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Abstract
We use the circle method to prove that a density 1 of elements in Fq [t] are representable as a
sum of three cubes of essentially minimal degree from Fq [t], assuming the Ratios Conjecture
and that char(Fq) > 3. Roughly speaking, to do so, we upgrade an order of magnitude result
to a full asymptotic formula that was conjectured by Hooley in the number field setting.
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1 Introduction

As in our previous paper [2], we are interested in solving the equations x3 + y3 + z3 = k
in Fq [t] as efficiently as possible, for given k ∈ Fq [t]. As observed by Serre and Vaserstein
[9], this Diophantine equation is always soluble when char(Fq) �= 3 and q /∈ {2, 4, 16}, but
the degrees of x, y, z ∈ O solving x3 + y3 + z3 = k are at least deg k, whereas one might
hope for solutions of smaller degree. Let O = Fq [t]. For each A ∈ R, we define the set
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SA =
{
k ∈ O : x3 + y3 + z3 = k is soluble in O with

max{deg x, deg y, deg z} � deg k
3 + A

}
. (1.1)

In [2], we proved that SA has positive lower density for A � 0, assuming (R2) from the
Ratios Conjecture (which is Conjecture 6.3 in the present paper). At the expense of assuming
a further instance of the Ratios Conjecture, our main result is as follows.

Theorem 1.1 Assume that Conjectures 6.2 and 6.3 hold, and suppose char(Fq) > 3. Then
the lower density of SA approaches 1 as A → ∞.

Conjecture 6.2 (RA1) concerns mean values of 1/L(s, c) over adelic boxes of vectors
c. We defer the details to Sect. 6. In Theorem 1.1, one could simply assume a common
generalisation of (RA1) and (R2), but this would obfuscate the paper.

Taking A → ∞ is necessary for the conclusion of Theorem 1.1 to hold. By adapting
local density arguments of Diaconu [4, Sect. 1] from Z to Fq [t], we will prove the following
unconditional result.

Theorem 1.2 Suppose char(Fq) �= 3 and fix A ∈ R. Then SA has upper density < 1.

The proof of Theorem 1.1 builds heavily on our work in [2], using the full force of the
function field circle method. This will allow us to prove the following asymptotic formula,
in the spirit of the Manin–Peyre conjecture.

Theorem 1.3 Suppose char(Fq) > 3. Let w : K 6∞ → R be the weight function defined in
Definition 3.1 and let F(x) = x31 + · · · + x36 . Assuming Conjectures 6.2 and 6.3, for P = td

we have ∑
x∈O6

F(x)=0

w(x/P) = σ∞S|P|3 +
∑
L∈ϒ

∑
x∈O6∩L

w(x/P) + ow(|P|3)

as |P| → ∞, where σ∞ andS are the singular integral and singular series defined in (4.4)
and (4.2), respectively. Moreover, ϒ denotes the set of 3-dimensional Fq(t)-vector spaces
defined over Fq on which F vanishes identically.

In some key ranges, we rely on Conjecture 6.2 to improve a certain O(|P|3) bound to
o(|P|3), in the argument of [2]. Moreover, the scaling-invariant weight functions required
for our counting argument are subtler than those in [2], which already required care. The
precise weights we use are specified in Definition 3.1.

An analogue over Z of the main results in the present paper is available in [11]. However,
the paper [11] requires additional hypotheses (automorphy, GRH, and the Square-Free Sieve
Conjecture) in addition to the Ratios Conjecture.

Notation

As in [2], we let K = Fq(t), K∞ = Fq((t−1)), and O = Fq [t]. We let O+ denote the set of
monic elements in O. For M ∈ R we write M̂ = qM . We define a norm | · | : K∞ → R�0
via |0| = 0 and |α| = qdegα for any α ∈ K×∞, where degα = degt α ∈ Z is the degree of
the leading term in the base t expansion of α. We also let T = {α ∈ K∞ : |α| < 1}, and
normalise the Haar measure dα on K∞ so that

∫
T
dα = 1. For α = (α1, . . . , αn) ∈ Kn∞,

we let |α| = max1�i�n |αi | and dα = dα1 · · · dαn . We let ψ : K∞ → C
× be the standard

additive character defined in [2, Sect. 2]. A key property of this character is the equality
∫

|α|<N̂−1
ψ(αx)dα =

{
N̂−1 if |x | < N̂ ,

0 otherwise,
(1.2)
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for any N ∈ Z�0. Other notation from [2] will be recalled when needed.

2 Upper density of SA

Suppose char(Fq) �= 3. In this sectionwe prove Theorem 1.2.We recall the notation B̂ = qB ,
for any B ∈ R, that was adopted in our previous investigation [2]. Define

Er (T ; S) = |r |
T̂
#
{
k ∈ S : |k| < T̂ , r | k} ,

for any subset S ⊂ O, any T > 0 and any r ∈ O+. For a given choice of A > 0 we need to
prove that

lim sup
T→∞

E1(T ; SA) < 1.

To begin with, given r ∈ O+ such that deg(r) � T
3 , we have

Er (T ; SA) � |r |
T̂

∑
k∈O
|k|<T̂
r |k

r̃A(k),

where

r̃A(k) = #
{
(x, y, z) ∈ O3 : x3 + y3 + z3 = k, deg x, deg y, deg z � deg k

3 + A
}

.

Breaking into residue classes modulo r , we obtain
∑
k∈O
|k|<T̂
r |k

r̃A(k) �
∑

(u,v,w)∈(O/rO)3

u3+v3+w3≡0 mod r

S(u)S(v)S(w),

where S(n) is the number x ∈ O such that deg x � 1
3T + A and x ≡ n mod r , for any n ∈ O.

Clearly S(n) 	A T̂ 1/3/|r |, where the implied constant is allowed to depend on A. But then
it follows that there exists a constant CA > 0 depending only on A such that

Er (T ; SA) � CA
ρ(r)

|r |2 ,

where

ρ(r) = #
{
(u, v, w) ∈ (O/rO)3 : u3 + v3 + w3 ≡ 0 mod r

}
. (2.1)

It now follows that

E1(T ;O \ SA) � |r |−1
Er (T ;O \ SA) � |r |−1

(
1 − CA

ρ(r)

|r |2
)

,

whence

E1(T ; SA) � 1 − |r |−1
(
1 − CA

ρ(r)

|r |2
)

.
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The proof of Theorem 1.2 therefore reduces to finding an element r ∈ O+, depending only
on A, such that

ρ(r)

|r |2 < C−1
A .

For any finite field Fm of characteristic p, we introduce the cubic Gauss sum

g(χ) =
∑
u∈Fm

χ(u)ep(TFm/Fp (u)),

whereχ is any non-trivial multiplicative cubic character ofFm andwhere TFm/Fp : Fm → Fp

is the trace map. This has absolute value
√
m and we define the normalised cubic Gauss sum

g̃(χ) = g(χ)/
√
m, over Fm .

Let � ∈ O+ be a prime such that |� | ≡ 1 mod 3 and let F� be the finite field that is
isomorphic to O/�O, with cardinality |� |. On taking (m, n) = (3, 2) in Theorem 2 of [7,
Sect. 10.3] and passing to the affine cone, it follows that

ρ(�) − 1

|� | − 1
= |� | + 1 + 1

|� | − 1
(J0(χ� , χ� , χ� ) + J0(χ̄� , χ̄� , χ̄� )) ,

where J0 is a Jacobi sum and χ̄� , χ� are the two non-trivial cubic characters of F� . But
Eq. (2) in Theorem 2 of [7, Sect. 10.3] yields

J0(χ� , χ� , χ� )

|� | − 1
= 1

|� |g(χ� )3,

so that

ρ(�) − 1

|� | − 1
= |� | + 1 + 2|� |−1Reg(χ� )3.

But then

ρ(�)

|� |2 = 1 + c�

|� | − c�

|� |2 , (2.2)

where c� = 2|� |−1Reg(χ� )3 ∈ Z.
The normalised cubic Gauss sum g̃(χ� ) = g(χ� )/|� |1/2 is a complex number with

absolute value 1 and we may write

c� = 2|� |−1Reg(χ� )3 = 2|� |1/2Reg̃(χ� )3,

so that |c� | � 2|� |1/2.Wewould like to prove that there are infinitelymany primes� ∈ O+
with |� | ≡ 1 mod 3 for which c� < 0. This would follow from a function field version
of the result by Heath-Brown and Patterson [6, Theorem 2], but such a result has yet to be
worked out in the literature. Fortunately, since we work with characters over the constant
field, an elementary approach is available to us.

