

eiεs e−αs

1 + e−s+iϕ
ds

∣∣∣∣ ≤ ∫
ΓR

∣∣∣∣eiεs e−αs

1 + e−s+iϕ

∣∣∣∣ ds

=

∫ π/2

0

∣∣∣∣ e−αR cos β−εR sin β

1 + e−R(cos β+i sin β)+iϕ

∣∣∣∣R dβ

+

∫ π

π/2

∣∣∣∣ e(1−α)R cos β−εR sin β

1 + eR(cos β+i sin β)−iϕ

∣∣∣∣R dβ.
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Using the dominated convergence we can thus compute our original integral

eiαϕ

∫ ∞
−∞

e−αs

1 + e−s+iϕ
ds = eiαϕ lim

ε→0

∫ ∞
−∞

eiεs e−αs

1 + e−s+iϕ
ds

= eiαϕ lim
ε→0

lim
R→∞

∫
CR

eiεs e−αs

1 + e−s+iϕ
ds

=
π

sin(πα)


1

e−2πiα

e2πiα

.
This is equivalent to (21).

To study the singularities of G±z , we start with the part Gz given by (14).

First, recall the asymptotics of the zero’th Bessel function (cf. [1, § 9.6.12–13])

K0(w) = − log(w/2) + O(1) as |w| → 0. Second, since the function R introduced

in (15) is real-valued, we have log(
√
−zR(s)) = log(

√
−z)+log(R(s)). Consequently,

we see that the logarithmic singularity of Gz cancels out due to Lemma 2, yielding

the behavior

Gz(r, ϑ; r0, ϑ0) = d(x, x0) + O
(
(
√
−z)2

)
as |z| → 0

with some function d dependent on the spatial coordinates but independent of z.

Now we focus on the second terms in the formulae for G±z given in Proposition 3.

From the asymptotics (20), we compute

K1−α(
√
−zr)K1−α(

√
−z̄r0)

= (
√
−z)2(α−1)

(
Γ(1− α)

2

)2 (rr0

4

)α−1

− Γ(α)Γ(1− α)

4(1− α)

×

((r0

r

)1−α
+

(
r

r0

)1−α
)

+

(
Γ(α)

2(1− α)

)2

(
√
−z)2(1−α)

×
((rr0

4

)1−α
)

+ O(
√
−z2 min{α,1−α}

), (22a)

Kα(
√
−zr)Kα(

√
−z̄r0)

= (
√
−z)−2α

(
Γ(α)

2

)2 (rr0

4

)−α
− Γ(α)Γ(1− α)

4α

((r0

r

)α
+

(
r

r0

)α)

+

(
Γ(1− α)

2α

)2√
−z2α

(rr0

4

)α
+ O(

√
−z2 min{α,1−α}

), (22b)

as |z| → 0.
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In summary, we have established the following asymptotics.

Proposition 4. Let α ∈ (0, 1) and r, ϑ, r0, ϑ0 be fixed. For every z ∈ C\[0,+∞),

one has

G+
z (r, ϑ, r0, ϑ0) = CαΓ(1− α)2(−zrr0/4)α−1e−i(ϑ−ϑ0) + O(1),

G−z (r, ϑ, r0, ϑ0) = CαΓ(α)2(−zrr0/4)−α + O(1),

as |z| → 0, where

Cα :=
sin(πα)

4π2
.

4. The Birman–Schwinger Analysis

Let V : R2 → C2×2 be a matrix-valued function. For almost every x ∈ R2, we

consider the matrix polar decomposition

V (x) = B(x)A(x) with
A(x) := 4

√
V (x)∗V (x),

B(x) := U(x) 4
√
V (x)∗V (x),

(23)

where U(x) is a unitary matrix. By |V (x)| we denote the operator norm of the

matrix V (x) when considered as an operator on C2. Our standing hypothesis

about V is as follows.

