®

Check for
updates

Value Iteration with Guessing for Markov Chains
and Markov Decision Processes

Krishnendu Chatterjee! ®, Mahdi JafariRaviz>@®, Raimundo Saona! @,
and Jakub Svobodal!

! Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
{krishnendu.chatterjee, jakub.svoboda}@ist.ac.at, raimundo.saona@gmail.com

2 University of Maryland College Park, College Park, USA
mahdi j@umd.edu
https://ista.ac.at/, https://umd.edu

Abstract. Two standard models for probabilistic systems are Markov
chains (MCs) and Markov decision processes (MDPs). Classic objectives
for such probabilistic models for control and planning problems are reach-
ability and stochastic shortest path. The widely studied algorithmic ap-
proach for these problems is the Value Iteration (VI) algorithm which
iteratively applies local updates called Bellman updates. There are many
practical approaches for VI in the literature but they all require exponen-
tially many Bellman updates for MCs in the worst case. A preprocessing
step is an algorithm that is discrete, graph-theoretical, and requires linear
space. An important open question is whether, after a polynomial-time
preprocessing, VI can be achieved with sub-exponentially many Bellman
updates. In this work, we present a new approach for VI based on guess-
ing values. Our theoretical contributions are twofold. First, for MCs, we
present an almost-linear-time preprocessing algorithm after which, along
with guessing values, VI requires only subexponentially many Bellman
updates. Second, we present an improved analysis of the speed of con-
vergence of VI for MDPs. Finally, we present a practical algorithm for
MDPs based on our new approach. Experimental results show that our
approach provides a considerable improvement over existing VI-based
approaches on several benchmark examples from the literature.

Keywords: Markov decision processes - Markov chains - Value iteration
- Reachability - Stochastic Shortest Path.

1 Introduction

Markov Chains and Markov Decision Processes. Markov chains (MCs) and
Markov decision processes (MDPs) [2,20,38] are widely used mathematical mod-
els with applications in various fields including computer science, economics, op-
erations research, and engineering. These models study dynamical systems that
exhibit stochastic behavior. MCs consist of a finite state space and a stochastic
transition function. MDPs extend MCs with non-deterministic choices over ac-
tions of a controller that determines the stochastic transition function at each
period.

© The Author(s) 2025
A. Gurfinkel and M. Heule (Eds.): TACAS 2025, LNCS 15697, pp. 217-236, 2025.
https://doi.org/10.1007/978-3-031-90653-4_ 11

https://orcid.org/0000-0002-4561-241X
https://orcid.org/0009-0002-0495-3805
https://orcid.org/0000-0001-5103-038X
https://orcid.org/0000-0002-1419-3267
https://ista.ac.at/
https://umd.edu
https://doi.org/10.1007/978-3-031-90653-4_11
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-90653-4_11&domain=pdf

218 K. Chatterjee et al.

Objectives and Value. Objectives define the payoff to be optimized by the con-
troller. The classic objectives for MCs and MDPs that arise in control, verifica-
tion, and planning problems are [2,38]: (i) weighted reachability objectives and
(ii) stochastic shortest path (SSP) objectives. In weighted reachability objec-
tives, we are given a target set of states and weights on them. Then, the payoff
of a path is, if it reaches a target state, the weight of that state, otherwise zero.
In SSP objectives, we are given a target set and a positive cost at every state.
Then, the cost of a path is, if it reaches a target state, the sum of the cost till a
target state is reached, otherwise infinity. In MCs, the value is the expectation of
the objective. In MDPs, the value is the optimal expectation over all resolutions
of the non-deterministic choices.

Value Iteration. Both MCs and MDPs with the above objectives can be solved in
polynomial time [2, Chapter 10] by a reduction to linear programming (LP) [7].
Even though linear programming yields a polynomial-time solution, the algo-
rithm most used in practice is Value Iteration (VI), which is a classic and well-
studied algorithmic approach [14]. Given an initial value vector, the VI algorithm
iteratively applies local updates, called Bellman updates [6], to approach the
value vector. The two key advantages of VI over LP are the following. First, the
VI algorithm is simple, elegant, and space-efficient (i.e., it requires linear space)
whereas (to the best of our knowledge) linear-space LP-based algorithms for
MDPs are not known. Second, the VI algorithm has symbolic implementations
which scales to large state spaces, e.g., representing value vectors as multiter-
minal binary decision diagrams and applying local updates [30,34], whereas LP-
based algorithms do not. Given the advantages of VI over linear programming,
V1 is the most widely used approach in several tools for probabilistic verification,
e.g., PRISM [33] and STORM [30]. See [26] for a thorough comparative study.

Preprocessing. MCs and MDPs are often preprocessed to speed up computa-
tion. For example: in weighted reachability objectives with binary weights, a
preprocessing step is to compute all states with values of either zero or one; in
SSP objectives, similar computations identify all states with value infinity. The
desired properties of preprocessings are: (a) discrete and graph-theoretical, i.e.,
it does not depend on the precise transition probabilities; and (b) linear space,
so it ensures space efficiency. For various preprocessings for VI, see [9,24,27,40].

Question. Given the practical relevance of VI, multiple VI-based approaches
have been proposed in the literature including Interval VI [24,3], Variance-
reduced VI [42], Sound VT [40], and Optimistic VI [27]. However, they all require
exponentially many Bellman updates in the number of states in the worst case.
Thus, a fundamental question is the existence of an efficient preprocessing that
can achieve VI with sub-exponentially many Bellman updates.

Our Contribution. Our main contributions are the following.
— Sub-exponential VI for MCs. We present an almost linear-time preprocessing
algorithm for MCs which, along with guessing values, requires only subexpo-
nentially many Bellman updates to approximate the value. Informally, the

Guessing Value Iteration 219

preprocessing obtains a set of states to guess values which are verified by
solving the rest of the MC. The preprocessing to obtain the set of states
where values will be guessed is based on breadth-first-search and set cardi-
nality, so it can be symbolically implemented. See Theorem 1 for details.

— VI convergence for MDPs. We present a new analysis of the speed of conver-
gence of VI for MDPs. This improves on the previous bounds given in [24]
and motivates the use of guessing in MDPs.

— Practical approach for MDPs and experimental results. We present a new
practical VI-based approach for MDPs called Guessing VI. We have imple-
mented our approach on STORM [30]. We evaluate our approach on the
Quantitative Verification Benchmark Set [28] against all existing VI-based
approaches. We consider 474 examples: (i) in 170 examples all approaches
run very fast (less than 100 milliseconds); (ii) in 135 examples, all approaches
perform similarly (the max and min are within 10 % of each other); (iii) in
83 examples, there is a winner among the previous VI-based approaches over
our approach, however, in these examples, the average improvement of each
previous approach over ours is at most 1.15 times (i.e., 15% improvement);
and (iv) in 86 examples our approach is the fastest, with an average im-
provement of at least 1.27 times (i.e., 27% improvement). Our experimental
results show that our approach provides significant improvement over exist-
ing VI-based approaches.

Related Works. There are three main preprocessings for MDPs used in the lit-
erature: (i) graph connectivity [17, Section 3]; (ii) qualitative reachability [21,
Algorithms 1-4]; and (iii) collapsing Maximal end components (MECs) [11]. All
these preprocessings run in subquadratic time and are standard in the literature.
For example, after collapsing MECs, an MDP is usually referred to as contracting
or halting [24].

