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One of the most striking quantum phenomena is superposition, where one particle simultaneously inhabits
different states. Most methods to verify coherent superposition are indirect, in that they require the distinct
states to be recombined. Here, we adapt an XOR game, in which a “test” photon is placed in a superposition of
two orthogonal spatial modes, and each mode is sent to separated parties who perform local measurements on
their modes without reinterfering the original modes. We show that by using a second identical “measurement”
photon the parties are nonetheless able to verify if the test photon was placed in coherent superposition of the
two spatial modes. We then turn this game into a resource-efficient verification scheme, obtaining a confidence
that the particle is superposed which approaches unity exponentially fast. We demonstrate our scheme using a
single photon, obtaining a 99% confidence that the particle is superposed with only 37 copies. Our work shows
the utility of XOR games to verify quantum resources, allowing us to efficiently detect quantum superposition

without reinterfering the superposed modes.
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Introduction. Superposition is a phenomenon at the heart of
quantum theory [1-6] and is an essential resource for all quan-
tum technologies, with several protocols explicitly relying on
superposed single particles [7—11]. It is also of fundamental
interest, where, for example, superposition is demonstrated
using ever larger quantum states [12—14] to probe the lim-
its of quantum theory. In both cases, superposition must be
characterized. Conventionally, this is done indirectly by re-
combining the superposed states, varying their relative phase,
and observing interference fringes to reveal superposition.
However, the current effort to deploy quantum technologies
[15,16] has led to a growing need to verify quantum resources
in a distributed scenario. In this case, quantum resources are
shared between spatially separated parties and it is not always
possible to recombine and interfere the superposed states.
To this end, one can ask if the superposition of a single
particle can be verified directly, without interfering the two
modes in which the particle is superposed. While this can
be accomplished through the experimental violation of Bell’s
inequality [17-19] using a single photon in a superposition
of two spatial modes [20-25], these methods require com-
plex homodyne measurements. Moreover, when it comes to
verifying entanglement, violating Bell’s inequality is often

“Contact author: daniel. kun@univie.ac.at
TContact author: lee.rozema@univie.ac.at

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

2469-9926/2025/111(5)/L050402(6)

L050402-1

inconvenient and replaced with device-dependent techniques,
such as quantum state tomography or entanglement witnesses.
By taking advantage of the interference of indistinguishable
photons, we present a protocol that fulfills the same role, al-
lowing for a direct, device-dependent verification of quantum
superposition at a distance.

In this Letter, we adapt an XOR game recently proposed by
Del Santo et al. [26] explicitly designed to directly detect the
presence of coherent superposition. In their work, a classical
bound on the probability of winning this game is derived by
assuming that the information carrier is a classical particle,
localized in one of two spatial modes. Exceeding this winning
probability thus directly reveals the presence of a delocalized
(i.e., spatially superposed) particle. In this protocol, we make
use of an ancillary identical, superposed particle, which gives
rise to two-photon interference and allows us to exceed the
classical winning probability. To offset the additional resource
costs, we then adapt methods from recent work on efficient
entanglement detection [27,28] to our task. In particular, we
measure a small, fixed number of particles and ask how likely
it would be for classical particles to reproduce our observed
outcomes. Doing so yields a confidence that the particle is
superposed, which approaches unity exponentially fast with
the number of measured particles. We experimentally demon-
strate this protocol with minimal resources by placing a single
test photon in a spatial superposition of two modes and verify
that this test photon is superposed across these modes using
only local measurements and one additional superposed an-
cilla photon.