Assumption 1. Let α ∈ (0, 1). Suppose∫
R2

|V (x)|(|x|2ν + |x|−2ν) dx <∞ and |V | ∈ L1+δ(R2) (24)

for some positive δ and ν := max{1− α, α}.

Note that conditions (24) particularly imply that |V | ∈ L1(R2).

Let ε be a (small) positive number. By the Birman–Schwinger principle [26]

(justified under Assumption 1 in Remark 2 below), z ∈ C\[0,+∞) is an eigenvalue

of Hα + εV if, and only if, −1 is an eigenvalue of the integral operator

Rz,ε := εA(Hα − z)−1B. (25)

Here, A,B are considered as the maximal operators of multiplication by the matrix-

valued functions denoted by the same symbols.

To apply this principle to the analysis of the weakly coupled eigenvalues, we

decompose

Rz,ε = ε(Lz +Qz), (26)

where Lz and Qz are the singular and regular parts of the Birman–Schwinger

operator, respectively. More specifically, adopting the convention that the kernel of
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an integral operator T is distinguished calligraphically by T, we define

Lz(r, ϑ, r0, ϑ0) := CαA(r, ϑ)

×

(
Γ(1− α)2(−z|rr0|/4)α−1e−i(ϑ−ϑ0) 0

0 Γ(α)2(−z|rr0|/4)−α

)
×B(r0, ϑ0), (27a)

Qz(r, ϑ, r0, ϑ0) := A(r, ϑ)Greg
z (r, ϑ, r0, ϑ0)B(r0, ϑ0) (27b)

= A(r, ϑ)

(
Greg,+
z (r, ϑ, r0, ϑ0) 0)

0 Greg,−
z (r, ϑ, r0, ϑ0)

)
×B(r0, ϑ0) (27c)

with

Greg,±
z (r, ϑ, r0, ϑ0) :=

[
e−iαϑGz(r, ϑ, r0, ϑ0)eiαϑ0 + Cα

(
4Kν±(

√
−zr)

×Kν±(
√
−zr0)− Γ(ν±)2

(
−zrr0

4

)−ν±)
ei(∓ν±−α)(ϑ−ϑ0)

]
.

(27d)

Here ν+ := 1− α and ν− := α.

To analyze the regular part Qz, we need the following fact about the zero’th

modified Bessel function K0.

Lemma 3. There exist functions f, g analytic on C\(−∞, 0] and continuous at 0

such that

K0(w) = log(w)f(w) + g(w).

Functions f and g can be chosen bounded in absolute value on <w > 0 by C1e−C2<w

with some constants C1, C2 > 0. Moreover, f(0) = 1, f(w) − f(0) = O(w2) and

g(w) = O(1) as |w| → 0.

Proof. Recalling the series [1, § 9.6.12.–13]

K0(w) = −(log(w/2) + γ)I0 +
∑
k≥1

(1 + 1/2 + 1/3 + · · ·+ 1/k)
(w/2)2k

(k!)2
and

I0(w) =
∑
k≥0

(w/2)2k

(k!)2
,

(28)

we define f(w) := −I0e−2w and g(w) = K0(w) − log(w/2)f(w). With this choice

f is entire and g is analytic outside of the cut (−∞, 0]. Note that g is continuous
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at 0 and all the claimed properties follow from (28), definitions of f and g and the

asymptotics of I0,K0 for large arguments [1, § 9.7.1–2].

First of all, we argue that the Birman–Schwinger operator associated with H =

Uα(−∆aα)U−1
α (recall (12)) is regular, in agreement with its subcriticality.

Lemma 4. Suppose Assumption 1. There exists a positive constant C such that,

for all z ∈ C\[0,+∞),

‖A(H − z)−1B‖HS ≤ C.

