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Abstract
Motivation: Boolean networks are popular dynamical models of cellular processes in systems biology. Their attractors model phenotypes that 
arise from the interplay of key regulatory subcircuits. A succession diagram (SD) describes this interplay in a discrete analog of Waddington’s 
epigenetic attractor landscape that allows for fast identification of attractors and attractor control strategies. Efficient computational tools for 
studying SDs are essential for the understanding of Boolean attractor landscapes and connecting them to their biological functions.
Results: We present a new approach to SD construction for asynchronously updated Boolean networks, implemented in the biologist’s 
Boolean attractor landscape mapper, biobalm. We compare biobalm to similar tools and find a substantial performance increase in SD con-
struction, attractor identification, and attractor control. We perform the most comprehensive comparative analysis to date of the SD structure in 
experimentally-validated Boolean models of cell processes and random ensembles. We find that random models (including critical Kauffman 
networks) have relatively small SDs, indicating simple decision structures. In contrast, nonrandom models from the literature are enriched in ex-
tremely large SDs, indicating an abundance of decision points and suggesting the presence of complex Waddington landscapes in nature.
Availability and implementation: The tool biobalm is available online at https://github.com/jcrozum/biobalm. Further data, scripts for testing, 
analysis, and figure generation are available online at https://github.com/jcrozum/biobalm-analysis and in the reproducibility artefact at https:// 
doi.org/10.5281/zenodo.13854760.

1 Introduction
Biomolecular networks underpin cellular decisions and are 
essential in genotype to phenotype mapping. They represent 
the interactions between molecular entities within a cell, such 
as genes, proteins, and small molecules. Their kinetic parame-
ters, however, are notoriously difficult to measure or esti-
mate. Fortunately, living systems are often qualitatively 
robust to these parameters (von Dassow et al. 2000), moti-
vating widespread use of qualitative modeling in systems bi-
ology, with Boolean networks (BNs) being especially popular 
(Mendoza et al. 1999, Albert and Othmer 2003, Gershenson 
2004, Wang et al. 2012, Rozum et al. 2023). First introduced 
in a gene regulatory context by Kauffman (1969) as a means 
to study canalization (epigenetic robustness) and the emer-
gence of phenotypic order, BNs consist of interlinked 
Boolean automata: each automaton’s state (ON or OFF) is 
dynamically updated by the states of its linked automata 
according to a fixed update rule. This state evolves (either 
synchronously or asynchronously) in discrete time steps, 
eventually converging to one of several attractors (minimal 

sets of states from which no escape is possible). These attrac-
tors then typically correspond to phenotypes of interest. BNs 
can exhibit ordered, disordered, or critical perturbation 
responses, which reflects the robustness of their associated bi-
ological phenotypes (Derrida and Stauffer 1986, Balleza et al. 
2008, Park et al. 2023). This has important basic science 
implications, but also biomedical significance: key driver 
nodes that disrupt undesired phenotypes represent potential 
drug targets subject to experimental validation (Steinway 
et al. 2014, Meyer et al. 2017, Montagud et al. 2022, 
Folkesson et al. 2023).

One approach toward understanding phenotype robust-
ness is through the self-sustaining configurations of small 
sub-networks in a BN, called stable motifs. These correspond 
to trap spaces within network dynamics—hypercubes in the 
state-space from which there is no escape (Za~nudo and 
Albert 2013, Klarner et al. 2015)—and have analogs in 
ODEs (Rozum and Albert 2018a, 2018b). A succession dia-
gram (SD), roughly analogous to canalization landscape by 
Waddington (1942), is a directed acyclic graph that describes 
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how these trap spaces nest within one another, indicating 
how entering one region of the phenotypic space is predicated 
on (or forbidden by) entering another (Za~nudo and Albert 
2013, Rozum et al. 2023). The leaf nodes of the SD are the 
minimal trap spaces, each of which contains at least one at-
tractor. Identifying these gives enormous computational 
advantages and insight into the possible biological behaviors 
(Klarner et al. 2017, Trinh et al. 2022a, Rozum et al. 2023).

