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Abstract

Cooperation, that is, one person paying a cost for another’s benefit, is a fundamental
principle without which no form of society could exist. The extent to which humans
cooperate with each other is also an essential feature that differentiates them from other
animals. Cooperation occurs even in the absence of altruistic motivations, when it is
selfishly incentivised by the expectation of a future reward. For example, many economic
interactions are well described that way. This kind of cooperation requires that people
exhibit reciprocal behaviour that acts as a mechanism that rewards cooperation.

With game-theoretic models, it is possible to formally study potential such mechanisms
and under what conditions they can exist. This thesis contributes to this effort by
analysing recently introduced models of cooperation that advance on previous work by
taking into account the potential for pre-existing inequality among cooperating individuals
as well as the different forms that reciprocity can take.

Individuals may differ both intrinsically, in their abilities, as well as extrinsically, in the
amount of resources they have available. Allowing for such differences in a model of
cooperation helps to understand how inequality affects the potential for, and outcomes
of, cooperation among unequals. In this thesis, it is shown that in the presence of
intrinsic inequality, a similar unequal distribution of resources can increase the potential
for cooperation. This effect is stronger the smaller the group is in which cooperation
takes place. It is also shown that under particular assumptions, if the unequal members
of a group vary the size of their contributions to a cooperative effort over time, they can
thereby increase their efficiency and improve the collective outcome.

Cooperative behaviour in a two-person interaction can be rewarded either by direct
reciprocation whenever the same two people interact again, or indirectly by a third party
who observed the interaction. In the latter case of indirect reciprocity, individuals are
proximally rewarded by a good reputation, which ultimately translates to being rewarded
with cooperative behaviour by others. This mechanism can enable selfishly motivated
cooperation even in circumstances where individuals are unlikely to meet again, akin
to how money facilitates trade. While these two forms of reciprocity have mostly been
studied in isolation, this thesis analyses both direct and indirect reciprocity in a general
model in order to compare their relative effectiveness under different circumstances. The
contribution of this thesis is an extension of previous work regarding a specific kind of
interaction, whose parameters allow for convenient mathematical analysis, to the most
general set of possible interactions.
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CHAPTER

Introduction

A few weeks after a dramatic heist took place at the art museum, a shady business tycoon
receives a call. The gang of thieves are proposing to sell him a rare masterpiece—the kind
that money seldom buys—, to be exchanged for a large sum in cash at a quiet location
outside of the city. It is a deal too good to turn down. But can it be done? What if the
thieves were to set up an ambush, hoping to take home a suitcase full of cash without
even bringing the painting to the scene? And wouldn’t he be better off too, no matter
what the thieves are planning, to send his own men with guns instead of money? If both
parties act strategically in this way, they are headed for a stalemate at best, if not a
violent clash. Even though the proposed deal offers mutual benefit, the temptation to
double-cross each other may yet render it impossible to fulfill.

This is a classic case of a social dilemma, where one possible outcome is preferred by
all, but paradoxically, by following their selfish interests, they will nonetheless act so as
to collectively produce another, inferior outcome. In other words, there exists a conflict
between the collective and the individual interest. We refer to the action that produces
the desirable outcome as cooperation, and to the action that produces the undesirable
outcome as defection. Sometimes, people choose to cooperate in a social dilemma, while
at other times, they choose to defect.

Under the assumption that individuals act selfishly as well as rationally, these situations
lend themselves to formal analysis. The tool for this analysis is game theory, which is
the formal science of strategic decision making. In game-theoretic analysis, one creates
a formal model of a strategic interaction, which specifies the possible actions available
to each individual, the outcome that each combination of actions produces, and the
individual preferences regarding the possible outcomes. Chapter 2 presents a discussion
of what it means to assume that individuals act selfishly and why this assumption cannot
be omitted.

The first result of game theory is that when selfish, rational individuals engage in an
isolated interaction that presents a social dilemma, they will always defect, to their
collective disadvantage. To take the example presented initially, the thieves always profit
from not bringing the painting, independently of whether or not the buyer intends to
double-cross them. So, if they are rational and selfish, that is what they will do. The
buyer’s calculus is similar. However, another fundamental result from game theory, which
is called the folk theorem of repeated games, also shows that if individuals get to interact
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repeatedly, then sometimes there is potential for them to cooperate, even just based on
selfish motives. When and in what form such a potential exists in a given situation is the
subject of active research.

Within that broad field, this thesis focusses on two main aims: The first aim is to study
how inequality affects cooperation in collective-action problems. For this, we use an
asymmetric version of a classical model known as the public goods game (see Section 1.1
below). The second aim relates to a theoretical framework that unifies two common
models of reciprocal behaviour, called direct and indirect reciprocity. Our aim is to extend
the analysis of this framework to all possible forms of social dilemmas (see Section 1.2).

1.1 The asymmetric public goods game

In economics, a non-excludable good is any good whose use cannot be restricted. Two
particular forms of social dilemmas, or collective-action problems, arise in relation to
non-excludable goods: The “tragedy of the commons” and the “free-rider problem”. Both
can be formally analysed with a game-theoretic model called the public goods game.

Firstly, when a non-excludable good is rivalrous, which means that its use by one person
diminishes its value to another person, it is liable to be overused to the detriment of
all. Such a non-excludable, rivalrous good is called a common good, and the problem
of overuse is known as the tragedy of the commons [Har68]. For example, fish stock in
international waters are a common good, and their existence is threatened by overfishing.
In some cases, such problems can be avoided by privatisation or nationalisation (that is,
by assigning property rights), or by state regulation.

Secondly, even when a non-excludable good is non-rivalrous, in which case it is called a
public good, it may need to be provided or sustained. Examples of such public goods
are clean air, public safety, or basic research. Since the provider of a public good cannot
prevent anyone from using it, they cannot demand remuneration for the provision, which
makes the goods liable to be underprovisioned. This is called the “free-rider problem”
[Ols71]. A common solution is tax-funded provision of public goods.

In summary, both the conservation of a common good as well as the provision of a public
good require cooperative collective behaviour, which is susceptible to exploitation by
uncooperative individuals. While the classical solutions to these collective-action problems
all rely on state enforcement, whether of regulation, property rights, or taxation, analysis
of the public goods game shows that they can also be solved non-coercively through
self-enforcing agreements. This is highly relevant not only but also in the context of
the community of sovereign states, which is anarchically organised: It has a common
interest in cooperation in areas such as climate change mitigation and other forms of
environmental protection, or corporate taxation. Just like social dilemmas among humans,
these social dilemmas among states can be formally analysed with game-theoretic models
on the basis of the assumption that the states act selfishly and rationally.

1.1.1 State of the field

While it is given that selfish, rational agents will defect in any interaction that forms a
social dilemma, a fundamental result from classical game theory states that when they
face such an interaction repeatedly, there can be the potential for cooperation. Put simply,
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they can be in a state where they all expect each other to cooperate repeatedly, yet are
prepared to switch to defection as soon as someone else deviates from the agreement.
Depending on the specific parameters, such a mechanism may align the individual interest
with the collective interest and thus make cooperation self-enforcing. The so-called
folk theorem of repeated games states that when an interaction is repeated indefinitely,
any kind of behaviour can be made self-enforcing as long as it is to everyone’s benefit
[Fri71, FM86a]. It is worth noting that this theory makes no prediction for what kind of
self-enforcing behaviour could be expected in practice.

Upon introducing greater realism into the model by considering an interaction that is
repeated for a finite amount of time, rather than indefinitely, some forms of cooperation
may still be possible, while others may not be. Mathematical analysis can be used to
examine the space of all patterns of behaviour that are still consistent with the assumptions
of selfishness and rationality.

1.1.2 Our contributions

Normally, in the obvious interest of simplicity, individuals are given identical properties.
This is also natural given that the form of cooperation that is being studied is sustained by
a mechanism of reciprocal behaviour: the agents cooperate because they expect that others
will treat them accordingly in the subsequent rounds. Reciprocating one another’s actions
is conceptually most simple when there are no intrinsic differences among individuals.

Yet there is a lot of interesting potential in exploring model variants where the players
of the game are asymmetric. For example, this is again very relevant to international
cooperation among sovereign states, who differ by orders of magnitude in the amount
of resources at their disposal and in the degree to which they are able to influence each
other’s outcomes. It is such an asymmetric public goods game model that is analysed in
this thesis. Specifically, we study a model first introduced by Hauser et al. [HHCN19],
in which agents interact who either have unequal amounts of resources that they can
contribute to a public good, or differ in how productively they can contribute their
resources. The inequality in resources, which we call endowment inequality, affects how
much each player can either contribute towards the public good or alternatively consume
privately. The productivity inequality affects how effective their contributions to the
public good are, that is, how much of a benefit they provide to the group as a whole. We
do not study public goods games in which these relationships are nonlinear (i.e. with
synergistic or diminishing effects), or in which the public good is divided unequally.

Given the individuals’ productivities, we ask which allocation of endowments is optimal
for cooperation. To this end, in Chapter 3, we consider two notions of optimality. The first
notion focusses on the resilience of cooperation. The respective endowment distribution
ensures that full cooperation is feasible even under the most adverse conditions. The
second notion focusses on efficiency. The corresponding endowment distribution maximises
group welfare. Using analytical methods, we fully characterise these two endowment
distributions. This analysis reveals that both optimality notions favour some endowment
inequality: more productive players ought to get higher endowments. Yet the two notions
disagree on how unequal endowments are supposed to be. A focus on resilience results
in less inequality. With additional computational simulations, we show that the optimal
endowment allocation needs to account for both the resilience and the efficiency of
cooperation.
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Still, while that work explores to which extent asymmetry allows for full cooperation, such
that players contribute their full endowment each round, by design it is therefore limited
to equilibria where individuals make the same contribution in each round. In Chapter 4
therefore, we also consider players whose contributions along the equilibrium path can
change from one round to the next. We do so for three different models — one without
any budget constraints, one with endowment constraints, and one in which individuals
can save their current endowment to be used in subsequent rounds. In each case, we
explore two key quantities: the welfare and the resource efficiency that can be achieved in
equilibrium. Welfare corresponds to the sum of all players’ payoffs. Resource efficiency
relates this welfare to the total contributions made by the players. Compared to constant
contribution sequences, we find that time-dependent contributions can improve resource
efficiency across all three models. Moreover, they can improve the players’ welfare in the
model with savings.

With that, we provide a comprehensive analysis of the impact of two of the main simplifying
assumptions of classical public goods game models.

1.2 Direct and indirect reciprocity

Reciprocity, that is, responding in kind to how one is treated by others, is a commonly
observed pattern of human behaviour in social dilemmas. The presence of reciprocity as a
social norm is also a possible mechanism by which cooperation can be selfishly motivated.
Furthermore, reciprocal behaviour requires comparatively little cognitive capacity. For all
of these reasons, reciprocity is of great interest to game theory and the study of human
behaviour in general.

In its simplest form, which is called direct reciprocity, it requires that individuals can
expect to interact repeatedly, such as it would be the case among the members of any
sufficiently small community. Unlike in the asymmetric public goods game, here, only
dyadic interactions, that is, interactions between two players, are considered, but these
may still occur among pairs of players within a larger group. When reciprocal behaviour
is the norm in such a group, it can be in people’s selfish interest to behave cooperatively,
because they know that their behaviour will likely be reciprocated in the future. In a
modern society however, it is common for strangers to interact who are unlikely to meet
again. There, direct reciprocity fails as a mechanism that would selfishly incentivise
cooperation. A similar mechanism can still work, however, if actions are publicly observed
and confer a corresponding reputation on the agent, which then affects how they can
expect to be treated by third parties in the future. This is called indirect reciprocity.

1.2.1 State of the field

Both the concepts of direct [Axe81, HCN18, GV18, GK21, RH23] and indirect [NS98b,
NS05, Sigl12, Oka20] reciprocity have received great attention in the literature. In order
to jointly analyse both of them in one formal model, which had not previously been
done, Schmid et al. [SCHN21] introduced their so-called unified framework of direct and
indirect reciprocity. This unified framework is a generalisation of the usual models for
both kinds of reciprocity and also allows for intermediate forms. The authors identify
cooperative strategies of indirect reciprocity as well as of intermediate forms of reciprocity,
and characterise the conditions under which they can maintain cooperative behaviour.

4



1.2. Direct and indirect reciprocity

Schmid et al’s model exclusively considers the donation game, which is the two-player
version of the public goods game. In the donation game, the effects of individual behaviours
are independent, which is not necessarily given in a social dilemma. By its particular
properties, the donation game allows for convenient mathematical analysis. However,
it is not representative of the full variety of social dilemmas that may occur between
two persons. Not only is the donation game a special case of the more general class
of prisoner’s dilemmas, but there are also other classes of social dilemmas, which are
qualitatively different from the prisoner’s dilemma.

The seminal work of Press and Dyson [PD12], on the other hand, considers arbitrary
kinds of social dilemmas but only in the context of direct reciprocity. They show that
there exists a class of strategies, called the equalizer strategies, that completely decouple
one’s own welfare from the actions of others. This property makes any such strategy a
stable social norm, which can potentially sustain cooperation. However, a generalisation
of the work of Press and Dyson to indirect reciprocity and to the more general unified
framework has remained has remained open so far.

1.2.2 Our contributions

In Chapter 5, this thesis presents a model that is a version of the unified framework
of direct and indirect reciprocity for all kinds of social dilemmas. We use this model
to generalise the theory of equalizer strategies from direct reciprocity to the unified
framework, and thus as a special case also to indirect reciprocity. Thereby, we show how
individuals can sustain socially optimal outcomes across all pairwise social dilemmas,
using either direct or indirect reciprocity, and arbitrary mixtures thereof. We apply novel
proof techniques to overcome the greater mathematical complexity of strategic interaction
in other social dilemmas compared to in the donation game. The unified framework
allows us to explore how individuals can integrate social information from different sources
to solve collective-action problems, and to generally build further bridges between the
hitherto separate literatures on direct and indirect reciprocity.






CHAPTER

Evolutionary game theory and the
assumption of selfishness

Two basic assumptions in game theory are that individuals are rational and selfish. This
preliminary chapter presents a critical discussion of the latter. Firstly, what is meant by
rationality and selfishness? The understanding of these terms in game theory is based on
a model of human agency most notably tracing back to David Hume’s Treatise of Human
Nature [Hum?78], in which passions and reason together determine a person’s actions. The
passions, which are not subject to rational scrutiny, are whatever motivates a person to
act. Reason is the cognitive process in which a person chooses their actions with the aim
of satisfying those passions.

What Hume called “passions” is referred to as an individual’s “preferences” in game
theory, which are usually assumed to be consistent. A person is called rational if they act
so as to optimally satisfy their preferences, whatever those may be. These assumptions
have their limitations: Neither is it really the case that preferences cannot be rationally
revised, nor are they always consistent [HHV02]. Finally, it is also clear that humans do
not always act rationally. There is a large body of research on systematic departures from
rationality in human behaviour, which are called “cognitive biases”. Even the finiteness
of human cognitive capacity is on its own enough to show that humans cannot be fully
rational. But instrumental rationality, as it is called, is a useful model.

A person’s preferences are called selfish if they are independent of how the person’s actions
affect others. To understand why one would make a general assumption that that were
the case, we need to differentiate between classical game theory and evolutionary game
theory.

In classical game theory, one aims to analyse one particular strategic interaction as it
might occur among two or more individuals, such as in the examples mentioned initially.
To that end, one creates a formal model of what choices are available to each individual,
what outcomes they produce in combination, and what each individual’s preferences over
these outcomes are. With the preferences in particular, any modelling choice is bound
to be to some degree arbitrary, since it represents people’s inner motivations, which are
difficult to observe and to quantify. It is thus convenient to assume that individuals are
purely selfishly motivated. But this remains an assumption, which is accurate in some
cases and inaccurate in others.
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2.1 Evolutionary game theory

In contrast to classical game theory, evolutionary game theory is an application of game-
theoretic analysis to the behaviour of all kinds of living organisms, from animals all the
way to microbes and even single genes and viruses. Interestingly, some of game theory’s
greatest scientific achievements are from this realm of evolutionary biology, even though
game theory originated with the study of human behaviour through classical game theory
[MS82]. That is because as it turns out, the behaviour of comparatively simple biological
organisms conforms far better to the assumptions of selfishness and rationality than that
of humans.

But what does it mean for a bacterium to be rational, or for a gene to be selfish? These
notions rely on an analogy to human agency by which the preferences of an individual from
an evolving population, say, a bacterium, are defined as the equivalent of its Darwinian
fitness. By definition, these preferences are selfish (other than towards close genetic
relatives when we adopt a definition of inclusive fitness [Ham64]). Now, the interesting
point is that insofar as the individual’s behaviour is adaptive, it is also by definition
rational. The simpler the behavior of a species is, the more powerful this model becomes.
In particular, unlike in the study of human behaviour through classical game theory, there
is no need to make any assumptions about the preferences of the agents.

All kinds of organisms encounter their own kinds of social dilemmas. In some of those cases,
cooperative behaviour can be observed. For example, the bacterial pathogen Pseudomonas
aeruginosa produces and secretes pyoverdine, which enables it to take up iron from its host
environment [MIF*16]. This is a form of cooperation, because pyoverdine is diffusible
and can therefore be taken up by any bacterial individual, not just the producer [RD00],
who pays the high [GWB04] metabolic cost of producing it. One might expect that the
only adaptive, or selfishly rational, behaviour is not to produce pyoverdine, that is, to
free-ride on the contributions of the others. But this is not what is observed. Evolutionary
game theory aims to explain observations such as this by modelling mechanisms through
which selfish motives can give rise to cooperation. Examples of these are kin selection
[Fra98, WPG02, FWRO06], reciprocity [Tri71, AH81| (which requires a degree of cognitive
ability not possessed by bacteria), and group selection [RR03, TNO6].

Since humans are also an evolving species [Dar(09], one may in principle also attempt to
study human behaviour with the methods of evolutionary game theory. However, there
are some important caveats. Firstly, human behaviour is uniquely complex [VGEO0S].
Secondly, while there is controversy about the degree to which some traits such as
personality and intelligence are genetically heritable [Rid03], it is universally accepted
that the majority of human behaviour is not [BR88a, Ric05, Pin10, BRH11, Stel2, CT13].
Besides a component of innate behaviour, which is called instinctive, human behaviour is
largely determined by cognitive processes which form and change a person’s behaviour
throughout their lifetime, such as learning and reflection. It therefore cannot be the case
that it is adaptive as a result of Darwinian evolution.

For some examples, consider dietary choices: (a) Spoilt food, which may carry pathogens,
commonly elicits disgust, which is partly an instinctive reaction [CB01]. (b) An estimated
1.5 billion Muslims fast during Ramadan, motivated by a religious commandment [Pew12)].
(c) Around 1% of the German population is estimated to follow a vegan diet [MBB16]. Of
these, about 90% report to be motivated by animal welfare, and 47% by a desire to reduce
their negative impact on the environment [JBRH16]. (d) The average consumption of sugar
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in Canada is about twice that of Japan, despite similar GDP (PPP) per capita and HDI
[FAO24]. All of the above choices can impact an individual’s fitness [MBB16, HMD*11].
Yet only the first example, disgust, is partly instinctive and thus a candidate for a rigorous
explanation in terms of genetic evolution.

2.2 Learning

The fact that human behaviour is largely not innate seems to preclude the application of
evolutionary game theory to most aspects of human behaviour. In order to circumvent this
problem, mathematical models of learning, reflection, and other cognitive processes have
been proposed in which humans are posited to continuously update their behaviour, for
example by imitating the behaviour of others who are seen as successful, or by evaluating
one’s current behaviour against hypothetical alternatives through counterfactual reasoning
[SBM*09]. According to this theory, given any new situation, humans learn and use
reason to behave in the interest of their own reproductive fitness [Alel7].

This theory has multiple problems. Firstly, whatever processes are assumed to operate
at the cognitive level (whether conscious or unconscious) to optimise human behaviour
for reproductive fitness as an extension of genetic evolution cannot do so directly, but
must instead optimise for a proxy measure that is cognitively represented while still being
genetically determined. That is, they must optimise for alignment with instinctive desires.
One should therefore expect that altruistic behaviour evolves only at the cognitive level,
while the instinctive desires are completely selfish. Otherwise, if a general concern for the
welfare of others were simply part of human nature, what would stop the processes of
learning and reflection from producing behaviour by which one would indeed sometimes
compromise one’s own fitness for nothing but the benefit of others?

However, altruism is in fact partly innate. Neurological research shows that empathy is a
natural human function [Ado99, PAW02, DVS06]. In other words, humans can feel joy as
a result of perceiving others to be joyful, or pain as a result of perceiving others to be in
pain, which motivates altruistic behaviour, and this phenomenon is (at least partly) innate
[Slo17]. This aligns with the presence of altruism in animals whose behaviour is essentially
determined by instinct, and may be seen as a parallel to altruistic behaviour in species
without cognitive ability. While there is debate over the mechanism by which such an
altruistic instinct may have evolved, it is acknowledged that this aspect of human nature
is a necessary component in explaining human behaviour on the basis of its motivations

[RN13).

As a second problem, empirical evidence also suggests that the full scope of human
cooperation is inconsistent with the assumption of fitness-adaptivity. This is not a self-
evident fact, because the majority of human cooperation is indeed based on selfish, not
altruistic motivation. Take the example of an artisanal baker. She bakes bread not just
for herself, but for hundreds of people every day. She does this not primarily out of
compassion for those people’s desire to eat good bread, but rather because she receives a
monetary reward in return. This is so obvious that we do not consider it to be altruistic
behaviour. Starting from observations like this, it is tempting to conjecture that in fact
all forms of human cooperation can be explained in a similar fashion: we may aim to
explain helpful acts by a desire for them to be reciprocated, and even generosity towards
strangers by a desire for the eventual benefits of a good reputation.



2.

EVOLUTIONARY GAME THEORY AND THE ASSUMPTION OF SELFISHNESS

Some of these explanations will be accurate, and others will not be. Given the complexity
of human social life, it is hard to test them. However, behavioural experiments have shown
that the general hypothesis, that all of human cooperation is motivated in this way, is false.
A well-known example is the so-called dictator game, a very simple artificially created
situation where one of two participants is given some amount of money and may choose
freely how to divide it between themselves and another participant [KKT86]. Hoffman
et al. [HMS96] conducted a double-blind dictator experiment in which the participants
could make their decisions in complete and lasting anonymity from each other and the
experimenters. They found that while anonymity results in more selfish behaviour, still
36% of participants gave away some share of the money they received. This behaviour can
only be assumed to be to their own reproductive disadvantage. The most parsimonious
explanation here is that participants were motivated by a real desire for fairness, which
was present also in the absence of an expected reward for cooperative behaviour. Other
experiments paint a similar picture [Cam03].

The third problem, finally, is that even if the theory of fitness-adaptive human behaviour
were true, it would not be practically useful for the purpose of formally (or otherwise)
studying social interactions. For example, consider a person’s decision in a social dilemma,
such as the decision whether or not to reduce their air travel in order to help mitigate
climate change. Even if we could soundly assume that that decision will be whatever is
ultimately most beneficial for the person’s reproductive fitness, we still don’t know what
that choice should therefore be. To find out, we would have to balance the financial cost
and the forgone relaxation that a trip by plane could have brought with the gain in social
reputation that might be obtained by abstaining from it, all of which depend entirely on
the specific circumstances of that individual person and are impossible to quantify even
approximately. Trying to give a scientific answer to this question is futile.

2.3 Interpretation

So we must discard the hypothesis that human behaviour is essentially fitness-adaptive.
This may be surprising, given that human behaviour did in some sense arise through
genetic evolution, a process that continuously increases fitness [Fis30]. But this is the
nature of emergence, of which not just the human mind, but also human society are
paradigmatic examples. Just like bacterial evolution cannot be understood through the
laws of chemical reactions, much of human behaviour cannot be understood through
the evolutionary process, even though it emerged from it. To illustrate this fact: It is
entirely possible that future human generations will start to form the genomes of their
successors by synthetic design rather than through recombination of their own [Fuk03],
which would set their own Darwinian fitness to zero. There is no reason to believe that
human behaviour in areas other than reproduction should generally be any more restricted
by evolutionary forces.

So what role should evolutionary game theory play? It is certainly an excellent tool in
behavioural ecology, for the study of the simpler behaviour of non-human species, where
it is very successful. In a more speculative way, it can also be used for hypothesising
about the evolutionary origins of human instincts, such as, most notably, to address the
question of how human altruistic instincts could have evolved.

However, when we study any specific human interaction, it is my view as argued above
that we may not simply assume that behaviour is consistent with the reproductive interest.
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Such an assumption is often implicitly made when real-world examples of cooperation
are described a priori as surprising or paradoxical, or as being necessarily in need of
explanation by a game-theoretic mechanism. In reality, any such instance of cooperation
may also just be the result of existing unspecific altruistic preferences.

So, if we wish to study specific strategic human interactions (and this may include
interactions among organisations as well as among individuals) we must make hypotheses
about the agents’ preferences in the given context and create classical game-theoretic
models based on such assumptions. Wherever their predictions fail the empirical test, the
hypotheses must be revised. The work in this thesis should be seen in that light as being
predicated on the assumption that agents are to some degree of approximation selfishly
motivated in whatever social interaction is being considered. Where that is not given, the
models and results are not applicable.
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CHAPTER

Efficiency and resilience of
cooperation in asymmetric social
dilemmas

This chapter was originally published as: Valentin Hiibner, Manuel Staab, Christian
Hilbe, Krishnendu Chatterjee, and Maria Kleshnina. Efficiency and resilience of
cooperation in asymmetric social dilemmas. Proceedings of the National Academy
of Sciences, 121(10), February 2024

Everyday life is rich in situations where individuals have to decide whether to act for the
benefit of the group or their individual gain. These situations are commonly referred to
as social dilemmas [KGSF04, N*12]. For pro-social behaviour to be maintained in these
settings, it takes some mechanism that enables individuals to overcome selfish interests
[Now06b]. Direct reciprocity is one such mechanism [Tri71, Axe81, Sigl0]. It requires
individuals to interact repeatedly, so that previous actions may shape future decisions.
As a result, even in the absence of explicit punishments, cooperation can evolve and be
stable.

Most previous studies on the evolution of reciprocity focus on fully symmetric interactions
[NS92, Fre94, KDK99, IN10, KWI10, GT12, PD12, VSPLS12, SP14c, TRS14, SP14a,
SP15, DLTZ15, PHRZ15, BJHN16, MH16a, RHR 18, IM18, HCN18, SHCN22|. In these
studies, individuals are perfectly interchangeable. This assumption plays a critical role in
the context of direct reciprocity, because it implies that the ability to increase or reduce
an opponent’s payoff is identical across individuals. If, however, individuals differ in
their costs and benefits of cooperation, some individuals might be harder to discipline
than others, making cooperation more difficult to sustain. This has, for instance, been
shown in the context of endowment inequality [HHCN19, CKS05, MSMS21, ACBS*18,
BBVS&86, VSPL14, ACT14, Akil5, Zel03, DBF18, BC06, HRS16, GMTV17, NSRC15,
Gécls, CMMM99, KMS17]. Endowment inequality is often identified with real-world
inequalities in income or wealth, which have a negative impact on social outcomes more
generally [GVDDVD20, HG23, SN23, MSMP22, SMB20]. Such observations suggest
that if individuals are otherwise symmetric, endowment inequality ought to be as small
as possible to promote cooperation. However, in addition to endowment inequality,
individuals often differ along multiple other dimensions, such as their level of skill. In such
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a context, recent studies suggest that a perfectly equal endowment distribution may not
be optimal for cooperation either [MW22, YWH22, NAKP20]. This raises the question
what the optimal level of endowment inequality is. This paper aims to provide an answer
to that question.

Taking the framework of Hauser et al. [HHCN19] as a starting point, we study repeated
linear public good games among asymmetric players. Our baseline model contains two
sources of asymmetry. First, players may differ in their endowments, which influences
how much they can contribute to the public good. Second, players may differ in their
productivities, which influences how effective contributions are. Given the players’ produc-
tivities, we ask how endowments should be optimally allocated. To tackle that question,
we introduce two notions of optimality. First, we characterise the endowment distribution
that results in the highest resilience of cooperation. Here, individuals are able to enforce
cooperation even as the game’s continuation probability approaches the theoretical min-
imum. Second, we characterise the endowment distribution that exhibits the highest
efficiency of cooperation. This distribution maximises social welfare in the best possible
equilibrium. We identify those two optimal distributions for any form of heterogeneity in
individual productivities and any group size.

We find that according to both notions, more productive players ought to get higher
endowments. The exact magnitude of this optimal endowment inequality, however,
depends on which notion is used, and on the parameters of the game. In particular, we
identify scenarios where resilience of cooperation requires endowments to be almost equal
even though productivities are not. Conversely, we also describe scenarios in which minor
differences in productivities result in major differences in endowments. As a general rule,
we find that the efficiency-maximising endowment distribution is always more unequal
than the resilience-maximising one. This suggests that there is a non-trivial trade-off
between the resilience of cooperation and efficiency. To further study this trade-off, we
simulate learning dynamics among interacting individuals. These simulations suggest that
the endowment distribution that performs best lies on a Pareto frontier between efficiency
and resilience. Where exactly that point is located depends on the chosen parameter
values. When parameters are generally favourable to cooperation, payoffs are highest
when endowments are close to the efficiency-maximising distribution. In contrast, in noisy
environments in which cooperation is generally difficult to sustain, payoffs are higher
when the endowment distribution prioritises resilience.

This work highlights how different objectives, such as efficiency or resilience, have different
implications for the optimal allocation of endowments within groups. While both objectives
tolerate some endowment inequality, this inequality needs to be smaller when cooperation
is to be resilient.

3.1 Results

3.1.1 Model

We consider a repeated linear public good game among n players. At every time step t,
each player 7 receives an endowment e;. Subsequently, each player decides how much of
the endowment to contribute towards the public good, ¢;(t), and how much to consume
individually, e; — ¢;(t) (Fig. 3.1a). The contribution of a player i is multiplied by a
productivity factor r;, with 1 < r; < n, which may differ across players (Fig. 3.1b). The
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Players make contributions from Contributions are scaled up by Scaled contributions Public good is
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Figure 3.1: Schematic representation of the model. Players engage in a repeated linear
asymmetric public good game. In every round, each player i receives an endowment e;.
A, Players choose how much to contribute towards the production of the public good,
¢;, from their available endowment, e;. B, All individual contributions are multiplied
by individual productivity factors, r;. C, The size of the public good is defined as the
sum of all effective contributions. D, After its production, the public good is divided
equally among all players. E, Individual payoffs are equal to the nth share of the public
good plus the remaining share of the endowment that players did not contribute towards
the public good. F, Without loss of generality, we assume > ; e; = 1. In the case of a
three-player game, we can represent the endowment distributions in a simplex, where
each point corresponds to a vector e = (e, eg,€3). G, We aim to identify the optimal
endowment distribution with respect to different objectives.

total amount of the public good produced equals the sum of all effective contributions

® ,rici(t). This amount is equally divided among all players, independently of their
contributions (Fig. 3.1c—d). Individual payoffs m;(¢) are determined by the quantity of the
public good received, and the individually consumed shares of the endowments (Fig. 3.1e),

Wl(t) =e€e; — Cz(t) + :L éTjCj(lf). (31)

Without loss of generality, we assume that endowments are normalised such that > ; e; =
1. Accordingly, we refer to the vector e=(eq,...,e,) as an endowment distribution. This
distribution summarises how endowments are allocated among the players (Fig. 3.1f-g).
For example, the vector e=(1/n,...,1/n) describes an equal allocation.

If the above game is only played for a single round, full defection is the only equilibrium,
for any endowment distribution. However, here we assume that after each round ¢, there
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Figure 3.2: Resilience-maximising endowment distribution. A, To demonstrate the degree
of inequality in the resilience-maximising endowment distribution, we construct three
examples of games, all of which have the same level of heterogeneity in productivities. In
this first example, three players with comparatively low productivities interact. B, When
the ratio r;/n is low, then the resilience-maximising endowment distribution is close to
(Yn, ..., 1/n). C, With productivities close to 1, cooperation is challenging: ., = 0.620.
D-F, Cooperation becomes more attractive and much easier to sustain. d,;, = 0.005.
The resulting degree of inequality of e* increases. G-I, With high productivities, but
more players, the endowment distribution is again close to (1/n,...,1/n). The required
continuation probability is now d,,;, = 0.238, which is lower than in the previous example,
but higher than in the example with low productivities. I, We demonstrate the general
principle by systematically varying group size while keeping productivities fixed (up to
multiplicity). We plot the degree of inequality of the resulting resilience-maximizing
endowment distribution measured by the ratio between the highest and the lowest
endowments in the allocation. As the ratio r;/n decreases, the resilience-maximizing
endowment allocation approaches (I/n,...,1/n).
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is another round with a fixed continuation probability 0 < § < 1. Equivalently, one may
also interpret our setup as that of a game with infinitely many rounds, and ¢ as the
extent to which players care about their future payoffs [BDV*20]. In each case, Player i’s
expected payoff over all rounds, with a normalising factor of 1 — 9, is given by

= (1—6) ioétm(t). (3.2)

For repeated games, the Folk theorem [Sel88, FT91] states that any individually rational
outcome can be sustained in a Subgame Perfect Nash Equilibrium (SPNE), provided
0 is sufficiently close to 1. In the following, we are particularly interested in equilibria
with full cooperation, meaning that all players choose ¢;(t) = ¢; in every single round ¢
(By this definition, a player ¢ who happens to get no endowment is considered fully
cooperative, even though the player contributes ¢;(t) =e; =0 every round). In general,
whether or not an equilibrium with full cooperation exists depends on how endowments
are allocated. For large 9, there are generally many different endowment distributions
for which a fully cooperative equilibrium exists. But as § decreases, the respective set
of endowment distributions shrinks. In that sense, endowment distributions differ in
how resilient cooperation is to adverse circumstances. Moreover, due to the variation
in individual productivities, different endowment distributions result in different levels
of welfare even if everyone fully cooperates. We therefore investigate the resilience of
cooperation and the resulting welfare implications.

More specifically, we distinguish two objectives: First, we aim to find the endowment distri-
bution that sustains full cooperation at the lowest 6. We call this the resilience-mazimising
endowment distribution. Second, we are interested in the endowment distribution that
allows for the highest group welfare in equilibrium. We refer to this as the efficiency-
mazximising endowment distribution.

3.1.2 The resilience-maximising endowment distribution

It turns out that there is a surprisingly elegant characterisation of the resilience-maximising
endowment distribution. In the following, we provide a summary of our corresponding
findings. All details and formal derivations are described in the Supporting Information.

First, we show that for an arbitrary (but fixed) set of productivities r = (r4,...,7,), there
is always an endowment distribution e and a continuation probability ¢ < 1 such that full
cooperation is possible. Next, if also the values of § and e are fixed, we prove that full
cooperation is sustainable in an SPNE exactly if

(6D —I1,)e > 0. (3.3)

Here, D is an n x n matrix with entries D;; = ni]r for i # j and D;; = 0, and I, is the
n xn identity matrix. We observe that for the given endowment distribution e, there exists
a minimal continuation probability dmin(€) that satisfies (3.3). Hence full cooperation is
sustainable in a SPNE if and only if § > d,,n(€). Because 0 can be interpreted as the
patience of players, or how much they value their future payoffs, this lower bound on
0 can be considered to be a measure of how hard it is to sustain cooperation with the
given endowment distribution. The lower this minimum d,,;,(e), the easier it is to sustain

cooperation.
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Based on this observation, we define the resilience-maximising endowment distribution
e* to be the one with the smallest value of d,,;,(€), that is, € := argming dyin(e). We
use the notation d7, = dmin(€*) for the corresponding minimal continuation probability.
Using inequality (3.3), we can derive e* and §%. for any number of players n and
individual productivities r. We show that e* is exactly the Perron eigenvector of D,
and the corresponding eigenvalue is equal to (6%,.)"' (Section 3.4.3). This provides a
simple method for calculating e* for any set of parameters and any group size. For the
special case of a two-player game, we recover Hauser et al.’s [HHCN19] result that the

resilience-maximising endowment distribution is equal to

. 7”2(2 — TQ)
e} =
\/r1(2 —ry)+ \/r2(2 —13)
and
. 7’1(2 — 7’1)
€y =

\/7’1(2—T1)+ 7’2(2—7”2)'

Based on our characterisation for n players, we can derive general properties of the
resilience-maximising endowment distribution e*. We find that the relationship between
ef and 7; is always order preserving. That is, more productive players always need to
have a larger endowment than less productive players in order to guarantee the highest
resilience of cooperation. Nonetheless, the degree of endowment inequality according to e*
may vary significantly. It depends on the ratio between players’ individual productivities
and the size of the group, ;/n. The smaller the productivities are in relation to n, the
more equal e* is. In particular, fixing individual productivities at some level and increasing
n results in e* getting arbitrarily close to (1/n,...,1/n). To see this, we note that for large
n, the off-diagonal entries of the matrix D approach D;;=r;/n, which is independent of .
For the resulting matrix D, the uniform distribution is a right eigenvector.

We illustrate this effect in Fig. 3.2. When the players’ productivities are comparably low
(Fig. 3.2a), we observe a resilience-maximising endowment allocation that is approximately
uniform (Fig. 3.2b). However, due to the low productivities, cooperation is not very
resilient (Fig. 3.2c). Keeping the variance in productivities fixed while increasing their
overall level (such that Player 1’s productivity is almost equal to n, Fig. 3.2d) results in a
very unequal endowment allocation. Now, player 1 receives almost all of the endowment
(Fig. 3.2e). Yet, despite the high inequality in endowments, cooperation becomes more
resilient (Fig. 3.2f). We further extend our argument by doubling the number of players,
while keeping the productivities fixed (Fig. 3.2g). This reduces r;/n by half. This new
six-player game with identical variance in productivities again results in an almost uniform
distribution e* (Fig. 3.2h). The resilience of cooperation is intermediate in this case.

We can formalise this result by deriving an upper bound on the relative difference between
players’ endowments with respect to e*. This upper bound is given by

max; e; c_ N 1

(3.4)

min; e; ~ N —max;r;

In particular, if there is some number k such that productivities do not exceed n/k, then
the absolute difference in endowments is bounded by (max; el — min; ef) < 1/(k —1).
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3.1.3 Efficiency-maximising endowment distribution

The social-dilemma nature of the game implies that higher cooperation achieves greater
group welfare. However, not all endowment allocations allow for full contributions in
equilibrium and, due to the individual heterogeneity in productivity, full cooperation
yields different levels of welfare with different endowment distributions.

We define welfare as the sum of the individual (expected) payoffs. If all players contribute
fully, the group welfare can be expressed as a function of endowments:

CI>(e) = Zﬁ-l = Zriei, (35)
=1 i=1

where 7; is as defined in equation (3.2).

Maximisation of the group’s welfare constitutes an optimisation problem of finding an
endowment distribution e’ under which full cooperation is sustainable and which maximises
welfare ®(e). We refer to el as an efficiency-maximising endowment distribution. While
finding an explicit expression for e’ is not possible in general (Section 3.4.4), we can obtain
numerically exact solutions for any group size n. Furthermore, we can fully characterise
the general functional form of e’ in the two-player case (considering without loss of
generality 1 > rs) as

o 57"2 ' 2 — 1

el = G and e} = G—— (3.6)
As expected, the efficiency-maximising endowment distribution allocates larger shares of
the endowment to more productive players. While this effect is similar to the effect of the
resilience-maximising endowment distribution, the resulting degree of inequality differs
(Fig. 3.3a—c). In fact, there exist parameters r and § such that the efficiency-maximising
distribution results in an exclusion of the least productive players by allocating them a
zero-share of the total endowment. This is in stark contrast to the resilience-maximising
endowment distribution; for e*, we prove that all players are always allocated a positive

share (SI, Corollary 7).