For a given horizon, VI provides a strategy that is optimal, and computing
such a policy is EXPTIME-complete [4]. The most important related works are
the VI-based approaches previously presented in the literature, i.e., Interval VI
(IVI) [24,3], Optimistic VI (OVI) [27] and Sound VI (SVI) [40], which we have
already discussed. For MCs and MDPs, there are two main model-checking tools:
PRISM [34] and STORM [30]. Our benchmark instances come from the Quan-
titative Verification Benchmark Set (QVBS) [28], which incorporates instances
from the PRISM benchmark set [33].

In all works mentioned, the MDPs are fully known a priori. When the system
is not known a priori, there are approaches based on learning and statistical tests,
such as [9]. Similarly, in all works mentioned, the MDPs are finite. When the
probabilistic system has uncountably many (continuous) states, sufficient con-
ditions for an anytime approximation of the reachability value are given in [23].
While the literature on MCs and MDPs is vast, our work relates to VI-based
algorithmic approaches, and hence we restrict our attention to primarily these
lines of work.

220 K. Chatterjee et al.
2 Preliminaries

Notation. For a finite set X, we denote the set of probability measures on X
by A(X) and the indicator function of X by 1[X]. For a natural number n, we
denote the set {1,2,...,n} by [n]. For two disjoint sets X and Y, we denote
their disjoint union by X LY.

Markov Decision Process (MDP). An MDP is a tuple P = (S, E,¢) with the
following properties.

— 8 =5;US, is a finite set of states partitioned into decision states Sy and
probabilistic states S,.

— §: 5, = A(Sy) is a probability transition function. We denote the probability
5(s)(s") by 6(s,s’) and dmin the smallest positive transition probability.

— E C S x S is a finite set of edges. For a state s € S, we write E(s) := {s’ €
S : (s,s') € E} and we require the following properties: (a) for all states
s € S, the set E(s) is non-empty; and (b) for probabilistic states s € S, we
have that E(s) = {s' € S:d(s,s’) > 0}.

Given an initial state s; € S, the dynamic is as follows. For every stage ¢ > 1, if
st € Sp, then the next state s;11 is drawn from the distribution 6(s,); if s; € Sy,
then the controller chooses the next state s;1 from E(s). We call the graph
Gp = (S = S, U Sq, E) the labeled graph of P where vertices are labeled as
decision or probabilistic.

Strategy. A strategy o describes the choice of the controller at each state, i.e.,
o: S84 — S such that, for all states s € Sy, we have that o(s) € E(s). The set
of all strategies is denoted X', which is finite. These strategies are referred to as
positional in the literature, as opposed to general strategies that depend on the
entire history.

Markov Chain (MC). A Markov Chain M is a class of MDPs where there is
only one strategy. Equivalently, for all states s € Sy, there is a unique successor,
ie., |E(s)| = 1. Given an MDP P, a strategy ¢ induces an MC P, where each
decision state s € Sy transitions deterministically to o(s).

Plays. For an MDP P, a play is a legal sequence of states. Formally, the set
of plays is defined by 2 := {w = (st)i>1 : Vt > 1 s441 € E(sy)}, i.e., the set
of infinite paths in the labeled graph of the MDP. We denote the set of paths
starting at s as (2.

Probabilities. An MDP P, a strategy o and an initial state s define a natural
dynamic (S;);>0 over the state space S. Formally, they define a probability space
(2, F,P, s) where the probability measure is the Kolmogorov extension of the
natural definition over events defined by a finite sequence of states. For an MC
M and an initial state s, we denote the probability measure by Pj.

Guessing Value Iteration 221

Objectives: Weighted Reachability and Shortest Stochastic Path. An objective
is a measurable function that assigns a quantity to every play, i.e., a function
v: 2 — RU{oc}. A state s € S is absorbing (or sink) if E(s) = {s}. We consider
the following two objectives.

— Weighted Reachability. A target set T° C S of absorbing states and an as-
sociated weight function w: T' — [0,00) define the weighted reachability
objective Reachr as follows. For every play w, if the play reaches state
s € T, then Reachr(w) = w(s); if the play never reaches a target state,
then Reachy(w) = 0. We simply write Reach if T is clear from the context.

— Shortest Stochastic Path (SSP). A target set T C S of absorbing states and
an associated weight function w: S — (0, 00) define the stochastic shortest
path objective SSPt as follows. For every play w, if the play does not reach a
target state, then SSPr(w) = oo; and if the play reaches a target state, then
SSPr(w) is the sum of the weights till a target state is reached including the
weight of the reached target state. We simply write Reach if T" is clear from
the context.

For a weight function, we denote wpyi, = min{w(s) : s € T} and wpax =
max{w(s):s € T}.

Value. Given an MDP P and an objective, the value of P is the best the con-
troller can guarantee in expectation. For a play w = (s¢)>1, let t*(w) == inf{¢t >
1:s; € T}. Then, for an initial state s, the value is defined as follows.

valp(s; Reach) = max E, ¢(w(s;-) - 1[t* < o0]),

o
valp(s; SSP) :== min E, , <Z w(st)> .

t=0

If the objective is clear from the context, then we simply write valp(s) or val(s).

Value Iteration (VI). Value iteration is a classic algorithm that computes the
value of an MDP P with either weighted reachability or SSP objectives [14]. It
simultaneously computes valp(s) for all s. First, it considers an initial vector
vy: S — R. At stage @ > 1, it applies a Bellman update operator (described
later) on v; to obtain the next vector v;41. The Bellman update operator depends
on the objective. Under a well-chosen initial vector vy, the sequence of vectors
(v;)i>1 converges strictly monotonically to the value vector (valp(s))ses.

Bellman Update. Given an MDP P, for each objective there is a different Bellman
update operator. Cousider a state s € S\ T, and a vector v: S — R. For
reachability objectives,

maxy ¢ p(s) v(s") s €8y

ReachUpdate(P, v, 5) =
eachUpda e(v 5) {Zs’eE(s) (5(8,8/> U(Sl> se Sp

222 K. Chatterjee et al.

For SSP objectives,

w(s) + ming ¢ g5y v(s’) s € Sy
w(s) + X gep(s) 0(s,8)v(s') s€S

For states in T, the updates make no changes in the vector. For simplicity,
we denote these two Bellman updates simply BELLMANUPDATE. By bounding
the output by known lower and upper bounds and starting from a lower or
upper bound, iterative applications of BELLMANUPDATE generate a monotonic
sequence of vectors.

SSPUpdate(P, v, s) :== {

Mazximal End Components (MECs). Given an MDP, an end component is a set
U of states such that, in the corresponding labeled graph, (a) U is closed, i.e., for
all states UNSp we have E(s) C U; and (b) U is a strongly connected component.
Maximal end components (MECs) are end components that are maximal with
respect to subset inclusion.

Significance of the Objectives. On the one hand, weighted reachability objec-
tives have the following properties: (a) they represent the classic reachability
objective when every target set is assigned weight 1; (b) they correspond to the
positive recursive payoff function of Everett [19]; and (c) they naturally arise in
many other applications, e.g., in MDPs with long-run average objectives, after
computing the value function for every MEC, the problem reduces to weighted
reachability objectives [8]. While they reduce to classic reachability objectives,
we consider them for ease of modeling. On the other hand, SSP objectives have
the useful property that, if the value of a state is known, then we can convert it
to a target state with the known value as its weight.

