
Refuting Equivalence in Probabilistic Programs
with Conditioning

Krishnendu Chatterjee1 , Ehsan Kafshdar Goharshady1(B) ,
Petr Novotný2 , and Ðorđe Žikelić3

1 Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
{krishnendu.chatterjee,ehsan.goharshady}@ist.ac.at

2 Masaryk University, Brno, Czech Republic
petr.novotny@fi.muni.cz

3 Singapore Management University, Singapore, Singapore
dzikelic@smu.edu.sg

Abstract. We consider the problem of refuting equivalence of proba-
bilistic programs, i.e., the problem of proving that two probabilistic pro-
grams induce different output distributions. We study this problem in the
context of programs with conditioning (i.e., with observe and score state-
ments), where the output distribution is conditioned by the event that all
the observe statements along a run evaluate to true, and where the proba-
bility densities of different runs may be updated via the score statements.
Building on a recent work on programs without conditioning, we present
a new equivalence refutation method for programs with conditioning.
Our method is based on weighted restarting, a novel transformation of
probabilistic programs with conditioning to the output equivalent prob-
abilistic programs without conditioning that we introduce in this work.
Our method is the first to be both a) fully automated, and b) provid-
ing provably correct answers. We demonstrate the applicability of our
method on a set of programs from the probabilistic inference literature.

1 Introduction

Probabilistic programs. Probabilistic programs (PPs) are standard programs ex-
tended with probabilistic instructions, such as sampling of variable values from
probability distributions. PPs are used in numerous application domains, such
as networking [33], privacy and security [7,8], or planning and robotics [35,59],
to name a few. Unlike deterministic programs, which (assuming they terminate)
for each concrete input produce a single output, PPs induce output distributions,
i.e. probability distributions over the space of possible outputs.

Conditioning. While PPs with sampling instructions can implement various ran-
domized algorithms, the recent proliferation of probabilistic programming is
driven largely by the advances in machine learning, where PPs serve as tools
for Bayesian inference. For this, a PP has to be equipped with observe state-
ments which can be used to condition the data in program’s variables through

© The Author(s) 2025
A. Gurfinkel and M. Heule (Eds.): TACAS 2025, LNCS 15697, pp. 279–300, 2025.
https://doi.org/10.1007/978-3-031-90653-4_14

https://etaps.org/about/artifact-badges/
https://etaps.org/about/artifact-badges/
https://orcid.org/0000-0002-4561-241X
https://orcid.org/0000-0002-8595-0587
https://orcid.org/0000-0002-5026-4392
https://orcid.org/0000-0002-4681-1699
https://doi.org/10.1007/978-3-031-90653-4_14
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-90653-4_14&domain=pdf

280 K. Chatterjee et al.

observations, as well as score statements which can be used to assign different
probability densities to different program executions. Probability of the non-
blocked runs is then renormalized [43,53,12]. In this way, the program’s out-
put distribution is conditioned by the event that the program’s run satisfies
all observe-statement assertions it encounters and all program run probability
densities are renormalized according to their cummulative score values.
Static and relational analysis of PPs. Given their inherent randomness, PPs are
extremely difficult to debug. This has spurred demand for formal analyses of PPs
so as to obtain provable assurances of their correctness. Over the past decade,
numerous static analyses for PPs were developed, focusing mostly on properties
of individual programs: termination (e.g. [47,14,32,19,25,1,49,26,22,57,58,46]),
safety [55,25,57,20,11,10,64], runtime and cost analysis [52,63,5,61,29,21], or input-
output behavior [27]. Recently, attention has been increasingly given to verifying
relational properties of PPs, i.e., properties of program pairs, such as sensitiv-
ity [6,42,62,2] or differential privacy [7,3].
Refuting equivalence of PPs. In this work, we study the relational property of
program equivalence. Two PPs with fixed inputs are called equivalent if they in-
duce the same output distributions [51,45,48]. Equivalence analysis allows one to
check, e.g., whether compiler optimizations preserve the input-output behavior
of the program, or if a sampler follows a desired distribution [15]. We focus on a
bug-hunting aspect of the equivalence property, i.e., equivalence refutation: given
two PPs, prove that their output distributions differ. Recently, the work [23] pre-
sented an automated method for equivalence refutation in PPs that has formal
correctness guarantees. However, the method of [23] works only for PPs without
conditioning. In this paper, we focus on refuting equivalence of PPs with condi-
tioning, i.e., proving the inequality of their conditional output distributions.
Our contributions. We present a new method for refuting equivalence of PPs.
Our method is the first to have all of the following properties: (i) It is fully
automated, (ii) it is applicable infinite-state, discrete and continuous, Turing-
complete PPs with conditioning, and (iii) it provides provably correct refutations.

We build on the notions of upper and lower expectation supermartingales
(U/LESMs) presented in [23]. U/LESMs map program states to real numbers,
providing upper and lower bounds on the expected value of some function f
at output. During the refutation process, the concrete function f is synthesized
along with the corresponding UESM and LESM to provide the required refuta-
tion proof: for a given pair (P1, P2) of PPs, we seek f whose expected value at
the output of P1 is provably different (due to the bounds provided by U/LESMs)
from its expected value at the output of P2 - this witnesses the difference of the
underlying output distributions. The computation of f and the U/LESMs pro-
ceeds via polynomial constraint solving. However, the method is restricted to
PPs without conditioning, and its extension to PPs with conditioning was left
as an open problem (see [23, Section 9]). Our contributions are as follows:
1. Equivalence refutation for PPs with conditioning. We extend the above to

the much more general setting of PPs with conditioning, allowing for both
observe and score statements. We achieve this via the notion of weighted

Refuting Equivalence in Probabilistic Programs with Conditioning 281

restarting in PPs that we introduce in this work. Weighted restarting is
a construction that translates a PP with conditioning into a PP without
conditioning, whose output distribution is equivalent to that of the original
PP. Hence, by applying weighted restarting to two PPs with conditioning,
we can reduce their equivalence refutation to refuting equivalence of a pair
of PPs without conditioning, for which we can utilize the method of [23].

2. Soundness and completeness guarantees. While the method of [23] was proved
to be sound, completeness of the proof rule was not studied and, to the best
of our knowledge, no sound and complete proof rule for equivalence refuta-
tion in PPs has been proposed. In this work, we show that the proof rule
based on U/LESMs is sound and complete for refuting equivalence. This
result is novel both in the settings of PPs with and without conditioning.
Moreover, it also allows us to prove that the polynomial constraint solving
algorithm for computing a function f over program outputs together with
the U/LESM is semi-complete, in the sense that it is guaranteed to be able
to refute equivalence of PPs whenever equivalence can be witnessed by a
function f and a pair of U/LESM that can be specified via polynomial func-
tions of some maximal polynomial degree D. Note that this is a significant
guarantee, given that the problem of equivalence checking of two programs
is undecidable [36], hence no algorithm can be both sound and complete.

3. Experimental evaluation. We evaluate our approach on benchmarks from the
well known PSI inference tool [34], as well as on several loopy programs. We
compare with a PSI+Mathematica [66] pipeline. Our method significantly
outperforms the baseline in terms of the number of refuted equivalences.

Finally, while the focus of this work is on equivalence refutation, weighted restart-
ing also allows us to design a new method for similarity refutation in PPs with
conditioning. The similarity refutation problem is concerned with computing
a lower bound on the distance between output distributions of two PPs. The
work [23] proposed a method for similarity refutation in PPs without condition-
ing, and in this work we generalize it to the much more general setting of PPs
with conditioning. Due to space restrictions, we defer this result to the extended
version of the paper [24]. However, in our experiments in Section 6, for each re-
futed equivalence we also report a lower bound on the Kantorovich distance [60]
computed by our method.

Related work. The study of PP equivalence is partly motivated by the necessity to
reason about the correctness and accuracy of probabilistic inference algorithms.
Previous approaches to this issue [9,16,39,38,28,13,30] employ sampling methods
that provide statistical guarantees on the correctness of the result.

Relational analyses of PPs mostly focused on sensitivity properties [6,42,62,2],
often using coupling proofs [7,3]. Intuitively, given a probabilistic program and
its two inputs, the goal here is to bound the distance of output distributions
corresponding to these inputs. In particular, the relational analysis in this con-
text focuses on relations between different inputs, rather than different pro-
grams. Indeed, the previous approaches to sensitivity analysis typically exploit
the "aligned" control flow of two executions on sufficiently close inputs (with

282 K. Chatterjee et al.

a notable exception of the recent work [37] which aims to dispel the alignment
requirement.) Our method makes no such assumptions. Moreover, none of the
aforementioned works except for [42] considers programs with conditioning.

The work [67] uses “potential functions” to analyze resource usage difference
of a program pair. Potential functions for the two programs are computed si-
multaneously, similarly to our approach. However, the work does not involve
probabilistic programs and its overall aim (cost analysis) differs from ours.

2 Preliminaries

We assume that the reader is familiar with notions from probability theory such
as probability measure, random variable and expected value. The term probability
distribution refers to a probability measure over a subset of Euclidean space Rn.
We use boldface notation to represent vectors, e.g. x or y.
Syntax. We consider imperative arithmetic probabilistic programs (PPs) allowing
standard programming constructs such as variable assignments, if-branching,
sequential composition, go-to statements, and loops. All program variables are
assumed to be integer- or real-valued. For PP semantics to be well defined, we
assume that all arithmetic expressions are Borel-measurable functions [65].