Our experiment makes use of two single-photon states,
independently placed in spatial superpositions. The two parts
of the first spatial superposition state then interact with the
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respective parts of the second superposition state on a beam
splitter, forming a delocalized interferometer. Similar to a
standard interferometer, which encodes phase information
in the relative intensity of the two output spatial modes,
this interferometer encodes the phase of the first superposi-
tion state in two-photon spatial correlations after the beam
splitters. This allows us to observe this phase without rein-
terfering the spatially separated modes of the test particle. To
quantify this, we adapt the proposal from Ref. [26] and for-
mulate a two-player XOR game [29] that can be played using
our interferometer. Such interferometers have been proposed
[30,31] and recently demonstrated [32] to extend the baseline
in long-baseline interferometry. Similar interferometers have
recently also been used to teleport qubits encoded in the Fock
basis [33], and have been realized on a chip [34] and with time
bins [35].

Our game consists of a Referee challenging the two play-
ers, Alice and Bob, to guess the XOR value of two randomly
chosen bits. As illustrated in Fig. 2, the Referee acts on a
single test photon (T') that is sent to Alice or Bob and encodes
his two bits by acting on the two respective spatial modes.
Alice and Bob can locally measure the photon sent by the
Referee, and are allowed to exchange classical information.
They additionally share a second ancillary measurement pho-
ton (M), which is prepared in a spatial superposition between
their two laboratories and acts as a measurement resource. In
Ref. [26] it was shown that if the test particle is classical, i.e.,
in a statistical mixture of the two spatial modes, then Alice
and Bob can do no better than to randomly guess the XOR
value. This is because a classical particle can only contain
information about a single bit, since it definitively travels
along one of the two paths. However, if the particle is in
a coherent superposition of both paths, Alice and Bob can
perform a joint measurement on the test particle and their
shared resource state, which allows them to correctly guess
the XOR value more often.

The protocol. The goal of our protocol is for two separated
users, Alice and Bob, to verify the spatial spatial superposition
of a test photon. This superposition is prepared as shown in
the orange shaded region of Fig. 1. A test photon is sent
to a 50/50 beam splitter placing it in superposition of two
modes, Ar and By, which represent the spatial modes of the
test photon that are sent to Alice and Bob, respectively. More
precisely, the initial state is |1)7 = &;, which the beam split-
ter then transforms into %(&;T + &I;T)|O). Thus the spatial

superposition that Alice and Bob wish to verify is |{7) =
(11, 0)4, 5, +10, Dy 3, )-

The Referee then performs interventions on these two
paths, x in mode A7 and y in mode By, where x,y € {0, 1},
with 0 (1) denoting the absence (presence) of the intervention.
The Referee now challenges the players to produce outputs a
and b, such that a @ b = x @ y. We define Alice’s and Bob’s
winning probability,

1

1
D g plably), )
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for this XOR game, where we have assumed the Referee’s
choice of interventions (x,y) to be uniformly distributed.
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FIG. 1. XOR game implementation. The test (orange field) and
ancilla measurement (yellow field) photons are generated via a
spontaneous parametric down-conversion photon pair source (not
pictured) and then coupled into the experiment, passing through a
linear polarizer (P) to make them indistinguishable in polarization.
Each photon is prepared in a coherent superposition of two spatial
modes and sent to Alice (blue field) and Bob (green field). The
Referee (red field) applies (or not) @ phases to the spatial modes
of the test particle through two piezo-enabled phase delays X, Y.
Alice and Bob also each control a local phase (A, B), which they
use to set their shared phase reference. They each locally interfere
their test and ancilla measurement modes, recording coincidences
between each other’s detectors. Inset: Example data run. A plot
of correlated (orange) and anticorrelated (blue) detection events as
the Referee implements four different phase settings, delimited by
shaded regions and indicated in parentheses. Switching the phase
setting leads to a switch from correlated to anticorrelated detections.
Each x value corresponds to one “instance” of the game, as described
in the text.

For classical test particles, Ref. [26] showed that an opti-
mum strategy employed by Alice and Bob will always yield
p(ablxy) = 1/2, and thus P, = 1/2 which corresponds to
random guessing. For a quantum superposition, however, Al-
ice and Bob can find a strategy which yields Pyi, > 1/2. We
will now show, that when the Referee’s interventions are -
phase shifts instead of “path blockers” as originally imagined
in Ref. [26], the quantum winning probability goes up to
Pwin =3 / 4.