Uniqueness of Fizpoint. In general, the Bellman update operator does not have a
unique fixpoint. For reachability objectives, an approach to ensure uniqueness is
collapsing MECs, which can be achieved in sub-quadratic time using a discrete
graph-theoretical algorithm [11]. For SSP objectives, the Bellman update has
a fixpoint if all states can reach the target, which can be checked in linear
time. Moreover, this fixpoint is unique because weights are strictly greater than
zero. In the sequel, we consider that Bellman update operators have a unique
fixpoint, i.e., for reachability objectives, MECs are already collapsed; and for
SSP objectives, the underlying graph is connected.

Error Bounds for VI. Given an MDP P and an objective, we call a vector v an
e-approzimation of the value vector if |[v — val| < . For all our objectives,
under a well-chosen initial vector vy, the sequence of vectors (v;);>1 given by VI
converges strictly monotonically to the value vector. Moreover, a convergence
bound, i.e., a bound on the distance between the vector v; and the value vec-
tor val, is given as follows. Recall that i, is the smallest positive transition
probability. Then, for all ¢ > 1,

3
oy = val oo < (1= 0}) llor = val |

Guessing Value Iteration 223

In particular, for € > 0, obtaining an e-approximation of the value is guaranteed
after O (|S| log(]|vy — val Hoo/s)/§ﬁ|n) > 0 (2151log(1/e)) applications of the
Bellman operator, i.e., exponentially many in the size of the MDP. This bound on
the number of updates is necessary for VI in simple examples of MCs. Therefore,
VI requires © (2‘5 og(1/ €)), i.e., exponentially many, Bellman updates even for
MCs. This bound applies to all previously defined VI-based approaches.

Preprocessing. The VI algorithm deals with value computation and precise prob-
abilities, and is space efficient because it uses linear space. Preprocessing steps
have been studied to speed up VI in practice. For examples, see [24,27,40]. The
desired properties of preprocessing are the following: (a) discrete and graph-
theoretical so it does not depend on numerical input; and (b) linear space, to
retain the space efficiency of VI. A basic open question is the following.

Break Ezxponential Barrier for VI. Design a polynomial-time preprocess-
ing such that the number of Bellman updates required to approximate
the value in a given MC or MDP is subexponential in number of states.

3 Guessing Value Iteration for MCs

In this section, our main theoretical contribution achieved by our VI-based ap-
proach Guessing VI is the following.

Theorem 1. Given an MC M = (S, E,¢), an objective, and an approximation
error €, we present a preprocessing that runs in linear space and at most O((|S|+

|E|)log|S|) steps, so that we require at most (|S|1og(wmax/&:)/(Ymin)O(v ‘Sl)
number of Bellman updates to compute an -approximation of the value.

Outline. First, we introduce Interval VI, the concept of levels in MCs, and recall
the speed of convergence of Interval VI for MCs. Second, we present guessing for
MCs for weighted reachability objectives, we recall a result for value computation
in simple stochastic games, and present a new result for the approximation of
the value. Third, we present our preprocessing using guessing and the concept of
levels in MCs, and prove that it uses linear space and terminates in almost linear
time. Fourth, we present how to use Bellman updates after our preprocessing.
Finally, we present our new VI-based approach called Guessing VI for MCs.

3.1 Levels and Interval VI
We define levels for MCs and Interval VI and show their relationship.

Definition 1 (Levels). Consider an MC M and a target set T. We call levels
the partitioning of states into (Lo, 1,02, ..., L), where: (a) by contains T and all
states that cannot reach T'; and (b), for all i > 1, the length of the shortest path
in the labeled graph Gy from each state in ¢; to {y is i.

224 K. Chatterjee et al.

Remark 1. Given an MC M and a transient state s in level ¢;, the probability of
reaching a target in i steps starting from s is at least 8¢, . Also, for every state
s € £; where ¢ > 0, there is at least one edge to a state in £;_; and no edge to a
state in £; for j < ¢ — 1.

Interval VI (IVI). Interval VI [24] is a VI-based approach that uses lower and
upper bounds of the value vector. IVI starts the iterative updates from the initial
vectors Ug and vy provided by Definition 2 and the speed of convergence of IVI
is given in Lemma 1.

Definition 2 (Initial vectors for value iteration). Consider an MC with
k levels, target T, and either the weighted reachability or SSP objectives. Denote
d(s,T) the length of the shortest path in the labeled graph Gpr from s to T.
Then, the initial vectors for value iteration consists of an overapproximation
To and underapprozimation vy of the value vector. For s € T, define vg(s) =
To(s) == w(s) and, for s € S\ T,

0 Reachability
vo(s) =

7 Wmmin SSP
7() Wmax Reachab’tllty
VolS) =

0 Wenae(k +1) /6%, SSP

By Remark 1, the value vector is between the lower and upper bound for both
objectives.

Lemma 1. Consider an MC M with k levels and 6.y the smallest transition
probability. For all t > 1, after k - t iterations of IVI, each state in level i has
an interval of size at most (1 - §fnin) (1 - §§lm)t71 - C, where C' = wpyax for
reachability and C = wyax(k + 1) /6%, for SSP.

Proof (Sketch). The proof is a nested induction: first on the number of iterations
t, then on the level i. A level is related to the previous level by the Bellman
update since every state has at least one edge going to a state in a previous
level. The difference between weighted reachability and SSP objectives is due to
the different initial vectors. O

3.2 Guessing in Markov Chains

In this section, we verify a guess on the value of a state as a lower or upper
bound through a single Bellman update. Guesses on the value of a state induce
a reduced MC as follows.

Definition 3 (Reduced Markov Chain). Consider an MC M, a target set
T, a state s € S\ T, and a quantity vv. The reduced MC, denoted by M[s = 7],
is the MC M with target set T U {s} where the weight of s is .

Guessing Value Iteration 225

Remark 2 (Uniqueness of fixpoints in reduced MCs). Consider an MC M where
Bellman updates have a unique fixpoint. Then, for all states s and guesses v > 0,
the reduced MC M|s = 7] also has a unique fixpoint.

The verification of guesses has been established in [15, Lemma 3.1] in the
more general context of stochastic games and now restated for MCs.

Lemma 2 (|15, Lemma 3.1]). Consider an MC M, a state s € S, and a guess
7. For f = valys—y, let 7' == BELLMANUPDATE(M, f,s). Then ' > v if and
only if valpr(s) > .

By monotonicity of BELLMANUPDATE, we get the following useful result
which has a symmetric statement for upper bounds.

Corollary 1. Consider an MC M, a state s € S, and a guess . For a lower
bound f < valpjs—y), let ¥/ = BELLMANUPDATE(M, f,s). If v > v, then
valpr(s) > .

s=y

As opposed to which focuses on the exact value computation, we focus on
the approximation problem.

Exact verification of stochastic systems via guessing values has been estab-
lished before [15], but those results are insufficient to solve the approximation
problem. Indeed, if a guess is very close to the real value, then applying exact
verification requires solving the problem at an extremely high precision leading
to major time-outs in practice. Therefore, we require the following approximate
verification result.

