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Abstract. The possibility of errors in human-engineered formal verifi-
cation software, such as model checkers, poses a serious threat to the
purpose of these tools. An established approach to mitigate this prob-
lem are certificates—lightweight, easy-to-check proofs of the verification
results. In this paper, we develop novel certificates for model checking
of Markov decision processes (MDPs) with quantitative reachability and
expected reward properties. Our approach is conceptually simple and re-
lies almost exclusively on elementary fixed point theory. Our certificates
work for arbitrary finite MDPs and can be readily computed with lit-
tle overhead using standard algorithms. We formalize the soundness of
our certificates in Isabelle/HOL and provide a formally verified certificate
checker. Moreover, we augment existing algorithms in the probabilistic
model checker Storm with the ability to produce certificates and demon-
strate practical applicability by conducting the first formal certification
of the reference results in the Quantitative Verification Benchmark Set.

Keywords: Probabilistic model checking · Markov decision processes ·
Certificates · Reachability · Expected rewards · Proof assistant

1 Introduction

Markov decision processes (MDPs) [48,7,5] are the model for sequential de-
cision making in probabilistic environments. Their many applications [53,32]
frequently require computing reachability probabilities towards an (un-)desired
system state, as well as the expected rewards (or costs) accumulated until do-
ing so. MDP model checking amounts to computing (approximations of) these
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Fig. 1. An MDP with states S = {z, s, t}, two actions (distinguished by solid and
dashed edges), uniform probabilities, and target set T = {t}. The annotations above
and below each state are a certificate for upper and lower bounds on Pmin(♢T ), resp.

quantities in a mathematically rigorous way, with a formal guarantee of their
correctness and precision. Various mature MDP model checking tools such as
PRISM [42], mcsta [28], and Storm [33] exist. Figure 1 shows an example MDP.

Who checks the model checker? The possibility of errors in complex, human-
engineered formal verification tools is a delicate issue: How formal is a ver-
ification result produced by an informal, i.e., unverified implementation? We
highlight four sources of errors: (i) classic implementation bugs, (ii) uninten-
tionally unsound algorithms [8,24], optimizations, and heuristics, (iii) numerical
errors due to floating point arithmetic [27], and (iv) errors in third-party back
end libraries or tools, e.g., commercial LP solvers [29].

Certifying algorithms [44] are a paradigm for establishing trust in imple-
mentations. A certifying algorithm produces a concise, easily verifiable proof—a
certificate—of its result. The certificate can be checked independently, possibly
even by an external, simpler program amenable to formal verification, or by a
third party. Formally verified certificate checkers are already employed in tool
competitions on software verification [12] or SAT-solving [9]. Existing proposals
for certifying MDPs [34,22,35], however, have some drawbacks (detailed further
below) hindering wider adoption in the community and its competitions [26,15,3].

The goal of this paper is to establish a new standard for certified MDP model
checking, with a focus on applicability and extensibility.

Our contributions towards this goal are as follows:
• We present fixed point certificates for two-sided bounds on extremal reacha-

bility probabilities (Table 1) and expected rewards. Our certificates are sound
and complete for arbitrary finite MDPs without structural restrictions.

• We formalize the theory in Isabelle/HOL [46], proving soundness of our cer-
tificates, and generate a formally verified certificate checker implementation.

• We implement a certifying variant of [29] Interval Iteration [8] with floating
point arithmetic in Storm [33]. Using this, we give certified reference results
for the Quantitative Verification Benchmark Set [32].
Extensibility towards further properties is enabled by our simple, clean theory

summarized as four guiding principles : (GP1) We characterize the quantities of
interest as a fixed point of basic, easy-to-evaluate Bellman-type operator [11]. The
fundamental certification mechanism is to use fixed point induction for proving
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Table 1. Our reachability certificates. Sound and complete for arbitrary finite MDPs.

Certificate Condition(s) Explanation

Upper bounds on minimal reachability probabilities: ∀s ∈ S : Pmin
s (♢T ) ≤ x(s) [Proposition 3]

x ∈ [0, 1]S Bmin(x) ≤ x min-Bellman operator decreases value of all states
Upper bounds on maximal reachability probabilities: ∀s ∈ S : Pmax

s (♢T ) ≤ x(s) [Proposition 3]
x ∈ [0, 1]S Bmax(x) ≤ x max-Bellman operator decreases value of all states

Lower bounds on minimal reachability probabilities: ∀s ∈ S : Pmin
s (♢T ) ≥ x(s) [Proposition 4]

x ∈ [0, 1]S Bmin(x) ≥ x min-Bellman operator increases value of all states
r ∈ NS Dmax(r) ≤ r r upper bounds maximal distances to T

x(s)>0 =⇒ r(s)<∞ positive reachability necessitates finite distance
Lower bounds on maximal reachability probabilities: ∀s ∈ S : Pmax

s (♢T ) ≥ x(s) [Proposition 6]
x ∈ [0, 1]S Bmax(x) ≥ x max-Bellman operator increases value of all states
r ∈ NS Dmin

x↑ (r) ≤ r r upper bounds min. distances to T via x-incr. actions
x(s)>0 =⇒ r(s)<∞ positive reachability necessitates finite distance

bounds on the least or greatest fixed point. (GP2) We certify qualitative reach-
ability properties using ranking functions which are amenable to fixed point
induction, too. (GP3) As the basic Bellman operators frequently have unde-
sired, spurious fixed points [13,24,39] (often related to end components [2]), we
consider slight modifications requiring qualitative reachability information which
we certify following GP2. (GP4) When GP3 is insufficient or not applicable, we
implicitly include a witness strategy in our certificate.

Technical challenges still arise in concretely applying these guiding principles.
For instance, a key novelty of our paper is a ranking-function type certificate for
not almost sure reachability (Proposition 2), which is surprisingly involved.