Pick an integer d � 1. The prime number theorem for function fields implies that there
are (2d)−1q2d +O(qd) primes � ∈ O+ such that deg(�) = 2d . Moreover, any such prime
will satisfy |� | ≡ 1 mod 3, since 2d is even. For any such prime � , we may assume that
our cubic character χ� on F� ⊂ Fq takes the shape χ ◦ NF� /Fq2

, where χ is a fixed cubic

character on Fq2 ⊂ Fq and NF� /Fq2
: F� → Fq2 is the norm map. It then follows from the
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Hasse–Davenport relation that g̃(χ� ) = −(−g̃(χ))d , where g̃(χ) is the normalised Gauss
sum on Fq2 , whence

c� = −2|� |1/2Re (−g̃(χ)3
)d

. (2.3)

We proceed to prove the following result.

Lemma 2.1 There exist infinitely many integers d � 0 such that

9
10 � Re

(−g̃(χ)3
)d � 1.

Proof Let α ∈ [− 1
2 ,

1
2 ] be such that −g̃(χ)3 = e(α). Suppose first that α = a/b ∈ Q. Then

any integer d � 0 that is divisible by b satisfies e(dα) = 1 and thus suffices for the statement
of the lemma.

Suppose next that α /∈ Q. The upper bound is trivial for any d ∈ Z�0 and so we focus on
the lower bound. It follows fromKronecker’s approximation theorem that there exist infinitely
many integers M ∈ N such that ‖Mα‖ � 1

99 , where ‖η‖ denotes the distance to the nearest
integer from any η ∈ R. For any such M , taking d = M gives cos(2π · dα) = cos(2πγ ), for
some γ ∈ [− 1

99 ,
1
99 ]. But then it follows that cos(2πγ ) � 9

10 , meaning that the statement of
the lemma holds with d = M . 
�

Choose d in Lemma 2.1 such that d is large enough in terms of q . Then we can find
m � q2d/(4d) primes �1, . . . ,�m ∈ O+ satisfying |�i | ≡ 1 mod 3 and deg(�i ) = 2d ,
for 1 � i � m, and for which

c�i

(
1

|�i | − 1

|�i |2
)

� −9

5

(
1

|�i |1/2 − 1

|�i |3/2
)

� − 9

10
· 1

qd
,

in the light of (2.3). Put rd = �1 · · · �m ∈ O+. But then it follows from (2.2) and the
Chinese remainder theorem that

ρ(rd)

|rd |2 =
∏

1�i�m

ρ(�i )

|�i |2 �
∏

1�i�m

(
1 − 9

10
· 1

qd

)
�

∏
1�i�m

exp

(
− 9

10
· 1

qd

)
,

since 1 − ξ � exp(−ξ) for any ξ ∈ R. On recalling that m � q2d/(4d), we deduce that

ρ(rd)

|rd |2 � exp

(
− 9

10
· q

d

4d

)
.

This is strictly less than C−1
A on taking d to be sufficiently large in terms of A, which thereby

completes the proof of Theorem 1.2.

3 Local densities

Suppose char(Fq) �= 3. In Sect. 4, we will study a suitable arithmetic variance of the global
counting function

rA(k):=#

⎧⎨
⎩(x, y, z) ∈ O3 :

x3 + y3 + z3 = k,
deg x = deg y � deg k

3 + A,

deg y − 1 � deg z � deg y

⎫⎬
⎭
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over q-adic intervals |k| = B̂ as B → ∞, for fixed A � 0. Write B = 3d + α, where d ∈ Z

and α ∈ {0, 1, 2}, and define Ã = �α/3+ A�. Let us also set P = td . To prove Theorem 1.1
we may take A as large as we wish, and we shall therefore assume A � 2 in all that follows.

Before proceeding to the variance analysis, we will need to introduce the relevant local
densities and show that they are not too small on average. We begin by defining the key
weight function in our analysis.

Definition 3.1 Let A � 0 and α ∈ {0, 1, 2} be given. Over K∞ we define

νA,α(x, y, z) := 1|x3+y3+z3|=qα11�|x |=|y|�qα/3+A1|y|q−1�|z|�|y|,
wA,α(x1, . . . , x6) := νA,α(x1, x2, x3)νA,α(x4, x5, x6).

We will typically write ν = νA,α and w = wA,α .

Remark 3.2 A few comments are needed to explain our choice of weight function. Firstly, it
is not strictly necessary to state 1 � |x |, |y|, as this follows from |x3 + y3 + z3| = qα and
|z| � |y| = |x | already. Secondly, it is crucial for our argument that x, y, z are of roughly
the same size. This guarantees that there are not too many points lying on linear subspaces
on the Fermat hypersurface

∑6
i=1 x

3
i = 0, as seen in Lemma 4.3. Thirdly, we cannot simply

take |x | = |y| = |z|, but need to allow for one variable to be smaller than the others. Indeed,
if |k| = q3d+α with α �= 0, then x3 + y3 + z3 = k can only hold if the leading coefficient
of x3 + y3 + z3 cancels. When |x | = |y| = |z|, then this is only possible if there exists a
solution (x0, y0, z0) ∈ (F×

q )3 such that x30 + y30 + z30 = 0. But such solutions do not exist for
q = 2, 4, 7, 13, 16, as was implicitly observed by Serre and Vaserstein [9, p. 350].

If |k| = B̂, as above, with B = 3d + α, then we may write

rA(k) =
∑

(x,y,z)∈O3

x3+y3+z3=k

ν
( x

P
,
y

P
,
z

P

)
,

where we recall that P = td . It is now time to introduce the relevant local densities.
The analogue of the real density is given by

σ∞,A(k) =
∫

|θ |�q4 Ã
ψ(−θkP−3)

∫
K 3∞

ν(x, y, z)ψ(θ(x3 + y3 + z3))dxdydzdθ. (3.1)

Next, let M � 0 be a parameter to be chosen in due course and define

N =
∏

�∈O+ prime
deg��M

� �M/ deg��. (3.2)

The relevant local densities at the finite places are conveniently bundled together in the
expression

ρ̃(N , k) = |N |−2#{(x, y, z) ∈ (O/NO)3 : x3 + y3 + z3 ≡ k mod N }. (3.3)

Then, in Sect. 4 we shall compare rA(k) on average over k with the local counting function

lA(k; M):=σ∞,A(k)ρ̃(N , k). (3.4)

In the remainder of this section we prove some preliminary bounds on the typical sizes
of σ∞,A(k) and ρ̃(N , k). Given k ∈ K∞, it will be convenient to introduce the notation
Fk(x, y, z) = x3 + y3 + z3 − k and to set F(x) = F0(x1, x2, x3) + F0(x4, x5, x6) for
x = (x1, . . . , x6) ∈ K 6∞. We begin by relating the real density to a point count.
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Lemma 3.3 Given k ∈ O such that |k| = |P|3qα with α ∈ {0, 1, 2}, let m = P−3t−3 Ãk.
Writing s = t−1, we have

σ∞,A(k) = 1

q14 Ã+2
#

⎧⎨
⎩x ∈

(
Fq [s]

(s7 Ã+2)

)3

:
F0(x) ≡ m mod s7 Ã+2,

vs(x1) = vs(x2) � Ã,

vs(x2) � vs(x3) � vs(x2) + 1

⎫⎬
⎭ .

Proof Interchanging the order of integration and using (1.2) to execute the integral over θ in
the definition of σ∞,A(k), we obtain

σ∞,A(k) = q4 Ã+1 vol{(x, y, z) ∈ supp ν : |F0(x, y, z) − kP−3| < q−4 Ã−1}. (3.5)

Suppose that y ∈ K 3∞ satisfies | y| < q−6 Ã−1 and let t Ãx ∈ supp ν. Let us define

(x, y, z) = t Ãx + y. Then using Taylor expansion, and recalling that Ã � α one sees that
|F0(x, y, z) − kP−3| < q−4 Ã−1 holds if and only if

|F0(x) − t−3d−3 Ãk| < q−7 Ã−1. (3.6)

In addition, if this holds, then |F0(x, y, z)| = qα is automatically satisfied and hence
(x, y, z) ∈ supp ν if and only if

q− Ã � |x1| = |x2| and |x2|q−1 � |x3| � |x2| (3.7)

for x = (x1, x2, x3). It follows that the set on the right hand side of (3.5) is invariant under
translation by elements of t−6 Ã−1

T
3 so that the volume in the right hand side of (3.5) factors

through the quotient group (t Ã+1
T/t−6 Ã−1

T)3.
Let s = t−1. Then for any l ∈ Z�0 we have a natural identification s−1

T/slT �
Fq [s]/(sl+1) in the category of rings. Under this identification, for any x ∈ s−1

T/slT we
have |x | = q−vs (x), so that (3.6) and (3.7) hold if and only

F0(x) ≡ s3(d+ Ã)k mod s7 Ã+2

and

vs(x1) = vs(x2) � Ã, vs(x2) � vs(x3) � vs(x2) + 1.