Lemma 3. Consider an MC M, a state s € S, and a guess y. For a lower

bound f < valpsjs—+, let v' = BELLMANUPDATE(M, f,s). For all ¢ > 0, if
v + 51;?1‘115 > 7, then valp(s) >y —¢.

Proof (Sketch). Fix € > 0, the MC M’ := MJ[s = v — €] and the function
'S — RT defined as

1o\ ,—)/76 Sl:s
)= {f(s’)—ePs'(ﬂtSt =s) §'#s

We show that f’ < valp;,. Then, we argue that BELLMANUPDATE(M, f',s) >
~ — €. Therefore, applying Corollary 1 to M, f’ and v — ¢, we conclude that

valpr(s) >v—90 le. O

min

3.3 Guessing to Decrease Levels

By Lemma 1, MCs with few levels can be efficiently solved by IVI. We show
that, if there are many levels, then the number of levels can be decreased by a
factor of 2/3 by guessing only a few states.

Lemma 4. Let M be an MC with k levels. There is a level i € [k/3,2k/3] such

Eiléil; i.(i., ‘gi | < Ei%fil-

that the number of states in level i is al most =

226 K. Chatterjee et al.

Algorithm 1 Decide what states to guess
Input: Markov Chain M

Output: Set I C S of states to be guessed

1: procedure MARKTOGUESS(M)

2: k < number of levels of M > BFS from the target set
3: if k£ < ./|S| then > MC has few levels
4: return () > No state should be guessed
5: end if

6: I < level between k/3 and 2k/3 with the smallest number of states

T M' + Gurss(M,I) > Mark states in I as guessed
8: return MARKTOGUEss(M') U I > Recursive call
9: end procedure

Proof. By contradiction, assume that, for every level j € [k/3,2k/3], we have
[4;] > % Then, summing all levels, >, |[¢;| > |S|, which is a contradiction. O

Lemma 4 immediately indicates a procedure to select states to be guessed
while decreasing the number of levels of the resulting MC. This procedure is
formalized in Algorithm 1. To simplify the notation, we denote GUESS(M, I) an
MC M where the set of states I were transformed into target states.

Lemma 5 (Correctness of MARKTOGUESS). Let M be an MC, Algo-
rithm 1 finds I, such that |I| < 94/|S| and the MC GUESS(M,I) has at most

VS| levels.
3/5]

Proof. From Lemma 4, we know that, on line 6, the level has at most ==
states. Moreover, the MC M’, defined in line 7, has at most %k levels. Therefore,
Algorithm 1 outputs a set I such that [I| < ..;3 (%)Z VIS =9+/15].

- O

Lemma 6 (Preprocessing complexity). Consider an MC M. Algorithm 1
runs in O((|S| + |E|) log |S|) steps using linear space.

Proof. In terms of space, Algorithm 1 only needs to perform a BFS from the tar-
get set. Therefore, it uses linear space. In terms of time, denote f(¢) the number
of steps required to process an MC with £ levels. Then, f satisfies the following
recursion. Consider an MC with ¢ levels. The number of steps performed by Al-
gorithm 1 includes performing a BFS, constructing the new MC M’, and solving
an instance with at most 2|S|/3 levels. Therefore, for £ > /|9,

70 1 (5¢) + 081+ 12D + 151+).

Therefore, because £ < |S|, we have that f(¢) € O((|S| + |E|)log(|S])). In other
words, it is almost-linear time.
O

Guessing Value Iteration 227

Algorithm 2 Approximate Value of preprocessed MC

Input: Markov Chain M, approximation error ¢, set of marked states I
Output: [, u with maz(l —u) < €, the bounds for states’ values

1: procedure SOLVEWITHGUESSINGSET(M &,1)

2 if I =0 then > No states to be guessed
3 return IVI(M,¢) > Solve by IVI
4: end if

5: sel > Choose a state
6: I'<T\s > Update states to be guessed
7 ls, us < (vy(s),v0(s)) > Initialize bounds
8 while us — s > % do > Bounds are far apart
9: v MT”S > Guess the average
10: (I,u) + SOLWEWITHGUESSINGSET(M([s = 7], ¢ - iéﬁ'ﬂ,]’) > Smaller error
11: if v < BELLMANUPDATE(/, s) then > Guess is small
12: ls =7~ > Update lower bound
13: else if v > BELLMANUPDATE(u, s) then > Guess is large
14: Us =7y > Update upper bound
15: else > Guess was approximately correct
16: (ls,us) « (v — 16,7+ 5¢) > Update both bounds
17: end if

18: end while

19: (l,u") - SOLVEWITHGUESSINGSET(M [s = [,], £,1") > Use lower bound
20: (', u) < SOLVEWITHGUESSINGSET(M [s = u], 5, 1) > Use upper bound
21: return (I, u)

22: end procedure

Symbolic Computation. Algorithm 1 is a discrete, graph-theoretical, and linear-
space algorithm, i.e., a preprocessing. Moreover, it only involves a BFS and
manipulating the cardinality of sets. Since all operations can be done symboli-
cally, Algorithm 1 can be symbolically implemented. Indeed, BF'S level sets can
be obtained by iterative applying the Post operator that given a set X of states
computes the set Y = {s' : 3s € X, s’ € E(s)} [10] and a symbolic computation
of the cardinality of sets is presented in [13, Section 3].

3.4 Bellman Updates on Guessed MCs

In this section, we explain how we use Bellman updates to approximate the value.
The preprocessing described by Algorithm 1 marks some states to be guessed.
Note that the guesses must be done recursively and Bellman updates are used
to verify these guesses. This idea is formalized in Algorithm 2.

Lemma 7 (Correctness of Algorithm 2). Given an MC M, an approz-
imation error €, and a set of states I C S, the procedure given by Algo-
rithm 2, in other words, (I,u) = SOLVEWITHGUESSINGSET (M, ¢, 1), satisfies
that I <valpyr <u and |Ju — || < e.

228 K. Chatterjee et al.

Algorithm 3 Approximate Value
Input: Markov Chain M, approximation error
Output: Lower and upper bounds for states’ values [and w such that ||l — uljec < &
1: procedure SOLVE(M e)
I <+ MARKTOGUESS(M)
return SOLVEWITHGUESSINGSET (M, ¢, I)
end procedure

Proof (Sketch). It is enough to show that Is < valy/(s) < us is an invariant of

Algorithm 2 and that Algorithm 2 terminates. To do so, we use Lemma 2 and

Lemma 3 to reason about the different cases in each iteration of Algorithm 2.
(]

3.5 Algorithm for MCs

The final algorithm is a simple concatenation of the preprocessing in Algorithm 1
and the use of Bellman updates given by Algorithm 2. It takes an MC as an
input and runs MARKTOGUESS to determine states to be guessed. With all
states guessed, we know the resulting MC has at most m levels, and we run
IVI supplemented by guessing. We formalize this procedure in Algorithm 3.