Related work. Closest to our work are the previous proposals for certificates
in MDP model checking: [34, Sec. 4] formally verifies a theory of certificates for
reachability objectives, which is however limited to upper bounds on maximal
and lower bounds on the minimal probabilities. [22] presents so-called “Farkas
certificates” for reachability; however, it does not offer a formally verified certifi-
cate checker, is limited to MDPs without end components (ECs), and does not
address certificate generation explicitly. With similar limitations, [6] provides
Farkas certificates for multiple reachability or mean payoff objectives, which can
be computed via linear programming. [35] suggests lifting the EC assumptions
from [22] by certifying the full maximal EC decomposition. In contrast, our
certificates are more concise as they handle ECs using at most one ranking func-
tion. Further, [35] proposes certificates for expected rewards, but they require
the target to be reached almost surely, an assumption we do not have to make.

Witnessing subsystems [54,22,36,6] are an alternative certification paradigm.
However, their verification requires more computational effort than the simple,
state-wise operations needed for checking Farkas or fixed point certificates. Still,
they utilize similar ideas: The backward reachable states in [54, Sec. 3.3.3] es-
sentially use ranking functions, as do the constraints in [37, Sec. 5.2.2].

The term “certifying algorithms” was coined in [38]. Previous work on cer-
tificates for other verification problems includes [45,47,41,20,40]. Further, cer-
tificates were recently investigated in hardware verification [57,58,59,21] and
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approximate model counting [52]. Finally, we mention that Optimistic Value
Iteration (OVI) [31,4], the supermartingales in [43,1,51], the certificates for prob-
abilistic pushdown systems from [55,56], and a recent strategy synthesis method
for infinite MDPs [10] follow fixed point induction principles similar to GP1.

Paper outline. After the background on MDPs and fixed point theory (Sec-
tion 2), we introduce ranking functions for qualitative reachability (Section 3).
Building on this, we discuss quantitative reachability (Section 4, Table 1) and
expected rewards (Section 5, [17, Tab. 2]). We explain how to compute certifi-
cates (Section 6) and report on experiments (Section 7). Omitted pen-and-paper
proofs are in [17, App. C–E]. All proofs regarding the soundness of the certifi-
cates, even standard results from the literature, are formalized in Isabelle/HOL.

2 Preliminaries

A Markov decision process (MDP) is a tuple M = (S,Act, P ) where S is a
finite set of states, Act is a finite set of actions, and P : S ×Act×S → [0, 1] is a
transition probability function with the property that

∑
s′∈S P (s, a, s′) ∈ {0, 1}

for all s ∈ S and a ∈ Act. For every s ∈ S, the set of enabled actions a ∈ Act for
which the above sum equals 1 is written Act(s). It is required that Act(s) ̸= ∅
for all s ∈ S. For s ∈ S and a ∈ Act(s), we define the a-successors of s as
Post(s, a) = {s′ ∈ S | P (s, a, s′) > 0}. Notice that our MDPs do not have a
distinguished initial state. See Figure 1 for an example MDP.

A (finite-state, discrete-time) Markov chain (DTMC) is the special case of
an MDP with |Act(s)| = 1 for all s ∈ S. A (memoryless and deterministic)
strategy4 for an MDP M = (S,Act, P ) is a function σ : S → Act such that for
all s ∈ S we have σ(s) ∈ Act(s). We may apply σ to M to obtain the induced
DTMC Mσ = (S,Act, P σ) which, intuitively, only retains the actions chosen
by σ. Formally, for all s, s′ ∈ S we define Pσ(s, σ(s), s′) = P (s, σ(s), s′), and
Pσ(s, a, s′) = 0 for all a ̸= σ(s).

Reachability and Expected Rewards. Fix a DTMC (S,Act, P ), a target set T ⊆ S,
and a reward function rew : S → R≥0. We define two random variables ♢T and
rew♢T taking values in {0, 1} and R≥0, respectively: For s0s1... ∈ Sω an infinite
path, we set ♢T (s0s1 . . .) = 1 if and only if (iff) ∃i ∈ N : si ∈ T . Moreover:

rew♢T (s0s1 . . .) =

{∑min{i|si∈T}
k=0 rew(sk) if ∃i ∈ N : si ∈ T

∗ else

We consider both options ∗ = ∞ and ∗ =
∑∞

k=0 rew(sk) [19]. We focus on the
former in the main body, as it is standard in the literature [7, Def. 10.71] and tool
competitions [26,15]; we treat the latter in [17, App. F]. Intuitively, with ∗ = ∞,
rew♢T assigns ∞ to paths that never reach T . The other paths receive the sum
of rewards collected until reaching T for the first time. Given a state s ∈ S,

4 Aka. scheduler or policy. We do not define more general strategies as memoryless
deterministic suffice for optimizing reachability probabilities and expected rewards.
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we define the reachability probability Ps(♢T ) from s to T as the expected value
(Lebesgue integral) of ♢T w.r.t. the probability measure Ps on infinite paths of
the DTMC with initial state fixed to s, see [7, Ch. 10] for the construction of Ps.
Similarly, the expected reward Es(rew♢T ) from s to T is the expected value of
rew♢T . When rew is clear from context, we write Es(♢T ) instead of Es(rew♢T ).

Finally, given an MDP M = (S,Act, P ), a state s ∈ S, a target set T ⊆ S,
a reward function rew : S → R≥0, and opt ∈ {min,max} we define the opti-
mal reachability probability Popt

s (♢T ) = optσ Pσ
s (♢T ) and the optimal expected

reward Eopt
s (rew♢T ) = optσ Eσ

s (rew♢T ), where Pσ
s (♢T ) and Eσ

s (rew♢T ) are the
reachability probabilities and expected rewards in the induced DTMC Mσ.