Note that this makes sense as s3(d+ Ã)k ∈ Fq [s]. The desired result now follows, since

vol( y ∈ K 3∞ : | y| < q−6 Ã−1} = q−3(6 Ã+1). 
�
Proposition 3.4 Uniformly over k ∈ O, we have σ∞,A(k) � A.

Proof For any integers 1 � b + 1 � c � 7 Ã + 2 with c � 1, let

nb(c) = #{x ∈ (Fq [s]/sc)3 : F0(x) ≡ m mod sc, vs(x1) = vs(x2) = b, vs(x3) = b + 1}.
It is then clear from Lemma 3.3 that

σ∞,A(k) � q−14 Ã−2
Ã−1∑
b=0

nb(7 Ã + 2). (3.8)

Let us begin with the contribution from b = 0. We have vs(m) = vs(s3d+3 Ãk) = 3 Ã > 0.
In particular, F0(x) ≡ m mod s holds for x such that vs(x1) = vs(x2) = 0 and vs(x3) = 1
if and only if x31 + x32 ≡ 0 mod s. One such solution a is provided by taking a1 = 1 and
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a2 = −1. As 3 � char(Fq), this solution is smooth and a Hensel lifting argument shows that
there exists a solution x ∈ Fq [s]/(s2) with x ≡ a mod s and x3 �≡ 0 mod s2. Using Hensel

lifting again shows that any such x lifts to q14 Ã solutions modulo s7 Ã+2, so that

n0(7 Ã + 2) � q14 Ã. (3.9)

Now let us assume that b � 1. Then any x counted by nb(7 Ã + 2) can be written as

x = sbx′, where x′ ∈ Fq [s]/(s7 Ã+2−b) is such that vs(x ′
1) = vs(x ′

2) = 0 and vs(x ′
3) = 1.

Let mb = ms−3b and note that vs(mb) = 3 Ã − 3b � 3. We thus see that x is counted by
nb(7 Ã + 2) if and only if F0(x′) ≡ mb mod s7 Ã+2−3b. This only depends on x′ modulo
s7 Ã+2−3b and hence

nb(7 Ã + 2) � q6bn′
0(7 Ã + 2 − 3b),

where n′
0 is defined as n0 with m replaced by mb. As vs(mb) � 1, the argument leading to

(3.9) also applies to n′
0 and yields

nb(7 Ã + 2) � q6bn′
0(7 Ã + 2 − 3b) � q14 Ã. (3.10)

Inserting (3.10) into (3.8) gives

σ∞,A(k) � q−14 Ã−2
Ã−1∑
b=0

q14 Ã = Ã

q2
.

Since Ã > A − 1 � A, and q is fixed, the proposition follows. 
�
Finally, for the local densities (3.3) at the finite places we require the following result,

showing that on average they are not too small.

Proposition 3.5 Let N ∈ O+. Then

|N |−1
∑

|k|<|N |

1

ρ̃(N , k)
	 1.

Proof The quantity ρ̃(N , k) is a multiplicative function of N by the Chinese remainder
theorem, so that

|N |−1
∑

|k|<|N |

1

ρ̃(N , k)
= |N |−1

∑
|k|<|N |

∏
� e‖N

1

ρ̃(� e, k)
.

Since the value of ρ̃(� e, k) only depends on k modulo � e, we may further write

|N |−1
∑

|k|<|N |

1

ρ̃(N , k)
=

∏
� e‖N

A(� e), (3.11)

where

A(� e) = 1

|� e|
∑

|k|<|� e|

1

ρ̃(� e, k)
.

We need to get a sufficiently sharp upper bound for A(� e).
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Let ρ̃∗(� e, k) be defined as for ρ̃(� e, k), but with the extra constraint that (x, y, z) should
be coprime to � . Then clearly

ρ̃(� e, k) � ρ̃∗(� e, k) = ρ̃∗(�, k),

by Hensel’s lemma and the fact that the characteristic is not 3. Thus it follows that

A(� e) � 1

|� |
∑

|k|<|� |

1

ρ̃∗(�, k)

= 1

|� |
1

ρ̃∗(�, 0)
+ 1

|� |
∑

0<|k|<|� |

1

ρ̃∗(�, k)
,

(3.12)

In the light of the definitions (2.1) and (3.3), it is clear that

ρ̃∗(�, 0) = ρ̃(�, 0) − 1

|� |2 = ρ(�) − 1

|� |2 .

Hence it follows from (2.2) that

ρ̃∗(�, 0) = 1 + c�

|� | − c� + 1

|� |2 ,

where c� ∈ Z satisfies |c� | � 2
√|� |. Thus there exists an absolute constant C1 > 0 such

that

1

ρ̃∗(�, 0)
� 1 + C1√|� | .

We proceed to an analysis of ρ̃∗(�, k) when � � k. Identifying k with the image of its
reduction modulo � , it is clear that

ρ̃∗(�, k) = ρ̃(�, k) = 1

r2
#{(x, y, z) ∈ F

3
r : x3 + y3 + z3 = k},

where r = |� | and Fr ∼= O/�O. Let us write ν(r) = #{(x, y, z) ∈ F
3
r : x3 + y3 + z3 = k}.

We may now appeal to the formulae in [7, Chap. 8] to calculate this quantity. If r ≡ 2 mod 3
then ν(r) = r2. If r ≡ 1 mod 3, we let χ : F

∗
r → C be a non-trivial character of order 3.

Then one may check that

ν(r) = r2 + 3 (χ(k) + χ̄ (k)) r − 2ReJ (χ, χ),

where J (χ, χ) is a Jacobi sum and satisfies |J (χ, χ)| = √
r . We deduce that

1

ρ̃∗(�, k)
� 1 − 3(χ(k) + χ̄ (k))

|� | + C2

|� |3/2 ,

for a suitable absolute constant C2 > 0.
Bringing these estimates together in (3.12), we obtain

A(� e) � 1

|� |
(
1 + C1√|� |

)
+ 1

|� |
∑

0<|k|<|� |
1

� 1 + C1

|� |3/2 ,
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if |� | ≡ 2 mod 3. On the other hand, if |� | ≡ 1 mod 3, then

A(� e) � 1

|� |
(
1 + C1√|� |

)
+ 1

|� |
∑

0<|k|<|� |

(
1 − 3(χ(k) + χ̄(k))

|� | + C2

|� |3/2
)

� 1 − 3

|� |2
∑

0<|k|<|� |
(χ(k) + χ̄ (k)) + C1 + C2

|� |3/2 .

But the sum over k vanishes, since χ, χ̄ are non-trivial characters modulo � and the image
of k runs over all of F

∗
r on reduction modulo � .

Returning to (3.11), we conclude that

|N |−1
∑

|k|<|N |

1

ρ̃(N , k)
�
∏
� |N

(
1 + C1 + C2

|� |3/2
)

	 1,

as required. 
�

4 Variance analysis for density 1

For the rest of the paper, assume char(Fq) > 3.Having carried out our study of local densities,
in this section we turn to a variance analysis of rA(k) and provide a proof of Theorem 1.1,
assuming Theorem 1.3, whose proof will be completed in Sect. 7.

Recall the definition (3.4) of lA(k; M). We are interested in the arithmetic variance

VarA(B; M) =
∑
k∈O
|k|=B̂

(rA(k) − lA(k; M))2,

ranging over all k ∈ O with deg k = B. We will analyse this roughly as in [10, Chapter 2],
which is in turn based on arguments of [4]. A crucial role in our analysis is played by the
counting function

Nw(P):=
∑
x∈O6

F(x)=0

w(x/P), (4.1)

where w is the weight function constructed in Definition 3.1.
As before, we let F(x) = ∑6

i=1 x
3
i for x = (x1, . . . , x6) ∈ K 6∞. We then define

S =
∑
r∈O+

|r |−6Sr (0), (4.2)

to be the singular series associated to our counting function Nw(P), where

Sr (0) =
∑

|a|<|r |
gcd(a,r)=1

∑
|x|<|r |

ψ

(
aF(x)

r

)
, (4.3)

where x runs over elements of O6 with absolute value less than |r |. (We follow the usual
convention that summation variables in K∞ should lie in O unless specified otherwise.)
Moreover, the singular integral is defined to be

σ∞ =
∫

|θ |�q4 Ã

∫
K 6∞

w(x)ψ(θF(x))dxdθ. (4.4)
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We have

VarA(B; M) =
∑

|k|=B̂

rA(k)2 − 2
∑

|k|=B̂

rA(k)lA(k; M) +
∑

|k|=B̂

lA(k; M)2

= �1 − 2�2 + �3,

say.Wewill analyse each term�i individually, for i = 1, 2, 3, with themain bulk of our work
being concerned with producing an asymptotic for �1. Before commencing our analysis, we
will need two auxiliary results.