Identifying one BN attractor (resp. all attractors) is NP- 
hard (resp. #P-hard) because it contains N-SAT as a sub- 
problem (Mori and Akutsu 2022). Fortunately, biologically 
significant BNs are often sparse, which can be leveraged in at-
tractor identification algorithms. Still, critical bottlenecks re-
main that render many biologically important networks 
intractable. Previously, authors of this work independently 
explored three approaches to overcoming these bottlenecks.

First, pystablemotifs (Rozum et al. 2021b) leveraged 
parity and time-reversal transformations to extend and accel-
erate the iterative SD methodology of Za~nudo and Albert 
(2015) and was used to construct the first-ever exact attractor 
repertoires for genome-scale BNs (Rozum et al. 2021a). A 
limitation of pystablemotifs is its need to frequently 
compute Blake canonical forms (i.e. all prime implicants) for 
all update rules and their negations, limiting its use to very 
sparse networks where such computations are easy. 
Following pystablemotifs, AEON.py (Bene�s et al. 2022) 
was released, using binary decision diagrams along with tran-
sition guided reduction (Benes et al. 2021) to dramatically 
improve the efficiency of graph exploration in attractor iden-
tification. Finally, and most recently, mts-nfvs was released 
by Trinh et al. (2022a). It uses an alternate scheme, imple-
mented within the trappist library (Trinh et al. 2022b), to 
identify trap spaces via Petri-net encodings, which are easier 
to compute than the Blake canonical form. Furthermore, it 
leverages properties of negative feedback vertex sets (NFVS) 
to more efficiently search for motif-avoidant attractors 
(Giang and Hiraishi 2021, Trinh et al. 2022c). It uses mini-
mal trap spaces and preprocessing heuristics to simplify or 
avoid reachability analysis in most cases. Still, non-minimal 
trap spaces and their nesting relationships further improve 
the method.

Each of these three methods is faster than the last. The al-
gorithm we present here incorporates advantages from each, 
along with new insights about how to efficiently build SDs, 
resulting in biobalm. It uses the iterative SD approach of 
pystablemotifs, efficient rule representation and sym-
bolic state-space searching from AEON.py, and the trap space 
identification method and NFVS approach of mts-nfvs. 
We demonstrate substantial speed improvement compared to 
these prior methods. Our method enables systematic explora-
tion of motif-avoidant attractors in large BNs, exact attractor 
identification and control in previously intractable 
experimentally-supported BNs, and analysis of SD scaling in 
random and nonrandom BNs to provide insight into the 
emergence of canalization in biology.

2 Materials and methods
Here, we first give an overview of key Boolean modeling con-
cepts and notation. More formal details are given in 
Supplementary Text S1. Then, we give an overview of the 
methods implemented by biobalm. Details, pseudo-code, and 
proofs are given in Supplementary Text S2–S5.

2.1 Boolean networks
An asynchronous Boolean network (ABN) of dimension n, 
denoted B, is a non-deterministic dynamical system. States of 
B are n-dimensional Boolean vectors x 2 Bn, with xv denoting 
individual vector components. Each network variable v is 
assigned a Boolean update function fv : Bn ! B that governs 
its time evolution. At each discrete time-step, the value of a 
non-deterministically selected variable is updated to match 
the output of its update function. When the variables are 
indexed, we may write fi to refer to fvi and xi to refer to xvi . 
An example ABN with n¼ 4 is shown in Fig. 1a.

The dynamics of ABN B are encoded in a state transition 
graph STGðBÞ whose nodes are the states x 2 Bn of B. An 
edge x ! y exists in STGðBÞ if and only if B can update from 
state x to state y in one time-step (i.e. fvðxÞ ¼ yv for some v). 
The STGðBÞ corresponding to the network from Fig. 1a is 
shown in Fig. 1b. The core feature of each STGðBÞ is its 
attractors: minimal subsets of Bn that are closed under time 
evolution. These are also highlighted in Fig. 1b. Note that 
other BN update schemes exist, such as the synchronous up-
date (see Park et al. (2023) for a detailed discussion). 
However, much of the contributions of this article do not de-
pend on the chosen update scheme (further discussion is given 
in Supplementary Text S1.2).

