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1. Introduction

In non-relativistic quantum mechanics, a free spinless particle in the plane is
described by the self-adjoint realization of the Laplacian —A in L?(R?). It is well
known that the two-dimensional Laplacian is critical, in the sense that its spectrum
is unstable under small perturbations. More specifically, —A-+v possesses a negative
eigenvalue whenever v € C§°(R?) is attractive (i.e. non-trivial and non-positive).
In physical terms, —A admits a virtual bound state at zero energy, meaning that,
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while the spectrum of —A is purely absolutely continuous, the singularity of the
Green function in the spectral parameter leads to the genuine eigenvalue under the
arbitrarily small attractive electric perturbations v. More specifically, the weakly
coupled asymptotics

inf o(—A + ev) ~ —exp ([;T /R2 v] 1) as e — 0T (1)

holds true. As the amount of literature on the subject is vast, we mention only [37]
for the pioneering work, [3,27] for the earlier papers and [8} |9} |12} |25] for the most
recent contributions.

Switching on the magnetic field, the situation changes dramatically because of
the diamagnetic effect. Mathematically, the magnetic Laplacian —A, := (—iV —a)?
in L?(R?) becomes subcritical for any smooth vector potential a : R?> — R? such
that the magnetic field b := curla is non-trivial. Here, the subcriticality means
the existence of a Hardy inequality —A, > p with positive p : R> — R, which is
equivalent to the fact that the singularity of the Green function disappears. Then
info(—A, + ev) > 0 for all sufficiently small e, so there are no negative weakly
coupled eigenvalues. In fact, this change of game equally applies to the singular
Aharonov—Bohm potential

2 _ .1
aq(z) ==« @ =) with o € R (2)

||
whenever o ¢ 7Z. This is particularly spectacular because b, := curla, vanishes
almost everywhere in the plane. In fact, b, = —27wad in the sense of distributions,

where § is the zero-centered Dirac function. Again, we mention only [30] for the
pioneering work and [7}, |10, {11}, 11619, |33] for the most recent contributions.

For particles with spin, however, a more realistic (yet still non-relativistic)
description is through the Pauli operator

—A,—b 0
H, := in L?(R?,C?), (3)
0 ~A,+b

subject to matrix-valued potential perturbations V : R? — C?*2, It turns out that
these systems exhibit the paramagnetic effect. Indeed, it is known [39] (though
perhaps less than in the magnetic-free spinless case above) that H, with any reg-
ular potential a does admit a virtual bound state at zero energy. Contrary to the
superfast exponential decay , however, the weak coupling is stronger now:

info(H, + evige) ~ —C V1Pl as e — 0, (4)

where C' is a constant depending on v and b, ®, := i fRQ b is the total flux of b
and it is assumed that |®,| € (0,1). The eigenvalue asymptotics are due to [21]
and |2} |28] in radial and general cases, respectively. (See also [20] for related Lieb—
Thirring inequalities.) Of course, the existence of the one virtual bound state (and
thus correspondingly unique weakly coupled eigenvalue) is due to the fact that one
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(and only one) of the operators —A, F b appearing in is critical (the choice F
depends on the sign of @, namely —A, — b is critical if ®;, > 0).

The objective of this paper is to analyze the criticality properties and weakly
coupled eigenvalues of the Pauli operator in the highly singular situation of the
Aharonov—Bohm potential , formally acting by

—A, +2mad 0
H,, = ( ) ) in L*(R?,C?). (5)
0 A, 2

Note that ®,, = —a for the choice . The operator H,_ is rigorously introduced by
considering a self-adjoint realization of the Aharonov-Bohm Laplacian with delta-
type interactions —A,_ + 27ad due to Stovicek et al. |15, [22, 23]. Particularly, we
set H, := Hf @ H.. _, where the chosen self-adjoint extensions HE, of —A,.
initially defined on C§°(R?\{0}) are in some sense the maximal ones, see below
for a precise characterization of its domain.

Our motivation is two-fold. First, contrary to the case of regular potentials con-
sidered in (2, [21] [28], the resolvent kernel of the unperturbed Hamiltonian H,_ is
known explicitly. Consequently, the standard Birman—Schwinger analysis for the
study of weakly coupled eigenvalues is available, so it is possible to avoid the
radial hypothesis on v as well as the necessity of advanced resolvent expansions due
to |21] and [2 |2§], respectively. Second, inspired by a recent interest in quantum
Hamiltonians with complex electromagnetic fields, our setting allows for consid-
ering complex-valued v (and in fact more general matrix-valued perturbations V,
though we do not pursue this research in this paper). In summary, comparing with
the precedent papers |2, 21} [28], our choice of the magnetic potential is special, but
the electric perturbations are allowed to be more general.

In agreement with the case of regular magnetic potentials, the main result of
our analysis shows H,_ is critical whenever o ¢ Z (by a unitary equivalence, one
may restrict to a € (0,1)). However, there are always two virtual bound states now.
Indeed, a variant of our main result can be stated as follows.

Theorem 1. Let a € (0,1) and v € C§°(R?) be non-trivial and non-positive. Then
inf o (H, 4 ev) ~ —CT /(1)

e ase— 0", (6)
inf o (H,, +ecv) ~ —C~ ¥/,

where C* are positive constants depending on v and a.

The asymptotics @ remain essentially the same for complex-valued v, under
suitable hypotheses imposed on integrals involving v (the extension to non-diagonal
matrix-valued perturbations V' of H,,_ is left open in this paper). At the same time,
we substantially relax the regularity and sign restrictions on real-valued potentials v
below. See Theorem [2] for our main general result.