Proof. Recall that the integral kernel of A(H − z)−1B reads A(x)Gz(x, x0)B(x0),

where the Green function Gz is given in (14). We separate the proof of finiteness

of the Hilbert–Schmidt norm

‖A(H − z)−1B‖HS =

∫
R2×R2

|V (x)| |Gz(x, x0)|2 |V (x0)| dxdx0

into two parts:

(1) showing that it is bounded uniformly in |z| ∈ (0, 1],

(2) showing that it is bounded uniformly for any |z| > 1.

Ad 1. We start with the bound for small |z|, as some of the estimates will be useful

in proving the second point too. We add and subtract the logarithmic singularity

log(
√
−z)f(0) in the Green function of the Friedrichs extension Gz given by (14)

and using Lemma 2, we divide it in two summands

Gz(x, x0) = ĈF1(|x− x0|) + F2(x, x0)

with

F1(t) := [K0(
√
−zt)− log(

√
−z)f(0)], t ≥ 0,

F2(x, x0) :=
sin(πα)

π

∫ ∞
−∞

1

2π
F1(R(s))

e−αs+iα(ϑ−ϑ0)

1 + e−s+i(ϑ−ϑ0)
ds.

Here, f is as in Lemma 3 and it follows that

|F1(t)| = | log(
√
−z)(f(

√
−zt)− f(0)) + g(

√
−zt) + log tf(

√
−zt)|

≤ C1(| log(
√
−z)||

√
−zt|β + log t+ 1), (29)

for some constant C1 > 0 and any β ∈ (0, 1). Let us remark, that for any fixed

t ∈ (0,∞) this stays bounded uniformly in |z| ∈ (0, 1).

Turning our attention for a moment to F2, we remark that for a fixed difference

ϑ− ϑ0 6= ±π, we have the exponential decay for large s of the fraction∣∣∣∣ e−αs+iα(ϑ−ϑ0)

1 + e−s+i(ϑ−ϑ0)

∣∣∣∣2 =
e−2αs

1 + 2e−s cos(ϑ− ϑ0) + e−2s
≤ Ce−2|s|min{α,1−α}
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with some C > 0. We also notice that | 12 log(R(s)2)| ≤ |s|+ | log(r + r0)| and that

R(s)β ≤ (r + r0)βeβ|s|. Hence, with an arbitrary choice 0 < β < min{α, 1− α} we

conclude by (29) that the integral in F2 is convergent for every fixed pair r, r0.

Due to these estimates, it is only left to show the finiteness∫
R2×R2

|V (x)| |1 + log(a) + aβ |2 |V (x0)| dxdx0 <∞ for a ∈ {r + r0, |x− x0|}.

Since

| log a| ≤ Cβ

{
(1 + a−β) if a ∈ (0, 1],

(1 + aβ) if a ∈ [1,∞),
(30)

where Cβ is some constant dependent only on β, it is enough to bound the three

integrals

∫
R2×R2

|V (x)|


1

a−2β

a2β

 |V (x0)|dx dx0 for a ∈ {r + r0, |x− x0|}. (31)

Finiteness of the first integral with the constant middle term is a direct consequence

of Assumption 1. To treat the positive power, notice that since β ≤ max{α, 1−α} =

ν we have

|x− x0|2β ≤ (r + r0)2β ≤ 2ν(1 + |x|2ν)(1 + |x0|2ν)

and the integrability follows by our Assumption 1.

For the negative power we first estimate (r+r0)−β ≤ |x−x0|−β ≤ 1+ |x−x0|−µ
for any µ ≥ β. Then the integrability follows under our assumptions by the Hardy–

Littlewood–Sobolev inequality [31, Theorem 4.3] choosing β ≤ µ = δ
1+δ . Here, δ > 0

is as in (24).

To finish the proof we point out that Gz is continuous at ϑ − ϑ0 = ±π, see

Remark 1.