ABN dynamics can be viewed as arising from a network of 
interactions among Boolean automata called an influence 
graph (IG), denoted IGðBÞ, with nodes v1; . . . ;vn. An edge 
from vi to vj indicates that the state xi of automaton vi is a 
non-redundant input (In some applications, redundant edges 
added to IGðBÞ may be informative, such as those that en-
code well-known interactions that are nonfunctional within 
the modeling context. Here, however, we assume that IGðBÞ
only consists of essential interactions and is fully determined 
by B.) to the update function fj. The sign of an edge from vi 
to vj can be −1 for inhibition, þ1 for activation, or ±0 if the 
impact of vi depends on the remaining regulators. Figure 1c
shows IGðBÞ for the example network from Fig. 1a. The IG 
is very useful for model analysis, as complex dynamics arise 
from the interplay between positive and negative feedback 
loops in the IG (Feedback loop sign is determined by the 
product of its edge signs. Cycles of sign 0 are treated as both 
positive and negative, because they may act as either, depend-
ing on where in the state-space they are evaluated). It is there-
fore often advantageous to identify a feedback vertex set 
(FVS), which is a set of nodes that intersects every cycle of 
IGðBÞ. Controlling the activation of an FVS is sufficient to 
drive an ABN into any of its attractors (Fiedler et al. 2013, 
Za~nudo et al. 2017). Furthermore, a NFVS is a set of nodes 
that intersects every negative feedback loop. Fixing the nodes 
of any NFVS ensures that all variables in an ABN eventually 
stabilize (Giang and Hiraishi 2021). Typically, we are inter-
ested in an (N)FVS with as few nodes as possible. Identifying 
the true minimum (N)FVS is computationally difficult, but in 
our method, a heuristic estimate is sufficient (computed using 
Bene�s et al. (2022)). The IG in Fig. 1c has two minimum 
FVSs: fv1;v4g and fv2;v4g. Meanwhile, the only minimum 
NFVS is fv4g.

2.2 Network trap spaces and SDs
Network subspaces represent special subsets of Bn given by 
fixing some of the variables. Formally, subspaces are the 
members of Bn

� , where B� ¼ B[ f�g. The value of a network 
variable v in a subspace X 2 Bn

� can be either fixed (Xv ¼ 0 or 
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Xv ¼ 1) or free (Xv ¼ �). Each subspace X corresponds to a 
set of states SðXÞ � Bn that agree with X in all fixed varia-
bles. For example, X¼ 011� corresponds to SðXÞ ¼
f0110;0111g. We refer to X and SðXÞ interchangeably as 
context allows.

Trap spaces are subspaces that are closed under time evolu-
tion. Of special importance are (inclusion) minimal trap 
spaces, as each is guaranteed to contain at least one attractor. 
Importantly, however, attractors can also appear outside of 
the minimal trap spaces. For example, consider a simple ABN 
f1ðxÞ ¼ f2ðxÞ ¼ x1Yx2. This network has two trap spaces, ��
and 00, of which 00 is minimal. However, the network also 
has two attractors: A1 ¼ f00g and A2 ¼ f01;10;11g, mean-
ing that A2 does not lie within any minimal trap space. Such 
attractors are called motif-avoidant (Rozum and Albert 
2022). When a motif-avoidant attractor exists, the set of min-
imal trap spaces is called incomplete (Klarner et al. 2015, 
2017). Motif-avoidant attractors, as noted by Rozum et al. 
(2021a), Park et al. (2023) and Section Benchmarks, are rare, 
but it is very difficult to rule out their existence a priori. 
Various methods exist for detecting whether a set of minimal 
trap spaces is incomplete (Klarner et al. 2017, Rozum et al. 
2021a, Trinh et al. 2022c).

