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Multiagent learning is challenging when agents face mixed-motivation interactions,
where conflicts of interest arise as agents independently try to optimize their respective
outcomes. Recent advancements in evolutionary game theory have identified a class
of “zero-determinant” strategies, which confer an agent with significant unilateral
control over outcomes in repeated games. Building on these insights, we present
a comprehensive generalization of zero-determinant strategies to stochastic games,
encompassing dynamic environments. We propose an algorithm that allows an agent
to discover strategies enforcing predetermined linear (or approximately linear) payoff
relationships. Of particular interest is the relationship in which both payoffs are equal,
which serves as a proxy for fairness in symmetric games. We demonstrate that an
agent can discover strategies enforcing such relationships through experience alone,
without coordinating with an opponent. In finding and using such a strategy, an agent
(“enforcer”) can incentivize optimal and equitable outcomes, circumventing potential
exploitation. In particular, from the opponent’s viewpoint, the enforcer transforms
a mixed-motivation problem into a cooperative problem, paving the way for more
collaboration and fairness in multiagent systems.

fairness | mixed-motivation interaction | stochastic game | zero-determinant strategy

Game theory has proven indispensable for studying the dynamics of collective behavior
in groups of interacting agents. The games typically analyzed by researchers are not
tailored to precisely depict a particular empirical system. Rather, they aim to capture
essential aspects of the underlying system while retaining a level of simplicity that allows
rigorous mathematical analysis, controlled experimentation, and numerical simulation.
This reductionist approach enables researchers to explore the fundamental principles
governing interactions among individuals in various contexts, fostering understanding of
a system’s dynamics and uncovering potential avenues for interventions.

To explore the tension between individual and group incentives, one useful model
involves two strategic types: C (“cooperate”) or D (“defect”). If the payoff to an individual
when all agents cooperate exceeds the payoff when they all defect, yet any individual
cooperator could improve their payoff by switching to defection, then the game is a
cooperative social dilemma (1). For groups of two individuals (“agents”), a game with
these properties is called a “prisoner’s dilemma” and can be described by the payoff matrix

( C D

C aCC aCD

D aDC aDD

)
, [1]

where the parameters aCC , aCD, aDC , and aDD satisfy aDC > aCC > aDD > aCD. This
ranking ensures that, although both agents would prefer mutual cooperation to mutual
defection (aCC > aDD), they each have a temptation to defect, regardless of what the
opponent does (aDC > aCC and aDD > aCD). As a result, any rational agent will choose
to defect since defection is, in game-theoretic terminology, the “dominant” strategy.

Outcomes are much more interesting and complicated for the iterated prisoner’s
dilemma. Agents can choose to defect or cooperate in each round (or stage) conditioned
on the actions taken by both agents in all prior rounds. When iterated for a random
(but sufficiently large) number of rounds, there are many Nash equilibria and possible
long-term outcomes (2), depending upon how agents learn. Importantly, the iterated
game allows for the threat of punishment and the promise of future reciprocation (3, 4),
what Axelrod incisively calls the “shadow of the future” (5).

Approximately a decade ago, Press and Dyson (6) surprised the game theory
community with the discovery of a class of strategies for the iterated prisoner’s dilemma
(IPD) that allow one agent to exert substantial unilateral control on mean payoffs for
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the pair. These “zero-determinant” strategies allow, for example,
an agent to ensure that their payoff is exactly twice that of the
opponent’s in donation games (a kind of prisoner’s dilemma in
which cooperators pay c to donate b, and defectors do nothing).
One special case of a zero-determinant strategy is tit-for-tat
(TFT), which begins by cooperating and subsequently copies
the action the opponent used in the previous round. Tit-for-
tat is famous for having won Axelrod’s IPD tournaments, and
it produces identical payoffs for both agents, over an infinite
number of rounds, regardless of what the opponent does. Another
way of thinking about this property is that the TFT agent
effectively removes itself from the game, ensuring that no matter
what the opponent does, both agents get the same score. Thus, if
the opponent is motivated to improve their score (e.g., through an
adaptation/optimization process), then both agents will benefit
equally. Indeed, this property is one reason why TFT was so
successful in IPD tournaments, despite apparent drawbacks such
as sensitivity to errors in implementation (7).

On the applied side, recent studies have shown that zero-
determinant strategies can effectively address cybersecurity chal-
lenges and optimize resource allocation in wireless communica-
tion and crowdsensing systems (8–11). For instance, in the case of
the vulnerable open architecture of the Internet of Things, the use
of a moving-target defense approach based on zero-determinant
strategies can enhance counterattack performance (8). Likewise,
zero-determinant strategies employed by information requestors
can incentivize mobile-device owners to share high-quality
data and increase social welfare in mobile crowdsensing (9).
Zero-determinant strategies have even been applied to design
controllers that mitigate cyber switching attacks in smart grid
systems, which can stabilize the power system regardless of attack
strategies (10).

Many studies of zero-determinant strategies, including the
original discovery (6), are based on a linear-algebraic technique
that exploits the 2× 2 structure of the game as well as its infinite
time horizon. Subsequent work extends this approach to other
settings, e.g., games with discounting and finite time horizons
(12, 13), larger action spaces (14, 15), larger groups (16, 17),
longer memories (17, 18), or observation errors (19). These
extensions provide more a general perspective on what conditions
allow an agent to unilaterally enforce a given payoff relationship
among agents, as well as the implications of that relationship for
groups (20–22) and populations (23–25).

An important aspect of zero-determinant strategies is that they
encourage a geometric view of strategies in payoff space. When X
plays a fixed strategy, one can envision the resulting space of all
possible payoffs (to both agents) withinℝ2, as the opponent varies
their strategy. If X plays a zero-determinant strategy, then the
resulting space of possible payoffs falls along a line. In this way, X
unilaterally enforces a linear payoff relationship between the two
agents. In general, the space of possible payoffs, given the strategy
of X , can have the same or smaller dimension as the ambient space
(two); and this space defines the geometry of incentives that X
dictates to their opponent by choosing a particular strategy.