3.1.4 'Trade-off between efficiency and resilience

Since the endowment distributions e* and e’ are generally not the same, we further analyse
the relation between them. There are two possible cases: First, the resilience-maximising
endowment distribution e* simultaneously also achieves maximal efficiency. This occurs
exactly if 0 = 07, (in which case there is a unique endowment distribution that can
sustain cooperation), or if all players have the same productivity (in which case every
endowment distribution has the same efficiency). Second, in all other cases, we can prove
that under any measure of inequality, the efficiency-maximising endowment distribution e’

is always more unequal than the resilience-maximising distribution e*.

Given there is a trade-off between the two objectives in most settings, we combine them
into a multi-objective optimisation setup. We visualise the resulting Pareto frontier
between the resilience of cooperation and its efficiency in Fig. 3.3d—e. The pink line

indicates the maximum welfare that can be sustained for any value of ., (e) (Fig. 3.3d).

Each point on this line corresponds to an endowment distribution e with the corresponding
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Figure 3.3: Trade-off between efficiency and resilience of cooperation. We demonstrate
the difference between the resilience- and efficiency-maximising endowment distributions
in a 3-player example. A, We chose the productivity vector to be r = (2.7,1.5,1.1). B,
The resulting resilience-maximising endowment distribution yields the total social welfare
of ® =2.025. C, We find that the efficiency-maximising endowment at § = 0.3 is more
unequal and yields a total group payoff of ® = 2.174. D,;E We formulate a multi-objective
optimisation problem where both the resilience and efficiency are varied. The Pareto
optimal values are shown by the pink line. F, We run simulations to test which of the
endowment distributions performs best when players adopt strategies based on a stochastic
learning process. We find that in general, the highest cooperation levels are achieved
along the Pareto frontier. Indeed, the total maximum group payoff of 1.729 is achieved at
emaxw = (0.65,0.35,0).

values of 0,in(€) and ®(e) (Fig. 3.3e). Generally, the most efficient endowment allocation
e’ is located at the boundary of the set of all endowment allocations that allow for full
cooperation. Hence, while securing a maximal group payoft, it also poses the greatest strain
on the resilience of cooperation. On the other hand, the resilience-maximising endowment
allocation always requires higher equality while yielding lower welfare, signifying the
trade-off between efficiency and resilience.
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3.1.5 Dynamics of cooperation

To complement these static equilibrium results, in the following we explore when co-
operation can emerge for a given set of endowments and productivities. To this end,
we no longer assume that players act optimally from the outset. Rather, they adapt
their strategies over time to optimise their payoffs. To model this, we use introspection
dynamics [HHCN19, CGH22], a learning process where players are repeatedly selected
at random to revise their strategies. When selected, players compare their current
payoff with the payoff they could have obtained with a randomly generated alterna-
tive strategy. The higher the payoff of the alternative, the more likely players switch
(as described in detail in the Methods section). In line with the literature on direct
reciprocity [NS92, Fre94, KDK99, IN10, KWT10, GT12, PD12, VSPLS12, SP14a, SP15,
SP14c, TRS14, DLTZ15, PHRZ15, BJHN16, MH16a, RHR 18, IM18, HCN18, SHCN22],
we assume that individuals can only adopt pure memory-one strategies. That is, players
condition their actions only on the outcome of the previous round [Sigl0]. Moreover, in
any given round, players either contribute their entire endowment or nothing at all. The
resulting learning dynamics can be represented by a Markov chain. By computing its
invariant distribution, we can infer the frequencies of each of the memory-one strategies
in the long run.

To start with, we explore the simplest possible case of a game with two players with equal
productivities. Here, the resilience-maximising and efficiency-maximising endowment
distributions coincide at e; = e5 = 0.5. In agreement with this prediction, we find that
equal endowments are most favourable to the evolution of cooperation (Fig.3.4b). We
also find, as expected, that higher values of the selection strength parameter allow for
more cooperation (Fig. 3.4c). The effect of the error rate € however is not monotonous
(Fig. 3.4a). As has been documented in the past, a moderate amount of errors can
be beneficial, because errors prevent the neutral invasion of conditionally cooperative
strategies like ‘Win-Stay Lose-Shift” by unconditional cooperators [Zhal8]. Excessive
errors, however, are always detrimental to cooperation, because they render conditionally
cooperative strategies unstable.

Next, we look at a scenario with heterogeneity in individual productivities. We find that
the endowment distribution that achieves the highest group welfare is located somewhere
between the resilience-maximising and efficiency-maximising endowment distributions
(Fig.3.4e). Its exact location depends on the the error rate and the selection strength. We
observe that an increase in the selection strength results in a clear shift towards higher
efficiency of the endowment distribution (Fig.3.4f). In contrast, the error rate can have
varying effects (Fig.3.4e). As a rule of thumb, in more noisy settings (either because of a
high error rate, or a low selection strength), allocations close to the resilience-maximising
endowment distribution tend to result in a higher welfare.

In addition, Fig. 3.5 reports the resulting average cooperation rates. As can be seen,
endowment allocations for which we observe the maximum group welfare are different
from the endowment allocations that maximise cooperation (Fig.3.4e and Fig. 3.5e).
To gain intuition for why this is the case, we look at the distribution of strategies
for each endowment distribution of interest. Apart from the efficiency- and resilience-
maximising endowment distributions, we also include the endowment distributions where
we observe maximum group payoffs, ey.xw, and maximum cooperation rates, €ya.xc
(Fig. 3.6), respectively. It appears that WSLS is the most abundant strategy for all of
these endowment distributions apart from ef, where it is not evolutionarily stable. WSLS

21



3.

EFFICIENCY AND RESILIENCE OF COOPERATION IN ASYMMETRIC SOCIAL DILEMMAS

A Maximal welfare as a function of error rate B Effect of error rate C Effect of selection strength
2.0 2.0 ' 2.0 :
i e* Error rate e* Selection strength
@ & 18 1.8 £=0.001 1.8 $=i100
2 3 et ~A- £=0.019 et ~A- $=1000
> 3 =0.1 =
2 3% 16 o 16 - e € 0.100 o 16 I s =10000
3 £ £ s g N e W
- o o i i ) | | i
g §1.4—/.\ 2 14 : o z 14 , i
[ ! - 5 P
= S 1.2 1.2 L el 1249 =0 ' { Bt !
= — e | ) "
1.0 — \ \ \ \ 1.0 — \ \ f \ 1.0 — \ \ f \
D 0.000 0.025 0.050 0.075 0.100 E 0.0 0.2 0.4 0.6 0.8 1.0 F 0.0 0.2 0.4 0.6 0.8 1.0
2.0 2.0 L 2.0 .
° q: et e* Error_ rgtgm et e* Selectlorl slt(;zngth
2 9 18 1.8 €=0. 1.8 §=
S _g -A- £=0.043 -&- $=1000
E=] A - A= -
S % 16 /’\ ® 16 - [ U €=0100 o 4 [ S $=10000
- S 8 { H 8 { ~. H
2 =% \ ° H \ : ° i : :
2 g 144 = 14 - i : : = 14 - ] ) :
© =2 | 1 1 1 1
3 o H i [ i
o = ) | i y i
¢ & 12+ 1.2 S ! 12 4 N
S5 2 =7 W - Y
e R -
1.0 — \ \ \ \ 1.0 —— \ \ T = 1.0 — \ \ — T
0.000 0.025 0.050 0.075 0.100 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Error rate Endowment of Player 1 Endowment of Player 1

Figure 3.4: Evolutionary simulations of group welfare. In order to gain a deeper insight
into the behaviour of the dynamics, we provide results of extensive simulations of a
two-player game for a wide range of parameters of the dynamics, that is, the error rate
and the intensity of selection. A,B,C, We first study the evolution of cooperation with
equal productivities. Here, the dashed vertical lines bound the region where cooperation
is sustainable at 6 =1 according to the analytical model. We choose three error rate
values for comparison: very rare errors, very frequent errors and the error rate ¢* = 0.019
that yields the highest welfare at e = e* (indicated by the solid vertical line). As can
be seen, some (rare) errors can help the evolution of cooperation by ensuring stability
of cooperative strategies such as WSLS [Zhal8]. Here, there is no unique e, since all
endowment distributions where full cooperation is sustainable (shaded in blue), yield
identical welfare. Near the boundaries of this interval, we observe very low cooperation
rates, while the highest group welfare is observed at the resilience-maximising endowment
in the centre. D,E.F, Next, we consider a two-player game with unequal productivities
given as r; = 1.3 and r, = 1.9. We employ the same logic for the choice of the parameters
and obtain €* = 0.043. As can be seen in panel E, the highest group welfare is no longer
attained at e* but at a point in between e’ and e*. For £*, we denote that point as emaxw-
It is equal to (0.21,0.79). As with equal productivities, we find that higher selection
strength increases welfare. Here, it also shifts the endowment epaw closer to ef.
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is less prone to invasion at €* and ey, ¢ for higher error rates (Fig. 3.7).

We also explore the dynamics of cooperation in a three-player game (Fig.3.3f). As predicted
by the model, cooperation is higher when the most productive player obtains the largest
endowment. Similarly, we observe that the endowment distributions with the highest
group payoffs all lie close to the Pareto frontier between resilience and welfare, which
connects the resilience-maximising and efficiency-maximising endowment distribution.

3.2 Discussion

Numerous studies have shown that wealth inequality can pose a challenge to cooperation
[HHCN19, CKS05, MSMS21, ACBS™18, BBV86, VSPL14, ACT14, Akil5, Zel03, DBF18,
BC06, HRS16, GMTV17, NSRC15, Géacls, CMMM99, KMS17|. Since wealth inequality
is abundant in many social settings, addressing it is often an important objective for
policy makers. Perhaps one of the most straightforward ways of reducing inequality is
through wealth redistribution [HL95, Lou81, BN93, Ben00, GZ93, Pik97, DD22]. As a
naive generalisation of the theoretical and experimental findings, one could reach the
conclusion that any wealth inequality is detrimental to cooperation and welfare, implying
that redistribution should aim for equal allocations. However, our analysis shows that
finding an allocation that most easily facilitates cooperation while maximising welfare is
non-trivial.

We show that when productivity differs across people, an equal endowment allocation
is neither optimal for the resilience of cooperation nor for the maximisation of wel-
fare. Yet, consistent with previous findings [HHCN19, CKS05, MSMS21, ACBS*18,
BBV86, VSPL14, ACT14, Akil5, Zel03, DBF18, BC06, HRS16, GMTV17, NSRC15,
Gécls, CMMM99, KMS17], we also find that excessive levels of endowment inequality
cause cooperation to break down. We show how the optimal degree of endowment in-
equality varies with several parameters. In particular, it depends on the ratio between
group size and individual productivities: if the players’ productivities are fixed, larger
groups require more equal endowments to maximise the resilience of cooperation, all the
way to perfect equality in the limit of large group size (Fig. 3.2).

Our findings also point to a connection between the ‘resilience of cooperation’ and
‘resilience of biological systems’ [Hol73]. A higher resilience in our model means that full
cooperation can be sustained for a wider range of continuation probabilities. If § is seen
as a parameter of the environment, then an endowment distribution with higher resilience
allows for cooperation in environments that are less favourable to cooperation in the sense
that they have a lower §. Interpreted more loosely, when endowments are more resilient,
cooperation can withstand greater perturbations of the environment.

To what degree resilience can be sacrificed for efficiency gains depends on the context. We
explore this trade-off with introspection dynamics [CGH22]. We find that the endowment
allocation that generates the highest welfare under these learning dynamics is located
on the Pareto frontier between resilience and efficiency, balancing these two objectives.
These observations are in line with a behavioural experiment conducted by Hauser et
al. [HHCN19]. Interestingly, ena.xw and emaxc are close to the endowments chosen for
the treatments in the experiment. Similar to our numerical results, the authors find that
cooperation rates for both of these allocations are roughly the same (approximately 73%)
with a higher welfare achieved at the endowment allocation closer to €. w .
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Throughout this main text, we have focused on full cooperation in linear public good
games with asymmetry in endowments and productivities. However, our theoretical
results, as presented in the Supporting Information, are valid within a framework that
is significantly more general in two aspects. First, we allow for the public good to be
distributed unequally (Section 3.4.1). This weakens the public-good character of the game,
but logically strengthens our results. Second, we consider arbitrary levels of contributions
and derive all results with no restrictions on stochasticity, memory, or time-dependence of
strategies (Section 3.4.3).

We believe our work makes at least two important contributions to the literature on
the evolution of cooperation through direct reciprocity. First, we considerably extend
earlier results by Hauser et al. [HHCN19]. Although they discuss which endowment
distributions might maximise resilience (there: “endowment distribution most conducive
to cooperation”), their analysis is restricted to groups of size two. Instead, here we provide
an elegant formalism that allows us to compute e* for any number of players. In this
way, we can analyse the interaction between parameters of the game and the optimal
degree of inequality. Our method can be used to further study the effects of inequality
in more general settings, for example, in structured populations or when allowing for
communication or signalling among players. Second, we study the effect of inequality on
the interplay between the resilience and efficiency of cooperation. Our results for a general
n-player linear public good game indicate that there exist non-trivial trade-offs, which need
to be accounted for when deciding on the allocation of wealth. We explore these trade-offs
using evolutionary simulations. Overall, our results suggest that a positive degree of
inequality can be beneficial for cooperation, in particular in small-group interactions,
while in other settings, almost perfect equality is optimal even in the face of intrinsic
differences between individuals.

3.3 Methods

3.3.1 Model

Consider a game with n players who interact in an infinite sequence of roundst =0,1,2,....
Each player has a fixed positive endowment e; > 0, where Y, e; = 1 without loss of
generality. In each round ¢, each player i chooses a contribution ¢;(t) € [0, ¢;] to make
towards the public good. The productivity matrix R, a parameter of the game subject to
below constraints, governs the relationship between contributions and payoffs as

m(t) = e — c(t) + Rc(t), for all ¢.

There are three constraints on R. First, R;; > 0 for all ¢, j, ensuring that an increase
in one player’s contribution does not decrease any player’s return from the public good.
Second, R;; < 1 for all 7, so that a player’s one-round payoff is higher the less they
contribute. Third, >°; Rj; > 1 for all ¢, meaning that the group payoff of all players taken
together is higher the more Player ¢ contributes. The second and third condition create a
tension between the individual and the collective interest, which makes this game a social
dilemma. The restricted model discussed in the main text is the special case where R is
of the form R;; = r;/n for some r = (rq,...,17,).
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3.3.2 Equilibrium analysis

We determine when it is possible for a given contribution sequence (c(t)); to occur in
a SPNE. We introduce a normal form of the productivity matrix R, which we call the
zero-diagonal form and denote it by D. It is given by D;; = R;;/(1 — R;;), for all i # j,
and D;; = 0, for all i. The game defined by D is equivalent to the game defined by R
in the sense that the two games permit exactly the same equilibria, while the fact that
the diagonal entries of D are zero simplifies the analysis. We show that a contribution
sequence (c(t)); is sustainable in a SPNE exactly if ¢(t) < dDc(t+1) for all ¢ (Theorem 1),
where ¢(t) = (1 —§) >X22,07c(t + 7) is the continuation contribution after round ¢. For a
given contribution sequence (c(t)):, we define dyin((c(t)):) as the smallest continuation
probability ¢ for which the sequence is sustainable.

3.3.3 Evolutionary analysis

We study introspection dynamics, a simple learning process [CGH22]. Players use pure
memory-one strategies where in a given round they either contribute the entire endowment
or nothing, that is, ¢;(t) € {0, e;}. We represent strategies by a vector p = (p¢)c, where ¢
ranges over the 2" possible outcomes of one round. Each component p. € {0, 1} specifies
whether after a round with outcome c, a player with a strategy p contributes their entire
endowment (p. = 1) or nothing (p. = 0). However, in our simulations players are also
prone to making errors with a probability € > 0, meaning that they sometimes play an
action not prescribed by their strategy. Since that makes the process ergodic and we only
focus on its asymptotic behaviour, our representation of strategies does not contain an
initial move.

At every time step of the learning process, a player is chosen to consider switching their
strategy. The player compares their current strategy to a randomly generated, alternative
strategy in terms of average payoff and adopts the alternative with probability

B 1
o ]_ _|_ es(ﬂ—alt_ﬂ'cur) ’

p

where 7., and 7, are the payoffs of the current strategy and the alternative, respectively.
The parameter s > 0 reflects the strength of selection. Higher values of s correspond to
stronger selection.

We use different implementations of the learning process depending on n. For n=2, we
calculate the asymptotic distribution by numerically representing the stochastic process as
a transition matrix of a Markov chain. We then calculate the average payoffs as expected
values under the invariant distribution as

m = Zvc -mi(c),
C

where 7; is Player i’s average payoff, v is the invariant distribution of the Markov chain,
and 7;(c) is Player i’s payoff in a round with contribution vector c. For n = 3, we run an
agent-based simulation for N = 10° generations and report the average group payoffs.

3.3.4 Parameters used for figures

Figure 2a—c shows a three-player game with productivities ry = 1.6, r, = 1.3, r3 = 1.1.
In Figure 2d-{, the relative differences in productivities are identical, but all values are
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higher by 1.399: r; = 2.999, ry = 2.699, r3 = 2.499. Figure 2g-h shows a game with
six players. The productivity values are distributed as in Figure 2d—f, in the sense that
for each player in the three-player game, there are two identical players in the six-player
game: r| = 1ry = 2.999, r3 = ry = 2.699, r5 = rg = 2.499. In Figure 2i, we show the value
of ef .. /et . as a measure of inequality for groups of various sizes. In each case, one third
each of players has the productivities 2.7, 1.5 and 1.1.

Figure 3 analyses a three-player game with productivities ry = 2.7, ro = 1.5, r3 = 1.1. In
Figure 3c, we report the efficiency-maximising endowment distribution for 6 = 0.3. In
Figure 3f, we report evolutionary simulations for the same three-player game with the
selection strength s = 1000.

Figure 4 presents data from evolutionary simulations of a two-player game. Here, players
can either contribute their entire endowment e; or defect by contributing 0 to the public
good. In Figure 4a—c we report results for a symmetric two-player game with productivities
ry = ro = 1.6. Figure 4a depicts the maximal welfare for each value of the error rate
from 0 to 0.1 for varying endowments. Selection strength is set to s = 1000. Three points
on the curve are highlighted: ¢ = 0.001, ¢ = 0.019, and € = 0.1. The point € = 0.019 is
where the function attains its maximum, while the other two values are chosen arbitrarily
for comparison. For these three values of ¢, Figure 4b shows the welfare achieved for all
possible endowment distributions, still with s = 1000. In this symmetric game, welfare is
always maximised by e = (0.5,0.5). Finally, in Figure 4c, ¢ is held constant at 0.019 while
three different values of the selection strength s are shown for comparison. Figure 4d—f
follow the same pattern, except that productivities are unequal and set to r; = 1.3,
ro = 1.9. In Figure 4d, the maximum is attained at ¢ = 0.043. The same parameter
values are used in Figures 3.5-3.7.

3.4 Supplementary Information

3.4.1 Model

A group of n > 2 players interacts in a series t = 0,1,2,... of rounds. Each player has
a fixed non-negative endowment e;. Not all endowments are zero, and we let >, ¢; = 1
without loss of generality. In each round ¢, each player i chooses a contribution ¢;(t) € [0, ;]
to make towards a jointly produced good. In the most general setting, players’ payoffs
m;(t) in round t are defined in terms of a productivity matrix R by

nt(t) = e — c(t) + Re(t). (3.7)

The matrix R must satisfy the following three criteria:

1. R;; > 0 for all ¢, j. This means that no player gets less out of the public good when
one player contributes more.

2. R; < 1 for all 4. This means that in an individual round, a player’s payoff is higher
the less they contribute.

3. > Rj; > 1 for all 2. This means that the group payoff of all players taken together
is higher the more Player i contributes.
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The antithesis between 2. and 3. constitutes the social dilemma that characterises this
game.

If R is of the form R = frT for some r and f, such that >, f; = 1 and f; > 0 for all 4,
we can interpret r as the productivity vector and f as the sharing vector. That is, the
contributions of each player i are enhanced by an individual productivity factor r;. Then,
all contributions are compounded to form the publicly produced good. Finally, the good
is divided according to f. The above conditions on R are then equivalent to f;r; < 1 and
1 < r; for all i. We call this special case “origin-independent sharing” of the good.

We speak of “equal sharing” of the good, or of a “non-excludable public good” when
additionally £ = (1/n,...,1/n)T. Our only requirement is then 1 < r; < n for all i. Each
player receives the same amount n~'rTc from the public good, so payoffs are

mi(t) = e; — ci(t) + n'rTe(t).

After each round, it is decided independently at random whether or not the game is
continued for another round, with a continuation probability of § satisfying 0 < § < 1.
The probability that round ¢ is played is therefore equal to 6.

We denote the game fully specified by R, e, and § by I'(R,e,d). For the case of equal
sharing, we simply write I'(r, e, d) to mean I'((Y/n,...,1/n)TrT e, 0).

The continuation contributions c(t) are defined as the expected sum of future contributions
at time ¢ multiplied by a normalising factor of (1 — 9):

c(t) = (1 -9) iéfc(t +7)

Similarly for continuation payofts:

7(t) = (1 —9) i Sm(t+7)

We know that these sums converge, since c(t) is bounded above by e. Since the definition
of ¢(t) depends on §, we may also write cs(t), etc., whenever there is ambiguity.

We write 7t = 7t(0) and ¢ = ¢(0) for the total payoffs and contributions, i.e., continuation
payoffs and contributions at the beginning of the game. We have

R—e—c+Re—et (R—1I)(1—0)3 dct). (3.8)
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Index of notation

ri, T productivity
R productivity matrix

€, € endowment
e resilience-maximising endowment distribution
el efficiency-maximising endowment distribution
0 continuation probability

¢i(t), c(t) | (absolute) contributions in round ¢

(c(t)): the contribution sequence (c(0),c(1),c(2),...)
c(t) or cs(t) | continuation contributions from time ¢, depends on §
¢ =c(0) | total contributions
7(t) payoffs in round ¢
D the zero-diagonal form of the productivity matrix as defined
on page 30
resilience, the least ¢ for which a given (c(t)); is sustainable
Ormin with a given r or R. Note: A lower value of d,,;, means that
(c(t))¢ is more resilient.
. the least O, of any (c(t)); for a given r or R
(<) efficiency (def. page 40) of a given total contribution vector ¢

3.4.2 Sustainability of cooperation

In this section, we define the notion of sustainability for certain kinds of outcomes, i.e.
functions of the game play. Simply put, an outcome is sustainable if it can occur in a
subgame-perfect Nash equilibrium (SPNE). First, we define some standard notions.

Definition 1 (Strategy). A strategy for Player i is a function o thatl assigns to every
finite sequence of moves (¢(t))i<r some value o((c(t))i<r) € P([0,€;]), i.e. a probability
distribution over the possible next moves by Player i.

Player i is said to follow strateqy o if Player i’s move ¢(T'); in round T is distributed as
o((c(t))i<r) under the condition that (c(t))i<r was played in the first T rounds, for all T

and (c(t))i<r-

A strategy profile (0;); is an n-tuple of one strategy for each player.

The SPNE is a formal notion of rational behaviour in repeated interactions. In simple
terms, a strategy profile (0;); is in an SPNE if at no possible point in the game (i.e. after
no finite sequence of moves) any player ¢ has a positive incentive not to follow strategy o;.

Definition 2 (subgame-perfect Nash equilibrium). A strategy profile (0;); is a subgame-
perfect Nash equilibrium (SPNE, “equilibrium”) when there are no t, c(0),...,c(t —
1), i, and o} such that the expected value of 7;(t) after the initial sequence of moves
c(0),...,c(t — 1) is strictly greater when Player i follows o} compared to o;.

Defining sustainability of cooperation

We are interested in the existence of equilibria that produce non-zero contributions,
because they achieve higher payoffs than the always existing [ADS94] unconditionally
defective (i.e. zero-contributing) SPNE. After establishing some preliminary results, we
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will look for equilibria that are optimal with respect to certain specific properties related
to cooperation. Naturally, all of these properties are functions of the contribution sequence
(c(t)):, while some even depend just on the total contribution vector €.

We thus aim to characterise each contribution sequence regarding the existence of an
SPNE strategy profile producing that sequence, so that we may henceforth directly analyse
contribution sequences rather than the more complex strategy profiles.

Definition 3 (Contribution sequences and feasibility). A contribution sequence is any
sequence (c(t))en of elements in R™ that is non-negative and bounded. A total contribution
vector is any non-negative ¢ € R".

A contribution sequence is feasible in a given game I'(R, e, 0) if it satisfies c(t) < e for all
t. Similarly, a total contribution vector € is feasible if ¢ < e.

Definition 4 (Sustainability). In a given game I'(R, e, ), we say a contribution sequence
(c(t)): is sustainable if it is feasible and there is a SPNE strategy profile (0;); whose
sequence of expected contributions is exactly (c(t));.

A total contribution vector € is sustainable if it is the total contribution vector of a
sustainable contribution sequence.

Grim trigger strategies. Proposition 1 below states that in order to determine whether
a feasible contribution sequence is sustainable, it is enough to consider its associated Grim
strategy profile. It is defined as follows.

Definition 5 (Grim strategies). The Grim strategy profile G((c(t)):) for a feasible
contribution sequence (c(t)): is the pure strategy profile G((c(t)):) = (0:); defined as
follows: In each round t and for each i the strategy o; contributes ¢;(t) if all players have
so far also played according to (c(t)):, but otherwise contributes 0.

The Grim strategy profile G((c(t));) produces the contribution sequence (c(t));, hence
there is a bijective correspondence between feasible contribution sequences and Grim
strategies.

Proposition 1. In I'(R,e,0), if a (mized) strategy profile (0;); is a SPNE, then there is
a Grim strategy profile that is also a SPNE with the same expected contributions for each
player in each round.

Proof. We write 7;(c) for Player i’s payoff in a round with contributions c. Below, (c(t))
is the contribution sequence produced by (o;);, which is a random variable. Since (;); is
SPNE, we have for all 7, ¢ and any x(0),...,x(t—1) such that P(Vs <t c(s) = x(s)) >
that

E(m(c ’Vs<t c(s) >—|— Z St

k=t+1

<E (i 5 tri(o(h) | Hs<t ol =x(s)).

k=t

(3.9)

where c¢(t)_; is equal to c(¢) with the ith component set to 0. This inequality represents
the fact that Player ¢ cannot profit from switching to zero cooperation starting in round ¢
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after x(1),...,x(t — 1) was played, and no more so if that would result in all the other
players also switching to zero cooperation one round later.

By the law of total expectations,

E(mc(t)_))+ 3 6 'm(0) <E @ a*-*m-.{c{k]}).

ke=t+1

Since 7r(c) is affine linear, we may write this as

m(Ee(t)_) + i &, (0) Eiﬁ"‘*m(ﬂc(k}).

k=t+1

This means that in G((Ec(t)):), Player i cannot profit from deviating if so far everyone
has played according to the sequence (Ec(t)):. But if someone has already deviated, then
this is also the case, since in that case all players contribute 0 independently of each
others’ moves. Therefore, G((Ec(t)):) is a SPNE. O

Sustainability of contribution sequences

Characterising sustainable contribution sequences with the zero-diagonal
productivity matrix. Using Proposition 1, we will now find a useful characterisation
of the sustainability of feasible contribution sequences.

Definition 6 (Productivity matrix in zero-diagonal form). For a given productivity matriz
R, define the zero-diagonal productivity matriz D by

. Ry
D;; = —i;éjl_—;i,ﬁ:

where 1;,; is equal to 1 when i # j and 0 otherwise.

It is easy to verify that D is indeed a valid productivity matrix, meaning it satisfies the
three conditions on page 26. This alternative productivity matrix D has the property
that for any game I'( D, e, §) and any sequence of play (c(t)):, the resulting payoft vector
¥ satisfies 7”7 — e; = (7F — &) /(1 — Ri), where «® is the payoff vector of the same
contribution sequence in the game I'( R, e, 4). This fact can easily be verified using the
payoff equation (3.7). Since this relationship between 7" and 7% is affine linear, T'(D, e, §)
admits exactly the same SPNEs as I'( R, e, 4). The fact that the diagonal entries of D
are zero will make it a useful tool for equilibrium analysis. We can also check that the

zero-diagonal form as defined above of a matrix whose diagonal is already zero is itself.

Under origin-independent sharing of the public good, R = fr7, the above definition takes
the form

T
— 1 J
D‘Bj_—iiéjfi— —T-,

and under equal sharing of the public good, R = n~'1r7, it becomes

T
Doom1.,. 9
J Fin—r,
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Theorem 1. In I'(R, e, 0), the feasible contribution sequence (c(t)); is sustainable exactly
if
Yt ©(t) < 6De(t + 1). (3.10)

Proof. By Proposition 1, (c(t)); is sustainable if and only if G((c(t));) is a SPNE. This is
the case if and only if

T, (C(t)_z) + i 5k_t71'i(0) < iak—tﬂ_i (C(k’))

k=t+1 =t

for all < and t. We can rewrite this as

ZRUCJ Z (Z lecj(t‘i—k') — Cl(t‘i‘ k))
J#i k=0 J

> Rijci(t) <> R; Zékcj(t—i-k) — Z(Skci(t—l—k’)
JFi i k=0 k=0

for all ¢ and t. By our definition of ¢(¢) = (1 — 0) 332, d%c(t + k), this can be written as

> Rig(1—=0)e;(t) < 3 Rije;(t) — ai(t)

J#i
Ci(t) + D Rij (1= 0)c;(t) + dc;(t + 1)) ZRUCJ t) <> Rijoe;(t+1)
J#i JFi
ci(t) + ZRZ'J'CJ Z Rije;(t) < ZRwéCJ (t+1)
i J#
(1= Ry)ei(t) < ZRwdcj (t+1)
J#i
_ R’Lj _
i) < 30 et + 1)
i i

for all 7 and ¢t. By our definition of D, this is equivalent to

Vi ¢(t) < 6De(t+1).
O

Corollary 1. If for given (R,J), a contribution sequence (c(t)): is feasible with both
endowment distributions e and €', then it is sustainable in I'(R,e,d) exactly if it is
sustainable in T'(R, €, 0).

This follows immediately from Theorem 1, since inequality (3.10) does not depend on e.

Corollary 2. In any I'(R,e,d), if a conical combination (a linear combination with
non-negative coefficients) of either (a) sustainable contribution sequences (c(t));, or (b)
sustainable continuation contribution sequences (c(t)):, or (c) sustainable total contribution
vectors € is feasible, then it is also sustainable.
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Proof. For contribution sequences, this follows from homogeneity of (3.10). The statement
directly translates to continuation contribution sequences and total contribution vectors
by their definition. O

Corollary 3. In any I'(R, e, ), the set of sustainable contribution sequences (c(t)):, the
set of sustainable continuation contribution sequences (c(t));, and the set of sustainable
total contribution vectors € are convex. They contain (0), and 0, respectively.

Proof. Again, it is enough to show the statement for contribution sequences. Any convex
combination of feasible contribution sequences is itself feasible. Both parts then follow
from Corollary 2. ]

Parameters allowing for cooperation. We say (0;); is a non-defective strategy profile
if it is not equal to (ALLD);. ALLD is the strategy of always playing ¢;(t) = 0. Note
that (0;); can be non-defective and still result in expected total contributions of E¢ = 0.
We say a game I'(R, e, ) allows for cooperation if it has a non-defective SPNE strategy
profile. A game that allows for cooperation always has a strategy profile with Ec # 0:
Take any non-defective SPNE strategy profile and select an initial sequence of moves
after which at least one player will not certainly play ¢;(t) = 0. Then players’ induced
strategies in the corresponding subgame are a SPNE strategy profile with I&¢ # 0. These
strategies are also a SPNE when played in the root game, which is equal to the subgame.
We can thus say that a game allows for cooperation exactly if 0 is not the only sustainable
total contribution vector.

We say (R, 0) allows for cooperation if there is some e such that I'(R, e, d) allows for
cooperation.

Corollary 4. If some I'(R,e,§) allows for cooperation, then for all endowment distribu-
tions €, T'(R,€,0) also allows for cooperation.

This statement is a consequence of Corollaries 1 and 2.

We say a productivity matrix R allows for cooperation if there is a ¢ < 1 such that (R, )
allows for cooperation. As we will show in Theorem 2, every R allows for cooperation.

Sustainability of constant contribution sequences.

Corollary 5. In a game I'(R, e, d), feasible constant contributions of (¢); are sustainable
in equilibrium exactly if
0<(6D—1I,)c. (3.11)

3.4.3 Resilience-maximising endowment distribution

With the results obtained in Section S2, we have characterised which patterns of coopera-
tion (contribution sequences) we may observe in an interaction that is described by our
model, and which patterns cannot occur. We should however not expect a qualitative
shift between those strategies that are analytically stable, and those that are not, but
rather for cooperation to become somehow less sustainable as we approach the boundary.

In order to also model this intuitive concept of a quantitative sustainability, we will use
Omin as a measure of the resilience of cooperation, defined as the smallest 6 that makes a
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given contribution sequence sustainable. This is supported by Lemma 1, which states
that increasing 0 can only expand the set of sustainable contribution sequences. We write
0%, for the numerically lowest resilience attained by any strategy profile (thus the most

resilient one) under any endowment distribution.

Using that definition, we show that there is exactly one endowment distribution e* for
which full cooperation is possible with resilience 4 ;.. Under this endowment distribution,
players with higher productivity always have a higher endowment. In games where the
number of players is not much larger than their productivities, this difference is significant,
and the endowments e; very roughly resemble r;/ >, ;. When on the other hand the
number of players is large compared to their productivities, all players have almost the
same endowment, i.e. ef = 1/n.

Under every endowment distribution that has e; > 0 for all ¢, forms of partial cooperation
are possible with resilience 67 ,,. As ¢ — oo, their contribution sequences all converge to
multiples of e*.

Clearly from Corollary 5, if some (€);, i.e. a constant contribution sequence, is sustainable
for some 9, then it is also sustainable for all higher values of §. Less obviously, the same
is true for any sustainable contribution sequence:

Lemma 1. Let (c(t)): be sustainable in I'(R,e,0). Then for all &' > 0, (c(t)): is also
sustainable in I'(R, e, ).

Proof. Inequality 3.10, which holds for (c(t));, 0, and all ¢, can be rearranged to

i §F(D — 1) c(t + k) > c(t). (3.12)

We use this (twice) to derive

(5’)’“(D I,)c(t+ k)

gk

(zk:( 5/ igh—i _ 5/)2’715k7i+1) +5k> (D B [n) C(t—i— k)

M8 i M8

D~ elt 4 k) 303 (@0~ (9) 95 (D~ L)t + b

k=11i=1

e
Il
—

0+ 33 (96 — () 181) (D = L) elt + k)
k=11i=1

=c(t)+ (867" - )25”126’“ D = L) c(t+ k)
=c(t) + (867 — ia’iz(sk(p—fn)c(wrwrk)

>c(t)+ (06t —1) i(é’)i c(t+1)
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for all . Writing cs for the continuation contribution weighted by ', we can state this as

c(t) + (8671 —1) i(é')k c(t+k) < i(é’)k(D —I,)c(t + k)

(&) D c(t + k)

hE

55 (8) elt k) <
k=0 k=1

(8’6 1) es(t) < 8 Deg (t)

or alternatively

Cy () < 0DCs(t).

Based on this result, we can use the following

Definition 7 (Resilience of a strategy profile). Let (R, e) and non-defective (o;); be given,
where (0;); is a SPNE in I'(R,e,d) for some 6 < 1. Then the resilience i of (0;); s
the minimal value such that (0;); is a SPNE in I'(R, e, Omin)-

We note that d,,;, is well defined, in the sense that a minimum as required in the definition
is indeed attained. To see this, we resort to the definition of a SPNE: (¢;); is a SPNE if at
no time ¢ and after no previous play (c(0),...,c(t — 1)), any player ¢ can gain a positive
benefit from playing any alternative strategy of. Let E7; 5(f) be the expected continuation
payoff with strategy profile (0;);, and E7; 5(¢) when Player i switches to strategy o;. Both
are continuous functions of §, hence the range of § where E7; 5(t) > E7; ;() is a closed
subset of [0, 1). Taking intersections over all i, o/ and t, we obtain the set of all ¢ such
that (o;); is a SPNE in I'(R, e, ), which is therefore also a closed subset of [0,1). As
required in the definition, it is non-empty, and, hence, it has a minimum.

Resilience of a contribution sequence.

Definition 8 (Resilience of a contribution sequence). For given (R, e), the resilience of a
non-zero contribution sequence that is sustainable in T'(R,e,d) for some § is the infimum
of the resilience values of the strategy profiles producing that contribution sequence.

By “non-zero contribution sequence”, we mean any contribution sequence other than (0);.

The above definition is equivalent to saying that the resilience of (c(t)); is equal to the
resilience of its associated Grim strategy profile. This is because by Proposition 1, the
Grim strategy profile is a SPNE at every § where any other strategy profile producing
(c(t))¢) is a SPNE. In particular, the infimum in the definition is attained.

From Corollary 1, we know that for given R, a non-zero contribution sequence that is
sustainable for some ¢ with both endowment distributions e and €’ has the same resilience
with both (R, e) and (R, €’). So its resilience is independent of e (among those values of
e where it is feasible).
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As a shorthand, we speak of the resilience of an endowment distribution to mean the
resilience of full cooperation under that endowment distribution, whenever it is sustainable:

Definition 9 (Resilience of an endowment distribution). For given (R, e), if full coopera-
tion, i.e. the constant contribution sequence (e);, is sustainable, we refer to the resilience
of (e); as the resilience of e itself under productivity matriz R.

The endowment distribution that maximises resilience in this sense for a given R is, by
definition, equal to the “endowment distribution most conducive to cooperation” as defined
in [HHCN19]. We refer to it as the resilience-mazximising endowment distribution and
denote it by e*. In the following section, we show that it is unique, that full cooperation
under e* indeed has resilience 67, and derive the value of e* for general n and R.

General case

Definition 10 (Minimal resilience). Let R be a productivity matriz that allows for
cooperation. Then we define 6. as the infimum of all § such that (R, ) allows for
cooperation.

In other words, 0% . is the infimum of the resilience values attained with productivity

min
matrix R.

Theorem 2. In a given game I'(R, e, d), let (c(t)): be a non-zero sustainable contribution
sequence that has resilience 0} ... Let A\ and v be the Perron eigenvalue and eigenvector
of the zero-diagonal productivity matriz D associated with R. Then c(t) converges to
a multiple of v as t — 0o. Furthermore, 6%, = X', and all entries of v are strictly

min
positive.

Proof. Let n > 3. D has non-negative entries, and D? is positive. So D is a primitive
matrix and we can apply the Perron-Frobenius Theorem [Mey00]: D has a unique, non-
repeated eigenvalue A on the spectral circle, which is real and positive (hence equal to
the spectral radius). Furthermore, the associated eigenvector can be taken with positive

entries, and
m

lim — =vwT, (3.13)

m—oo )\

where v > 0 and w > 0 are the right and left eigenvectors, respectively, taken such that
wiv = ||v|]|=1.
Furthermore, we know that

i b

A proof of (3.14) is found in [BP94] on page 37. We insert for D;; and get

R
min Z Y <\ < max Z X
i Pm R
>; Rij — Rii >; Rij — Rii
<A< 1
min o A< max - (3.15)
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Since }>; R;; > 1 for all 7, we can conclude that 1 < A.