The subspace percolation is the process of propagating 
fixed values among the network variables. We write PðXÞ to 
denote the one-step percolation of the subspace X. This 
updates each variable v which is free in X (i.e. Xv ¼ �) to a 
fixed value b 2 B if and only if fvðxÞ ¼ b for every state x in 
X. Repeatedly applying the P operator (up to n times) results 
in a subspace where no further variables can be updated, 
denoted P1ðXÞ. We say that X percolates to the subspace 
P1ðXÞ and that X is percolated if X¼ P1ðXÞ. For example, 
consider the ABN from Fig. 1a and the subspace X¼ �0 � �. 
This one-step percolates to PðXÞ ¼ 10 � � because 
f1ðxÞ ¼ :x2, which is equivalent to :0 for every network 
state in X (since x2 ¼ 0 for every x 2XÞ. Meanwhile, for f3 

and f4, both output values are possible in X, hence they re-
main free. A second application of P yields the subspace 
101� because f3ðxÞ ¼ x1Úx2 is equivalent to 1Ú0 for every 
state in 10 � �. Further applications of P result in no addi-
tional changes, because f4ðxÞ simplifies to :x4 in 101�. 
Therefore, P1ðXÞ ¼ P2ðXÞ, i.e. �0 � � percolates to 101�.

Knowledge of network’s trap spaces and their relationships 
with one another can aid in understanding the network’s 
long-term dynamics, including its attractors (Trinh et al. 

2022a, Rozum et al. 2021b, 2023) and response to interven-
tions (Za~nudo and Albert 2013, 2015, Rozum et al. 2021a). 
Percolated trap spaces are typically emphasized because any 
state in X eventually evolves to a state in the percolation of 
X. To formalize relationships between percolated trap spaces, 
Za~nudo and Albert (2013) introduced SDs. A SD (We use a 
novel, simplified definition of SDs. Supplementary Text 
S1.3.3 gives a detailed comparison to the previous material 
on this topic.) of an ABN B, denoted SDðBÞ, is a rooted, di-
rected acyclic graph. The vertices of SDðBÞ are exactly all per-
colated trap spaces of B, with the edge relation describing 
how these nest within one another (by set inclusion). The 
root node is the percolation of �n.

Notice that the terminal (leaf) nodes of SDðBÞ are exactly 
the minimal trap spaces of B. Furthermore, the successors of 
a node X correspond to the trap spaces obtained by percolat-
ing trap spaces that are subset-maximal within X. Borrowing 
terminology from related hypergraph structures (Za~nudo and 
Albert 2013, Rozum et al. 2021a), we call such maximal trap 
spaces stable motifs and show them as edge labels of the SD. 
Most often, every maximal trap space percolates to a distinct 
SD node. However, in some cases, multiple maximal trap 
spaces percolate to the same subspace, in which case the edge 
can be annotated with multiple stable motifs. The SD of the 
network from Fig. 1a is depicted in Fig. 1d.

2.3 Control interventions
SDs are also useful for attractor control, and form the basis 
for several ABN control algorithms (Za~nudo and Albert 
2015, Rozum et al. 2021b). The majority of these methods 
involve selecting a path in SDðBÞ from the root node to a tar-
get trap space containing the desired attractor. At each 
branch point along the path, an intervention is selected to en-
sure that the system will eventually enter the trap space corre-
sponding to the selected path. The union of these 
interventions drives the system to the target trap space with 
probability 1. The advantage of this approach is that it subdi-
vides the attractor control problem into smaller, more man-
ageable pieces. Typically, controlling entry into each trap 
space along the selected path involves fixing only a small sub-
set of the Boolean variables. In biobalm, we have imple-
mented two control algorithms from Rozum et al. (2021b)
with only slight modifications to allow for dynamic expan-
sion of the SD (see Supplementary Text S4 for details).