Ad 2. By the analyticity of K0(
√
−zt) on <

√
−z > 0 with t > 0, by the behavior

for large arguments [1, § 9.7.2] and by Lemma 3, we can bound

|K0(
√
−zt)| ≤ C(|

√
−zt)|−β + 1) for all t ∈ (0,∞), <

√
−z > 0

with some constant C > 0 and arbitrary β > 0. For all t ∈ (0,∞) this is uniformly

bounded in |z| > 1. The statement is then a consequence of the finiteness of the

top two integrals in (31), which was shown in the first part of the proof.

Lemma 5. Suppose Assumption 1. Operators Lz and Qz are Hilbert–Schmidt for

all z ∈ C\[0,+∞).
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Proof. Recall the formulae for Lz and Qz given in (27). The claim for Lz is obvious.

Taking Lemma 4 into account, the statement for Qz follows directly from defini-

tions (27) by the analyticity of the Bessel functions on the complex half-plane with

positive real part and their decay properties (cf. [1, Eqs. (9.6.2), (9.6.10)])

Kµ(w) = O(e−w/
√
w) as |w| → ∞ (32)

for <w > 0 and µ ∈ R.

Proposition 5. Suppose Assumption 1. For negative z with all sufficiently large |z|,
the difference

(Hα + εV − z)−1 − (Hα − z)−1

is a compact operator. Moreover, A(Hα− z)−1/2 and B(Hα− z)−1/2 are also com-

pact.

Proof. By Lemma 5 and Proposition 3, the Birman–Schwinger operator Rz,ε
introduced in (25) and decomposed in (26) is a Hilbert–Schmidt operator for all

z ∈ (−∞, 0). Moreover, its integral kernel Rz,ε tends pointwise to zero as z → −∞.

The second part of the proof of Lemma 4 and (32) justify using the dominated con-

vergence on the integral kernel Rz,ε to deduce ‖Rz,ε‖HS = ‖A(Hα − z)−1A‖HS → 0

as z → −∞. Thus, along the lines of [36, Example 7 of Sec. XIII.4], we can argue

that the difference of resolvents

(Hα + εV − z)−1 − (Hα − z)−1

= −
∞∑
n=0

εn+1(Hα − z)−1B(−A(Hα − z)−1B)nA(Hα − z)−1

is a compact operator for some negative z with large |z|. For this conclusion, we

use the above observed fact that P ∗P with P := A(Hα − z)−1/2 tends to zero in

the Hilbert–Schmidt norm as z → −∞. It then follows that A(Hα − z)−1/2 and

B(Hα − z)−1/2 are also compact operators.

Remark 2. It follows from Proposition 5 that A(Hα − z)−1/2 and B(Hα − z)−1/2

are bounded operators for all negative z with sufficiently large |z|. It justifies the

usage of the Birman–Schwinger principle in the spirit of [26]. Moreover, the pertur-

bation V is relatively form bounded with respect to Hα. By making ε small, the

relative bound can be made arbitrarily small. This justifies the sum Hα+εV , which

should be understood in the sense of forms.

Combining Proposition 5 with [36, Theorem XIII.14], we obtain the stability of

the essential spectrum.

Corollary 1. Suppose Assumption 1. Then

σess(Hα + εV ) = σess(Hα) = [0,+∞).
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Finally, we establish a uniform version of Lemma 5.

Lemma 6. Suppose Assumption 1. There exists a positive constant C such that, for

all z ∈ C\[0,+∞), ‖Qz‖HS ≤ C. At the same time, given any positive ε, there exists

a positive constant Cε, such that, for all z ∈ C\[0,+∞) with |z| ≥ ε, ‖Lz‖HS ≤ Cε.

Proof. The claim for Lz is obvious from (27a). The uniform boundedness is also

clear for the part of Qz coming from the first line of (27d) due to Lemma 4.

At the same time, it follows from the structure of the second line of (27d) and

the asymptotic behavior (32) that, given any positive ε, there exists a positive

constant Cε, such that, for all z ∈ C\[0,+∞) with |z| ≥ ε, ‖Qz‖HS ≤ Cε. It remains

to analyze the asymptotic behavior of the second line of (27d) as |z| → 0.