In addition, we allow two types of probabilistic instructions, namely sam-
pling and conditioning. Sampling instructions appear on the right-hand-side of
program variable assignments and are represented in our syntax by a command
sample(d), where d is a probability distribution. We do not impose specific
restrictions and allow sampling instructions from both discrete and continu-
ous distributions. Importantly, we allow the two standard conditioning instruc-
tions: observe(ϕ), where ϕ is a boolean predicate over program variables, and
score(e), where e is a non-negative expression over program variables. A pro-
gram is conditioning-free if it does not contain any conditioning instructions.

Probabilistic branching instructions, i.e. if prob(p), can be obtained as syn-
tactic sugar by using a sampling instruction followed by conditional branching.
Probabilistic control flow graphs (pCFGs). In order to formalize the semantics of
our PPs and to present our results and algorithms, we consider an operational
representation of PPs called probabilistic control-flow graphs (pCFGs) extended
with the concept of weighting as in [64]. The use of pCFGs in the analysis of
PPs is standard, see e.g. [19,1]. Hence, we keep this exposition brief. Formally,
a pCFG is a tuple C = (L, V, Vout , ℓin ,xin , 7→, G,Up, w, ℓout), where:
– L is a finite set of locations;
– V = {x1, . . . , x|V |} is a finite set of program variables;
– Vout = {x1, . . . , x|Vout |} ⊆ V is a finite set of output variables;
– ℓin ∈ L is the initial location and xin ∈ R|V | the initial variable valuation;
– 7→⊆ L× L is a finite set of transitions;
– G is a map assigning to each transition τ ∈ 7→ a guard G(τ), which is a

predicate over V specifying whether τ can be executed.
– Up is a map assigning to each transition τ ∈ 7→ an update Up(τ) = (u1, . . . , u|V |)

where for each j ∈ {1, . . . , |V |} the variable update uj is either

Refuting Equivalence in Probabilistic Programs with Conditioning 283

ℓin : x, y, c, r = 0
ℓ1 : while c ≤ 999 :
ℓ2 : i f prob (0.5) :
ℓ3 : r := Beta(2, 2)
ℓ4 : x := x− r

else :
ℓ5 : y := y + 1
ℓ6 : c = c+ 1
ℓ7 : score (y)
ℓout : return (x, y)

ℓin : x, y, c, r = 0
ℓ1 : while c ≤ 999 :
ℓ2 : i f prob (0.5) :
ℓ3 : r := Beta(2, 3)
ℓ4 : x := x− r

else :
ℓ5 : y := y + 1
ℓ6 : c = c+ 1
ℓ7 : score (y)
ℓout : return (x, y)

Fig. 1: Running example. Labels ℓin , ℓ1, . . . , ℓ7, ℓout correspond to locations in
the probabilistic control-flow graphs (pCFGs) of both programs.

• the bottom element ⊥ denoting no variable update, or
• a Borel-measurable arithmetic expression u : R|V | → R, or
• a probability distribution u = δ;

– w : 7→ ×R|V | → [0,∞) is a weighting function, and
– ℓout ∈ L the terminal location.

Translation of PPs into pCFGs is standard [19,1,64], hence we omit the details.
We denote by C(P) the pCFG induced by a program P . Intuitively, locations of
C(P) correspond to program instructions, while transition(s) out of a location
encodes the effects of the respective instruction. Weight of a transition is 1
unless the transition encodes one of the conditioning instructions: If τ is encodes
a score(e) instruction, we put w(τ,x) = e(x). If τ encodes an observe(ϕ)
statement, we put w(τ,x) = 1 if x |= ϕ and w(τ,x) = 0 otherwise. Note that if
P is conditioning-free then in C(P) we have w(τ,x) = 1 for all τ and x.

Example 1 (Running example). Fig. 1 shows a PP pair that will serve as our run-
ning example. Program variables in both PPs are V = {x, y, c, r}, with output
variables Vout = {x, y}. In each loop iteration, with probability 0.5 the variable
x is decremented by a random value sampled according to a beta distribution,
whereas with probability 0.5 the variable y is incremented by 1. Hence, y tracks
the number of loop iterations in which x is not decremented. Upon loop termi-
nation, the score command is used to multiply the probability density of each
run by the value of y upon termination. Thus, larger probability density is given
to program runs that modify x a smaller number of times. The programs differ
only in the parameters of the beta distribution (highlighted in blue).

States, paths and runs. A state in a pCFG C is a tuple (ℓ,x), where ℓ is a location
and x ∈ R|V | is a variable valuation. A transition τ = (ℓ, ℓ′) is enabled at a state
(ℓ,x) if x |= G(τ). A state (ℓ′,x′) is a successor of (ℓ,x), if there exists an
enabled transition τ = (ℓ, ℓ′) in C such that x′ is a possible result of applying
the update of τ to x. The state (ℓin ,xin) is the initial state. A state (ℓ,x) is said
to be terminal, if ℓ = ℓout . We use StateC to denote the set of all states in C.

A finite path in C is a sequence of successor states (ℓ0,x0), (ℓ1,x1), . . . , (ℓk,xk)
with (ℓ0,x0) = (ℓin ,xin). A state (ℓ,x) is reachable in C if there exists a finite

284 K. Chatterjee et al.

path in C whose last state is (ℓ,x). A run (or an execution) in C is an infinite
sequence of states whose each finite prefix is a finite path. We use FpathC , RunC ,
and ReachC to denote the sets of all finite paths, runs, and reachable states in C.

A run ρ ∈ RunC is terminating if it reaches some terminal state (ℓout ,x). We
use Term ⊆ RunC to denote the set of terminating runs in RunC . We define the
termination time of ρ via T (ρ) = infi≥0{i | ℓi = ℓout}, with T (ρ) = ∞ if ρ is not
terminating. A cumulative weight of a terminating run ρ = (ℓ0,x0), (ℓ1,x1), . . .

is W (ρ) =
∏T (ρ)−1

i=0 w((ℓi, ℓi+1),xi), with an empty product being equal to 1.
Semantics. The pCFG semantics are formalized as Markov chains with weights [64].
In particular, a pCFG C defines a discrete-time Markov process over the states of
C whose trajectories correspond to runs in C. Each trajectory starts in the initial
state (ℓin ,xin) with weight 1. Then, at each time step i ∈ N0, if the trajectory is
in state (ℓi,xi), the next trajectory state (ℓi+1,xi+1) is defined according to the
unique pCFG transition τi enabled at (ℓi,xi), and the weight of the trajectory
is multiplied by the value of the weight function w(τi,xi).

This Markov process gives rise to a probability space (RunC ,FC ,PC) over the
set of all pCFG runs, formally defined via the cylinder construction [50]. We use
EC to denote the expectation operator in this probability space.
Almost-sure termination. We restrict our attention to almost-surely terminating
programs, which is necessary for them to define valid probability distributions
on output. A program P (or, equivalently, its pCFG C(P)) terminates almost-
surely (a.s.) if PC(P)[Term] = 1. A.s. termination can be automatically verified
in arithmetic PPs, by e.g. synthesizing a ranking supermartingale (RSM) [14,17].

3 Equivalence Refutation Problem

For each variable valuation x ∈ R|V |, we use xout to denote its projection to
the components of output variables Vout . For a terminating run ρ that reaches a
terminal state (ℓout ,x), we say that xout is the output of ρ. In an a.s. terminating
pCFG C, the probability measure PC over runs naturally extends to a probability
measure over sets of outputs, weighted by the cumulative weights of individual
runs and normalized by the total expected weight over all runs. Formally, the
normalized output distribution (NOD) of C is the probability distribution over
all output variable valuations R|Vout | defined by

µC [B] =
EC[IOutput(B) ·W

]
EC

[
W

] ,

where (i) B is any Borel-measurable subset of R|Vout |, (ii) IA is the indicator
variable of a Borel-measurable set of runs A, and (iii):

Output(B) =
{
ρ ∈ RunC | ρ reaches a terminal state (ℓout ,x) s.t. xout ∈ B

}
.

For the NOD µC to be well-defined, we restrict our attention to pCFGs where
0 < EC[W] < ∞, in which case we call C integrable (in line with [64]).

Refuting Equivalence in Probabilistic Programs with Conditioning 285

Problem assumptions. For a pair of PPs P 1 and P 2, we assume that: (1) both
C(P 1) and C(P 2) are a.s. terminating and integrable, for their output distribu-
tions to be well defined, and (2) C(P 1) and C(P 2) share the same set of output
variables Vout , for their output distributions to be defined over the same sample
space so that their equivalence is well defined. Our algorithm will automatically
check (1), and (2) is trivially checked by comparing the two input pCFGs.

Problem. Let P 1 and P 2 be two PPs with pCFGs C(P 1) and C(P 2) being
a.s. terminating, integrable, and having the same set of output variables Vout .
Our goal is to prove that P 1 and P 2 are not (output) equivalent, i.e. that there
exists a Borel-measurable set B ⊆ R|Vout | such that µC(P 1)[B] ̸= µC(P 2)[B].