Figure 1. Illustration of the core concepts utilized in this article. (a) A simple ABN B ¼ ff1; f2; f3; f4g, with : denoting negation, Ù conjunction, Ú disjunction, 
and Y the exclusive or. (b) STGðBÞ. Self-loops are omitted for visual clarity. Attractor states are highlighted and distinguished by color. (c) IGðBÞ. Signs þ1 
(green), − 1 (red), and ±0 (blue) denote positive, negative, and non-monotonic influence, respectively. (d) SDðBÞ. Edges are labeled with the maximal trap 
spaces that percolate to the target nodes. As is typical (but not guaranteed), the minimal trap spaces (leaf nodes) and attractors (in (b)) coincide.

Mapping the attractor landscape of Boolean networks                                                                                                                                                       3 

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/41/5/btaf280/8125815 by library@
ist.ac.at user on 10 June 2025

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf280#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf280#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf280#supplementary-data


2.4 SD construction
We introduce several innovations to the algorithms of 
Za~nudo and Albert (2013) and Rozum et al. (2021a, 2021b). 
At a high level, biobalm is broadly similar to the previous 
tools (Supplementary Text S2.3): the root node P1ð�nÞ of the 
ABN B is established by percolating the trivial trap space �n, 
and it is stored in a digraph SDðBÞ. Then, SDðBÞ is further 
expanded by selecting a node (percolated trap space) X in 
SDðBÞ, identifying all maximal trap spaces within X, and per-
colating them to obtain the successor nodes. These are incor-
porated into SDðBÞ. Once the maximal trap spaces are 
computed for all nodes, the digraph SDðBÞ is the SD of B, as 
introduced in Section 2.

Compared to previous tools, however, biobalm has sev-
eral key advantages. First, we use a more efficient trap space 
identification method by Trinh et al. (2022c, a), which we 
further improved by implementing a heuristic for achieving 
more compact encodings of update functions (Supplementary 
Text S2.1). Second, we have implemented a more efficient 
percolation function that avoids the expensive step of recom-
puting prime implicants (Supplementary Text S2.2). Third, 
we adapt the attractor identification method of Trinh et al. 
(2022a) to apply to arbitrary percolated trap spaces instead 
of only minimal trap spaces (Supplementary Text S3.3). 
Finally, we decouple attractor identification from SD con-
struction and implement schemes for partially expanding the 
SD (discussed further in Section Attractor identification).

2.5 Partial expansion strategy
Previous methods (Za~nudo and Albert 2013, Rozum et al. 
2021b) construct SDðBÞ by preferentially expanding deeper 
nodes. In biobalm, we implement multiple strategies, includ-
ing depth-first and breadth-first expansion, allowing early ter-
mination if certain size or depth threshold is exceeded. We also 
developed several partial expansion strategies, which produce 
a sub-graph of SDðBÞ in which certain nodes are not ex-
panded, meaning their child nodes in SDðBÞ are omitted. Upon 
completion, these methods produce partial SDs that are func-
tionally equivalent to the full SD for attractor identification 
and control, but which eliminate computationally expensive 
(and cognitively burdensome) redundancies. Of these strate-
gies, the one that removes the most redundancies, and 
which we have selected as the default method for biobalm, 
is the source block expansion (Supplementary Text S5). 
Conceptually, this method is similar to Su and Pang (2021) or 
Kadelka et al. (2023) in that it identifies hierarchies of sub- 
networks (blocks of variables) that are mutually independent 

and can be processed separately, thereby eliminating redun-
dancy associated with permuting the order of trap space entry. 
Full details are given in Supplementary Text S5.