Let µ ∈ {α, 1− α}. We establish a convenient notation (cf. [1, § 9.6.2, § 9.6.10])

Kµ(w) = w−µf−µ(w)− wµfµ(w) with fµ(w) =
−π2−µ

2 sin(µπ)

∞∑
k=0

(w/2)2k

k!Γ(k + µ+ 1)
,

(33)

w ∈ C\(−∞, 0). On account of Lemma 4, it is enough to bound Kµ(
√
−z|x|)

Kµ(
√
−z|x0|)− f2

−µ(0)| − zxx0|−µ by a constant multiple of (|x|µ + |x|−µ)(|x0|µ +

|x0|−µ). To that end we denote by ξ =
√
−z|x| and by ζ =

√
−z|x0| and write the

exact identity

Kµ(ξ)Kµ(ζ)− f2
−µ(0)(ξζ)−µ = (Kµ(ξ)− f−µ(0)ξ−µ)Kµ(ζ)

+ ξ−µf−µ(0)(Kµ(ζ)− ζ−µf−µ(0)).

If both |ζ|, |ξ| ≥ 1 then the left-hand side is bounded by a constant by analyticity

of Kµ and the decay (32). If one of the arguments is small, assume without loss

of generality |ξ| < 1, we notice that fµ(ξ) − fµ(0) = O(ξ2) as |ξ| → 0 and use the

bound

|Kµ(ξ)− ξ−µf−µ(0)| ≤ C|ξ|µ

with some positive constant C. If ζ ≥ 1 we have |Kµ(ζ)| ≤ C1 ≤ C1 |ζ|µ with

C1 > 0, while for |ζ| < 1 by (32) it holds

|Kµ(ζ)− ζ−µf−µ(0)| ≤ C|ζ|µ and |Kµ(ζ)| ≤ C2|ζ|−µ,

where C,C2 > 0 are some constants. Symmetrically we can find bounds in case

|ζ| < 1. For any ζ, ξ with positive real part we can thus estimate

|Kµ(ξ)Kµ(ζ)− f2
−µ(0)(ξζ)−µ| ≤ C3(|ξ/ζ|µ + |ζ/ξ|µ + |ξ|µ + 1),

for some constant C3 > 0. In particular this stays bounded for any fixed x, y

as |z| → 0. Since µ ≤ max{α, 1 − α} = ν implies
∫
R2 |V (x)|(|x|2µ + |x|−2µ) ≤

2
∫
R2 |V (x)|(|x|2ν + |x|−2ν) we conclude, taking Lemma 4 into account, that under

our assumptions on the potential the operator Qz is Hilbert–Schmidt as |z| → 0.
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5. The Weakly Coupled Eigenvalues

In this section, we establish Theorem 1 as a consequence of its stronger variant.

First of all, we claim that provided that there exist eigenvalues of the per-

turbed operator Hα + εV for all small ε, they correspond to the singularities in the

unperturbed Green function and therefore necessarily tend to zero as the positive

parameter ε vanishes. The fact that zero is the only possible accumulation point is

not obvious, because we allow Hα + εV to be non-self-adjoint.

Lemma 7. Suppose Assumption 1. Let zε ∈ σdisc(Hα+εV ) for all sufficiently small

positive ε. Then |zε| → 0 as ε→ 0.

Proof. By the Birman–Schwinger principle, there exists a normalized ψε ∈
L2(R2,C2) such that Rz,εψε = −ψε for all sufficiently small positive ε. Then

1 = |〈ψε, Rz,εψε〉| ≤ ‖Rz,ε‖ ≤ ‖Rz,ε‖HS

= ε ‖Lz +Qz‖HS ≤ ε (‖Lz‖HS + ‖Qz‖HS).