One useful perspective that has emerged involves mapping
a condition on short-term rewards to a linear relationship on
long-term payoffs. Specifically, suppose that AX and AY are the
action spaces available to X and Y , respectively; rX and rY are the
reward functions for the stage game; � ∈ [0, 1) is a discount factor
(or, equivalently, a continuation probability); �0

X is a probability
distribution on AX representing the initial mixed action of X ;
and, for every x ∈ AX and y ∈ AY , �X (x, y) a distribution on AX
representing the mixed action of X conditioned on observing X
play x and Y play y in the previous round. For shape parameters

(�, �, ) ∈ ℝ3, let Φ (x, y) = �rX (x, y) + �rY (x, y) +  . For
repeated games, it is known (14) that if there exists a function
 : AX → ℝ such that the equation

Φ (x, y) =  (x)− �E
[
 
(
x′
)∣∣ x′ ∼ �X (x, y)

]
− (1− �)E

[
 
(
x0)∣∣ x0

∼ �0
X
]

, [2]

holds for all x ∈ AX and y ∈ AY , then X can ensure a linear
relationship between the long-term mean payoffs to X and
Y , �VX + �VY +  = 0, regardless of Y ’s strategy �Y and
regardless of agent Y ’s memory length. This result was motivated
by a desire to understand zero-determinant strategies in games
with continuous action spaces (14), where the linear-algebraic
approach of Press and Dyson (6) is not applicable.

Inspired by this perspective, our goal here is to establish a
result for the existence of zero-determinant [or “autocratic” (14)]
strategies for two-agent stochastic games, in which there is an
external state that can change over time, thereby altering the
payoff structure of interactions. However, unlike in previous
settings where the goal is to solve directly for zero-determinant
strategies, here we take a learning perspective, where “learn” is
relative to an objective and is interpreted more broadly than
simple payoff-maximization (as is common in evolutionary game
theory). We study how agent X can discover, over time, a style
of play that resembles (or coincides with) a zero-determinant
strategy. In doing so, this agent learns to incentivize an opponent
in a desired manner and thereby mitigate conflicts of interest.

Model and Goals

The most general setting we consider is a partially observable
stochastic game (POSG) (26), which is defined by a tuple{
n, S, A, r,�0, T

}
, where n is the number of agents, S is the

state space of the game, A = A1 × · · · × An is the joint action
space available to agents, r : S × A → ℝn is the reward
function, �0

∈ Δ (S) is the distribution over initial states, and
T : S × A → Δ (S) is the state-transition probability map,
where Δ (S) denotes the space of probability distributions on S.
We denote by ri : S × A→ ℝ the reward function of agent i.

In principle, the action spaces depend on the state, s ∈ S,
but by augmenting the action spaces to have rewards of zero on
infeasible actions in a state, if necessary, we may assume that
Ai is independent of state. Although agent i need not directly
observe state s ∈ S and action a ∈ A of oneself or others in order
to receive the reward ri (s, a), the policy i uses to play the game
depends on at least a partial observation of the state. In state
s ∈ S, we assume that there is a signal O (s) ∈ Δ (O) in some
observation space, O. Each agent, i, has a private view of this
signal, taking values in some space Oi, via a map Oi : O→ Oi.
Note that if O = O1 × · · · × On and the image of O is in
Δ (O1) × · · · × Δ (On) ⊆ Δ (O), then by projecting onto the
ith coordinate we get a map Oi : S → Δ (Oi), so independent
observations constitute a special case. A strategy for agent i is then
a map �i : Oi → Δ (Ai). Once observations are made, the agents
randomize independently based on their respective strategies;
however, the observations themselves are allowed to be correlated
across individuals (for example, visibility of the environment
based on weather). In summary, the setting of partially observable
stochastic games is a vast generalization of simple repeated games,
allowing much greater flexibility for applications.

There are different ways to incorporate the “memory” of a
policy into this framework. One way is for the history of past
state-action pairs to be included directly into the state space,
augmenting S. From this perspective, the state of a stochastic
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game consists of an environmental component, which affects
rewards, and a memory component, which does not affect
rewards. Even matrix games in this setting, where the interaction
is the same in every time step, may be viewed as finite state
machines (27, 28) and would not be considered “stateless”
(|S| = 1). For example, some authors model strategies as maps
from observations of the state to mixed actions (29, 30), as we do
in the model above, in which case a strategy for a stateless game
is just an unconditional mixed action, which cannot leverage
repetition. Other authors explicitly incorporate the history of
past states and actions into the strategy (31), and in this case,
stateless games do correspond to the repeated matrix games used
extensively in behavioral economics.

Here, we take a hybrid approach to memory. For the sake of
generality and notation, we state our main theoretical results
in terms of strategies conditioning on only the observations
of the state, which could include information about both the
environment and the history of actions. Later, when discussing
specializations of the model and concrete examples, we make
explicit which components of a strategy come from the envi-
ronment and which are related to history. There, we follow the
tradition in evolutionary game theory of treating strategies as
stochastic with fixed memory (32). We focus on memory-one
strategies, which use the environment and actions in the previous
time step, in addition to the current environment, when devising
actions.

In this study, we focus on n = 2 agents, denoted by X and Y ,
respectively. The game starts in some state, s ∈ S. Each agent i
observes this state via the map Oi, chooses an action, and receives
a reward. We adopt a probabilistic interpretation of discounting,
which is common in evolutionary game theory. With probability
� ∈ [0, 1], a new state is chosen and the game continues to
another round; with probability 1−�, the game ends. The mean
game length is 1/ (1− �). Suppose that Φ : S × A → ℝ is a
function of the state and action profile. For s ∈ S and strategies
�X and �Y , the expected value of Φ, given that the initial state s
is drawn from �0, is

V �X ,�Y
Φ

(
�0) = E

(1− �)
∞∑

t=0
�tΦ

(
st , at)

∣∣∣∣∣∣∣
s0∼�0

st+1
∼T(st ,at

X ,at
Y )

at+1
X ∼�X ◦OX (st)

at+1
Y ∼�Y ◦OY (st)

 .