To determine the presence of the Referee’s interventions,
Alice and Bob use an ancillary measurement photon M, which
is indistinguishable from 7', apart from its spatial mode,
and serves as a shared phase reference. Similarly to the
test photon it is prepared in the superposition state [i,) =
\/%(| 1,0)4,.8, + 10, 1)a,.5,), Where Ay and By, represent the
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FIG. 2. Probability to win XOR game. As the superposition of
the test particle is decohered, the winning probability Py, (P) ap-
proaches the classical limit. Blue dots are experimental data, and the
error bars indicate the standard deviation taken over all instances.
The average experimental win rate with a pure state is PSP =
0.716 £ 0.007, well above the classical limit. The gray curve shows
Eq. (6) for perfect visibility, while the green curve corresponds to
the experimentally measured HOM visibility V = 94%. Good agree-
ment between the model and the data can be seen while the lower
bound of 0.54 on the purity is due to imbalance in the preparation
beam splitters. Inset: Distribution of experimental win rates for a
single experimental run with a pure state. Each instance contains
around 500 played games.

spatial modes of the measurement photon that are sent to Alice
and Bob, respectively. In Fig. 2, the ancilla measurement
photon is prepared at a central location and shared between
their laboratories. In general, Alice or Bob could also prepare
the photon in their laboratory and send the second mode to the
other laboratory. They then perform joint measurements on
the two photons consisting of simple coincidence detections,
in contrast to past single-photon Bell violation experiments,
which require complex homodyne measurements [22-25].

The state of the joint test-measurement system after the
initial beam splitters is |Y7)|¥a), where |r) and |y), de-
fined above, are states over the test and measurement photon’s
modes Ay, By and Ay, By, respectively. As the two photons
travel from the beam splitters to the measurement setups of
Alice and Bob, the terms corresponding to each spatial mode
acquire relative phases. We will denote the phases applied
by the Referee by ¢, and ¢,, and set the propagation phases
for the ancilla measurement photon to zero for simplicity
(see Supplemental Material for a discussion [36]). The ideal
premeasurement state is therefore

1

ﬁ(e’”"ll, O)ar.5r + €910, Day ) @ 1Y), (2)

We will use the ancillary measurement photon in the state
|Yy) as a resource to verify the superposition between modes
A7 and Br. We therefore assume that the state |i,) is free
from error. Note that if |y,) is imperfect, the success of our
protocol will decrease. To perform their measurements, each
party interferes their test and ancilla measurement modes on
a 50/50 beam splitter, and detects which port the photons exit
from (blue and green fields in Fig. 2). Note that before these
beam splitters, we can consider the test photon to be distinct
from the measurement photon since the modes that the test
photon is superposed in are orthogonal to those of the mea-
surement photon. However, since the test and measurement
photons are indistinguishable (apart from their spatial modes),
after mixing these modes on beam splitters one can no longer
consider separate test and measurement photons.

Within each laboratory, Alice and Bob use their detection
events to determine the Referee’s action. Notice that half of
the time both photons will arrive either in Alice’s or Bob’s
laboratory. In this case the detection events contain no joint
phase information and, again, the best the parties can do is
to randomly guess the value of x @ y. The other half of the
time, both parties receive one photon each. In this case, al-
though there is no single-photon interference [Eq. (A2) in the
Supplemental Material [36]] the probabilities for Alice and
Bob’s two-photon detection events to be correlated or anticor-
related are complementary and depend on ¢, + ¢, [Eqgs. (A3)
and (A4) in the Supplemental Material [36]]. This occurs
even though the modes these phases are applied on are not
interfered. In other words, the detection events depend on
delocalized combinations of the individual phases.