The existence of two weakly coupled eigenvalues (@, contrary to the merely one
in the case of regular potentials considered in |2 [21} 28], might seem controversial at
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a first glance, arguing that the Aharonov—Bohm potential can be approximated by
the regular potentials. However, this approximation on the operator level is known
to be delicate |4} 5] 32), 34} [35] (see also [38] for Dirac operators). As a matter of fact,
there exist several realizations of the Pauli operator with the Aharonov—Bohm
potential (see [6] for a recent complete study), each has its pro and con from the
point of view of physical properties, however, no common agreement on the right
choice seems to exist in the community. In the language of [6] the extension we
explore here is the Friedrichs extension in the (s-wave, spin up) and (p-wave, spin
down) components, and the Krein extensions in the (p-wave, spin up) and (s-wave,
spin down) components (see also [6, Remark 2.4]). Our paper provides a negative
answer to a question of Persson’s [34, Sec. 4] about the possibility of the approx-
imation by regular potentials for our self-adjoint realization. On the positive side,
comparing the constant C~ from the first of our asymptotics (@ with the constant C
of due to [21}, 28 2], these weakly coupled eigenvalues quantitatively match.

The paper is organized as follows. The singular Pauli operator H,_ formally
written in (5)) is rigorously introduced in Sec. via the method of self-adjoint exten-
sions of symmetric operators. Its Green function is determined in Sec. [3] In Sec.[4]
we start to develop the Birman—Schwinger analysis, which enables one to reduce the
study of eigenvalues of the differential operator H, , subject to perturbations to the
study of an integral operator. This is completed in Sec. [ by reducing everything to
a matrix eigenvalue problem and further to an implicit equation, obtaining in this
way the asymptotics of the weakly coupled eigenvalues.

2. The Pauli Operator via The Extension Theory

The goal of this section is to rigorously introduce the singular Pauli operator
and state its basic criticality properties. From now on, we abbreviate H, := H,_ .
Recall that the magnetic field associated with the Aharonov—Bohm potential
is the distribution b, := curla, = 9,102 — 9,2al, = —27ad. It is therefore natural
to introduce the operator via the methods of extension theory of symmetric

operators. We follow the approach of [22| 23], which is based on the factorizations
]3'+ :T_T+ and H~™ :T+T_,
considered as operator identities in D(R?\{0}) := C§°(R?\{0}), where
- 0
Ty = —i(Op1 +i0,2) — (al +ia2) = e (—i(?r +id s 19) .
r r

Here, the second equality follows by the usage of polar coordinates (r, ) € [0, 00) x
(—m, ) defined by (z!,2%) =: (r cos ¥, r sin1). We use the same symbols T for the
extensions (denoted by T4 in [23]) to the space of distributions D’(R?\{0}).

The minimal realizations Hiin := T; Ty are associated with the closure of the
quadratic forms

honin[¥] = ITe0l”, D(hiy) = C3°(R*\{0}).

min min
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It turns out (cf. |23, Lemma 5.2]) that H H_

o =H_. = —A,, , where —A,_ is the
usual magnetic Laplacian with the Aharonov—Bohm potential (i.e. the Friedrichs
extension of this operator initially defined on C§°(R?\{0}), see [29]). It is well
known [30] that —A,_ is subcritical (i.e. there is a Hardy-type inequality) whenever
a .

The object of our interest are the mazimal realizations H,, := T+T% associ-

ated with the closure of the quadratic forms (¢f. |23, Lemma 5.4])

himax¥] = [ Tel*,  D(hina) = {v € L*(R?) : Tiy € L*(R*)}.

We then define

H,:=HT

max

® Hyy, in L2(R?,C%) = L2(R?) & L(R?). (7)

Contrary to the case of regular magnetic fields [28] (when the Pauli operator

is essentially self-adjoint), it turns out that both HZ, _ are critical (i.e. they satisfy

max
no Hardy-type inequality). To see it, let us restrict from now on, without loss
of generality (by a unitary equivalence, see |23 Sec. 6] and references therein or

[34, Proposition 3.1]), to
a € (0,1).

Then the virtual bound states ¢* of HE

- are given by (note that ¢~ is related
to Qg of [21])

e (z) :=r"" and @t (z):=r (17, (8)

More specifically, it is easy to check that p* € L2 (R?) and Tp® = 0 in the sense

of distributions. Of course, p* ¢ L?(R?), however, the boundedness of p* off the
origin enables one to apply the usual approximation procedure.

Lemma 1. There exists a sequence {pF}nen C D(hE,.) converging to ¢* point-

max
wise and satisfying

Proof. Let us consider a radial function & € C°°(R?) satisfying 0 < ¢ < 1,£(r) =1
if0<r<1and¢(r)=0ifr > 2 Here, with an abuse of notation, we write
&(r) = &(x) when |z| = r. Set &,(r) := &(r/n) for every n > 0. Since, TT(pTE,) =
r=1(=i0,&,) with ¢T from (8], we have

2n

Bt = 2 / P22l () dr

n
27T 2n

4% — 1
200—1 | ¢/ 2 1112 200—2
w2 e (r/m) P dr < T[|€ ||00Tna -
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Hence hf, . [¢*T¢] — 0 as n — oo whenever a € (0,1). Similarly, we have

T~ (p=&) = e Wr=%(—i0,&,) and thus

2n
sl ™6 =27 [ ) Prdr
n

2 [ 2a+1 ¢/ 2 AT -1
=— | /P dr <7 ¢l ———n""
n? J, “ 1l-a
Hence, again h, .. [¢ &,] — 0 as n — oo whenever a € (0, 1). a

With this auxiliary lemma, we now establish the desired claim.

Proposition 1. The operators H, . are critical.

X

Proof. By contradiction, let us assume that there exists a non-trivial non-negative
function p* € Ll (R?) such that HE, > p* in the sense of forms in L?(R?). Then,
for any compact set K C R?\{0}, Lcmmaimplics [ pPEleE|? = 0. Since |p*| are
positive on arbitrary K, we conclude with the contradiction that p* = 0 almost

everywhere in R?. a

Let us now characterize the domain of the Pauli operator H, via boundary
conditions at the singularity 7 = 0. The action of the operators HE, and —A,_
coincide on C§°(R?*\{0}). Hence, they are two different self-adjoint extensions of
the symmetric operator

Xi=-A,, =—-02 7719, +r72(=idy + @)%, D(X):=CF(R?\{0}). (9)

Due to [22], one has the characterization

D(H,\.) = {f € D(X*) : &;'(f) = ®}(f) =0}, (10a)
D(Hypo) = {f € D(X*) 1 @71(f) = ®(f) =0}, (10b)
where
1 27 )
®yH(f) 1= lim ! i f(r,9)e” dv,

27
Oy (f) i= lim <2171- ; f(r,9)el? dy — 7"1+°‘<I>1_1(f)>,

r—0 2 0

r—0

1 27
®S(f) := limr~° < f(r,ﬁ)dﬁ—r_a@(l)(f)>.
2'/T 0
It is not difficult to find the spectrum of the Pauli operator.