Fixed Point Theory. A partial order on a set X is a binary relation ⪯ that is
reflexive, transitive, and antisymmetric; in this case, the tuple (X,⪯) is called
a poset. Given a poset (X,⪯), we call a ∈ X an upper bound on Y ⊆ X if for
all b ∈ Y we have b ⪯ a. If an upper bound a on Y is minimal among all upper
bounds, it is the unique supremum (or least upper bound) and denoted supY .
Lower bounds and infima (or greatest lower bounds) are defined analogously.

The poset (X,⪯) is a complete lattice if supY and inf Y exist for every
Y ⊆ X. Every complete lattice has a least and greatest element sup ∅ and inf ∅,
respectively. The following complete lattices are of interest in this paper:

• (N,≤) where N = N ∪ {∞} are the extended natural numbers and ≤ is the
usual order on N extended by a ≤ ∞ for all a ∈ N. Notice that for every
Y ⊆ N, supY = ∞ iff Y is infinite.

• Similarly, (R≥0,≤), with R≥0 = R≥0 ∪{∞} the extended non-negative reals,
is a complete lattice. For every Y ⊆ R≥0, supY = ∞ iff Y is unbounded.

• ([0, 1],≤), the totally ordered set of real probabilities.
• If (X,⪯) is an arbitrary complete lattice, then for all sets S, (XS , ⪯̈) is a

complete lattice, where XS = {f | f : S → X} is the set of functions from S
to X and the partial order ⪯̈ is defined as f ⪯̈ g ⇐⇒ ∀s ∈ S : f(s) ⪯ g(s).
In the following, we overload notation and write ⪯ instead of ⪯̈. For example,
if S is the set of states of an MDP, then we can think of ([0, 1]S ,≤) as the
poset of “probability vectors” indexed by S, partially ordered entry-wise.
Let (X,⪯) be a poset. A function F : X → X is called monotone if ∀a, b ∈

X : a ⪯ b =⇒ F(a) ⪯ F(b). The following is the key tool of this paper:

Theorem 1 (Knaster-Tarski). Let (X,⪯) be a complete lattice and F : X → X
be monotone. Then, the set of fixed points ({a ∈ X | F(a) = a},⪯) is also a
complete lattice. In particular, F has a least and a greatest fixed point given by
lfpF = inf {a ∈ X | F(a) ⪯ a} and, dually, gfpF = sup {a ∈ X | a ⪯ F(a)}. As
a consequence, the following fixed point induction rules are sound: ∀a ∈ X :

• F(a) ⪯ a =⇒ lfpF ⪯ a (fixed point induction)
• a ⪯ F(a) =⇒ a ⪯ gfpF (fixed point co-induction)

Elements a ∈ X with F(a) ⪯ a (or a ⪯ F(a)) are called (co-)inductive.

K. Chatterjee et al.
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Guiding Principle 1 (Fixed Point Induction) We apply the theorem of
Knaster-Tarski to monotone operators of the form F : XS → XS, where X is
a complete lattice and S is finite, to certify upper bounds on lfpF and lower
bounds on gfpF . We call such F Bellman-type operators.

Throughout the rest of the paper, we fix an MDP M = (S,Act, P ), a set
of target states T ⊆ S and, for Section 5, a reward function rew : S → R≥0.
Moreover, we let opt ∈ {min,max} and write min = max and max = min.

3 Certifying Qualitative Reachability

Most of the certificates presented in the forthcoming Sections 4 and 5 en-
close a certificate for a qualitative reachability property, e.g., Popt(♢T ) > 0 or
Popt(♢T ) < 1. Our approach to this is summarized as follows:

Guiding Principle 2 (Ranking Functions) To certify qualitative reacha-
bility properties, we rely on ranking functions formalized via appropriate op-
erators capturing certain distances in the MDP when viewed as a graph.

Definition 1 (Distance Operator). Let (S,Act, P ), T , and opt be the fixed
MDP, target set and optimization direction, respectively. (We omit these quan-
tifications in the rest of the paper.) We define the following distance operator:

Dopt : NS → NS
, Dopt(r)(s) =

0 if s ∈ T

1 + opt
a∈Act(s)

min
s′∈Post(s,a)

r(s′) if s ∈ S \ T

Dopt is a monotone Bellman-type operator on the complete lattice (NS
,≤) and

thus has a least fixed point by Theorem 1. In fact, we even have the following:

Lemma 1 (Unique Fixed Point). Dopt has a unique fixed point.

Intuitively, if r = fpDmin, then r(s) represents the length of a shortest path
from every state s ∈ S to T , or r(s) = ∞ if T is not reachable from s. For
r = fpDmax, r(s) can be seen as the shortest path in the DTMC induced by a
strategy that aims to avoid T or reach it as late as possible. We formalize this
intuition in Lemma 2 (using the notation min = max and max = min), and then
in Proposition 1 apply Guiding Principle 1 to certify positive reachability.

Lemma 2. Let r = fpDopt. Then for all s ∈ S, r(s) = ∞ ⇐⇒ Popt
s (♢T ) = 0.

Proposition 1 (Certificates for Popt(♢T )> 0). A function r ∈ NS
is called

a valid certificate for positive opt-reachability if Dopt(r)≤ r. If r is valid, then
∀s∈S : r(s)<∞ =⇒ Popt

s (♢T )>0.
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Example 1. Consider the MDP in Figure 1 on page 2. The values on the bot-
tom right of the states constitute a valid certificate r for positive min-reachability.
To check that Dmin(r) = Dmax(r) ≤ r is indeed true, we verify the following:

Dmax(r)(s) = 1 +max
{
min{0, 1,∞}︸ ︷︷ ︸

solid action

, 0︸︷︷︸
dashed action

}
= 1 + 0

✓
≤ 1 = r(s) ,

and similar for z and t. As r(s), r(t) < ∞, we conclude Pmin
s (♢T ),Pmin

t (♢T ) > 0.