In order to phrase this scenario as an XOR game, we restrict
the Referee’s phases to ¢, ¢, € {0, 7}, and write ¢, = xm,
¢, = ym. It follows that the anticorrelated events vanish if the
Referee’s choices satisfy x @ y = 0. Similarly, if the Referee
chooses bits such that x @ y = 1 the correlated events vanish.
Thus, when Alice and Bob both register a photon, they can
win the game by simply outputting the index of the detector
that registered a click. In the general case, the probability for
Alice and Bob to give outputs a and b given Referee choices
x and y is

2 2

Averaging this expression over all settings x and y yields a
probability to win the game of P, = 3/4 when Alice and
Bob output a & b. However, this expression only holds true for
perfectly indistinguishable particles in pure quantum states.
Experimental details. We generate the test and ancilla
measurement photons using spontaneous parametric down-
conversion (SPDC) in a type-II beta barium borate (BBO)
crystal (see Supplemental Material [36]). To implement the
interventions, the Referee is given control over two free-space
delay stages, which are controlled by piezoelectric transduc-
ers (PZTs). Alice and Bob’s local measurements are each
implemented with a 50/50 beam splitter and a pair of single-
photon detectors (Ag, A; and By, By, respectively).! Using two

_1\a®b
p(ab|xy)=%[1+COS2((X+)})]T+( D ”)] 3)

'The phase calibration and detector efficiency measurements are
described in detail in the Supplemental Material [36].
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photons from an SPDC event ensures high-visibility two-
photon interference. Nevertheless, imperfections remain. In
the Supplemental Material [36], we compute Py, in the pres-
ence of our main experimental imperfections for a test particle
described by the density matrix

|: 7—T )»tTr;:|
pr = )

4
)\.Z‘;VT Rr @

where ) represents the amount of decoherence. The measure-
ment particle state py, is in the analogous pure state with A =
1. Here, 7; = |t;|*> and R; = |r;|* describe the beam splitters
used to superpose the photons i € {T', M}. The main imperfec-
tions are the Hong-Ou-Mandel (HOM) visibility V' between
the test and ancilla measurement photons and the imbalance
of the two input beam splitters, which further reduce Py;,. The
expression for the winning probability accounting for these
factors is

Pyin(A) = 5 + 3AV(Tr Ry + TuRr). (5)

To estimate the expected experimental win rates, we measure
the HOM visibility on both detection beamsplitters (shown in
Fig. 4 of the Supplemental Material [36]), finding a visibility
of V=94+2%. We also measure the splitting ratio of all
beam splitters, finding that both input beam splitters have
the same R : 7 ratio of 0.65 : 0.35, while the detector beam
splitters in Alice’s and Bob’s laboratories are balanced within
experimental uncertainty. This simplifies Eq. (5) to

Pyin(P) = % +V RTT\/P — (R2+T772), (6)

where we have now replaced A with its expression for purity
‘P from Eq. (C5). Setting P = 1 gives an expected maximum
winning probability of Py, = 0.7162.

Results. Each experimental run consists of 240 instances of
the game, with 60 instances for each phase setting (¢y, ¢,).
For each instance, we acquire coincidence counts for 1s,
yielding approximately 500 coincidence counts per second,
distributed across all four coincidence patterns. Each coin-
cidence count corresponds to one round of the XOR game.
One experimental run thus amounts to approximately 120 000
rounds of the XOR game. The data in the inset of Fig. 2
constitute one experimental run, where the shaded areas in-
dicate the two XOR sum values. To avoid bias, the order of
the four phase settings is determined randomly for each run.
The analyzed results of one run are displayed in the inset of
Fig. 3. Therein we see the distribution of the experimental Py,
over the 240 instances. For these data, an average win rate
of 0.716 £ 0.007 is achieved, which is far above the classical
limit of 0.50, and matches the maximum expected Py, given
by Eq. (6). The PYTHON analysis can be found here [37]. Thus
we can directly conclude that the test photon is in a coherent
superposition.