Proposition 2. 0(H,) = 0ess(Hy) = [0, +00).
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Proof. Since HE

max
prove the opposite inclusion, we construct a Weyl sequence. Given ¢ € C§°((0, 00) x

are non-negative, we immediately have o(H,) C [0,+00). To

R) with ||| = 1, for every positive n we define
1 z! z?
(@) = —@ | ——n,—
n n n
Note that the normalization factor is chosen in such a way that [|¢,| = 1 for

every n. Moreover, the scaling ensures that the derivatives of ¢,, vanish as n — oo,
namely

IVl =n~ IVl and  [|Apy | =n"?[|Ag]. (11)

Finally, the shift guarantees that the support of ¢,, never intersects the origin where
the operator is singular, in fact the support is “localized at infinity” in the sense that
supp ¢, = (n%,0) + nsupp . Now we define 1, (z) := @, (x)e** where k € R2.
Note that ¢, € C°(R2\{0}) c D(HZ,,) and |[4,| = 1 for every n, while both
HiE, act on C§°(R*\{0}) as X introduced in (J). Using that a, is divergence-free

outside the origin, one has
1K — E2all < 18a ]l + 20KV 0l + laa*eall + 20 - Voul —— 0.

Here, in addition to , we have used that ||aq ||z (suppp,) — 0 as n — oo. This
argument shows that o(HZE, ) = 0ess(HE,.) = [0,400). The same spectral result
for H, now follows by the fact that the spectrum of H,, is the union of the spectra
of H,, and H,, due to (7). O

In parallel with the Friedrichs extension —A,, of X, the authors of |40, [22]
consider the unitarily equivalent operator

H:=Uy(-A, UL,  where Uyp(r,9) == Vp(r,9). (12)

The operator H acts as the Laplacian in R?\{0} and functions ¢ in its domain
satisfy the following boundary conditions at the origin and on the cut ¥ = 7:

$(0) =0, (13a)

lim o (r,9) = ®™* lim (r, ), (13b)
Y—m_ Y——my

lim 9.(r,9) = e*™* lim  9,.3(r, ). (13c)
Y= Y——my

3. The Green Function

The goal of this section is two-fold. First, we apply Krein’s formula to the Green
function G, of the operator H from to find the Green function of the Pauli
operator H, . Second, we study the singularities of the Green function.

2550011-7
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3.1. Krein’s formula

The Green function G, is presented in [40, Eq. (7)]. Denoting by z € C\[0, c0) the
spectral parameter and choosing the branch of the square root so that Ry/—z > 0
and recalling that we assume a € (0,1) (without loss of generality), it reads

GZ(’I“,19;’I“0,190) = é(ﬁ—ﬁo)Ko(ﬁL%‘—l‘oD (14&)

efas+ia(197190)

_ sin(ma) /jo iKO(\/jZ R(s))——————ds.  (14b)

™ o 1 + e—s+i(¥—o)

Here, Ky is the zeroth modified Bessel function of the second kind

lv — xo|> =72 + 78 — 2rrgcos(9 — ), R(s)? :=1r% 412+ 2rrgcosh(s) (15)
and
1 if 9 — 99 € (—m,m),
e~ M if 9 — 9y € (=27, —m), (16)
e?maif 9 — g € (m,2m).

1
C('l?*’l?o) = %

Remark 1. Despite the three-fold description, GG, is continuous at ¥ — g = +7.
Indeed, the continuity of the first line ([14a]) follows from the equality [24] §6.791-1]
7mKo(a+b) = / Ki - (a)Ki, (b)dr

for | ph(a)| + | ph(b)| < 7. To see the continuity of the second line (14b)), we use the
identity

e} ePT
Kir(a)K_i7 (b)) —————~d
/_oo (a) ( )sm(ﬂ'(a +i7)) 4
oo 3 3 e (ufigp)
= /;OO KO(\/(I +b +2abCOSh(U))m du, (17)

for ph(a),ph(b) < m, a € (0,1) and |¢| < w. Its validity can be checked from
formula |24} §6.792-2]

/ o Ky (a) Kin (b) A = mKo(+/a® + B2 + 2aboosh(u). (18)
Using the fact that for |¢| < 7 the integral f,y ei’”% du vanishes along the

rectangle v := (—R,R) U (R, R —ip) U (R — ip, —R —ip) U (—R — ip, —R) for any
R > 0 by the residue theorem, we further compute

> iut e (vmiv) OO iT(s+ip) e —Tp : :
/ (§] md’u:/ [§ mdsze B(a_lT,l_(a—lT)).

— 00 —0o0

For the last equality we have used [24}, §3.313-2]. On the right-hand side the Beta

function B can be further evaluated as B(a —it,1 — (o — i1)) = Fatta—myy - Now
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we apply this result to the left-hand side of the ‘1“::_7;:3 multiple of integrated
over u € (—00,00) and arrive at (17).

To obtain the Green functions GF of the extensions Hz, , we mimic the steps
in |22, Sec. IV] and use the Krein’s formula (cf. [14, Eq. (2.6)]). Recalling the unitary

transformation U, from , Krein’s formula yields

¢ GE(w,w0)e 0 = Ga(z,m0) + > (MEVF f1(2) fE (o). (19)
jk=1,2

The coefficient matrices MF are determined below. Functions f1, f2 form a basis
of the deficiency subspaces ker (X* —z), where X is the Laplacian on test functions
on R?\{0}. In particular, we set (cf. |15])

{f; (’I”, 19)7 fg(?", 19)} = {Klfoc( _Zr)ei(a_l)ﬂ, KQ(\/TZT‘)eiaﬁ}

with K, denoting the vth modified Bessel function of the second kind.