Lemma 4.1 Let N ∈ O, B = 3d + α � 0 and suppose that |N | < |P|3q−4 Ã. Then for any
a ∈ O with |a| < |N |, we have

Q:=
∑

|k|=B̂
k≡a mod N

σ∞,A(k)2 = σ∞
|P|3
|N | ,

where σ∞,A(k) is given by (3.1).

Proof After writing k = Nb + a, with |b| = B̂/|N | and |a| < |N |, it follows that

Q =
∫

|θ1|,|θ2|�q4 Ã

∫
K 6∞

w(x)ψ(θ1F0(x1) + θ2F0(x2) − a(θ1 + θ2)P
−3)

×
∑

|b|=B̂/|N |
ψ(−(θ1 + θ2)bN P−3)dx1dx2dθ1dθ2.

The assumption |N | < |P|3q−4 Ã implies

|a(θ1 + θ2)P
−3| < |N |q4 Ã|P|−3 < 1,

so thatψ(a(θ1+θ2)P−3) = 1.Moreover, it follows from orthogonality of additive characters
that

∑
|b|=B̂/|N |

ψ(−(θ1 + θ2)bN P−3) = B̂

|N |
(
q1‖(θ1+θ2)N P−3‖< |N |

q B̂
− 1‖(θ1+θ2)N P−3‖< |N |

B̂

)
,

where ‖α‖:=|∑i�−1 ai t
i |, for any element α = ∑

i�N ai t i ∈ K∞. We again have

|(θ1 + θ2)N P−3| < 1, so that ‖(θ1 + θ2)N P−3‖ = |(θ1 + θ2)N P−3|. After making the
change of variables θ2 = −θ1 + γ and θ = θ1, it follows that

Q = B̂

|N |
∫
K 6∞

∫
|θ |,|γ−θ |�q4 Ã

w(x)ψ(θF(x) − γ F0(x2))
(
q1|γ |<q−α−1 − 1|γ |<q−α

)
dγ dθdx,

where we applied the change of variables x = (x1,−x2). If w(x) �= 0, then |F0(x2)| = qα .

Moreover, if |γ | < q−α and |θ | � q4 Ã, then |γ −θ | � q4 Ã holds automatically. This implies∫
|γ |<q−α

ψ(−γ F0(x2))dγ = q−α1|F0(x2)|<qα = 0.

In addition, if |γ | < q−1−α , then ψ(−γ F0(x2)) = 1 since |F0(x2)| = qα for x2 ∈ supp ν.
We therefore obtain
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Q = q B̂

|N |
∫
K 6∞

∫
|θ |�q4 Ã

w(x)ψ(θF(x))dθdx vol({|γ | < q−1−α})

= |P|3
|N | σ∞

since B̂ = |P|3qα . 
�

Let y ∈ K 3∞ be such that | y| � q Ã and z ∈ T
3. If we set x = y + tα−2 Ã z, then a

straightforward computation shows that |F(x)| = qα if and only if |F( y)| = qα . Similarly
ν(x) �= 0 holds if and only if ν( y) �= 0. In particular, ν is invariant under translation by
tα−2 Ã

T
3. If we define

RA,α =
⎧⎨
⎩ y ∈ (t Ã+1

T/tα−2 Ã
T)3 :

|F0( y)| = qα,

1 � |y1| = |y2| � q Ã,

|y2|q−1 � |y3| � |y2|

⎫⎬
⎭ , (4.5)

we thus have the well-defined identity

ν(x) =
∑

y∈RA,α

1|x− y|<qα−2 Ã . (4.6)

Lemma 4.2 Let N ∈ O, B = 3d + α � 0 and suppose that |N | < |P|q−6 Ã. If b ∈ O3 is
such that |b| < |N |, then

∑
y≡b mod N

ν( y/P)σ∞,A(F0( y)) = σ∞
|P|3
|N |3 .

Proof We begin with an application of the Poisson summation formula, in the form [8,
Theorem 7.7], and its obvious generalisation to multi-dimensional sums. This yields

∑
y≡b mod N

ν( y/P)σ∞,A(F0( y))

= |P|3
|N |3

∫
|θ |�q4 Ã

∫
K 3∞

ν(x)ψ(θF0(x))
∑

v∈O3

ψ

(
− b · v

N

)
I (θ, v)dxdθ,

where we have temporarily written

I (θ, v) =
∫
K 3∞

ν( y)ψ
(

θF0( y) + P y · v

N

)
d y.

The contribution from v = 0 is clearly

|P|3
|N |3

∫
|θ |�q4 Ã

∫
K 3∞

ν(x)ψ(θF0(x))I (θ, 0)dxdθ = |P|3
|N |3 σ∞.

Using (4.6) to decompose the weight function ν into smaller boxes and applying a change
of variables, we obtain

I (θ, v) = q3(α−2 Ã)
∑

y∈RA,α

ψ

(
P y · v

N

)∫
T3

ψ

(
θF0( y + tα−2 Ã z) + Ptα−2 Ã z · v

N

)
dz.
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We can now use [2, Lemma 5.1] to deduce that the inner integral vanishes for any y ∈ RA,α ,

and hence I (θ, v) = 0 unless |P|qα−2 Ã|N |−1|v| � max{1, |θ |HG}, where
G(z) = F0( y + tα−2 Ã z).

Since |F0( y)| = qα , one readily checks that HG = qα . Consequently, if v �= 0 then I (θ, v)

can only be non-zero if

|P|qα−2 Ã � |N |max{1, qα|θ |} � |N |qα+4 Ã,

which is impossible by our assumption on |N |. 
�
For any r ∈ O, define

ρ̃(r) = |r |−5#{x ∈ (O/rO)6 : F(x) ≡ 0 mod r}.
Recalling the definition (3.4) of lA(k; M), it is now easy to call upon the previous two lemmas
to evaluate �2 and �3. Firstly, by the definition of ν we have

�2 =
∑
x∈O3

ν(x/P)lA(F0(x); M)

=
∑

b mod N

ρ̃(N , F0(b))
∑

x≡b mod N

ν(x/P)σ∞,A(F0(x)).

On assuming that |N | < |P|q−6 Ã and appealing to Lemma 4.2, it now follows that

�2 = σ∞|P|3
∑

b mod N

|N |−5ρ(N , F0(b)),

where ρ(N , k):=|N |2ρ̃(N , k) = #{(x, y, z) ∈ (O/NO)3 : x3 + y3 + z3 ≡ k mod N }. It
readily follows that

�2 = σ∞ρ̃(N )|P|3. (4.7)

Similarly, Lemma 4.1 gives

�3 =
∑

b mod N

ρ̃(N , b)2
∑

|k|=B̂
k≡b mod N

σ∞,A(k)2

= σ∞|P|3
∑

b mod N

|N |−5ρ(N , b)2

= σ∞ρ̃(N )|P|3,

(4.8)

providing only that |N | < |P|3q−4 Ã.
Finally, assuming Conjectures 6.2 and 6.3, it follows from Theorem 1.3 that

�1 =
∑

|k|=B̂

rA(k)2

= Nw(P)

= σ∞S|P|3 +
∑
L∈ϒ

∑
x∈L∩O6

w(x/P) + ow(|P|3),
(4.9)

as |P| → ∞. Before completing the proof of Theorem 1.1, we need two more auxiliary
results.
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Lemma 4.3 For any L ∈ ϒ , we have∑
x∈L∩O6

w(x/P) 	 A|P|3.

Proof By applying a suitable Fq -linear change of variables we may reduce to the case where
L is given by

(1) x1 + x4 = x2 + x5 = x3 + x6 = 0, or
(2) x1 + x2 = x3 + x4 = x5 + x6 = 0.