Remark 1 (Certificates for Popt(♢T ) = 0). While we do not need this in our
paper, it is instructive to notice that with Lemmas 1 and 2 we can also certify
zero reachability probability : By Knaster-Tarski, any r with r ≤ Dopt(r) witnesses
r ≤ fpDopt, hence if r(s) = ∞ for a state s, then Popt

s (♢T ) = 0.

Certificates for non-almost-sure (a.s.) reachability, i.e., Popt(♢T ) < 1, are
needed in Section 5. Ranking function-based certificates for this property are—
perhaps surprisingly—more involved. In Definition 2 below we define a comple-
mentary distance operator that captures (approximately) the distance to the
states Z from which T is avoided surely, i.e., Popt

s (♢T ) = 0 for all s ∈ Z. By
Lemma 2, finite distance to Z witnesses positive opt-reachability of Z and thus
non-a.s. opt-reachability of T . A major complication is that Z is not given explic-
itly. We address this by (i) considering the least fp, and (ii) letting the operator
only increment the distance if two successors do not have the same rank. For
this, we use Iverson bracket notation: [φ] = 1 if φ is true; [φ] = 0, else. Together,
(i) and (ii) ensure that s ∈ S has rank 0 in the lfp if and only if s ∈ Z.

Definition 2 (Complementary Distance Operator). We define the com-
plementary distance operator Dopt

: NS → NS
, with

Dopt
(r)(s) =


∞ if s ∈ T

opt
a∈Act(s)

(
min

s′∈Post(s,a)
r(s′) +

[
∃u, v∈Post(s, a) : r(u) ̸=r(v)

])
if s ∈ S \ T

Note that unlike the distance operator Dopt from Definition 1, Dopt
does not

have a unique fp : The constant r = ∞⃗ is always a trivial fixed point.

Lemma 3. Let r = lfpDopt
. Then for all s ∈ S, r(s) = ∞ ⇐⇒ Popt

s (♢T ) = 1.

Proposition 2 (Certificates for Popt(♢T )< 1). A function r ∈ NS
is called

a valid certificate for non-a.s. opt-reachability if Dopt
(r)≤ r. If r is valid, then

∀s∈S : r(s)<∞ =⇒ Popt
s (♢T )<1.

Remark 2 (Certificates for Popt(♢T ) = 1). Since Dopt
does not have a unique

fp, we cannot use the trick from Remark 1 to certify Popt(♢T )=1 with ranking
functions. Sections 4.2 and 4.3 present certificates for general lower bounds.
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4 Certificates for Quantitative Reachability

This section presents our certificates for bounds on minimal and maximal reach-
ability probabilities (Table 1). They are characterized via a Bellman operator :

Definition 3 (Bellman Operator for Reachability). We define the Bellman
operator for reachability Bopt : [0, 1]S → [0, 1]S as usual:

Bopt(x)(s) =

1 if s ∈ T

opt
a∈Act(s)

∑
s′∈Post(s,a)

P (s, a, s′) · x(s′) if s ∈ S \ T

Similar to Dopt from Section 3, Bopt is a monotone function on the complete
lattice ([0, 1]S ,≤). Thus, Bopt has a least fixed point by Theorem 1.

Theorem 2 ([16, Sec. 3.5]). For all s ∈ S, (lfpBopt)(s) = Popt
s (♢T ).

We stress that Bopt has multiple fixed points in general. For instance, x = 1⃗ is
always a trivial fixed point. Theorem 2 states that the reachability probabilities
are characterized as the least fixed point.

4.1 Upper Bounds on Optimal Reachability Probabilities

Following Guiding Principle 1, we obtain the following by Theorem 2:

Proposition 3 (Certificates for Upper Bounds on Popt(♢T )). A proba-
bility vector x ∈ [0, 1]S satisfying Bopt(x) ≤ x is a valid certificate for upper
bounds on opt-reachability. If x is valid, then ∀s ∈ S : Popt

s (♢T ) ≤ x(s).

Example 2. We verify that the numbers x above the states in Figure 1 on
page 2 are a valid certificate for upper bounds on min-reachability: For s
we check

Bmin(x)(s) = min
{

1
3 · 0 + 1

3 · 1
2 + 1

3 · 1 , 1 · 1
}

= min
{

1
2 , 1

} ✓
≤ 1

2 = x(s) ,

and similar for z and t. Thus Proposition 3 yields Pmin
s (♢T ) ≤ 1

2 . This particu-
lar certificate remains valid when changing x(s) to any probability in [ 12 , 1]. In
general, however, increasing individual values may break inductivity.

4.2 Lower Bounds on Minimal Reachability Probabilities

With Theorem 1, we can only certify lower bounds on greatest fixed points. Lower
bounds on reachability probabilities—which constitute the least fixed point of
Bopt—are thus more involved. We propose to tackle this situation as follows:

Guiding Principle 3 (Modified Bellman Operators) We often modify
a basic Bellman-type operator to restrict its set of fixed points and enforce a
certain extremal (i.e., least or greatest) fixed point of interest.
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We now focus on min-reachability first and modify Bmin as follows:

B̃min : [0, 1]S → [0, 1]S , B̃min(x)(s) =

{
Bmin(x)(s) if Pmin

s (♢T ) > 0

0 if Pmin
s (♢T ) = 0

Lemma 4 (Unique Fixed Point [7, Thm. 10.109]). B̃min has a unique
fixed point fp B̃min = lfpBmin.

By Lemma 4 and Theorem 2, any probability vector x ≤ B̃min(x) witnesses
that x(s) ≤ Pmin

s (♢T ) for all s ∈ S. However, evaluating B̃min(x) is not straight-
forward as it requires determining, for each s ∈ S whether Pmin

s (♢T ) > 0. Hence,
we include an additional certificate for positive reachability from Section 3:

Proposition 4 (Certificates for Lower Bounds on Pmin(♢T )).
A tuple of probability vector and ranking function (x, r) ∈ [0, 1]S ×NS

is a valid
certificate for lower bounds on min-reachability if

1) Dmax(r) ≤ r, 2) x ≤ Bmin(x), 3) ∀s ∈ S \ T : x(s) > 0 =⇒ r(s) < ∞.