4 Equivalence Refutation Proof Rule

In this section, we first introduce the weighted restarting transformation, and
then use it to formulate a proof rule for equivalence refutation in programs with
conditioning. We also show the completeness of this proof rule.

4.1 Weighted Restarting

We introduce weighted restarting, which transforms a PP into output equivalent
conditioning-free PP. Our method of weighted restarting requires PPs and their
induced pCFGs to satisfy the bounded cumulative weight property.

Assumption: Bounded cumulative weight property. We say that a program P (or
equivalently, its pCFG C(P)) satisfies the bounded cumulative weight property, if
there exists M > 0 such that the cumulative weight of every terminating run ρ
is bounded from above by M , i.e. W (ρ) ≤ M . Note that, in an a.s. terminating
pCFG C, the bounded cummulative weight property also implies the upper bound
in the integrability property, since if W (ρ) ≤ M holds for all terminating runs
then we also have EC(P)[W] ≤ M < ∞. Our algorithm for equivalence refutation
in Section 5 will formally verify this property and compute the value of M .

Weighted restarting. Consider a PP P which is a.s. terminating, integrable, and
satisfies the bounded cummulative weight property with bound M > 0. Weighted
restarting produces an output equivalent conditioning-free PP Pres. To achieve
this, it introduces a fresh program variable W , which we call the weight variable,
to capture all information encoded via observe and score instructions. This allows
us to remove all conditioning instructions from the PP. Then, for the output
distribution to be equivalent to the normalized output distribution of the original
PP, it adds a block of code that terminates a program run with probability
proportional to its cumulative weight, and otherwise restarts it and moves it
back to the initial program state. This construction is formalized as follows:
1. Introduce weight variable W . Introduce a fresh program variable W . The

value of W is initially set to W = 1.

286 K. Chatterjee et al.

2. Remove observe instructions. Each observe(ϕ) instruction is replaced by
the following block of code, which sets the cumulative weight of a run to 0
if the predicate in the observe instruction is false:

if ¬ϕ :

W := 0

3. Remove score instructions. Each score(e) instruction is replaced by the fol-
lowing block of code, which multiplies the weight variable W by the value
of the expression in the score instruction:

W := W · e

4. Add restarting upon termination. Finally, the following block of code is added
at the end of the PP, which with probability 1−W/M ”restarts” a program
run by moving it back to the initial state and resetting its weight to W = 1.
We write "x := xin" as a shorthand for the block of code that restarts each
program variable value to that specified by the initial variable valuation xin :

if prob(1−W/M) :

x := xin

W := 1

go-to ℓin

The work [54] also proposed a "restarting" procedure for PPs with observe, but
without score, instructions. This is achieved by introducing a new boolean vari-
able unblocked whose value is initially true, but is set to false if any observe(ϕ)
condition is violated. The program is then embedded into a "while unblocked:"
loop. However, it is not clear how to extend this translation to PPs with score
instructions, whereas our method supports both observe and score instructions.

Theorem 1 (Correctness of weighted restarting, proof in [24]). Con-
sider a PP P which is a.s. terminating, integrable, and satisfies the bounded cu-
mulative weight property with bound M > 0. Let Pres be a conditioning-free PP
produced by the weighted restarting procedure. Then, Pres is also a.s. terminat-
ing, integrable, and satisfies the bounded cumulative weight property. Moreover,
C(P) and C(Pres) are output equivalent, i.e. µC(P) = µC(Pres).

Example 2. Fig. 2 shows the PPs produced by the weighted restarting procedure
applied to PPs in Fig. 1. Notice that the PPs in Fig. 1 are a.s. terminating,
integrable, and satisfy the bounded cumulative weight property with M = 1000,
as y ≤ 1000 holds upon loop termination. Weighted restarting produces the PPs
in Fig. 2. In the fourth step of the procedure, the restarting upon termination
block of code is added to each program in lines 7− 10. It can be realized using
a single pCFG transition, hence we only need one pCFG location ℓ8 for it.

Refuting Equivalence in Probabilistic Programs with Conditioning 287

ℓin : x, y, c, r = 0,W = 0
ℓ1 : while c ≤ 999 :
ℓ2 : i f prob (0.5) :
ℓ3 : r := Beta(2, 2)
ℓ4 : x := x− r

else :
ℓ5 : y := y + 1
ℓ6 : c = c+ 1
ℓ7 : W := W · y
ℓ8 : if prob(1−W/1000) :

x, y, c, r := 0
W := 1
go-to ℓin

ℓout : return (x, y)

ℓin : x, y, c, r = 0,W = 0
ℓ1 : while c ≤ 999 :
ℓ2 : i f prob (0.5) :
ℓ3 : r := Beta(2, 3)
ℓ4 : x := x− r

else :
ℓ5 : y := y + 1
ℓ6 : c = c+ 1
ℓ7 : W := W · y
ℓ8 : if prob(1−W/1000) :

x, y, c, r := 0
W := 1
go-to ℓin

ℓout : return (x, y)

Fig. 2: PPs produced by weighted restarting applied to the PPs in Fig. 1. The
changes introduced by the weighted restarting procedure are highlighted in red.

4.2 Equivalence Refutation in PPs with Conditioning

Theorem 1 effectively reduces the task of equivalence refutation for a PP pair
(P 1, P 2) into the respective task for (P 1

res, P
2
res) of PPs without conditioning.

Following such a reduction, we can apply the refutation rule from [23]. We briefly
revisit this proof rules. We additionally show its completeness in settings both
with and without conditioning, a result not proven previously.

In what follows, let C = (L, V, Vout , ℓin ,xin , 7→, G,Up, w, ℓout) be an a.s. ter-
minating pCFG. We use the following terminology:
– A state function η in C is a function which to each location ℓ ∈ L assigns a

Borel-measurable function η(ℓ) : R|V | → R over program variables.
– A predicate function Π in C is a function which to each location ℓ ∈ L assigns

a predicate Π(ℓ) over program variables. It naturally induces a set of states
{(ℓ,x) | x |= Π(ℓ)}, which we also refer to via Π. Π is an invariant if it
contains all reachable states in C, i.e. if x |= I(ℓ) for each (ℓ,x) ∈ ReachC .

Let f : R|Vout | → R be a Borel-measurable function over the pCFG outputs. A
UESM (resp. LESM) for f is a state function Uf (resp. Lf) that satisfies certain
conditions in every reachable state which together ensure that it evaluates to
an upper (resp. lower) bound on the expected value of f on the pCFG output.
Since it is generally not feasible to exactly compute the set of reachable states,
UESMs and LESMs are defined with respect to a supporting invariant that over-
approximates the set of all reachable states in the pCFG. This is done in order
to later allow for a fully automated computation of UESMs and LESMs in PPs.

Definition 1 (Upper expectation supermartingale (UESM) [23]). Let C
be an a.s. terminating pCFG, I be an invariant in C and f : R|Vout | → R be a
Borel-measurable function over the output variables of C. An upper expectation
supermartingale (UESM) for f with respect to the invariant I is a state function
Uf satisfying the following two conditions:

288 K. Chatterjee et al.

1. Zero on output. For every x |= I(ℓout), we have Uf (ℓout ,x) = 0.
2. Expected f -decrease. For every location ℓ ∈ L , transition τ = (ℓ, ℓ′) ∈ 7→,

and variable valuation x s.t. x |= I(ℓ) ∧ G(τ), we require the following:
denoting by N the expected valuation vector after performing transition τ
from state (ℓ,x), it holds

Uf (ℓ,x) + f(xout) ≥ E
[
Uf (ℓ

′,N) + f(Nout)
]

(1)

with Nout the projection of the random vector N onto Vout -indexed variables.

Intuitively, an UESM is required to be equal to 0 on output and, in every compu-
tation step, any increase in the f -value is exceeded in expectation by the decrease
in the UESM value. A lower expectation submartingale (LESM) Lf for f is de-
fined analogously, with (1) replaced by the dual expected f -increase condition:

Lf (ℓ,x) + f(xout) ≤ E
[
Lf (ℓ

′,N) + f(Nout)
]
. (2)

Example 3. Consider the two PPs obtained by weighted restarting in Fig. 2.
Their output variables are Vout = {x, y}. By Theorem 1, both PPs are a.s. ter-
minating. For a function over outputs f(x, y) = x+y, one can check by inspection
that the state function Uf below defines a UESM for f in the first program, and
the state function Lf below defines an LESM for f in the second program. These
are also the U/LESMs produced by our prototype implementation:

Uf


x,
y,
c,
r,
W

 =



500− 0.5 · y, if ℓ ∈ {ℓin , ℓ1, ℓ2, ℓ6, ℓ7, ℓ8}
499.5− 0.5 · y, if ℓ = ℓ3

500− 0.5 · y − r, if ℓ = ℓ4

500.5− 0.5 · y, if ℓ = ℓ5

0, if ℓ = ℓout

Lf


x,
y,
c,
r,
W

 =



600− 0.6 · y, if ℓ ∈ {ℓin , ℓ1, ℓ2, ℓ6, ℓ7, ℓ8}
599.6− 0.6 · y, if ℓ = ℓ3

600− 0.6 · y − r, if ℓ = ℓ4

600.4− 0.6 · y, if ℓ = ℓ5

0, if ℓ = ℓout

U/LESMs can be used to refute equivalence in conditioning-free PPs under
so-called OST-soundness conditions. The name is due to the fact that correctness
of the proof rule in [23] is proven via Optional Stopping Theorem (OST) [65]
from martingale theory. The first three conditions below are imposed by the
classical OST, and the fourth condition is derived from the Extended OST [63].