[3]

When Φ = rX or Φ = rY , we write V �X ,�Y
X and V �X ,�Y

Y ,
respectively, for V �X ,�Y

Φ . To clarify the two timescales, we refer
to stage scores as “rewards” and long-run discounted scores as
“payoffs.”

Note that, when viewing � as a continuation probabil-
ity, the probability that the game ends immediately after
round t is (1− �) �t , so the summation (1− �)

∑
∞

t=0 �
tΦt

can be interpreted as the expected value of Φ in the
final round of the stochastic game. Alternatively, since∑
∞

t=0 �
tΦt = (1− �)

∑
∞

t=0 �
t ∑t

t ′=0 Φt ′ , the summation
(1− �)

∑
∞

t=0 �
tΦt can be seen as the normalized expected sum

of all values of Φ over the duration of the stochastic game. The
latter interpretation is a hybrid of classical and evolutionary
approaches, since (often) the former treats � as a discounting
factor and the latter treats � as a continuation probability.
Practically speaking, this distinction is important because, with
� interpreted probabilistically, there may be no guarantee of a
minimum number of rounds in an episode.

Ultimately, we are concerned with comparing the long-term
payoffs of X and Y , so we need a baseline notion of what it means

for agents to be interchangeable. Of particular interest is when
equality of payoffs can be interpreted as a proxy for fairness. To
this end, we use a notion of exchangeability for the game, which
roughly means that although agents can hold different positions
in different states of the game, there are no intrinsic differences
among the agents. When there is only a single game environment,
an exchangeable stochastic game is simply a symmetric normal-
form game (33). We relegate the formal technical definition of
exchangeability for partially observable stochastic games to SI
Appendix, and here we only briefly describe what this notion
requires for two-state stochastic games. We begin with a simple
example of an extended prisoner’s dilemma:

Example (a two-state prisoner’s dilemma): Inspired by the
“coin game” of Lerer and Peysakhovich (34), we can define a
two-state version of a prisoner’s dilemma as follows: The state of
the game is defined by the color of a coin, blue (state s1) or red
(state s2), which can be picked up by either agent. In addition,
one agent is blue and the other is red. If an agent picks up a coin
of any color, then this agent receives a benefit of b. If the coin
matches the agent’s color, then the opponent receives nothing
(neither benefit nor harm). However, if the coin does not match
the agent’s color, then the opponent receives −c, representing
harm. We take the action C to mean “pick up the coin only if it
is the same color as yourself” and D to mean “pick up the coin
regardless of color.” If both agents attempt to pick up the coin
at the same time, then a fair coin is flipped for which one gets
it. The reward matrices in the blue and red states, s1, and s2,
are thus

r (s1,−,−) =

( C D

C b, 0 1
2 (b− c) , 1

2 b

D b, 0 1
2 (b− c) , 1

2 b

)
; [4a]

r (s2,−,−) =

( C D

C 0, b 0, b
D 1

2 b, 1
2 (b− c) 1

2 b, 1
2 (b− c)

)
, [4b]

where we use the convention that the row agent is blue and
the column agent is red. The initial state is chosen uniformly at
random, and all subsequent transitions are periodic, passing from
s1 to s2 and from s2 to s1.

We note that by averaging over trajectories, the empirical
payoffs are given by a matrix game with aCC = b/2, aCD =
(b− c) /4, aDC = 3b/4, and aDD = b/2− c/4, which satisfies
the ranking of a traditional prisoner’s dilemma, aDC > aCC >
aDD > aCD. Although both matrix games in this two-state
prisoner’s dilemma are highly asymmetric, the stochastic game
is exchangeable in the sense that there is no bias in the initial
state, the roles of the red and blue agents are swapped in the
two states, and the transitions are symmetric with respect to the
states. There are no intrinsic differences between the agents. This
idea is formalized in SI Appendix for general n-agent POSGs.

The focus of our study is on exchangeable, two-agent stochastic
games. Although nonexchangeable games are common in many
natural populations and certainly warrant further study, the
assumption of exchangeability is a natural starting point. It is
also not overly restrictive from the point of view of multiagent
reinforcement learning. While not fully general (e.g., different
autonomous vehicles might be made by different manufacturers
with distinct specifications), it is reasonable as a first approxi-
mation that learning takes place among comparable agents (e.g.,
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Learning dynamics if player X adopts fixed strategyA
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Fig. 1. Adaptation/learning against fixed strategies. For a classical prisoner’s dilemma game, we illustrate how agent X can guide Y ’s learning process. In each
panel, the blue area depicts the set of all feasible payoffs. These are the payoffs, (VX , VY ) ∈ ℝ2, that are possible in principle, when both X and Y can choose
their strategies arbitrarily. The green area represents the payoffs that are feasible given that agent X uses some fixed strategy. (A) For most generic strategies
of agent X , the best response for Y is to always defect (35). In particular, if Y learns to adopt more profitable strategies over time according to a selfish learning
process (36), Y ends up with a high payoff whereas X obtains a low payoff. (B) If agent X instead adopts the strategy “win-stay, lose-shift” (4), Y eventually learns
to adopt a fully cooperative strategy. However, the learning process can be slow and agent X ’s payoff may temporarily decrease along Y ’s learning trajectory.
(C) If X enforces equal payoffs by using the strategy tit-for-tat, Y quickly learns to cooperate. (The green region collapses onto the line VX = VY in tit-for-tat.)
Here, both agents’ payoffs increase monotonically. In all panels, the orange dots represent the trajectories of both agents’ payoffs when Y optimizes its strategy
to attain better payoffs against X (whose strategy is fixed).

identical vehicles from one company). In this initial study of
zero-determinant strategies in stochastic games, we are focused
on idealized scenarios, and we do not seek to capture the reality
of agents nearly as complex as self-driving cars.