If (x, r) is valid, then ∀s ∈ S : Pmin
s (♢T ) ≥ x(s).

Example 3. We apply Proposition 4 to the MDP in Figure 1. The pairs x(v) |
r(v) below each state v constitute a valid certificate (x, r) for lower bounds on
min-reachability. Indeed, we have shown in Example 1 that it satisfies Condition
1) Dmax(r) ≤ r. Condition 2) x ≤ Bmin(x) holds as well; in fact, we even have
x = Bmin(x), see Example 2. For the additional Condition 3), notice that s is
the only state in S \ T with x(s) > 0, and that r(s) < ∞ holds as required. We
conclude that Pmin

s (♢T ) ≥ 1
2 .

4.3 Lower Bounds on Maximal Reachability Probabilities

Our approach for lower bounds on Pmin(♢T ) from Section 4.2 does not imme-
diately extend to max-reachability because B̃max (a modification of Bmax anal-
ogous to B̃min) does not have a unique fixed point in general, see [17, App. D.3]
for a concrete counterexample. This problem is caused by end components [2,
Def. 3.13]. Towards a solution, we observe that, essentially by definition,

∀s ∈ S : Pmax
s (♢T ) ≥ x(s) ⇐⇒ ∃ Strategy σ : Pσ

s (♢T ) ≥ x(s) .

In words, a lower bound on a max-reachability probability is always witnessed
by some strategy.5 Hence we adopt the following:

Guiding Principle 4 (Witness Strategies) In some cases, especially when
progress towards a target is required, it is helpful to certify a witness strategy.

5 Dually, an upper bound on a min-reachability probability is also witnessed by a
strategy, but our corresponding certificates from Proposition 3 do not rely on this.
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Certificates with an Explicit Witness Strategy. Recall from Section 2 that
given a strategy σ : S → Act for MDP M, we can consider the induced DTMC
Mσ. We write Bσ for the Bellman operator associated with Mσ (notice that a
DTMC is just a special case of an MDP). Further, we let B̃σ be the corresponding
modified Bellman operator. By Theorem 2 and Lemma 4:

Lemma 5. B̃σ has a unique fixed point (fp B̃σ)(s) = Pσ
s (♢T ) for all s ∈ S.

Thus, we can certify lower bounds similar to Proposition 4 (we write Dσ for
the distance operator Dopt in the DTMC induced by σ):

Proposition 5 (Certificates for Lower Bounds on Pmax(♢T )+Strategy).
A triple (x, r, σ) ∈ [0, 1]S × NS ×ActS is a valid certificate for lower bounds on
max-reachability with witness strategy if

1) Dσ(r) ≤ r, 2) x ≤ Bσ(x), 3) ∀s ∈ S \ T : x(s) > 0 =⇒ r(s) < ∞.

If (x, r, σ) is valid, then ∀s ∈ S : Pmax
s (♢T ) ≥ Pσ

s (♢T ) ≥ x(s).

Certificates without a Witness Strategy. Increasing the size of the certifi-
cate by including the strategy can be avoided, as it can be “read off” from the cer-
tifying probability vector x ∈ [0, 1]S . To this end, we define the x-increasing ac-
tions of state s ∈ S: Act↑x(s) = {a ∈ Act(s) | x(s)≤

∑
s′∈Post(s,a) P (s, a, s′)·x(s′)}.

If x ≤ Bmax(x), then Act↑x(s) contains at least one action. Next, we define a vari-
ant of the distance operator which only considers x-increasing actions:

Dmin
x↑ : NS → NS

, Dmin
x↑ (r)(s) =

0 if s ∈ T

1 + min
a∈Act↑x(s)

min
s′∈Post(s,a)

r(s′) if s ∈ S \ T

Proposition 6 (Certificates for Lower Bounds on Pmax(♢T )). A tuple
(x, r) ∈ [0, 1]S ×NS

is a valid certificate for lower bounds on max-reachability if

1) Dmin
x↑ (r) ≤ r, 2) x ≤ Bmax(x), 3) ∀s ∈ S \ T : x(s) > 0 =⇒ r(s) < ∞.

If (x, r) is valid, then ∀s ∈ S : Pmax
s (♢T ) ≥ x(s).

5 Certificates for Expected Rewards

We present certificates for bounds on expected rewards in the “∗ = ∞”
semantics that assigns infinite reward to paths not reaching T , with the other
case in [17, App. F]. We employ the reward variant of the Bellman operator:

Definition 4 (Bellman Operator for Expected Rewards). We define the
Bellman operator for expected rewards Eopt : RS

≥0 → RS

≥0 as follows:

Eopt(x)(s) =

0 if s ∈ T

rew(s) + opt
a∈Act(s)

∑
s′∈Post(s,a)

P (s, a, s′) · x(s′) if s ∈ S \ T
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The above definition assumes that multiplication by ∞ absorbs positive numbers,
i.e., p · ∞ = ∞ for all p > 0, and a+∞ = ∞+ a = ∞ for all a ∈ R≥0.

Again, Eopt is a monotone function on the complete lattice (RS

≥0,≤) and
thus has a least and a greatest fixed point by Theorem 1. Unfortunately, as it
turns out, the sought-after expected rewards Eopt

s (♢T ), s ∈ S, are neither of
these two fixed points. Indeed, lfp Eopt corresponds to the expected rewards in
the semantics considered in [17, App. F], and gfp Eopt is a trivial upper bound
assigning ∞ to all states, see the example in Section 5.1.