By contradiction, assume that there is a sequence {εj}j∈N converging to zero and

a sequence of eigenvalues {zεj}j∈N converging to a positive point k of the essential

spectrum [0,+∞). Then the inequality above together with Lemma 6 implies 1 ≤
εj (Ck/2 + C), where Ck/2 and C are the constants from Lemma 6, independent

of j. This is obviously a contradiction for all sufficiently large j.

Our next step is to reformulate the Birman–Schwinger principle in the usual

way using the decomposition (26) of the Birman–Schwinger operator Rz,ε into the

singular part εLz and the regular part εQz. The existence of eigenvalue −1 for Rz,ε
is equivalent to the lack of invertibility of

(1 + ε(Qz + Lz)) = (1 + εQz)(1 + ε(εQz + 1)−1Lz).

Here the operator 1+ εQz is invertible for all sufficiently small ε by Lemma 6. That

means that, provided that ε is sufficiently small, −1 is an eigenvalue of Rz,ε if, and

only if, −1 is an eigenvalue of the rank-one operator ε(εQz + 1)−1Lz.

To find the form of an eigenvalue λ 6= 0 of the operator ε(εQz + 1)−1Lz,

let us denote by ψ the corresponding normalized eigenvector. Then by definition

of Lz (recall (27a)) we have (using the complex formalism w := x1 + ix2 and

w0 := x1
0 + ix2

0)

λψ(w) = ε(εQz + 1)−1A(w)D(w)

∫
C
YzD(w0)B(w0)ψ(w0) dw0. (34)

Here we have introduced the decomposition of the integral kernel

Lz(w,w0) = A(w)D(w)YzD(w0)B(w0)
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using

Yz :=

(
(−z)α−1 0

0 (−z)−α

)
,

D(w) :=
√
Cα

(
Γ(1− α)(|w|/2)α−1ei ph(w) 0

0 Γ(α)(|w|/2)−α

)
.

(35)

We rewrite (34) as

λψ(w) = ε(εQz + 1)−1A(w)D(w)bz with

bz := Yz

∫
C
D(w0)B(w0)ψ(w0) dw0 ∈ C2.

(36)

Inserting ψ back into a λ-multiple of (34), we get the equation

λε(εQz + 1)−1A(w)D(w)bz = ε(εQz + 1)−1A(w)D(w)εYzW(ε)bz (37)

with the matrix

W(ε) :=

∫
C
D(w0)B(w0)(εQz + 1)−1A(w0)D(w0) dw0.

Applying to both sides of (37) the invertible operator εQz + 1 and dividing by ε,

we see that any non-zero eigenvalue λ of ε(εQz + 1)−1Lz satisfies

A(w)D(w)εYzW(ε)bz = λA(w)D(w)bz (38)

which is a generalized eigenvalue problem in C2. The following proposition summa-

rizes the above analysis and additionally argues that (38) is equivalent to the usual

eigenvalue problem by “dividing by” the matrix-valued function w 7→ A(w)D(w).

Proposition 6. Suppose Assumption 1. For all sufficiently small ε, z ∈ C\[0,+∞)

is an eigenvalue of Hα + εV if, and only if, −1 is an eigenvalue of the matrix

εYzW(ε).

Proof. If a non-zero vector bz ∈ C2 solves the matrix eigenvalue problem

εYzW(ε)bz = −bz, then it is easy to check that the function ψ defined by the first

formula of (36) with λ = −1 solves ε(εQz + 1)−1Lzψ = −ψ. Assuming ψ = 0

implies A(w)D(w)bz = 0 for almost every w ∈ C. But then W(ε)bz = 0, because of

the structure of the matrix W(ε), which is impossible.

Conversely, assume ε(εQz + 1)−1Lzψ = −ψ with a non-trivial function ψ.

Then (36) holds with λ = −1 and thus defined vector bz is necessarily non-zero.