Given this model, we seek to explore the following questions:

Question 1. How can an agent incentivize a selfish learner to lead
both agents toward a fixed target? That is, for a target

(
V ∗X , V ∗Y

)
∈

ℝ2, which is chosen unilaterally by X , how can X find a strategy
with the property that Y ’s best response gives V ∗X to X and V ∗Y to Y ?

Question 2. For a target
(
V ∗X , V ∗Y

)
∈ ℝ2, which is chosen

unilaterally by X , how can X find a strategy such that whenever
Y changes its strategy to improve its payoff, the payoffs of both agents
move closer to the target (e.g., based on the Euclidean distance inℝ2)?

In a sense, Question 1 is sufficient. As long as one can
incentivize an opponent in a certain manner, the learner might
not care what the trajectory looks like on the way to the final
outcome (Fig. 1B). But transient behavior can also be important,
and zero-determinant strategies impose even stricter conditions
than those needed to answer Question 1, so we also consider
when the feasible region can be further collapsed onto a space
of codimension one (Fig. 1C ). Such a strict condition is useful,

for instance, when the number of learning steps is uncertain
and an agent cares about the payoffs being approximately equal
whenever the interaction terminates.

Results

Autocratic Strategies for Stochastic Games. Our main question
is when X can unilaterally enforce a linear relationship between
payoffs,

�V �X ,�Y
X

(
�0)+ �V �X ,�Y

Y
(
�0)+  = 0, [5]

regardless of the strategy �Y of Y . Specifically, if � = −� = 1
and  = 0, then this relationship is simply V �X ,�Y

X
(
�0) =

V �X ,�Y
Y

(
�0). We take equality of the two value functions as a

proxy for fairness in the stochastic game, provided the game is
exchangeable.

For general parameters �, �,  ∈ ℝ, we have the following
theoretical result:

Theorem (autocratic strategies for stochastic games). Let

Φ (s, x, y) := �rX (s, x, y) + �rY (s, x, y) +  , [6]

4 of 11 https://doi.org/10.1073/pnas.2319927121 pnas.org
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Box 1.

Intuition behind unilateral payoff control.

By considering the simple case of a repeated game, we can gain intuition for the condition (Eq. 7) guaranteeing X
the ability to enforce a linear payoff relationship (Eq. 5). In this case, there is no external environmental state, and
rewards depend on only the actions taken. When Φ is additive, meaning Φ (x, y) = f (x) + g (y), letting  (x) = f (x)
gives

g (y) = −�E
[
f
(
x′
)]
− (1− �)E

[
f
(
x0
)]

.

(We suppress the conditioning in these expectations to simplify notation.) This equation says that Y ’s contribution
to Φ in one round, g (y), can be offset (on average) by X ’s contribution to Φ in the next round, E

[
f
(
x′
)]

, with an
initial-round correction. In the additive case,  (x) is exactly X ’s contribution to Φ (x, y). In the nonadditive case, this
interpretation suggests thinking of  (x) as an approximation to X ’s contribution to Φ (x, y).

Stochastic games are more nuanced than repeated games because corrections cannot always take place in sub-
sequent rounds, owing to the dynamic nature of the game. Therefore, although we can think of  (x) as a one-sided
approximation to Φ (x, y) in repeated games, we caution that the same interpretation does not necessarily extend
to  (s, x) and Φ (s, x, y) in stochastic games. One reason is that  can carry (accumulate) corrections through several
rounds, which can allow memory-one strategies to implement longer-range reciprocity (Fig. 4 and SI Appendix).

and suppose that there exists a function  : OX × AX → ℝ such
that

E
[
Φ (s, x, y)

∣∣∣ oX∼OX (s)
x∼�X (oX )

]
= E

[
 (oX , x)

∣∣∣ oX∼OX (s)
x∼�X (oX )

]

− �E

 (o′X , x′
)∣∣∣∣∣∣∣∣

oX∼OX (s)
x∼�X (oX )
s′∼T (s,x,y)
o′X∼OX (s′)
x′∼�X (o′X )


− (1− �)E

[
 
(
o0

X , x0)∣∣∣∣∣ s0∼�0

o0
X∼OX (s0)

x0
∼�X (o0

X )

]
, [7]

for all s ∈ S and y ∈ AY . Then, �X ensures that the linear payoff
relationship of Eq. 5 holds for all strategies, �Y , of Y .

This result provides a way to reduce the problem of enforcing
a linear relationship on long-run average payoffs (Eq. 5) to a
condition over pairs of interactions in adjacent time steps (Eq. 7).
This result suggests that we need not consider an objective
defined over long-run payoffs if the goal is to enforce a linear (or
approximately linear) payoff relationship. Instead, a learner need
only consider a more myopic objective function, but the cost of
doing so is finding an appropriate function,  : OX ×AX → ℝ.

In addition to generalizing the main condition of McAvoy and
Hauert (14), which holds for repeated games, the condition above
also extends the corresponding condition for alternating games
(37), which is a special case of a stochastic game in which the
agents move in a strictly- or randomly alternating fashion. In both
synchronous and alternating games, autocratic strategies have
been studied in the context of memory-one strategies, meaning
an agent conditions its play on only the most recent action(s). To
put this kind of strategy into the present context, suppose that
the state is perfectly observable (an assumption we will retain for
most of our presentation). We define a memory-one strategy for
X to be a function �X that takes in the previous state, s ∈ S,
the previous actions (x, y) ∈ AX × AY , and the current state,
s′ ∈ S, and returns a distribution �X (s, x, y, s′) ∈ Δ (AX ). Such a
strategy must also specify the initial play, which is simply a map

�0
X : S → Δ (AX ). A sufficient condition for Eq. 5 to hold for

all strategies of Y is then

Φ (s, x, y) =  (s, x)− �E
[
 
(
s′, x′

)∣∣∣ s′∼T (s,x,y)
x′∼�X (s,x,y,s′)

]
− (1− �)E

[
 
(
s0, x0)∣∣∣ s0∼�0

x0
∼�X (s0)

]
, [8]

for all s ∈ S and (x, y) ∈ AX × AY . By explicitly conditioning
on the recent history of play, this expression allows for the
interpretation of s ∈ S as the environmental component of the
game, i.e., the part that affects rewards. Box 1 shows the intuition
behind this condition when |S| = 1.