We begin with (1). Since x1, x2, x3 determine x4, x5, x6 uniquely, it suffices to count x ∈ O3

for which ν(x/P) �= 0. Let 1 � b � Ã and suppose that |x1| = |x2| = qb|P|. Writing
N = x31 + x32 , we must then have |x1| = |x2| � |x3|q and

|N + x33 | = qα|P|3, (4.10)

if ν(x/P) �= 0. If N = 0, then there are O(qb|P|) choices for (x1, x2), while |x33 | = qα|P|3
implies |x3| = qα/3|P|, which in turn implies that |x1| = |x2| � qα/3+1|P|, whence
b � α/3 + 1. Thus the total contribution from this case is O(|P|2).

Now let us assume that N �= 0 and fix pairwise distinct solutions β1, β2, β3 ∈ K sep of the
equation x3 + N = 0. The absolute value | · | extends uniquely to K sep, so that (4.10) gives

|(x3 − β1)(x3 − β2)(x3 − β3)| = qα|P|3.
As |βi − β j | � 1 for i �= j , we have |x3 − βi | � |x3| � qb−1|P| for at least two indices
i ∈ {1, 2, 3}. Without loss of generality, assume that it holds for i = 2, 3. We then get

|x3 − β1| 	 qα+2−2b|P|,
for which there are O(qα+2−2b|P|) possible x3 ∈ O. As there are O(q2b|P|2) choices for
x1, x2 ∈ O, this yields after summing over b an overall contribution of O(A|P|3), which
completes case (1).

For (2), observe that if ν(x/P) �= 0 and x1 + x2 = 0, then we must have |x3| = qα/3|P|
and |x1| = |x2| � qα/3+1|P|. In particular, once x3 is fixed there are O(qα/3|P|) choices
for x1, x2. In addition, x3 determines x4 uniquely and by the symmetry at hand there are
O(qα/3|P|) available x4, x5 ∈ O. Therefore, the total contribution is O(qα|P|3), which is
more than sufficient. 
�
Lemma 4.4 Let N be as in (3.2). Then ρ̃(N ) = S+O(M̂−2/3+ε), whereS is given by (4.2).

Proof Using orthogonality of characters and collecting terms according to their greatest
common divisor, for any prime power � k we have

ρ̃(� k) = |� |−6k
∑

a mod � k

∑
x mod � k

ψ

(
aF(x)

� k

)

=
k∑

l=0

|� |−6(k−l)S� k−l (0),

in the notation of (4.3). Thus the Chinese remainder theorem yields

ρ̃(N ) =
∑
r |N

|r |−6Sr (0).
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It follows from the definition of N that any r ∈ O+ with deg r � M divides N . Therefore

|ρ̃(N ) − S| �
∑

|r |>M̂

|r |−6|Sr (0)| 	 M̂−2/3+ε (4.11)

by Lemma 9.2 of [2], noting that S�
r (0) = |r |−7/2Sr (0) in this result. 
�

Proof of Theorem 1.1 Recall the definition (1.1) of SA. Our goal is to show that

lim inf
X→∞

(
#{k ∈ SA : |k| � X̂}

q X̂

)
→ 1,

as A → ∞. Fix A > 0 to be sufficiently large and suppose 0 < δ < 1/2. Let B ∈ N be such
that X/2 � B � X and put B = 3d + α for α ∈ {0, 1, 2}. Throughout this argument we
may take d to be sufficiently large. Let P = td and choose M � 1 such that |N | < |P|q−6 Ã

in the notation of (3.2). Then

#{k ∈ O \ SA : |k| = B̂} � #

{
k ∈ O \ SA : |k| = B̂,

|rA(k) − lA(k, M)| � |lA(k, M)|/2
}

,

where lA(k, M) is given by (3.4), since k ∈ SA if rA(k) > 0. Now it follows from Proposi-
tion 3.5 that ρ̃(N , k) � A−1/2+δ for all but O(A−1/2+δ B̂) elements k ∈ O with |k| = B̂. As
σ∞,A(k) � A always holds, by Proposition 3.4, we thus have

#{k ∈ O \ SA : |k| = B̂} 	 A−1/2+δ B̂ + VarA(B; M)

A2A−1+2δ .

Writing VarA(B; M) = �1 − 2�2 + �3, as previously, we may combine (4.7), (4.8) and
(4.9) with Lemma 4.4 to get

VarA(B; M) =
∑
L∈ϒ

∑
x∈L∩O6

w(x/P) + ow(|P|3) + O(σ∞|P|3M̂−2/3+ε).

But Lemma 4.3 implies that
∑

L∈ϒ

∑
x∈L∩O6 w(x/P) 	 A|P|3. We trivially have

σ∞ = OA(1) in (4.4). Taking M to satisfy σ∞M̂−2/3+ε = oA(1) as |P| → ∞ (which is
allowed as M can be chosen to tend to infinity as |P| → ∞) and recalling that B̂ = |P|3qα ,
we are led to the bound

#{k ∈ O \ SA : |k| = B̂} 	 A−1/2+δ B̂ + B̂ A−2δ + ow,A(|P|3)
as |P| → ∞. Choosing δ = 1/6, summing over X/2 � B � X and estimating the
contribution from |k| < X̂1/2 trivially, we conclude that

lim inf
X→∞

(
#{k ∈ SA : |k| � X̂}

q X̂

)
� 1 + O(A−1/3),

as A → ∞. 
�

5 Integral results

As before, we let F(x) = ∑6
i=1 x

3
i for x ∈ K 6∞. Given γ ∈ K∞ and w ∈ K 6∞, this section

will be mainly concerned with the integrals

JF,ω(γ,w) =
∫
K 6∞

ω(x)ψ(γ F(x) + w · x)dx
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and

J�
F,ω(w) =

∫
|γ |<�̂

JF,ω(γ,w)dγ,

for � ∈ Z and suitable weight functions ω : K 6∞ → C.
Fix A and α, and let w = wA,α as in Definition 3.1. All implied constants in this section

will be allowed to depend on A and α. First, we prove some continuity properties that enhance
[2, Lemma 5.6].

Lemma 5.1 Suppose λ1, λ2 ∈ K×∞ are such that λ1/λ2 ∈ 1 + T. Then

J�
F,w(λ1w) = J�

F,w(λ2w) for any w ∈ K 6∞.

Moreover, if w1,w2 ∈ K 6∞ satisfy |w1 − w2| < q−1(maxx∈supp(w) |x|)−1, then

J�
F,w(w1) = J�

F,w(w2). (5.1)

Proof The first part of the lemma is proven just like [2, Lemma 5.6], using the fact that
wA,α(λ−1 y) depends only on λ mod 1 + T by Definition 3.1. For the second statement of
the lemma, we simply observe that |w1 − w2| < q−1(maxx∈supp(w) |x|)−1 implies that

ψ(w1 · x) = ψ(w2 · x)

for all x ∈ supp(w), so that the claim follows from the definition of J�
F,w(w). 
�

We now extend [2, Lemmas 5.5 and 5.8] to the weights w = wA,α . We first place w into
the framework of [2, Sect. 5]. By (4.6), we have

w(t Ãx) =
∑

y=(u,v)∈R2
A,α

1|t Ãx− y|<qα−2 Ã =
∑

y∈R2
A,α

1|x−t− Ã y|<qα−3 Ã .

Moreover, it follows from (4.5) that |t− Ã y| � 1 for all y ∈ R2
A,α . Let

ω y(x):=1|x−t− Ã y|<qα−3 Ã . Then

JF,w(γ,w) =
∫
K 6∞

w(t Ãx)ψ(γ F(t Ãx) + w · t Ãx)|t Ã|6dx

= q6 Ã
∑

y∈R2
A,α

JF,ω y (t
3 Ãγ, t Ãw).

(5.2)

Lemma 5.2 For each y ∈ R2
A,α , the weight function ω y satisfies [2, Hypothesis 5.3] with

parameters x0 = t− Ã y and L = 3 Ã − α.

Proof This is clear by the definition (4.5) of RA,α . 
�
Before proceeding, we recall a general form of stationary phase [2, Lemma 5.2]:

Lemma 5.3 Let n ∈ N, γ ∈ K∞, r ∈ Kn∞, and G ∈ K∞[x1, . . . , xn]. Let
�:={x ∈ T

n : |γ∇G(x) + r| � HG max{1, |γ |1/2}},
where HG is the maximum of the absolute values of the coefficients of G. Then∫

Tn
ψ(γG(x) + r · x)dx =

∫
�

ψ(γG(x) + r · x)dx.
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For the next two lemmas, let � ∈ Z and w ∈ K 6∞. Let

F∗(c) =
∏

(c3/21 ± c3/22 ± · · · ± c3/26 ) ∈ O[c] (5.3)

be the dual form associated to F , as in [2, Sect. 2].