Applying the matrix εYzW(ε) to bz as defined by the integral formula of (36),

it is easy to see that εYzW(ε)bz = −(εYzW(ε))2bz. Consequently, either bz solves

εYzW(ε)bz = −bz or εYzW(ε)bz = 0. Because of (38) with λ = −1, the latter implies

A(w)D(w)bz = 0 and subsequently (36) yields ψ = 0, a contradiction.
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By virtue of the proposition, the eigenvalue problem for the differential opera-

tor Hα is reduced to analyzing the matrix eigenvalue problem

−f = εYzW(ε)f, (39)

where f = (f1, f2) ∈ C2. Using the definition of Yz, this is equivalent to the coupled

equations

−f1 = ε(−z)α−1(W11(ε)f1 + W12(ε)f2),

−f2 = ε(−z)−α(W22(ε)f2 + W21(ε)f1).

This pair of equations has a solution if, and only if, there is a solution z of the

problem

0 = ε [z−αW22(ε) + (−z)α−1W11(ε)] + ε2(−z)−1 detW(ε) + 1. (40)

Following the ideas of [13], we now separate the matrix W(ε) in two pieces

W(ε) = U + U1(ε) using

U :=

∫
C
D(w)B(w)A(w)D(w) dw =

∫
C
D(w)V (w)D(w) dw,

U1(ε) :=

∫
C
D(w)B(w)([(εQz + 1)−1 − 1]AD)(w) dw.

(41)

Lemma 8. Suppose Assumption 1. Then ‖U1(ε)‖ = O(ε) as ε→ 0.

Proof. Denoting by U1(w) the integrand of U1(ε), the Cauchy–Schwarz inequality

on C2 implies∣∣∣∣∫
C
U1(w) dw

∣∣∣∣ = sup

{∣∣∣∣〈ψ,∫
C
U1(w) dwϕ

〉∣∣∣∣ : ϕ,ψ ∈ C2, ‖ϕ‖ = ‖ψ‖ = 1

}
≤
∫
C
|U1(w)|dw.

Then the smallness of the norm of U1(ε) follows from the upper bound

|D(w)B(w)[(1 + εQz)
−1 − 1]A(w)D(w)|

≤ |D(w)B(w)| · ‖(1 + εQz)
−1 − 1‖HS · |A(w)D(w)|

≤ ‖(1 + εQz)
−1 − 1‖HS · |D(w)|2|V (w)|,

yielding

‖U1(ε)‖ ≤ ε‖Qz‖HS

1− ε‖Qz‖HS
· Cα max{Γ2(α),Γ2(1− α)}

×
∫
C

(max{|w|α−1, |w|−α})2v(w) dw
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≤ ε‖Qz‖HS

1− ε‖Qz‖HS
Cα max{Γ2(α),Γ2(1− α)}

×
∫
C

(|w|−2ν + |w|2ν)v(w) dw.

For conciseness, let us write

aε := (U + U1(ε))11, a0 := U11,

bε := (U + U1(ε))22, b0 := U22,

cε := (U + U1(ε))11(U + U1(ε))22 c0 := U11U22 − U12U21.

− (U + U1(ε))12(U + U1(ε))21,

By Lemma 8,

aε = a0 + O(ε), bε = b0 + O(ε), cε = c0 + O(ε), (42)

as ε→ 0. Then Eq. (40) reads

ε2cε(−z)−1 + ε(aε(−z)−1+α + bε(−z)−α) + 1 = 0. (43)

Let us summarize our findings in the following proposition.

Proposition 7. Suppose Assumption 1. For all sufficiently small ε, z ∈ C\[0,+∞)

is an eigenvalue of Hα + εV if, and only if, z is a root of (43).

In this way, the eigenvalue problem for a differential operator has been reduced

to an implicit equation. Since we have not been able to systematically analyze (43)

in the general case (particular results can be derived, of course), let us restrict to

the case of diagonal potentials V = diag(V11, V22).