Learning Autocratic Strategies. We now have a condition that
extends autocratic strategies from repeated games to much more
general stochastic games. One key difference between this study
and previous works is how we will use this condition. Rather than
attempting to use this (implicit) condition to solve for autocratic
strategies directly, we view its components as functions that can
be learned. To this end, suppose that an initial state s0 ∈ S
is sampled from �0, and let s′ ∼ T (s, x, y) following actions
x ∈ AX and y ∈ AY in state s ∈ S. Since we wish for Eq. 8
to hold, we associate to the memory-one strategy �X and the
function  : S × AX → ℝ an effective cost of∣∣∣∣∣∣

Φ (s, x, y)−  (s, x) + �E
[
 
(
s′, x′

)∣∣ x′ ∼ �X
(
s, x, y, s′

)]
+ (1− �)E

[
 
(
s0, x0)∣∣ x0

∼ �X
(
s0
)]

∣∣∣∣∣∣ .
[9]

In practice, we think of both�X and as being modeled by neural
networks with parameters �X and wX , in which case gradient
descent can be used to minimize the cost (Algorithm 1). Of
course, one can calculate gradients exactly in simple games like
the prisoner’s dilemma, but the use of neural networks allows for
flexible function approximation in Algorithm 1, applicable to a
variety of game environments. We call a learner who optimizes
based on this objective an enforcer with shape parameters �, �,
and  (which influence the observed values of Φ).
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Algorithm 1: An (�, �, )-enforcer, whose goal is to enforce the linear equation �VX + �VY +  = 0. Since the enforcer’s objective is
defined over pairs of rounds within an episode, we opt for an approach in which optimization steps are taken at each time step rather
than only at the conclusion of an episode. We also assume that the learning rates, ��X and �wX , are equal in our implementation. Other
variations are possible. Note that an agent’s action is conditioned on the state, which could include information about the history of
past play in addition to information about the game (environment).

1: �X ← Random
2: wX ← Random
3: for episode = 1 to E do
4: sample game length, which is tmax ∈ {0, 1, . . . } with probability �tmax (1− �)
5: sample state-action-action pairs, (s0, x0, y0) , . . . , (stmax , xtmax , ytmax)
6: for t = 0 to tmax − 1 do

7: let Jt (�X , wX ) :=

∣∣∣∣∣ �rX (st , xt , yt) + �rY (st , xt , yt) +  −  wX (st , xt)

+�Ex′∼��X (st+1)

[
 wX

(
st+1, x′

)]
+ (1− �)Ex′∼��X (s0)

[
 wX

(
s0, x′

)]∣∣∣∣∣
8: �X ← �X − ��X∇�X Jt (�X , wX )
9: wX ← wX − �wX∇wX Jt (�X , wX )

Note that both�X and are subject to optimization here, with
 playing an indirect role on the strategy itself (but a direct role
in how this strategy is learned). At a high level, this framing
is reminiscent of actor-critic methods (38), with �X playing
the role of the actor and  the role of the critic. However,
we note that use of the “critic” in Algorithm 1 is significantly
different from traditional approaches, which view the critic as an
approximation to a value function. Box 1 gives some intuition
for how to think about  as a one-sided approximation to Φ,
at least in the case of repeated games. The interpretation of  
can be substantially more complicated in multistate stochastic
games.

In Algorithm 1, the parameters �X and wX are updated at
each round within an episode. While this approach is not strictly
necessary, it is motivated by the fact that we desire Eq. 9 to
hold for all s ∈ S, x ∈ AX , and y ∈ AY . Thus, with sufficiently
expressive representations of �X and  , the idea is that we ought
to be able to leverage each round in the search for an autocratic
strategy (if one exists). One could also update parameters only
at the end of each episode, which could also include shuffling
the state-action-reward histories in order to reduce correlations
in this sequential data (39). For our examples, below, we find
that autocratic and autocratic-like strategies can be found using
the round-by-round optimization in Algorithm 1.

Using this algorithm for the enforcer, we consider interactions
that unfold in two different ways. In the first treatment, the
opponent, Y , is given a random memory-one strategy, where each
coordinate is chosen independently from a Dirichlet distribution
whose |AY | parameters are all 1/2. This choice of randomization
generalizes the arcsine distribution, which itself explores the
corners of [0, 1] better than the uniform distribution (4). A
game length tmax is then sampled from a geometric distribution
based on the parameter �, with an average game length of
1/ (1− �) rounds. Starting from an initial state chosen from
�0, the game then proceeds for tmax rounds, and between each
pair of successive rounds, the enforcer takes a step to minimize its
objective (Eq. 9). At the end of the iterated game, the opponent is
discarded, a new one is sampled, and the enforcer brings forth the
strategy it learned against the previous opponent. Notably, in this
setting, the opponent is not learning and exists solely to generate
experience for the enforcer. Later, we do consider enforcers
against selfishly optimizing opponents, but the motivation for
pairing enforcers with random agents is embedded in the nature
of zero-determinant strategies themselves. When fixed, these

strategies enforce restricted outcomes against any opponent, so
it is natural that one might be able to learn these strategies even
against agents who devise behaviors randomly (or are shuffled
around frequently).