In Fig. 2, we show the application of this method to the 
mammal sex-determination network developed in S�anchez 
and Chaouiya (2016) with input values set to true (see also 
Supplementary Text S8.2). In the root node of the SD, there 
are six maximal trap spaces divided among four source 
blocks: C1 ¼ fv8;v9g, C2 ¼ fv1;v2g, C3 ¼ fv7;v8;v9g, and 
C4 ¼ fv1; . . . ;v9g. Initially, we choose C1 (blue), which in one 
branch also eliminates C3. In the other branch, we then pick 
C3 (green), which is now reduced to just v7 (v8 and v9 are al-
ready fixed by C1). Next, we expand C2 (red). This either 
leads directly into a minimal trap space, or it simplifies C4 to 
just two (purple) or three (yellow) variables, depending on 
the choice in C1. Notice that we expanded much fewer SD 
nodes (17) compared to the full SD (36). Also, the largest net-
work ever considered in the attractor identification has only 
three variables instead of nine.

2.6 Attractor identification
In biobalm, we consider two variants of the attractor identi-
fication problem: First, the attractor sets problem is to deter-
mine every set of states that represents an attractor of 
network B. This is how the attractor identification is typically 
understood, but it means that each attractor set must be suffi-
ciently small such that it is fully identifiable. As this is not al-
ways the case for large complex attractors, we also consider 
the attractor seed problem, which is to identify exactly one 
representative seed state for each attractor. This allows us, 
e.g. to identify the presence of motif-avoidant attractors with-
out fully enumerating their states.

Our approach in biobalm is based on the method of 
mts-nfvs by Trinh et al. (2022a), which we have signifi-
cantly improved and extended to apply to arbitrary perco-
lated trap spaces rather than only the minimal ones. Our 
workflow applies to each SD node X individually. A sum-
mary is given in Fig. 3 as well as Supplementary Text S3.

Recall that attractors cannot cross trap space boundaries, 
and that the T ðAÞ (smallest trap space that contains A) for 
each attractor A is always a fully percolated trap space. Thus 
it is sufficient to search for attractors only within percolated 
trap spaces, i.e. the nodes of SDðBÞ. Furthermore, when 
searching an SD node X for attractors, we can disregard not 
only the states outside X, but also the states in each successor 
node Y (as these are considered separately when searching Y). 

Figure 2. Example of a partial SD expansion by independent source blocks: (a) The IG of the simplified BN from S�anchez and Chaouiya (2016) (see 
Supplementary Text S8.2 for details), with relevant variable blocks highlighted; (b) The partially expanded succession diagram. Colored edges are labeled 
with the expanded source blocks. Larger grey nodes represent trap spaces that are discovered but never expanded. Smaller grey nodes are never 
discovered, but appear in the full SD. For brevity, only one edge is shown per each non-expanded node.
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We use the NFVS-based method of Trinh et al. (2022a) to 
identify candidate attractor seeds in each percolated trap 
space, and then verify or eliminate them using randomized 
simulation, static analysis (using pint; Paulev�e 2017), or 
symbolic reachability (using AEON.py; Bene�s et al. 2022).

3 Results
3.1 Benchmarks
To evaluate the overall effectiveness of biobalm, we con-
sider the attractor seed identification problem over a large 
collection of real-world (230 networks with 14 010 input 
configurations; from the BBM dataset; Pastva et al. 2023) 
and synthetic (2760 networks; critical N-K, nested canalyz-
ing, and dense ensembles) Boolean networks. A detailed de-
scription of experiment setup is given in Supplementary Text 
S6. We compare biobalm with AEON.py (Bene�s et al. 2022) 
and mts-nfvs (Trinh et al. 2022a). Figure 4 summarizes the 
attractor benchmark results. The top panel shows the number 
of benchmarks completed as a function of time. The bottom 
panel compares the performance on individual benchmarks. 
In Supplementary Text S6, we also provide an extended ver-
sions of Fig. 4, stratified across individual tools and network 
ensembles. Importantly, we have not encountered any motif- 
avoidant attractor in either of ensembles.

We have not included pystablemotifs in the attractor 
identification benchmarks because Bene�s et al. (2022) dem-
onstrate that AEON.py is superior for this task. However, we 
have tested pystablemotifs against biobalm on a 
smaller set of real-world models to evaluate SD expansion 
and control. Results are provided in Supplementary Figs S9

and S10. In these tests, biobalm completed almost all bench-
marks at least 10 × faster than pystablemotifs.