As G, is the integral kernel of the resolvent of H, the range of the corresponding
integral operator is D(H) determined by the boundary conditions . The sum
in is the integral kernel of a finite-rank operator. Since upon integration over
g € R? the Green function G (x,z0) has to map square integrable functions
to the domain D(HZ, ), we need to choose the matrices MF in such a manner
that GE(z,z¢) satisfy (as functions of € R?) the respective boundary conditions
of HE _ given in . To check these conditions, we investigate the behavior of

G.(z,70) and that of f1, f2 for |z| = r — 0. As for the former, one has [22, Eq. (29)]

sin(ra) I'(a) —r\ T e
G.(r,9,70,%) = o 1—a< 5 ) FX(ro, 9g)e"i1=)?

n sin(ra) T'(1 — «) (\/?T>afz2(7“o,190)eiaﬂ +0O(r)

272 o

as 7 — 0. The asymptotics of f1, f2? follow from the behavior of the Bessel functions

Ko(w) = " () o) - P (Y o), (20

as |w| — 0, where (v) > 0 and ph(w) # +=. In particular, we arrive at

GZi (r,9, 9, 190)e*i0“90

= Z (M) (7o, Y0)

j=1,2

[ G () e

= Y 02 | K2 (5) " wmae - K (5) ]

P 2 2 2a

2550011-9
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, sin(ra) T(a) (f)l‘“ (V=2)"" % fL(ry, d9)

22 1 —a \2
sin(ra) I'(1 — «) /7
\ snlre) F =)

)" (V=2 (o, 90) + O(r)

272 a

as r — 0.
Now we are able to check when GZ(r,9,rg,9g) satisfy the boundary condi-
tions (10). We first consider D(H,,,). The need of the functional ®Y(-) to vanish

max
means that the coefficients in front of 7~ have to vanish. This leads to (M})72 =0

for all j = 1,2 (since f1'? are linearly independent). From vanishing of the func-
tional ®5*(-) we conclude that the coefficient in front of the term 7' ~%e~" is zero.
Therefore

sin(ra)

(MH)*»' =0 and (MHY = 5

z z T

Second, we deal with the conditions in D(H_,,,) and obtain

ax)

(M7)' =0, j=1,2,

z

by vanishing coefficients in front of r®*~'e™¥ coming from the requirement

®7!(-)=0, and, finally,

2.2 sin(ma)

(M)"? =0 and (M;)*? = p

z z

as ®9(-) = 0 implies vanishing coefficients in front of re.
We summarize our investigation in the following proposition.

Proposition 3. Let a € (0,1). For every z € C\[0,400), the resolvent of H,

satisfies
+ -1
(Ha_z)1:<<Hmax 2) 0 )
0 (Hox — 2) 7t

max

where the integral kernels G of the operators (HE, — z)~! are given by

GH(r,9,10,90) = e G (1,9, 10, 9 el

sin(ma - . —=
, sin(ra)

7T2 Kl—a( —Z’/’)Kl_a(\/ —Zro)eii(ﬁiﬁo),

G; (7", 197 To, 190) = eiiaﬂ GZ (T‘, 197 To, ﬂo)eiaﬁo

sin(ma) —

3 Ko(V—21)Ko(V/—2r0),

with G, being given in ,

3.2. The singularities

It is well known that the criticality of an operator is related to the singularity of its
Green function. Moreover, the weak-coupling asymptotics are determined by the
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nature of the singularity. To apply the Birman—Schwinger analysis below, we need
to have precise information about the singularities of the Green functions G as
z—0.

Note that the functions z — GT are analytic outside of the cut [0, +0c). More-
over, for any fixed r, 9, rg, ¥¢, the limits Gi_is(r, 9,709,99) as e — 0T are well defined
for every positive k. Therefore, the singularities indeed occur only as |z| approaches
Zero.

First of all, we establish a technical identity.

Lemma 2. Let a € (0,1). For every ¢ € (—2m, —m) U (—m,7) U (7, 27), one has

A Sin(rar) 0 [0 €7

where C(p) is given in (16).

Proof. Note that the integral converges under the restrictions on ¢ and a. To com-
pute its value we use the residue theorem. To that aim we consider the regularized
integrand of by multiplying it by e~* for some € > 0. Then we integrate
along the oriented contour Cr consisting of the real interval [—R, R] and the arc '
of radius R centered at the origin placed in the top half of the complex plane. In
summary, we are considering

. e—as
Je = e ——ds
S On 1 + e—s—i—lzp

This integral can be evaluated by summing its residua {exp[—(e + ia)(¢ + (2k +
D)1}y, corresponding to the simple poles sy, := i(¢ + (2k + 1)7) in the upper
half of the complex plane as follows:

- 0 ifpe(—m,m),
J. = e~ (etia)(p+m) Z e (eH102mk  with ko =< 1 if p € (2w, —7),
k=Fmin -1 if p € (m, 2m).
Here kpin is given by the condition that I(s;) > 0 for all k > k. Note also that
the sum is well defined as for all such k£ the absolute value of the summands is less
than one. The integral over the arc of the loop vanishes in the limit R — oo since

. e—OtS
/ e ———ds S/ e
I'r 14 emstiv T'r

—Qas

e
14 e—stip

ies ds

w/2 e~ R cosf—eRsin 3
:/0 1+efR(cosB+isinﬁ)+i<p Rdﬁ

g e(lfa)RcosﬂfeRsinB
+L/2 1+eR(cos[3+isin[3)—iap Rdﬂ
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Using the dominated convergence we can thus compute our original integral

) o0 e—@s . oo e
e / T a—stio ds = e'"*? lim 61657_‘9_’_1 ds
_eo L+e @ e=0 [_ 1+e ®
) ) e—as
= lim lim e —
c20R—o0 Jo, 14 e sty
1
__ 7 —2ria
sin(mra) .
e27r10¢
This is equivalent to (21]). a