Remark 3 (Asymmetry and Duality). In Section 4, an asymmetry between upper
and lower bounds arose as the reachability probabilities are a least fixed point.
Further, for the case of maximizing reachability, spurious fixed points occurred
and we required a witness strategy to “make progress” towards the targets (the
fact that this case requires special treatment of end components is well estab-
lished in literature, e.g., [31]). For safety objectives, where the goal is to avoid
a set of bad states, the situation is dual: The safety probabilities are a greatest
fixed point, so the lower bound case is simple, and when minimizing the upper
bound, we require a witness strategy. The ∗ = ∞ semantics for expected rewards
share some similarities with a safety objective, since the value is maximized (i.e.,
is infinite) when the target set is avoided. This section thus differs from Section 4
in two ways: (i) Everything is dual, as ∗ = ∞ is “safety-like”, and (ii) additional
complications arise from the trivial greatest fixed point gfp Eopt = ∞⃗, see below.

5.1 Lower Bounds on Optimal Expected Rewards

s

∞
t

0

1
2 1

2

1

Fig. 2. A DTMC.

Due to the absorptive property of multiplication by ∞,
gfp Eopt may assign ∞ to states that actually have finite
value: For instance, in the DTMC in Figure 2, the gfp as-
signs ∞ to s because ∞ = rew(s)+ 1

2 ·∞+ 1
2 ·0, while in fact

Es(♢T ) = 2·rew(s) < ∞. To address this, we force the values
of states that a.s. reach the target to be finite as follows:

Lemma 6. Let x ∈ RS

≥0 be such that 1) x ≤ Eopt(x) and 2) for all s ∈ S:
Popt
s (♢T ) = 1 =⇒ x(s) < ∞ . Then it holds for all s ∈ S that x(s) ≤ Eopt

s (♢T ).

Intuitively, Lemma 6 requires that a lower bound on Emin
s (♢T ) can only

be infinite if T cannot be reached a.s., i.e. Pmax
s (♢T ) < 1 (dually for Emax).

Combining Lemma 6 and a certificate for non-a.s. reachability (Section 3) yields:

Proposition 7 (Certificates for Lower Bounds on Eopt(♢T )). A tuple
(x, r) ∈ RS

≥0 × NS
is a valid certificate for lower bounds on opt-exp. rewards if

1) Dopt
(r) ≤ r, 2) x ≤ Eopt(x), 3) ∀s ∈ S : x(s) = ∞ =⇒ r(s) < ∞.

If (x, r) is valid, then ∀s ∈ S : Eopt
s (♢T ) ≥ x(s).
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5.2 Upper Bounds on Maximal Expected Rewards

Next we focus on upper bounds on maximal expected rewards. Using Guid-
ing Principle 3 as for lower bounds on minimal reachability probabilities (Sec-
tion 4.2), we obtain such certificates via a modified Bellman operator:

Ẽmax : RS

≥0 → RS

≥0, Ẽmax(x)(s) =

{
Emax(x)(s) if Pmin

s (♢T ) > 0

∞ if Pmin
s (♢T ) = 0

Lemma 7. For all s ∈ S, (lfp Ẽmax)(s) = Emax
s (♢T ).

We stress that unlike B̃min from Section 4.2, Ẽmax does not have a unique
fixed point, see Figure 2. Nonetheless, with Lemma 7, Guiding Principle 1, and
the certificates for positive reachability from Proposition 1, we obtain:

Proposition 8 (Certificates for Upper Bounds on Emax(♢T )). A tuple
(x, r) ∈ RS

≥0×NS
is a valid certificate for upper bounds on max-exp. rewards if

1) Dmax(r) ≤ r, 2) Emax(x) ≤ x, 3) ∀s ∈ S : x(s) < ∞ =⇒ r(s) < ∞.

If (x, r) is valid, then ∀s ∈ S : Emax
s (♢T ) ≤ x(s).

5.3 Upper Bounds on Minimal Expected Rewards

Our approach for this case parallels the one for lower bounds on maximal reach-
ability probabilities from Section 4.3. The modified Bellman operator Ẽmin (de-
fined analogous to Ẽmax from above) does not characterize the minimal expected
rewards as its least fixed point. The problem are, again, end components, see
[17, App. E.5] for a counter-example. Following Guiding Principle 4 and Sec-
tion 4.3, we can, however, certify upper bounds on Emin(♢T ) by including a
witness strategy (see [17, App. E.6]).

As with lower bounds on max-reachability, it is also possible to avoid this
explicit witness strategy: We define the x-decreasing actions of s as Act↓x(s) =
{a ∈ Act(s) | x(s) ≥ rew(s) +

∑
s′∈Post(s,a) P (s, a, s′) · x(s′)}. If Emin(x) ≤ x,

then Act↓x(s) ̸= ∅. We define a distance operator with Dmin
x↓ that only considers

x-decreasing actions completely analogous to Dmin
x↑ from Section 4.3.

Proposition 9 (Certificates for Upper Bounds on Emin(♢T )). A tuple
(x, r) ∈ RS

≥0 ×NS
is a valid certificate for upper bounds on min-exp. rewards if

1) Dmin
x↓ (r) ≤ r, 2) Emin(x) ≤ x, 3) ∀s ∈ S : x(s) < ∞ =⇒ r(s) < ∞.

If (x, r) is valid, then ∀s ∈ S : Emin
s (♢T ) ≤ x(s).

6 Computing Certificates

In Sections 3 to 5 we described what certificates are and discussed their veri-
fication conditions. We now elaborate on how to compute certificates. To this
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end, we first discuss computation of (co-)inductive value vectors x and then fo-
cus on the ranking functions r required by some certificates (see Table 1). We
stress that a sound certificate checker detects any wrong results produced by
buggy implementations of the methods discussed in this section. Indeed, during
implementation of the certificate computation algorithms in Storm, checking the
certificates helped finding and resolving implementation bugs.

As we enter the realm of numeric computation, some remarks are in order.
For computational purposes we assume that the transitions probabilities are
rational numbers, i.e., fractions of integers. Moreover:

Our goal is to compute a certificate with a rational value vector x and to check
it with exact, arbitrary precision rational number arithmetic.