Geometryof theFeasibleRegion. Before illustrating the behavior
of enforcers in several examples, we first emphasize one aspect of
repeated games and “simple” stochastic games that clarifies the
nature of zero-determinant strategies and the learning procedure
we propose: the feasible region induced by a strategy. The
structure of a game puts a constraint on all possible payoffs,
(VX , VY ) ∈ ℝ2, as both agents vary their strategies, �X and �Y
(not necessarily memory-one or even limited memory). For a
repeated prisoner’s dilemma game, Fig. 1 depicts this region in
blue. But when one agent (e.g., X ) fixes its strategy, this imposes
a further constraint on attainable payoffs, as Y varies its strategy.
This region is shown in green in Fig. 1. In SI Appendix, we show
that when X plays a memory-one strategy, the feasible region
generated by this strategy can be calculated by allowing Y to vary
over all memory-one strategies (as opposed to all strategies of
arbitrary complexity). In other words, in order to understand the
feasible region generated by a memory-one strategy, it suffices
to explore opponents who also use memory-one strategies. This
result extends a finding of Press and Dyson (6) to multistate
games with discounting.

Although this result holds for all stochastic games, it is often
not practical to evaluate the feasible payoff region, given �X , in
most games, due to the size of the space of opponent memory-one
strategies. Even the number of “boundary” memory-one strate-
gies, with each conditional action being deterministic, grows
exponentially in the size of the game. Nonetheless, this geometric
perspective of the feasible region provides a clear picture of what
enforcers are doing in simple games, so we primarily consider
examples in which this region can be visualized, including the
prisoner’s dilemma in Eq. 1, a nonlinear variant of the donation
game, and several stochastic games transitioning between two
states.

Examples.
Prisoner’s dilemma, classical andmultistate. For a classical variant
of the prisoner’s dilemma, Fig. 2 A and B show the results of an
enforcer against 100 fixed, randomly chosen (Dirichlet) oppo-
nents, in succession. Generically, this kind of random strategy
for the IPD has the property that it is readily exploited (Fig. 2A).
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A B

C D

Fig. 2. Enforcer in a classical prisoner’s dilemma (A and B) and a two-state analogue (C and D). The feasible region initially generated by agent X is depicted in
A. After performing learning steps between every adjacent pair of time steps against 100 different random (Dirichlet) opponents, the resulting feasible region
is shown in B. Note that this feasible region represents all possible payoffs that can be achieved when X uses the strategy it learned, regardless of the memory
of the opponent. At this point, the incentives of the two agents are aligned, as any attempt by Y to increase its payoff leads to an increase in the payoff of
X . Furthermore, because this relationship is approximately VX = VY , once Y optimizes its strategy (by whatever means necessary), the outcome will be equal
payoffs for both X and Y , with each getting the socially optimal payoff for mutual cooperation. The green dots give payoffs against 104 random (Dirichlet)
memory-one opponents. Parameters: (aCC , aCD , aDC , aDD) = (3,0,5,1) in (A and B) (Eq. 1) and (b, c) = (1,2) in (C and D) (Eq. 4). In all panels, � = 0.99 and
(�, �, ) = (1,−1,0).

Attempting to enforce equality among payoffs using (�, �, ) =
(1,−1, 0) results in a feasible region that collapses onto a line
connecting the payoffs for mutual defection and mutual cooper-
ation. This strategy resembles the geometry generated by TFT,
and indeed the learning process has effectively recovered the me-
chanics of TFT using a purely geometric objective. Fig. 2 C and D
show similar outcomes in a two-state analogue of the prisoner’s
dilemma, in which both stage games (Eq. 4) are asymmetric.
Nonlinear donation game. While the IPD is an interesting and
well-studied game, it is too simple to capture the tension between
multiple investment levels with differing levels of efficiency. To
study this we consider a three-action donation game, which allows
for defection (D), mild cooperation (C1), and full cooperation
(C2). A defector provides no benefits and pays no costs. Mild
cooperation entails a cost of c1 to provide a benefit of b1 to another
agent. Full cooperation is similar, except the cost is c2 > c1 and
the benefit is b2 > b1. The payoff matrix for this interaction is


C1 C2 D

C1 b1 − c1 b2 − c1 −c1

C2 b1 − c2 b2 − c2 −c2

D b1 b2 0

 . [10]

Although full cooperation is more altruistic in the sense that it
provides a greater benefit than do defection and mild cooperation,
we assume that it is also less efficient than mild cooperation in
that b2 − c2 < b1 − c1. This three-action game is “nonlinear”
in the sense that the benefit is not a linear function of the cost.
If it were, it would have to be true that b2/c2 = b1/c1, which
would contradict the inequality b2 − c2 < b1 − c1. Thus, if
both agents agree to coordinate on an action, they prefer mild
cooperation to defection and full cooperation. Fig. 3 shows the
results of an enforcer aiming for equality in this game. The results
are remarkably similar to those in Fig. 2: notably, the enforcer
automatically incentivizes mutual mild cooperation (the socially
efficient outcome) over full cooperation.