To study the singularities of GF, we start with the part G, given by .

z )

First, recall the asymptotics of the zero’th Bessel function (cf. [1, §9.6.12-13])
Ko(w) = —log(w/2) + O(1) as |w| — 0. Second, since the function R introduced

in is real-valued, we have log(v/—zR(s)) = log(v/—z)+log(R(s)). Consequently,
we see that the logarithmic singularity of G, cancels out due to Lemma 2] yielding
the behavior

G.(r,¥;10,90) = d(x,x0) + O((\/j2)2) as |z =0

with some function d dependent on the spatial coordinates but independent of z.
Now we focus on the second terms in the formulae for GF given in Proposition
From the asymptotics , we compute

Ki_o(V=2r)K1_o(v/—270)

= (V=2)** (F(l;a))z (Zo) - W

() )

X ((W)la> FO(y/— et el (22a)

Ko(vV/=2r)K,(vV/=2r0)
S () () R () (7))

F(l—Oé) 2 200 (TTO\® 2 min{a,1—a}
" (m ) V= () o= ) (220)
as |z| — 0.
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In summary, we have established the following asymptotics.

Proposition 4. Let o € (0,1) and r,9,r9,9¢ be fized. For every z € C\[0, +o0),
one has

G (r,9,70,90) = Cal(1 — a)*(—2rro/4)* e =70 1 0(1),
G (r,9,70,90) = Col'(a)?(—zrro /4)~* + O(1),
as |z| = 0, where

sin(ma)

Cy =
472

4. The Birman—Schwinger Analysis

Let V : R? — C2?*2 be a matrix-valued function. For almost every x € R2, we
consider the matrix polar decomposition

AW = YTV,
V(z) = B(z)A(x) with (23)

where U(x) is a unitary matrix. By |V (z)| we denote the operator norm of the
matrix V(z) when considered as an operator on C2. Our standing hypothesis
about V is as follows.

Assumption 1. Let o € (0, 1). Suppose
/ V@) (2 + |2 2)de < 0o and |V] € LM (R?) (24)
R2

for some positive 6 and v := max{1 — a, a}.

Note that conditions particularly imply that |[V| € L*(R?).

Let € be a (small) positive number. By the Birman—Schwinger principle [26]
(justified under Assurnption in Remark below), z € C\[0, 4+00) is an eigenvalue
of H, + €V if, and only if, —1 is an eigenvalue of the integral operator

R..:=€A(H, —2)"'B. (25)

Here, A, B are considered as the maximal operators of multiplication by the matrix-
valued functions denoted by the same symbols.

To apply this principle to the analysis of the weakly coupled eigenvalues, we
decompose

Rz,e = G(Lz + Qz)7 (26)

where L, and @, are the singular and regular parts of the Birman—-Schwinger
operator, respectively. More specifically, adopting the convention that the kernel of
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an integral operator T is distinguished calligraphically by T, we define
LZ(T7 197 TO; 190) = COZA(T? 19)

(1 — a)?(—z|rro|/4)* tei(?=Y0) 0
) ( 0 r<a>2<—z|rro|/4>-a>
x B(ro,Yo), (27a)
Q,(r, ¥, ro, %) := A(r, )G 8(r,9,19,99)B(r0, %) (27Db)
Gt (r, 9, rg, 9 0
= A(r,9) < o 0 0 t0) Gieg’(?",;,ro,ﬁo)
x B(ro, %) (27¢)

with

Gr&E(r, 9,79, 00) = [e_i‘w G.(r,9,70,9)e % + C, <4Kl,:!:(\/ —zr)

_E
x K+ (v/—zrg) — T (v™)? (ZZT()) ) ei(”io‘)(ﬁﬁﬂ)] .

(27d)
Here vt :=1—«a and v~ := a.

To analyze the regular part Q)., we need the following fact about the zero’th
modified Bessel function Kj.

Lemma 3. There exist functions f,g analytic on C\(—00,0] and continuous at 0
such that

Ko(w) = log(w) f(w) + g(w).

Functions f and g can be chosen bounded in absolute value on Rw > 0 by Ce
with some constants Cy,Cy > 0. Moreover, f(0) = 1, f(w) — f(0) = O(w?) and
g(w) = 0(1) as |w| — 0.

—ChRw

Proof. Recalling the series [1, §9.6.12.—13]

(w/2)*
(K1)?

Ko(w) = —(log(w/2) + Mo+ Y _(1+1/2+1/3+ - +1/k) and
k>1
- (28)

we define f(w) := —Ipe™2¥ and g(w) = Ko(w) — log(w/2) f(w). With this choice
f is entire and ¢ is analytic outside of the cut (—oo,0]. Note that g is continuous
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at 0 and all the claimed properties follow from , definitions of f and ¢ and the
asymptotics of Iy, Ky for large arguments |1, §9.7.1-2]. |

First of all, we argue that the Birman—Schwinger operator associated with H =
Ua(=Aq, ) U5 (recall (12)) is regular, in agreement with its subcriticality.

[0}

Lemma 4. Suppose Assumption[I] There exists a positive constant C such that,
for all z € C\[0, +00),

IACH — 2)7' Bllus < C.

Proof. Recall that the integral kernel of A(H — 2)~ !B reads A(x)G,(z,x¢)B(z0),
where the Green function G, is given in . We separate the proof of finiteness
of the Hilbert—Schmidt norm
|A(H — 2)""Bllns = / V(@) |G (2, 20)[* [V (z0)| dz dzo
R

2 XR2
into two parts:

(1) showing that it is bounded uniformly in |z| € (0, 1],
(2) showing that it is bounded uniformly for any |z| > 1.