By assumption, the non-zero contribution sequence (c(t)); is sustainable in I'(D, e, ).
From Theorem 1, we get that

c(0) < (6D)'e(t)

for all t. But ¢(t) < e and D is non-negative, so

c(0) < (0D)'e,

or alternatively

c(0) < (0N)'~—e,

for all t. From (3.13), we know that %t converges as t — 00. So 0A < 1 implies ¢(0) = 0.

We therefore know that (R,d) does not allow for cooperation for any § < A~1.

Now take 6 = A™! < 1. We have v = dDv, so (c(t)); = (¢(t)); = (v); is sustainable by
Corollary 5. So R allows for cooperation and 6%, = A~!. We can now ask which non-zero

min
contribution sequences other than (v), are also maximally resilient, i.e. sustainable at
§=\"1

Let (c(t)); be such a sequence. We have

T

c(t) < Xl

c(t+7)

for all ¢, 7, where ¢(t) means ¢s(t) with § = A~!. So for all € > 0, there is a T such that
forall 7> T,

c(t) < (1+¢e)vwT c(t+ 7).

This follows from (3.13). Let L = liminf, wTc(7). Then

c(t) <(1+¢)Lv
for all € > 0, hence c(t) < Lv.
Since w > 0, we can multiply with w on both sides:
wic(t) < LwTv =L
for all . Hence, wTc(t) converges to L, which we can write as wT(Lv — ¢(t)) — 0. Since
Lv —c(t) > 0 for all ¢, we know that Lv —c(t) — 0 as t — oo. Then, c(t) converges to a

multiple of v. (1 —d)c(t) = c(t) — oc(t + 1), hence the same is true for c().
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In the special case that n = 2, D is non-negative and irreducible, but not primitive. We
can still find A, v and w. It is easy to ascertain manually that A > 1. Instead of (3.13),
we get

which is sufficient to prove ¢%; = A~! and that ¢(2t) and ¢(2t + 1) converge to multiples
of v. Since

c(2t) < X7'De(2t + 1) < A 2D%e(2t + 2),
they must be the same multiple. O]

Resilience-maximising constant contribution sequence. In particular, we have

Corollary 6. In a given game I'(R, e, d), the constant sustainable non-zero contribution
sequences which have resilience 6%, are exactly those of the form (uv):, where v is the

Perron eigenvector of D and > 0 is such that pv; < e; for all i.

Proof. 1t is a direct consequence of Theorem 2 that any constant sustainable non-zero
contribution sequence with d%, must be of the form (uv); for some p > 0. It is feasible
exactly if p satisfies the specified condition.

To show the converse, we use the fact that §*

*. = A1 also from Theorem 2: Take
some feasible (uv);. Then for 6 = 67 . , Inequality 3.10 of Theorem 1 holds, so (uv); is

sustainable. O

Resilience-maximising endowment distribution. Usually, in a public good games
model, we are interested in finding conditions for full cooperation to be an equilibrium.
Full cooperation means that all players contribute their whole endowment in every round,
i.e. (c(t)); = (e);. Our Corollary 6 implies that the resilience-maximising endowment
distribution is €* = v:

Corollary 7. For given (R, 0), the most resilient endowment distribution is €* = v, where

v is the Perron eigenvector of D (chosen such that > ;v; = 1). In particular, all players
are allocated a strictly positive endowment.

Sustainability of positive contributions.

Corollary 8. In any game I'(R, e, ) with (Vi)e; > 0 that allows for cooperation, positive
contributions (meaning ¢;(t) > 0 for all i and all t) are sustainable.

Proof. T'(R,e,0) allows for cooperation exactly if § > o If this is the case, then

min*

(c(t)): = (uv); is sustainable for some p > 0. The Perron eigenvector v is positive. [
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Focusing on non-excludable public goods

So far, we have derived our results for general R. But we are mainly interested in the
case of a non-excludable public good, or equal sharing, where R;; = n~'r;. We will now
restrict to equal sharing and make use of our main result, Theorem 2.

Proposition 2. In a given game I'(r, e, ), the minimal resilience 6%, is bounded by

min
n — min; 7; n — max; T; n—1
L <5 < o< .
22Ty — min; r; i —maxgry o Y1 — 1
Proof. For n > 2, we get from (3.15) that
-1 -1 -1 -1
nTirs—nTry Ty, —n7ly,
min =< J - < \ < max =2 J -
i 1—n=1tr; i 1—n=1tr;
n-—r; _ n-—r;
min < 2! < max
! erJ_rl t er]_rz
n — min; 7; . n — max; r;
Suri—mingr; — ™ T Y —maxg

since Y, r; > n. The looser upper bound follows from r; > 1 for all i.

It is easy to verify that the same inequalities also hold for n = 2. O

Characterisation of the relative inequality of e*. By Theorem 2, we have

e’ = 0. De*.

min

This implies that

T

. * ok J *
Vioef=0pm > e
. n—-r;

J#

and hence

Vi ei(n—(1—46,,)r)=0d.,.r’e".

min

We can conclude the following relationship between e} and 7;.

. 1
R n— (1 — 67

Corollary 9. The relationship between e} and r; is order preserving.

We can further derive the maximum relative difference in endowments between players in
the group to characterise the degree of inequality of e* better.
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Proposition 3. The relative difference between two players’ endowments under distribu-
tion €* is at most

maxy 7, — 1

n — maxg T
By “relative difference” we mean that if e] < e}, then

<1+maxk7“k—1

wc»b* ‘ u@*

n — maxy i

Proof. Let i, j be such that e] < €} and thus also r; < r;, as observed above. Then

* *
ﬁzn—(l—émin)m<n—ri< n—1 :1+maxkrk—l
el n—(1—=0%,)r; — n—r; T n—maxyry n — maxy 1y,

]

There are many scenarios where maxy rp < n. In particular, very large productivities
are unrealistic when we interpret productivities as the ratio between the return of an
investment in the public good vs. the return of investment in the best outside option. For
such a case, Proposition 3 states that approximately equal contributions from all players
are optimal. However, while approximately uniform, the optimal distribution is of course
still order preserving, as stated by Corollary 9. This argument can also be extended to a
more general case. It can be seen that for large n, the entries D;; of the zero-diagonal
productivity matrix become almost independent of ¢ as

1 ; 1 1\? 1\3
Dij = 7'] == *Tj + <> TiTj + O( > s
n

nl—121r, n n
n

implying more equal distributions for larger groups.

3.4.4 Efficiency-maximising endowment distribution

While resilience is certainly a desirable property, it cannot be the only objective of a
policy maker deciding on wealth redistribution. For example, a non-defective SPNE
might have very high resilience even though players only contribute small fractions of
their endowments and thus that partial cooperation is of little value. To capture this, we
consider the efficiency of cooperation, or total group welfare, defined as the sum of all
players’ payoffs.

We will ask both when it is maximised under a given endowment distribution, and when
it is maximised over all endowment distributions. In what follows, we exclusively focus
on equal sharing of the public good, i.e. R;; = n~'r;.

We will show that in a given game I'(r, e, ), maximal efficiency can always be attained
by a constant contribution sequence. The maximal welfare over all e can, and can only

be attained by a constant contribution sequence.
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Definition 11 (Welfare). The welfare ®(¢) of a contribution vector € under productivities
r is defined as the sum of payoffs

o) =Y Fi=1+(r-1)e

Note that ® is a function of ¢ = ¢(0), but as a function of (c(t)); it also depends on 9.

Definition 12 (Sustainability of welfare values). A welfare (a real number) ® is sustainable
in a given game I'(r,e,d) if there exists a sustainable contribution vector € such that

o = 0(c).

We write ., (€) for the maximal sustainable welfare in I'(r, e, §), and ®! = = max, Ppax(e).
Below, we show that these maxima are well defined.

Lemma 2. In any given game I'(r,e,d), the sustainable welfare values attain a maximum
$.ax(€), and this maximum is attained with a constant contribution sequence.

Proof. We recursively define the sequence (x(s))s by x(0) = e and

zi(s +1) =min{ z;(s) , 0(Dx(s)); }

for all 7 and all s > 0. (Note that (x(s))s is not interpreted as a contribution sequence.)
Take any sustainable contribution sequence (c(t));. By induction on s, we have ¢(t) < x(s)
for all ¢ and s: It is clearly true for s = 0, since c(t) < e for all ¢. Now assume it is true
for all ¢+ and some fixed s. Then we can also write c(t + 1) < x(s) for all t. Since D is a
non-negative matrix, we have as well 6 Dc(t + 1) < 6Dx(s) for all ¢t. So, by Theorem 1,
c(t) < dDx(s) for all t. Together with c(¢) < x(s), this means that c(t) < x(s+1). So
the statement is true for all ¢ and all s.

Since x(s) is a decreasing sequence and bounded below by 0, it converges to some
limit x. This limit x also has the property that c(¢) < x for all ¢. For all s, we have
x <x(s+ 1) <0Dx(s). Since 0Dx(s) — dDx as s — oo, we can conclude x < §Dx.

Because x < e, the constant contribution sequence (x); is feasible under endowment
distribution e, and by Corollary 5 it is sustainable. Since ¢(0) = ¢ < x, we have
d(c) < d(x). So (x); has maximal welfare under endowment distribution e. O

Lemma 3. For any pair (r,0) that allows for cooperation, there is an endowment
distribution e’ such that full cooperation is sustainable in T'(r,el,d) and achieves a
mazimal sustainable welfare ®]

max*

This means that the choice of e = e and (c(t)); = (e'); maximises welfare over all possible
e and (c(t)); sustainable in I'(r, e, §). Note that in special cases, el might not be unique.

Proof. Lemma 2 states that for all e, the maximal welfare ®,,.,(e) in I'(r, e, d) is attained
by a constant contribution sequence. Of course, this means that any sustainable welfare
in ['(r, e, §) is attained by a sustainable constant contribution sequence, by scaling down
the maximal-welfare sequence.
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So the values of ® that are sustainable in I'(r, e, d) are exactly the values ®(¢) where (¢);
is a sustainable constant contribution sequence. The ¢ which are sustainable for some
e form the compact set {¢ € R2)|>;¢& < 1 A0 < (6D — I,,)c}. The welfare function
®(€) = 1+ (r — 1)7¢ is continuous, so it attains a maximum on this set. So there is a
constant sustainable contribution sequence (€); that maximises ®. Choose e such that
(€); is sustainable. We must have ¢ = e by maximality of .

If a non-constant contribution sequence, sustainable in I'(r, e, d) for some e, were to have
the same maximal efficiency, then by Lemma 2 some constant (¢); with ¢ < e would
also attain the maximum for e. Again we must have ¢ = e. The non-constant sequence
however has strictly smaller contributions than e in at least one round, therefore its
welfare is strictly smaller. That is a contradiction, hence no such contribution sequence
exists. O

Linear program formulation

We refer to el as the efficiency-mazimising endowment distribution. To find e’ and ®

we maximise ®(e) over all endowment distributions e with which full cooperation is
sustainable. We can express that optimisation as a linear program:

CIDInaX:mgX r’e
st. 0D—-1,)e > 0
1Te = 1
e >

The maximal welfare for a given endowment e is by Lemma 2 the solution to a similar
linear program that has the constraint ¢ < e instead of 17e = 1:

®=max 1+ (r—1)7c
st. 0WD—-1,)c > 0
c < e
c >0

The efficiency-maximising endowment distribution has the property stated below. Infor-
mally summarised, the players with low productivity have an endowment of 0, while the
players with high productivity are indifferent between cooperation and defection. In the
general case, there is exactly one player whose productivity lies between those two groups.
In edge cases, that player may not exist, or there may be multiple players who have an
equal intermediate productivity.

Theorem 3. Let w.l.o.g. 1 < --- <r,. Let e’ be any endowment distribution such that

(el) = @I . Then there exist integers ki, ky € {1,...,n} such that
eIzO forall i < ky
ri =r; forall i,j suchthat ki <i<j <k,
and
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(0D —I,)e"); =0 forall i> ks.

In other words, out of the two inequality constraints on ef, which are ef > 0 and
(6D — I,,)e’ > 0, the first one has equality in columns 1, ..., (k; — 1) and the second one
has equality in columns (ko + 1),...,n, while ry, = -+ = r,.

Proof. Given ef with ®(ef) = ®f . define k; as the maximal k; such that €] = 0 for all
i < k; and ks as the minimal ky such that ((6D — I,,)e’); = 0 for all i > ky. This is always
possible, since these conditions are satisfied when k; = 1 and ky = n.

Now assume we have ¢, j such that k; <7 < j < ky. It is enough to show that r; = r;, so
assume otherwise. We must have r; < r;. Since ¢ > k;, we have

el > 0.

)

Since j < kg, we have ((6D — I,,)e'); > 0, which we can also write as

(n— rj)e;r- < (527’162[.
i
T

Choose some ¢ > 0 small enough such that when we define e by ¢; = ¢; —c and ¢; = e} +€

and e; = e;f in all other components, then e still satisfies the inequalities e; > 0 and

(n—rj)e; <6341

Clearly, the constraint e > 0 is satisfied in all components. Since r; < r;, we have
rie; +rje; > riel + rje;-. For this reason, the constraint (6D — I,,)e > 0, which can be
written as (n —r)e; < 63, rvep for all [, is satisfied not only in the jth component,
which was by construction of €, but also in all other components other than i. In the
ith component, it is true for a simpler reason, which is that (n — r;)e; < (n — r;)e] while
ST > Y rle;. Trivially, >>;e; = 1. So e satisfies all the constraints of the linear
program. However, since r;e; + rje; > riez + rje;, its welfare, which is the objective
function of the linear program, is higher than that of ef; a contradiction. Therefore, we
must have r; = r;. O

If n = 2, the above linear program for ®! . becomes:

()

(52 o €9 Z €1 (316)
r

52 —17”2 €1 2 €9 (317)

€1+ e = 1 (318)

er >0 (3.19)

e >0 (3.20)

and rie; 4+ roeq is the objective function. The productivity vector r allows for cooperation

exactly if 6 > o7 ., that is, if 52% > 1, otherwise the optimisation problem is
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infeasible. Assuming that cooperation is indeed sustainable, and w.l.o.g. that r; > ry, the
maximum is attained at

el = 0 el = _2-n
Yo+ 0y 2T 0 p 40y
This is in the case that we are optimising over e as well as c.

If instead e is given and we are finding ®,,.x(e) by varying ¢, then (3.18) becomes

€1 Z 61 (321)
€9 2 /C\Q. (322)

Again we assume ¢ > 0. . We define ~; = (0D — I,); for i = 1,2, such that (3.16) and
(3.17) are equivalent to ;¢ > 0 and € > 0, respectively. Clearly, one of (3.21) and
(3.22) must be tight, since (3.16) and (3.17) are homogeneous. (3.21) can only be tight if
1€ > 0, and (3.22) only if o€ > 0. Since we assumed that the problem is sustainable, at
least one of those must be true. If exactly one is true, w.l.o.g. if 43¢ > 0 and ¢ < 0,
then the optimal solution is ¢; = e; and ¢, = dst—e;. Finally, if both are true, then the

2—rg
optimal solution is ¢ = e.

3.4.5 Trade-off between efficiency and resilience

The efficiency-maximising endowment distribution ef is always weakly more unequal than
the resilience-maximising endowment distribution e*. Formally, we state that using the
concept of Lorenz dominance.

Lorenz dominance of e* over e’ means that if we define permutations o; and o5 such that

<ez'1(i))i and (622(1-))1‘ are increasing, then

k k ;
Z e:.l(i) Z eaz(i) (323)
1

=1 1=

for all k& < n, with strict inequality for some k. It implies that e is more unequal than
e* under any inequality measure [DSS73]. For example, the Gini coefficient of e is
necessarily higher than or equal to the Gini coefficient of e*.

Theorem 4. For any given (r,d) allowing for cooperation, either €* Lorenz-dominates
el or e* = el. The latter is the case for some choice of €' exactly if 6 = 0%, or all
productivities are equal.

Note that while e* is always unique, there are edge cases where ef is not unique. Of
course, “e* = el is the case for some choice of e'” simply means that ®(e*) = ®!

max*

Proof. First, we will show that e* weakly Lorenz-dominates ef, and that in fact we have
either strict dominance or e* = ef. Then, we will show the conditions for e* = e'.

Assume w.l.o.g. that (r;); is non-decreasing. Then, by Corollary 9, so is (ef);. Choose k;
and ky as in Theorem 3.
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First, we want to show that (e;r )i, too, is non-decreasing. Trivially, if i < &y, then e;-r <el

J
for all 7. The same is also true for all 7 < j when ky < j: We have r; < r; and

(n—(1- 5)7"1')6;[ < (527”[6;
!

and
(n—(1- 5)7“]-)6; = 527“;6;[,
!

while r; < r;, so indeed €] < e;r-. To exhaust all (¢, 7) with ¢ < j, what remains is the case

ki <i < j < ko. Here, we may assume it w.l.o.g. to be true. So eg < e;r- for all i < j. We
may thus choose oy = 0y = idp, in (3.23).

We can now show Lorenz dominance of e* over e by verifying that (3.23) holds for all k.
For 1 < k < kq, we have

so (3.23) holds.

For ky < k < n, we have

k n k
Zelg(i) =1- el <1- doe=Y e (3.24)
i=1 ' ; ;

@
Il
e
+
—
-
Il
e
+
—
-
Il
—_

For all ¢ > ko, we have that

and

which we can also write as

(i (0= 13) +1i)e; = @(e)

and

(6 (n — 1) + ri)eI = d(eh).

By definition, 6~' < 8%, 7! and ®(e*) < ®(el). So e < el, with equality exactly if

min

§ =06, and d(e*) = @

min max*
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Now assume there is some k with k; < k < ky such that (3.23) does not hold. Take the
smallest such k. By minimality, we must have e} < el. For every [ such that k <[ < k,
we have rj, = 74, s0 also e} = e} by uniqueness of e*. Since e], < ef, it follows that e} < e].

But then

ko k ko k ko ko
Senm =2t Yo <y e+ > e = el
=1 =1 =1

i=k+1 1=1 i=k+1

which is a contradiction to (3.24). So there can be no such k; (3.23) holds for all k.

We have shown weak Lorenz dominance. The distribution e* weakly but not strictly
dominates el exactly if it is a permutation of e [DSS73]. But since we have been able to
assume w.l.o.g. that both vectors are non-decreasing with the order of their indices, that
is equivalent to e* = ef.

It remains to determine the conditions for e* = ef. Assume equality holds. Then
P(e*) = @I ., so by Theorem 3, we can select k; and ko with the properties stated in
the Proposition. By Corollary 7, e* is positive, so k; = 1. We distinguish two cases. If
ko < m, then we have equality in the nth component of the constraint (6D — I,,)ef > 0.
But also (6%,,D — I,)e* = 0. So we must have § = 6, . If on the other hand ky = n,

then by the properties of k; and ks, all productivities are equal.

To show the converse, consider first the case that 6 = 9d;;,. We know that when 0 = 4},
e* is the only endowment distribution that allows for full cooperation, so it has maximal
welfare. Consider instead the case that all productivities are equal. Now, ®(e) is

independent of e, so again, e* has maximal welfare. So the conditions are exact. [

Data and software availability

Figures in this chapter are based on simulation averages over many independent runs of
the respective simulation. Results were analysed and visualised with Python and Matlab
R2023a. The computer code is published in [HK24|. The parameters used are described
in Section 3.3.
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Figure 3.5: Evolutionary simulations of the group cooperation rates. We report similar
data from the evolutionary simulations as in Fig. 4, but for cooperation rates rather than
welfare. A,B,C, The case with equal productivities shows qualitatively similar results as
for the group welfare. However, the case of unequal productivities differs with respect to
where the maxima are observed. For example, as a function of error rates, the cooperation
is highest at epaxc = (0.55,0.45). DE,F, We find that cooperation is most likely to evolve
among two sufficiently equal players even if their productivities differ.
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Figure 3.6: Evolving strategies. To gain better understanding of the endowment distribu-
tions that maximise cooperation, we analyse evolving strategies for the parameters used in
Fig. 4 and 3.5. We first report evolving strategies for the efficiency-maximising endowment
distribution at 6 = 1 for three different error rates. We find that non-cooperating strategies
are very likely to evolve with a very low frequency of WSLS players. This explains low
cooperation. We compare this to the endowment where actual maximal social welfare
was observed. While we do observe higher frequency of WSLS players, there is also a lot
of noise from other strategies. For the resilience-maximising endowment distribution the
noise from other strategies is decreasing and the frequency of WSLS players is increasing.
Yet, the highest frequency of WSLS players is observed at the endowment distribution
with the highest cooperation rates.
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Figure 3.7: The frequency of WSLS. We report the frequency of the strategy profile
(WSLS, WSLS), that is where both players play the strategy Win-Stay-Lose-Shift. The
parameters are the same as in Figure S2, with intermediate error rates chosen to maximise
cooperation rate.
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CHAPTER
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repeated asymmetric public goods
games

This chapter was originally published as: Valentin Hiibner, Christian Hilbe, Manuel
Staab, Maria Kleshnina, and Krishnendu Chatterjee. Time-dependent strategies
in repeated asymmetric public goods games. Dynamic Games and Applications,
February 2025

Cooperation is typically conceptualised as a behaviour that is costly for the individual
but beneficial to the group [RN13]. Examples of cooperation abound, ranging from small
favours among friends to collective efforts to mitigate climate change. These cooperative
interactions can, and have been, described with game theory [BR13, LM23]. This literature
has produced rich predictions about potential mechanisms that can sustain cooperation
[Now06a, KI09]. One such mechanism is direct reciprocity [Tri71, Axe81, BR88b, Sigl0].
Here, individuals are assumed to engage in the same interaction repeatedly, over many
rounds. Repeated interactions allow players to condition their behaviour on the previous
history of play. In this way, they can enforce mutual cooperation despite any short-run
temptations to free-ride [Fri71, FM86b].

Traditionally, many models of direct reciprocity, especially in the evolutionary game
theory literature, assume that interactions are symmetric [NS92, HS97, KDK99, DHO5,
IN10, KWTI10, AS11, VSPLS12, PGGS*13, SP14a, PHRZ15, SP16, HCN18, GFGGvV24].
This means that players are completely interchangeable with respect to their actions and
feasible payoffs. More recently, however, the evolution of cooperation among asymmetric
players has received more attention [HTN14, VSPL14, ACT14, Akil5, MH15, Kurl6,
ACBS*18, MSMS21, CGH22, CP23]. This interest has also been spurred by empirical
studies that explore the role of inequality in controlled experiments [CMMM99, BC06,
NSRC15, HRS16, GMTV17, KMS17, SSG*23, WCW23|.

Oftentimes, these studies are based on some variation of the linear public goods game. In
this game, players obtain their fixed endowments in the beginning of each round. Then
they independently decide how much of their endowment they wish to contribute to the
public good. Contributions are multiplied by some productivity factor, and the resulting
amount is evenly split among all group members. There are various ways to allow for
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asymmetry in this game. For example, players may have unequal endowments, unequal
productivities, or both. The main takeaway from the above-mentioned studies is that
endowment inequality tends to be detrimental to cooperation. However, as shown by
[HHCN19] and [HSH*24], there can be exceptions. If individuals already differ in their
productivity, it can become easier to sustain full cooperation if they also differ in their
endowments. As a rule of thumb, a player’s endowment ought to be larger the more
productive that player is.

However, the studies of [HHCN19] and [HSH'24] consider a rather restricted question.
They ask: Under which conditions are there subgame perfect equilibria in which all players
contribute their full endowment in every round? In particular, they thereby only consider
equilibria whose resulting contribution sequence along the equilibrium path is constant.
Instead, in the following we are interested in contribution sequences that can vary in time.
We ask: Once individuals have the ability to make time-dependent contributions along
the equilibrium path, to which extent can they achieve outcomes that are infeasible with
constant contribution sequences?

To this end, we study three different but related models of public good provision. The first
is most convenient from a mathematical perspective. Here, players can make arbitrary
(non-negative) contributions each round. In particular, contributions are not constrained
by any endowments that individuals might have in that round. Instead, we only require
that the players’ overall discounted contributions over the entire game are bounded (with
the upper bound being arbitrary). We refer to this model as the ‘base model. The
second model reproduces typical public goods game models, such as the ones considered
in [HHCN19] and [HSH*24]. Here, a player’s contribution each round is bounded by the
player’s assigned endowment. Accordingly, we speak of the ‘endowment model’. Finally,
the third model is a hybrid of the first two. Here, players obtain a fixed and constant
endowment each round. But now they can decide to deposit some of this endowment
into a savings account, which is then available in the next round. Under this assumption,
contributions each round are not bounded by the players’ endowments anymore. Instead,
they are bounded by the players’ accumulated endowments up to that point. We call this
the ‘saving model’.

For all three models, we consider the equilibrium outcomes that can be achieved with
time-dependent contributions. We compare them to the possible equilibrium outcomes
when players are required to make a fixed and constant contribution along the equilibrium
path. We make this comparison based on two key quantities. One quantity is the group’s
welfare in equilibrium (the total sum of the players’ payoffs). As we discuss in more detail
below, this quantity is particularly relevant in the endowment model and in the saving
model. The other quantity is an equilibrium’s resource efficiency (the ratio of the group’s
welfare relative to the players’ total contributions). This quantity is relevant for all three
models.

We characterise under which condition time-dependent contributions allow for equilibria
with larger resource efficiency (compared to equilibria based on constant contributions).
We do so for arbitrary discount factors. In particular, we do not require that players are
sufficiently patient, as often done in the classical folk theorem literature [Fri71, FM86b].
Our results depend on the group size and on the number of players with the highest
productivity. In particular, we find that when there is a unique player with maximum
productivity, time-dependent contributions provide an advantage. With respect to welfare
maximisation, we find a similar result — but only for the saving model.
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4.1 The base model

4.1.1 Model setup

We start with the base model (as illustrated in Fig. 4.1), which we will use to derive our
first results. These results will also have important implications for the other two models
studied subsequently.

In the base model, a group of n > 2 players interacts for an indefinite sequence of rounds. In
every round ¢, each player i decides which non-negative amount ¢;(t) to contribute towards
the public good. There is no limit on how much players may contribute. Hence, ¢;(t) € R>y.
These individual contributions can be collected in a vector, c(t)=(c1(t),...,cn(t))T. We
refer to a sequence (c(t))t of contribution vectors as a contribution sequence, or as a ‘play’
of the game. If c(t) =c(0) for all times ¢, the contribution sequence is called constant.
Otherwise, it is time-dependent.

Contributions of each player ¢ are multiplied by their productivity factor r; and added to
the public good. The total public good is then evenly shared among all players. This is a
slight generalisation of the standard formulation of the public goods game, according to
which every player has the same productivity. In the following, we use r=(ry,...,7,)7
to denote the vector of all productivities. Based on this notation, we can write payer i’s
payoff ;(¢) in round ¢ as

() = irTc(t) —alh). (4.1)

We assume productivities satisfy 1 <r; <n for all players i. The first inequality r; > 1
ensures that the group’s total payoff (across all members) is increasing in each player’s
contributions. The second inequality, r; < n, on the other hand, ensures that each
individual is tempted to give as little as possible. Together, these two inequalities render
the game a social dilemma. For each player, there is a conflict between their private
interest and the collective interest of the group.

To define the players’ payoffs over the entire repeated game, we assume players value each
subsequent round at a discount of §, with 0 << 1. Accordingly, when the contribution
sequence (C(t))t is bounded, we define the total payoff of each player as the weighted sum
of their payoffs each round,

# = (1-0) im(t).

Here, the term 1 — § serves as a normalising factor. It ensures that repeated-game payoffs
are comparable to the game’s one-shot payoffs. Because we assumed the contribution
sequence to be bounded, the above sum is guaranteed to converge. We do not define a
total payoff for unbounded contribution sequences.

In a common alternative interpretation of repeated games with discounting, which is
applicable to our base model and model variation I, but not model variation II, the
number of rounds is finite and random, with ¢ being not a discount factor but the round-
wise continuation probability. This means that after each round, with probability ¢ the
game continues for at least one more round and with probability 1 — ¢ it ends. In that
interpretation, all rounds have equal value given that they are played, and the expected
number of rounds is 1/(1 — ¢§). Intuitively, this suggests that higher values of §, which
mean longer games, are conducive to cooperation.
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(a) Player 1 contributes b) Player 1’s contribution  (c) Together, the scaled (b) Player 2’s contribution  (a) Player 2 contributes
an amount of ¢; is scaled up by 1y contributions form the is scaled up by 1, an amount of ¢,
public good
A = aT . ~ / D LZ - AR
) 1
(e) Payoff is equal to share from (d) Player 1 receives one 1 1 d) Player 2 receives one (e) Payoff is equal to share from
public good minus contribution half of the public good half of the public good public good minus contribution

W0

Figure 4.1: A one-round asymmetric public goods game. To illustrate the base model,
we consider n =2 players. They freely choose the size of their contributions, ¢; and c,.
Contributions are enhanced by the individual productivity factors, which are r, =1.5
and ry = 1.1 in this example. The size of the public good is the sum of all enhanced
contributions, r’c =ryc; +ryco. Each player receives an equal share of this sum. The
payoff of each player then equals their share of the public good minus their contribution.

Notation 1. In this base model, a game is fully specified by the players’ productivities r
and by the discount factor §. We denote the corresponding game as Ig(r, ).

For our subsequent analysis, it will be useful to consider the weighted sum of a player’s
contributions after a given time ¢. Formally, these continuation contributions of player ¢
are defined as -
G(t)=(1-06)> ¢t +7). (4.2)
7=0
One can also define a sequence that collects the respective continuation contributions for
each round, (E(t))t = ((_:(0), c(1),c(2),.. ) We call <E(t))t the continuation contribution
sequence associated with contribution sequence (c(t));. Every contribution sequence
uniquely specifies a continuation contribution sequence and vice versa. Analogously, we
can also define continuation payoffs at time ¢,

e.¢]

T7=0
We write 7t(t) = (ﬁl(t), . ,ﬁn(t)> for the respective vector, and note that 7t = 7(0).
Similarly, we write ¢ = ¢(0) for the continuation contributions at time zero. We call ¢ the
total contribution vector. By linearity of the one-round payoffs (4.1), we have

1
Ai = —r'¢ —Ai. 4.3
fiy=_rie—¢ (4.3)

That is, each player’s total payoff is uniquely determined by the total contribution vector.
By definition, this payoff 7; is the quantity that player ¢ aims to maximise.

Players make their decisions based on their strategies. A strategy o; for player i is a
function that assigns to each initial contribution sequence (C(O), c(l),...,c(t— 1)) a next
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contribution value ¢;(t) ZUi((C(T))T<t) €R>o. A strategy is called bounded if it always
produces a bounded contribution sequence (irrespective of the co-players’ strategies). An
assignment of one strategy to each player (o;); is called a strategy profile. A strategy
profile is bounded if all its strategies are bounded.

4.1.2 Sustainable contribution sequences

In the following, we are particularly interested in those strategy profiles that form a
subgame perfect equilibrium [SPE, or ‘equilibrium’; see FT91]. We say a bounded strategy
profile is in equilibrium when no player has an incentive to deviate, after no finite sequence
of moves. Formally, (o;); is in equilibrium if there is no initial contribution sequence
c(0),...,c(t — 1) such that some player j could get a larger payoff by deviating towards
another bounded strategy o; after that time ¢. For a given game I(r,d), we call a
contribution sequence sustainable if it is the contribution sequence of some equilibrium
strategy profile. A total contribution vector ¢ is sustainable if it is the total contribution

vector of a sustainable contribution sequence.

To derive our main results, we make extensive use of the previously published Theorem 5
below. This theorem gives us a comfortable characterisation of sustainable contribution
sequences.

Theorem 5 ([HSH'24]). For a given game I's(r,0), define an associated nxn matriz
D = (Dy;), called the productivity matriz in zero-diagonal form, by

D = rif(n=ry) itigy (4.4)
0 ifi = 7.
Then a contribution sequence (c(t)); is sustainable if and only if the associated continuation
contributions satisfy
c(t) <oDc(t+1) forallt. (4.5)

With Theorem 1, we can determine whether a given contribution sequence is sustainable
by checking if the associated continuation contribution sequence (c(t));, as defined by
(4.2), satisfies (4.5) for all t. The two following corollaries are immediate consequences of
this theorem.

Corollary 10. For any game I's(r,0), the set of sustainable contribution sequences (c(t))q,
the set of sustainable continuation contribution sequences (c(t)), and the set of sustainable
total contribution vectors ¢ are closed under addition and multiplication by a non-negative
scalar (that is, they are convex cones).

This convexity result implies that whether or not a contribution sequence is sustainable
only depends on the relative magnitude of the players’ contributions. This result holds
because payoffs depend linearly on contributions. Therefore, scaling all contributions
up or down by the same positive factor does not affect whether or not the equilibrium
conditions are satisfied.

Corollary 11. In a given game I'g(r,d), a constant contribution sequence of (€); is
sustainable if and only if
¢ <éDe. (4.6)
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So we have a set of n linear constraints that defines the set of feasible constant contribution
sequences. We can use Corollary 11 to derive a version of the folk theorem, applied to our
setup. The folk theorem famously relates the possible equilibrium payoffs in the repeated
game to the properties of the one-shot payoffs [Fri71, FM86b]. To state our version, we
note that in our public goods game, players can always guarantee a non-negative payoff
(by not contributing anything). Hence, we say a contribution vector ¢ for the one-shot

game is individually rational if it yields a non-negative payoff to each player.

Theorem 6 (Folk theorem of repeated games). Constant contributions (¢); € R>y are
sustainable in the game Tg(r,d) for sufficiently large ¢ if and only if ¢ is individually

rational.

The condition for a contribution vector ¢ to be individually rational can be written as

N 1,
max¢; < —r'c.
3

S

An equivalent formulation of the folk theorem is therefore: the constant contribution

sequence (€); is sustainable for sufficiently large ¢ if and only if Eq. (4.7) holds.

The above results allow us to characterise the properties of sustainable contribution
sequences. Perhaps one of the most important properties is whether or not the contribution
sequence entails at least some cooperation. More specifically, we define a play to be
non-defective if at least one player makes a positive contribution in at least one round
(i.e., €#0). Otherwise we call the play defective. It is easy to see that for non-defection to
be sustainable, not just one, but at least two players have to make positive contributions.
This is because a hypothetical lone non-defector would benefit from deviating towards
full defection. If non-defection is sustainable in a given game Ig(r,d), then we say
that [z(r,0) allows for non-defection. Any productivity vector r (satisfying the general
requirement 7; > 1 for all i) allows for non-defection when 4 is sufficiently large [HHCN19,

Supplementary Information, Proposition 2].

4.1.3 Welfare and resource efficiency

While the binary distinction between defection and non-defection is useful, not all forms
of non-defection are equally desirable. After all, even non-defective contribution sequences
might result in payoffs arbitrarily close to the full defection payoff of zero. Therefore,
in the following we introduce two other key metrics of interest. The first metric is the

(overall) welfare W of a given play, which equals the sum of all payoffs,

i=1
This welfare can be expressed as a function of the total contribution vector ¢ as

W(e) = (r —1)7e.

By this equation, non-defective plays have W >0, whereas defective plays have W =0.

By Corollary 10, any non-defective contribution sequence can be scaled arbitrarily without
affecting their sustainability. It follows that our base model allows for arbitrary welfares.
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4.1. The base model

As an alternative metric that is still relevant with unlimited resources, we measure how
efficiently the players are able to use them. The resource efficiency E of a non-defective
play is defined as the sum of all payoffs divided by the sum of all contributions,

B === (4.10)
1 Ci
Resource efficiency, too, is a function of the total contribution vector:
B =S¢ 4 (4.11)
C) = — . .
17¢

The first term on the right hand side of Eq. (4.11) can be slightly rewritten, as

r’c "
1t¢ Z

1=1 a+.. +Cn

Ty

This representation allows us to interpret this term as a weighted mean of the players’
productivities; the weights correspond to the players’ contributions. In particular, this
observation implies that F/(¢) is always in between min; r; — 1 and max; r; — 1. Whether
or not the upper bound (or equivalently, the lower bound) can be realised depends on
which players contribute in equilibrium. For example, the upper bound can be realised
if and only if there is an equilibrium in which only those players ¢ with r; = max;r;
make a contribution. That is only possible if there are multiple players with maximum
productivity.

Example. It is instructive to illustrate these concepts with a two-player game (which we
continue to use throughout this article). Consider the game FB((1.5, LT, 0.9). That is,

there are n=2 players with productivities 7, =1.5 and ro=1.1 (as in Fig. 4.1), and the
discount factor is §=0.9. In this example, the value of the matrix D is

7 :(rl/@O— ra) 7»2/(20—7«1)): <593 0/5% <1-g66 262)‘

Suppose player 1 makes a constant contribution ¢; =7 in every round, whereas player 2
makes the constant contribution ¢, =5. It follows that the total size of the public good
isrT¢=1.5-7+ 1.1-5=16. Thus, each player’s share of the public good is 8, and their
payoffs according to Eq. (4.3) are 7; =8—T7=1 and 7, =8—-5=3. Because both payoffs
are non-negative, the respective constant contribution sequences are individually rational.
Hence, by the folk theorem, they are sustainable in the repeated game for sufficiently
large ¢. For this case of n=2, Eq. (4.6) in Corollary 11 takes the form of the following
system of inequalities:

T2

C 4.12
2—7“102 ( )
1

¢ 4.13
2 — T2 “ ( )
With these, we can verify that the given discount factor 6 =0.9 is indeed sufficiently large.
According to Eq. (4.8), the resulting welfare is W =3+1=4, and according to Eq. (4.10),
resource efficiency is E=4/12~0.333. If contributions were ten times larger, welfare
would increase to 40 but the resource efficiency would remain the same.
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4. TIME-DEPENDENT STRATEGIES IN REPEATED ASYMMETRIC PUBLIC GOODS GAMES

Instead, suppose now that the two players contribute equal constant amounts, say
¢1 =09 ="06. By the inequalities (4.12-4.13), this contribution vector is also sustainable.
It yields a payoff of 1.8 for each player. Thus, the welfare is W =3.6, whereas resource
efficiency is £ =0.3. We conclude that equal contributions are less resource efficient,
compared to the previous example with unequal contributions. This is intuitive because
in the previous example, the more productive player 1 contributed a larger share.

In light of these observations, it is natural to ask what the optimal ratio of the two player’s
contributions is, if we aim to maximise resource efficiency in equilibrium. Again from the
inequalities (4.12-4.13), we see that when r; >y (as in our example), this ratio is given
by

¢1 T

62 2 — T1 '
If for example ¢; =10, then ¢, =500/99 = 5.051, which yields payoffs of 71 ~0.278 and
g & 5.227. The resulting welfare is W ~5.505 and resource efficiency is Eg,, ~ 0.366.
Note that this maximum resource efficiency depends on the discount factor §. If § were
larger, even higher efficiencies would be possible. In contrast, if 6 were lower, either E¢

sup
would be lower, or the game might not allow for non-defection at all.

In the above example, we only considered the simple case of constant contributions. We
now address the question of whether we can achieve higher resource efficiency when
contribution sequences are allowed to be time-dependent.

4.1.4 Efficiency with time-dependent contributions

If we only consider the binary distinction between whether or not a game allows for
non-defection, then constant and time-dependent contributions are equally effective.
Specifically, if a game has any non-defective equilibrium at all, then it also has a non-
defective equilibrium with a constant contribution sequence [Corollary 6 of HSH*24].
However, below we show that within the space of non-defective equilibria, time-dependent
contributions can indeed enable outcomes that are not sustainable otherwise. To this end,
we first introduce some notation.