In both of the cases considered so far, the desired outcome (a
linear payoff relationship) was found via the learning process,
which is at the heart of Question 2. However, to answer
Question 1, a strict payoff line is not necessary. Instead, one
can relax this condition and ask for only a statistical relationship
between the two agents’ payoffs. To explore the behavior of
an enforcer when strict linear relationships cannot be enforced
on the nose, we consider once again the nonlinear variant of
the donation game. This time, however, we use the parameters
(�, �, ) = (1,−2, 2). For these parameters, no strategy exists
that enforces �VX + �VY +  = 0 for all strategies �Y of the
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A B

Fig. 3. Two kinds of enforcers in a nonlinear donation game. In this game, the optimal outcome is not mutual full investment (C2; blue circle), even though this
outcome is superior to mutual defection (red circle). Instead, both agents fare better by each investing a smaller amount, C1 (green circle), an outcome that the
enforcer can incentivize after learning. (A) Aiming for a fair strategy, meaning VX = VY , which incentivizes a selfish opponent to lead both agents toward (C1 , C1).
(B) Aiming for a generous (or “compliant”) (23, 40) strategy, which enforces the equation 2− VX = 2 (2− VY ). For this game, one can show that it is impossible
to attain this goal in B, as no such strategy exists for X . Nevertheless, optimizing the associated objective function leads to a strategy with a two-dimensional
feasible region that still leads a selfish opponent toward (C1 , C1). The small green dots give payoffs against 104 random (Dirichlet) memory-one opponents.
The insets depict the initial strategies of the enforcer (which are the same in both panels). Parameters: (b1 , c1 , b2 , c2) = (3,1,4,2.5) (Eq. 10) and � = 0.99.

opponent (SI Appendix). Nonetheless, if we use the same objective
function for the enforcer, we obtain the results shown in Fig. 3B.
This figure depicts a two-dimensional feasible region following
the learning process, which still incentivizes the socially optimal
behavior of mutual mild cooperation. When facing a sufficiently
clever self-interested opponent, there might be no meaningful
distinction between A and B in Fig. 3 since they both incentivize
the same outcome (just via different paths). This example also
shows that it need not matter whether an enforcer can reach its
goal of a global minimum of zero for its cost function.

There is, however, one important distinction between the two
cases depicted in Fig. 3. If the opponent is selfish and the learning
horizon is uncertain, then the enforcer might wish to ensure
that the payoffs are approximately equal (a proxy for a “fair”
outcome) when learning terminates. In this case A would be
preferred over B in Fig. 3 because it exhibits better control of
the learning trajectories. In this sense, the restrictive nature of
autocratic strategies can be useful for the transient portions of a
learning process.
Prisoner’s dilemma with sparse rewards. Autocratic strategies can
control longer-range punishment and reward, even when the
game changes state over time, despite the apparent limitations
of using memory-one strategies. Fig. 4 illustrates a striking
example of this, when an enforcer faces a selfish agent [using
policy gradient optimization (41)] in an environment with sparse
rewards. Here, there is a single “rare” state with a standard matrix
game with nonzero rewards, which is then followed by many
“null” states in which rewards are zero for both agents. Eventually,
the state cycles back to the nontrivial game (Fig. 4A). It might
seem impossible for X to learn a useful memory-one strategy in
such a setting (where there are many intervening rounds with
no payoff effects, between rounds that matter), but our general
theorem still holds, and we can run the algorithm to see the
outcomes of the two learners.

The enforcer leads both agents toward higher payoffs on
average (Fig. 4B). In fact, even when individual learning

trajectories lead to lower payoffs, the enforcer still learns strategies
that align incentives; in this case, it is the selfish agent that does
not always efficiently navigate the resulting landscape (Fig. 4
C–F ). This performance could be improved by facing a more
sophisticated selfish agent, but this is a secondary concern: For the
sake of aligning incentives and effectively transforming the nature
of the interaction, the goal is already attained. The distinction
between E and F in Fig. 4 highlights the utility of visualizing the
feasible region enforced by a strategy, as opposed to just a time
series of payoffs. (Although feasible regions can be visualized only
in relatively simple settings, in general.)

Note that, in Fig. 4, we still allow both agents to choose from
two actions in the null states, even though all action pairs lead to a
reward of zero. Masking the opponent’s behavior in the null states
would limit the amount of information X could carry forward
into the next nontrivial game. However, even if X cannot observe
Y ’s actions in the sparse states, X can still augment its action space
with “informational” actions that serve as memory. For example,
if there are four possible outcomes in the nonnull state, then X
can play one of four informational actions in the following null
state as a way to encode the previous outcome, even though these
actions all lead to a payoff of zero in the null state. An important
takeaway from this example is that memory-one strategies can
propagate payoff corrections across many time steps, resulting
in behaviors that effectively have longer-range memories. This
observation is also why the interpretation of the “critic” function,
 , in repeated games (Box 1) does not necessarily extend to
multistate interactions, where payoff corrections from one point
in time cannot be guaranteed in the next.

Discussion

Learning problems in stochastic games can be broadly character-
ized as fully competitive, fully cooperative, or mixed-motivation
(42). Phrased in these terms, we have studied the following
question: can an agent unilaterally transform a mixed-motivation

8 of 11 https://doi.org/10.1073/pnas.2319927121 pnas.org
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A

C D

E F

B

Fig. 4. Enforcer against policy gradient in a prisoner’s dilemma with sparse rewards. (A) Following a standard prisoner’s dilemma interaction, the agents
transition through m “null” states in which the reward is zero, regardless of the actions taken. When paired against a selfish agent optimizing using policy
gradient, an enforcer tends to lead both agents toward higher payoffs, on average. (B) The mean payoff and SE over 100 runs. The slow growth in mean payoffs
is due to some learning trajectories converging to the optimal outcome rapidly (C and D), while others flounder (E and F ). However, this failure to quickly
ascend to the optimal payoff is due to the nature of the selfish learner rather than the enforcer: (D and F ) show the corresponding feasible regions after 100
episodes, which reveal that in both cases the enforcer has effectively aligned incentives. In these cases, policy gradient is not always able to efficiently optimize
in the resulting payoff landscape. The Insets in D and F show the initial strategies of the enforcer. The green regions show 104 random (Dirichlet) memory-one
opponents. Parameters: (aCC , aCD , aDC , aDD) = (3,0,5,1) and � =

3√0.99.
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game into a fully cooperative game? Once an agent arrives at
a strategy that enforces approximately equal payoffs for the
two agents, the game appears to be fully cooperative from the
standpoint of payoffs. This agent must then stick to its enforcer
strategy and rely on the (selfish) opponent to move both agents’
payoffs toward larger payoffs. In doing so, the enforcer has
transformed the nature of the interaction at a cost of effectively
removing itself from the game.