Ad 1. We start with the bound for small |z|, as some of the estimates will be useful
in proving the second point too. We add and subtract the logarithmic singularity
log(v/—2)f(0) in the Green function of the Friedrichs extension G, given by

and using Lemma 2] we divide it in two summands
G.(z,20) = CFi(|z — x0]) + Fa(z, 70)
with
Fi(t) = [Ko(V=2t) —log(v/=2) f(0)], t>0,

sin(ma) /°° 1 e—as+Ha(9—1o)

o 2n B T ey 45

FQ(LL', 3?0) =

™

Here, f is as in Lemma |3| and it follows that
[F1(8)] = [log(v/=2)(f(V=zt) — f(0)) + g(v/=zt) + logtf (v—=21)|
< Ci(|log(vV=2)|IV==t|" +logt + 1), (29)

for some constant C; > 0 and any 8 € (0,1). Let us remark, that for any fixed
t € (0,00) this stays bounded uniformly in |z| € (0,1).

Turning our attention for a moment to F5, we remark that for a fixed difference
¥ — 9o # £, we have the exponential decay for large s of the fraction

2 _
e 2as

T 1420 cos(¥ — Yg) +e28

—astia(9—0
e—astio( 0) <Ce—2\s|min{a,1—a}

1 + e—s+i(@—vo)
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with some C' > 0. We also notice that |3 log(R(s)?)| < |s| 4 [log(r 4 ro)| and that

R(s)? < (r+rg)?eflsl. Hence, with an arbitrary choice 0 < 8 < min{a, 1 — a} we

conclude by that the integral in F5 is convergent for every fixed pair r, rg.
Due to these estimates, it is only left to show the finiteness

/ [V (z)| |1 +log(a) + a”|* |V (x0)| dzdzy < 0o for a € {r + g, |z — x0l}.
R2 xR2

Since

(1+a= ) ifae(0,1],

logal < C 30
[logal < ’3{(1+aﬂ) if a e [1,00), (30)

where Cjp is some constant dependent only on f, it is enough to bound the three
integrals

1

/ [V(2)|{ a=28 3 |V(x)|dzdxy for a € {r +ro, |z — 20|} (31)
R2 xR2 028

Finiteness of the first integral with the constant middle term is a direct consequence
of Assumption To treat the positive power, notice that since § < max{a,1—a} =
v we have

| = @o* < (r +70)* < 27(1+ [2*) (1 + |zo[*)

and the integrability follows by our Assumption

For the negative power we first estimate (r+7¢) ™ < |z —z| ™% < 14|z —20| 7
for any p > (. Then the integrability follows under our assumptions by the Hardy—
Littlewood—Sobolev inequality |31, Theorem 4.3] choosing § < pu = %. Here, 6 > 0
is as in .

To finish the proof we point out that G, is continuous at ¥ — 9y = +m, see
Remark [

Ad 2. By the analyticity of Ko(v/—zt) on ®/—z > 0 with ¢ > 0, by the behavior
for large arguments |1, §9.7.2] and by Lemma [3} we can bound

|Ko(vV/=2t)| < C(|V==2t)| 7P +1) forallte (0,00), Rv/—2 >0

with some constant C' > 0 and arbitrary 8 > 0. For all ¢ € (0, 00) this is uniformly
bounded in |z] > 1. The statement is then a consequence of the finiteness of the
top two integrals in , which was shown in the first part of the proof. a

Lemma 5. Suppose Assumption[l]l Operators L, and Q. are Hilbert-Schmidt for
all z € C\[0, +00).
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Proof. Recall the formulae for L, and @, given in . The claim for L, is obvious.
Taking Lemma [4] into account, the statement for @), follows directly from defini-
tions by the analyticity of the Bessel functions on the complex half-plane with
positive real part and their decay properties (cf. [1, Egs. (9.6.2), (9.6.10)])

K, (w) =0(e""/yw) as |w| = o (32)
for Rw > 0 and p € R. m|

Proposition 5. Suppose Assumption. For negative z with all sufficiently large |z|,
the difference

(Hoy+ eV —2)"' —(Hy —2)7F

—1/2

is a compact operator. Moreover, A(Hy — z)~*/? and B(H, — 2) are also com-

pact.

Proof. By Lemma [5| and Proposition the Birman-Schwinger operator R, .
introduced in and decomposed in is a Hilbert—Schmidt operator for all
z € (—00,0). Moreover, its integral kernel R, . tends pointwise to zero as z — —oo.
The second part of the proof of Lemma and justify using the dominated con-
vergence on the integral kernel R, . to deduce | R, ¢||lus = ||A(Hay — 2) "1 Allus — 0
as z = —oo. Thus, along the lines of [36, Example 7 of Sec. XIIL.4], we can argue
that the difference of resolvents

(Ho+ €V —2)"' —(Hy —2)7 !
==Y €V (Hy—2)"'B(~A(Hs — 2) "' B)"A(Ho — 2)7"

is a compact operator for some negative z with large |z|. For this conclusion, we
use the above observed fact that P*P with P := A(H, — z)~'/2 tends to zero in
the Hilbert-Schmidt norm as z — —oco. It then follows that A(H, — z)~'/2 and
B(H,, — z)~'/? are also compact operators. |

Remark 2. It follows from Proposition that A(Hy — 2)~Y/? and B(H, — z)~1/?
are bounded operators for all negative z with sufficiently large |z|. It justifies the
usage of the Birman—Schwinger principle in the spirit of [26]. Moreover, the pertur-
bation V is relatively form bounded with respect to H,. By making e small, the
relative bound can be made arbitrarily small. This justifies the sum H, + eV, which
should be understood in the sense of forms.

Combining Proposition [5| with [36], Theorem XIII.14], we obtain the stability of
the essential spectrum.

Corollary 1. Suppose Assumption[ll Then
Oess(Ho + €V) = Oess(Ho) = [0, +00).
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Finally, we establish a uniform version of Lemma

Lemma 6. Suppose Assumption[l] There exists a positive constant C such that, for
all z € C\[0, +00), ||Q:|lus < C. At the same time, given any positive £, there exists
a positive constant Ce, such that, for all z € C\[0, +00) with |z| > &, ||L;|lus < C..