Definition 2 (OST-soundness). Let C be a pCFG, η be a state function in C,
and f : R|Vout | → R be a Borel measurable function. Let Si be the i-th state and
xi the i-th variable valuation along a run. Define Yi by Yi := η(Si)+ f(xout

i) for
any i ≥ 0. We say that the tuple (C, η, f) is OST-sound if E[|Yi|] < ∞ for every
i ≥ 0 and moreover, at least one of the following conditions (C1)–(C4) holds:
(C1) There exists a constant c such that T ≤ c with probability 1.
(C2) There exists a constant c such that for each t ∈ N and run ρ we have

|Ymin{t,T (ρ)}(ρ)| ≤ c (i.e., Yi(ρ) is uniformly bounded along the run).
(C3) E[T] < ∞ and there exists a constant c such that for every t ∈ N it holds

E[|Yt+1 − Yt| | Ft] ≤ c (i.e., the expected one-step change of Yi is uniformly
bounded over runtime).

Refuting Equivalence in Probabilistic Programs with Conditioning 289

(C4) There exist real numbers M, c1, c2, d such that (i) for all sufficiently large
n ∈ N it holds P(T > n) ≤ c1 · e−c2·n; and (ii) for all t ∈ N it holds
|Yn+1 − Yn| ≤ M · nd.

We now present our new proof rule for equivalence refutation in PPs with con-
ditioning. Given a pair P 1, P 2 of a.s. terminating PPs that satisfy the bounded
cumulative weight property, our proof rule applies the weighted restarting pro-
cedure to produce the pCFGs C(P 1

res) and C(P 2
res) and then applies the proof

rule of [23] for PPs without conditioning. The following theorem formalizes the
instantiation of the proof rule of [23] to the pCFG pair C(P 1

res) and C(P 2
res).

Theorem 2 (Equivalence refutation for PPs with conditioning). Let
P 1, P 2 be two a.s. terminating programs (possibly with conditioning) satisfying
the bounded cumulative weight property. Let the initial states of C(P 1

res) and
C(P 2

res) be (ℓ1in ,x
1
in) and (ℓ2in ,x

2
in), respectively. Assume that there exist a Borel-

measurable function f : R|Vout | → R and two state functions, Uf for C(P 1
res) and

Lf for C(P 2
res) such that the following holds:

i) Uf is a UESM for f in C(P 1
res) such that (C(P 1

res), Uf , f) is OST-sound;
ii) Lf is an LESM for f in C(P 2

res) such that (C(P 2
res), Lf , f) is OST-sound;

iii) Uf (ℓ
1
in ,x

1
in) + f((x1

in)
out) < Lf (ℓ

2
in ,x

2
in) + f((x2

in)
out).

Then P 1, P 2 are not output equivalent,

The theorem proof follows immediately by the correctness of weighted restart-
ing (Theorem 1) and the correctness of the proof rule in [23, Theorem 5.5]. 4

While [23] establishes soundness of the above proof rule for PPs without
conditioning, which here we generalize to PPs with conditioning, to the best of
our knowledge there is no known proof rule that is also complete. In what follows,
we show that the proof rule in Theorem 2 is not only sound, but also complete.
This result is new both in the setting of PPs with and without conditioning.

Theorem 3 (Completeness of the proof rule). Let P 1, P 2 be a two a.s.
terminating programs satisfying the bounded cumulative weight property. Assume
that they are not output equivalent. Then there exists a Borel-measurable function
f : R|Vout | → R and two state functions, Uf for f in C(P 1

res) and Lf for f in
C(P 2

res), satisfying the conditions of Theorem 2.

Proof. Since µC(P 1) ̸= µC(P 2), by Theorem 1 also µC(P 1
res) ̸= µC(P 2

res). Hence, there
is a Borel-measurable set B ⊆ RVout such that, w.l.o.g., µC(P 1

res)[B] > µC(P 2
res)[B].

Let piB(ℓ,x) = PC(P i
res)[Output(B) | run initialized in (ℓ,x)] be the probability

of outputting a vector from B if C(P i
res) starts in (ℓ,x), for i ∈ {1, 2}. We define:

– A function f = IB over outputs;
4 We remark that the program syntax considered in [23] does not include go-to state-

ments. However, the definition of U/LESMs and the proof rule in [23] are formalized
with respect to pCFGs. Each go-to statement in a program can simply be modeled
as a new edge in the program’s pCFG. Since [23] does not make any restriction
on the topology of pCFGs, their result remains correct even for pCFGs induced by
conditioning-free PPs with go-to statements.

290 K. Chatterjee et al.

– A state function Uf (ℓ,x) = p1B(ℓ,x)− f(xout) in C(P 1
res);

– A state function Lf (ℓ,x) = p2B(ℓ,x)− f(xout) in C(P 2
res).

We prove that Uf is an UESM f in C(P 1
res), the argument for Lf is analogous. For

any terminal state (ℓ,x) it holds p1b(ℓ,x) = IB(xout) = f(xout), hence Uf is zero
on output. Moreover, for any state (ℓ,x) it holds Uf (ℓ,x) + f(xout) = p1B(ℓ,x).
Since p1B(ℓ,x) = E[p1B(ℓ′,N)] (the standard flow conservation of reachability
probabilities), we get that Uf satisfies the expected f -decrease condition.

Regarding OST soundness, note that Uf (ℓ,x)+f(xout) = p1B ∈ [0, 1] for any
state (ℓ,x). Hence, (C(P 1

res), Uf , f) is OST-sound – it satisfies condition (C2) –
and similarly for (C(P 2

res), Lf , f).
It remains to verify condition iii) from Theorem 2. We have

Uf (ℓ
1
in ,x

1
in) + f((x1

in)
out) = p1B(ℓin ,xin) = µC(P 1

res)[B] < µC(P 2
res)[B]

= p2B(ℓin ,xin) = Lf (ℓ
1
in ,x

1
in) + f((x1

in)
out).

Example 4. To conclude this section, we illustrate our proof rule on our running
example in Fig. 1. Consider the PPs (P 1

res, P
2
res) obtained by weighted restarting

in Fig. 2, and the function f over outputs, the UESM Uf for f in C(P 1
res), and the

LESM Lf for f in C(P 2
res) constructed in Example 3. The triples (C(P 1

res), Uf , f)
and (C(P 2

res), Lf , f) are both OST-sound and satisfy (C2) in Definition 2, as all
variable values in P 1

res and P 2
res are bounded. Moreover, we have Uf (ℓ

1
in ,x

1
in) +

f((x1
in)

out) = 500 < 600 = Lf (ℓ
2
in ,x

2
in) + f((x2

in)
out). Hence, (f, Uf , Lf) satisfy

all conditions of Theorem 2, and PPs in Fig. 1 are not output equivalent.

5 Automated Equivalence Refutation

We now present our algorithm for equivalence refutation in PPs that may contain
conditioning instructions. Given a PP pair (P 1, P 2), the algorithm first applies
weighted restarting to translate them into output equivalent conditioning-free
PPs (P 1

res, P
2
res). Then, the algorithm applies the equivalence refutation proce-

dure of [23] for PPs without conditioning. Hence, given that our algorithm builds
on that of [23], we only present an overview of the algorithm and refer the reader
to [23] for details. However, this section presents two important novel results:
1. Semi-completeness guarantees. Building on our result in Section 4 which

shows that our proof rule is sound and complete, we show that our algorithm
for equivalence refutation is sound and semi-complete. In particular, the al-
gorithm is guaranteed to refute equivalence of PPs whenever non-equivalence
can be witnessed by a function f and a pair of U/LESMs that can be spec-
ified via polynomial functions of some maximal polynomial degree D, and
that satisfy OST-soundness condition (C2) in Definition 2.

2. Streamlined algorithm for bounded termination time PPs. We show that the
algorithm can be streamlined for the class of PPs whose (1) termination
time is bounded by some constant value T > 0, and (2) all sampling in-
structions consider probability distributions of bounded support. The first
assumption is common and satisfied by most PPs considered in statistical
inference literature, including all our benchmarks in Section 6.

Refuting Equivalence in Probabilistic Programs with Conditioning 291

Algorithm assumptions. In order to allow for a fully automated equivalence refu-
tation, we need to impose several assumptions on our PPs:
– Polynomial arithmetic. We require all arithmetic expressions appearing in

PPs to be polynomials over program variables. This restriction is necessary
for the full automation of our method. We also require that each proba-
bility distribution appearing in sampling instructions in pCFGs has finite
moments, i.e. for each p ∈ N, the p-th moment mδ(p) = EX∼δ[|X|p] is finite
and can be computed by the algorithm. This is a standard assumption in
static PP analysis and allows for most standard probability distributions.