Lemma 8 (Complexity of Algorithm 3). Consider an MC M and an
approximation error €. Let I be the set given by Algorithm 1. The number
of calls of BELLMANUPDATE during the execution of Algorithm 2 is at most

(15 108 (wrmas /) /Sanin) * V1)

Proof (Sketch). The proof is by induction on the number of states to be guessed,
|7]. The base case is given by Lemma 1, while the inductive step requires using
Lemma 5.

O

Note that Lemma 6 and Lemma 8 prove Theorem 1.

4 Guessing Value Iteration for MDPs

In this section, we discuss the extension of Theorem 1 from MCs to MDPs.
Following the ideas for MCs, we partition the states into levels and show that
the running time of VI is parametrized by the number of levels. The following
procedure to obtain a level partition has been proposed in [24, Proposition 1].
First, the MDP is reduced by collapsing MECs. Second, the target states belong
to level zero. Iteratively, if a probabilistic state s has a transition to a state
s’ with a designated level, then s belongs to one level higher than s’. Decision
states belong to the highest level it has a transition to. This level partition leads
to a speed of convergence of VI formalized in [24, Theorem 2| which requires
exponentially many Bellman updates even after subexponentially many states

Guessing Value Iteration 229

have been guessed. We show that this definition generates more levels than
necessary by presenting an alternative level partition and proving a tighter speed
of convergence of VI in MDPs.

Definition 4 (Levels for MDP). For MDP P and an optimal strategy o, the
levels of P given o are the levels of the MC P,.

This definition of levels depends on an optimal strategy for the MDP. There-
fore, it corresponds to an “a posteriori” bound because it can be computed with
information from an optimal strategy (which is equivalent to computing the value
vector). It terms of complexity, both the levels defined in [24] and the levels de-
fined are computed in polynomial time because computing optimal strategies
requires only polynomial time.

Our improved speed of convergence for VI relies on the following property.

Property 1. Bellman updates select an optimal neighbor on decision states.
Therefore, for an MDP P and an optimal strategy o, starting from the same
lower bounds, the sequence given by VI on P is always lower bounded by the
respective sequence on P, .

We now present the speed of convergence of IVI in the MDP parametrized
by levels given by an optimal strategy. This result should be compared with
Lemma 1 stated for MCs.

Lemma 9. Consider an MDP P with k levels given by an optimal strat-
egy and smallest transition probability Omin. For all t > 1, after k -t it-
erations of IV, for each state s in level i, the difference v(s) — vi.c(s) is

at most (1—5i)(1—5"3)til - C, where C = wpyax for reachability and

C = Wax(k + 1) /6% for SSP.
Proof. Let o an optimal strategy for P. In particular, we have that valP =
val P,. Consider (v;);>1 the sequence of lower bounds given by VI on P,. By

Lemma 1, for all ¢ > 1, we have that ||lv,., —val Pllec < (1 —6%;,) (1 — 5§1m)t—1.

C. By Property 1, we conclude the same inequality for the sequence of lower
bounds given by VI on P. a

Remark 3 (Consequence: subexponential preprocessing and Bellman updates for
MDPs). Lemma 9 implies a procedure to approximate the value that requires
subexponential preprocessing time and subexponentially many Bellman updates.
Indeed, consider an optimal strategy for the MDP. Then, guess a subset of states
of size m such that the MC induced by the optimal strategy has at most
\/@ levels. By Lemma 9, after subexponentially many Bellman updates we can
verify guesses. This approach requires either computing an optimal strategy or
guessing nondeterministically between all subsets of size \/E . In particular,
this approach is a nondeterministic sub-exponential preprocessing that requires
sub-exponentially many Bellman updates to approximate the value vector.

While our result for MDPs achieves subexponential preprocessing, improv-
ing the preprocessing to polynomial time maintaining subexponentially many
Bellman updates remains an open question.

230 K. Chatterjee et al.

5 Practical Guessing VI Algorithm for MDPs

Algorithm 2 is readily extended to MDPs. Therefore, we extend Algorithm 3
from MCs to MDPs by replacing the procedure to obtain a set of states to be
guessed in Algorithm 1. In this section, we explain the major differences between
the theoretical procedure of Algorithm 3 applied to MDPs and our practical
implementation.

Early Verification of a Guess. Consider Algorithm 2. When attempting to verify
a guess v, line 10, it recursively solves an MC with increasing precision. With
the recursive solution, it attempts to verify the guess v in line 11. Note that this
involves more work than necessary because, if the Bellman update of state s of
lower (upper) bound is above (below) the guess v, then we can verify the guess
as a lower (upper) bound by Lemma 2.

Reusing Bounds. Consider Algorithm 2. When initializing bounds to verify a
guess 7y in Line 7, the most conservative bounds are used. These bounds can
be tightened because, after verifying the guess « at state s as a lower bound,
the current vector consists of lower bounds on all states. Indeed, the values with
guess -y are smaller than the real value. Similarly, the upper bounds can be reused
if the guess is an upper bound.

Picking the Guessed States. Algorithm 1 prescribes to guess O(1/|S]) states in
MCs, as stated in Lemma 5, but guessing fewer states turns out to be faster in
practice. The idea is to guess a state that, after verification, decreases the current
intervals the most. Therefore, we start by weighting each state by the width of
its own currently assigned interval. Another important factor when guessing a
state is how fast it will be verified. In practice, we observed that this is dictated
by the influence on its neighbors: the more connected a state is, the faster it
will be verified. Therefore, we run a fixed number of steps of a random walk on
the labeled graph of the MDP, while accumulating weights given by neighbors.
After this random walk, the state with the highest weight is chosen.

Benefiting from VI. Value iteration is a fast algorithm in practice. Moreover,
it is easy to incorporate VI into our algorithm. Indeed, after verifying the first
guessed value as a lower (upper) bound, we obtain lower (upper) bounds for all
other states. Then, to improve the upper (lower) bounds, which have not been
updated by the “guess and verify” procedure, we can apply Bellman updates.
Our practical approach applies as many Bellman updates as they were used
while verifying the guess.

We use a recursive procedure that takes an MDP P and lower and upper
bounds. It starts by picking carefully a state s to guess and then attempts to
verify the guess 7 through IVI with at most some number of updates. If the
verification of the guess is not successful, then it makes a recursive call asking
for the solution of the reduced MDP where s is forced to have value v and
updates the bounds on the state s with the result.

Guessing Value Iteration 231
6 Experiments
In this section, we provide a performance comparison of VI-based approaches.

Algorithms. We consider the value approximation of SSP and Reachability
MDPs through the use of Bellman updates. Therefore, we compare the following
VI-based approaches.

— Interval VI (IVI). Introduced in [24] and extended in [3], IVI consists of
running simultaneously two VI: one giving an upper bound and the other
giving a lower bound, obtaining an anytime algorithm. The required pre-
processings are as follow. For reachability objectives, MECs are collapsed.
For SSP objectives, qualitative reachability is solved to obtain a contracting
MDP.

— Optimistic VI (OVI). Introduced in [27], OVI introduces a candidate
vector to speed up VI. Candidate vectors may be validated as lower or upper
bounds. If validation fails, then candidates are forgotten.

— Sound VI (SVI). Introduced in [40], SVI does not require the a priori
computation of starting vectors. It uses lower bounds and VI, while upper
bounds are deduced from lower bounds.