3.2 Attractor landscape ensembles
To demonstrate the utility of biobalm, we have compared 
the full SD structure of 230 ABN models of cell processes 
from the BBM dataset (Pastva et al. 2023), in 14 010 parame-
ter configurations, to the SDs of 69 000 random ABNs drawn 
from three null model ensembles. The null model ensembles 
include two ensembles of critical N-K models (Kauffman 
1969) with in-degree K¼2 and K¼ 3, and an ensemble of 
nested canalizing function (NCF) networks generated using 
the methods of Newby et al. (2022). The NCF networks have 
nested canalizing regulatory functions—meaning inputs de-
termine outputs in a hierarchical manner—and topology 
matched to biological networks as reported by Kadelka et al. 
(2024). We generated 100 random networks with equal size 
matched to each BBM model, thereby resulting in three 
ensembles of 23 000 networks each.

As shown in Fig. 5, the distribution of SD sizes for empiri-
cal models is more heterogeneous and has a longer tail than 

Figure 3. Attractor identification workflow for a fixed node (trap space) X 
of the succession diagram SDðBÞ. Blue (squared) and purple (rounded) 
boxes represent data and computational steps, respectively.

Figure 4. Performance comparison of biobalm versus AEON.py and 
mts-nfvs for attractor identification. (Top) The total number of 
completed benchmarks within 1 h timeout (vertical axis) out of our test 
ensemble of 16 768 benchmark models as a function of time (horizontal 
axis, logarithmic scale). We show times >1 s in the main panel; the full 
range is shown in the inset and in Supplementary Text S6. (Bottom) 
Runtime of individual benchmark instances. Timeouts are placed at the 
margins of the plot, indicated by the “ > 1h” labels. Green (red) regions 
represent results where biobalm was at least 10 × faster (slower) than 
the competing tool and the slower tool took longer than 1s to complete. 
The grey region contains instances where tools performed similarly. The 
number of cases that fall into each region is indicated in red or yellow text 
for AEON.py and mts-nfvs, respectively.
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for our three ensembles of random networks. The mean, vari-
ance, and kurtosis of the BBM distribution are statistically 
significantly higher than for random networks (via boot-
strapped 95% confidence intervals—see Supplementary Text 
S7.3). We observe a similar pattern in the number of attrac-
tors (see Supplementary Table S2). Additionally, we con-
trolled for any automatically-generated models within BBM 
and observed similar results regardless of the model origin 
(Supplementary Text S7.4).

We observe that SD size and the number of attractors grow 
exponentially with SD depth (denoted d) in all four ensembles 
(Supplementary Fig. S13). Note that the SD is free to have 
any depth, any size, and any number of attractors. SD size is 
roughly bounded by 3d, and the number of attractors is 
roughly bounded by 2d, scaling bounds that correspond to 
networks of independent bistable cycles. Moreover, SD size 
as a function of depth is approximately bounded between the 
scaling obtained for uniform trees with three children and 
one child (linear chains), with many SDs falling near the scal-
ing law obtained for uniform binary trees (two decisions for 
each SD node). These observations suggest that attractor 
landscapes are typically not broad and shallow—instead, at-
tractor commitment arises from a series of decisions between 
a small number of possible choices.

4 Discussion
Extracting biological insights from a Boolean network 
requires a strong understanding of its range of possible 
behaviors, as well as of the circumstances under which they 
arise. Despite recent major advances, the problem of identify-
ing all the attractors in a large, dense ABN remains difficult. 
This problem is increasingly important as modelers of cell 
processes develop ever larger and more complete networks 
(and integrate them into population-level models). We have 
previously contributed to this problem individually (Rozum 
et al. 2021b, Bene�s et al. 2022, Trinh et al. 2022a), and here, 

we present a combined and significantly improved approach 
in the Python 3 library biobalm, the biologist’s Boolean at-
tractor landscape mapper.