– Almost-sure termination. For the equivalence refutation problem to be well-
defined and for our proof rule to be applicable, we require both PPs to
be a.s. terminating. In polynomial arithmetic PPs, this requirement can be
automatically checked by using the method of [17].

– Bounded cumulative weight property. To automatically check this property,
we can use an off-the-shelf invariant generator, e.g. [31,56,18], to generate
an invariant which proves that W ≤ M holds for the weight variable W and
some sufficiently large constant value M .

– Supporting linear invariants. Recall that we defined UESMs and LESMs
with respect to supporting invariants. To that end, before proceeding to
equivalence refutation, our algorithm first synthesizes linear invariants I1
and I2. This can be fully automated by using existing linear invariant gen-
erators [31,56], as done in our implementation. For the purpose of invariant
generation, sampling instructions are semantically over-approximated via
non-determinism, hence ensuring that the computed invariants are sound.

Template-based synthesis algorithm. Our algorithm first uses weighted restarting
to produce P 1

res and P 2
res, and constructs their pCFGs C(P 1

res) and C(P 2
res). It then

follows a template-based synthesis approach and simultaneously synthesizes the
triple (f, Uf , Lf) required by our proof rule in Theorem 2. The algorithm pro-
ceeds in four steps. In Step 1, it fixes templates for f , Uf and Lf , where the
templates are symbolic polynomials over pCFG variables of some maximal poly-
nomial degree D, an algorithm parameter provided by the user. In Step 2, the
algorithm collects a system of constraints over the symbolic polynomial template
variables, which together encode that (f, Uf , Lf) satisfy all the requirements and
give rise to a correct instance of the proof rule in Theorem 2. At this point, the
resulting constraints contain polynomial expressions and quantifier alternation,
which makes their solving challenging. Thus, in Step 3, the algorithm trans-
lates the collected system of constraints into a purely existentially quantified
system of linear constraints over the symbolic template variables. This is done
via Handelman’s theorem [41], analogously to previous template-based synthesis
PP analyses [63,4,67]. In Step 4, the algorithm solves the system of linear con-
straints via a linear programming (LP) tool. If the system is feasible, its solution
yields a concrete instance of (f, Uf , Lf) from Theorem 2 and the algorithm re-
ports “Not output-equivalent”. Due to reducing the synthesis to an LP instance,
the runtime complexity of our algorithm is polynomial in the size of the pCFGs,
for any fixed value of the polynomial degree parameter D. Finally, the proof of

292 K. Chatterjee et al.

Theorem 3 establishes completeness of our proof rule with (C2) OST-soundness
condition, and here we show semi-completeness of our algorithm.

Theorem 4 (Algorithm correctness, complexity and semi-completeness,
proof in [24]). The algorithm is correct. If the algorithm outputs ”Not output-
equivalent”, then (P 1, P 2) are indeed not output-equivalent and the computed
triple (f, Uf , Lf) forms a correct instance of the proof rule in Theorem 2.

Furthermore, the runtime complexity of the algorithm is polynomial in the
size of the programs’ pCFGs, for any fixed value of the polynomial degree D.

Finally, the algorithm is semi-complete, meaning that if there exists a valid
triple (f, Uf , Lf) that can be specified via polynomial expressions of degree at
most D and that satisfy OST-soundness condition (C2) in Definition 2, then the
algorithm is guaranteed to output ”Not output-equivalent”.

Streamlined algorithm for bounded termination time PPs. We conclude this sec-
tion by showing that the algorithm can be streamlined for the class of PPs whose
(1) termination time is bounded by some T > 0, and (2) all sampling instruc-
tions consider probability distributions of bounded support. We show that for
this class of PPs, any polynomial function f over outputs and any polynomial
UESM Uf (resp. LESM Lf) for f are guaranteed to be (C2) OST-sound. Hence,
the algorithm does not need to check OST-soundness, which significantly sim-
plifies the system of constraints that needs to be solved by the SMT-solver.

Theorem 5 (Proof in [24]). Let P be a PP with (1) termination time bounded
by some T > 0, and (2) all sampling instructions considering probability dis-
tributions of bounded support. Then, for any polynomial function f over out-
puts, polynomial UESM Uf for f in C(P 1

res) and LESM Lf for f in C(P 2
res),

(C(P 1
res), Uf , f) and (C(P 2

res), Lf , f) satisfy the (C2) OST-soundness condition.

6 Experimental Results

Implementation. We implemented a prototype of our equivalence refutation al-
gorithm. The prototype tool is implemented in Java. Gurobi [40] is used for
solving the LP instances while STING [56] and ASPIC [31] are used for generat-
ing supporting invariants. For each input program pair, the tool tries to perform
polynomial template-based synthesis by using polynomial degrees 1 to 5 in or-
der. All experiments were conducted on an Ubuntu 24.04 machine with an 11th
Gen Intel Core i5 CPU and 16 GB RAM with a timeout of 10 minutes.
Baseline. To the best of our knowledge, no prior work has considered formal and
automated equivalence refutation for PPs with conditioning. However, a viable
alternative approach to refuting PP equivalence would be to first compute the
output distributions of the two PPs via exact symbolic inference, and then to
use mathematical computation software to show that these distributions are
different. Hence, we compare our method against such a baseline. We use the
state-of-the-art exact inference tool PSI [34] for computing output distributions,
and Mathematica [66] for proving that they are different.

Refuting Equivalence in Probabilistic Programs with Conditioning 293

Table 1: Experimental results showing the performance of our tool and the base-
line for refuting equivalence of PPs. A ✓ in the “Eq. Ref.” column represents that
the tool successfully refuted equivalence of the two input programs, whereas “TO”
and “NA” stand for “Timeout” and “Not Applicable”, respectively. The Distance
column shows the Kantorovich distance lower bound computed by out tool for
the similarity refutation problem (see Section 1).

Name
Our Method PSI + Mathematica

Eq. Ref. Time(s) Distance Time(s) Eq. Ref. Time(s)

B
e
n
c
h
m
a
r
k
s
f
r
o
m
[
3
4
]

bertrand ✓ 0.22 0.42 0.30 ✓ 0.86

burglarAlarm ✓ 2.01 0.05 1.39 ✓ 1.04

coinBiasSmall ✓ 36.92 TO - ✓ 1.07

coinPattern ✓ 4.50 0.04 56.33 ✓ 0.86

coins ✓ 0.46 0.12 0.95 ✓ 0.83

ev-model1 ✓ 0.45 0.16 0.81 ✓ 0.85

ev-model2 ✓ 0.75 0.20 0.92 ✓ 0.80

gossip ✓ 0.62 0.1 0.63 ✓ 1.01

grass ✓ 1.46 0.06 8.15 ✓ 1.02

murderMystery ✓ 0.53 0.004 1.24 ✓ 0.84

noisyOr ✓ 1.17 0.17 2.15 ✓ 1.98

twoCoins ✓ 0.66 0.12 1.86 ✓ 0.93

B
e
n
c
h
m
a
r
k
s
f
r
o
m
[
2
3
]

Simple Example ✓ 7.28 381.71 12.15 TO -

Nested Loop TO - TO - TO -

Random Walk ✓ 32.01 TO - TO -

Goods Discount ✓ 0.76 0.08 1.05 TO -

Pollutant Disposal ✓ 3.08 327.27 3.43 TO -

2D Robot ✓ 0.77 TO - TO -

Bitcoin Mining ✓ 7.28 TO - TO -

Bitcoin Mining Pool ✓ 13.248 TO - TO -

Species Fight TO - TO - TO -

Queuing Network TO - TO - TO -

Coupon1 ✓ 3.86 0.47 4.64 TO -

Coupon4 ✓ 169.47 TO - TO -

random_walk_1d_intvalued ✓ 6.24 TO - TO -

random_walk_1d_realvalued TO - TO - TO -

random_walk_1d_adversary TO - TO - TO -

random_walk_2d_demonic ✓ 25.99 TO - TO -

random_walk_2d_variant TO - TO - TO -

retransmission ✓ 2.43 TO - TO -

B
e
n
c
h
m
a
r
k
s
f
r
o
m
[
6
4
]

add-uni ✓ 10.25 0.01 17.48 TO -

cav-ex-5 TO - TO - TO -

cav-ex-7 ✓ 0.19 10.00 0.20 TO -

pdmb-v3 ✓ 60.27 2100.00 60.27 NA -

race ✓ 1.40 2350.42 1.39 NA -

rdwalk-v12 ✓ 0.85 100.00 0.75 NA -

rdwalk-v13 ✓ 1.36 0.01 16.53 NA -

rdwalk-v14 ✓ 0.77 100.00 0.80 NA -

rdwalk-v23 ✓ 0.78 100.00 0.90 NA -

rdwalk-v24 ✓ 1.06 200.00 0.90 NA -

rdwalk-v34 ✓ 2.19 100.00 1.09 NA -

Success Count 34 - 26 - 12 -

Average Runtime - 11.8 - 7.63 - 1.01

294 K. Chatterjee et al.

Benchmarks. While our method is applicable to PPs with unbounded loops,
PSI (and hence our baseline) is restricted to PPs with statically bounded loops.
Hence, for all our benchmarks, we bound the maximal number of iterations of
each loop by 1000. Note that, while this modification ensures that all loops admit
an upper bound on the number of iterations, it still allows loops to terminate
early (i.e. in strictly less than 1000 iterations) if the termination condition is
met early. Hence, executions of programs are not aligned by this modification,
making them challenging in structure for relational analysis.