Theorem 2. Suppose Assumption 1 and assume that V is diagonal.

(1) If V11 6= 0, assume a0 6= 0 and ph
(
−
∫
C V11(w)|w2|α−1 dw

)
∈ (1 − α)(−π, π).

Then the operator Hα + εV possesses for all sufficiently small ε > 0 a discrete

eigenvalue z+(ε) with the asymptotics

z+(ε) = −(−εaε)
1

1−α = −(−εa0)
1

1−α + O(ε
2−α
1−α ) as ε→ 0.

(2) If V22 6= 0, assume b0 6= 0 and ph
(
−
∫
C V22(w)|w2|α dw

)
∈ α(−π, π). Then

the operator Hα + εV possesses for all sufficiently small ε > 0 a discrete eigen-

value z−(ε) with the asymptotics

z−(ε) = −(−εbε)
1
α = −(−εb0)

1
α + O(ε

1+α
α ) as ε→ 0.

If both V11 6= 0 and V22 6= 0 satisfy the assumptions above, then there are

no other discrete eigenvalues Hα + εV for all sufficiently small ε. If V11 6= 0

(respectively, V22 6= 0) satisfies the assumptions from item 1 (respectively, item 2)

but V22 = 0 (respectively, V11 = 0), then z+(ε) (respectively, z−(ε)) is the unique

discrete eigenvalue of Hα + εV for all sufficiently small ε.
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Proof. If V is diagonal, then so is W, and cε = aεbε. This enables us to factorize

the Eq. (43) as

0 = (εaε(−z)−1+α + 1)(εbε(−z)−α + 1)

and we immediately obtain two solutions z± satisfying

(−z+)1−α = −εaε and (−z−)α = −εbε.

Under our assumptions on the potential these equations have solutions z± ∈
C\[0,+∞) for all ε small enough. The expansions for ε → 0 then follow from the

Taylor expansions of z± and using (42).

Note that the eigenvalues z+(ε) and z−(ε) are eigenvalues of H+
α + εV11 and

H−α + εV22, respectively. If both V11 and V22 are real-valued, non-trivial and non-

positive, we obtain Theorem 1 from the introduction.
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David Krejčǐŕık https://orcid.org/0000-0002-2442-1331

References

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formu-
las, Graphs, and Mathematical Tables, National Bureau of Standards Applied Math-
ematics Series, Vol. 55 (US Government Printing Office, Washington, DC, 1972).

[2] M. Baur, Weak coupling asymptotics for the Pauli operator in two dimensions,
preprint (2024); arXiv:2409.17787 [math.SP].

[3] R. Blankenbecler, M. L. Goldberger and B. Simon, The bound states of weakly
coupled long-range one-dimensional quantum Hamiltonians, Ann. Phys. 108 (1977)
69–78.

[4] M. Bordag and S. Voropaev, Charged particle with magnetic moment in the
Aharonov-Bohm potential, J. Phys. A Math. Gen. 26 (1993) 7637–7649.

[5] J. L. Borg and J. V. Pul, Pauli approximations to the self-adjoint extensions of the
Aharonov–Bohm Hamiltonian, J. Math. Phys. 44(10) (2003) 4385–4410.

[6] W. Borrelli, M. Correggi and D. Fermi, Pauli Hamiltonians with an Aharonov–Bohm
flux, J. Spectr. Theory 14 (2024) 1147–1193.

2550011-23

R
ev

. M
at

h.
 P

hy
s.

 2
02

5.
37

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
N

ST
IT

U
T

E
 O

F 
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 A

U
ST

R
IA

 o
n 

12
/3

0/
25

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.

https://orcid.org/0000-0002-2375-7263
https://orcid.org/0000-0002-2375-7263
https://orcid.org/0000-0002-2442-1331
https://orcid.org/0000-0002-2442-1331


July 4, 2025 10:4 WSPC/S0129-055X 148-RMP J070-2550011
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