Certificates via Exact Algorithms. The conceptually easiest certifying MDP
model checking algorithm is to compute the rational reachability probabilities
or expected rewards exactly. The resulting value vector is both inductive and co-
inductive. Thus, exact algorithms yield a certificate essentially as a by-product.
We refer to [29,30] for an in-depth comparison of exact algorithms based on Pol-
icy Iteration (PI), Rational Search (RS), and Linear Programming (LP). The
practically most efficient algorithm is PI with exact LU decomposition as linear
equation solver; see [30, Secs. 2.2 and 4.2] for a description of the algorithm.

Certificates via Approximate Algorithms. In practice, most probabilistic model
checkers use algorithms that are not exact but approximate: They employ ap-
proximate, fixed-precision floating point arithmetic and use a variant of VI that
only returns an approximate result, namely for each state an interval [ℓ, u] con-
taining the exact value, such that |ℓ−u| ≤ ε for a given ε (typically 10−6). They
do this because (i) when using exact arithmetic, fractions can grow very large,
hindering scalability, (ii) VI-based algorithms often outperform PI, albeit not
as dramatically as folklore claimed [29,30], and (iii) approximate results usually
suffice. We now exemplify with the VI-variant Interval Iteration (II) [8,24] how
to make an approximate, floating point-based algorithm certifying, leaving other
variants such as optimistic VI [31] and Sound VI [49] for future work.

II for reachability6 works by first collapsing end components [13,24] of the
MDP to ensure that Bopt has a unique fixed point. II then runs two instances of

Both sequences contain (co-)inductive vectors only and converge to the fixed
point. The iteration can be stopped when the difference is as small as desired.

However, as we demonstrate experimentally (Section 7), inexact floating point
arithmetic usually breaks (co-)inductivity of the elements in the II sequences, as
was already reported in [55] in a similar setting. More precisely, let Bopt

F be
a “floating point variant” of Bopt, i.e., the (exact) result of each operation is
rounded to a nearest float. This the default rounding mode in IEEE 754. Let
6 For expected rewards, II additionally requires computing an upper bound, see [8].
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VI in parallel, starting from x(0) = 0 and y(0) = 1:

0 = x(0) ≤ Bopt(x(0)) = x(1) ≤ . . . fpBopt . . . ≤ y(1) = Bopt(y(0)) ≤ y(0) = 1
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x
(i)
F be the i-th element, i > 0, in the lower VI sequence of Bopt

F starting from
0⃗. Then, due to rounding errors, x(i)

F ≤ Bopt(x
(i)
F ) does not hold in general, i.e.,

x
(i)
F might not be co-inductive. We propose two ways to mitigate this problem:

Safe rounding [27] and Smooth II.
First, safe rounding amounts to configuring the IEEE754 rounding mode

so that results of floating point computations are always rounded towards 0
when iterating from below, and towards ∞ when iterating from above. While
safe rounding provably yields sound bounds [27], it may slow down or even
prevent convergence of II. Nonetheless, in practice, II with safe rounding finds
significantly more certificates than II with default rounding (Section 7).

Second, for Smooth II we define the γ-smooth Bellman operator (γ ∈ [0, 1))

Bopt
γ (x) = γ · x+ (1− γ) · Bopt(x) ,

where scalar multiplication and addition are component-wise. Bopt
γ and Bopt have

the same fixed points, and every (co-)inductive value vector w.r.t. Bopt
γ is also

(co-)inductive w.r.t. Bopt [17, App. G.1]. The key property of Bopt
γ compared to

Bopt is that the former enforces ultimately strictly monotonic VI sequences. This
mitigates the floating point rounding issues. Notice, however, that smoothing
slows down convergence. Smoothing and safe rounding may be combined.

Computing Ranking Functions. We briefly outline how to obtain the unique and
least fixed points of Dopt and Dopt

, respectively (see Definitions 1 and 2).
First, fpDopt can be computed via VI from r(0) = ∞⃗. This iteration converges

in finitely many steps. Second, to compute lfpDopt
we propose to perform VI

from r(0) with r(0)(s) = [Popt
s (♢T ) = 1]·∞ for all s ∈ S. The condition in the Iver-

son bracket can be evaluated using standard graph analysis [7, Section 10.6.1].
This iteration converges in finitely many steps as well, see [17, Apps. G.2 and G.3]
for details and a practically more efficient algorithm.

7 Experimental Evaluation

Implementation. We implemented certificate computation as discussed in Sec-
tion 6 in Storm [33]. Given a higher-level model description (PRISM [42] or
Jani [14]), and a reachability probability or expected reward query, our imple-
mentation proceeds in three steps: First, Storm builds an explicit MDP from the
description. Second, it computes a certificate for both lower and upper bounds,
such that the relative difference between the two values is at most ε = 10−6 for
each MDP state. Finally, Storm checks the validity of the certificate.

Following the discussion in Section 6, we consider the following algorithms:
Regarding exact computation, we use PI with exact LU decomposition, called
PIX . For approximate computation with floating point arithmetic, we employ II.
Further, to investigate the impact of the rounding error mitigation techniques
from Section 6, we complement II with either safe rounding (denoted IIrnd),
smoothing with parameter γ (denoted II⟳γ ; we consider γ ∈ {0.05, 0.8, 0.9, 0.95}),
or a combination of both (denoted II⟳γ

rnd). Overall, we compare PIX and seven
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Fig. 3. RQ1: Runtime for computing certificates of PIX and several combinations of
mitigation techniques with II (left); and detailed comparison of PIX and II⟳0.05

rnd (right).

variants of II. We employ additional standard modifications of the algorithms,
namely: We eliminate end components whenever possible, apply topological op-
timizations for PIX and II, and apply Gauß-Seidl Bellman updates for II [8,29].