Our approach is deliberately asymmetric with respect to the
learning algorithms of the agents. Our goal was to understand
the amount of unilateral control an agent can have on the
joint incentives, not how various combinations of learning rules
perform against one another. Requiring two agents to have the
same kind of learning rule (e.g., both enforcers) would be a strong
assumption and would require coordination, a central institution,
or some form of imitation process between learners. By contrast,
we assume only that the opponent uses a fixed policy (Figs. 2 and
3) or optimizes in a self-interested manner (Fig. 4), which are
much weaker assumptions. Nevertheless, our focus on fairness is
motivated, in part, by what happens when two extortioners face
one another in the iterated prisoner’s dilemma. In attempting
to extort one another, both agents end up defecting, whereas
fair and generous strategies can support much more cooperative
when facing themselves.

Importantly, our approach is opponent-agnostic. The oppo-
nent is there primarily to generate and simulate play, but we
are not necessarily concerned with the actual score the learner
obtains against any one individual. Because the result is a region
that shows payoffs against all possible opponents, once this region
begins to resemble the learned strategies shown in each of our
examples, we know the ultimate goal (in payoff space, at least)
of any other opponent, provided the opponent is motivated to
improve its own score. However, simple reinforcement learning
algorithms like policy gradient do not always efficiently carve
out a path to this shared goal. This behavior is expected, in
both reinforcement learning (43) and evolutionary game theory
(35, 44), in the sense that “bad” initial conditions can lead
to suboptimal outcomes due to the nonconvex nature of the
payoff landscape. But it is interesting to note that even bad initial
conditions (Fig. 4E) still often allow an enforcer to successfully
align incentives in the desired way (Fig. 4F ). This is the main
reason we have focused on pairing Algorithm 1 against fixed
strategies in most of the examples. (Pairing an enforcer against
a policy gradient agent in Fig. 2, for example, also leads to
increasing payoffs for both agents, just as it does in Fig. 4B.)
The goal of an enforcer is simply to align incentives; it is up to
the other agent to figure out how to get to the optimal point
(which is then optimal for both agents).

The explicit conditioning on past histories used in memory-
one strategies differs from the memory implicit in the weights
of a neural network [e.g., those arising in deep Q-learning
(45)]. For example, if a policy network takes as input only the
environmental component of a state, then parameter updates
in this network are influenced by the trajectory of past state-
action pairs, but whatever policy results from such a process
ultimately still conditions on just the environmental state. When
there is a single environmental state, such a policy is again
just an unconditional mixed action, and such an unconditional
behavior cannot generally enforce linear payoff relationship.
With that said, one could apply our main theorem to memory-
zero strategies, but the perspective would no longer necessarily
be one of obtaining a “trained” strategy that can then be
used against various kinds of selfish agents. Instead, we would
have a learning process that would have to be carried out

against every opponent. In SI Appendix, we discuss further
how memory-zero strategies fit into the context of our main
results.

There are many interesting open extensions related to learning
zero-determinant strategies in spatially and temporally complex
social dilemmas. Our focus is deliberately on “enumerated”
stochastic games with a small number of states, where we
can visualize the feasible region of a strategy. Even though
simple, enumerated stochastic games naturally fail to capture
all aspects of multiagent interactions, they are still sufficiently
rich as testbeds for learning. For example, our approach has
been based on attaining a target

(
V ∗X , V ∗Y

)
, which is chosen

unilaterally. Although repeated games have “folk theorems” that
characterize when such a target is attainable in equilibrium (2),
the situation is more complicated in stochastic games—where the
question of whether there exists a Nash equilibrium in which one
agent wins is undecidable in general (46). Furthermore, in line
with empirical game-theoretic analysis (30, 47), downsampling
complex stochastic games into those with a small number
of salient states may be a fruitful approach to understanding
qualitative aspects of interactions in complex environments.

Although this study illustrates a productive case of using
ideas from evolutionary game theory combined with multiagent
reinforcement learning, there are still many unresolved problems
related to zero-determinant strategies and cooperative AI more
generally, especially for general stochastic games. Even just for
repeated games without an external state, there is much that
remains to be understood about the scope of enforcing zero-
determinant strategies. Our contribution here involves three
parts. First, we provide a theorem with a condition for the
existence of autocratic strategies in stochastic games. This allows
us to reduce a relationship on long-term payoffs to a condition
on short-term rewards. Second, we use this theoretical result to
define a learning objective, which can easily make use of standard
function approximation techniques in machine learning. Finally,
we demonstrate the performance of this learning algorithm on
several representative examples of social dilemmas, showing that
it can align incentives and effectively transform mixed-motivation
settings into more cooperative interactions. Of course, there
is no unique goal of multiagent learning (48), but aligning
incentives in this way is a fruitful way to mitigate conflicts of
interest.

There remains a lot of work to be done on the problem
of incentive alignment in social dilemmas. In more complex
environments, there are nuances to what even constitutes a
social dilemma (30), and it remains to be seen when collapsing
payoffs onto a smaller-dimensional space is an attainable objective
(including in many-agent games). Even in the simplest possible
setting of a repeated, two-agent, two-action game, the fact that
a single agent can enforce a linear payoff relationship at all was
one of the main surprises of Press and Dyson (6). We have
stated our main theorem to allow for substantial flexibility, but
there are engineering and implementation challenges that will
arise in complex environments, such as controlling the relative
learning rates and architectures of the policy and  networks
for the enforcer, as well as dealing with sparse rewards, credit-
assignment problems, nondeterministic state transitions, and
correlations between states as episodes transpire. We expect that
existing techniques, including temporal reward smoothing (49)
and experience replay (39), will be useful for extending our
approach to more complex environments.

Data, Materials, and Software Availability. The environments used to study
these games may be found at https://github.com/alexmcavoy/evoenv (50).
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