— Guessing VI (GVI). Introduced in this work, and uses guesses to speed
up IVL

All these alternatives have been implemented in the well-known probabilistic
model checker STORM [30], including our approach GVI. The required pre-
processings for IVI, OVI, and SVI are as follow. For reachability objectives,
MECs are collapsed, which changes the structure of the MDP and thus is more
memory-intensive in model checkers such as STORM. For SSP objectives, qual-
itative reachability is solved to obtain a contracting MDP, which only computes
the states from which the target is never reached and there is no need to change
the structure of the MDP.

Another alternative approach, which we will call Globally Bounded Value
Iteration (GBVI), developed for reachability objectives in Stochastic Games (an
extension of MDPs to two opponent controllers) avoids collapsing MECs as a
preprocessing [36]. Instead, applied to MDPs; GBVI constructs a weighted graph
and solves the widest path problem [37] on it. There are subquadratic algorithms
to solve the widest path problem, for example, using Fibonacci heaps [22]. GBVI
has been implemented in the probabilistic model checker PRISM [34].

Benchmarks. The Quantitative Verification Benchmark Set (QVBS) [28] is an
open, freely available, extensive, and collaborative collection of quantitative mod-
els to facilitate the development, comparison, and benchmarking of new verifi-
cation algorithms and tools. It serves as a benchmark set for the benefit of
algorithm and tool developers as well as the foundation of the Quantitative
Verification Competition (QComp). QComp is the friendly competition among
verification and analysis tools for quantitative formal models.

232 K. Chatterjee et al.

As opposed to QComp which uses only a curated subset of the benchmark set,
we use all instances in QVBS. Each instance consists of a model, parameters, and
a property. All properties can be stated as either a reachability or SSP objective.

Results. We consider all 636 instances contained in the Quantitative Verification
Benchmark Set (QVBS) [28]. There are 162 instances where some of the algo-
rithms considered timed out (at 600 seconds) or failed. From these 162 instances,
there are 153 in which all algorithms failed or timed out. In the remaining 11
instances, each algorithm returns an answer as follows: IVI in 3 instances; OVI
in 6 instances; SVI in 7 instances; GVI in 3 instances. Omitting these 162 in-
stances leaves a total of 474 instances that we analyze. We grouped the instances
as follows.

— Group 1: instances where all algorithms are fast, i.e., they take at most 0.1
seconds (170 instances).

— Group 2: from the rest, those where the fastest and slowest algorithms are
only at most 1.10 times of each other (135 instances).

— Group 3: from the rest, there is a winner among the previous VI-based
approaches over our approach (83 instances).

— Group 4: all other instances not considered before (86 instances).

In Group 1, the overall performance of all algorithms are similar. In Group 2,
the overall performance of the top three algorithms (OVI, SVI, and GVI) are
similar where the best and worst differ by at most 1.010 times of each other,
whereas IVI is only 1.004 times slower. In Group 3, the average speedups on the
overall performance are as follows compared to GVI: IVI is 0.98 times faster,
OVI is 1.03 times faster, and SVI is 1.16 times faster. In Group 4, the average
speedup on the overall performance of GVI is 1.33 times faster than IVI, 2.71
times faster than OVI, and 1.28 times faster than SVI.

Group 4 is favorable for our algorithm and contains several models includ-
ing: Randomized consensus protocol [1]; Coupon Collectors [32]; Crowds Proto-
col [41]; IEEE 802.3 CSMA /CD Protocol [33]; Dynamic Power Management [39];
EchoRing [16]; Probabilistic Contract Signing Protocol [18]; Embedded control
system [35]; Exploding Blocksworld [44]; IEEE 1394 FireWire Root Contention
Protocol [43]; Fault-tolerant workstation cluster [29]; Haddad-Monmege purga-
tory variant [24]; Cyclic Server Polling System [31].

Figure 1 shows the time (total execution time in the machine, not just CPU
time) measured in seconds for every algorithm for each instance in the last two
groups. Instances are ordered by the time achieved by our algorithm. Note that
the y-axes are on a logarithmic scale.

7 Conclusion and Future Works

In this work, we presented a new approach for VI applied to MCs and MDPs.
For MCs, we proved an almost-linear preprocessing and sub-exponential Bell-
man updates. For MDPs, we showed an improved speed of convergence of VI.

Guessing Value Iteration 233

Group 3 Group 4

- 0
VI) ’5
10?4 : ovI ..ﬂ 10t 4 P

3
é =
®

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
instance instance

Fig. 1. Time in seconds of all algorithms over instances in Groups 3 and 4 in increasing
order according to GVI and displayed in logarithmic scale.

It remains an open question whether for MDPs, after polynomial-time prepro-
cessing, VI can be achieved with a sub-exponential number of Bellman updates.
Finding such an algorithm is an interesting direction for future work. Our exper-
imental results showed good performance for both MCs and MDPs. Extending
our approach to other models, such as stochastic games, is also a promising path
for further research.

Acknowledgments. This research was partially supported by the ERC CoG 863818
(ForM-SMArt) grant and Austrian Science Fund (FWF) 10.55776/COE12 grant.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Aspnes, J., Herlihy, M.: Fast Randomized Consensus Using Shared Mem-
ory. Journal of Algorithms 11(3), 441-461 (1990). https://doi.org/10.1016/
0196-6774(90)90021-6

2. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge, MA,
USA (Apr 2008)

3. Baier, C., Klein, J., Leuschner, L., Parker, D., Wunderlich, S.: Ensuring the
Reliability of Your Model Checker: Interval Iteration for Markov Decision Pro-
cesses. In: Computer Aided Verification, vol. 10426, pp. 160-180 (2017). https:
//doi.org/10.1007/978-3-319-63387-9_8

4. Balaji, N., Kiefer, S., Novotny, P., Pérez, G.A., Shirmohammadi, M.: On the Com-
plexity of Value Iteration. ICALP 132, 102:1-102:15 (2019). https://doi.org/
10.4230/LIPICS.ICALP.2019.102

5. Balbo, G., De Pierro, M., Franceschinis, G.: Tagged Generalized Stochastic Petri
Nets. In: Computer Performance Engineering, vol. 5652, pp. 1-15 (2009). https:
//doi.org/10.1007/978-3-642-02924-0_1

6. Bellman, R.: A Markovian Decision Process. Journal of Mathematics and Mechan-
ics 6(5), 679-684 (1957)

7. Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge University Press
(2004)

https://doi.org/10.1016/0196-6774(90)90021-6
https://doi.org/10.1016/0196-6774(90)90021-6
https://doi.org/10.1016/0196-6774(90)90021-6
https://doi.org/10.1016/0196-6774(90)90021-6
https://doi.org/10.1007/978-3-319-63387-9_8
https://doi.org/10.1007/978-3-319-63387-9_8
https://doi.org/10.1007/978-3-319-63387-9_8
https://doi.org/10.1007/978-3-319-63387-9_8
https://doi.org/10.4230/LIPICS.ICALP.2019.102
https://doi.org/10.4230/LIPICS.ICALP.2019.102
https://doi.org/10.4230/LIPICS.ICALP.2019.102
https://doi.org/10.4230/LIPICS.ICALP.2019.102
https://doi.org/10.1007/978-3-642-02924-0_1
https://doi.org/10.1007/978-3-642-02924-0_1
https://doi.org/10.1007/978-3-642-02924-0_1
https://doi.org/10.1007/978-3-642-02924-0_1