Notation 2. For two vectors v and w, we write v<yw if v; <w; for all v and v;=w; for
at most one i. In other words, v<yw corresponds to v<w with equality in at most one
component.

Using this notation, we can characterise which total contribution vectors are sustainable
with time-dependent contribution sequences.

Theorem 7. Let I'5(r,0) allow for non-defection. Then the total contribution vector € is
sustainable in game Tg(r, ) if and only if either €¢=0 or

¢ <, De. (4.14)

Furthermore, all sustainable total contribution vectors ¢ are sustainable with a continuation
contribution sequence (c(t)); that satisfies ¢ < ¢(t) for all t.

The proof of Theorem 7, and of all subsequent results, is provided in the Appendix.
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4.1. The base model

Theorem 7 characterises the set of total contribution vectors that are sustainable in a
given game I'g(r,0). The theorem is analogous to Corollary 11, which allowed for constant
contribution sequences only. Interestingly, however, condition (4.6) in Corollary 11
depends on the discount rate §. In contrast, condition (4.14) is independent of ¢; the only
requirement of the theorem is that § be sufficiently large to allow for non-defection in the
first place. That is, suppose the discount factor ¢ is large enough for the game to allow for
some non-defective total contribution vector ¢ to be sustainable. Then it automatically
allows for all vectors that satisfy ¢ <; Dc.

The last part of the theorem states that the relevant contribution sequences can be chosen
such that future contributions are always at least as large as the past contributions. This
statement is included as a technical result that will be useful later on (in the proof of
Proposition 6).

As a special case we obtain the following result on the sustainability of equal contributions
across all players.

Corollary 12. Let Tg(r,d) allow for non-defection. Then for any X > 0, the total
contribution vector ¢ = A1 is sustainable.

Importantly, for this statement to be true, time-dependent contributions are essential. If
instead players are restricted to make constant contributions along the equilibrium path,
there exist games I5(r, §) where no equal contribution vector A1 is sustainable [HHCN19].
Fig. 4.2 illustrates these results. For our 2-player game with r1 = 1.5 and r, =1.1, it
shows the region of total contribution vectors that are sustainable with time-dependent
contribution sequences (Fig. 4.2a), which is independent of §, and the region of total
contribution vectors that are sustainable with constant contribution sequences for a fixed
value of ¢ (for § =0.55 in Fig. 4.2b and § =0.9 in Fig. 4.2¢). Fig. 4.2a was obtained
from Eq. (4.14), which is independent of §. Fig. 4.2b—c was obtained from the analogous
condition for constant contribution sequences, Eq. (4.6), which depends on . The figure
shows that for a low discount factor like § =0.55, equal total contributions are feasible
with a time-dependent contribution sequence, as predicted by Corollary 12, but not with
a constant contribution sequence.

The contribution vectors ¢ that are individually rational in the one-round game (in the
sense of the folk theorem) are those where ¢ < D¢. Theorem 7 shows that almost all of
those (all except for a set with measure zero) are sustainable once the discount factor
0 is sufficiently large to allow for any non-defective equilibrium. This requirement is
considerably weaker than the one typically used in the folk theorem literature, where 9 is
thought to approach 1. In the case of two players, the above result holds for strictly all
individually rational contribution vectors, as stated by Corollary 13 below.

Corollary 13. Let n=2 and let I'g(r,d) allow for non-defection. Then the total contribu-
tion vector ¢ is sustainable exactly if ¢ < Dc.

Corollary 13 follows in two steps. First, we note that equality, ¢ = D¢, is impossible
unless ¢ = 0. To see why, first observe that ¢ = D¢ is equivalent to n¢; =3, r;¢; for all
players 7. Summing up over all ¢ and dividing by the group size n gives >>;¢; =3, 7;¢;.
Unless ¢ = 0, this is a contradiction, because all r; are larger than one. The second step
is straightforward: given that ¢+ D¢, the statements ¢ < D¢ and ¢ <; D¢ are equivalent
for n=2.
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(a) (b) (c)

Time-dependent contributions Constant contributions (6 = 0.55) Constant contributions (6 = 0.9)

Total contributions of Player 2 (C;)

Total contributions of Player 1 (C1) Total contributions of Player 1 (¢1) Total contributions of Player 1 (C1)

Figure 4.2: The region of sustainable total contribution vectors in a two-player game
with 7 =1.5 and ro=1.1. (a) The blue area shows the total contribution vectors that
are sustainable with time-dependent contributions as long as ¢ is sufficiently large to
allow any kind of non-defection, which in this case means ¢ > 0.522. The dashed line
represents equal contributions. (b) The blue area shows the total contribution vectors
that are sustainable with constant contributions in the game I'g(r,0.55). The grey area
shows the total contribution vectors sustainable with time-dependent contributions, for
comparison. (c¢) Like (b), but for the game I's(r,0.9). The higher value of ¢ allows for a
larger set of total contribution vectors to be sustainable with constant contributions.

With Theorem 7, we have established that time-dependent contribution sequences can
achieve total contribution vectors that are not sustainable with constant contributions.
Because payoffs, resource efficiency, and welfare are all functions of the total contribution
vector, we can use Theorem 7 to analyse the possible outcomes in terms of those quantities.
In particular, the following result suggests that time-dependent contributions can indeed

allow for a higher resource efficiency.

Theorem 8. Let Tg(r,d) allow for non-defection, let rp.x = max;r;, and let m be
the number of players with mazximum productivity ry... There exists a sustainable time-
dependent contribution sequence that is more resource-efficient than all sustainable constant

contribution sequences if and only if

(1 + 5(m—1)> Tmax < M.

In particular, such a sequence exists if there is only a single player with productivity Tmax.

To understand the statement of Theorem 8, consider the case that there is a single player
with maximum productivity (i.e., m=1). In that case, (4.15) certainly holds, so the
statement of the theorem is simply that resource efficiency cannot be optimised with

constant contribution sequences.

Let us also provide some intuition for why the theorem holds, again by considering
the case m =1. Without loss of generality, let the unique most productive player be
player 1. Let the group play the most resource-efficient sustainable constant contribution
sequence (the maximum can indeed be attained). As shown in [HSHT24], this means that
a player’s contribution is larger the more productive that player is; in particular, player 1’s
contribution is the largest and hence positive. But in principle, player 1 could deviate
and contribute nothing instead. That way, player 1 would get a positive payoff from the
other players’ contributions in the first round, and a non-negative payoff thereafter. That
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Figure 4.3: Time-dependent contributions allow for greater resource efficiency than
constant contributions. Here, we illustrate this result with the game [y ((1.5, L.1)7, 0.9).
(a) When players are required to make constant contributions each round, maximum
resource efficiency is attained for & =10 and ¢, =500/99~/5.051 (or any positive multiple
thereof). The attained efficiency is ES,, ~ 0.366. (b) Players can achieve a better resource
efficiency of Eg,, = 0.375 by switching to a time-dependent contribution sequence. In
this example, player 1’s contributions are still constant, while player 2’s contributions are
constant after the first round. (c¢) For the same productivities as in (a) and (b), we show
the optimal resource efficiency with constant contributions (Eg,,, solid line) and with

any contributions (Egyp, dashed line). (d) Here we depict the ratio Fy,p,/Eg,, for different
productivities r; and 7o, for a discount factor of §=0.9. The white area in the bottom

left corner is where cooperation is not possible for this value of ¢.

is, player 1 would obtain a positive payoff overall. However because of our assumption
that the contribution sequence is sustainable, player 1 does not benefit from such a
deviation. It follows that player 1’s payoff from the constant contribution sequence is as
least as good, hence positive. This means that the other players could decide to extract
parts of this positive payoff from player 1. For example, they might require that in an
initial extra round, player 1 make a solitary contribution. As long as the demanded
contribution does not exceed player 1’s positive benefit from all subsequent contributions,
player 1 would be compelled to go along. Since this player is most productive, and now ac-
counts for a greater share of the contributions, this new scheme increases resource efficiency.

Example. Again, it is instructive to illustrate these considerations with our two-player
example, game FB((1.5, 1.1)7, 0.9). For constant contribution sequences, we have shown
that the maximum resource efficiency is Eg , ~ 0.366. This maximum is attained, for
example, when the two players make contributions of ¢; =10 and & =500/99~5.051 each
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4. TIME-DEPENDENT STRATEGIES IN REPEATED ASYMMETRIC PUBLIC GOODS GAMES

round (or any positive multiple thereof), see Fig. 4.3a. By Theorem 8, time-dependent
contribution sequences can achieve a superior resource efficiency, because there is a single
player with maximum productivity. Fig. 4.3b shows an example of such a time-dependent
contribution sequence. Here, in round zero, player 1 contributes ¢;(0) = 10 whereas
player 2 contributes nothing. In all subsequent rounds, players use the numbers of the
earlier constant contribution sequence, ¢;(t) = 10 and cy(t) = 500/99 ~ 5.051 for t > 1.
By Theorem 5, this contribution sequence is sustainable. Moreover, it achieves the best
possible resource efficiency Eg,, = 0.375. This value of Ey,, does not depend on the
discount factor 0, provided ¢ is sufficiently large to allow for non-defection in the first
place (Fig. 4.3c). For the given r, one can compute this minimum discount factor to be
Omin A 0.522 [In HSH*24, we show that d,,;, can be computed as the inverse of the largest

eigenvalue of matrix D, as defined by Eq. (4.4)].

Interestingly, Theorem 8 also shows that in case of equal productivities for all players,
there is no advantage from time-dependent contributions. To see why, observe that for

m=nand r = (r,r,...,7)7, condition (4.15) becomes

(1 + (5(71—1)) - < n.

However, by Theorem 2 in the SI Appendix of [HSH*24], T(r,d) only allows for non-

defection if

n—r
§> ———
“r(n—1)

Because condition (4.17) is the negation of (4.16), these two conditions are incompatible.

4.2 Model variation I: Endowment constraints

So far, we considered the base model in which players were free to make arbitrary
contributions each round. While this model has been convenient to work with, it has at
least two disadvantages. First, it requires players to have access to arbitrary amounts of
resources, which seems unrealistic. Second, it renders any attempt to optimise the players’
welfare meaningless, since players can arbitrarily scale up their contributions (and hence
their welfare). In the following, we aim to show how the base model’s results extend to

two more realistic model variants.

First, we consider a model variation called the endowment model. Here, there is a constant
upper limit on player i’s contribution ¢;(¢) in any given round. We refer to this upper
limit as the player’s endowment, e;, and we use the notation e=(ey,...,e,) to refer to
the vector of all endowments. Endowments are positive and, without loss of generality,
normalised such that }~, e;=1. In each round ¢, each player ¢ chooses which part of their
endowment to contribute. That is, they choose some ¢;(t) € [0, ¢;]. Contributions have
the same effect as in the base model. Overall, the players’ payoffs consist of their share of

the public good, and of their remaining endowment (see Fig. 4.4),

() = irTc(t) + (ei—ai(t)).

Note that in the case of zero contributions, we now have payoffs of t=e, as opposed to
the base model, where zero contributions give t=0. However, the definition of welfare
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(a) Player 1 contributes an amount (b) Player 1’s contribution (c) Together, the scaled (d) Player 1 receives one
of ¢; from their endowment e is scaled up by 11 contributions form the half of the public good
public good
1/2
¢ —> —> >
B
L1
(e) Payoff is equal to share from public good The endowment is constant, but players can
plus privately consumed endowment choose a different contribution size in every round

€1

€1

[+

Round 0 Round 1 Round 2 Round 3 Round 4

Figure 4.4: The endowment model. Here, the players’ contributions each round are
constrained by their fixed endowment e;. (a) In each round, players decide how much
of their endowment they wish to contribute to the public good. The remaining amount
e;—c; is consumed privately. (b—d) The following steps are identical to the base model.
In general, player 1 receives the nth share of the public good; in this example, n = 2.
(e) Players derive a payoff from their share of the public good, and from their private
consumption of the remaining endowment.

remains the same as before, W = " | ;. We define resource efficiency for this model as

i (T — &)
1 Ci ’

FE =

that is, sum of obtained payoffs minus full defection payoffs, divided by the sum of all
contributions. Eq. (4.11) remains valid.

Notation 3. In the endowment model, a game is specified by the players’ productivities r,
their endowments e, and the discount factor . We denote the respective game as I'g(r, e, 0).

We can now translate the results of the base model to the endowment model. Of
Corollary 12, we obtain a weaker version:

Corollary 14. Let I's(r,e,d) allow for non-defection. Then there exists a \>0 such that
equal contributions of ¢=MA1 are feasible and sustainable.

In other words, if any kind of non-defection is possible, then equal total contributions are
also possible. However, now these contributions need to be sufficiently small so that in
each round, the players do not exceed their endowment limits. Similar to the base model,
the statement of Corollary 9 does no longer hold when we require contributions to be
constant [HHCN19]. That is, there are cases when equal total contributions are possible,
but only with time-dependent contribution sequences.
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Trivially from Corollary 10, whether or not non-defection is possible in [g(r, e, ) does
not depend on e; rather, it is possible if and only if it is possible in I'g(r,d). If that is the
case, we may simply say that the pair (r,d) allows for non-defection, without referring to

a particular one of the models.

Since resource efficiency is invariant under linear scalings of the contributions, all sustain-
able resource efficiencies can be achieved with arbitrarily small contributions. The set of
sustainable resource efficiencies is thus unaffected by endowment constraints. This insight
trivially allows us to extend the results about resource efficiency from the base model to

the endowment model, as formally stated in the following proposition.

Proposition 4. Tuke any gamer, e, 0.

1. The set of sustainable resource efficiencies in Ig(r,e,d) is the same as in [g(r, o).

2. The set of resource efficiencies sustainable with constant contributions in I'g(r, e, )

is the same as in I'g(r,0).

It follows that Theorem 8 equally applies to the endowment model. In particular, for any
game Ig(r, e, d), time-dependent contributions can enable higher resource efficiencies than

constant contributions.

In addition to resource efficiency, in the endowment model it is also meaningful to study
the player’s welfare. However, with respect to welfare, the following (existing) result

shows that time-dependent contributions provide no advantage.

Proposition 5 ([HSH*24], Supplementary Information Lemma 2). In any game I(r, e, 0),
sustainable welfare attains a maximum, and that maximum is attained with constant

contributions.

Example. To illustrate how the endowment model relates to the base model, we consider
a game with the same parameters as in the previous example, that is, with r=(1.5,1.1)7
and 0 =0.9. As the endowment distribution, we choose e =(0.2,0.8)T. So we have the

game Tg((1.5,1.1)7,(0.2,0.8)7,0.9).

In the previous example, we saw that the highest attainable resource efficiency in
I'5((1.5,1.1)7,0.9) is Eg,, =0.375 and that it is only attainable with a time-dependent
contribution sequence. By Proposition 4, these statements carry over identically to the
endowment model independently of our choice of e. The sequence we constructed earlier
to obtain resource efficiency 0.375 was given by ¢1(0)=c1(1)=c¢1(2)=...=10 and ¢3(0)=0
and co(1)=co(1)=...=500/99. Of course, contributions of that size would by far exceed
both players’ endowments. But we can scale the sequence down by a factor of 50 to get
c1(0)=c1(1)=c1(2)=...=0.2 and ¢2(0)=0 and (1) =c2(1)=...=10/99~0.101, which
is feasible with respect to the endowments, and sustainable in equilibrium. This sequence

has the same resource efficiency of 0.375.

However, while player 1 contributes their entire endowment of 0.2 in every round, the
largest part of player 2’s endowment is unproductive in this contribution sequence.
This is reflected in the comparatively low welfare. In round 0, payoffs are m1(0)
0.15+ (0.2 — 0.2) =0.15 and m(0) =0.154(0.8—0) =0.95. In the subsequent rounds,
payoffs are m; (t) ~0.205+ (0.2 — 0.2) ~0.205 and m(t) ~0.2054 (0.8 —0.101) ~0.904. This

62



4.3. Model variation II: A model with savings

gives an overall welfare of W a1.108 (remember that here, the welfare of full defection
is W =1). Compare that to constant contributions of ¢; =0.2 and & = 0.3, which are
sustainable and achieve an optimal welfare of W =1.13. Proposition 5 states that the
welfare optimum can always be attained with constant contributions.

There is an intuitive general reason why time-dependent contributions have no positive
welfare effects: In the endowment model, the more a contribution sequence varies, the
more resources are non-productively withheld in some of the rounds. In particular, only
constant contributions can achieve full cooperation, which by definition means ¢;(t) =e;
for all t and i. (With the right endowment distribution, a maximal welfare of W= E¢ +1
can be realised that way; in the above example that is W ~ 1.366.) This observation
suggests that the endowment model is inherently geared towards constant contributions.
Instead, we would like to consider a setup in which overall contributions are constrained,
yet players may freely choose how to allocate their contributions over time. To do this,
we introduce another model variant.

4.3 Model variation II: A model with savings

The saving model builds on the earlier endowment model. Again, each player 7 obtains
a fixed endowment e; every round. However, now players have three options for how
to spend their endowment, rather than two. They can contribute to the public good,
consume parts or all of the endowment privately, or they can make a deposit into a savings
account. Savings pay interest at the rate of (0-1—1) per round — which exactly corresponds
to the time value of money at the discount factor . These savings can then be spent in
future rounds, either to contribute to the public good or for private consumption.

More specifically, each round proceeds as follows. In the beginning of each round ¢, players
receive an endowment e;. In addition, they have access to an amount of s;(t) on their
savings account (in the very first round, savings are set to zero). Players then decide
which amount p;(t) to consume privately, which amount ¢;(t) to contribute to the public
good, and which amount d;(¢) to deposit into the savings account. These variables need
to satisfy the budget constraint e;+s;(t) = p;(t)+c;(t)+d;(t). Contributions to the public
good and private consumption directly enter the player’s payoff function,

mi(t) = Tlerc(t) + pi().

Deposits, on the other hand, determine a player’s savings in the beginning of the next
round, s;(t+1)=0"1d;(t). At time t+1, the process is repeated; individuals again have
to decide how much to consume, to contribute, and to save, see Fig. 4.5. Total payofts
(across all rounds), welfare, and resource efficiency are then defined as in the previous two
models.

Notation 4. The saving model uses the same parameters as the endowment model:

productivities r, endowments e, and the discount factor . We denote the game as
I's(r,e,d).

We make the following observations about the saving model: First, in our implementation
of this model, savings are payoff-neutral: The interest earned over one round is exactly
offset by a player’s discounting of future rewards. Second, without the opportunity for
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Figure 4.5: The saving model. Here, we depict the first six rounds of a player’s gameplay.
In each round, the player not only has their endowment e; available, but also whatever
resources they deposited in the previous round, plus interest at the rate 5=' —1. They
decide which part of that they want to contribute, which part to consume, and which
part to deposit to the savings account.

saving, this model recovers the endowment model as discussed in the previous section and
studied in [HHCN19]. Third, the saving model is equivalent to saying that endowments
only apply as a constraint to the cumulative contributions. That is, each player ¢ is
required to play such that YF_,07¢;(t) < 3L_,d7e; for all ¢, but without the stronger
requirement that ¢;(t) <e; for all ¢. Finally, since resource efficiency is equal to surplus
welfare divided by total contributions, maximising resource efficiency in the base model is
equivalent to maximising welfare in the saving model when the endowments are also an
optimisation variable.

To state our main results for this section, we first define the notion of a welfare supremum
with and without savings. For given parameters r, e, d, the welfare supremum with savings
Ws,p(e) is the supremum of welfare over all equilibria of the game I's(r,e,d). It quantifies
the maximum value that the group can derive from cooperation. Similarly, we define
the welfare supremum without savings, Wy,,(e), as the supremum of welfare over all
equilibria that satisfy d;(t) =0 for all ¢ and ¢. It quantifies the maximum value that
the group can derive without ever saving any amount. Equivalently, it corresponds to
the welfare supremum of the endowment model, Tg(r, e, d). We interpret the difference

W3 (e) — Woyp(e) as the (positive or zero) advantage that savings can provide.

Theorem 9. Let (r,d) allow for non-defection. Take any endowment distribution e.
Then savings provide no advantage (i.e. W3, (e)=Wsyp(€)), if and only if

sup

e < ¢De. (4.18)

Without savings, ¢ = e requires constant contributions. So by Corollary 11, Eq. (4.18)
is equivalent to ¢ = e being sustainable without savings. Therefore, Theorem 9 states
that exactly one of the following is the case: Either full contributions are sustainable
without savings, or savings provide an advantage for welfare. In particular, for any r and
e, when 0 is sufficiently low, savings provide an advantage. Alternatively, for any r and ¢,
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when e is sufficiently unequal, savings provide an advantage ([HHCN19], Supplementary
Information Proposition 3).

Savings also provide an advantage from the perspective of a social planner who chooses an
endowment distribution with the aim of maximising welfare. To assess this, we consider
the suprema of W3, (e) and Wy, (e) over all possible endowment distributions e. From
Theorem 8, we can derive the following result:

Theorem 10. Let (r,d) allow for non-defection. Let rya, = max;r;, and let m be the
number of players with productivity rmax. Then sup, W5 (€) > sup, Waup(€) if and only if

sup

(14+30(m=1)) - Fimax < . (4.19)

To understand the theorem intuitively, consider again the case that there is only a single
player with maximum productivity ryay, i.e. that m=1. Then Theorem 10 states that
strictly better welfare is possible when players are permitted to save part or all of their
endowment for later rounds, compared to when they are not. This is because with saving,
they can play a more resource-efficient time-dependent contribution sequence and still
productively use all of their endowment, whereas without, they are restricted to make
constant contributions in order to maximise welfare. Conversely, as another special case
of Theorem 10, we conclude that savings never provide a welfare advantage if all players
have the same productivity.

Example. We revisit the same example as before, now in the saving model: I's((1.5,1.1)T,
(0.2,0.8)7,0.9). In the endowment model, we had to scale the optimally resource-efficient
contribution sequence to ¢;(0)=0.2 so that players do not exceed their endowment limits.
With savings, it is enough that at no point in time their cumulative contributions exceed
the endowment limit. A simple example of a superior contribution sequence is as follows.
In round 0, player 1 contributes and consumes nothing (¢;(0) =p;(0)=0) and deposits
everything (d;(0)=e;=0.2). In round 1, with the interest received, player 1 has savings
of approximately 0.222 and again receives an endowment of 0.2, which makes for a total
available amount of 0.422. Of this, player 1 contributes ¢1(1)~0.222 and again deposits
dy(1)=0.2. In round 2, savings with interest again make up 0.222; and player 1 continues
with contributing 0.222 and depositing 0.2 in every subsequent round. Player 2, on
the other hand, from the beginning simply contributes c3(t)~0.333 in every round and
privately consumes the rest, ps(t)~0.467, without depositing anything. The welfare of
this contribution sequence is W a1.164, which is more than the optimal value without
saving, W =1.13. Theorem 9 predicts that saving provides an advantage like this as long
as full contributions are not sustainable, which is the case here.

The optimal welfare over all endowment distributions, sup, W¢, (e), requires the endow-
ment distribution e = (11/16,5/16)7. This is exactly the endowment distribution at which
the maximally resource efficient contribution sequence can be played in such a way that all
endowments are eventually contributed: Player 1 contributes ¢1(¢)=11/16 in every round.
Player 2 deposits everything in round 0 (d2(0) = e5 =5/16). Thereafter, player 2 contributes
50/(16-9) and deposits 5/16 in every round. (The sequence of contributions is identical to
that of the earlier example in Section 4.1.4, up to rescaling by a factor of 160/11, and thus
also maximally resource efficient.) In this sequence, all resources are used productively
and none are consumed privately, which means that the optimal resource efficiency also
translates to optimal welfare. Indeed, the welfare is W =sup, W, (e) = 1 + Eg,, = 1.375.

sup
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The fact that this is greater than the optimum without saving over all endowment dis-

tributions, which by Proposition 5 is sup, Wap(e) = 1 + Eg,,
Theorem 10.

4.4 Discussion

~ 1.366, is predicted by

The repeated public good game is one of the major models in (evolutionary) game theory
to understand cooperation in groups. This literature describes how individuals can use
conditionally cooperative strategies to sustain outcomes that are infeasible in one-shot
encounters. Yet when describing the possible equilibrium outcomes, many previous
studies implicitly restrict their analysis to the case that players make the same constant
contribution each round [e.g. HHCN19, HSH*24]. Instead, here we study the effect of
time-dependent contributions. Contrary to many other models of reciprocity, we allow
players to select their actions from a continuum between full defection and full cooperation.
We explore to which extent individuals can obtain better outcomes (e.g., a better resource
efficiency or welfare) when they are able to vary their contributions along the equilibrium

path.

From the outset, it is not clear whether time-dependent contributions provide any sub-
stantial advantage at all. After all, suppose players could achieve a superior outcome with
contributions <c(t))t that vary in time. Then players might achieve just the same outcome

by instead making a constant contribution ¢ each round, where ¢ is the appropriate
(time-discounted) average contribution per round, ¢ = (1—4§) >, é'c(t). With respect to

their payoff implications, the two sequences <c(t))t and (¢); are identical. After all, by

Eq. (4.3), payoffs only depend on the players’ total contributions across all rounds. As a
result, the two sequences generate the same resource efficiency and welfare. However, as
we show in this article, the two sequences may differ in their sustainability. There are
instances in which the time-dependent sequence (c(t))t can be realised by a subgame

perfect equilibrium, whereas the constant sequence (¢); cannot.

To make this point, we study three different models: a base model, a model with
endowment constraints, and a model with savings. In the base model, players are allowed
to make arbitrary contributions each round (the only requirement is that the sequence of
contributions does not diverge). This setup imposes minimal constraints on the players’
behaviour, and it is convenient to work with mathematically. In contrast, the other two
models are perhaps more realistic (and hence they have been studied more frequently). For
example, the endowment model corresponds to the classical setup that is also frequently
used in experiments [e.g. CMMM99, BC06, HRS16, KMS17]. Here, contributions are
constrained by the endowments that the players receive each round. The saving model
is similar, but in addition it allows players to (payoff-neutrally) transfer some of their
endowments to future rounds. Interestingly, many of our results for these last two
model variants are directly related to our findings in the base model. As an example,
with Theorem 10, we characterise under which circumstances savings provide a welfare
advantage in the saving model. The respective result is directly related to whether or not
time-dependent contributions provide an advantage in the base model, Theorem 8. These
similarities between those theorems highlight how several findings in the more abstract

base model carry over to more applied settings.

Interestingly, the respective theorems also suggest that for our results, some asymmetry
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among players is crucial. Specifically, when players are identical with respect to their
productivities, Theorem 8 shows that time-dependent contributions do not grant any ad-
vantage. Any resource efficiency that can be sustained with time-dependent contributions
can already be sustained with constant contributions. But once players differ in their
productivities, it becomes fairly easy for time-dependent contributions to be superior.
In fact, such an advantage is guaranteed when the group contains a single player whose
productivity exceeds everyone else’s.

Overall, our findings highlight the impact of variable contributions on resource efficiency
and, more generally, on the sustainability of cooperation. They suggest that by focussing
solely on constant contributions, we may overlook important equilibria that can arise in
dynamic settings.

4.5 Proofs
4.5.1 Proof of Theorem 7
Proof of Theorem 7. Clearly ¢ = 0 is sustainable, so it is sufficient to show the statement

for ¢ # 0.

First we will show that any sustainable ¢ # 0 satisfies ¢ <; D¢. By Theorem 5, we have
for any sustainable c(t) that

5e(1) < (0) < 6De(1). (4.20)

Left-multiplying with the non-negative matrix D on both sides of the first inequality, we
obtain
dDc(1) < Dc(0)

with equality in the ith component exactly if dc;(1) = ¢;(0) for all j # 1.
Together with the second inequality of (4.20), this gives
c(0) < De(0),
or equivalently
¢ < Dg, (4.21)
where equality in the ith component requires dc;(1) = ¢;(0) for all j # 1.

If (4.21) has equality in at least two components, then dc;(1) = ¢;(0) for all j, so
dc(1) = ¢(0). Analogously, equality in two components requires dc(2) = c(1), etc., so the
sequence (c(t)); diverges and is not a valid contribution sequence. That is a contradiction,
so we can have ¢ = (D¢); for at most one i.

Now we will show that if some ¢ # 0 satisfies ¢ <; D¢, then ¢ is sustainable with a
continuation contribution sequence (c(t)); that satisfies ¢ < c(t) for all t. Assume first
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that the stronger condition 0 < ¢ < D¢ holds. Take € > 0 such that 1 +¢ < 6! and
(1+¢e)x < Dx. Let v be the Perron eigenvector of D, scaled so that v < x. Let finally

Omin MAX; 7+ — min; 7
2 2

T =
5(1 — 6min)

or T'= 0, whichever is larger.

Let x = ¢ for a given ¢ with 0 < ¢ < D¢. We define a continuation contribution sequence

(€(t)): by
c(t) = ((1+¢)d) " (x +etv)

forall 0 <¢ < T and

c(t) = (1+¢) To- T+ (min Ty 5T> v

) /U’L

for all ¢ > T. If we show that it obeys (4.5) for all ¢, we know it is sustainable. Since
¢(0) = x, that is enough to prove the first statement of the present theorem. We also see
that (c(t)): is non-decreasing. Therefore, ¢ = ¢(0) < ¢(t) for all ¢, which is the second
statement of the theorem.

For 0 <t < T, the first inequality, dc(t + 1) < c(t), follows from
v <X
as follows. First, we multiply with € and add £%tv, which is non-negative, on the right-hand

side:
ev < ex + ity

We add x + etv on both sides and factor out:
x+e(t+1)v<(1+e)(x+etv)
We multiply with 6((1 + ¢)8)~ %Y on both sides:
S(1+)0) "V (x+e(t+1)v) < ((1+2)0)7H(x +etv)

This is equivalent to
oc(t+1) < c(t)

by the definition of c().
The second inequality, ¢(¢) < dDc(t + 1), follows from

V = OpinDV.
We replace dy,;, with §, which is larger or equal, on the right-hand side:
v <J0Dv
By construction, 1 —e < 67!, so we can write:

(1+e)v<Dv
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Multiply by et on the left-hand side and by (¢ + 1) on the right-hand side:
(14+¢e)etv <e(t+1)Dv
Sum with the inequality (1 + ¢)x < Dx, which also holds by construction of e:
(I+e)(x+etv) < D(x+e(t+1)v)
Multiply by §((1 +¢)d)~“*1 on both sides:
(1 +)0) (x+etv) < 6((14¢)8) " “VD(x + et +1)v)

This is equivalent to
c(t) < 6De(t +1).

Next, we consider t = T": The first inequality follows from
x+eTv<(1+e)(x+eTv).

i Wi in; ~tv, which i i :
First, we replace x by min; £¢v, which is at most as large in each component
2

min Ty yeTv <(1+e)(x+eTv)
i v

Then, we multiply by §((1 +¢)d)~@*Y on both sides:

5((1 +¢)o)~ T+ (m}n? + 5T> v<((14)8) T (x+eTv)

This is by definition equivalent to

5e(T + 1) < &(T).

The second inequality follows from

Omin Max; = — min; *
Vi Vi

6(1 — 6min)

<T,

which is by definition of 7. We remove the ceiling function and multiply by (1 — dppin)
on both sides:

Omin Max — — min — < (1 — i )eT’
1 /UZ (3 /U’L

We move min; ‘S—Z to the right-hand side, dymineT to the left, and then multiply by .5 v:

X . T _
max —v +eT'v < <m1n =+ 5T) St v
(3 U’L ) ’UZ
Now, we can replace max; T*v by x, which is at most as large in each component, and
K2
5—1

min

v by Dv, which is equal:

x+elTv < (minxi—l—eT) Dv
i
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We multiply by ((1+ €)d)~7 on both sides:

(14¢€)0) T(x+eTv) <D ((1 +¢) T~ T+Y (mm o + E?T) )

This is by definition equivalent to
c(t) < 6De(t +1).

Finally, for ¢ > T, we have c(t) = c(t + 1). The first inequality is trivially true, and
the second inequality is true since c(t) is a multiple of v. So we have shown that ¢ is

sustainable if 0 < ¢ < De¢.

Now we will reduce the more general case of ¢ # 0 and ¢ <; D¢ to this in two sequential

steps.

First, let some ¢ # 0 have 0 < ¢ <; D¢ with equality of the weak inequality in exactly
one component i. Let x(¢) = ¢ — eu;, where u; is the ith standard unit vector. Since
x(e) = €ase — oo and & < (D¢); for all j # i, we can choose ¢ > 0 sufficiently

small such that ¢; = z;(e) < (Dx(¢)); for all j 7& i as well, and 0 < z;(e).

then have z;(¢) < ¢, but (Dx(e )) = (D¢);, so also x;(e) < (Dx(e));. Hence x(¢)
satisfies 0 < x(¢) < Dx(e) and ¢ < Dx(e). By the above result, we can choose a
(t

continuation contribution sequence (c

)¢ such that ¢* = x(¢). Now consider the

(
sequence (€, '¢*(0),07'c*(1),671¢*(2),...). By definition, ¢*(0) = x(¢), and we have

§(6'x(e)) < e < oD x(¢)),

so by Theorem 5, the sequence we constructed is a sustainable continuation contribution

sequence. It begins with ¢, so the statement of the Lemma holds for ¢.

Now, the only case that remains is ¢ <; D¢ and 0 £ ¢ # 0. In the definition of the public
goods game, we imposed the conditions 1 < r; and r; < n for all . We used r; < n in the
proofs about sustainability (it is necessary for D being well defined and positive), but
1 < r; was only used to prove statements about maximal welfare. So we can consider
games that only satisfy r > 0 instead of r > 1, and the same results about sustainabililty

will apply, including the ones from this proof.

Let € # 0 be any total contribution vector satisfying ¢ <; D¢. Let n’ be the number of
non-zero components of ¢. W.l.o.g. let these be the first n’ components of ¢. Necessarily
n’ > 1. Let ¢ be the first n’ components of ¢, and let r' be the n’-vector defined
by rl = n'n7!r; for all 1 < i < n’. Consider the game I'z(r’,d) and its zero-diagonal
productivity matrix D’. We have ng = D;; forall 1 <4,j <n'. Since € satisfies ¢ <; Dc,
consequently &' also satisfies ¢’ <; D'¢’. But ¢’ additionally satisfies 0 < &. So by the
case handled above, there is a sustainable continuation contribution sequence (c’());
starting with €. Let (c(t)); be the n-player sequence with ¢;(t) = ¢;(t) for all i < n’
and all ¢, and ¢j(t) = 0 for all ¢ > n/ and all . Using Equation 4.5, we can see that
sustainability of (c(t)); follows trivially from sustainability of (¢’(t)):. So we have found a

continuation contribution sequence starting with ¢.

We have thus shown in the most general case that if some ¢ # 0 satisfies ¢ <; D¢, then ¢
is sustainable. Together with the converse, which we already showed, this completes the

proof.
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4.5.2 Proof of Theorem 8

Proof of Theorem 8. Theorem 7 says that a total contribution vector of ¢ is sustainable
exactly if
¢ <y De.

Corollary 11 says that constant contributions of ¢ are sustainable exactly if

¢ <dDec.

Let F be the region defined by ¢ <; D¢. Let

Eep = sup E(¢)= sup E(¢),
eer\{o} ¢eF\{o}

where F is the closure of F, which is given by ¢ < Dé. Firstly, note that Ey,, is well
defined, since F(¢) is bounded above by max; ;. We observe that E(¢) attains a maximum
on F \ {0}: We have

{E(e)|ee F\{o}} ={E(/lle]) | e € F\{0}} ={E(@©)|e€ FnS"},

where S"1 = {x € R"| ||x|| = 1}. Since F is closed, F N S""! is a compact set. So we
can write

Eqp = max E(C).
ceF\{0}

Now we are ready to prove the statement of the theorem. But instead of showing that a
sustainable time-dependent contribution sequence that is more resource-efficient than all
constant contribution sequences exists exactly if

(6(m —1) 4+ Drpax < n,

as stated in the theorem, we will show the following equivalent statement: A constant
contribution sequence with resource efficiency FEj,, exists exactly if

n < (0(m—1) 4+ Drpax- (4.22)

The following statements are equivalent for ¢ € R™:

ceF
c<Dc¢
Vi o<y — ¢ (4.23)
. N =T
J#i
J

Take any ¢ € F\{0} such that F(¢) = Fg,, that is sustainable with a constant contribution
sequence, which we assume exists. This ¢ maximises E(¢) over all & # 0 satisfying the
above inequality (4.24). This implies the following statement (x): There are no iy, is
such that r;; > r;, and n¢;, < 32;7;¢; and ¢, > 0. Otherwise, we could increase ¢;, and
decrease ¢;, by equal amounts to increase F/(¢) while also staying within F \ {0}.
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Since ¢ is sustainable with a constant contribution sequence, we have ¢ < § D¢, which is
equivalent to
"y

Vi <6y,

g T

2. (4.25)

At least two ¢& must be strictly positive, so > ,4; —=¢; > 0 for every 4. Since § < 1, (4.25)
implies
N r;oo.
Vi ¢ < Z J Cj.

g T

So the statement (x) simplifies to: There are no iy, 75 such that r;, > r;, and ¢, > 0. This
means that for any ¢, if ¢; > 0, then r; = rpay.

From (4.25), we get

J

where

D73l = Tmax D 6.
J J
Exactly m components of ¢ are non-zero. So choose some ¢ such that ¢; > 0 and
s Ly
i > — )y G
T m & j
J
Inserting into (4.26), we get
l «—. .
(n—(1- 5)rmax)a Z ¢; < 0Tmax Z ¢j.
J J

The ¢; sum to 1. We multiply with m on both sides and get
n— (1= 0) max < O maxM.

By simple rearrangement, this is equivalent to (4.22). So (4.22) being false is a necessary
condition for the existence of a constant contribution sequence with resource efficiency
FEgup, which was our only assumption.

Now instead assume conversely that (4.22) holds. Let ¢ = 1 for all ¢ such that r; = rpax,
and let ¢; = 0 for all other . We can check easily from the definitions that ¢ satisfies
¢ < dDc, so it is sustainable with a constant contribution sequence. The resource efficiency
of ¢ is E(€) = Tmax, so it is maximal. Therefore, (4.22) is also a sufficient condition,
and hence an exact condition, for the existence of a constant contribution sequence with
resource efficiency Egyy,. O

4.5.3 Proof of Theorem 9

Proof of Theorem 9. We will show that if e < dDe, then W, (e) = Wyyp(e), and if
e £ 0De, then W3, (e) > Wayp(e).

sup

Firstly, if e < § De, then by Corollary 11, the constant contribution sequence (c(t)); = (e);
is sustainable. So the total contribution vector ¢ = e is sustainable without saving. Since
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e is an upper bound on the total contribution vector, rTe is also an upper bound on

welfare in general, and we have W5 (e) = Wy, (e) = rTe.

Now, assume that e £ §De. By Proposition 5, there is always a total contribution vector
¢ that satisfies W (¢) = Wyyp(e) and is sustainable with a constant contribution sequence
in ['g(r,e,0), i.e. without saving. Take such a €. By Corollary 11, we have ¢ < §D¢. So
¢ # e, meaning there is some ¢ such that ¢; < e;. Fix such an 1.

Define ¢(e) = ¢ +¢(e — ¢) for € > 0. Clearly ¢(¢) — € as € — 0. Since ¢ < d D¢, since D¢
is a positive vector, and since § < 1, we have ¢ < D¢. So we can choose £ > 0 sufficiently
small such that ¢(e) < Dé(e) as well. By Theorem 7, ¢(¢) is thus a sustainable total
contribution vector in I's(r,e,d). But ¢(e) > ¢ and &(g); > ¢. So W(e(e)) > W ().
Consequently, W2, (e) > Wyyp(e). O

sup

4.5.4 Proof of Theorem 10

Proposition 6. Take any game I'g(r,0) that allows for non-defection. Then for any
¢ € RY, satisfying 377, ¢ < 1, the following are equivalent:

1. A total contribution vector of ¢ is sustainable in the game I'g(r,9).

2. There exists an endowment distribution e such that a total contribution vector of ¢
is sustainable in the game I's(r,e,0).