We ran our tool and the baseline on three sets of benchmarks. For each
benchmark in the first two sets, we obtain a pair of non-output equivalent PPs
by slightly perturbing exactly one of the sampling instructions appearing in the
original PP. Benchmarks in the third set already come in pairs:
1. We consider 12 PPs with discrete probability distributions from the PSI

benchmark suite (taken from the repository of [11]). We selected benchmarks
supported by our syntax, e.g., avoiding reading data from external .csv files.

2. We consider 18 loopy programs from [23] on equivalence refutation in PPs
without conditioning (benchmarks originating from [63,44]). In order to in-
troduce conditioning statements, to each program we add an observe state-
ment at the end, which observes a bound on one of the output variables.

3. Lastly, we consider the benchmarks used in [64] for symbolic inference in PPs
with conditioning. Specifically, we consider pairs of benchmarks that already
have several versions in the repository of [64] (for example there are four ver-
sions of the rdwalk program that were different only in one parameter; we
ran our program on all 6 possible program pairs). All the programs in this
benchmark set contain score statements. Note that PSI (and hence the base-
line) does not support score statements. However, some benchmarks from
this repository contain "if (g) score(1) else score(0) fi" fragments,
which we replace by observe(g) in order to make PSI applicable.

Results. Our experimental results are shown in Table 1. We observe the following:
– On the first benchmark set in which PPs terminate in a small number of

steps, both our method and the baseline manage to refute equivalence of all
12 PP pairs. Our method is faster in 8/12 cases, whereas the baseline is faster
in 4/12 cases. However, in some of these cases our method is significantly
slower (e.g. coinBiasSmall), because the synthesis algorithm needed to use
degree 5 polynomial templates to refute equivalence. However, our method
overall shows a better performance than the baseline. Moreover, our method
successfully computes Kantorovich distance lower bounds in 11/12 cases.

– On the second benchmark set in which PPs take much longer time to ter-
minate (e.g loops may be executed for up to 1000 iterations), our method
refutes equivalence in 12/18 cases, whereas the baseline fails in all cases. This
shows an advantage of our method. The baseline is based on exact symbolic
inference, meaning that it needs to symbolically execute the program which is
a computational bottleneck when the program runtime is large. In contrast,
our method is a static analysis method and does not suffer from this limi-
tation. When it comes to computing lower bounds on Kantorovich distance,

Refuting Equivalence in Probabilistic Programs with Conditioning 295

our tool succeeds in only 4/18 cases. We believe this is due to (i) the invariant
generation tool StIng failing to compute invariants in several cases, or (ii)
the UESM/LESMs needed being non-polynomial (e.g. for Species Fight).

– On the third benchmark set, our tool successfully refutes equivalence and
computes lower bounds on distance in 10/11 cases. These results demon-
strate the applicability of our method in the presence of both observe and
score statements. The baseline solves no cases – fails on 3 whereas it is not
applicable in 8 cases as PSI does not support score statements.

Limitations. In our experiments, we also observed a limitation of our algorithm,
addressing which is an interesting direction of future work. Supporting invariants
play an important role for guiding the U/LESM synthesis algorithm. Without
good supporting invariants, the synthesis algorithm might fail. Generating good
invariants can sometimes be time consuming. For example, our tool takes 169
seconds to solve the coupon4 benchmark in our experiments, because STING and
ASPIC invariant generators take more than 2 minutes to generate an invariant.

7 Conclusion

We presented a new method for refuting equivalence of PPs with conditioning.
To the best of our knowledge, we presented the first method that is fully auto-
mated, provides formal guarantees, and is sound in the presence of conditioning
instructions. Moreover, we show our proof rule is also complete and our algorithm
is semi-complete. Our prototype implementation demonstrates the applicability
of our method to a range of pairs of PPs with conditioning. An interesting di-
rection of future work would be to consider the automation of our method for
non-polynomial programs. Another interesting direction would be to consider
the applicability of the weighted restarting procedure to other static analyses in
PPs with conditioning, towards reducing them to the conditioning-free setting.

Acknowledgments

This work was partially supported by ERC CoG 863818 (ForM-SMArt) and
Austrian Science Fund (FWF) 10.55776/COE12. Petr Novotný is supported by
the Czech Science Foundation grant no. GA23-06963S.

References

1. Agrawal, S., Chatterjee, K., Novotný, P.: Lexicographic ranking supermartingales:
an efficient approach to termination of probabilistic programs. Proc. ACM Pro-
gram. Lang. 2(POPL) (2018)

2. Aguirre, A., Barthe, G., Hsu, J., Kaminski, B.L., Katoen, J., Matheja, C.: A
pre-expectation calculus for probabilistic sensitivity. Proc. ACM Program. Lang.
5(POPL), 1–28 (2021). https://doi.org/10.1145/3434333

https://doi.org/10.1145/3434333
https://doi.org/10.1145/3434333

296 K. Chatterjee et al.

3. Albarghouthi, A., Hsu, J.: Synthesizing coupling proofs of differential privacy. Proc.
ACM Program. Lang. 2(POPL), 58:1–58:30 (2018). https://doi.org/10.1145/
3158146

4. Asadi, A., Chatterjee, K., Fu, H., Goharshady, A.K., Mahdavi, M.: Polynomial
reachability witnesses via stellensätze. In: Freund, S.N., Yahav, E. (eds.) PLDI
’21: 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation, Virtual Event, Canada, June 20-25, 2021. pp. 772–
787. ACM (2021). https://doi.org/10.1145/3453483.3454076

5. Avanzini, M., Moser, G., Schaper, M.: A modular cost analysis for probabilistic
programs. Proc. ACM Program. Lang. 4(OOPSLA) (nov 2020). https://doi.org/
10.1145/3428240

6. Barthe, G., Espitau, T., Grégoire, B., Hsu, J., Strub, P.: Proving expected sensi-
tivity of probabilistic programs. Proc. ACM Program. Lang. 2(POPL), 57:1–57:29
(2018). https://doi.org/10.1145/3158145

7. Barthe, G., Gaboardi, M., Grégoire, B., Hsu, J., Strub, P.: Proving differential
privacy via probabilistic couplings. In: Grohe, M., Koskinen, E., Shankar, N. (eds.)
Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’16, New York, NY, USA, July 5-8, 2016. pp. 749–758. ACM (2016).
https://doi.org/10.1145/2933575.2934554

8. Barthe, G., Gaboardi, M., Hsu, J., Pierce, B.C.: Programming language techniques
for differential privacy. ACM SIGLOG News 3(1), 34–53 (2016). https://doi.org/
10.1145/2893582.2893591

9. Batu, T., Fortnow, L., Rubinfeld, R., Smith, W.D., White, P.: Testing closeness of
discrete distributions. J. ACM 60(1), 4:1–4:25 (2013). https://doi.org/10.1145/
2432622.2432626

10. Batz, K., Chen, M., Junges, S., Kaminski, B.L., Katoen, J., Matheja, C.: Prob-
abilistic program verification via inductive synthesis of inductive invariants. In:
TACAS (2023)

11. Beutner, R., Ong, C.L., Zaiser, F.: Guaranteed bounds for posterior inference in
universal probabilistic programming. In: PLDI. pp. 536–551. ACM (2022)

12. Bichsel, B., Gehr, T., Vechev, M.T.: Fine-grained semantics for probabilistic pro-
grams. In: Ahmed, A. (ed.) Programming Languages and Systems - 27th European
Symposium on Programming, ESOP 2018, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece,
April 14-20, 2018, Proceedings. Lecture Notes in Computer Science, vol. 10801,
pp. 145–185. Springer (2018). https://doi.org/10.1007/978-3-319-89884-1_6,
https://doi.org/10.1007/978-3-319-89884-1_6

13. Canonne, C.L.: A survey on distribution testing: Your data is big. but is it blue?
Theory of Computing pp. 1–100 (2020)

14. Chakarov, A., Sankaranarayanan, S.: Probabilistic program analysis with martin-
gales. In: CAV (2013)

15. Chakraborty, S., Meel, K.S.: On testing of uniform samplers. In: The Thirty-Third
AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innova-
tive Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Hon-
olulu, Hawaii, USA, January 27 - February 1, 2019. pp. 7777–7784. AAAI Press
(2019). https://doi.org/10.1609/aaai.v33i01.33017777