To study the transition from the quantum regime to the
classical limit, we decohere the test photon’s spatial superpo-
sition by introducing controlled randomness in the test photon
phase. We do so by adding phase noise with a Gaussian distri-
bution to the Referee’s X PZT setting for each instance. The
standard deviation of the Gaussian distribution determines
the amount of decoherence A and thus the purity of the test

Confidence (C)

0 50 100 150
Ncopies

5 10 15 20 25 30 35 40 45 50 55 60
Ncopies

0.0

FIG. 3. Efficient confidence estimation. The median confidence,
taken over 25 repetitions of the game, vs the number of rounds is
indicated by the green line. The box plot illustrates the width of
the confidence distributions, and the black dots show the number of
outliers at the corresponding confidence value. As shown in the inset,
the residual of the median confidence approaches zero exponentially
fast in the number of detection events, and 37 copies suffice to reach
a confidence above 99%.

photon. As described in the Supplemental Material [36], we
can tune the purity of the test photon in the range [0.54,1],
where the lower bound is due to the slight imbalance in the
spatial superposition state. We then implement measurement
runs, as defined above, for a set of purities in this range. The
resulting win rates are plotted in the main panel of Fig. 3.
As we vary the purity from 1 to 0.54, the win rate decreases
according to the predicted experimental Py, (P) from Eq. (6).
This prediction, plotted in green in Fig. 3, agrees well with
our experiment, without using any free parameters. This mea-
surement set further confirms the utility of XOR games for
coherence detection, as even low-purity, almost classical su-
perpositions can be effectively verified without the need to
reinterfere the spatial modes.

By building on works exploring efficient verification of
entanglement [27,28], our formulation of the verification task
as an XOR game also allows us to verify superpositions effi-
ciently. More concretely, we can express the confidence C that
the test particle is in a superposition as C = 1 — p, where p =
1 - kNii(")_l (IZ)ZLN is the p value for the state not being in a
superposition. This p value corresponds to the probability of a
classical particle having generated at least as many wins as ex-
perimentally observed [see Supplemental Material Eqgs. (E1)
and (E2) [36]]. The confidence can therefore be interpreted
as the probability of the particle having been in a superpo-
sition. We evaluate the median experimental confidence over
25 repetitions of the game, and find that in the majority of
rounds 37 copies suffice to certify the superposition to 99 %
confidence level (see Fig. 3). Moreover, as shown in the inset
of the figure, the confidence approaches unity exponentially
fast with the number of copies.

Discussion. In this Letter, we have demonstrated a proto-
col to detect the superposition of a quantum particle using
spatially separated local measurements and two-photon in-
terference with an identical resource photon. To do so, we
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created a delocalized two-photon interferometer, in which
the individual phases applied to two modes of a spatially
superposed photon are measured at a distance, without in-
terfering these two modes with each other. While there is
no single-photon interference in our work, it nevertheless
relies on two-photon-like interference between indistinguish-
able photons. Our method to verify superposition can be
contrasted with the indirect inference of spatial superposition
through single-particle self-interference, such as in Young’s
double-slit experiment. Recent work has argued that such
interference experiments admit classical explanations [38]. It
would thus be interesting to analyze our nonlocal interferom-
eter in light of this. The experimental apparatus we employ
is similar to single-photon Bell tests or EPR steering experi-
ments [24,25], with two crucial differences. First, the shared
resource between the two parties in our work is a delocalized
single-photon state, instead of a phase reference set with laser
light. This allows us to stay in the discrete variable picture,
and eliminates the need for complex measurements based on
homodyne detection. Second, by designing an XOR game for
the task of coherence detection we directly confirm superpo-
sition in a device-dependent, distributed framework providing
a means to verify superposition, analogous to the use of en-
tanglement witnesses, rather than Bell violations, to detect
entanglement. Finally, to offset the additional resource cost
of our protocol we use it in a shot-by-shot manner to achieve
a confidence that the particle is superposed that converges to

unity exponentially fast, providing an efficient tool to certify
quantum superposition in quantum networks and distributed
settings.
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