In a game [5(r, e,d), a contribution sequence (c(t)); is called sustainable if there is a play
that results in contribution sequence (c(t));.

It is easy to check that a contribution sequence (c(t)); is sustainable in Is(r, e, d) if and
only if
e <de+dTe(t+1) (4.27)

for all t > 0. Inequality 4.27 simply states that every player i has enough resources in
every round ¢ in order to make a contribution of ¢;(¢) as long as they never consume any
of their available resources privately.

In the game I'g(r,d), the Grim strategy profile G((c(t));) for a contribution sequence
(c(t)): is the pure strategy profile G((c(t)):) = (0;); defined as follows: In each round
t and for each i the strategy o; contributes ¢;(t) if all players have so far also played
according to (c(t)), but otherwise contributes 0.

In the base model, a contribution sequence (c(t)); is sustainable in a given game if and
only if its associated Grim strategy profile G((c(t)):) is a SPE of the game [HSH*24].

In the game I'5(r, e, ), the Grim strategy profile G®((c(t));) for a contribution sequence
(c(t)); is defined as follows.

First, we recursively construct a deposit sequence (d(t));. For each ¢ and each i, let d;(t)
be the minimal d such that there is a play that results in contribution sequence (c(t));
and an initial deposit sequence for player i of d;(0), ..., d;(t — 1), d. We can check that a
minimum is indeed attained. Then there also exists a play that results in contribution
sequence (c(t)); and deposit sequence (d(t));. This also uniquely determines the private
consumption sequence (p(t));.
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Now the Grim strategy G°((c(t)):); for player i plays as follows. In each round ¢, if all
players have so far played according to G*((c(t));), then player ¢ contributes ¢;(t), privately
consumes p;(t), and deposits d;(t). Otherwise, player i contributes 0, deposits 0, and

privately consumes the entire available amount.

We see that in both models, the Grim strategy profile G((c(t));) or G*((c(t)):), respectively,
produces the contribution sequence (c(t));. Hence, in both models, there is a bijective

correspondence between sustainable contribution sequences and Grim strategies.

Proof of Proposition 6. Take any ¢ € RY, satisfying >, ¢; < 1.

Assume that statement 1 of Proposition 6 holds. By Theorem 7, choose a sustainable
contribution sequence (c(t)); such that ¢ = ¢(0) and ¢ < c(¢) for all t. We know that

G((c(t))¢) is a SPE of the game I'5(r,9).

Set e = ¢. We want to show that in the game Is(r,e,d), the Grim strategy profile
G5((c(t))¢) is a SPE, which is sufficient to show that statement 2 holds. Let (d(t)); be the
deposit sequence produced by G*((c(t)):). So consider a strategy profile where all players
play according to G®((c(t)):) with the execption of one mutant, i, who plays according
to a general strategy o. Let (c/(t)); be the contribution sequence, (p’(¢)); the private
consumption sequence, and (d’(t)); the deposit sequence produced by this strategy profile.
Let 7%, be the payoff of player i, and let 7§ be the payoff of player i if player ¢ were also

playing according to G®((c(t));). We need to show that 7%, < 75.

Now, in the game I'g(r, ), consider a strategy profile where all players play according to
G((c(t));) with the execption of one mutant, ¢, who unconditionally plays the contribution
sequence (c(t))s. Clearly, this will also result in the same contribution sequence (c’(t));.
Let 7} be the payoff of player 7 in this strategy profile, and ; the payoff of player i if

player i were also playing according to G((c(t));).

We have >27°,0'pi(t) < Y02,0%.(t), so 7*, < m.. By the minimality of the deposit

1

sequence (d(t)); according to the definition of Grim strategies in the saving model, we
have >27°,0'pi(t) = 02,0 (t). So nf = m;. Since G((c(t));) is a SPE of the game

I's(r,d), we have 7, < m;. We therefore have that 7% < 7.

Now instead assume that statement 2 holds. Fix any e and any SPE of the game I5(r, e, )
which produces some contribution sequence (c(t));, sequence of deposits (d(t)), and the
total contribution vector ¢. By the definition of an SPE, no player can at any time profit
from switching to privately consuming the entire amount that they have at their disposal

in each round for the rest of the game.

Take any player 7 and any time ¢. The continuation payoff of player ¢ at time ¢ is ordinarily

o0

Ti(t) = (1—=0) Y07 'mi(7)

T=t

— (1) i 5 (pa(r) + nrTe(r)

=(1-9) Z " Hei + 5i(T) — ci(1) — di(T) +n"'rTe(r))

T=t

=e; + (1 —6)s;(t) — ci(t) +n'rTe(t),
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where the last equality holds because ds;(T + 1) = d;(7).
If the player switched at time t to ¢(7) = 0 and pi(7) = e; + s;(7) for all 7 > ¢, then the
continuation payoff would be

(L= "'7(t) =m) + > 6 ‘m(r)

T=t+1

=pl(t) 0 D)+ Y 5 + e )

r=t+1
= e; 4 si(t) + n 7 (xTe(t) — rici(t)) + il 5t (e + n~ 1T (7))
=(1—=08)"te;+s(t) +nH(xTe(t) — rici(t)) + i S in et (1)

T=t+1
> (1—0)"e; +s5(t) +nH(rTe(t) — rici(t)).
So 7 (t) < 7;(t) implies the following equivalent statements:
ei+(1—=0)s;(t)+ (1= )n ' (xTe(t) — rici(t)) < e+ (1 —0)s;(t) — e(t) +n'rTe(t)
ne;(t) + (1—0)> rjei(t) <D rici(t)
J

i
ne;(t) + (1 —9) grjcj(t) < riei(t) + (1 =9) ;TjCj(t>
+(SZT’]E](t+ 1)
i

&(t) < (6De(t + 1))s.

So the continuation contribution sequence (c(t)); satisfies c(t) < 6Dc(t + 1) for all t. By
Theorem 5 therefore, it is sustainable in the game I'z(r,d). So the total contribution
vector € is also sustainable in that setting.

So the two statements are equivalent. O

Proof of Theorem 10. Let (r,0) allow for non-defection.

Write W? for the set of welfare values attainable with sustainable contribution sequences
in the saving model. Write £ for the set of resource-efficiencies of non-defective SPEs
in the base model. We can show that sup W?® = sup £ + 1. First, assume that W € W*.
Then, in the saving model, there is e and a sustainable ¢ such that W = W,(¢). We have

W=m©=2m=2@—wwszggw

The value of E(€) is the same in both models. So W < sup & + 1.

+1=E®@)+1.

Now take some FE € £. In the base model, take a sustainable, non-defective ¢ such
that £ = E(¢). By Corollary 10 and linearity of F(¢), we can assume > ;¢ = 1. By
Proposition 6, take e such that ¢ is sustainable in the saving model. Now,

i) S W),

E4+1=FE¢)+1=
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So £+ 1 < supW*. We therefore have sup W* = sup& + 1. We write this as W3 =
Egp + 1.

Write W for the set of welfare values that can be achieved with any e in the endowment
model. We already defined W,, = supW. Write £ for the set of resource-efficiencies
of non-defective SPEs in the base model that are achieved with constant contribution

sequences, and Eg, for its supremum. We now show that Wy, = Eg,, + 1.

[HSH*24] show (their Lemma 3) that Wy,, is attained, and that it is attained with a
sustainable constant contribution sequence. Naturally, this requires that ¢ = e, that is,
full contribution. But at full contribution, We(€¢) = E(¢) + 1. So Wy, < ES + 1.

sup

Now take some E € £°. In the base model, take a non-defective ¢ such that £ = E(¢),
which is sustainable with a constant contribution sequence. Set e = ¢. Since the constant
sequence (e), is sustainable in the base model, ¢ is also sustainable with the endowment

constraint e. Again, we have £ + 1 = W(€). So E + 1 < Wy, We therefore have
Wi = EC + 1.

sup

Making use of both of the identities that we derived, we have that WS = > Wy, is

sup
equivalent to Eg,, > Eg,,. The statement now follows from Theorem 8. ]
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CHAPTER

Strategies of direct and indirect
reciprocity in general social dilemmas

This chapter was originally published as: Valentin Hiibner, Laura Schmid, Christian
Hilbe, and Krishnendu Chatterjee. Stable strategies of direct and indirect reciprocity
across all social dilemmas. PNAS Nexus, May 2025

People frequently encounter situations in which individually optimal behaviours diminish
the welfare of others. Such social dilemmas may, for example, lead individuals to put too
little effort into group projects, or to overuse public resources [Ols71, Har68, BDV*20,
KHv*23]. These types of conflict can be analysed using the mathematical framework
of (evolutionary) game theory [FT91, Sigl0, BR13]. This framework provides tools to
describe individuals who, consciously or subconsciously, make decisions that affect others
well-being. In particular, this literature describes several mechanisms that help individuals
to cope with their social dilemmas [Now06b]. One prominent mechanism, especially in the
context of pairwise interactions, is reciprocity. According to this mechanism, individuals
have more of an incentive to act in the interests of others if their actions today may be
reciprocated in the future.

)

The literature on evolutionary game theory distinguishes several types of reciprocity.
One type is direct reciprocity [Axe81, HCN18, GK21, RH23|. Here, individuals decide
how to act based on their previous experience with the respective interaction partner.
That is, when Alice decides how to treat Bob, she considers how Bob treated her in the
past. Such conditional behaviours have primarily been explored in the context of the
prisoner’s dilemma [HS97, SP13, SP14b, Akil6] (Fig. 5.1A). In this game, the socially
optimal choice of cooperation is dominated by defection. However, once individuals
interact repeatedly, reciprocal strategies such as Tit-for-Tat [Axe81] can help sustain
cooperation. Even though the repeated prisoner’s dilemma has been the main model to
study direct reciprocity, the very same mechanism can also be effective in weaker forms of
social conflict [MVCS12, SP14a].

Another type of reciprocity is indirect reciprocity [NS98b, NS05, Sigl12, Oka20]. Here,
when Alice decides how to treat Bob, she takes into account Bob’s overall behaviour,
including how he acted towards Charlie or Dave. That is, she takes into account Bob’s
general reputation. Unlike direct reciprocity, this mechanism does not require repeated
interactions among the same two individuals. It merely requires that individuals repeatedly
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interact within a larger community. With a few exceptions [NO14, CFW20], researchers
study this type of reciprocity with an even more restricted type of social dilemma, the
donation game (a special case of the prisoner’s dilemma, see Fig. 5.1B). This literature
suggests that cooperation can be sustained with a variety of strategies, most notably the
‘leading-eight’” norms [0I104, MH23].

Although direct and indirect reciprocity are based on a similar premise, most theoretical
and experimental studies [FGF01, MPGFDL22, WMO00, OYS*18] either consider one or
the other. Such a reductionist approach is useful to clarify whether either mechanism can
be effective on its own. At the same time, however, it renders many interesting research
questions infeasible. For example, such models cannot explain how individuals would cope
with conflicting pieces of evidence [e.g., when Alice’s personal impression of Bob runs
counter to his public reputation MBE13, MSA20]. Similarly, such models cannot explain
why in direct reciprocity, cooperation can be maintained with comparably simple strategies,
whereas indirect reciprocity seems to require strategies of greater complexity [LHOI,
BS04, BG16, SSP18, RSP19, MMKS*24|. Only more recently, researchers have begun
to describe different types of reciprocity within a single framework [Rob07, SCHN21,
SUOY24, PHG24]. The corresponding studies explore when people would rather adopt
one type of reciprocity instead of the other. Unfortunately, however, these studies are
restricted to the analysis of donation games only. As a result, they cannot capture
synergistic interactions, as in the stag hunt game [Sky03, PSSS09] (Fig. 5.1C). Similarly,
they cannot capture cases in which one individual’s cooperation crowds out the need for
others to cooperate, as in the volunteer’s dilemma [Die85], the snowdrift game [DHO5] or
other classes of hawk-dove games (Fig. 5.1D). To describe the effects of reciprocity in full
generality, it takes models that allow for all kinds of social dilemmas. We present such a
model herein.

Such a generalisation is not straightforward. In donation games, the payoff consequences
of one individual’s cooperation are independent of whether or not their interaction partner
cooperates too. This independence allows researchers to compute the players’ payofts
explicitly, by solving a low-dimensional system of linear recursions [SCHN21]. Beyond
donation games, this simple recursion no longer applies. Hence, an analysis of direct
and indirect reciprocity across all social dilemmas requires a new set of proof techniques,
which we summarise below (and which we discuss in full detail in the Supplementary
Information).

To characterise whether socially optimal outcomes can be sustained with either direct or
indirect reciprocity (or both), we extend the notion of so-called equalizer strategies. These
strategies have been first introduced in the context of direct reciprocity [BNS97, PD12].
By implementing an equalizer strategy, individuals can unilaterally set their opponent’s
payoff to a fixed value. That is, opponents always get the same payoff, irrespective of
their own behavior. Once all other players adopt an equalizer strategy, the remaining
player thus neither has an advantage, nor a disadvantage, from deviating. This property
makes equalizers a useful tool to prove the abstract existence of Nash equilibria. The
resulting set of equalizers includes several well-known strategies, such as Generous Tit-
for-Tat [Mol85, NS92] and generalisations thereof [GANH24]. By building on these ideas,
Schmid et al [SCHN21] have shown that equalizers can also be used to sustain full
cooperation in models of indirect reciprocity — provided the game at hand is a donation
game. Herein, we characterise when such equalizers exist in arbitrary pairwise social
dilemmas, for both direct and indirect reciprocity (and arbitrary mixtures). Along the

78
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Figure 5.1: Tlustration of the game dynamics. We consider populations of players who
engage in pairwise social dilemmas with two actions A and B. A, In the prisoner’s
dilemma, the best outcome for the group is for both players to choose A. Yet individually,
B is a dominant action. B, The donation game is a special case of a prisoner’s dilemma.
Here, action A can be interpreted as paying a cost ¢ >0 for the co-player to receive a
benefit b>c. Action B means to do nothing. In the depicted example, b=3 and c=1.
C, The stag hunt game captures a dilemma in which players may fail to coordinate on the
most profitable equilibrium. D, In the hawk-dove game, there are two (pure) equilibria.
In each equilibrium one player chooses A and the other one B. Each player prefers to be
the one who chooses B. E, In general, payoffs are often denoted by the letters R, S, T,
P, respectively. F, The game unfolds over many rounds. Each round, two players are
randomly drawn to interact with each other in the given social dilemma. G, Each of the
players chooses action A or action B. Their choice might depend on their co-player’s
previous interactions.

way, we also prove that in general, equalizers need to be more complex than previously
appreciated (in technical terms: in donation games, equalizers can be implemented with
simple reactive strategies [SCHN21]. For more general social dilemmas, it takes the richer
set of memory-1 strategies instead).

Our model combines direct and indirect reciprocity within a single framework, irrespective
of the considered social dilemma. This framework can serve as an important bridge to
transfer insights from one field to another. Herein, we use this bridge, for example, to
incorporate the well-known memory-one strategies from direct reciprocity into models
of indirect reciprocity. In this way, we can prove that even in indirect reciprocity, fully
cooperative outcomes can be sustained as a Nash equilibrium. In the past, such rigorous
results for indirect reciprocity have been difficult to establish; these difficulties have been
especially pronounced in the case of ‘private information’, when individuals are allowed
to disagree on each others’ reputations [HSTT18]. Instead, here we prove the existence of
such Nash equilibria for arbitrary social dilemmas, and for players who are allowed to
discount the future — even when information is private.
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5.1 Results

Game setup. We consider a population of n individuals, referred to as players. These
players repeatedly interact in a pairwise interaction. More specifically, in each round, two
players are selected at random (Fig. 5.1F). Each player then chooses one of two actions,
A or B (Fig. 5.1G). Their choices determine the payoffs they get, according to the given
payoff matrix (Fig. 5.1A-E). All other population members observe the interaction, but
they may independently misperceive each player’s action with some probability € <1/2.
Instead of correctly identifying a player’s action as, say, action A, they perceive it to
be B, or vice versa. After the interaction has taken place, there is another round with
continuation probability d. In that case, a new pair of players is randomly drawn to
interact with one another. With the converse probability 1—d, the game ends. The
total payoff of each player is defined as the sum of the payoffs they obtained in each
round, times a normalisation constant. Equivalently, one may also interpret this setup as
an infinitely repeated interaction in which players discount future rounds by a constant
factor d. In the limit d— 1, we recover the classical case of an infinitely repeated game
without discounting, as for example in Press & Dyson [PD12]; see Methods for details.

The exact nature of the game played each round depends on the four entries R, S, T, P of
the payoff matrix (Fig. 5.1E). In the following, we are particularly interested in games
that can be interpreted as social dilemmas. Based on the ‘individual-based’ interpretation
in Kerr et al [KGSF04], this means payoffs satisfy the following constraints. First, players
prefer mutually choosing A to mutually choosing B, such that R > P (except for the
degenerate case of R= P, this assumption is without loss of generality; otherwise we just
need to relabel the two actions). Second, players always prefer their co-player to choose
A, implying R>S and T > P. Third, in mixed pairs, the player who chooses B gets the
higher payoff, such that T'>S. Together these assumptions ensure that on a collective
level, individuals have some incentive to choose A; yet on an individual level, they may
want to choose B. Accordingly, we interpret action A as cooperation, and we associate
B with defection (however, we use the more neutral letters A and B, rather than the
usual letters C' and D, to highlight that our framework is not restricted to the prisoner’s
dilemma).

The notion of a social dilemma captures several classical games. (7) In the prisoner’s
dilemma, payoffs satisfy the inequalities T'> R> P> S and 2R>T+S5, as in Fig. 5.1A.
(i7) The donation game additionally requires R+P=S+T, see Fig. 5.1B. Such games
are sometimes called ‘additive’ [MRH21, CP23]. (#4) The stag hunt game satisfies
R>T > P > S, as depicted in Fig. 5.1C. (i) Finally, the hawk-dove game satisfies
T>R>S>P , asin Fig. 5.1D. The exact payoff ranking determines the severity of the
dilemma. Among the above examples, players arguably face the strongest conflict between
cooperation and defection in the prisoner’s dilemma and the donation game. However,
also the other two games entail some conflict. Players may either have difficulties to
coordinate on the equilibrium that is better for both (as in the stag hunt game), or they
may prefer different equilibria altogether (as in the hawk-dove game).

Reactive and memory-1 strategies. When playing the above games, players make
their decisions based on their strategies. Strategies are recipes that tell the player what
to do, depending on the outcome of previous interactions.

In order to allow for an explicit analysis, researchers often consider a restricted space
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Figure 5.2: Strategies of direct and indirect reciprocity. Strategies of reciprocity differ in
whether or not players (here, Player 1) take into account third-party interactions (here,
between players 2 and 3). A, According to direct reciprocity, Player 1 ignores third-
party interactions. B, According to indirect reciprocity, Player 1, takes such third-party
interactions into account. C, Our framework also allows for intermediate cases, where
Player 1 considers third-party interactions with some fixed probability A. D, For our
model, we consider strategies of different complexity. When using a reactive strategy,
players condition their behaviour on the last observed action of the co-player. E, When
using a memory-1 strategy, they condition their behaviour on the entire outcome of the
co-player’s last interaction. This also involves the action of the co-player’s last opponent.
F, A strategy is a Nash equilibrium if it is a best response to itself. The effect of such
strategies can be represented graphically. The grey area represents all feasible payoffs
in the respective game. The blue area represents the payoffs that are still feasible if
every player adopts the same fixed resident strategy, except for one deviating mutant.
In this example, the resident strategy yields a payoff of three against itself (indicated
by the upper right dot). According to the blue area, no mutant strategy yields a higher
payoff. Hence, the given resident strategy is a Nash equilibrium. G, An equalizer strategy
is a special case of a Nash equilibrium. Here, the mutant’s payoff is always the same,
regardless of the mutant’s strategy.

of strategies. For example, Schmid et al. [SCHN21] consider strategies of the form
0 =(po,pa,ps,A). Here, the first parameter py is a player’s cooperation probability against
an unknown co-player. The next two parameters ps (pp) give the player’s cooperation
probability against a co-player who cooperated (defected) in their last relevant interaction.
Finally, the parameter A determines which previous interactions of the co-player are
deemed relevant. When A = 0, only direct interactions matter. For example, if Bob
previously defected against Alice (played B), but then cooperated with Charlie (played
A), Alice would use cooperation probability pp against Bob. That is, Alice implements
a strategy of direct reciprocity (Fig. 5.2A). In contrast, when A =1, players take into
account all their co-players’ interactions equally, even interactions with third parties.
As a result, such players base their decision on the very last action of the co-player,
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independently of whether or not they were personally involved. In the above example,
if Bob defected against Alice (played B), but then cooperated with Charlie (played A),
Alice’s cooperation probability against Bob is ps. Now, Alice uses a strategy of indirect
reciprocity (Fig. 5.2B). The model also allows for intermediate values of A€ (0,1). In that
case, Alice takes into account third-party interactions with probability A (Fig. 5.2C). As
the above strategies merely respond to the co-player’s previous behaviour, they are called
reactive [Sigl0] (Fig. 5.2D). The set of reactive strategies includes Always Cooperate
o=(1,1,1,)), Tit-for-Tat 0 = (1,1,0,0), and its indirect reciprocity analogue Simple
Scoring [NS98a] 0 =(1,1,0, 1), among others.

In the context of direct reciprocity, it is also common to consider a slightly more general
strategy set, called memory-1 strategies. Here, a player does not only take into account the
co-player’s last action. Rather the player takes into account the entire context of the co-
player’s previous interaction, including the action of the co-player’s opponent (Fig. 5.2E).
Memory-1 strategies take the form o= (po, paa, pas, A, PeB,A). The interpretation of
the entries pg and A is the same as before. However, now p,, is a player’s cooperation
probability given that in the co-player’s last relevant interaction, the co-player used
action y whereas the co-player’s opponent used action x. Within the set of memory-1
strategies we can represent reactive strategies as those strategies for which psa=pp4 and
pa=ppg- Here, only the co-player’s last relevant action matters. A well-known example
of a non-reactive memory-1 strategy is Win-Stay Lose-Shift [NS93], o0 =(1,1,0,0,1,0).
Here, a player would only cooperate with a co-player if in their previous joint interaction
either both cooperated, or no one did [NS93].

Partner strategies. In the following, we are interested in whether mutual cooperation
can be sustained by either direct or indirect reciprocity. To this end, we study strategies
o with two properties. First, the strategy ought to be nice [Axe81]. That is, if o is
adopted by everyone, the entire population cooperates indefinitely in the absence of errors.
Second, the respective strategy ought to be a Nash equilibrium: if adopted by everyone,
no single player has an incentive to deviate (Fig. 5.2F). In the context of direct reciprocity,
strategies that satisfy both properties are called partners [HTS15]. The answer to the
question whether partners exist turns out to be trivial in the stag hunt game or in the
so-called harmony game [MVCS12]. In those games, payoffs satisfy R >T. Therefore
mutual cooperation is a Nash equilibrium even if the game is only played once. It trivially
follows that mutual cooperation can also be sustained within our repeated setup — players
merely need to use the strategy Always Cooperate. In the following, we will thus focus
more on the other two game classes, the prisoner’s dilemma and the hawk-dove game.

To show existence of partner strategies in those games, we characterise a particular
subset of Nash equilibria, those based on equalizer strategies. Such strategies do not only
ensure that no player can unilaterally improve their payoff; they ensure every deviating
player gets the same payoff (Fig. 5.2G). For direct reciprocity (A=0), the existence of
equalizers has been shown by Boerljist et al [BNS97] and Press & Dyson [PD12]. Their
result applies to the infinitely repeated prisoner’s dilemma without errors (d =1 and
e =0). For indirect reciprocity (A = 1), the existence of equalizers follows from the
work of Schmid et al [SCHN21], but only for the restrictive case of donation games (but
arbitrary d and ¢). Instead, here we characterise equalizers for all social dilemmas, for
direct and indirect reciprocity, and for all continuation probabilities and error rates. All
details and proofs are in the Supplementary Information. Below we summarise the respec-
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A summary of results The space of 2x2-games

/Additive games (R +P=5+1) w

a. Known: Reactive equalizers exist in
donation games for direct and indirect
reciprocity, and all intermediate values of
indirectness (Schmid et al [SCHN21]).

/

b. We show: Reactive equalizers and memory- Hawk-dove
1 equalizers are equivalent, in that they

exist in the same set of games

k (Corollary 19). /

Social dilemmas

c. Known: Memory-1 equalizers of direct
reciprocity exist in infinitely repeated games
(Press and Dyson [PD12]).

d. We show: Any reactive Nash equilibrium is
either only based on direct reciprocity, or it
is based on unconditional strategies
(Theorem 13).

e. We show: Memory-1 equalizers exist for all
values of indirectness (Theorem 15).

N

Prisoner’s

Stag hunt dilemma

Payoff of a cooperator against a defector (.5)

P R

Payoff of a defector against a cooperator (77)
Figure 5.3: Summary of our results. Herein, we derive results on the existence of
‘equalizer strategies’ in pairwise social dilemmas. The right half of the figure represents
the space of all such dilemmas graphically. Here, we keep the two payoff parameters
R and P fixed (with R > P). We vary the remaining payoffs 7' and S. The orange
region indicates all games that satisfy the conditions of a social dilemma. The blue
dashed line indicates the subspace of ‘additive games’, which includes the donation
game. All previous models that combine direct and indirect reciprocity focus on this blue
subspace [Rob07, SCHN21, SUOY24, PHG24]. For the general space of social dilemmas,
the existence of equalizers has only been established for direct reciprocity [PD12], but not
for indirect reciprocity or any mixtures.

tive results. For a visual representation of previous work and our contribution, see Fig. 5.3.

Reactive strategies in the donation game. To better motivate our contribution,
let us first recapitulate the results of Schmid et al [SCHN21]. They considered a similar
setup as ours, but restricted to the donation game and to players with reactive strategies.
Payoffs of the donation game are given by R=b—c, S=—c, T'=0, and P=0, where b and ¢
are the benefit and cost of cooperation. Schmid et al show that for full cooperation to be
sustainable, the pairwise continuation probability ¢ needs to be sufficiently large (this is
the probability that a given pair of players will interact again given it just interacted; this
probability is directly related to the population-wide probability d, see Supplementary
Information). The exact threshold for 4 depends on the players’ indirectness parameter \.
For direct (A=0) and indirect reciprocity (A=1), the respective thresholds are

C

=7 and 0= b+(n—2)((1-2¢)b—c)’

b

(5.1)

In particular, indirect reciprocity makes it easier to sustain cooperation (compared to
direct reciprocity) if the population is large and errors are rare. Either way, once the
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respective threshold is reached, mutual cooperation can be enforced with an equalizer
strategy. In case of direct reciprocity, the respective equalizer is Generous Tit-for-Tat

[NS92]. In case of indirect reciprocity, it is Generous Scoring [SCHN21].

To derive the above results, both the restriction to donation games and to reactive
strategies turns out to be crucial. Because the donation game satisfies the additivity
property R+ P =S5+T, the payoff of each player can be decomposed into a sum of two
terms. The first term only depends on on the statistical distribution of the co-players’
actions (affecting whether or not I receive a benefit b). The other term only depends
on the statistical distribution of the own action (affecting whether or not I pay the
cost ¢). That is, the players’ actions affect payoffs independently. Furthermore, for
reactive strategies, the distribution of a player’s own actions affects the distribution of
the co-players’ actions by a linear relationship. Based on these two observations, one
can derive a simple linear recursion for the players’ likelihood to cooperate with each
other in any given round. With this recursion, it becomes straightforward to compute
payoffs. Unfortunately, once either the game is non-additive, or players use more com-
plex strategies, the above approach is no longer viable. Hence, for the results below
we rely on proof techniques that do not require us to compute the players’ payofts explicitly.

Memory-1 strategies in the donation game. To make progress, we first explore
whether cooperation in the donation game is easier to sustain when players are allowed to
use memory-1 strategies. More specifically, we ask whether there are memory-1 equalizers
that can sustain full cooperation even when the respective condition in (5.1) is violated.
The answer is negative. We find that for all game parameters and any indirectness A,
memory-1 equalizers exist if and only if reactive equalizers exist (Supplementary Infor-
mation Corollary 5). This result resonates with earlier work on direct reciprocity. For
the infinitely repeated donation game, it was shown that reactive strategies can enforce
all linear payoff relationships that are theoretically possible [HNT13]|. Thus at least in
the donation game, allowing for more complex strategies does not provide any additional

advantage with respect to implementing equalizer strategies (Fig. 5.3B).

Reactive strategies in general social dilemmas. Given the strong properties of
reactive strategies in donation games, we ask whether they can also sustain full cooperation
in other social dilemmas. Surprisingly, the answer is negative. To describe this result
more formally, we introduce the notion of a degenerate strategy. A reactive strategy is
degenerate if it exclusively relies on direct reciprocity (A=0), or if it acts unconditionally
(pa=pp). That is, degenerate strategies completely ignore any third-party interactions.
Similarly, we say an equilibrium is degenerate if it requires players to use degenerate
strategies. Using this notion, we can formulate the main result of this section as follows: In
any non-additive game with more than two players (n>2) and positive error rates (¢ >0),
any Nash equilibrium in reactive strategies is degenerate. In other words, if players are in
a Nash equilibrium that entails at least some indirect reciprocity (A>0), players must
be using unconditional strategies such as Always Defect. (The above result also implies
that for A >0, there are usually no equalizer strategies, because unconditional strategies
are in general not equalizers [HNT13].) This finding suggests that earlier results on the
donation game [SCHN21] are sensitive to the exact payoff values. Once the payoff matrix
is slightly perturbed, reactive partner strategies that entail some indirect reciprocity cease

to exist (Fig. 5.3D).
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Figure 5.4: Feasibility of equalizer strategies across all social dilemmas. We graphically
represent whether or not equalizer strategies exist. To this end, we consider four different
cases. The cases depend on whether individuals use direct (left) or indirect reciprocity
(right), and on whether or not there are errors (top vs. bottom). In each case, we consider
the space of all social dilemmas (as in Fig. 5.3). For each possible game, we depict how
large the pairwise continuation probability ¢ needs to be for equalizers to exist. Low values
of § (blue) indicate that the conditions for equalizers are easy to satisfy. Higher values of ¢
(red) suggest that equalizer strategies only exist for rather high continuation probabilities.
A B, The figure shows that without errors, indirect reciprocity is more favourable to the
existence of equalizers. C,D, Once third-party observations are subject to errors, there
are regions in which direct reciprocity allows for equalizers whereas indirect reciprocity
does not.

The proof of the above result is constructive: We show that for any such reactive resident
strategy, one can construct a deviating strategy that gets a strictly higher payoff. Inter-
estingly, the deviating strategy is not reactive. Rather, it is a higher-memory strategy
that takes into account the joint distribution of previous actions across different pairs of
players. We show that such strategies have a payoff advantage when the process involves
at least some randomness (e.g., when there are errors). We provide a description of the
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deviation strategies in the Methods, and a proof of their superiority in the Supplementary

Information.

Memory-1 strategies in general social dilemmas. The above result raises the
question whether beyond the simple donation game, non-degenerate equalizers exist at
all. To explore that question, we search the space of memory-1 strategies. There, we find
that the answer is positive. For any social dilemma and any indirectness A, there exist
equalizer strategies for sufficiently large continuation probabilities and sufficiently small
error rates (Fig. 5.3E, see Supplementary Information). Similar to (5.1) for the donation
game, the minimum continuation probability can be computed explicitly. For example,
assuming e =0 and T > R, we find that fully cooperative equalizers with indirectness A

exist if and only if the pairwise continuation probability exceeds the threshold [5.2],

rmnu1R}_nmxqu}>*

5y = (1 + (1+(n—2)k) max{|T—R|, [P—3S|}

A few remarks are in order. First, for social dilemmas, this threshold is strictly smaller
than one. Hence the condition can be satisfied for sufficiently large ¢. Second, for any
population size n>2, it is easy to verify that threshold (5.2) is strictly lower for indirect
reciprocity than for direct reciprocity. This is a consequence of our assumption that there
are no errors. Once the error rate becomes positive, direct reciprocity may become the
more favourable mechanism for full cooperation (Fig. 5.4). Third, in the special case of
the donation game, the threshold simplifies to the following values for direct (A=0) and

indirect reciprocity (A=1):

b+(n—2)(b—c)

So =+

5 and &) =

That is, we recover the earlier conditions in (5.1) for reactive strategies for e =0.

In the more general case of an arbitrary prisoner’s dilemma and of the hawk-dove game
(with T'> R), we show that once the condition (5.2) is satisfied, one can always find
equalizer strategies that enforce the mutual cooperation payoff R (see Supplementary
Information, Proposition 5). Again, our proof is constructive. In the Methods, we provide
an algorithm that produces an optimal equalizer strategy for all social dilemmas (even
for positive error rates). For games with 7'> R, this algorithm produces nice strategies
(i.e. po=paa=1). Together with our earlier observation that cooperation is trivial to
sustain in the stag hunt and the harmony game (with 7'< R), we conclude that stable
cooperation can always be achieved with memory-1 strategies, based on direct or indirect

reciprocity, or any arbitrary mixture of the two.

Overall, the above results represent a considerable generalisation of previous work. We
recover the seminal results of Press & Dyson [PD12], when we restrict our framework to
direct reciprocity in infinitely repeated games (A=0 and d=1). Similarly, we recover the
results of Schmid et al. [SCHN21], when we restrict our framework to reactive strategies,

and to donation games only (see Methods for details).

Simulation results. To further illustrate the above results, we have explored the game
dynamics when n—1 players act according to a given equalizer strategy (produced by
Algorithm 1 in the Methods section). For the remaining player, we have sampled N =100
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Figure 5.5: Simulation of equalizer strategies. We consider three social dilemmas in
which n—1 residents use a fixed equalizer strategy. For the remaining player, we randomly
sample N =100 mutant strategies. For each mutant strategy, we simulate the resulting
game dynamics. Based on these simulations, we compute the average payoff in pairwise
interactions between the deviating mutant player and a given resident player (‘Resident 17,
see Methods for details). These pairwise payoffs are depicted as blue dots. As expected
from our analytical results, all mutant strategies yield the same average payoff (whereas
the payoff of the resident may vary). In two of the three cases, the respective payoff is
optimal (A, C). Only in the stag hunt game, equalizers cannot enforce the socially optimal
payoff (B). But also in those games (with 7'< R), the socially optimal payoff of mutual
cooperation can still be achieved in equilibrium. Players merely need to use the strategy
of Always Cooperating instead. For reference, the grey area shows the set of feasible
payoffs for the respective game.

random ‘mutant’ strategies. To approximate the players’ resulting payoffs, we simulated
many independent instances of the game dynamics, separately for each mutant strategy (in
contrast to previous work on reactive strategies in donation games [SCHN21]|, there is no
known formula to compute the players’ payoffs explicitly). Fig. 5.5 shows the results. We
depict the residents’ and the mutant’s average payoff for three different social dilemmas
(the prisoner’s dilemma, the stag hunt game, and the hawk-dove game). In each case, we
find that the simulated payoffs indeed form a straight horizontal line, the characteristic
property of an equalizer strategy (Fig. 5.2G). In particular, in each case the produced
resident strategy is a Nash equilibrium: Once adopted by everyone, no mutant strategy
has a selective advantage.

5.2 Discussion

Direct and indirect reciprocity are important determinants of human behaviour in social
dilemmas [Now06b]. They are arguably among the key mechanisms to explain our
exceptionally high cooperation rates [RN13|. Yet despite the many similarities between
the two kinds of reciprocity, they are typically studied independently. Even worse,
respective models often differ substantially. Models of direct reciprocity tend to study the
prisoner’s dilemma [Axe81, HCN18, GK21, RH23|, whereas indirect reciprocity models
are often based on the narrower class of donation games [NS98b, NS05, Sigl2, Oka20].
Similarly, individuals in direct reciprocity models are typically assumed to adopt reactive
or memory-1 strategies [Sigl0, SHCN22]. In contrast, models of indirect reciprocity focus
on subsets of ‘third-order social norms’ [OI04], which do not map easily onto either class
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of direct reciprocity strategies. These differences make it difficult to compare the two
mechanisms directly. Moreover, they make it difficult to generalise insights from one
field to the other. To address these problems, we join recent efforts to study a unified
framework [Rob07, SCHN21, SUOY24, PHG24], in which individuals themselves choose

which kind of reciprocity they use.

Previous models that combine direct and indirect reciprocity are based on the smallest
common denominator of the two literatures, the donation game. This game is the simplest
metaphor of cooperation: individuals pay some cost to provide a benefit to someone
else. This simplicity promotes a mathematical analysis, and it permits an intuitive
interpretation of the results. However, this game rules out possible interdependencies
between the individuals’ actions. Neither is it particularly beneficial if individuals
cooperate at the same time, nor is it particularly damaging if they all defect simultaneously.
This assumption makes it impossible to study games in which mutual cooperation yields
synergistic benefits, as in the stag hunt game. Similarly, it rules out interactions in
which individual actions are strategic substitutes, as the volunteer’s dilemma [Die85] or
the snowdrift game [DHO05]. Even among all prisoner’s dilemmas, donation games only
represent a negligible subset of measure zero. These considerations highlight a need to
study models that allow for more general types of social dilemmas. We present such a
model herein.

We use this model to characterise strategies that can sustain full cooperation. Our results
show that these strategies do not need to be overly complex. Instead, it suffices that
individuals take into account the last interaction of the respective group member (e.g.,
to consider memory-1 strategies). Our results also show that simpler strategies (reactive
strategies) in general do not suffice to support cooperation. In fact, the only domain in
which these strategies suffice are the donation games considered earlier [Rob07, SCHN21,
SUOY24, PHG24]. Together, these two observations represent a nice characterisation of
the complexity of strategies that is necessary and sufficient to ensure stable cooperation
for all social dilemmas.

While the basic setup we consider is thus similar to earlier unified frameworks of reci-
procity [SCHN21, SUOY24, PHG24], the mathematical tools we apply are vastly different.
Earlier work exploited the advantage that payoffs of reactive players in the donation
game can be computed explicitly. Instead, for our results we focus more on the notion of
equalizer strategies, as introduced by Boerljist et al [BNS97] and Press & Dyson [PD12].
These strategies have the remarkable property that they can unilaterally control the
co-player’s payoff, independent of the co-player’s strategy (Fig. 5.2G). This makes them
extremely useful tools to construct Nash equilibria. Once every population member adopts
an equalizer strategy, no single player has an incentive to deviate. Interestingly, however,
deviators suffer no harm either. In particular, Nash equilibria based on equalizer strategies
do not satisfy the stronger notion of evolutionary stability [MSP73].

Evolutionary stability is generally difficult to achieve in repeated games. In fact, for the
standard case of infinitely repeated games without errors, no strategy is evolutionarily
stable [BL87, Lor94, GV18]: one can always identify mutant strategies that may invade
by neutral drift. But even identifying strategies that satisfy the weaker condition of
being a Nash equilibrium has been difficult in the field of indirect reciprocity. These
difficulties are particularly apparent in models with ‘private information’ [Oka20]. In
such models, individuals may hold different views on which reputation they assign
to others. These disagreements may accumulate over time, which makes cooperation
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difficult to sustain [Uch10, HSTT18, MH24]. To make analytical progress, the concept of
equalizer strategies is particularly convenient. These strategies allow us to give a proof
of principle: We rigorously show the existence of cooperative Nash equilibria, for any
pairwise social dilemma, for all sufficiently large continuation probabilities, for direct and
indirect reciprocity — even under private information.