Proof. The claim for L, is obvious from (27a)). The uniform boundedness is also
clear for the part of @), coming from the first line of due to Lemma
At the same time, it follows from the structure of the second line of and
the asymptotic behavior that, given any positive €, there exists a positive
constant C¢, such that, for all z € C\[0, +00) with |z| > €, [|Q.|lus < C.. It remains
to analyze the asymptotic behavior of the second line of as |z| = 0.

Let p € {a,1 — a}. We establish a convenient notation (cf. |1, §9.6.2, §9.6.10])

n( (k+p+1)
(33)
w € C\(—00,0). On account of Lemma W] it is enough to bound K, (v/—z|z|)
K, (v/=z|xol) = f2,,(0)| — zaao|™* by a constant multiple of (|| + [z]~#)(|xol* +
|zo|#). To that end we denote by & = \/—z|z| and by ¢ = /—z|zg| and write the
exact identity

K (&) Ku(Q) = £2,,(0)(6¢) ™" = (Ku(€) — f-u(0)6™) Ku(Q)

+ &M u(0)(Ku(C) = ¢ f-u(0))-

If both |C],|£] > 1 then the left-hand side is bounded by a constant by analyticity
of K, and the decay . If one of the arguments is small, assume without loss
of generality |£| < 1, we notice that f, (&) — f,(0) = O(£?) as [¢] — 0 and use the
bound

—T2—H © w 2k
Ky(w) = w™fop(w) —wfu(w) with f,(w) = 5= 2wr) > k;'F( =
k=0 """

[Ku(§) =& f-u(0)] < CIE"
with some positive constant C. If ¢ > 1 we have |K,({)| < Ci1 < Cy|[¢|* with
Cy > 0, while for || < 1 by it holds
[Ku(Q) = ¢ fu(O)] < CIC)* and KL ()] < Cal¢] ™,

where C,Cy > 0 are some constants. Symmetrically we can find bounds in case
|¢] < 1. For any ¢, & with positive real part we can thus estimate

K () Ku(C) = f2,(0)(€) ] < Ca(I€/¢|" + [¢ /€™ + [ + 1),

for some constant C3 > 0. In particular this stays bounded for any fixed z,y
as |z| — 0. Since p < max{a,1 — a} = v implies [o, [V (2)|(|z[** + |z|72*) <
2 [ao [V (@)](|2]* + [2|7?") we conclude, taking Lemma 4| into account, that under
our assumptions on the potential the operator @, is Hilbert—Schmidt as |z| — 0.

O
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5. The Weakly Coupled Eigenvalues

In this section, we establish Theorem [1| as a consequence of its stronger variant.

First of all, we claim that provided that there exist eigenvalues of the per-
turbed operator H, + €V for all small €, they correspond to the singularities in the
unperturbed Green function and therefore necessarily tend to zero as the positive
parameter € vanishes. The fact that zero is the only possible accumulation point is
not obvious, because we allow H, + €V to be non-self-adjoint.

Lemma 7. Suppose Assumption[l] Let zc € ogisc(Ho+€V) for all sufficiently small
positive €. Then |zc| — 0 as e — 0.

Proof. By the Birman-Schwinger principle, there exists a normalized . €
L?(R?,C?) such that R, . = —1, for all sufficiently small positive e. Then

1= |<w6aRz,ewe>| < ||Rz,s|| < ||Rz,e||HS
=e|lL: + Q:llus < e(||Lzllus + [|Q=[ns)-

By contradiction, assume that there is a sequence {¢;};cn converging to zero and
a sequence of eigenvalues {z, } jen converging to a positive point & of the essential
spectrum [0, +00). Then the inequality above together with Lemma |§| implies 1 <
€j (Cxj2 + C), where Cj /o and C are the constants from Lemma @ independent
of j. This is obviously a contradiction for all sufficiently large j. |

Our next step is to reformulate the Birman-Schwinger principle in the usual
way using the decomposition of the Birman-Schwinger operator R, . into the
singular part eL, and the regular part e().. The existence of eigenvalue —1 for R, .
is equivalent to the lack of invertibility of

(1+e(@Q. 4 L2) = (1 +€Q.) (1 + €(eQ. +1) 7' L).

Here the operator 1+ €@, is invertible for all sufficiently small € by Lemma[6} That
means that, provided that e is sufficiently small, —1 is an eigenvalue of R. . if, and
only if, —1 is an eigenvalue of the rank-one operator €(eQ, + 1)71L,.

To find the form of an eigenvalue A # 0 of the operator e(eQ, + 1)7'L,,
let us denote by % the corresponding normalized eigenvector. Then by definition
of L, (recall (27a)) we have (using the complex formalism w := ! + iz? and

el s 2
wo = xy + irg)

Mp(w) = e(eQ, + 1)_1A(w)m/cYZD(wO)B(wO)Q/J(wO) dw. (34)

Here we have introduced the decomposition of the integral kernel

L, (w,wy) = A(w)D(w)Y, D(wp)B(wo)
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using

I
N
i“,o
|
Q
v

(1= a)(jw]/2)7~ e Ph() 0 )
\ﬁ( 0 T(a)(jwl/2)7*)

We rewrite (34) as
Mo(w) = €(eQ, + 1) A(w)D(w)b, with

b, = YZ/CD(wO)B(wO)dJ(wO)dwO €C?. (36)

Inserting ¥ back into a A-multiple of , we get the equation
Ae(eQ. + 1) A(w) D(w)b, = (€@ + 1) A(w) D(w)eY.W(e)b.  (37)

with the matrix
Wi(e) = /CD(wO)B(wO)(eQZ + 1)L A(wo) Dwo) duv.

Applying to both sides of the invertible operator €@, + 1 and dividing by e,
we see that any non-zero eigenvalue \ of €(eQ, + 1) 'L, satisfies

A(w)D(w)eY,W(e)b, = MA(w)D(w)b. (38)

which is a generalized eigenvalue problem in C2. The following proposition summa-
rizes the above analysis and additionally argues that is equivalent to the usual
eigenvalue problem by “dividing by” the matrix-valued function w — A(w)D(w).