Lemma 5.4 We have J�
F,w(w) 	 (1 + |w|)−2. Moreover, if |w| is sufficiently large, then

JF,w(γ,w) = 0 unless |γ | � |w|.
Proof Immediate from (5.2), Lemma 5.2, and [2, Lemma 5.5]. 
�

We note that [2, Lemma 5.5] was proven for arbitrary L � 0, whereas [2, Lemma 5.8]
was only proven for L = 0. Therefore, the following lemma requires a bit more work.

Lemma 5.5 We have J�
F,w(w) = 0 unless |F∗(w)| 	 1 + |w|deg F∗−1.

Proof We roughly follow [2, proof of Lemma 5.8]. As there we may assume |w| � 1, with
an implied constant as large as we wish. Then by Lemma 5.4, we have J�

F,w(w) = 0 unless

1 	 |w| 	 �̂, in which case

J�
F,w(w) =

∫
|γ |�|w|

JF,w(γ,w) dγ.

As noted in the proof of Lemma 5.1, we have w(x) = w(λx) for all λ ∈ 1 + T. The
change of variables x �→ λ−1/2x preserves the Haar measure dx on K 6∞, whence

JF,w(γ,w) = JF,w(λ−3/2γ, λ−1/2w) = JF,w(λ−1/2γ /λ, λ−1/2w).

Letting S ⊆ K×∞ be a complete set of representatives for the quotient group K×∞/(1 + T),
and writing γ = γ0λ with γ0 ∈ S and λ ∈ 1 + T, we deduce that

J�
F,w(w) =

∑
γ0∈S|γ0|�|w|

|γ0|
∫
T

JF,w(λ−1/2γ0, λ
−1/2w) dμ, (5.4)

where λ:=1 + μ.
By the n = 6 case of Lemma 5.3, applied to each weight ω y in (5.2) after a linear change

of variables with bounded coefficients, we have

JF,w(λ−1/2γ0, λ
−1/2w) = q6 Ã

∑
y∈R2

A,α

JF,ω y (t
3 Ãλ−1/2γ0, t

Ãλ−1/2w)

=
∫

�

w(x)ψ(λ−1/2�(x)) dx,

(5.5)

where �(x):=γ0F(x) + w · x, and where � ⊆ K 6∞ is a region such that

� ⊆ {x ∈ supp(w) : |∇�(x)| 	 max{1, |γ0|}1/2}.
Since |γ0| � |w| � 1, this means

� ⊆ {x ∈ supp(w) : |∇�(x)| 	 |γ0|1/2}. (5.6)

The function� depends on γ0, but not onλ.Moreover,ψ(λ−1/2�(x)) depends only on the
firstD:=max{0, logq |�(x)|} terms of the power series expansion λ−1/2 = ∑

k�0

(−1/2
k

)
μk .
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The coefficients of this power series in μ all have absolute value � 1, so by the
(n, γ, r,G(μ)) = (1,�(x), 0,

∑
0�k<D

(−1/2
k

)
μk) case of Lemma 5.3, we get∫

T

ψ(λ−1/2�(x)) dμ = 0, (5.7)

unless |�(x)| � 1.HereDmaybe unbounded asw varies,which is fine because the statement
of Lemma 5.3 depends on the height HG but not on the degree degG.

Combining (5.4), (5.5), and (5.7), we conclude that J�
F,w(w) = 0, unless there exist an

element γ0 ∈ S, and a point x ∈ �, such that |γ0| � |w| and |�(x)| � 1. Arguing via (5.6)
and [2, Lemma 5.7] as in the final two paragraphs of [2, proof of Lemma 5.8], it follows that
|F∗(w)| 	 1 + |w|deg F∗−1, as desired. 
�

6 Ratios analysis

Let n = 6. As before, we let F(x) = ∑6
i=1 x

3
i . In this section we start proving Theorem 1.3

and collect together some of the estimates coming from the Ratios Conjecture that will be
useful in this endeavour. Recall the definition (4.1) of the counting function Nw(P), where
w is the weight function defined in Definition 3.1. Let Q ∈ Z be a parameter with

Q = 3 deg(P)

2
+ Ow(1);

a specific choice of Q will be made in Sect. 7. Applying [2, Eq. (2.9)], the circle method
leads to the expression

Nw(P) = |P|n
∑
r∈O+
|r |�Q̂

|r |−n
∑
c∈On

Sr (c)Ir (c),

for suitable exponential sums Sr (c) and oscillatory integrals Ir (c). In fact, in the notation of
Sect. 5, if we let � = − deg(r) − Q + 3 deg(P), then

Ir (c) =
∫

|θ P3|<�̂

JF,w(θ P3, Pc/r)dθ = |P|−3 J�
F,w(Pc/r).

Next, informed by the dual form F∗ from (5.3), we make the decomposition

Nw(P) = M(P) + E1(P) + E2(P), (6.1)

where M(P) is the contribution from c = 0, E1(P) is the contribution from c for which
F∗(c) �= 0, and finally, E2(P) is the contribution from c for which F∗(c) = 0.

For the remainder of this section our goal will be to harness the Ratios Conjecture to
ensure that E1(P) makes a negligible contribution to Nw(P).

Let V and Vc be the K -varieties in P
5
K defined by F(x) = 0 and F(x) = c · x = 0,

respectively. Following [2, Sect. 3], let L(s, V ) = L(s, H4
� (V )/H4

� (P5)) and let L(s, c) =
L(s, H3

� (Vc)), for c ∈ S1 = {c ∈ On : F∗(c) �= 0}. As in our previous work, we writeμc(r)
for the r th coefficient of the Euler product L(s, c)−1 = ∏

� L� (s, c)−1. The following is a
minor variant of [2, Proposition 3.5].

Proposition 6.1 Let a ∈ O6 and d, r ∈ O+. Let E
a,d
c∈S[ f ] be the average of f over the set

{c ∈ S : c ≡ a mod d} (assuming this set is nonempty). The limit

μ̄
a,d
F,1(r):= lim

Z→∞ E
a,d
c∈S1: |c|�Ẑ

[μc(r)]
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exists. Moreover, μ̄a,d
F,1(r)μ̄

a,d
F,1(r

′) = μ̄
a,d
F,1(rr

′) if gcd(r , r ′) = 1.
Now let � ∈ O+ be a prime, and let l � 0 be an integer. Then

μ̄
a,d
F,1(�

l) 	ε |� |lε . (6.2)

Furthermore, if � � d, then μ̄
a,d
F,1(�

l) = μ̄F,2(�
l , 1), where

μ̄F,2(r1, r2):= lim
Z→∞ Ec∈S1: |c|�Ẑ [μc(r1)μc(r2)]

is defined as in [2, Proposition 3.5].

Proof The final sentence is obvious. Everything else, up to and including (6.2), is proven just
as in the proof of [2, Proposition 3.5], using [2, Lemma 3.4], the bound μc(r) 	ε |r |ε, and
the Chinese remainder theorem. 
�

As in [2], let ζK (s):=∏
� (1 − |� |−s)−1 = ∑

r∈O+ |r |−s = (1 − q1−s)−1. Informally,
Proposition 6.1, combined with [2, Eq. (3.5)], tells us∑

r∈O+
μ̄
a,d
F,1(r) |r |−s ≈

∏
�

(1 + λV (�) |� |−s−1/2 + |� |−2s) ≈ L(s + 1
2 , V )ζK (2s).

In fact, just as the Euler product (from [2, Sect. 3])

AF,2(s1, s2):= ζK (s1 + s2)−1∏
1� j�2(ζK (2s j )L(s j + 1

2 , V ))

∑
r1,r2∈O+

μ̄F,2(r1, r2)

|r1|s1 |r2|s2 ,

converges absolutely for Re(s1),Re(s2) > 1
3 by [2, Proposition 3.5], the Euler product

Aa,d
F,1(s):=ζK (2s)−1L(s + 1

2 , V )−1
∑
r∈O+

μ̄
a,d
F,1(r) |r |−s (6.3)

converges absolutely for Re(s) � 1
3 + ε, for any ε > 0, and satisfies the inequality

∣∣∣Aa,d
F,1(s)

∣∣∣ �
∏
�

(
1 + O(1� |d) + O(|� |−1)

|� |1/3+ε
+ O(|� |−1/2)

|� |2/3+2ε + Oε(|� |ε)
|� |1+3ε

)

	ε |d|ε , (6.4)

by Proposition 6.1 and [2, Eq. (3.5)]. The expression Aa,d
F,1 appears as the “leading constant”

in the Ratios Conjecture 6.2 (RA1). The Ratios Recipe [3, Sect. 5.1], directly adapted to
function fields as in [1], produces (RA1), even with a power-saving error term O(Ẑ−δ)

independent of β for β � δ, say.
Let Aa,d

F,1(s) be defined as in (6.3), in terms of certain local averages μ̄
a,d
F,1(r). Moreover,

following [2, Sect. 3], let σ(Z):= 1
2 + 1

Z , let �c,1(s):=ζK (2 s)−1L(s + 1
2 , V )−1L(s, c)−1,

and let ac,1(r) be the r th coefficient of the Euler product �c,1(s).