234

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

K. Chatterjee et al.

Brazdil, T., Brozek, V., Chatterjee, K., Forejt, V., Kucera, A.: Two Views on
Multiple Mean-Payoff Objectives in Markov Decision Processes. In: IEEE 26th
Annual Symposium on Logic in Computer Science. pp. 33-42 (2011). https://
doi.org/10.1109/LICS.2011.10

Brazdil, T., Chatterjee, K., Chmelik, M., Forejt, V., Kfetinsky, J., Kwiatkowska,
M., Parker, D., Ujma, M.: Verification of Markov Decision Processes Using Learn-
ing Algorithms. In: Automated Technology for Verification and Analysis, vol. 8837,
pp- 98-114 (2014). https://doi.org/10.1007/978-3-319-11936-6_8
Chatterjee, K., Dvorak, W., Henzinger, M., Loitzenbauer, V.: Lower Bounds for
Symbolic Computation on Graphs: Strongly Connected Components, Liveness,
Safety, and Diameter. In: Proceedings of the Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 2341-2356 (2018). https://doi.org/10.1137/
1.9781611975031.151

Chatterjee, K., Henzinger, M.: Faster and Dynamic Algorithms For Maximal
End-Component Decomposition And Related Graph Problems In Probabilistic
Verification. In: Proceedings of the Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA). pp. 1318-1336 (2011). https://doi.org/10.1137/1.
9781611973082.101

Chatterjee, K., Henzinger, M.: Efficient and Dynamic Algorithms for Alternating
Biichi Games and Maximal End-Component Decomposition. Journal of the ACM
61(3), 1-40 (2014). https://doi.org/10.1145/2597631

Chatterjee, K., Henzinger, M., Joglekar, M., Shah, N.: Symbolic Algorithms for
Qualitative Analysis of Markov Decision Processes with Biichi Objectives. Formal
Methods in System Design 42(3), 301-327 (2013). https://doi.org/10.1007/
s10703-012-0180-2

Chatterjee, K., Henzinger, T.A.: Value Iteration. In: 25 Years of Model Checking,
vol. 5000, pp. 107-138 (2008). https://doi.org/10.1007/978-3-540-69850-0_7
Chatterjee, K., Meggendorfer, T., Saona, R., Svoboda, J.: Faster Algorithm for
Turn-based Stochastic Games with Bounded Treewidth. In: Proceedings of the
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). pp. 4590-4605
(2023). https://doi.org/10.1137/1.9781611977554.ch173

Dombrowski, C., Junges, S., Katoen, J.P., Gross, J.: Model-Checking Assisted
Protocol Design for Ultra-reliable Low-Latency Wireless Networks. In: IEEE
35th Symposium on Reliable Distributed Systems (SRDS). pp. 307-316 (2016).
https://doi.org/10.1109/SRDS.2016.048

Even, S., Even, G.: Graph algorithms. Cambridge University Press, 2nd ed edn.
(2012)

Even, S., Goldreich, O., Lempel, A.: A Randomized Protocol for Signing Contracts.
Communications of the ACM 28(6), 637-647 (Jun 1985). https://doi.org/10.
1145/3812.3818

Everett, H.: Recursive Games. In: Contributions to the Theory of Games III.
vol. 39, pp. 47-78 (1957). https://doi.org/10.1515/9781400882151-004

Filar, J., Vrieze, K.: Competitive Markov Decision Processes (1997). https://doi.
org/10.1007/978-1-4612-4054-9

Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated Verification
Techniques for Probabilistic Systems. In: Formal Methods for Eternal Networked
Software Systems, vol. 6659, pp. 53-113 (2011). https://doi.org/10.1007/
978-3-642-21455-4_3

Fredman, M., Tarjan, R.: Fibonacci Heaps and their Uses in Improved Network
Optimization Algorithms. In: 25th Annual Symposium onFoundations of Computer
Science. pp. 338-346 (1984). https://doi.org/10.1109/SFCS.1984.715934

https://doi.org/10.1109/LICS.2011.10
https://doi.org/10.1109/LICS.2011.10
https://doi.org/10.1109/LICS.2011.10
https://doi.org/10.1109/LICS.2011.10
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1137/1.9781611975031.151
https://doi.org/10.1137/1.9781611975031.151
https://doi.org/10.1137/1.9781611975031.151
https://doi.org/10.1137/1.9781611975031.151
https://doi.org/10.1137/1.9781611973082.101
https://doi.org/10.1137/1.9781611973082.101
https://doi.org/10.1137/1.9781611973082.101
https://doi.org/10.1137/1.9781611973082.101
https://doi.org/10.1145/2597631
https://doi.org/10.1145/2597631
https://doi.org/10.1007/s10703-012-0180-2
https://doi.org/10.1007/s10703-012-0180-2
https://doi.org/10.1007/s10703-012-0180-2
https://doi.org/10.1007/s10703-012-0180-2
https://doi.org/10.1007/978-3-540-69850-0_7
https://doi.org/10.1007/978-3-540-69850-0_7
https://doi.org/10.1137/1.9781611977554.ch173
https://doi.org/10.1137/1.9781611977554.ch173
https://doi.org/10.1109/SRDS.2016.048
https://doi.org/10.1109/SRDS.2016.048
https://doi.org/10.1145/3812.3818
https://doi.org/10.1145/3812.3818
https://doi.org/10.1145/3812.3818
https://doi.org/10.1145/3812.3818
https://doi.org/10.1515/9781400882151-004
https://doi.org/10.1515/9781400882151-004
https://doi.org/10.1007/978-1-4612-4054-9
https://doi.org/10.1007/978-1-4612-4054-9
https://doi.org/10.1007/978-1-4612-4054-9
https://doi.org/10.1007/978-1-4612-4054-9
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1109/SFCS.1984.715934
https://doi.org/10.1109/SFCS.1984.715934

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Guessing Value Iteration 235

Grover, K., Kretinsky, J., Meggendorfer, T., Weininger, M.: Anytime Guaran-
tees for Reachability in Uncountable Markov Decision Processes. In: International
Conference on Concurrency Theory (CONCUR). vol. 243, pp. 11:1-11:20 (2022).
https://doi.org/10.4230/LIPIcs.CONCUR.2022.11

Haddad, S., Monmege, B.: Interval Iteration Algorithm for MDPs and IMDPs.
Theoretical Computer Science 735, 111-131 (2018). https://doi.org/10.1016/
j.tcs.2016.12.003

Hartmanns, A.: Correct Probabilistic Model Checking with Floating-Point Arith-
metic. In: Tools and Algorithms for the Construction and Analysis of Systems, vol.
13244,pp.41—59(2022).https://doi.org/lo.1007/978—3—030—99527—0_3
Hartmanns, A., Junges, S., Quatmann, T., Weininger, M.: A Practitioner’s Guide
to MDP Model Checking Algorithms. In: Tools and Algorithms for the Construc-
tion and Analysis of Systems, vol. 13993, pp. 469-488 (2023). https://doi.org/
10.1007/978-3-031-30823-9_24

Hartmanns, A., Kaminski, B.L.: Optimistic Value Iteration. In: Computer Aided
Verification (CAV), vol. 12225, pp. 488-511 (2020). https://doi.org/10.1007/
978-3-030-53291-8_26

Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The Quanti-
tative Verification Benchmark Set. In: Tools and Algorithms for the Construction
and Analysis of Systems, vol. 11427, pp. 344-350 (2019). https://doi.org/10.
1007/978-3-030-17462-0_20

Haverkort, B., Hermanns, H., Katoen, J.P.: On the Use of Model Checking Tech-
niques for Dependability Evaluation. In: Proceedings of the IEEE Symposium
on Reliable Distributed Systems. pp. 228-237 (2000). https://doi.org/10.1109/
RELDI.2000.885410

Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: The Probabilistic
Model Checker Storm. International Journal on Software Tools for Technology
Transfer 24(4), 589-610 (2022). https://doi.org/10.1007/s10009-021-00633-z
Ibe, O., Trivedi, K.: Stochastic Petri net models of polling systems. IEEE Journal
on Selected Areas in Communications 8(9), 1649-1657 (1990). https://doi.org/
10.1109/49.62852

Jansen, N., Dehnert, C., Kaminski, B.L., Katoen, J.P., Westhofen, L.: Bounded
Model Checking for Probabilistic Programs. In: Automated Technology for Ver-
ification and Analysis, vol. 9938, pp. 68-85 (2016). https://doi.org/10.1007/
978-3-319-46520-3_5

Kwiatkowsa, M., Norman, G., Parker, D.: The PRISM Benchmark Suite. In: Inter-
national Conference on Quantitative Evaluation of Systems. pp. 203-204 (2012).
https://doi.org/10.1109/QEST.2012.14

Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic
Real-Time Systems. In: Computer Aided Verification (CAV), vol. 6806, pp. 585—
591(2011).https://doi.org/lo.1007/978—3—642—22110—1_47

Muppala, J., Ciardo, G., Trivedi, K.: Stochastic reward nets for reliability predic-
tion. Communications in Reliability, Maintainability and Serviceability 1(2), 9-20
(1994)

Phalakarn, K., Takisaka, T., Haas, T., Hasuo, I.. Widest Paths and Global
Propagation in Bounded Value Iteration for Stochastic Games. In: Computer
Aided Verification, vol. 12225, pp. 349-371 (2020). https://doi.org/10.1007/
978-3-030-53291-8_19

Pollack, M.: The Maximum Capacity Through a Network. Operations Research
8(5), 733-736 (1960). https://doi.org/10.1287/opre.8.5.733

https://doi.org/10.4230/LIPIcs.CONCUR.2022.11
https://doi.org/10.4230/LIPIcs.CONCUR.2022.11
https://doi.org/10.1016/j.tcs.2016.12.003
https://doi.org/10.1016/j.tcs.2016.12.003
https://doi.org/10.1016/j.tcs.2016.12.003
https://doi.org/10.1016/j.tcs.2016.12.003
https://doi.org/10.1007/978-3-030-99527-0_3
https://doi.org/10.1007/978-3-030-99527-0_3
https://doi.org/10.1007/978-3-031-30823-9_24
https://doi.org/10.1007/978-3-031-30823-9_24
https://doi.org/10.1007/978-3-031-30823-9_24
https://doi.org/10.1007/978-3-031-30823-9_24
https://doi.org/10.1007/978-3-030-53291-8_26
https://doi.org/10.1007/978-3-030-53291-8_26
https://doi.org/10.1007/978-3-030-53291-8_26
https://doi.org/10.1007/978-3-030-53291-8_26
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1109/RELDI.2000.885410
https://doi.org/10.1109/RELDI.2000.885410
https://doi.org/10.1109/RELDI.2000.885410
https://doi.org/10.1109/RELDI.2000.885410
https://doi.org/10.1007/s10009-021-00633-z
https://doi.org/10.1007/s10009-021-00633-z
https://doi.org/10.1109/49.62852
https://doi.org/10.1109/49.62852
https://doi.org/10.1109/49.62852
https://doi.org/10.1109/49.62852
https://doi.org/10.1007/978-3-319-46520-3_5
https://doi.org/10.1007/978-3-319-46520-3_5
https://doi.org/10.1007/978-3-319-46520-3_5
https://doi.org/10.1007/978-3-319-46520-3_5
https://doi.org/10.1109/QEST.2012.14
https://doi.org/10.1109/QEST.2012.14
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-030-53291-8_19
https://doi.org/10.1007/978-3-030-53291-8_19
https://doi.org/10.1007/978-3-030-53291-8_19
https://doi.org/10.1007/978-3-030-53291-8_19
https://doi.org/10.1287/opre.8.5.733
https://doi.org/10.1287/opre.8.5.733

236 K. Chatterjee et al.

38. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley (2014)

39. Qiu, Q., Wu, Q., Pedram, M.: Stochastic Modeling of a Power-Managed System:
Construction and Optimization. In: Proceedings of the 1999 International Sym-
posium on Low Power Electronics and Design - ISLPED ’99. pp. 194-199 (1999).
https://doi.org/10.1145/313817.313923

40. Quatmann, T., Katoen, J.P.: Sound Value Iteration. In: Computer Aided Ver-
ification (CAV), vol. 10981, pp. 643—-661 (2018). https://doi.org/10.1007/
978-3-319-96145-3_37

41. Reiter, M.K., Rubin, A.D.: Crowds: Anonymity for Web Transactions. ACM
Transactions on Information and System Security 1(1), 66-92 (1998). https:
//doi.org/10.1145/290163.290168

42. Sidford, A., Wang, M., Wu, X., Ye, Y.: Variance Reduced Value Iteration and
Faster Algorithms for Solving Markov Decision Processes. In: Proceedings of the
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). pp. 770-787
(2018). https://doi.org/10.1137/1.9781611975031.50

43. Stoelinga, M., Vaandrager, F.: Root Contention in IEEE 1394. In: Formal Methods
for Real-Time and Probabilistic Systems, vol. 1601, pp. 53-74 (1999). https://
doi.org/10.1007/3-540-48778-6_4

44. Younes, H.L.S., Littman, M.L., Weissman, D., Asmuth, J.: The First Probabilistic
Track of the International Planning Competition. Journal of Artificial Intelligence
Research 24(1), 851-887 (2005)

Open Access. This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution, and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/313817.313923
https://doi.org/10.1145/313817.313923
https://doi.org/10.1007/978-3-319-96145-3_37
https://doi.org/10.1007/978-3-319-96145-3_37
https://doi.org/10.1007/978-3-319-96145-3_37
https://doi.org/10.1007/978-3-319-96145-3_37
https://doi.org/10.1145/290163.290168
https://doi.org/10.1145/290163.290168
https://doi.org/10.1145/290163.290168
https://doi.org/10.1145/290163.290168
https://doi.org/10.1137/1.9781611975031.50
https://doi.org/10.1137/1.9781611975031.50
https://doi.org/10.1007/3-540-48778-6_4
https://doi.org/10.1007/3-540-48778-6_4
https://doi.org/10.1007/3-540-48778-6_4
https://doi.org/10.1007/3-540-48778-6_4
http://creativecommons.org/licenses/by/4.0/

	Value Iteration with Guessing for Markov Chains and Markov Decision Processes