The attractor identification benchmarks we have presented 
demonstrate a substantial improvement over AEON.py 
(Bene�s et al. 2022) (which has been previously demonstrated 
to significantly outperform pystablemotifs by Rozum 
et al. (2021b)) and a moderate speed improvement over 
mts-nfvs (Trinh et al. 2022a). Crucially, biobalm success-
fully analysed 463 networks and 478 networks where AEON. 
py and mts-nfvs failed, respectively. Out of these, 75 net-
works were uniquely solved by biobalm (27 biological and 
48 random). With a more generous timeout of two days, 
biobalm only fails 26 benchmarks, primarily in large mod-
els with more than 100 000 complex attractors that are lim-
ited by the time needed to enumerate individual attractors. 
Overall, biobalm is the fastest and most robust among the 
tested tools. Moreover, biobalm is simultaneously comput-
ing the SD, and therefore yields a much more informative 
output that describes the decision points in the network cir-
cuitry and can be used to perform computationally efficient 
attractor control using the control algorithms introduced in 
Rozum et al. (2021b). Compared to pystablemotifs, this 
results in a significant (10 × or better) speed-up in control 
strategy identification.

Importantly, biobalm provides a modular approach to 
both SD construction and attractor identification, enabling 
multiple methods and heuristics informed by the SD (Fig. 3). 
This allows to easily replace components (NFVS computa-
tion, minimal trap space computation, symbolic reachability, 
etc) or introduce new methods as improvements be-
come available.

In addition to benchmarks, we have used biobalm to 
study the distribution of SD sizes in biological models from 
the Biodivine Boolean Models (BBM) repository (Pastva et al. 
2023), the largest curated collection of biological Boolean 
networks currently available. We compared these models to 
similarly sized critical Kauffman networks (Kauffman 1969) 
(K¼ 2 and K¼3) as well as to an ensemble of canalizing ran-
dom networks generated using the method of Newby et al. 
(2023). We observe that SD depth scaling is consistent with 
attractor landscapes constructed from a series of small deci-
sions, lending support to the hypothesis that biomolecular 
networks exhibit modular, hierarchal structure (Sales-Pardo 
et al. 2007, Park et al. 2023). We also find that the distribu-
tion of SD size for published Boolean network models with 
fixed inputs is highly heterogeneous and contains extremely 
large SDs (several thousand nodes), as compared to the SD 
distributions for three biologically-inspired random model 
ensembles. Allowing inputs to vary in the published models 
would even further accentuate these differences. This suggests 
that, even accounting for network size, degree distribution, 
and the prevalence of canalizing functions in biological 
Boolean networks (Kadelka et al. 2024), they exhibit more 
complicated Waddington canalization landscapes at the 
system-level. Because the trap spaces that compose the SD 
arise from positive feedback loops (Za~nudo and Albert 
2013), we propose that non-local topological features of the 
IG (such as prevalence and overlap of cycles) play a signifi-
cant role in the emergence of complex Waddington land-
scapes. It seems likely that local features (such as various 
measures of canalization in individual update functions; 
Correia et al. 2018) are not sufficient to explain or predict 

Figure 5. Distributions of succession diagram size (number of nodes in 
the fully-expanded succession diagram) for various ABN ensembles. 
BBM networks with random input configurations (up to 128 independent 
samples) are shown in red, with the average succession diagram size 
across these samples for each network depicted in purple. Random 
networks of different types are indicated in green, cyan, and dark blue, 
and are constructed to match the distribution of the number of variables 
in the BBM ensemble. Gaussian noise is added to the horizontal position 
of each point. Box plots and density plots are computed in log space.
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the complexity of the attractor landscape—though they may 
still be informative in computing non-local metrics, e.g. via 
the effective graph (Gates et al. 2021). Testing our hypothesis 
requires a deeper analysis of this phenomenon and remains as 
future work.
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