Conjecture 6.2 (RA1) Fix a real M � 0. Let a ∈ O6 and d ∈ O+ with |a| , |d| � M̂. Let
b ∈ K 6∞ with |b| � 1. There exists β = βM (Z) ∈ [0, 1] such that if

s = β + σ(Z) + iτ,

then uniformly over Z ∈ N and τ ∈ R, we have∑
c∈S1

c≡a mod d∣∣c−t Z b
∣∣�Ẑ/M̂

�c,1(s) =
∑
c∈S1

c≡a mod d∣∣c−t Z b
∣∣�Ẑ/M̂

(1 + O(gẐ−3β)) Aa,d
F,1(s),
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for some function g = gM (Z) → 0 as Z → ∞.

For comparison, we recall the statement of (R2) from [2, Conjecture 3.6].

Conjecture 6.3 (R2) There exists a constant β ∈ [0, 1] such that if

s j = β + σ(Z) + iτ j ,

then uniformly over Z ∈ N and τ1, τ2 ∈ R, we have∑
c∈S1: |c|�Ẑ

�c,1(s1)�
c,1(s2) =

∑
c∈S1: |c|�Ẑ

(ζK (s1 + s2) + O(Ẑ−6β)) AF,2(s1, s2).

As in the case of (R2), it is expected that β in (RA1) can be taken to be any small constant,
including 0. When M = 0, (RA1) follows easily from (R2), with g = Ẑ−3β , if β > 0. It
would be interesting to determine whether there is a similar implication for general M � 0.

We now build on (RA1). Let āa,dF,1(r) be the r th coefficient of Aa,d
F,1(s).

Proposition 6.4 Assume (RA1). Let M � 0, |a| , |d| � M̂, and |b| � 1. Let Z , R ∈ Z with
R � 3Z. Then∑

c∈S1
c≡a mod d∣∣c−t Z b

∣∣�Ẑ/M̂

∑
r∈O+

1|r |=R̂ · (ac,1(r) − āa,dF,1(r)) 	 M̂εgM (Z)
∑
c∈S1

c≡a mod d∣∣c−t Z b
∣∣�Ẑ/M̂

R̂1/2.

Proof Simply plug in the identity 1|r |=R̂ = ERe(s)=β+σ(Z)[(R̂/ |r |)s], the bound (6.4), and

the inequality R̂β+σ(Z) Ẑ−3β � R̂1/Z R̂1/2 � q3 R̂1/2. 
�
In fact, the contribution from āa,dF,1(r) is small, in terms of the square root R̂1/2.

Proposition 6.5 Let d ∈ O+ and R ∈ Z. Then∑
r∈O+

1|r |=R̂ · āa,dF,1(r) 	ε |d|ε R̂1/3+ε.

Proof On writing 1|r |=R̂ = ERe(s)= 1
3+ε[(R̂/ |r |)s], we get

∑
r∈O+

1|r |=R̂ · āa,dF,1(r) = ERe(s)= 1
3+ε[R̂s Aa,d

F,1(s)] 	ε |d|ε R̂1/3+ε,

where the first step is justified by the absolute convergence of Aa,d
F,1(s) and the second step

is justified by (6.4). 
�
The next step is an analogue of [11, Conjecture 7.14]. As in [2], let

S�
r (c):= |r |−(n+1)/2 Sr (c) = |r |−7/2 Sr (c).

Proposition 6.6 Assume (R2) and (RA1). Let Z , R ∈ Z with R � 3Z. Let M ∈ [0, R] and
|d| � M̂. Partition the box {c ∈ On : |c| � Ẑ} into sets

{c ∈ On : c ≡ a mod d, |c− t Z b| � Ẑ/M̂},
indexed by some set P = P(Z , d, M) of pairs (a, b) with |a| < |d| and |b| � 1. Then

∑
(a,b)∈P

∣∣∣∣
∑
c∈S1

c≡a mod d∣∣c−t Z b
∣∣�Ẑ/M̂

∑
r∈RG

c

1|r |=R̂ · S�
r (c)

∣∣∣∣ 	 (
f0(M) + f1,M (Z)

)
Ẑ6 R̂1/2,

for some functions f0(A) and f1,M (A) tending to 0 as A → ∞.
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Proof By the ε = 1 case of [2, Conjecture 4.5], the quantity to be bounded is certainly
O(Ẑ6 R̂1/2). We go further, obtaining cancellation over c, by introducing (RA1) and [2,
Lemma 3.4] as additional inputs. Let M0 � 0 be an auxiliary parameter. In the notation of
the proof of [2, Conjecture 4.5], with β = 1, we have

∑
r∈RG

c

1|r |=R̂ · S�
r (c) =

∑
R1+R2+R3=R

∏
1� j�3

�c, j (R j )

and
∑

c∈S1: |c|�Ẑ
∏

1� j�3

∣∣�c, j (R j )
∣∣ 	 Ẑ6 R̂1/2 R̂−9/40

2 R̂−2/15
3 , thanks to (R2). The total

contribution from R2 + R3 � M0 is therefore 	 M̂−2/15
0 Ẑ6 R̂1/2.

On the other hand, if R − R1 < M0, then by [2, Lemma 3.4], there exist a modu-
lus f (M0) ∈ O+, and an exceptional set E (M0) ⊆ O6 of density d(M0) = oM0→∞(1)
defined by congruence conditions modulo f (M0), such that for all c /∈ E (M0), the quantity∑

R2+R3=R−R1

∏
2� j�3 �c, j (R j ) depends at most on the residue class

c mod f (M0).

Since �c, j (R j ) 	 R̂1+ε
j trivially, we conclude by Propositions 6.4 and 6.5, applied with

parameters “(M, d):=(M + deg f (M0), f (M0)d)”, that

∑
c∈S1\E (M0)
c≡a mod d∣∣c−t Z b

∣∣�Ẑ/M̂

∑
R1+R2+R3=R
R2+R3<M0

∏
1� j�3

�c, j (R j ) 	 M̂1+ε
0 T

∑
c∈S1\E (M0)
c≡a mod d∣∣c−t Z b

∣∣�Ẑ/M̂

R̂1/2,

where

T :=M̂ε | f (M0)|ε gM+deg f (M0)(Z) + | f (M0)d|ε R̂ε−1/6.

Here, the first term comes from the right-hand side of Proposition 6.4, whereas the second
term of T comes from the right-hand side of Proposition 6.5.

Summing over (a, b) ∈ P , then adding in the R2 + R3 � M0 contribution, we get

∑
(a,b)∈P

∣∣∣∣
∑

c∈S1\E (M0)
c≡a mod d∣∣c−t Z b

∣∣�Ẑ/M̂

∑
R1+R2+R3=R

∏
1� j�3

�c, j (R j )

∣∣∣∣ 	 T ′ Ẑ6 R̂1/2,

where T ′:=M̂−2/15
0 + M̂1+ε

0 T . Yet by [2, Conjecture 4.5, proven under (R2)], and Hölder’s
inequality in the form 1 = 1−ε

2−ε
+ 1

2−ε
, we have

∑
c∈S1∩E (M0)

|c|�Ẑ

∣∣∣∣
∑
r∈RG

c

1|r |=R̂ · S�
r (c)

∣∣∣∣ 	 d(M0)
(1−ε)/(2−ε)(Ẑ + | f (M0)|)6 R̂1/2.

Therefore, if T ′′:=T ′ + d(M0)
(1−ε)/(2−ε)(1 + | f (M0)| /Ẑ)6, then

∑
(a,b)∈P

∣∣∣∣
∑
c∈S1

c≡a mod d∣∣c−t Z b
∣∣�Ẑ/M̂

∑
r∈RG

c

1|r |=R̂ · S�
r (c)

∣∣∣∣ 	 T ′′ Ẑ6 R̂1/2.
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Letting M0:=max{A ∈ [0, M/12] : | f (A)| � M̂}, and recalling that M � R, we get

T ′′ 	 M̂−2/15
0 + M̂3ε+1/12g2M (Z) + R̂4ε−1/12 + d(M0)

(1−ε)/(2−ε)(1 + | f (M0)|6 /Ẑ6)

= oM→∞(1) + oM;Z→∞(1) + oR→∞(1) + oM→∞(1) + oM;Z→∞(1),

because M0 → ∞ whenever M → ∞, and d(M0) → 0 whenever M0 → ∞. This suffices,
since oR→∞(1) � oM→∞(1). 
�

By the local constancy result (5.1), and our dyadic bounds in [2, Sect. 8], we can now
prove an analogue of [11, Theorem 10.7], going beyond [2, Proposition 8.1].