Proposition 6. Suppose Assumption . For all sufficiently small e, z € C\[0, +00)
is an eigenvalue of Hy + €V if, and only if, —1 is an eigenvalue of the matrix
€Y, W(e).

Proof. If a non-zero vector b, € C? solves the matrix eigenvalue problem
€Y. W(e)b, = —b,, then it is easy to check that the function ¢ defined by the first
formula of with A = —1 solves €(eQ, + 1)"'L,¢p = —. Assuming ¢ = 0
implies A(w)D(w)b, = 0 for almost every w € C. But then W(e)b, = 0, because of
the structure of the matrix W(e), which is impossible.

Conversely, assume e(eQ, + 1)"'L,1) = —t with a non-trivial function .
Then holds with A = —1 and thus defined vector b, is necessarily non-zero.
Applying the matrix €Y, W(e) to b, as defined by the integral formula of ,
it is easy to see that €Y, W(e)b, = —(eY,W(e))?b,. Consequently, either b, solves
€Y, W(e)b, = —b, or €Y, W(e)b, = 0. Because of with A = —1, the latter implies
A(w)D(w)b, = 0 and subsequently yields 1 = 0, a contradiction. a
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By virtue of the proposition, the eigenvalue problem for the differential opera-
tor H, is reduced to analyzing the matrix eigenvalue problem

—f =eY:W(e)/f, (39)

where f = (f1, f2) € C2. Using the definition of Y}, this is equivalent to the coupled
equations

—fi= 6(*2’)0‘71(W11(6)f1 + Wia(e) f2),
—fa = e(—2)"*(Waz(e) f2 + Wai(e) f1)-

This pair of equations has a solution if, and only if, there is a solution z of the
problem

0= e[z "Waa(e) + (—2)* *Wy1(€)] + €2(—2) " det W(e) + 1. (40)

Following the ideas of [13], we now separate the matrix W(e) in two pieces
W(e) = U + Uy (€) using

U::/(CD(w)B(w)A(w)D(w) dw:/(;D(w)V(w)D(w) dw, "
01(6) = [ D)B)((eQ- + 1)~ = 1AD)(w) du.

Lemma 8. Suppose Assumption[l] Then |Ui(e)|| = O(e) as e — 0.

Proof. Denoting by U; (w) the integrand of Uj (€), the Cauchy—Schwarz inequality
on C? implies

/Cuaw)dw\ :sup{|<¢,/cu1<w>dww>\ o e Cllel = vl =1

< /@ U () duw.

Then the smallness of the norm of U (€) follows from the upper bound
|D(w)B(w)[(1+€Q.) " = 1]A(w)D(w)]
< |D(w)B(w)| - [|(1 +€Q2)"" = 1lus - [A(w)D(w)|
<N +eQ:) ™" = 1lus - [D(w) PV (w)],

yielding

(O] Welts . ¢, mae{r(0). 1201 - 0))

— €||Q:|lus
x a—1 —a\2
x /C (max{ ], || ~*})?0(w) dw
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< €l|Q-|lns
1 —€||Q:lns

x /C (]2 -+ w2 Yo(w) duw. .

C,max{I'*(a),T%(1 — a)}

For conciseness, let us write
ae = (U + U1(€))11, ag := Uy,
be := (U + Ur(€))22, bo := Uaa,
ce := (U4 U1(€)11(U + Ui (€) )2 co := Up1Usg — UraUsy.
— (U + Ui(€))12(U + Ui (€))21,

By Lemma 3]

ac=ao+0(€), be=bo+0(e), cec=co+ O(e), (42)
as € = 0. Then Eq. reads

2e(—2) T Fe(ac(—2) Y 4 b (—2) ") +1=0. (43)

Let us summarize our findings in the following proposition.

Proposition 7. Suppose Assumption . For all sufficiently small e, z € C\[0, +00)
is an eigenvalue of Hy, + €V if, and only if, z is a root of .

In this way, the eigenvalue problem for a differential operator has been reduced
to an implicit equation. Since we have not been able to systematically analyze (43)
in the general case (particular results can be derived, of course), let us restrict to
the case of diagonal potentials V' = diag(Vi1, Vag).

Theorem 2. Suppose Assumption[l] and assume that V is diagonal.

(1) If Vi1 # 0, assume ag # 0 and ph ( — [ Vir(w)[w?|* dw) € (1 — a)(—m, 7).
Then the operator Hy + €V possesses for all sufficiently small € > 0 a discrete
eigenvalue z4 (€) with the asymptotics

20(€) = —(—€a) T = —(—eag) T + O(e1==) as € — 0.

(2) If Vag # 0, assume by # 0 and ph ( — [ Voo (w)w?|* dw) € a—m, 7). Then
the operator Hy + €V possesses for all sufficiently small e > 0 a discrete eigen-
value z_(€) with the asymptotics

2 (€) = —(—eb)® = —(—ebg)® + O a") as e — 0.

If both Vi1 # 0 and Vae # 0 satisfy the assumptions above, then there are
no other discrete eigenvalues H,, + €V for all sufficiently small e. If Vi1 # 0
(respectively, Vag # 0) satisfies the assumptions from item 1 (respectively, item 2)
but Vay = 0 (respectively, Vi1 = 0), then z4(€) (respectively, z_(€)) is the unique
discrete eigenvalue of Hy + €V for all sufficiently small e.
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Proof. If V is diagonal, then so is W, and ¢, = acb.. This enables us to factorize

the Eq. as
0 = (€ac(—2) " T 4 1)(ebe(—2) "> + 1)
and we immediately obtain two solutions z4 satisfying

(—2z )7 = —ea, and (—z_)* = —eb..

Under our assumptions on the potential these equations have solutions z4 €

C\[0, +00) for all € small enough. The expansions for ¢ — 0 then follow from the
Taylor expansions of z+ and using . O

Note that the eigenvalues z; (¢) and z_(e) are eigenvalues of H} + €Vj; and
H_ + €Vao, respectively. If both Vi; and Vs are real-valued, non-trivial and non-
positive, we obtain Theorem [I| from the introduction.
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