In all three steps of the implementation, we represent numbers as arbitrary
precision rationals implemented in GMP [23]—except when running II in the
second step (in which case we convert rationals to their nearest floats, poten-
tially yielding invalid certificates). We thus certify reachability probabilities and
expected rewards with respect to the exact MDP without rounding errors.

The MDP and the certificate computed with Storm can be exported and
checked by an independent formally verified certificate checker. To construct
the latter, we verified the correctness of the certificate checking algorithms in
the interactive proof assistant Isabelle/HOL [46], extending previous work on
MDPs [34,50] by total rewards and qualitative reachability properties. Based
on this library, we proved correct the soundness of the certificates described in
Sections 3 to 5. We used Isabelle/HOL’s code export mechanism [25] to obtain
a verified, executable Standard ML implementation that employs exact rational
arithmetic. The construction of the MDP from a PRISM or Jani model as well
as export and parsing of MDPs and certificates are currently not verified.

Benchmarks and Setup. We use all 366 benchmark instances from the quanti-
tative verification benchmark set (QVBS) [32] that (i) consider an MDP with a
reachability or reward objective and (ii) for which Storm can build an explicit
representation within 5 minutes. Additionally, since the QVBS contains no mod-
els exhibiting non-trivial ECs, we include 71 structurally diverse models from
various sources detailed in [30, Sec. 5.3]. Overall, we consider the complete alljani
set from [30]. We invoke Storm for each combination of benchmark instance and
certificate algorithm and report the overall runtime (walltime). All experiments
ran on Intel Xeon 8468 Sapphire 2.1 Ghz systems. We used Slurm to limit the
individual executions to 4 CPU cores and 16GB of RAM, with a time limit of
900 s. Next, we discuss our findings by answering three research questions (RQs).
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Fig. 4. RQ2: Runtime overhead of certified MDP model checking for PIX (left) and
II (middle), and scalability of both with respect to the number of states (right).

RQ1: Best algorithm for certificate generation? Figure 3 (left) compares the
runtimes of PIX and our seven II variants. A point (x, y) for algorithm A indi-
cates that there are x instances for which A computes a valid certificate within y
seconds (including time for model construction but excluding time for exporting
the certificate files). The triples [v|w|u] in the legend indicate that the algorithm
produced a total of v valid and w invalid certificates (with invalidity likely due
to floating point issues), while for the remaining u instances no result was found
within the resource limits. As expected, all certificates produced by the exact
PIX are valid, while standard II produces many invalid certificates. Safe round-
ing and smoothing improve the number of valid certificates. Notably, II⟳γ (only
smoothing) performs best for γ values close to 1, while the performance of II⟳γ

rnd

(smoothing and safe rounding) is less sensitive towards γ; see [17, App. H] for
more details. Among all II variants, II⟳0.05

rnd shows the best overall performance.
The scatter plot in Figure 3 (right) further compares PIX and II⟳0.05

rnd . A
data point (x, y) corresponds to one benchmark instance, where x and y are
runtimes of PIX and II⟳0.05

rnd . A point at ≥ 300 indicates a runtime between 300
and 900 seconds, inval means an invalid certificate, and n/a denotes an aborted
computation due to time/memory limits. Many instances that PIX cannot solve
are solved by II⟳0.05

rnd and vice versa. This is already the case without computing
certificates, as the structure of a benchmark affects the performance of the al-
gorithms differently [29,30]. Thus, as in the case without computing certificates,
there is no “best algorithm”, and both PIX and variants of II can be consid-
ered. Overall, 396 out of 447 instances are correctly solved and certified by PIX
or II⟳0.05

rnd (or both). We highlight that PIX is not only a complete certifying
algorithm, but also practically efficient, even though it uses exact arithmetic.

RQ2: Runtime overhead of certificate generation? Figure 4 (left/middle) reports
the runtime overhead of generating a certificate for PIX and II⟳0.05

rnd . For PIX , the
overhead is typically within a factor of 2, often significantly less. It is sometimes
faster due to implementation differences in the certifying variant of PIX . For
II⟳0.05

rnd , the overhead is slightly larger, typically around 1.5 to 4. This is partly
due to the slower convergence caused by smoothing. Figure 4 (right) investigates
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Fig. 5. RQ3: Runtime overhead of the certified pipeline/Runtime of certificate checking

the scalability of certificate generation with respect to the number of states. For
MDPs with up to 105 states, certificate generation usually completes within a
minute (often much less); for more than 107 states, it usually times out.

RQ3: Scalability of the formally verified certificate checker? Figure 5 (left) com-
pares the runtime of the full pipeline including certificate generation and veri-
fication using our formally verified checker (PIX +cert) with plain, uncertified
MDP model checking based on PIX . Compared to Figure 4 (left), the added
verification of the certificates causes additional time/memory outs, and roughly
doubles the runtime of the other instances. Figure 5 (right) reveals that parsing
is currently a major bottleneck in the verified checker. Nonetheless, the checker
completes within a few seconds on MDPs with up to ≈ 105 states, and usually
within 30 s for instances with up to ≈ 106 states.

8 Conclusion and Future Work

We proposed fixed point certificates as a new standard for certified model check-
ing of reachability and expected reward properties in MDPs. The soundness of
these certificates was formalized in Isabelle/HOL, increasing their trustworthiness
and enabling us to generate a formally verified certificate checker, applicable to
non-trivial practically relevant instances. Our certificates can be generated with
moderate overhead via minor, yet careful, modifications of established algorithms
like II or PI. This allows tool developers and competitions [15]—for which our
certificates provide formally verified reference results—to adopt our proposal
with relatively low effort. Future work is to develop a more efficient certificate
format. Further, we plan to extend our theory to other quantitative verifica-
tion settings [3], e.g., stochastic games and ω-regular properties, and make it
amenable to techniques such as symbolic model checking and partial exploration.

Data availability statement. The models, tools, and scripts to reproduce our
experimental evaluation are available at DOI 10.5281/zenodo.14626585 [18].
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