16. Chan, S., Diakonikolas, I., Valiant, P., Valiant, G.: Optimal algorithms for test-
ing closeness of discrete distributions. In: Chekuri, C. (ed.) Proceedings of the
Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA

https://doi.org/10.1145/3158146
https://doi.org/10.1145/3158146
https://doi.org/10.1145/3158146
https://doi.org/10.1145/3158146
https://doi.org/10.1145/3453483.3454076
https://doi.org/10.1145/3453483.3454076
https://doi.org/10.1145/3428240
https://doi.org/10.1145/3428240
https://doi.org/10.1145/3428240
https://doi.org/10.1145/3428240
https://doi.org/10.1145/3158145
https://doi.org/10.1145/3158145
https://doi.org/10.1145/2933575.2934554
https://doi.org/10.1145/2933575.2934554
https://doi.org/10.1145/2893582.2893591
https://doi.org/10.1145/2893582.2893591
https://doi.org/10.1145/2893582.2893591
https://doi.org/10.1145/2893582.2893591
https://doi.org/10.1145/2432622.2432626
https://doi.org/10.1145/2432622.2432626
https://doi.org/10.1145/2432622.2432626
https://doi.org/10.1145/2432622.2432626
https://doi.org/10.1007/978-3-319-89884-1_6
https://doi.org/10.1007/978-3-319-89884-1_6
https://doi.org/10.1007/978-3-319-89884-1_6
https://doi.org/10.1609/aaai.v33i01.33017777
https://doi.org/10.1609/aaai.v33i01.33017777

Refuting Equivalence in Probabilistic Programs with Conditioning 297

2014, Portland, Oregon, USA, January 5-7, 2014. pp. 1193–1203. SIAM (2014).
https://doi.org/10.1137/1.9781611973402.88

17. Chatterjee, K., Fu, H., Goharshady, A.K.: Termination analysis of probabilistic
programs through positivstellensatz’s. In: CAV (2016)

18. Chatterjee, K., Fu, H., Goharshady, A.K., Goharshady, E.K.: Polynomial invariant
generation for non-deterministic recursive programs. In: PLDI. pp. 672–687. ACM
(2020)

19. Chatterjee, K., Fu, H., Novotný, P., Hasheminezhad, R.: Algorithmic analysis of
qualitative and quantitative termination problems for affine probabilistic programs.
ACM Trans. Program. Lang. Syst. 40(2) (2018)

20. Chatterjee, K., Goharshady, A.K., Meggendorfer, T., Zikelic, D.: Sound and com-
plete certificates for quantitative termination analysis of probabilistic programs.
In: Shoham, S., Vizel, Y. (eds.) Computer Aided Verification - 34th Interna-
tional Conference, CAV 2022, Haifa, Israel, August 7-10, 2022, Proceedings, Part
I. Lecture Notes in Computer Science, vol. 13371, pp. 55–78. Springer (2022).
https://doi.org/10.1007/978-3-031-13185-1_4

21. Chatterjee, K., Goharshady, A.K., Meggendorfer, T., Zikelic, D.: Quantitative
bounds on resource usage of probabilistic programs. Proc. ACM Program. Lang.
8(OOPSLA1), 362–391 (2024). https://doi.org/10.1145/3649824, https://doi.
org/10.1145/3649824

22. Chatterjee, K., Goharshady, E.K., Novotný, P., Zárevúcky, J., Zikelic, D.: On
lexicographic proof rules for probabilistic termination. In: Huisman, M., Pasare-
anu, C.S., Zhan, N. (eds.) Formal Methods - 24th International Symposium, FM
2021, Virtual Event, November 20-26, 2021, Proceedings. Lecture Notes in Com-
puter Science, vol. 13047, pp. 619–639. Springer (2021). https://doi.org/10.
1007/978-3-030-90870-6_33

23. Chatterjee, K., Goharshady, E.K., Novotný, P., Zikelic, D.: Equivalence and
similarity refutation for probabilistic programs. Proc. ACM Program. Lang.
8(PLDI), 2098–2122 (2024). https://doi.org/10.1145/3656462, https://doi.
org/10.1145/3656462

24. Chatterjee, K., Goharshady, E.K., Novotný, P., Ðorđe Žikelić: Refuting equivalence
in probabilistic programs with conditioning (2025), https://arxiv.org/abs/2501.
06579

25. Chatterjee, K., Novotný, P., Zikelic, D.: Stochastic invariants for probabilistic ter-
mination. In: Castagna, G., Gordon, A.D. (eds.) Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages, POPL 2017,
Paris, France, January 18-20, 2017. pp. 145–160. ACM (2017). https://doi.org/
10.1145/3009837.3009873

26. Chen, J., He, F.: Proving almost-sure termination by omega-regular decomposition.
In: Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’20). p. 869–882. PLDI 2020, Association for
Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/
3385412.3386002

27. Chen, M., Katoen, J., Klinkenberg, L., Winkler, T.: Does a program yield the
right distribution? - verifying probabilistic programs via generating functions.
In: Shoham, S., Vizel, Y. (eds.) Computer Aided Verification - 34th Interna-
tional Conference, CAV 2022, Haifa, Israel, August 7-10, 2022, Proceedings, Part
I. Lecture Notes in Computer Science, vol. 13371, pp. 79–101. Springer (2022).
https://doi.org/10.1007/978-3-031-13185-1_5

28. Cusumano-Towner, M.F., Mansinghka, V.K.: AIDE: an algorithm for measuring
the accuracy of probabilistic inference algorithms. In: NIPS. pp. 3000–3010 (2017)

https://doi.org/10.1137/1.9781611973402.88
https://doi.org/10.1137/1.9781611973402.88
https://doi.org/10.1007/978-3-031-13185-1_4
https://doi.org/10.1007/978-3-031-13185-1_4
https://doi.org/10.1145/3649824
https://doi.org/10.1145/3649824
https://doi.org/10.1145/3649824
https://doi.org/10.1145/3649824
https://doi.org/10.1007/978-3-030-90870-6_33
https://doi.org/10.1007/978-3-030-90870-6_33
https://doi.org/10.1007/978-3-030-90870-6_33
https://doi.org/10.1007/978-3-030-90870-6_33
https://doi.org/10.1145/3656462
https://doi.org/10.1145/3656462
https://doi.org/10.1145/3656462
https://doi.org/10.1145/3656462
https://arxiv.org/abs/2501.06579
https://arxiv.org/abs/2501.06579
https://doi.org/10.1145/3009837.3009873
https://doi.org/10.1145/3009837.3009873
https://doi.org/10.1145/3009837.3009873
https://doi.org/10.1145/3009837.3009873
https://doi.org/10.1145/3385412.3386002
https://doi.org/10.1145/3385412.3386002
https://doi.org/10.1145/3385412.3386002
https://doi.org/10.1145/3385412.3386002
https://doi.org/10.1007/978-3-031-13185-1_5
https://doi.org/10.1007/978-3-031-13185-1_5

298 K. Chatterjee et al.

29. Das, A., Wang, D., Hoffmann, J.: Probabilistic resource-aware session types. Proc.
ACM Program. Lang. 7(POPL) (jan 2023). https://doi.org/10.1145/3571259

30. Domke, J.: An easy to interpret diagnostic for approximate inference: Symmetric
divergence over simulations. CoRR abs/2103.01030 (2021)

31. Feautrier, P., Gonnord, L.: Accelerated invariant generation for C programs with
aspic and c2fsm. In: TAPAS@SAS (2010)

32. Fioriti, L.M.F., Hermanns, H.: Probabilistic Termination: Soundness, Complete-
ness, and Compositionality. In: Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL 2015). pp.
489–501 (2015). https://doi.org/10.1145/2676726.2677001

33. Foster, N., Kozen, D., Mamouras, K., Reitblatt, M., Silva, A.: Probabilistic netkat.
In: Thiemann, P. (ed.) Programming Languages and Systems - 25th European
Symposium on Programming, ESOP 2016, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Nether-
lands, April 2-8, 2016, Proceedings. Lecture Notes in Computer Science, vol. 9632,
pp. 282–309. Springer (2016). https://doi.org/10.1007/978-3-662-49498-1_12

34. Gehr, T., Misailovic, S., Vechev, M.T.: PSI: exact symbolic inference for proba-
bilistic programs. In: CAV (2016)

35. Ghahramani, Z.: Probabilistic machine learning and artificial intelligence. Nat.
521(7553), 452–459 (2015). https://doi.org/10.1038/nature14541

36. Goldblatt, R., Jackson, M.: Well-structured program equivalence is highly unde-
cidable. ACM Trans. Comput. Log. 13(3), 26:1–26:8 (2012). https://doi.org/10.
1145/2287718.2287726, https://doi.org/10.1145/2287718.2287726

37. Gregersen, S.O., Aguirre, A., Haselwarter, P.G., Tassarotti, J., Birkedal, L.: Asyn-
chronous probabilistic couplings in higher-order separation logic. Proc. ACM Pro-
gram. Lang. 8(POPL), 753–784 (2024). https://doi.org/10.1145/3632868

38. Grosse, R.B., Ancha, S., Roy, D.M.: Measuring the reliability of MCMC inference
with bidirectional monte carlo. In: NIPS. pp. 2451–2459 (2016)

39. Grosse, R.B., Ghahramani, Z., Adams, R.P.: Sandwiching the marginal likelihood
using bidirectional monte carlo. CoRR abs/1511.02543 (2015)

40. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2023), https:
//www.gurobi.com

41. Handelman, D.: Representing polynomials by positive linear functions on compact
convex polyhedra. Pacific Journal of Mathematics 132(1) (1988)

42. Huang, Z., Wang, Z., Misailovic, S.: Psense: Automatic sensitivity analysis for
probabilistic programs. In: Lahiri, S.K., Wang, C. (eds.) Automated Technol-
ogy for Verification and Analysis - 16th International Symposium, ATVA 2018,
Los Angeles, CA, USA, October 7-10, 2018, Proceedings. Lecture Notes in Com-
puter Science, vol. 11138, pp. 387–403. Springer (2018). https://doi.org/10.
1007/978-3-030-01090-4_23