Theorem 6.7 Assume (R2) and (RA1). Then E1(P) = ow(|P|3), as |P| → ∞.

Proof The idea is to recycle our work from [2, Sect. 8] as much as possible, and only then to
use (5.1) and Proposition 6.6 in the remaining ranges.

First, we claim that for 0 � Y1 + Y2 = Y � Q, we have

�(Y1, Y2):= |P|n
∑

|c|	|P|1/2
ItY (c)Ŷ (1−n)/2

∑
r1∈RG

c
|r1|=Ŷ1

S�
r1(c)

∑
r2∈RB

c
|r2|=Ŷ2

S�
r2(c) 	 |P|3

D̂ω
(6.5)

for some small constant ω > 0, where

D̂:=max

{
|P|3/2
Ŷ

, Ŷ2

}
	 |P|3/2 . (6.6)

Indeed, given the integral estimates Lemmas 5.4 and 5.5 (replacing [2, Lemmas 5.5 and 5.8]),
our work in [2, Sect. 8] leads to the following bounds.

(1) By [2, Sect. 8.1], the contribution to �(Y1, Y2) from |c| 	 |P|1/2−δ is

	 |P|3n/4−3/2+ε−δ(1+n/2+ε)/2 = |P|3+ε−δ(4+ε)/2 	 |P|3 /D̂ω,

unconditionally, provided ε, ω 	 δ.
(2) In the notation of [2, Sect. 8.2], if Ŷ n+ε

2 � Ŵα/2, then the contribution to �(Y1, Y2)
from |c| � |P|1/2−δ is, by [2, final display before The case Ŷ n+ε

2 > Ŵα/2],

	 |P|3n/4−3/2 (Ŷ−n/2
2 (Ŷ/ |P|3/2)α/2 + Ŷ−n/2

2 |P|−α(1+ε)/4) 	 |P|3 /D̂ω,

under (R2), provided ω 	 α.
(3) In the notation of [2, Sect. 8.2], if Ŷ n+ε

2 > Ŵα/2, then the contribution to �(Y1, Y2)
from |c| � |P|1/2−δ is, by [2, antepenultimate and penultimate displays of Sect. 8],

	 |P|3n/4−3/2 Ŷ−η′/2
2 ((Ŷ/ |P|3/2)β + |P|β(ε−1)/2) 	 |P|3 /D̂ω,

under (R2), provided ω 	 min{η′, β}. Here β:=η′α/(4(n + ε)).

These three cases complete the proof of (6.5).
On the other hand, we may bound �(Y1, Y2) by first fixing r2, then fixing ItY (c) using

(5.1), and finally summing over c and r1 using Proposition 6.6, with Ẑ � |P|1/2. This gives

�(Y1, Y2) 	 |P|n−3
(
1 + |P| Ĉ

Ŷ

)1−n/2

Ŷ (1−n)/2Ŷ 1+(1+n)/2
2

(
f0(M) + f1,M (Z)

)
Ẑ6Ŷ 1/2

1
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provided M ∈ [0, Y1] and M̂ � D̂ with a sufficiently large implied constant. The conditions
on M̂ ensure, in particular, that ItY (c) is constant on the box

∣∣c− t Z b
∣∣ � Ẑ/M̂ , for any

given b with |b| � 1.
Since Ŷ1Ŷ2 = Ŷ � |P|3/2 /D̂ and Ŷ2 � D̂, the last display is

	 |P|n−3 (|P|3/2 /D̂)1−n/2 D̂(2+n)/2 ( f0(M) + f1,M (Z)
) |P|3 ,

which simplifies to |P|3 D̂n
(
f0(M) + f1,M (Z)

)
. Let D0 be a parameter with M̂ � D̂0.

Then
∑
Y1,Y2

�(Y1, Y2) 	
∑
Y1,Y2
D�D0

|P|3
D̂ω

+
∑
Y1,Y2
D�D0

|P|3 D̂n ( f0(M) + f1,M (Z)
)

	 |P|3
D̂ω/2
0

+ D̂ε
0 |P|3 D̂n

0

(
f0(M) + f1,M (Z)

)
.

We conclude that |E1(P)| � (2D̂−ω/2
0 + D̂n+ε

0 f0(M)) |P|3 for all |P| �D0,M 1. Taking

M �D0 1, we then have |E1(P)| � 3D̂−ω/2
0 |P|3 for all |P| �D0 1. Taking D0 → ∞, we

are finally done. 
�

7 Centre and dual variety

We refine [2, Proposition 9.1] to an asymptotic for M(P). It will be convenient to make the
explicit choice Q = �−2 Ã + 3 deg(P)/2�, where Ã = �α/3 + A� is as in Sect. 3.

Proposition 7.1 If w = wA,α , then

M(P) = σ∞S|P|3 + O(σ∞|P|3 Q̂−2/3+ε),

where S and σ∞ are the singular series and singular integral defined in (4.2) and (4.4)
respectively.

Proof Recall, from (6.1), that

M(P) = |P|6
∑
r∈O+
|r |�Q̂

|r |−6 Ir (0)Sr (0).

Inserting (4.6) into the definition of the weight functionw andmaking the change of variables
x = y + tα−2 Ã z with y ∈ RA,α , it follows that

Ir (0) =
∫

|θ |<|r |−1 Q̂−1

⎛
⎝q3(α−2 Ã)

∑
y∈RA,α

∫
T3

ψ(θ P3F0( y + tα−2 Ã z))dz

⎞
⎠

2

dθ.

By the n = 3 case of Lemma 5.3, we may replace T
3 in the integral by

� = {z ∈ T
3 : |tα−2 Ãθ P3∇F0( y + tα−2 Ã z)| � qα max{1, |θ P3|1/2}},

where we used the fact that HG � qα for G(z) = F( y + tα−2 Ã z). As y ∈ RA,α , in the
notation of (4.5), we have 1 � |y1|, so that

|∇F0( y + tα−2 Ã z)| � |(y1 + tα−2 Ãz1)
2| � 1.
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In particular, if � �= ∅, then we must have

|θ | � q2 Ã|P|−3 max{1, |θ P3|1/2},
which is only possible if |θ | � q4 Ã|P|−3. As |r | � Q̂, we always have |r |−1 Q̂−1 � Q̂−2 �
q4 Ã|P|−3. Therefore,

Ir (0) =
∫

|θ |�q4 Ã|P|−3

∫
K 6∞

w(x)ψ(θ P3F(x))dxdθ

= |P|−3
∫

|θ |�q4 Ã

∫
K 6∞

w(x)ψ(θF(x))dxdθ

= σ∞|P|−3,

on recalling the definition (4.4). Turning to the singular series defined in (4.2), we have∣∣∣∣
∑
r∈O+
|r |�Q̂

|r |−6Sr (0) − S

∣∣∣∣ �
∑
r∈O+
|r |>Q̂

|r |−6|Sr (0)|

	 Q̂−2/3+ε,

by (4.11). 
�
We proceed by proving an analogue of [2, Proposition 10.1], for our weight function.

Proposition 7.2 If w = wA,α and F = x31 + · · · + x36 , then

E2(P) =
∑
L∈ϒ

∑
x∈L∩O6

w(x/P) + OA,ε(|P|3−1/4+ε).

Proof Every step of the proof of [2, Proposition 10.1] directly generalises to the weight
function w = wA,α , the details of which will not be repeated here. (In fact the proof works
for any w ∈ S(K 6∞) with 0 /∈ supp(w), where S(Kn∞) is defined as in [2, Sect. 2]. Indeed,
the integral estimate [2, Eq. (10.13)] holds for all such w, by the arguments of [5, Sect. 3],
whereas all other ingredients in [2, Sect. 10] are valid for arbitrary w ∈ S(K 6∞).) 
�
We now have all the ingredients at hand to complete our proof of Theorem 1.3.

Proof of Theorem 1.3 On recalling the decomposition of Nw(P) in (6.1), the proof is an
immediate consequence of Theorem 6.7 and Propositions 7.1 and 7.2. 
�
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