Interestingly, however, even the most favorable equalizer strategies do not necessarily
produce the socially optimal outcome. One counterexample is the stag hunt game
(Fig. 5.5B). Here, equalizers exist, but they cannot ensure the optimal payoff of R. This
insufficiency, however, does not diminish our results, nor is it a surprise. Because the
stag hunt game’s payoffs satisfy both R>T and R> P, a co-player can always avoid an
average payoff of R by defecting in all rounds. Hence, unilaterally imposing a guaranteed
payoff of R on the co-player is clearly infeasible. Nevertheless, our more general result,
that the game allows for full cooperation in equilibrium, holds. In this game, players
simply need to adopt the strategy of always cooperating, instead of adopting an equalizer
strategy.

To sum up, social dilemmas are at the core of many collective action problems. To
resolve them, people frequently respond to an opponent’s previous behaviour. Prior
to making a decision, they form opinions about their opponent, either based on direct
experiences, an opponent’s third-party interactions, or both [MBE13, MSA20]. In our
work, we mathematically characterise strategies people can use to sustain cooperation,
independently of the kind of reciprocity they adopt, and independently of the specific
social dilemma at hand.

5.3 Methods

Game dynamics and resulting payoffs. We consider a population of n players. Each
round, two players are selected uniformly at random. They each play action A or action
B and receive a payoff determined by the corresponding entries of the payoff matrix. The
n—2 players who were not selected for that round receive a payoff of zero. Let m;(t) denote
Player i’s resulting expected payoff in round t. We define a player’s total payoff as the
sum of these one-round payoffs times a normalisation factor of (1—d)n/2, so that the
total expected payoft is

m=(1— d)% i)dtm(t). (5.4)

The normalisation factor ensures that the resulting values are in the same range as
the game’s one-round payoffs. For example, when all players use action A in all their
interactions, the above formula guarantees that each player’s expected total payoff (across
all interactions and rounds) is R. Alternatively, one may also interpret the above payoff
formula to represent a scenario in which individuals discount future payoffs by a constant
rate d [FM86b, Abr88, NS95, MH16b, IM18]. In contrast, Press & Dyson [PD12], among
many other works, consider the asymptotic behaviour of a game without discounting.
This enables them to compute payoffs by calculating the stationary distribution of the
Markov Chain defined by the game process. In the limit of d — 1, our payoff definition
approaches theirs.

Except for the case of a donation game among players with reactive strategies [SCHN21],
there is no known closed-form solution to compute a player’s expected payoff m;(t) in a
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given round t. Hence, for practical purposes, the value of (5.4) needs to be approximated
numerically with simulations. For example, for a given population composition, we may
independently simulate the above game dynamics k times. For each run, we sum up each
player’s payoff across all rounds. Then we sum up these total payoffs across all simulation
runs, divide by k, and multiply with the normalisation constant (1—d)n/2.

In Fig. 5.5, we have run k=5 - 10° independent simulations for each mutant strategy. For
graphical purposes, there we only report payoffs from interactions between the mutant
and one given resident, Resident 1 (while ignoring the payoffs from all other interactions).
In this case, the relevant normalisation constant is (1—d)n(n—1)/2. For the mutant, this
procedure gives the same result as (5.4). However, for the resident, the result is different
from (5.4), because we neglect the resident’s payoff against other residents. For each of
the three panels, the resident strategy is determined by Algorithm 1. All have A = 0.5
and po = 1. The other entries (paa, pas,Psa,Pss) are (1.000,0.331,1.000,0.666) for the
prisoner’s dilemma, (0.498, 1.000, 1.000, 0.498) for stag hunt, and (1.000, 0.498, 0.498, 1.000)
for the hawk-dove game.

Instability of non-degenerate reactive strategies. In the results section, we have
argued that in general social dilemmas, only degenerate reactive strategies can be stable.
Here, we outline the respective proof (all details are in the Supplementary Information).
To this end, consider a resident population of n > 2 players, who all adopt the same
reactive strategy o= (po, pa, B, A). Assume the strategy is non-degenerate, p4 #pp, A<1,
and that errors are possible, ¢ >0. For the proof, we construct a set of four (non-reactive)
strategies. Then we show that at least one of them can invade the resident population.

First we construct events £F4 and Eg. Both F4 and Ep completely define which players
are selected and what actions they play in the first n+3 rounds, and do so identically
apart from the action of Player 1 in round 2. The below table summarises these first n+3
rounds. The mutant player is Player 1. In round 2, x is action A in E4 and action B
in Eg, whereas for y, any consistent choice is permissible. In round 3, 7 is the action
that is not y. The dashes indicate actions that are defined by the event, but not specified
explicitly in our proof. We show in Supplementary Information Proposition 10 that we
can make these choices in such a way that E4 and Ep occur with positive probability.

Round o 1 2 3 4 5 6 ... nt2
Players 231312231 3|1 3|14 1 n
Actions - —|- |z yly —|A—-|B —|- - - -

The invader strategy ¢’ normally plays in the same way as strategy o. Only when event
E, has occurred does o’ deviate from o. It does so by, in one case of x € {A, B}, slightly
increasing its probability to play action A towards Player 2 next time they are selected to
play together, and slightly decreasing it by an identical amount in the other case. Other
than that, o’ continues to play exactly like o.

Construction of equalizer strategies. In the following, we outline how equalizer
strategies can be constructed within the space of memory-1 strategies. In the Sup-
plementary Information, we show that for a strategy with cooperation probabilities
p=(paa,paB,PBa,ppp)T and indirectness A\ to be a generic equalizer, it needs to have
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the form
DAA l—aR—p
PAB - —1 N . 1 1—OCT—B
Dia =0+ An—2))(I+A(n—2)M,) —aS—3 (5.5)
BB —aP—43

Here, o and (3 are constants, I denotes the identity matrix and M, is the error matrix

(1—¢)? (1—-¢)e e(1—¢) ¢&*
M_(l—a £ >®2_ (1—g)e (1—e)? &% &(1—¢)
e 1-¢)] le(l-e) & (1—e)? (1—e)
g2 eg(1—e) (1—¢e)e (1—¢)?

The payoff that this equalizer strategy enforces is

_ 1—-9
w9

Note that whether or not a strategy is an equalizer does not depend on pg. This general
result captures the results of several previous studies as special cases.

1. In Schmid et al [SCHN21], the authors consider the special case of reactive strategies
in additive games (with 7'# P). Their Supplementary Information Eq. (13) states
that a reactive strategy (po,pa,pn, A) is an equalizer if and only if

1+ (n —2)5A P-S
1+ (n—2)(1—20)A (T —P)

PA —PB = (5.6)

We can recover this result from our (5.5). For reactive strategies, it takes the form

10 1—¢ ¢ ba
(6 5) a0 2)) G
e —aS -4
= (07" + An-2)) - (—aP—B) (5.7)
where @ = (T — P)~!. This is satisfiable (with exactly one f3) if and only if

(
condition [5.6] holds.

2. According to Press & Dyson [PD12]|, a memory-1 strategy is an equalizer in an
infinitely repeated (d=1) two-player game (n=2) if and only if there are constants
B (not identical with our ) and ~ such that

—1+paa R 1
—1+paB S 1
= + 5.8
. Blol+7]4 (5.8)
PBB P 1

This exactly corresponds to our (5.5) with 6 =1 and n=2 (or alternatively A=0).

Based on (5.5), we can also provide an algorithm that takes the game parameters and an
indirectness value \ as an input to compute an equalizer strategy that enforces the highest
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Algorithm 1 Constructing a generic equalizer strategy with given indirectness A that
enforces the highest possible payoft.

1: function COMPUTEEQUALIZER(R, S, T, P, n, €, \)

2: po 1

, 5(1+(n—2))
3: = T m—2)8

. 1+ (n—2)
O )

5: M. <+ ERRORMATRIX(¢)
6:  H.o+ (1+An—2)""(I+An-—2)M)

7: (R.,S.,T.,P.)T + H-Y(R,S,T, P)T
8: if P. # R. then

return null
max{|Rg - TE‘? ’SS - ng}/ﬁ,
10: W <— max (maX{RE, Ts} - min{Sa Pe})/(ﬁ + ()7
(min{ R, T.} — min{S., P-})/¢

11: if w > (min{R.,T.} — max{S., P.})/(¢ —n) then
12: return null

13: a—w !

14: paa < 1 —n7ta(R. — min{R.,T.})
15: pag < 1 —nta(T, — min{R.,T.})
16: ppa < 1—n" ¢ —nta(S. — min{R., T.})
17: pee < 1 —n71¢ —n'a(P. — min{R.,T.})

18: 7+ min{R., T.} — (( —1)/(2a)

19: return po, paa, PAB, PBA, PBB, A\, T

payoff (among all equalizers with indirectness \). It returns the strategy parameters as
well as the payoff 7 that this strategy enforces, or null if no such equalizer strategy exists.
The correctness of this Algorithm 1 is shown in Supplementary Information Theorem 6.

Figure parameters. Fig. 5.5: Each of N = 100 points represents the payoffs of a
randomly generated mutant strategy against n — 1 identical equalizer residents in a game
with n = 50 players. Prisoner’s dilemma: R =3, S =0,T =5, P =1. Stag hunt: R = 3,
S=0,T=2 P=1 Hawk-dove: R=2,5S=0,T=4,P=-2. =103, 6 = 0.99.
Each point is an average over 5 - 10° samples with the same mutant. Equalizer strategies
were generated with an implementation of Algorithm 1.

5.4 Supplementary Information

5.4.1 Model

The model we use is a generalisation of the model of Schmid et al. [SCHN21] from the
donation game to general 2 x 2 matrix games. Like the model of [SCHN21], it is a unified
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framework of direct and indirect reciprocity. This lets us meaningfully compare the two
mechanisms and also allows us to study strategies that combine both direct and indirect
reciprocity.

Game model

Game matriz. We study a game with n players that is played in a sequence of rounds.
In each round, a disjoint pair (i, j) of players is drawn uniformly at random. These two
players then play a 2 x 2 matrix game G against each other, where G is a fixed matrix

R S
o-(3)
We require R > P throughout without loss of generality.

We use A and B as the indices for the rows and columns of G, where A = {A, B} is the
set of actions that each player can choose from in a round in which they are choosen to

play.

We also use the entries of G arranged in a 4-vector, in accordance with the below
definitions.

Definition 13 (Payoff vector). Given a game G, we define the payoff vector g as

GAA R
| Gus| |
9= aea| | T

Definition 14 (Opponent’s payoff vector). The opponent’s payoff vector gop is defined as

Gaa R
| Gpa| | T

One-round payoff. We denote by e, and ep the standard basis vectors of R4, i.e., (1,0)T
and (0, 1)7, respectively. Let ¢ and j be the players chosen to play in a given round ¢. Let
x € A be Player i’s action and y € A be Player j’s action. Then Player i’s payoff in that
round, which we denote as I1;(t), is

IL;(t) = el Ge,.

Player j’s payoff is IL;(t) = eJGe,. Players who are not drawn receive a payoff of 0 in
that round.

Game continuation. After each round, it is randomly decided whether another round will
be played, with a fixed probability d for the game to continue for at least one more round.
With probability 1 — d, the game ends. The probability d must satisfy 0 < d < 1. Round
0 is always played. So the probability for all £ > 0 that round ¢ is played is d".
We define

2d

0= 2d+ (n— n(l —d)’

(5.9)
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Then at any given point in time, for any pair (¢, j) of players, J is the probability that
these two players will interact at least once in the future. The inverse of the relationship

between 0 and d can be expressed as

on(n —1)
2(1=0)+on(n—1)

d =

Total payoff. Player i’s total payoff for the whole game is defined as

iﬂ‘(ﬂ-

t=0

II; = (1 —d)

|3

Because we allow player’s strategies to be stochastic, I1;(¢) is a stochastic quantity. We
denote the expected payoff of Player ¢ in round ¢, given that the game is played at least

until round ¢, by m;(¢) = E[II;(¢)]. Then the expected total payoff of Player i is

m=E[IL] = (1 —d)gidtm(t). (5.11)

The normalisation factor (1 — d)n/2 is chosen so that the expected total payoff takes

values in the same range as the one-round payoffs.

However, to avoid having to uneccessarily deal with the stochastic uncertainty of whether
or not a given round ¢ will be played when analysing m;(t), we henceforth consider a
completely equivalent alternative setup where an infinite sequence of rounds is always
played, and the payoffs from round ¢ contribute to the total payoff with a weight of d’.

Naturally, Eq. (5.11) retains its validity.

Interaction and error probability. Players observe perfectly who is chosen in each round,
and, when they are chosen to play, the action of their opponent. However, in the rounds
that they are not involved in, each observed action is subject to errors at a rate of ¢,

where 0 < £ < 1/2, independently of the other action.

For example, if two other players interacted and played the action pair (B, A), a third player
will correctly observe (B, A) with probability (1 — ¢)?, but make a wrong observation of
(A, A) with probability (1 — )e, make a wrong observation of (B, B) also with probability
(1 — e)e, and wrongly observe both actions, i.e. make an observation of (A, B), with

probability £2.

Together, the four parameters n, GG, d, and ¢ specify a game in our model.

Game classification

We introduce some well-studied subclasses of the 2 x 2 matrix games.

(a) Games with "> R > P > S and 2R > T + S are called prisoner’s dilemmas.

(b) Prisoner’s dilemmas that additionally satisfy R + P = S + T are called donation
games. W.l.o.g., these can also be expressed in terms of a benefit b and cost ¢ of

cooperation, where b > ¢ > 0, as

b—c —c
o= (7 %)
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(¢) Games with 7' > R > S > P are called hawk-dove games.

(d) Games with R > T > P > S are called stag hunt games.

All of the above are examples of social dilemmas, which are defined as follows:

Definition 15 (Social dilemma). A game is a social dilemma if R > S, R> P, T > S
and T > P, i.e., if
min{R, T’} > max{9, P}.

Social dilemmas are of particular interest to us, because they feature a conflict between
the collective and private preference.

The condition that distinguishes donation games from the more general case of prisoner’s
dilemmas can be stated generally as follows:

Definition 16 (Additive games). A game is additive if it satisfies R+ P =S+ T.

With that definition, donation games are exactly the additive prisoner’s dilemmas.

Given stochastic vectors v, w € [0, 1]# representing the probability distribution functions
for the actions of two players who are chosen to play against each other in a given round,
the payoff of the first player is given by the bilinear form (v, w) — vTGw. In the special
case that R+ P = S + T, it can be separated into two summands of which each only
depends on one of the players’ actions:

= (5 7) cur (T3 5).

That is why we call the above property “additivity”. An additive game allows for easier
analysis, since we can exploit the linearity in (v, w) of the payoff function: A player’s
total payoff is a function of the totality of actions taken and the totality of actions
received. In a non-additive game, where the payoff function is merely bilinear, we have
to calculate payoffs per round. Figure 5.3 classifies the symmetric 2 X 2 matrix games.
As is apparent from the figure, among the the three main game classes of interest, only
prisoner’s dilemmas can be additive.

Strategy spaces

We consider reciprocal strategies, where players remember past actions of their opponents
and base their actions on the observations they remember. In our framework, a player
playing a strategy of reciprocity remembers exactly one past action or interaction of each
opponent. The past action or interaction that they remember is called the reputation
that they assign to the given opponent. This reputation is private and not a priori known
to the other players.

Reactive and Memory-1 strategies. We consider two classes of reciprocal strategies:

» Reactive strategies, which assign to each opponent a reputation consising of one
past action of that opponent. In reactive strategies, reputations are thus elements

of A.
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o Memory-1 strategies, which assign to each opponent a reputation consising of one
past interaction of the opponent, meaning an action of the opponent together with
the action of the player the opponent was interacting with. In memory-1 strategies,

reputations are thus elements of A2

We represent memory-1 reputations as tuples (z,y) € A% The second component, y, is
always the action of the player whom the reputation is assigned to, whereas the first
component, x, is the action of the player that the opponent was interacting with in the

remembered interaction, which could be the focal memory-1 player themselves.

The strategy parameters of both reactive and memory-1 strategies include one probability
value for each possible reputation (that is, two in the case of reactive strategies and four
in the case of memory-1 strategies). When a player is chosen to interact with an opponent,
the probability value in their strategy corresponding to the opponent’s current reputation

is the probability that they will play A.

Throughout the game, players update the reputations they assign to the other players
based on their observations. When they are themselves chosen to play, we say that they
directly observe the interaction. In such a round, they always update the reputation
that they assign to their coplayer. When they are not chosen to play, we say that they
make an indirect observation. In this case, they may or may not update the reputations
they assign to the two involved players. A further strategy parameter, the indirectness A,
determines the probability for each of the two reputations to be updated. Traditionally,

the extreme cases of direct and indirect reciprocity have been studied:

« A strategy of direct reciprocity is one that only takes into account directly observed

actions. This corresponds to the case A = 0 in our model.

o A strategy of indirect reciprocity equally takes into account direct and indirect

observations. This corresponds to the case A = 1 in our model.

What follows are a formal definition for reactive and memory-1 strategies.

Definition 17 (Reactive strategy). A reactive strategy is defined by the following param-

eters:

1. the initial action probability py € [0, 1]
2. the continuation vector p = (pa,pg) € [0, 1}“4

3. the indirectness probability A € [0, 1]

A player employing the reactive strateqy (po,p, A) acts as follows: The player privately
assigns a reputation to each other player, whose value is updated throughout the game.
Initially, no value is set for the reputation. Once it is set, the possible values for a
reputation are A and B, which are the two possible actions in the one-round matriz game.
Whenever a player j plays against the reactive player, the reputation of Player j will be
updated to the action that Player j used. Whenever a player j plays against a third player
k, with a probability of \ the reactive player will update j’s reputation to the observed
action of j towards k (which might be observed wrongly due to errors, as described in the
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model), and with a probability of 1 — X\ will not update j’s reputation. The reactive player
1, when chosen to play against a player j, will use the value of their register for Player j
to choose their action. If the register is still empty, © plays A with probability py. If the
register holds the reputation value x € A, then i will play A with probability p,.

Definition 18 (Memory-1 strategy). A memory-1 strategy is specified by the following
parameters:

1. the initial action probability py € [0, 1]
2. the continuation vector p = (paa,Pas,PBa,PBB) € [0, 1]A2

3. the indirectness probability A € [0, 1]

In the same way as with reactive strategies, the parameter X\ determines when registers
are updated. Unlike with reactive strategies, the reputations are values in A*. So when
the reputation assigned by Player i to Player j is (x,y) € A?, this means that when
the reputation was last updated, it was because Player v observed Player j play action y
towards some player (which may have been Player i themselves) who simultaneously played
action x. When a memory-1 player is choosen to play, the continuation vector p € |0, 1]“42
determines their probability of playing A in the sense that if (z,y) € A? is the reputation
assigned to the given opponent, then the memory-1 player plays A with probability p.,.

Reactive strategies are a special case of memory-1 strategies, where paa = ppa and
PAB = PBB-

In the main text, instead of listing the parameters of a reactive or memory-1 strategy
as (po, p, A), we unwrap the vector p and list the parameters as (pg, pa, ps, A) for reactive
strategies, and as
(Po, DA, DAB, PBA, PBB, A) for memory-1 strategies.

Nash equilibria and equalizer strategies

We say a player ¢ acts rationally if they play in such a way that they maximise their
expected total payoff m;. A Nash equilibrium strategy is one that is apt to be adopted by
an entire population of rational players, in accordance with the following definition.

Definition 19 (Nash equilibrium [Nas50]). A strategy o is a Nash equilibrium strategy if,
when all players employ o as their strategy, no player can increase their expected payoff
by unilaterally changing to a different strategy.

The equalizer strategies, defined below, are a subclass of the Nash equilibrium strategies,
as is easy to see from the definition. By constructing equalizer strategies, we can show
the existence of Nash equilibria for a certain scenario.

Definition 20 (Equalizer strategy [PD12]). A strategy o is an equalizer strategy if, when
all players except for one (called the mutant) employ o as their strategy, then the mutant’s
expected payoff is independent of the mutant’s strategy.
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5.4.2 Existing results

Two existing results from the literature are particularly relevant to our work.

The first is Press and Dyson’s [PD12] result regarding the existence of equalizer strategies
in the prisoner’s dilemma. The model used in [PD12] is slighly different from ours, because
they consider an infinitely repeated game (intuitively equivalent to d = 1 in our model,
which is a case that we exclude). Other than that, the models are compatible. However,
since their result concerns only two-player games, there are no indirect observations and
thus also no observation errors. Thus, there is no need for the game parameter ¢ as it
features in our model, nor for the indirectness A as a strategy parameter. Because the
game is infinitely repeated, payoffs are defined in terms of the limiting behaviour of the
game, which is why the strategy parameter py is also not needed. So in the model of
[PD12], a game is given purely by the payoff matrix G, and a strategy purely by the

continuation vector p.

Theorem 11 (Press and Dyson [PD12]). Every infinitely repeated prisoner’s dilemma

among two players contains a memory-1 equalizer strategy of direct reciprocity.

Regarding infinitely repeated games that are not prisoner’s dilemmas, Press and Dyson

also show that equalizer strategies exist in some cases.

Secondly, Schmid et al. [SCHN21] show the existence of equalizer strategies in donation
games in a model that is exactly equivalent to a special case of ours, namely, its restriction

to the donation game.

Theorem 12 (Schmid et al. [SCHN21]). In all donation games, for all sufficiently large
d, there exists a reactive equalizer strategqy. More precisely, a reactive equalizer strategy

with indirectness A\ exists if and only if

1+ (n—2)56A c

1+ (n—2)(1—e)X &b

Theorem 12 easily generalises from donation games to general additive games.

The results of [PD12] are about equalizer strategies in the context of direct reciprocity
for a general payoff matrix, whereas the results of [SCHN21] are about Nash equilibria
and equalizer strategies for a unified framework of direct and indirect reciprocity, but for
the special class of donation games only. We present results for a general payoff matrix in

the unified framework.

5.4.3 Analysis of reactive strategies

In this section, we aim to analyse the space of reactive Nash equilibria as comprehensively
as possible, before later moving on to the more powerful memory-1 strategies in the
subsequent section. We present separate results for additive and non-additive games. In
additive games, we offer a complete description of all reactive Nash equilibria, which is a
trivial generalisation from Schmid et al. [SCHN21]. In non-additive games, we show by a
novel proof that, excluding edge cases of games and strategies, reactive Nash equilibria

do not exist.
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Reactive Nash equilibria in additive games

If all players (the residents) except for one (the mutant) play a reactive strategy, then the
rate at which the mutant receives action A from the residents depends linearly on the
mutant’s own rate of playing action A towards the residents. Since the payoff equation is
also linear, one may express the mutant’s payoff as a linear function of the mutant’s rate
of playing action A (the mutant’s A-rate), which is done in Lemma 4 below.

This lemma is a generalisation of Lemma 3 of [SCHN21] that is trivially obtained by
dropping the mostly inconsequential assumption of 7" > R > P, which restricts additive
games to the donation game. Compare also Eq. (71) in the proof of Lemma 3 of [SCHN21]
for the derivation of our (5.13).

Lemma 4 (Schmid et al. [SCHN21]). Consider a population where players but one, the
mutant, apply the reactive strateqy (po,p, ). Let x be the mutant’s rate of playing action
A. Then the mutant’s payoff is equal to

™= Cl((pA —pB)(T — P) — C)\<P — S))JZ + CQ(T — P) + P, (513)
where Cy, Cy > 0 are positive constants that depend only on the resident strategy, and

1 14 (n—2)0A
A= D — 29N (5.14)

Given that a mutant’s payoff only depends on the mutant’s A-rate, and given that it
does so by a linear relationship, there are only three possible cases of what the mutant’s
best response can be, depending on the coefficient of x in Eq. 5.13. Either the only best
response is to always play A, or to always play B, or, if the coefficient is 0, any strategy is
a best response for the mutant. The latter is the case exactly when the resident strategy
is an equalizer strategy.

We can use this to characterise all reactive Nash equilibria in additive games. The below
Proposition 7 is analogous to Theorem 1 of [SCHN21].

Proposition 7. In an additive game, the reactive Nash equilibria are exactly the following
strategies, with ¢y defined as in (5.14).

e The equalizer strategies. They are

— all strategies such that

when T # P,
— and all strategies when R =S5 =T = P.

e Those Nash equilibria that are not equalizer strategies and always play action A.
They are

— all strategies with pg = pa = pp = 1 when P < S

— and all strategies with pg = pa = 1 and (1 — pp)(T — P) > cx(P — 5) and
either of A\ =0 orn =2 ore=0.
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e Those Nash equilibria that are not equalizer strategies and always play action B.
They are

— all strategies with pg = pa = pg = 0 when P > S

— and all strategies with pg = pp = 0 and pa(T — P) < cx(P — S) and either of
A=0o0orn=2o0re=0.

Proof. We consider the sign of the coefficient of z in (5.13). It is the sign of
(pa —pB)(T — P) —cx(P = 5). (5.15)

If the value of this expression is positive, the best-response mutant strategies are exactly
those with z = 1, so the resident strategy is a Nash equilibrium exactly if it always plays
action A against itself in a homogenous population. Similarly, if (5.15) is negative, the
strategy is a Nash equilibrium exactly if it always plays action B against itself. The
strategy is an equalizer strategy exactly if the value of (5.15) is 0.

It is shown in Lemma 2 of [SCHN21] that a strategy (po,p,\) always plays action A
against itself exactly if pg = pa = pg =1 or pg = pa = 1 and either A =0 or n =2 or
e = 0. Similarly, it always plays action B against itself exactly if po = pa = pp = 0 or
po =pr = 0 and either A\=00orn =2 or e =0.

The rest follows simply from examining the sign of (5.15) in the various cases. O

In Section 5.4.4, we analyse memory-1 strategies. Due to their greater complexity, it is
not possible to characterise all Nash equilibria, but we present existence and non-existence
results for equalizer strategies, which are an important subclass. In order to compare
those results to the case of reactive strategies, we now derive existence criteria for reactive
equaliser strategies from Proposition 7.

Corollary 15. In an additive game, reactive equalizer strategies with indirectness A\ exist
exactly if (a) T # P and

1 1+ (n—2)0A

1+ (n — 2)(1 — 22)A €11

P-S
T—P
or (h) R=S=T=P.

Corollary 16. In an additive game, reactive equalizer strategies exist exactly if (a) T # P
and

|18 —=P| 4 1+ (n—-2) |S — P|
r—p =t -2 —-20) T—p| ="

or (b)) R=S=T=P.

Corollary 17. In an additive game, reactive equalizer strategies exist for sufficiently large
0 exactly if the game is either a social dilemma or satisfies R=S =T = P.

Proof. We use the characterisation of equalizer strategies given in Corollary 16.

Firstly, we treat the case T'= P. Reactive equalizer strategies exist exactly if R = 5 =
T=P.
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Secondly, we treat the case T' # P. Assume that a reactive equalizer strategy exists. One of
the two inequalities in Corollary 16 must hold. Both of them imply |S—P| < |T'— P|, which
is therefore true. The general assumption P < R is equivalent to 0 < (7' — P) + (S — P)
in an additive game. Taking these two inequalities together, we get 0 < T — P and
0 < (T —P)+(S— P), or alternatively P < T and P < R. This is sufficient for an
additive game to be a social dilemma.

Now assume instead that the game is a social dilemma. Then S < T and P < R
respectively imply that S — P <T — Pand P— S <T — P. Using T'— P > 0, we can
write this as |S — P| < |T'— P|. Again using T'— P > 0, this means that ;;:1;1 < ¢ for
some sufficiently large 6 < 1, and that T'# P. So by Corollary 16, the reactive equalizer

strategies exist for sufficiently large o.

We have thus shown the equivalence of the game being a social dilemma and the existence
of reactive equalizer strategies for sufficiently large § in the case of T' # P. m

Reactive Nash equilibria in non-additive games

In contrast to the case of additive games, Nash equilibria cannot exist in non-additive
games other than in special cases where they are not affected by errors.

The most obvious way in which a Nash equilibrium can be unaffected by errors is if
the game has an error rate of zero (¢ = 0). Another way is for the game to only have
two players (n = 2), since in a two-player game, all observations are direct, and errors
by definition only occur in indirect observations. The following definition captures this
distinction between games where errors can and cannot occur.

Definition 21 (Game with errors). We say a game given by the parameters n, G, and €
is a game with errors if n > 2 and € > 0.

But even in a game with errors, a particular reactive strategy can still be unaffected by
errors. This is certainly the case if the strategy is a strategy of direct reciprocity (A = 0),
since errors only affect indirect observations, which this strategy disregards. It is also the
case if the strategy is memoryless (p4 = pp), in which case it disregards both direct and
indirect observations. The following definition expresses the concept of a reactive strategy
that can be affected by errors.

Definition 22 (Error-prone reactive strategy). We call a reactive strategy (po,p, \)
error-prone if it satisfies pa # pg and A > 0.

With these definitions, we can formally state our result about the non-existence of Nash
equilibria that are affected by errors.

Theorem 13. In non-additive games with errors, no error-prone reactive strategy is a
Nash equilibrium strategy.

The proof of this theorem is found in Appendix Section 5.4.5.

As we can see from the proof, it is not the distorting effect of errors per se that prevents the
existence of Nash equilibria. Rather, the function of errors in the proof is merely to ensure
that the game does not follow along a predetermined path, but that instead a sufficient
variety of situations arises with positive probability. Once that is the case, non-reactive
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strategies can outperform any reactive resident strategy in an additive game by using their
larger memory. We therefore expect that future research will be able to further restrict

the conditions under which reactive Nash equilibria can exist in non-additive games.

5.4.4 Analysis of memory-1 equalizer strategies

We have seen with Theorem 13 that reactive strategies only contain a very restricted set of
Nash equilibria other than in additive games. In this section, we analyse the more general
class of memory-1 strategies and find that they do contain a rich set of Nash equilibria
also for non-additive games. We show this by exactly characterising the set of memory-1
equalizer strategies. We see that they exist in all classes of social dilemmas, at least when
0 is sufficiently large and ¢ is sufficiently small, but not necessarily 0. In many social
dilemmas, including all where unconditional cooperation is not an equilibrium, memory-1

equalizers can achieve full cooperation.

Definitions

We first define some concepts and notation that we will use throughout Section 5.4.4.

Firstly, we define some quantities that may depend on the game parameters but not on a

specific strategy. Recall the definitions of the payoff vector g = (R, S, T, P)T € RA* and
the opponent’s payoff vector g, = (R,T, S, P)T € RA*. We write 142 = (1,1,1,1)T for
the vector of ones in RA”. Furthermore, we write ey, for the vector

€Ax "= €AA T €AB = (1, 1,0,0)T.

We write I 42 € M_2(R) for the identity matrix of R4’
We write M. € M _42(R) for the error matrix

- (1—¢
M. = <1—5 £ ) _ | (A=e
5 g(

€ 1-—

for observation vectors. If the stochastic vector x € R4” is the probability distribution

over the outcome of an interaction between a player pair, then M.z is the distribution

over the error-prone observation of this interaction by a third player.

The following quantities depend on the indirectness A of a given memory-1 strategy

(po, p, A). For a given strategy, we define the auxiliary quantities n € R and ¢ € R as

— L+ A(n—2)
T 1+ 0Mn—2)
and
. 1+ A(n—2)
T 20—

We always have § <n < 1 and thus n 1t 1 as 6 — 1. We always have ¢ > 1, with equality
exactly if n =2 or e =0 or A = 0. That is, ( = 1 exactly if the strategy (po, p, A) cannot

make errors with the updating of reputations.
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We define the error-adjustment matrix H, € M 42(R) as
H. = (1+Xn—2)" e+ \n—2)M,). (5.18)
We further define the error-adjusted payoff values R., S., T, P- € R by
(R, S.,T.,P.)" .= H:*(R,S, T, P)T. (5.19)

Ife=0,then H.=1p2and R, =R, S.=S5,1T. =T, P. = P.
Finally, we will use the following central definition:

Definition 23 (Press-Dyson vector). Given a strategy (po, p, A), we define its Press-Dyson
vector p as

D= ea —nHp. (5.20)
Note that p is independent of py.

Characterisation of memory-1 equalizer strategies

In this section, we derive a complete characterisation of the memory-1 equalizer strategies
for all games.

In other models, a useful result for the construction of equalizer strategies is Akin’s
Lemma [Akil6]. We also show a version of Akin’s Lemma for this model, and use it to
show that all strategies included in our characterisation are indeed equalizer strategies.
The other direction will be shown in a different way.

Lemma 5 (Akin’s Lemma). Consider a game of n — 1 residents playing the memory-1
strategy (po,p, ) and one mutant playing an arbitrary strategy.

Let for all t > 0 the vector v(t) € R4 be the mutant’s outcome of round t, but from the
view of the mutant’s opponents, in the sense that for all z,y € A, the value of vy, is 1 if
the mutant player was selected in round t, played y, and their opponent played x, and is 0
otherwise. Let

(1- d)idtv(t).

Then we have 5
pTEv = (1 — 77)%]00 (5.21)

Proof. Let m be the overall expected payoff of the mutant. Then

m=glEv=(1—d)gl, Y dEu(t).

t=0

Write z(t) € P(A?) for the probability distribution over the action pairs in round ¢ under
the condition that the mutant player was selected, again with the mutant’s action in the

second component. Then

Eu(t) = (1),

n
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SO ) .
—d)=gl, > d'x(t)
no o
We also write

—d) i d'x(t).

Let r be the probability that in a given round, a given opponent does not update the
reputation they assign to the mutant. This can be the case either because the mutant did
not play in that round, or because the mutant played against a third player and the given

opponent did not observe the interaction. So

n—2 2(n—2) (n—2)(n+1-2))
n +(1_)\)n(n—1) B n(n —1)

T =

For any 7 > 1, let r4;;(7) be the probability that at a given time ¢, where ¢ > 7, under the
condition that the mutant and a given opponent are playing in round ¢, the reputation
that the opponent assigns to the mutant stems from a directly observed interaction (i.e.
an interaction between the same two players) in round ¢ — 7. This is equivalent to saying
that in round ¢t — 7, the two players were selected, and in every subsequent round the
opponent did not update reputation they assign to the mutant. These are 7 independent

events, and so
2

rai(7) = n(n — 1)T

T—1

Similarly, for any 7 > 1, let ri,q(7) be the probability that, again under the condition
that the mutant and a given opponent are playing in round ¢ > 7, the reputation that the
opponent assigns to the mutant stems from an indirectly observed interaction in round

t — 7. Then
2(n — 2)

n(n —1)

T—1

rind(T) = )\

Finally, for any ¢t > 0, let 7i,;(¢) be the probability that, at time ¢, a given opponent does

not yet have a reputation assigned to the mutant. We have
Finit(£) = 1.
Using these definitions, we can write

eh,r (Z raie(T)x(t — T) Z Tina (T) Mex(t — 7')) + ripy,

Applying (1 —d) 372, d*, we get

eh,r = (1 pZdtZrdlr z(t—71)+p" Zd Zde YM.x(t — 7) —i—Zdtrtp
T= T= t=0
(1— < Zdt Zd rair(T) + pT M Zdt Zd Tind(T) + Zdtrtp0>
t=0 t=0
=p'x Z d"rap(T) + pTM.x Z d"rina(7) + (1 — d)po Zdtrt
T=1 T=1 t=0
2 2(n — 2) 0
=(plz-d——+p Max-d\—L+(1—-d d'r’.
(p S T ATy )p°> =

104



5.4. Supplementary Information

We calculate

< o & (n=2)(n+1—-20)\" n(n—1)

;)d _;)<d n(n —1) >_n(n—1)—d(n—2)(n+1—2A)'
So
_ n(n —1) . 2 2(n —2)
At -1 —dn—2)(n+1—2)n" (dn(n Tyl A 1)M5> v

n(n —1)
nn—1)—dn—2)(n+1—20)"

+(1—d)

2d )
S =D —dm—ymr 1oy He A =2M)e

n(n—1)

- d)n(n —1)=dn—-2)(n+1-— 2/\)]90.

Using (5.10) to substitute for d an expression in terms of d, we get

2d

Using the same substitution, as well as the definition of 7 in (5.16), we also get

n(n —1) B
= —dn iy "

Taken together, we can write
el r =6(1+0\n—2))"'p" (Lgz + A(n —2)M.) z + (1 — n)po.
By (5.16) and (5.18), this is equivalent to
ehx = np"Hew + (1 — n)po.
We rearrange this to
(€4 —np"He)z = (1 —n)po.
Since H. is symmetric, we have el,, — np"H. = (ea. — nH.p)T = pT. So
Pz = (1—n)po.

This is equivalent to
. 2
P'Ev = (1— n)gpo. (5.22)
O

With Lemma 5, it is simple to construct some memory-1 equalizer strategies. That is
what we do in the following proposition. We call these equalizer strategies the generic
equalizers. Others also exist, but those are edge cases that can be dealt with directly.

105



5.

STRATEGIES OF DIRECT AND INDIRECT RECIPROCITY IN GENERAL SOCIAL DILEMMAS

Proposition 8. If a memory-1 strategy (po,p, ) is such that p = agop + Sl 42 for some

a, B € R, then it is an equalizer strategqy. Necessarily o > 0. The payoff that the equalizer

strategy enforces is
m=a '((1-n)p — B). (5.23)

Proof. Take (po,p, A) such that p = ag,, + S1 42 for some a, f € R. We can check that

indeed v > 0, since otherwise p could not be a vector of probabilities. With v defined as

in Lemma 5, we have
5T T T 2 2
P'Ev = agl Ev + 81K = a-m + Bﬁ

So, using Lemma 5,
2 2 2

a—7+ 58— = (1—n)—po,
n n n

which is equivalent to
m=a " ((1-n)po—B).
So (po,p, A) is indeed an equalizer strategy that enforces a payoff of 7.

Next, we will show the converse direction: if a strategy is an equalizer strategy, then it
is of the given form. But for now, we exclude some edge cases, which we will deal with
separately later. We call these edge cases the effectively unconditional strategies.

Definition 24 (Effectively unconditional strategy). For a given strategy o, let n — 1

residents play strategy o against one mutant with an arbitrary strategy. For some set of
events that are directly observable to the mutant before some time T', by which we mean
the selection of player pairs in rounds t < T as well as, in rounds where the mutant is
playing, the actions of the two players, consider the probability that, given that the mutant
is drawn to play in round T', the mutant’s opponent plays action A. If this probability is
independent of the mutant strategy, of T, and of the set of directly observable events that

we conditioned on, then we say that o is an effectively unconditional strategy.

In Proposition 9, we provide an algebraic characterisation of the effectively unconditional
strategies.

Proposition 9. The effectively unconditional strategies exactly consist of those strategies
that satisfy po = paa = pap = Pa = P, and, when one of n =2 ore =0 or A =0

holds, additionally also those that satisfy po = paa = pap =1 or py = ppa = pep = 0.

Proof. Clearly, any strategy that satisfies pg = paa = pap = ppa = ppp is effectively

unconditional.

It is also easy to see that when the resident strategy satisfies pg = paa = pap = 1, and

only direct observations matter, i.e. n =2 or ¢ = 0 or A = 0, then all residents will always

assign a reputation of either AA or AB to the mutant (or none). So this strategy will

always play A and is thus effectively unconditional. Similarly, when n =2 or ¢ = 0 or

A = 0, any strategy with py = ppa = ppp = 0 is also effectively unconditional.