43. Katoen, J.P., Gretz, F., Jansen, N., Kaminski, B.L., Olmedo, F.: Understand-
ing Probabilistic Programs, pp. 15–32. Springer International Publishing, Cham
(2015). https://doi.org/10.1007/978-3-319-23506-6_4

44. Kura, S., Urabe, N., Hasuo, I.: Tail probabilities for randomized program runtimes
via martingales for higher moments. In: TACAS (2). Lecture Notes in Computer
Science, vol. 11428, pp. 135–153. Springer (2019)

45. Legay, A., Murawski, A.S., Ouaknine, J., Worrell, J.: On automated verification of
probabilistic programs. In: TACAS. Lecture Notes in Computer Science, vol. 4963,
pp. 173–187. Springer (2008)

https://doi.org/10.1145/3571259
https://doi.org/10.1145/3571259
https://doi.org/10.1145/2676726.2677001
https://doi.org/10.1145/2676726.2677001
https://doi.org/10.1007/978-3-662-49498-1_12
https://doi.org/10.1007/978-3-662-49498-1_12
https://doi.org/10.1038/nature14541
https://doi.org/10.1038/nature14541
https://doi.org/10.1145/2287718.2287726
https://doi.org/10.1145/2287718.2287726
https://doi.org/10.1145/2287718.2287726
https://doi.org/10.1145/2287718.2287726
https://doi.org/10.1145/2287718.2287726
https://doi.org/10.1145/3632868
https://doi.org/10.1145/3632868
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1007/978-3-030-01090-4_23
https://doi.org/10.1007/978-3-030-01090-4_23
https://doi.org/10.1007/978-3-030-01090-4_23
https://doi.org/10.1007/978-3-030-01090-4_23
https://doi.org/10.1007/978-3-319-23506-6_4
https://doi.org/10.1007/978-3-319-23506-6_4

Refuting Equivalence in Probabilistic Programs with Conditioning 299

46. Majumdar, R., Sathiyanarayana, V.R.: Positive almost-sure termination: Com-
plexity and proof rules. Proc. ACM Program. Lang. 8(POPL) (jan 2024). https:
//doi.org/10.1145/3632879

47. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Sys-
tems. Monographs in Computer Science, Springer (2005)

48. McIver, A., Morgan, C.: Correctness by construction for probabilistic programs. In:
ISoLA (1). Lecture Notes in Computer Science, vol. 12476, pp. 216–239. Springer
(2020)

49. McIver, A., Morgan, C., Kaminski, B.L., Katoen, J.: A new proof rule for almost-
sure termination. Proc. ACM Program. Lang. 2(POPL), 33:1–33:28 (2018). https:
//doi.org/10.1145/3158121

50. Meyn, S.P., Tweedie, R.L.: Markov chains and stochastic stability. Springer Science
& Business Media (2012)

51. Murawski, A.S., Ouaknine, J.: On probabilistic program equivalence and refine-
ment. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005 - Concurrency Theory,
16th International Conference, CONCUR 2005, San Francisco, CA, USA, August
23-26, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3653, pp. 156–
170. Springer (2005). https://doi.org/10.1007/11539452_15, https://doi.org/
10.1007/11539452_15

52. Ngo, V.C., Carbonneaux, Q., Hoffmann, J.: Bounded expectations: resource analy-
sis for probabilistic programs. In: Foster, J.S., Grossman, D. (eds.) Proceedings of
the 39th ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018. pp. 496–512.
ACM (2018). https://doi.org/10.1145/3192366.3192394

53. Olmedo, F., Gretz, F., Jansen, N., Kaminski, B.L., Katoen, J., McIver, A.: Con-
ditioning in probabilistic programming. ACM Trans. Program. Lang. Syst. 40(1),
4:1–4:50 (2018). https://doi.org/10.1145/3156018

54. Olmedo, F., Gretz, F., Jansen, N., Kaminski, B.L., Katoen, J., McIver, A.: Con-
ditioning in probabilistic programming. ACM Trans. Program. Lang. Syst. 40(1),
4:1–4:50 (2018). https://doi.org/10.1145/3156018

55. Sankaranarayanan, S., Chakarov, A., Gulwani, S.: Static analysis for probabilistic
programs: inferring whole program properties from finitely many paths. In: Boehm,
H., Flanagan, C. (eds.) ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013. pp.
447–458. ACM (2013). https://doi.org/10.1145/2491956.2462179

56. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constraint-based linear-relations
analysis. In: SAS (2004)

57. Takisaka, T., Oyabu, Y., Urabe, N., Hasuo, I.: Ranking and repulsing supermartin-
gales for reachability in randomized programs. ACM Trans. Program. Lang. Syst.
43(2), 5:1–5:46 (2021). https://doi.org/10.1145/3450967

58. Takisaka, T., Zhang, L., Wang, C., Liu, J.: Fairness in ranking supermartingales.
CoRR abs/2304.11363 (2023). https://doi.org/10.48550/ARXIV.2304.11363

59. Thrun, S.: Probabilistic algorithms in robotics. AI Mag. 21(4), 93–109 (2000).
https://doi.org/10.1609/aimag.v21i4.1534

60. Villani, C.: Topics in optimal transportation, vol. 58. American Mathematical Soc.
(2021)

61. Wang, D., Hoffmann, J., Reps, T.W.: Central moment analysis for cost accumula-
tors in probabilistic programs. In: Freund, S.N., Yahav, E. (eds.) PLDI ’21: 42nd
ACM SIGPLAN International Conference on Programming Language Design and
Implementation, Virtual Event, Canada, June 20-25, 2021. pp. 559–573. ACM
(2021). https://doi.org/10.1145/3453483.3454062

https://doi.org/10.1145/3632879
https://doi.org/10.1145/3632879
https://doi.org/10.1145/3632879
https://doi.org/10.1145/3632879
https://doi.org/10.1145/3158121
https://doi.org/10.1145/3158121
https://doi.org/10.1145/3158121
https://doi.org/10.1145/3158121
https://doi.org/10.1007/11539452_15
https://doi.org/10.1007/11539452_15
https://doi.org/10.1007/11539452_15
https://doi.org/10.1007/11539452_15
https://doi.org/10.1145/3192366.3192394
https://doi.org/10.1145/3192366.3192394
https://doi.org/10.1145/3156018
https://doi.org/10.1145/3156018
https://doi.org/10.1145/3156018
https://doi.org/10.1145/3156018
https://doi.org/10.1145/2491956.2462179
https://doi.org/10.1145/2491956.2462179
https://doi.org/10.1145/3450967
https://doi.org/10.1145/3450967
https://doi.org/10.48550/ARXIV.2304.11363
https://doi.org/10.48550/ARXIV.2304.11363
https://doi.org/10.1609/aimag.v21i4.1534
https://doi.org/10.1609/aimag.v21i4.1534
https://doi.org/10.1145/3453483.3454062
https://doi.org/10.1145/3453483.3454062

300 K. Chatterjee et al.

62. Wang, P., Fu, H., Chatterjee, K., Deng, Y., Xu, M.: Proving expected sensitivity
of probabilistic programs with randomized variable-dependent termination time.
Proc. ACM Program. Lang. 4(POPL), 25:1–25:30 (2020). https://doi.org/10.
1145/3371093

63. Wang, P., Fu, H., Goharshady, A.K., Chatterjee, K., Qin, X., Shi, W.: Cost analysis
of nondeterministic probabilistic programs. In: PLDI (2019)

64. Wang, P., Yang, T., Fu, H., Li, G., Ong, C.L.: Static posterior inference of
bayesian probabilistic programming via polynomial solving. Proc. ACM Program.
Lang. 8(PLDI), 1361–1386 (2024). https://doi.org/10.1145/3656432, https:
//doi.org/10.1145/3656432

65. Williams, D.: Probability with Martingales. Cambridge mathematical textbooks,
Cambridge University Press (1991)

66. Wolfram Research, Inc.: Mathematica 13.2 (2022), https://www.wolfram.com
67. Zikelic, D., Chang, B.E., Bolignano, P., Raimondi, F.: Differential cost analysis with

simultaneous potentials and anti-potentials. In: Jhala, R., Dillig, I. (eds.) PLDI ’22:
43rd ACM SIGPLAN International Conference on Programming Language Design
and Implementation, San Diego, CA, USA, June 13 - 17, 2022. pp. 442–457. ACM
(2022). https://doi.org/10.1145/3519939.3523435

Open Access. This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution, and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/3371093
https://doi.org/10.1145/3371093
https://doi.org/10.1145/3371093
https://doi.org/10.1145/3371093
https://doi.org/10.1145/3656432
https://doi.org/10.1145/3656432
https://doi.org/10.1145/3656432
https://doi.org/10.1145/3656432
https://www.wolfram.com
https://doi.org/10.1145/3519939.3523435
https://doi.org/10.1145/3519939.3523435
http://creativecommons.org/licenses/by/4.0/

	Refuting Equivalence in Probabilistic Programs with Conditioning