It remains to show the converse direction. Assume py = 1. Then the strategy is almost
unconditional exactly if it always plays action A. Consider the case that the same resident

is selected to play against the mutant in both round 0 and round 1, and the mutant
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played action X in round 0. Because py = 1, the resident played action A in round 0, so
the reputation assigned by the resident to the mutant at time 1 is AX. Since the resident
is almost unconditional, we must have ppox = 1. Now additionally assume that n > 2
and € > 0 and A > 0, and instead let a different resident be selected to play against the
mutant in round 1. With probability 1 — A, the resident does not yet assign a reputation
to the mutant and will thus play action A. Write X for the action that is not X. With
probability A(1 — ), the resident assigns reputation AX or AX to the mutant and will
thus also play action A in this case. But with probability Ae(1 — ¢), the reputation is
BX, and with probability A\e2, it is BX. In those cases, the resident plays action A with
probability ppx and pg+, respectively. So we must have ppx = pgy = 1 as well. We can
similarly deal with the case py = 0.

What remains is the converse direction for the case 0 < py < 1. Again consider the
scenario that the same resident plays against the mutant in the first two rounds. Here, all
reputations in A? are possible in round 0. In each of those cases, the mutant needs to play
action A with probability py in round 1, so we need py = paa = pap = pa = pep.

We are now ready to show that if a strategy is an equalizer strategy, excluding almost
unconditional strategies, then it is of the given form. In the following Proposition 10, we
use the functional definition of almost unconditional strategies, whereas in the proof of
Theorem 14, we will use the algebraic characterisation provided by Proposition 9.

Proposition 10. Take any memory-1 equalizer strategy (po,p, \) that is not effectively
unconditional. Then either p is of the form p = agep + Blaz for some o, B € R, or
R=S=T=P.

Proof. Let 0 = (pg,p, \) be a memory-1 equalizer strategy that is not effectively uncon-
ditional. Consider the case of one mutant with an arbitrary strategy playing against a
resident population of o. Let a(t) be the probability that, under the condition that the
mutant player is drawn in round ¢, the mutant’s opponent plays action A.

For all ¢ > 0, we can express a(t + 1) in terms of a(t) by distinguishing multiple cases:

Case 1. The mutant did not play in round ¢. This occurs with a probability of ”T’Q
In that case, the reputations that the residents assign to the mutant are unchanged
compared to round ¢, and hence the probability that the mutant’s opponent plays A is
a(t+1) = af(t).

Case 2. The mutant played in round ¢. This occurs with a probability of % We write
v(t) € R4 for (the probability mass function of) the distribution over the outcome in
round ¢ under the condition that the mutant played in that round, from the view of
the mutant’s opponent. So for all =,y € A, the entry v,,(t) is the probability that the
mutant plays action y and the opponent plays action x.

Case 2.1. In round ¢, the mutant played against the same opponent as in round ¢ + 1.
This occurs with a probability of ﬁ under the condition of Case 2. The opponent’s
action is determined by the continuation vector p of the resident strategy: The
opponent will play A with probability pTv(t).

Case 2.2. The mutant played against a different opponent as in round ¢+ 1. This occurs
with a probability of Z—:f under the condition of Case 2.
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Case 2.2.1. The mutant’s opponent in round ¢+ 1 updated the reputation they assign
to the mutant in reaction to observing the interaction between the mutant and the
other opponent in round ¢. This occurs with a probability of A under the condition
of Case 2.2. The reputation that the opponent assigns to the mutant at time ¢ + 1
is distributed as M_.v(t). Thus, the opponent’s probability to play action A in
round ¢ + 1 is pT M.v(t).

Case 2.2.2. The mutant’s opponent in round ¢ + 1 did not update the reputation
they assign to the mutant in reaction to observing the interaction between the
mutant and the other opponent in round ¢. This occurs with a probability of 1 — A
under the condition of Case 2.2. The reputation assigned by the opponent to the
mutant follows the same distribution as that of a randomly drawn mutant in round
t, since the events of drawing players and of observation or non-observation occur
independently from all past events. Therefore, the opponent’s probability to play
action A is a(t + 1) = a(t).

By the law of total probability, we can write

a(t+1)="" 20(t) + i <ni1pTv(t) + Z:i (T Meov(t) + (1 — A)a(t))) (5.24)

-2 2 a(t) n(nQ_l)pT (Lo + Mn — 2)M.) o(t) + M(l — Na(®)
(5.25)
for all t > 0.
Since I 42 + A(n — 2) M, is symmetric,
P (L + Al — 2)M.) 0(t) = u(®)T (L + An — 2)M.) p
By definition of p,
(Tgz + A(n—2)M)p =011+ 6A(n —2))(ea. — P).
Inserting into (5.25) gives
a(t+1) = n 7; 2a(t) + 20 1<2z;5_)\(17; — 2))v(t)T(€A* —-p)+ i((z i) (1= MNa(t)
(5.26)

Fix some action X € A and consider the case that the mutant plays the strategy
AlLX | that is, the mutant unconditionally plays action X in every round. Then v(t) =
a(t)eax + (1 — a(t))epx for every t > 0. With that, we obtain from (5.26) the linear
recurrence relation in a(t)

oft+ 1) = "= Zafe) + 2 LEAEZD 00 - (at)pax + (1~ b))
2(n — 2)
oy (L Na) (5.27)

(n—2 2671 (140A(n—2)) L (7 B )
- ( — + = 1) (1= (Pax — Ppx)) + v 1)(1 /\)> (t)
20714+ 6M(n —2))
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Let
e e TPV CEY)
n n(n —1) n(n —1)
and 26711+ 6\ 2
Cx = — (n?;z _<1T; — ))ﬁBX7 (5'30)
so we can express (5.28) as
a(t +1) = bxa(t) + cx. (5.31)

Noting that |bx| < 1, we can solve that recurrence relation with the initial condition
a(0) = po as

Cx ¢ Cx
t) = — b : 5.32

alt) <p° 1—bX)X+1—bX (5:32)
So the overall discount-weighted rate ay of the resident playing A against an AllX mutant
1S

1—-d

n . 2 Cx Cx
ax = (1 —d)= Zdta(t :< — ) + . 5.33
X ( )21522071 <) bo 1—bX 1—de 1—bX ( )

The payoft of the AILX mutant is then given by

T = GXACLX + GXB(l — ax)
=Gxp+ (Gxa— Gxp)ax

Cx 1—-d €x
= - - ‘ | 4
Gxp+ (Gxa—Gxp) <<p0 1— bx> 1 —dbx " 1 _bX> .

By the equalizer property, we must have
TA = TB,

which is equal to

Ca 1—-d Ca
S+(R_S)<(p0_1—b,4)1—dbA+1—bA>

:P+(T—P)<<p0—

Cp 1—-d (63
1—b3> 1 dbs 1—b3>' (5.35)

Since the strategy o is not effectively unconditional, we can find a mutant strategy ¢’ and
a time T" and an event E that is directly observable by the mutant before time T such that
E occurs with positive probability and when conditioning on £ and on the mutant being
selected in round 7', the probability that the mutant’s opponent plays action A in round ¢
is not equal to a(0) = po. Fix such ¢’, T and E, and let that probability be py. For either
value of X € A, we construct the mutant strategy AllLX’ as follows: The strategy AllLX’
plays indentically to o', except if the event FE occured. In that case, starting from round
T, the strategy AllX’ unconditionally always plays action X.

Of course, the recurrence relation (5.31) holds identically in this case for ¢ > T', now with
the initial condition a(T") = p;. By the equalizer property for o, the mutant strategies
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AllA” and AllB’ must have the same continuation payoff at time 7" under the condition
E. By a change of variables t — t — T", we obtain the same equality (5.35) for pj, instead
of py. (Note that ba, bp, ca, and cp are independent of py, as we can check from (5.29)
and (5.30).) By construction, pj, # po. So (5.35) is a linear equation in py with at least
two solutions. Equality must thus hold for both coefficients:

caA 1—d '\ CR 1—d
1—-d 1—-d
(R—S)l_dbA = (T_P)l—de (5.37)

We analyse the expression 1 —dbx. Using (5.10) to substitute for d, as well as the definition
of bx, we obtain

1 —dbx

—1—

(1 = (Pax — Pox))

2(n —2)

2(1—6) +on(n — 1)

on(n —1) n—2 N 26711+ 6\(n —2))
n n(n—1)

= ! 21 -6)+96 1

= 30— 0) 7 o1 | L9 Fon(n—1))

n—2 207114 0\(n—2))
n * n(n —1)

-1

1
T 2(1—0)+on(n—1) (2(1 ~ 9t on(n—1)

—d0(n —1)(n =2) = 2(1 + 0A(n = 2))(1 = (Pax — Ppx)) — 20(n —2)(1 - A))

2(1 + dA(n — 2))

" 2(1—6)+on(n—1) (Pax — Ppx)- (5.38)

_ ~ 2(n —2)
(1= (Pax — Ppx)) + m(l - /\)> )

So we can express (5.37) as
(R —5)(Pap — Do) = (T — P)(Paa — Ppa)- (5.39)

Equation (5.36) can be rewritten as

dcy decp
=P+ (T-P .
1—dby * >1—de

S+ (R—-25)

Using (5.37), it follows that
(S — P)(1 —dby) = —d(R— S)(ca — cp).
We insert from (5.38) for T'— P, from (5.10) for d, and from (5.30) for c4 and cp to get
20+ 0A(n—=2)) . .
2(1—0) + on(n— 1) (Paa = Pra)
on(n—1)

- 2(1—5>+5n(n—1>(R_S)

(5 —P)

20711+ 0A(n —2))
n(n—1)

(Dpa — PBB)
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and thus, after simplification,

(S = P)(Paa —Ppa) = (R — S)(Ppa — Pup)- (5.40)
Similarly, we may obtain
(S - P)@AB - 1333) = (T - P)(f?BA - ZBBB) (5'41)

by using (5.38) for R — S instead of T'— P.

We distinguish three exhaustive cases:

1. R# S. Choose o, 8 € R such that p,, = aR+  and pgy = aS + . Note that
a # 0. Then from (5.40) we get that pgpz = aP + 3 and consequently from (5.39)
that pyp = o1 + 8. So p = agep + Bl 2.

2. T # P. Similarly to the previous case, this time using (5.41) and (5.39), we conclude
that p = agep + B1 2.

3. R= S and T = P. In this case, the mutant’s payoff only depends on the mutant’s
own actions. So ¢ being an equalizer requires R =S =T = P.

So we have shown the statement for all cases. O]

Theorem 14. A strategy 0 = (po,p, ) is an equalizer strategy exactly if one of the
following hold:

1. The Press-Dyson vector D is of the form p = agep + Bl 42 for some o, 3 € R.
Necessarily o > 0. This strategy enforces payoff

m=a" ((L=mpo—H). (5.42)

We call the equalizers of this form the generic equalizers.

2. The strategy satisfies

Po = PAA = PAB = PBA = PBB = R_S_TLpP

This strateqy enforces payoff

_ RP-ST
CR-S-T+P

™

3. R=T, po = paa = pap = 1, and additionally either of pga = prp =1 orn =2 or
A=0ore=0.

This strategy enforces payoff m = R.

4. S =P, po=ppa=pps =0, and additionally either of paa = pap =0 orn =2 or
A=0o0re=0.

This strategy enforces payoff m = S.
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5 R=S=T=P.
This strategy enforces payoff m = R.

Proof. First, we consider the case that (pg,p, A) is not effectively unconditional. Propo-
sition 10 shows that if (pg,p, A) is an equalizer strategy, then either p = agop + 8142 or
R =S =T = P. Proposition 8 shows that if p = agop+ 1 42, then (po, p, A) is an equalizer
strategy. It is obvious that all strategies are equalizer strategies when R = S =T = P.

So we have equivalence in this case.

It remains to consider the case that o is effectively unconditional. Proposition 9 gives
an algebraic characterisation of the effectively unconditional strategies with given py. It
remains to determine for which payoff matrices an effectively unconditional strategy with
given py is an equalizer strategy. The mutant’s payoff in one round where the mutant is
selected is po R+ (1 — po).S if the mutant plays action A and pyT + (1 — po) P if the mutant
plays action B. So the condition for the effectively unconditional resident strategy to be

an equalizer strategy is simply

poR 4 (1 —po)S = poT + (1 — po) P. (5.43)

It is easy to check that this is equivalent to the conditions given in the statement of the

theorem.

So we have shown the statement of the theorem in all cases.

Existence of memory-1 equalizer strategies

Theorem 14 gives a complete characterisation of the algebraic forms of memory-1 equalizer
strategies. But with case 1 (the generic equalizers) of the theorem, and to a lesser degree
also case 2, it is not clear a priori when the given conditions can be satisfied, i.e. in
which cases memory-1 equalizer strategies exist and in which cases they do not. So with
Theorem 15, we derive the conditions for the existence of memory-1 equalizer strategies

from Theorem 14.

Theorem 15. Generic memory-1 equalizer strategies with indirectness A\ exist exactly if

P # R and

Ui
max {|R. —T.|,|5: — P.|} < ——

Additionally, for any X\, the conditions for non-generic memory-1 equalizer strategies to

exist, and the payoffs they enforce, are:

1. If either (a) R >T and S > P or (b)) R <T and S < P, non-generic memory-1

equalizer strategies with indirectness A\ exist and enforce payoff

_ RP-5ST
 R—-S—-T+P

™

2. If R="T, non-generic memory-1 equalizer strategies with indirectness \ exist and

enforce payoff m = R.
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3. If S = P, non-generic memory-1 equalizer strategies with indirectness \ exist and
enforce payoff m = S.

4. If either (a) R>T and S < P or (b) R <T and S > P, non-generic memory-1

equalizer strategies do not exist.

Proof. 1t is easy to derive the conditions for non-generic memory-1 equalizer strategies,
so we omit that part. Below, we derive the condition for generic memory-1 equalizer
strategies. That is, we show that strategies of the form p = agop + 5142 (by Theorem 14)
exist exactly if P # R and (5.43) holds:

max {|R. — T.|,|S: — P.|} < (min{R.,T.} — max{S., P.})

_n
¢—n
Recall the definition of p as p = e, — H.p. We want to find conditions determining

whether there exists p such that p is of the form p = agop, + 51 .42, or equivalently, whether
we can choose p, a and 3 such that

eax — NH-p = agop + 1 42. (5.45)

Since H. is invertible, we can rearrange (5.45) to

np = H ' (ean — agop — Blaz), (5.46)

Recalling the definition of ¢ in (5.17), we may verify that

H ' =1,
and
Ha_leA* = (e + 1;<1A2-
So (5.46) becomes
np:CeA*+1;C1AQ—aHglgop—ﬁlAz. (5.47)

We want to determine when it is possible to find p € [0,1]4* and a, § € R such that (5.47)
holds. Recalling our notation (R.,T%,S., P.)T = H:'g,p, that is the case exactly if we
can choose «, f € R such that

Ogl—gg—aRs—ﬁgn (5.48)

Ogl—gc—aTg—ﬁgn (5.49)
1—¢

OST—QSE—BSU (5.50)
1—-¢

OST—QPE—BSU. (5.51)

Since P < R, we also have P. < R.. Furthermore, 7 < 1 and ¢ > 1. So we need o > 0 for
the above inequalities to be satisfied. The conditions are thus equivalent to the existence
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of @« € Ry and 8 € R such that

§< 8 amax(R. 1) (5.52)
B < 1;C — amax{S., P.} (5.53)
S amin{R 1Y -y <8 (5.54)
LS aminfs. PY < 5 (5.55)

This is equivalent to the existence of a € R such that
”2< —amin{R.,T.} -7 < 1+2c — amax{R.,T:} (5.56)
1;C —amin{S.,P.} —n < 1—;C — amax{R., 1.} (5.57)
1+2< —amin{R.,T.} —n < 1_2§ — amax{S, P} (5.58)
1;§ —amin{S.,P.} —n < 1;C — amax{S, P} (5.59)

or equivalently, such that

alR. —T.| <7 (5.60)
amax{R.,T.} —amin{S.,P-} <n+( (5.61)
amax{S., P.} —amin{R.,T.} <n— (5.62)
alS: — P <n. (5.63)

Noting that ¢ —n > 0, this is equivalent to the existence of a € Ry such that
maX{‘Rs - Ts‘a |Ss - PE’} S a—l

5.64
p (5.64)
max{R.,T.} — min{S., P.} <ol (5.65)
n+¢
ol < min{ R, 7.} — max{5S, PE}‘ (5.66)
¢
That is the case exactly if min{R., 7.} — max{S., P.} > 0 and
(¢ —m)max {|R. — T¢|,|S: — P:|} < n(min{R.,T.} — max{S., P.}) (5.67)

(¢ —mn) (max{ R, T:} — min{S., P.}) < (n+ () (min{ R, T.} — max{S., P.}). (5.68)

The condition min{R., 7.} — max{S., P.} > 0 requires P. < R.. But if P. < R, is
given then also max{R.,7T.} — min{S., P.} > 0, so by (5.68), we have min{R., 7.} —
max{S;, P.} > 0 as well. We can check with the definition of H. that P. < R. is equivalent
to P < R, and thus to P # R. Thus, we can replace the condition min{R., 7.} —
max{S., P.} > 0 by P # R.

Of the two inequalities (5.67) and (5.68), we can also drop (5.68), because it follows from
(5.67): From (5.67), we get the weaker

(¢ —n) (|R: = Te| + |S: — Pe|) <2n(min{R.,T.} — max{S., P.}) (5.69)
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and thus

(¢ —n) (max{R., T.} — min{ R, T.} + max{S., P.} — min{S,, P.})
< 2n (min{ R, T.} — max{S., P.}), (5.70)
which is equivalent to (5.68).
So generic memory-1 equalizer strategies exist exactly if P # R and (5.67) holds. O]

We obtain several corollaries from this result by restricting to the special case of additive
games, or letting § go to 1.

Corollary 18. In an additive game, memory-1 equalizer strategies with indirectness A
exist exactly if either (a) P # R and

S — P| < ((T - P) (5.71)

or (b) R="T.

Proof. We adapt the statement of Theorem 15 for the case of additive games.

In an additive game, R =T and S = P are equivalent. The conjunction of R > T and
S > P is impossible, same as R < T and S < P. So non-generic memory-1 equalizer
strategies exist exactly if R =T

It remains to simplify the condition for generic equalizer strategies. Consider Eq. (5.44):

max {|R. — T.|,|S. — P.|} < Cin (min{R., 7.} — max{S., P.})

Note that R+ P =S+T = R.+ P. = S. +T.. So we have |R. — T.| = |S: — P.|.
Furthermore,
min{R.,T.} = T. + min{(S. — P.),0}

and
max{S., P.} = P. + max{(S. — P.),0}.

So (5.44) becomes

|S€_P€|S ((Ts_Ps)_lss_PED

o
¢—=mn
which is equivalent to

|Se = P| < (T'n(Te = P). (5.72)

We can check that in our case of R+ P = S+ T, we have S, — P. = S — P and
T.—P.=T—P. O

When we compare this Corollary 18, which states when memory-1 equalizers exist in
additive games, to Corollary 15 from Section 5.4.3, which states when reactive equalizers
exist in additive games, we see that the conditions are equivalent:

Corollary 19. In an additive game, for given X\, reactive equalizer strategies with indi-
rectness \ exist exactly if memory-1 equalizer strategies with indirectness A exist.
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Proof. Assume that memory-1 equalizer strategies with indirectness for some given A
exist. Consider first the case that P # R. We have ("' < 1. So (5.71) in Corollary 18
implies that either |S— P| < |T'— P|lor S =T = P. But P # R is equivalent to S # T in
an additive game. So we must have |S — P| < |[T'— P| and thus 7' # P. We can therefore

express the condition (5.71) by

1 14+ (n—2)0A P—
1+ (n—2)(1—25)A T-—

S
5 € —1,1]

as in Corollary 15.

Now instead consider the case P = R. By Corollary 18, we also have R = T. So

R=5S=T=P.

Of course, reactive strategies are a subset of memory-1 strategies, so the existence of

reactive equalizers trivially implies the existence of memory-1 equalizers.

Finally, we ask when memory-1 equalizer strategies (with arbitrary \) exist for sufficiently
large . The conditions for non-generic memory-1 equalizer strategies to exist are obvious
from Theorem 15, since they are independent of § and A. The below corollary gives the

condition for generic memory-1 equalizers.

Corollary 20. Generic memory-1 equalizer strategies exist for sufficiently large 0 if and

only if G is a social dilemma.

Proof. By Theorem 15, generic memory-1 equalizer strategies exist exactly if (5.44) holds:

max {|R. — T.|,|S. — P.|} < Cﬁn (min{R., 7.} — max{S., P.})

As 0 — 1, this inequality becomes

(¢ — 1) max{|R: — T¢|,|S: — P-|} < min{R.,T.} — max{S., P.}. (5.73)

Assume that generic memory-1 equalizers exist. Then by (5.73), we have min{R., 7.} —
max{S., P.} > 0. Thus also min{R,T} — max{S, P} > 0. So the game is a social

dilemma.

Now assume instead that the game is a social dilemma. For A = 0, (5.73) takes the form

0 < min{R, T} — max{S, P}.
This is given, so generic memory-1 equalizers exist.

We have thus shown equivalence.

Within the social dilemmas, we now know that generic memory-1 equalizer strategies
exist in all of them, while non-generic memory-1 equalizers additionally exist in the stag
hunt and hawk-dove games. Of these, the non-generic memory-1 equalizer strategies are
in general unique up to the irrelevant choice of A\, where they exist. In contrast, where
generic memory-1 equalizer strategies exist, in general there exists a whole family of them,
parameterised by pg, a, 8 and A. It is not surprising then that when we look for equalizer
strategies in social dilemmas that have the desirable property of being cooperative, which

we do in Section 5.4.4 below, that we find them among the generic equalizers.
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Optimisation over memory-1 equalizer strategies

Theorem 16. Given game parameters and an indirectness value A as input, Algorithm 1
on page 92 correctly oulputs the generic equalizer with the highest payoff if such an equalizer
exists, and null otherwise. In the case ¢ # 1, if equalizers exist, the equalizer output by
the algorithm is unique in having the highest payoff.

Proof. A generic equalizer strategy is determined by py € [0,1], @ € R+, f € R and
A € [0, 1]. It enforces a payoff of

m=a ' ((1=n)po — B). (5.74)

Following the proof of Theorem 15, we see that the conditions for a choice of py, o, 5 and
A to produce a valid equalizer are equivalent to:

1. P. £ R,

2. a”! > Wy, where wyyy = max{max{|R. — T.|,|S. — P.|}/n, (max{R., T.} —
min{S;, P.})/(n+ ()}

3. a ! < whax, Where Wpay = (min{R., T.} — max{S., P-})/(¢ — n),

4. B > Buin, where B = max{(1 + ()/2 — amin{R., T.}, (1 — {)/2 — amin{S.,
PE}} - 777

5. and 8 < Buax, where Syay = min{(1+()/2 —amax{R., 1.}, (1 —()/2 — amax{S.,
P.}}.

The parameter A is given as input. The algorithm needs to compute pg, o, and § that
maximise 7. The conditions above are independent of py. From (5.74), we see that for
fixed o and (3, the optimal choice of py is always pg = 1. So we can start by setting py = 1.

Secondly, we check that the first condition P. # R., which does not depend on a and f3,
is met, and output null otherwise.

We know that given this first condition, and given any a € R., it is exactly when «
satisfies wpin < ! < wiax that there exists B such that Bmin < B < Bmax. SO assume we
have a fixed choice of a that satisfies wyin < o' < wpayx. Then clearly from (5.74), the
value of 3 that conditionally maximises 7 is 8 = Bunm. So the maximal payoff with this «
is

m(a) =a? <(1 —n) — (max {1;( —amin{R.,T.}, 1;4 — amin{S;, PE}} — n))

(5.75)

. ]1=C : 1+¢ .
= mm{ 5o T min{R., 7.}, 5+ min{S., Pe}} . (5.76)

We write
Whreak = (Min{ R, 7.} — min{S., P.})/C.
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For convenience, we write w = a~! and let the algorithm choose « by choosing a value

for w. Then we have

( ) w% + IIliIl{Sg, Ps} if w S Whreak
T W) =
W% -+ min{Raa Te} if w Z Whreak

for all w € Ry.

If the interval [Wpin, Wmax| 18 non-empty, the algorithm must now choose w € [Win, Wmax|
that maximises 7. If the interval is empty, the algorithm must output null. Practically,
it sets w = max{wWmin, Woreax } and returns null if w > wyax. We show below that that is

equivalent.

First, assume that [Wyin, Wmax| 1S non-empty, i.e. Wpin < Wmax. LThen we can show that

Whreak < Wmax a8 well: By definition,
|Se = Pl /n < winin.
Combining with wyi, < wWnax gives
|Se = P2l /n < (min{R., T.} — max{S;, P.})/(¢ —n).
We multiply with the denominators on both sides and get
(€ = n)S: = Pe| < n(min{ R, Tc} — max{S;, F:}),

which we can also write as

¢max{S., P.} — (min{S., P.} + nmin{S., P.} — nmax{S, P.}
< pmin{R.,T.} — nmax{S., P.}.

This is equivalent to

¢min{R.,T.} — nmin{ R, T.} — ( min{S;, P.} + nmin{S., P.}
< (min{R.,T.} — (max{S., P.}.

Dividing by ¢ —n and ¢ gives
(min{R., 7.} — min{S., P.})/¢ < (min{R.,T.} — max{S., P.})/(¢ —n).
By definition, that is wireak < Wmax-

Consider the derivative of 7(w) with respect to w. We obtain from (5.77) that

d ( ) % if w< Whreak
— W) = .
% if w > Whreak

We know that ( > 1. So the derivative is negative on w > Wpreak, Z2€T0 ON W < Whreak if
¢ = 1, and positive on w < wWhrear if ¢ > 1. The case ( = 1 occurs exactly if n = 2 or

A=0ore=0.

We can distinguish three cases as to which values w € [wiin, Wmax] Maximise 7(w). The
first case is that Wy < Whreak and ¢ > 1. In this case, w = Wpreak 1S the only optimum. The
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second case is that wpin < Wpreax and ¢ = 1. In this case, the optimal values are exactly
the set [Wmin, Whreak)- The third case is that wpreak < Wmin. In this case, w = wpyiy is the
only optimum. So the choice we made, which is w = min{wm;n, Woreak }» is indeed optimal.
The condition w > wpay evaulates as false, since both Wireak < Wmax aNd Wnin < Wmax. S0
the algorithm does not return null at this point, which is correct.

It remains to consider the case that [Wyin, Wmax] 1S empty, i.e. that wpi > wWmax. Here,
since W > Wnin, the condition w > wpya, evalates as true and the algorithm correctly
returns null.

Because w satisfies w > wyreax, the expression for the optimal 3, which is S, simplifies

to
1—
B = 2( —amin{R., T.} — .

The enforced payoff, by (5.77), can be written as

= 12_(f + min{R.,T.}. (5.79)

According to (5.46), the continuation vector p of the equalizer strategy is given by

p=n"H " (es — AGop — Bla2).

We may check manually or with a computer algebra system that

A 1+(71+C’1—C’1—
2 2 2 2

C T
) = (1,1,0,0)T = e4..

Of course, H:'1 42 = 1 42. So indeed we have
p=1a—n 'Cep. —n 'a(H " gop — min{R, T.}).
By definition of R.,S.,T:, P., and by H. being symmetric,
H'gop = (Re, Tt, S, P)T,

and we can also write p as in Algorithm 1 as

Paa 1 —nta(R, — min{R.,T.})
paB | _ 1 —nta(T. — min{R.,T.}) (5.80)
PBA 1—n"'¢—n"a(S. — min{R.,T.}) '
BB 1—n"¢—nta(P. — min{R.,T.})
]

This algorithm allows us to obtain some results about the highest payoff that is enforceable
with generic equalizer strategies, if any, and about the existence of those particularly
desirable equalizers in social dilemmas that always play action A, unless they made an
observation error. It is already clear from Theorem 15 that non-generic equalizers do not
have this property unless R = T', even in those social dilemmas where they do exist.
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Corollary 21. If a generic equalizer enforces payoff w, then

max{S., P.} <7 <min{R.,T.}.

Both of these bounds are attained if and only if n = 2 or A =0 or e = 0, as long as

equalizers exist at all.

Proof. From Theorem 16, we know that the maximal enforceable payoff 7. is of the

form
461

7 =min{R.,T.} — « 5

The upper bound follows immediately, knowing that ¢ > 1. The condition ( = 1 is

equivalent ton =2or A=0or e =0.

The statement about the lower bound is reduced to the statement about the upper bound

by a transformation of the payoff matrix as (R, S, T, P) — (—P,—T,—S, —R).

Definition 25 (Action-A-playing). A strategy is action-A-playing if it always plays action

A at least until the first error occurs.

In social dilemmas, this desirable property is usually referred to as being cooperative.

Proposition 11. An action-A-playing memory-1 equalizer strategy with indirectness A

exists exactly if any memory-1 equalizer strategqy with indirectness \ exists and

R. <T.. (5.81)

The condition (5.81) is equivalent to

(T—R)(1+An—2)1—25)(1—e))+(S—P)An—2)(1—28)e >0.  (5.82)

In error-free games, it simplifies to R < T

Proof. Clearly a memory-1 strategy is action-A-playing exactly if pg = paa = 1. The
condition pg = 1 is simple. The condition p44 = 1 corresponds a choice of 3 such that
inequality (5.48) in the proof of Theorem 15 is tight. We see from inequalities (5.48-5.51)

and (5.54-5.55) that we can choose such a 3, for given «, exactly if

1+¢ L+¢

_aTs S

and
1 1—
;—C —amin{R.,T.} —n < 2< —amin{S,, P.} — n. (5.84)

Inequality (5.84) is equivalent to o' < Whreak Where wireax = (min{ R, 7.} — min{S.,
P.})/¢ like in the proof of Theorem 16. Since whreax < Wmax 1S always given as long as
Wmin < Wimax (1.€. as long as generic equalizer strategies with indirectness A exist), the

condition (5.84) is void in that case.

The other condition, (5.83), is equivalent to R. < T.. This shows the statement in the

first form.
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Now, R. < T is equivalent to
(—=1,0,1,0)(R., Se, T:, P.)T > 0. (5.85)

By definition, (R.,S.,T., P.)T = (1 + A(n —2))(I42 + X(n — 2)M.)"Y(R, S, T, P)T, so this
is equivalent to

(=1,0,1,0)(Lg2 + AMn — 2)M.)"Y(R, S, T, P)T > 0, (5.86)
or, since I 42 + A(n — 2) M, is symmetric,
(R,S,T,P)(Ip+ M\n—2)M.)"*(-1,0,1,0)T > 0. (5.87)

We can verify by hand that

(-1,0,1,0)T = ;(L@ + A(n —2)M,) ( (=1, -1, (-L L1, -1 > .

1+ An—2)(1—2¢) 1+ A(n—2)(1—2¢)?

(5.88)
So (5.87) is equivalent to
—R-S+T+P —-R+S+T—-P

>0 5.89
1+)\(n—2)(1—2€)+1+)\(n—2)(1—25)2_ ’ (589)

which in turn can be simplified to
(T—R)(1+AXn—=2)(1—=22)(1—¢))+ (S —P)A(n—2)(1 —2)e > 0. (5.90)
O

Corollary 22. Assume that equalizer strategies exist.

If R. < T, then all equalizer strategies that enforce the maximal possible payoff are
action-A-playing. In particular, they have pas = 1.

If T. < R., then all equalizer strategies that enforce the maximal possible payoff have
pap = 1.

Proof. Even when there are multiple optimal equalizer strategies, we see from the proof
of Theorem 16 that all of them satisfy (5.80) for some value of a.

If R. <T., we may insert min{R., 7.} = R. into the first component of (5.80) to obtain
paa = 1. Since also pg, these strategies are action-A-playing.

If T. < R., we similarly obtain pag = 1. O

Corollary 23. If any action-A-playing equalizer strategy exists, then there is also an
action-A-playing equalizer strategy that enforces the maximal payoff among all equalizer
strategies.

In the special case that ( = 1, every action-A-playing equalizer strategqy enforces this
mazximal payoff.

Proof. By Proposition 11, if an action-A-playing equalizer strategy exists, then R, < T-.
By Theorem 16, there is an equalizer strategy that enforces a maximal payoff. Take one
of those. By Corollary 22, it is action-A-playing.

If ( =1, then observation errors never occur, because either n =2 or A =0 or ¢ = 0. So
in this case, an action-A-playing strategy by definition always plays action A and thus
obtains payoff R in a homogeneous population. If it is an equalizer, the payoff it enforces
is therefore also m = R. In particular, all action-A-playing equalizer strategies enforce the
same payoff, which is the maximal payoff. O
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5.4.5 Proof of Theorem 13

We consider a population of n players who are all playing the same reactive strategy
o = (po,p, ). We analyse the stochastic process of these players’ game, which will allow
us to show that an alternative strategy can achieve a higher payoff than o against an

otherwise homogeneous ¢ population in the cases stated in Theorem 13.

First, we define some notation: We write R = {(¢,7) : i,j € [n],i # j} for the set of
disjoint player pairs. In each round, a pair (i,j) € R is selected uniformly at random.
We write A = {A, B} for the set of actions. Where X is a random variable taking values

in set S, we write p[X] € R® for the probability distribution function of X.

Intents

For mathematical convenience, we stipulate that whenever players update the reputation
they assign to another player, they immediately form a secrent intent for how they will
act towards that player next time that the are selected to interact with them, given that
they don’t update their reputation again before that time. This is formally expressed by

the following definition.

Definition 26 (Intent). Player i’s intent towards Player j at time t, denoted as Y(; j(t),
is a random variable taking values in A. It depends only on the history of the game before

time t, and it does so in the following way:

1. Ift =0, then Y;;(t) = A with probability py and Y;;(t) = B with probability

]_—p[).

2. If t > 0 and Player i did not update the reputation they assign to Player j in round

t— 17 then YV(Z‘J') (t) = Yv(i,j) (t — 1)

3. Ift > 0 and Player ¢ updated the reputation they assign to Player j in round t —1 to
value X € A, then Y{; ;(t) = A with probability px and Y{; ;(t) = B with probability

1—])X-

If players i and j are selected to play, Player i’s action is given by Y, j)(t).

With the above definition, we not only constructed a set of random variables called intents,
but also redefined actions in relation to intents rather than reputations, as they were
previously defined. Naturally, we would have considered the reputations players assign to
each other as the primary object representing the state of the game. But by studying
the stochastic process in terms of intents rather than reputations, we avoid having to
distinguish between the case when a player already assigns a reputation to another player

and when they do not. Clearly, this is an equivalent formulation of the game.

Definition 27 (Intent vector). The intent vector Y (t) at time t is the collection of all

intents at time t:

Y(t) = Yu,(t): (4,5) €R)

The state space of the intent vector Y (¢) is the set of all possible configurations of
intents, A®. Tt is easy to see that the sequence (Y (t)); satisfies the time-independent
Markov property. That is, for all ¢ > 0, Y (¢ + 1) only depends on Y(¢) and not
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Y (0),...,Y(t — 1), and there is a transition function f, which is independent of ¢, such
that p[Y(t+ 1) | Y(¢) = y(t)] = f(y(t)) for all t. Given that, we write P for the transition
matrix of (Y (¢));, meaning that if f is the transition function, then

P [Y(t + 1) = y/|Y(t) = y] =Py, = fy’(y) for all y, y/~

Note that technically, P[Y(¢) = y| can be zero for some y, in which case P and f are
ill-defined. But we may simply alternatively define P and f by saying that for all y, if a
group of n players with start in a state in which they have intents y, then after one round
of following strategy o, their intents are distributed as f(y).

We can derive Player i’s expected payoff in round ¢ from the intent vector Y () as

M) = s X [V 0 Vi) (5.9)
jem\{i}

So, in theory, understanding the Markov chain (Y'(¢)); could allow us to analyse the
equilibria of the game. Unfortunately, the complexity of its transition function makes this
difficult, so we will first reduce the system to a simpler one. Even before that, we need to
introduce an additional concept, which is intent origins.

Intent origins

In the original formulation of the game process, there are four sources of randomness: (a)
the selection of a player pair, (b) the selection of actions by the two players, and finally,
with those players who were not involved, (c¢) the occurrence of observation errors and (d)
the occurrence of reputation updates. We replaced the random selection of actions with
the random selection of intents, which means that actions, given a selected player pair,
are now a deterministic function of intents. So now, the four sources of randomness, again
in temporal order, are (a) intents, (b) player pair selection, (c) errors, and (d) reputation
updates. We observe that (c¢) and (d) only depend on (b) of the same round, and (b)
depends on nothing at all. (Note: with (d), we are referring to the random event of a
player deciding whether or not to update a reputation, not to the actual value that the
reputation is updated with, which does depend on (a).) Meanwhile, intents can depend
on all events of the previous round.

We call the the player pair selection, the occurrence of errors, and the occurrence of
reputation updates the circumstantial events. We write C'(¢) for the random variable
representing the circumstantial events at time ¢. The random variables C'(0), C(1),...
are independent and identically distributed.

Knowing that (Y (¢)); satisfies the time-independent Markov property, we may analyse
its transition matrix P without reference to a particular time ¢: For a intents given by
the random variable Y, let Y’ be the random variable representing the intents after one
round of gameplay. Write C' for the random variable representing the circumstantial
events of that one round. Write C for the set of its possible values. By definition of f, the
conditional distribution of Y’ given Y is f(Y).

We condition on the entire process up to time ¢, as well as on the circumstantial events at
time ¢ + 1, and analyse the conditional distribution of Y'(¢ 4+ 1). To that end, consider a

general intent Y(; ;)(¢t + 1) at time ¢ + 1. We distinguish two cases, depending on the value
of C
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Definition 28 (Intent origin). Conditional on C = ¢, and for a given player pair
(1,7) € R, we define the intent origin of (i,7), which is also a player pair, and which we
denote by a.(1,7) € R. We define a.(i,j) by distinguishing three different cases.

o If Player j was not among those two players who were chosen to play according to
¢, then aq(i,7) = (i,7).

o If Player j was selected to play, but not against Player i, and Player ¢ did not
observe the event (and thus also did not update their intent towards Player j), then

ac(i, j) = (i, 7).

e If Player j was selected to play against some Player k (who may or may not be
identical to i), and Player i updated their intent towards Player j in response to
observing Player j’s action, then a.(i,7) = (j, k).

In each of these cases, the intent Y{; ;, of the final state somehow traces back to the intent
Y,.@i,j of the original state: In the first two cases, this is simply because the intent was
not updated. In the third case, this is because ¢’s final intent towards j, that is Y(’Z j)» Was
formed because of j’s action towards another player, and that action was determined by
the original intent Y, ¢ ;).

In fact, when conditioning on C' = ¢, the intent Y(’i’j) only depends on Y, (; j), and not of
any of the other intents in Y. This is formally expressed by the following proposition.

Proposition 12. Fiz a player pair (i,5) € R. Given any outcome ¢ of the circumstantial
events of one round, there exists a (necessarily linear) function Q.(i,j) : R* — R4 such
that

p[Yi, | €= = Quli.i)p [Yauis)] - (5.92)
for all y.

Proof. We make a similar case distinction as in Definition 28 based on the value of c.

If ¢ is such that Player j did not play, or they did, but Player ¢ did not update the
reputation they assign to and thus their intent towards Player j, then a.(i,j) = (i, j).
Therefore, we have Y(Iz‘,j) = Y(; ;) with probability 1, i.e.

p[Yiy | C=c|=p|Yain]

If ¢ is such that Player j played against Player ¢, then a.(i,j) = (j,7). The action of
Player j was equal to Y{;;(t), which is distributed as y(;,(t). The action was observed
by Player i, who then updated their intent towards Player j. Player 1 reacts to the
observation based on their continuation vector p, which is a component of the reactive

strategy o = (po, p, A):

p |V, C=c|= (1 prA . prB>p Youi)] -

Finally, if ¢ is such that Player j played against some Player k, who is not identical with
i, then we have a.(7,7) = (j, k) for an analogous reason as in the previous case. The
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equation contains an error matrix as an additional factor, because observation errors may

occur: |
P[Yiy 1C=d = (1 prA 1prB> ( 28 1 - 5>p Yacin]-

The relevant point is only that the conditional distribution of Y(’Z ;) 1s purely a function of

P [Yac(i,j)}. We have observed that this is true for all possible values of c. O

Ezxample.

We illustrate the concept of intent origins with an example of n = 3 players. In this
example, there are (g) = 6 intents.
Say that in some round ¢, Player 1 played against Player 2. Player 3 observed this and
randomly decided to update their intent towards Player 1, but not that towards Player 2.

The intent origins are as follows.

« First of all, a.((1,3)) = (1,3) and a.((2,3)) = (2,3). Since Player 3 was not selected
to play, other players did not update their intents towards Player 3. These intents
are thus unchanged and are their own parents.

o Similarly, a.((3,2)) = (3,2). Player 2 was selected to play, but Player 3 nonetheless
did not update the intent (3,2).

« But Player 3 did update the intent (3,1). The new intent is based on Player 1’s
action towards Player 2, which in turn is based on Player 1’s intent of Player 2, that

s (1,2). So a.((3,1)) = (1,2).

o The selected Players, 1 and 2, certainly updated their intents towards each other.
So the new value of the intent (2,1) also stochastically depends on (1,2) in the
previous round, and vice versa. We have a.((1,2)) = (2,1) and a.((2,1)) = (1, 2).

Marginal distributions

We write w ) = p {Y(”)} for the marginal distribution of Y{; ;), and similarly wEL 5 =
P [Y(’”)} We write

w = (wgy : (i,5) €ER) = (p [Y(i,j)] 1 (i,7) € R)

for the collection of these marginal distributions, and similarly w’ for the collection of the
/

Wig)-

We interpret w as an element of the vector space R® ® R4, where R® @ R4 denotes the
tensor product of R® and RA. For a general introduction to tensor products, see e.g.
Lang [Lan02]. Here, we just mention some basic properties that we will use. Firstly, the
vector space R® @ R4 is isomorphic to R®**4. Given elements v € R® and w € R4, the
element a € R® ® RA defined by a(ij)e = Vi )Wy for all (4,7) € R and z € A is denoted
by a = v ® w. Not all elements of R®*4 can be written in this form, but a basis of

RR @ R4 is given by {eGj)e =€y @es: (i,)) € R,x € A}

When we multiply e.g. a row R-vector with a vector from from R® ® R4, the result
is an A-vector. In particular, if (i,j) € R and a € R4 ® R* is given by the general
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form a = Y jerpea A(ij)2Cl.j).e Where ag ;). € R for all (i,j) € R and x € A, then

62@‘73‘)“ = Y aea A jyu€s € RA.

Fundamentally, the vector w € R® ® R4 assigns a real number to each pair of a player
pair (7,7) € R and an action x € A, which is the probability that Player ¢’s intent towards

Player j is z.

The following is a direct consequence of Proposition 12:

Corollary 24. There ezists a matriv @ € Mgr(R) @ M4(R) such that for all w and

corresponding w', we have w' = Quw.

Proof. Fix a player pair (i,7) € R. By the law of total probability, summing (5.92) over

all possible values of c,

wioy =P [Yip] = YoPIC = dQeli, )p [Yeuip] = Y PIC = dQeli, ) waii)

ceC ceC
:ZP _CQCZ]>( ac(z])w)
ceC
=Y PO =d(e] ;) © Qeli, ))w
ceC

Define the matrix @ € Mgz (R) @ M4(R) b

Q= Z €(i.5) ZP[C = C]ele(i,j) ® Qc(i, 7). (5.93)

(ij)eR  ceC

We note that @ is defined independently of w and w’. In particular, the probabilities

P[C' = ¢| are independent of w. Then we have

w' = Qu. (5.94)

Writing w(t) = (p [Y(”)(t)] : (4,7) € R) for the collection of marginal distributions of
intents at time ¢, we can now express w(t) simply as w(t) = Q'w(0). We say that (w(t)),
has the time-independent marginal Markov property, in accordance with the following

definition.

Definition 29 (Marginal Markov property). We are given a sequence of random variables
(X(t)): whose elements take values in X,_, S; for some index set I. In other words, values

of X(t) are of the form (x; : i € I), where x; € S; for all i € I.

The sequence (X (t)); satisfies the marginal Markov property if for each t and each i € I,

the marginal distribution of X;(t+1) only depends on the marginal distributions (p [X;
jel).

If in addition there exists a (necessarily linear) function f such that
(IXi(t+1)] i€ ) = f((p[X(0)] i € 1)),

then the sequence satisfies the time-independent marginal Markov property.
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Corollary 24, which is stated with the knowledge that (Y(¢)); satisfies the time-independent
Markov property, shows that (Y'(¢)); also satisfies the time-independent marginal Markov
property. However, neither is in general a consequence of the other.

The vectors w(t) are elements of R® @ R* = R**A whereas the distributions of the Y (t)
are elements of the vastly much larger space RA™, since Y (t) takes values in A®. And
indeed, analysing () is much simpler than analysing the transition matrix of the Markov
chain (Y (t));. However, (w(t)); unfortunately does not contain all the information we
need to compute payoffs: From (5.91), we see that the payoffs depend on pairwise joint
distributions of intents. It is only in additive games that the following holds:

2 T
m(t) = oo 2 P [Yea®] G Yo ). (5.95)
P el
So (w(t)); is an oversimplification of the system.

However, in the same way as we derived the marginal Markov property for (Y (¢)); from
Proposition 12, we can do the same for the collection of pairwise intent distributions.

We define the pairwise intent Y, ji) (ir.j0) (t) for all ¢ and all (41, 7;) € R, (ia,j2) € R by
Y(ilvjl)v(imz)(t) = (Yar ) (8), Yiig ) (1))

as a random variable taking values in A%, We write Y'(t) for the collection of all pairwise
intents at time ¢:

Y(t) = (Y,(t): p € R?).
Again like with Y'(¢), we denote the componentwise marginal distributions as follows:

i(t) = (ivy(t) : p € R?) = (p [V, ()] : p € R?).

These objects are somewhat internally redundant, since for (i, j;) # (is, j2), the two
distributions w;, ;,,(is,j2) (t) and Wy, js), a1 ,5,) () represent the same information. However,
this is notationally convenient.
1
2= (_1> (5.96)

s | TH 2 s (5.97)

We define the vector z € RA as

Note: In the above equation (5.97), the symbol “®” denotes the Kronecker product and
not the tensor product, which simply means that we interpret 2 as a vector in RA* and
not the naturally isomorphic R4 @ RA.

Proposition 13. Fiz two player pairs (i1,71) € R and (iz, j2) € R. Given any outcome
¢ of the circumstantial events of one round, there exists a matriz Q.((i1,j1), (i2, j2)) €

Mz2(R) @ M 42(R) such that
p [Y(ilajl),(iQ,jz) | C= C:| = Qc((7'17j1)’ (127]2))]) {Yac(i17j1)7ac(i27j2)} 3 (598)

for all ¢ € C and such that % is an eigenvector of Q.((i1, j1), (ia, j2)) for some eigenvalue
w satisfying |pu] < 1.
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Proof. We show this by distinguishing the cases (i1, j1) = (i2, j2) and (i1, 71) # (i2, j2),
both of which we will reduce to Proposition 12. Fix some ¢ € C.

First, if (i1,71) = (42, j2), then of course also a.(i1,j1) = a.(ia, j2). By Proposition 12,
take Q.(i1, j2) such that
p [Y(/n,jl) | C = C} = Qc(i1, J2)p [YCLC(Z'LJ'I)} :

Let

Qc(ih]i) = (qAA qBA) .

dAB 4BB

Then we can define

gaAa 4daa 4BA (4BA
e . .. 0 0 0 0
Qc((ll,jl)v (227j2)) = 0 0 0 0

daB 4AB 4BB {BB

(This is one of multiple possible choices.) Clearly, this satisfies the conditions, with p = 0.

Secondly, consider the case that (i1,71) # (i2,72). When we condition on Y, ;, ;) and
Y..(is.j») in addition to C, then the random variables Y{;, ;) and Y{;, ;,) are independent,
since the formation of intents, given the observations they are based on, is independent.
We can express this as

p |:(}/(/31J1) 7,2,]2 ) | C =cA }/;16(7/1 ]1) yl N }/ac(injQ) = y2i|
=p {Y(” gl)Yac(il,jl) =y A Yac(iQ,jz) = yQ}
®p |:}/(/7:2,j2)yac(i1:jl) =11 A Ya(izgo) = y2}

for all y1,y2 € A. (Again, like in (5.97), “®” denotes the Kronecker product here.) Take
Q.(i1,71) and Q.(ia, j2) as in Proposition 12. Like all stochastic matrices of order 2, they
have z as an eigenvector. Let py, ua € [—1, 1] be the respectivly corresponding eigenvalues.
By construction of Q.(i1,j1) and Q.(is, j2), we have

P [(}/(;1@)? Y’Q’p ) | C=cA Y;lc(ll 1) = Y1 A Yzzc(zz,jz) = y2}
= Qclir, )P Yot o) Yoetir i) = 91 A Yautiasn) = 2]
® QC(i27j2)p [Yac(i27j2)Yac(i17j1) = yl /\ Yac(ig,jg) = y2i|

for all y1, 72 € A. Summing over y; and ys, we get

P [V Vi) | € = ¢ = Qulin, 30)p [Yautir )| © Qelins 12)p Yot

or equivalently
D {(}/(Iihjl) (iaj2)) | C = C} = Qc(i1, J1)Wao(ir j1) @ Qe(i2, J2)War(in,jo)- (5.99)
Defining Q. ((i1, j1), (i2, j2)) by
Q.((i1, 41), (i2, j2)) = Qelin, j1) ® Qclia, ja),
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we may express (5.99) as

p [(Y(zl J1)? Y(zz J2) ) | ¢ = C} - Qc((i17j1)> (i%jQ))wac(ihjl)vac(i%j?)'

Furthermore, we have Q. ((i1, j1), (i, j2))% = pajia?, and |pipe] < 1. So all conditions are
satisfied. [

The following statement, also a consequence of Proposition 12, shows that (Y(t)), satisfies
the time-independent marginal Markov property.

Proposition 14. There exist matrices Q € Mg2(R) ® MAz( ) and A € Mg2(R) with
the following properties. For all @ and correspondmg W', we have W' = Q. The matriz
A satisfies || Az|| < ||z]|o, for all 2 € R, Finally, Qz =AR:.

Note: The expression 0 = A® ? may appear unfamiliar. It is equivalent to saying that
Qz® %) = (Az) ® % for all z € R?.

Proof. Fix two player pairs (i1, j1) € R and (iz, j2) € R.

By the law of total probability, summing (5.98) over all possible values of ¢,

iU“ 1), (i2,52) ZP (i1, J1), (22’jz))ezlc(il,j1)7ac(i2yjz)w
ceC

Define the matrix Q) € Mxg2(R) ® M4 (R) by

Q: Z €(i1,51),(i2,j2) Z]P) €ac Z1]1)ac(22]2 ®Q ((ilajl>v(i2’j2))' (5'100)

(11,51),(i2,J2)ER ceC
Then
' = Q. (5.101)

Consider the value of Q%, and let p.((i1, j1), (i2, j2)) be the eigenvalue of Q,((iy, j1), (i2, j2))
corresponding to the eigenvector 2. We have

Q% = Yo gz 20 PIC = (€] i antivim © Qel(iv, 1), (ia, j2)))Z
(i1,51),(i2,52) ER ceC
- ( Z C(i1,41),(i2.52) Z ]P[C = C]/'LC((ilu j1)7 (i27 jz))elc(il,jl),ac(imh)) ® Z.
(i1,41),(i2,52)ER ceC
Define
A - Z Z]P) =¢ 'LLC 21’j1>’ (Z.2’j2>>e(i17.7’1)7(7;2)]'2)elc(ilyjl)y(lc(injQ)'

(#1,41),(42,j2)ER c€C
By construction, A has the property Q% = A ® .
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It remains to show that || Az < ||z, for all z € R®’. Take any 2 € R®*, and consider
the absolute value of the ((i1, j1), (i2, j2))-th component of Az:

‘(Am) (41,51),(42,42)

Z]P =cC 'uc Zl’jl)’ (iZ’j2))elc(i17j1)7ac(i2,j2)$’

ceC

= 2 PIC = cJpe((in; 1), (G2, 2))Tag(in gu)uae(in o)

ceC
<Y PIC = ] [pe((i1, 41); (2, 52))| |Tac(in gn)ac(ioo)
ceC
< |lzlle Y_PIC = c] |ue((in, j1), iz, j2))|
ceC
< [l
This is true for all ((i1, 1), (i2, j2)) € R% So indeed || Az, < ||z||..- O

The effect of one unit of coordination

The double intent Y (; j) . (t) determines payoffs in round ¢ if players i and j are selected
to play. Double intents that are not formed of a matching pair (i.e. where one pair is (4, j)
but the other one is not (7,4)), are not needed to derive players’ payoffs, but the double
intents in subsequent rounds, including the payoff-relevant matching double intents, do
depend on them. We denote the set of matching double player pairs that contain Player 1
by Z:

T ={((1,4),(i,1) i # 1 U{((5, 1), (1,4)) i # 1} C R

In a given round t, for any given player i # 1, Player 1 has a probability of 2/(n(n — 1))
of being drawn together with that player. The set Z actually contains two elements
corresponding to the unordered pair {1,4}, but we may assign a probability of 1/(n(n—1))
to each of them. Over all of Z, these sum to 2/n, which is Player 1’s probability of being
one of the selected players.

Given then that the players (1,4) are drawn to interact in round ¢, Player 1’s expected
payoff is given by

mi(t) = g7 (1,0, (2)-
If we don’t know which player pair will be drawn, the expected payoff is

m() = (e, ® g)Tib(0). (5.102)

n(n —1) s

. 2
For convenience, we define the vector s € R® as

s:Zep,

pEL
so that we can write
1
) = ——— TW(t). 5.103
mit) = g (@ o) (5.103)

130



5.4. Supplementary Information

While not relevant for the subsequent proof, we may observe that the following set of
vectors forms an orthogonal basis of RA:

by =eaa +eap+epa+epp
bs =eaa+eap —€epa — €BB
bo = eaa —eap +epa —epp

2 =10bc =eaa —eap —€pa + €BB.

Given some p € Z, we can analyse i, in this basis:

« We always have bjw, = 1, since 0, is a stochastic vector.

« We can interpret biiv, as encoding Player 1's A-rate, that is, Player 1’s probability
of playing action A. Specifically, if Player 1’s A-rate is p, then biw, = 2p — 1.

o Similarly, we can interpret bj,i, as encoding the A-rate of Player 1’s opponent.

o Finally, blw, can be interpreted as encoding the coordination rate between the two
players. If p is the probability that the players both play the same action, then
boi, = 2p — 1.

Player 1’s total (i.e. summed over all rounds) A-rate, the opponents’ total A-rate, and
Player 1’s total coordination rate with their opponents together determine Player 1’s
payoft.

We know from [SCHN21] that if the other players all use reactive strategies, then their A-
rates at time ¢ only depend on the A-rate of Player 1 in the preceding rounds. Furthermore,
Proposition 14 shows that coordination only affects coordination, in the sense that if
at any point in the game we intervene by increasing the probability that Player 1 and
Player 2 will both play A in the next round, while keeping their individual probabilities of
playing A constant, then all future A-rates will be also unchanged. This is a consequence
of the fact that reactive strategies only take into account individual actions, not pairwise
interactions.

Our aim is to show that within the conditions of Theorem 13, reactive Nash equilibria
do not exist. We know that reactive Nash equilibria do exist in many games that are
additive, but otherwise satisfy the criteria of Theorem 13. So the requirement that the
game be non-additive is required for the theorem to hold. It is the defining feature of an
additive game that one-round payoffs only depend on the two players’ A-rates, but not on
their coordination rate. Analogously to the reactive equalizer strategies of additive games,
we could also construct reactive strategies for non-additive games that neutralise the
effect of a mutant’s A-rate on the mutant’s payoff. In order to outperform such strategies,
Player 1’s only option is to manipulate the coordination rate.

As we will ultimately conclude, it is possible to profitably do so against all reactive
strategies within the conditions of Theorem 13. By Proposition 14, the mutant can
be sure that such a manipulation of the coordination rate will only affect the total
coordination rate, but not their own or their opponents’ A-rates, against any reactive
opponent. Depending on the payoff matrix, the mutant may either wish to increase or to
decrease the total coordination rate.
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Intuitively though, while Player 1 has full control over their own A-rate, they only partially
control their coordination rate with the other players. It is not immediately clear how
they would willfully increase or decrease the latter. Even if they are to have a way of
positively or negatively affecting their coordination rate in a given round ¢, this may (and
indeed will) have an effect on the coordination rate in the subsequent rounds, and a priori
we cannot exclude the possibility that that subsequent effect either reverses or exactly

cancels out the effect in round ¢.

But the following proposition states that this is never the case.

Proposition 15.

sTY d"AT(e(2)21) + €@1).12)) > 0. (5.104)
7=0

As constructed from Proposition 14, the matrix A € Mz2(R) quantifies the effects that
the current coordination rates of all the pairs of player pairs ((i1, j1), (i2, j2)) € R? have

on the coordination rates in the next round.

Because we use a redundant representation for notational convenience, it is the sum of

the two basis vectors,
€((1,2),2,) T €(2,1),(1,2))

that represents one unit of Player 1’s coordination rate with Player 2. We use the notation
U= e,2),20) 1 E2,),1,2): (5.105)

Proposition 15 states that this unit of coordination with Player 2 in any one round has a
positive effect on Player 1’s total coordination rate with all players. So if Player 1 can
increase their coordination rate with Player 2 in round ¢ compared to some reference, then
they have thereby also increased their total coordination rate, and thus, in an additive

game, positively or negatively affected their own payoff.

Proof. By symmetry,

STZd AT (e((1,i),6,0)) F+ €((0,1),(1,) —STZdA e((1,2),2,1)) T €((2,1),(1,2))) (5.106)

7=0

for all i # 1, so (5.104) is equivalent to

sTY d"A"s > 0. (5.107)

7=0

(Technically, there can be more than one possible choice of () that satisfies Proposition 14,
and we only know that we may choose () in such a way that A has these symmetry

properties. But that is sufficient.)
We will first show

T (i deT) s #0. (5.108)

7=0

and then infer (5.107) using the intermediate value theorem.
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Define the matrix Z € Mz2(R) as

7 = Zep®e;.
pEZ

So given a vector € R®”, the vector Zx is equal to 2 with all components in the standard
basis indexed by some p € Z set to 0.

Consider the double-sequence v(l,m) defined on I,m > 0 by
ZA) if | <
otomy= {205 R
A= ZA)™s if 1> m.
Observe that for all [ > 0, we have

lim v(l,m) = (ZA)'s. (5.109)

m—0o0

We know that ||Az|| < |jz]|, for all z € R®*. Tt is clear from the definition of Z that
also || Zz|| < ||zl for all 2 € R**. So we have |[v(l,m)]|o < ||5||oc = 1 for all I and m.

Define the double sequence b(L, m) for L,m > 0 by

L

b(L,m)=s">_ duv(l,m).

1=0
By the Weierstraf§ M-test, b(L, m) converges uniformly in L as L — oc.
By (5.109), and using the fact that s7Z = 0, we have

S !
. . — oTe — —
nlgrréob([/,m) =5 <§d (ZA) 3) =sTs=2(n—1)

for all L.

Since we are thus given uniform convergence in L as well as pointwise convergence in m,
we know that both double limits exist and are equal:

lim lim b(L,m) = lim lim b(L,m)=2(n—1) (5.110)

m—o0 [L—o00 L—o00 M—00

For a proof of this basic result, see Theorem 7.11 in Rudin [Rud76].

We define the sequence a(m) for m > 0 by

a(m) := lim b(L,m) = sTidlv(l,m).

L—o0 =0

Equation (5.110) states that lim,, . a(m) = 2(n — 1).

Assume a(0) = 0. Now consider the expression a(m + 1) — a(m) for m > 0. We have

a(m+1) —a(m) =sT idlv(l, m+1)—sT idlv(l,m)

=0

=s' i_o:dl (v(l,m+1) —v(l,m)).
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For [ < m, we have
v(l,m+1) —ov(l,m) =0.

For [ > m > 0, we have

v(l,m+1) —v(l,m) = A" ZA)™s — A (ZA)™ !
— Al—m—l(ZA)m—ls o Al—m+1(ZA)m—28
= AN Z — In2) A(ZA)™

— _pmet (Z e, ® e;) A(Z Ay

pEL

By symmetry, we have that efv(l,m) = e[, 5 o,yv(l,m) for all p € T and all I, m.
Consequently,

v(l,m+1) —v(l,m) = —A—""1 (Z ep ® 6{1’2)7(271)) A(ZA)™?

pEL

= (_621,2),(2,1)14(214)771715) - Al Z €p

pEL

= (- 6{1 2), (2,1)A<ZA)m_15) AT
= (—€fi9)0, 1)A(ZA)’”_ls) ~o(l—m —1,0).

So, for all m > 0,

a(m+ 1) —a(m) = (—¢fy 5 1) A(ZA)"'s) - sT Z Foll—m— 1.0)
l=m+1
(=€l AZA)" ) - d" 5Ty d'w(l,0)
1=0
6(1,2),(2,1)A<ZA)W_1s) - d™1q(0)

= (=
0
by our assumption of a(0) = 0. So a(m + 1) = a(m) for all m > 0. By induction,

a(m
a(m) = a(0) = 0 for all m. But a(m) — 2(n — 1). This is a contradition. So our
assumption of a(0) = 0 must be false; a(0) # 0.

Since
0) =57y dv(l,0)=s"> dAs,
=0 =0

a(0) # 0 is equivalent to (5.108).

So we know that
sT <Z dTAT> s #0. (5.111)
7=0

This is true for all d € [0,1). For d = 0, the left-hand side of (5.111) is equal to 2(n — 1).
By continuity in d on [0, 1), it is positive for all d € [0, 1). O
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A condition for the existence of profitable deviations

By now, we know that if a mutant Player 1 can effect a change in their coordination rate
with Player 2 in any given round ¢, while not affecting any other aspect of the state vector
w(t), then they have as a either result increased or decreased their payoff. By linearity,
either an increase or a decrease in the coordination rate will effect a payoff increase. The
following lemma formally shows this.

So far, we have only considered the case of a population of n players who all use the
reactive strategy o. Starting with the below lemma, we need to evaluate o against
alternative, not necessarily reactive, strategies for a potentially deviating Player 1. For
these arbitrary mutant strategies, a priori there is no concept of intents, and there is
no natural way to define an analogue of the pairwise intent distribution vectors (i(t));
that we have in the case of a homogeneous reactive population. But given a sequence of
vectors, say (@' (t));, we can define the concept of action compatibility:

Definition 30 (Action compatibility). Given an arbitrary strategy profile (0;)icin) (i-e.,
an assignment of one strategy to each player), and given a sequence of vectors (w'(t)):
in R® @ RY, we say that (i'(t)); is action compatible with (0:)icp if for all t and all
(1,7) € R, the probability distribution over the pair of actions of Player i and Player j in
round t, given that they are selected to play, is equal to egi’j)’(j’i)ib’(t).

In particular, if some (i'(t)); is action compatible with some (0;);cjn), then the expected
payoff of Player i in round ¢ is given by

1

() = ——— > (e T eGaen) @ 9)Tw'(t).
(= 1) jeiuin

With that, we can state the following lemma.

Lemma 6. Let o be a given reactive strategqy. As always, we write (i (t)); for the pairwise
intent distributions in the homogeneous o population.

Given a time T' € N and a real number v satisfying vg72 > 0, we define the sequence
(@' (t)); in RR* @ RY by

e W'(t) =1w(t) forallt <T
e W(T)=w(T)+yu®:Z

e W' (t+1) = Qi (t) for allt >T,

If there exist T, v as above, and a (not necessarily reactive) mutant strategy o’ such that
(W' (t))s is action compatible with the strategy profile in which a mutant Player 1 plays o
and the residents play o, then o is not a Nash equilibrium strategy.

Note that the defining property of additive games can be expressed as g7z = 0. So it is
already clear that Lemma 6 is only applicable to non-additive games.
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Proof. Let o be a reactive strategy that satisfies the conditions of the lemma. We want

to show that o is not a Nash equilibrium strategy.

Take T', v, and o as in the statement of the lemma. We write 7’(t) for Player 1’s expected
payoff in round ¢ when using strategy o’. Then, by action compatibility of (w'(t));, we

have
1

/
)= ——
m{2) n(n—1)
where 7(t) is Player 1’s expected payoff in round ¢ when using strategy o.

Writing 7’ of course for the total expected payoff of Player 1 with o', we have

o0

=(1—d)> d'n'(t) (5.113)

=(1- d)n(nll) S®g Tidtw’ (5.114)
= (1— d)n( (s®g) ( __01 d i (t) + i dtQt‘Tw’(T)> (5.115)
=(1 —d)n( S®g (gdtw +t;dt +7u®z)> (5.116)
=(1-d)——— ( S®g (i —I—det u®z)) (5.117)

T+ (1 —d)——— (n_l) Y(s®g ngtQ (u®32). (5.118)

By Proposition 14, we therefore have that

1 oo
7 —r=1-d)——ys2g)7Y d (A u)® 3 (5.119)
n(n —1) ; ( )
1 o
=(1—d)—=d'y <5T thtu> g% (5.120)
n(n —1) ;
We denote the term in the big parentheses by b. Proposition 15 states that b > 0. We
thus have
7 —r=(1- d)#dTbygTé (5.121)
n(n —1) ‘ '

But also vg™2 > 0 by assumption. So 7’ > m; the mutant strategy o’ achieves a better

payoff than ¢. So ¢ is not a Nash equilibrium strategy.

Constructing profitable deviations

Now that we proved Lemma 6, what remains to show Theorem 13 is to construct
appropriate T, v, and ¢’ for all cases covered by the theorem. We do this separately for

A <1 (in Proposition 16) and A =1 (in Proposition 17).

Proposition 16. Let 0 = (pg, p, \) be a reactive strategy with ps # pp and 0 < XA < 1 in

a game with errors. Then o is not a Nash equilibrium strategy.
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Proof. 1t is enough to construct 7', 7, and ¢’ that satisfy the conditions of Lemma 6.
Let T'=n + 3. We construct ¢’ as follows.

First, we construct for each x € A an event E,. Both E4 and Eg completely specify
the drawn player pairs and their actions in rounds 0 to 7' — 1. The player pairs are
independent of z, and the actions other than the action of Player 1 in round 2 are also
independent of x. The below table is a visual summary of E, and is described in detail
below. Cells marked with a dash indicate an action that is fixed by F,, but not explicitly
specified in our construction.

Round 0 1 2 3 4 5 6 . n+2
Players |2 3|1 3|1 22 3|1 3|1 3|1 4 1 n
Actions | - - |- — | =z 7 —-|A - B —|—- - - -

To construct the sequence of actions in F4 and Epg, we proceed as follows. First, for
rounds 0 and 1, choose any actions that have positive probability in a homogeneous o
population. Then, due to the presence of errors, any pair of actions is possible in round 2.
Choose some action for Player 2. Player 1 plays z, i.e., action A in F4 and action B in
Eg. In round 3, choose any possible action for Player 3. It is possible to do so consistently
for F4 and Eg, since the action of Player 1 towards Player 2 in round 2 is not relevant
here. For Player 2, choose the action that Player 2 did not use in round 2. This is
also certainly possible, since the intent Y(3)(3) is potentially (A > 0) influenced by the
action of Player 3 towards Player 1 in round 1, which might have been observed with
errors. In round 4 again, due to the presence of errors, anything is possible. For Player 1,
choose action A. For Player 3, choose any action that allows Player 1 to play action B
in round 5. There must be at least one possible such choice, since p4 # pg. In round 5,
choose action B for Player 1 and any action for Player 3. For all ¢ such that 4 < i < n,
the players (1,7) are selected to play in round i + 2. We choose any actions that have
positive probability.

Firstly, observe that we have constructed £4 and Ep such that both occur with positive
probability when all players use strategy o. Secondly, fix z € A and consider the
distribution of the intent of Player 1 towards Player 2 at time n + 3 under the condition
that E, occurred. The intent originates either from the action of Player 2 in round 2 or
in round 3, which were different. Since 0 < A < 1, either of those is possible. Since also
Pa # Dp, the intent Y1 2)(n 4 3) is neither certainly A nor certainly B. (Note that this is
not due to Player 1’s susceptibility to errors.) Write

pe =P [Yup(n+3)=A| E,].
Choose some positive real number A, > 0 that is sufficiently small such that

Let A = mingec4 A,.
For both x € A, we define

P, =P [Y(le)(n—i— 3)=A] Ex] .

Since 0 < A < 1, there is a positive probability that the intent Y/, ;) was last updated in
round 2, when Player 2 directly observed Player 1’s action. The probability for this is the
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same when conditioning on F4 and Eg. If it is the case that the intent was last updated

at that time, then the reputations are distributed differently between E4 and Ep (since
€< %) If it is not the case, then they are distributed equally between E4 and Ep, since

all other actions are the same in £4 and Er. So overall the distribution at time n + 3 is

different between E4 and Epg, i.e., 14 # 5.
Let ta4 € {41, —1} such that ¢4 has the same sign as (¥4 — 1¥g)gT2. Let tp = —r4.

Now, the strategy o’ for Player 1 operates as follows. Normally, it behaves exactly like

o. Only after round n + 2, before round n + 3 is played, if event E, occurred for some
x € A, then ¢/ modifies its intent towards Player 2. It does so by randomly choosing a

new value for the intent, with ¢, + ¢, AP [F;] as the probability for it being A, where Z is

the action that is not x. So the probability of the intent being A, given that E, occurred,

changes from ¢, to ¢, + t,AP[Ez].

Let E'= E4U Ep. We write Y(} 5 (n + 3) for the (potentially, because £ need not occur)
updated intent. When conditioning on £, the distribution of Y} 5 (n + 3) is identical to
that of Y1 9)(n + 3):

PV 5(n+3)=A|E| =P[EAP [V, ,(n+3) = A| E4

+P[Ep]P[Y], 5 (n+3) = A| Eg|
P[E4] (pa + taAP[Eg]) + P[Ep] (pp — taAP [E4])
P[EAl oa+P[Ep]¢p
=P [Yuo(n+3) = A| E]

We analyse the pairwise distributions Y/(172),(i7j)(n + 3), where (i,7) € R, under the

condition E. The same statements are true for their redundant analogues Y/(i,j)7(1,2)(n +3).

First, consider the case (i,7) = (1,2). It follows from the above paragraph that this
pairwise distribution is unchanged compared to Y.

Secondly, consider the case that (i,7) # (1,2) and (i,7) # (2,1). The intent Y| 5 (2)

is either in its initial state, or was last update in response to an action whose value is

identically fixed by E4 and Ep. (The only action for which this is not the case is the
action of Player 1 in round 2. But the last time that Player ¢’s intent towards Player j

was updated cannot have been in response to that action. If it were so, then j = 2 and
thus @ # 1 and ¢ # 2. But then Player i had a direct interaction with Player 1 in round

i+2.) So Y[ (n+3)is independent of E4 and Ep under the condition E, and thus
also of Y} 5 (n + 3). The same is true for the pair Y{; j(n + 3) and Y{12)(n + 3). So the
pairwise distribution is unchanged.

Finally, we consider (i, j) = (2,1). For each z € A, we have
P [Y(/l,z)(" +3)=A| Em} =y + L AP [E]

and
P Yo (n+3)=A|E| = .
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Since with E, we are conditioning on all observable events prior to round 7', the intents
are again independent. So we have

(0z + ta AP [Ez] )by

/ T xA T - Yz
p {Y((l,z),(z,l))(” +3) | Em} = (201 j;x _PLECEAQ%I])%) : (5.122)

(1 = @0 = L AP [E])(1 — ¢a)

Consequently, we have

("
P [}/(,(1,2)7(2,1))(71 +3) | Ez} —p {1/((1,2),(2,1))(72 +3) | Ex} = 1, AP [FE;] (1__¢Ifz)
_<1 - 'lva)
(5.123)
We can thus state
P Yo +3) 1 B] =p Yoo +3) | E]
Ya VB
—PEs | EludPEs | LY |y pEs | ElsapEy | G Y0
Ya (02
—(1—=4n) —(1—1p)
_ a B EIPIEp | E] (Y4 —pp)3. (5.124)

PE]
Of course
p|Yi(n+3) | E¥| =p[Y,(n+3) | E
for all p € R, since ¢’ acts identically to ¢ when E does not occur.

Let
v = 1aAP[Ey | E)P[Ep | E] (¥4 — ¥5).

Then vg™2 > 0 by construction of ¢4, and

(P[V,(n+3)] :peR?) =is(n+3) +yu® 2

So we have

(p[V,(n+3)]: peR?) =i(n+3),
for (w'(t)); as it is defined by T and ~.

Since after time T, ¢’ plays like o given the potentially updated intent, we also have

iy )
(p[V,(0)] 1 p e R?) =i (1)
for all ¢t > T. For t < T, the same is trivially given.

So indeed, the strategy profile where Player 1 plays ¢’ and all other players play o is
action compatible with (i’(¢)); as defined by 7" and . Thus, by Lemma 6, ¢ is not a
Nash equilibrium. O
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Proposition 17. Let 0 = (pg, p, A) be a reactive strategy with pa # pp and A =1 in a
game with errors. Then o is not a Nash equilibrium strategy.

Proof. Again, it is enough to construct 7', 7, and ¢’ that satisfy the conditions of Lemma 6.
Let this time 7' = 3. We construct ¢’ as follows.

First, we construct for each = € A an event E,. For both values of z € A, the event E,
completely specifies the drawn player pairs and their actions in rounds 0 to 2 apart from
the action of Player 2 in round 2. The player pairs are independent of z, and the actions
other than the action of Player 1 in round 2 are also independent of . The below table
is a visual summary of F, and is described in detail below. Cells marked with a dash
indicate an action that is fixed by E,, but not explicitly specified in our construction.
The cell marked with a question mark is an action that is not fixed by F,.

Round 0 1 2
Players |1 3|2 3|1 2
Actions | - - |- —|x 7

To construct the actions in F4 and Eg, we proceed as follows. For rounds 0 and 1, choose
any actions that have positive probability, identically for £4 and Eg. In round 2, Player 1
plays A in E4 and B in Eg. The action of Player 2 in round 2 is not fixed by F4 and Ej.

Analogously to the proof of Proposition 16, we may observe that F4 and Ep occur with
positive probability when all players use strategy o. We analogously define

po =P [Yu2(3) = A| E|

and
Yo =P[Yon(3) = 4| B

In round 2, the selected players’ intents towards each other certainly stem from indirect
observations of the respective other’s action towards Player 3 in the previous rounds. Due
to the presence of errors, all combinations of reputations and thus, by p4 # pg, all action
pairs are possible in round 2. In particular, this means that 0 < ¢, < 1 for all z € A. We

have ¥4 = ps and g = pg, so Y4 # Yp is given.
Like in the proof of Proposition 16, we can thus choose A > 0 sufficiently small such that

for all x.
We again choose 1y = —tp € {41, —1} such that ¢4 has the same sign as (¥4 — 1p)gTZ.

In this case, the strategy o’ is defined to operate as follows. Normally, it behaves exactly
like 0. However, if after round 2 it determines that event E, occurred for some x € A,
then it forms an alternative intent towards Player 2, which we denote by 3/(?2)(3). It
does so by randomly choosing a value, with ¢, + ¢, AP [E;] as the probability for the
alternative intent to be A. Now, the subsequent actions depend on which of two things
happen first. If either Player 1 or Player 2 are selected to play with some third player
before they are selected to play with each other, then Player 1 forgets the alternative
intent and keeps the original intent, and thus continues to play like 0. However, if Player 1
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and Player 2 are selected to play with each other in some round ¢ > 3 before either of
them played with someone else, then Player 1 forgets the original intent towards Player 2
and enacts the alternative intent towards Player 2 in that round.

Let R be the event that the two players interact with each other before either of them
interacts with someone else. We have P [R] > 0. We define

v =1AAP[E, | E]P[Ep | E|P[R] (14 — ).

It remains to show that the strategy profile given by ¢’ for Player 1 and o for the residents
is action compatible with (@'(t)); as defined by T" and ~.

We analyse the distribution of the alternative intent Y(*LQ)(S) under the condition £, and
the pairwise joint distributions with other intents. We know from Proposition 14 that the
pairwise joint distributions of intents are collectively sufficient to infer the distribution of
all future actions.

Firstly, by an analogous calculation as in the proof of Proposition 16, the alternative
intent is distributed identically to the original intent. Intents of the form YJ; ;)(3) with
Jj # 1 and j # 2 are independent of both Player 1’s original intent Y{; 9)(3) and the
alternative intent Y{] ) (3), since we are conditioning with £ on all observable events so
far other than the actions of Player 1 and Player 2 in round 2.

The joint pairwise distributions of the alternative intent }/&2)(3) together with intents
of the form Y/, ;)(3), where either ¢ # 1 and j = 2, or i # 2 and j = 1, are irrelevant
for all actions, because if R occurs, then such an intent Y{; ;(3) will certainly (A = 1)
be replaced wihtout ever being enacted, and if R does not occur, then Player 1 uses the
original intent and not the alternative. For the same reason, the joint distribution of the
original intent with Player 2’s intent towards Player 1, Y(51y(3), is also irrelevant.

So the actions of the players from round 3 onwards are as if Player 1 were a normal
o player whose intent towards Player 2, say Y(5,)(3), is distributed exactly as it would
be with a homogeneous ¢ population, except that in the case that E occurs, the joint
distribution between Y| 5 (3) and Y, ;)(3) is given by

p [Y('(l,z),(z,n)(?’) | E} =p [5/((1,2),(2,1))(3) | E} +1aAP[E4 | EJP[Eg | E]P[R] (Ya — ¥B)%.

Of course, o’ behaves identically to ¢ prior to round 3.

So indeed, the strategy profile where Player 1 plays ¢’ and all other players play o is
action compatible with (i'(t)); as defined by T and ~. Thus, by Lemma 6, o is not a
Nash equilibrium. O

The statement of Theorem 13 is simply the conjunction of Proposition 16 and Proposi-
tion 17.
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Figure 5.6: An expanded view on Fig. 5.4. For the four combinations of pure direct
reciprocity (A = 0) and pure indirect reciprocity (A = 1) with no errors (¢ = 0) and with
frequent errors (¢ = 0.1), we show the largest ¢ for which equalizers exist, depending on
the payoff matrix G. The parameters are the same as in Fig. 5.4, but we show a wider
section of the payoff matrix space. We see that in the case A = 1 and € > 0, for fixed
P and R, the area in the T-S-plane where equalizers exist is bounded. But in the cases
where A = 0 or € = 0, equalizer strategies exist in all social dilemmas for sufficiently large

0, meaning that the coloured area extends infinitely.

Data and software availability

The data shown in Figure 5.5 were generated in a computer simulation written in Rust
(compiled with rustc 1.78) and Python 3.10. The computer code and the obtained

simulation data are available in [H24a).
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