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Abstract
In the stochastic population protocol model, we are given a connected graph with n nodes, and in every time step, a scheduler
samples an edge of the graph uniformly at random and the nodes connected by this edge interact. A fundamental task in this
model is stable leader election, in which all nodes start in an identical state and the aim is to reach a configuration in which (1)
exactly one node is elected as leader and (2) this node remains as the unique leader no matter what sequence of interactions
follows. On cliques, the complexity of this problem has recently been settled: time-optimal protocols stabilize in �(n log n)

expected steps using �(log log n) states, whereas protocols that use O(1) states require �(n2) expected steps. In this work,
we investigate the complexity of stable leader election on graphs.We provide the first non-trivial time lower bounds on general
graphs, showing that, when moving beyond cliques, the complexity of stable leader election can range from O(1) to �(n3)
expected steps. We describe a protocol that is time-optimal on many graph families, but uses polynomially-many states. In
contrast, we give a near-time-optimal protocol that uses only O(log2 n) states that is at most a factor O(log n) slower. Finally,
we observe that for many graphs the constant-state protocol of Beauquier et al. [OPODIS 2013] is at most a factor O(n log n)

slower than the fast polynomial-state protocol, and among constant-state protocols, this protocol has near-optimal average
case complexity on dense random graphs.

Keywords Leader election · Graph algorithms · Population protocols · Lower bounds · Distributed algorithms

1 Introduction

Leader election is one of the most fundamental symmetry-
breaking problems in distributed computing [1]: given a
distributed system consisting of n identical nodes, the goal
is to designate exactly one node as a leader and all others as
followers. In thiswork,we study the computational complex-
ity of leader election in the stochastic population protocol
model, a popular model of distributed computation among a
population of (initially) indistinguishable agents that reside
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on a graph and interact in an unpredictable, random manner
[2, 3].

1.1 The stochastic populationmodel on graphs

In the stochastic population protocol model, or simply the
population model, the system is described by a finite, con-
nected graphG = (V , E)withn nodes. Eachnode represents
an agent, corresponding to a finite state automaton. Initially,
all nodes are identical and anonymous.

Model of computation In the population model, computa-
tion proceeds asynchronously, in a series of random pairwise
interactions between neighbouring nodes in the graph G. In
each discrete time step,

1. the scheduler samples an ordered pair (u, v) uniformly at
random among all pairs of nodes connected by an edge
in G,

2. the selected nodes u and v interact by exchanging infor-
mation and updating their local states, and

3. every node maps their local state to an output value.
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When the scheduler selects the ordered pair (u, v) of nodes
upon an interaction step, we say that u is the initiator of the
interaction and v is the responder. The algorithm is described
by a state transition function, which is typically given by a
collection of local update rules of the form A+ B → C+D,
where A and B are the states of the initiator and the responder
at the start of an interaction, and C and D are the resulting
states after the interaction.

Stable leader election In the case of leader election, nodes
have two possible output values to indicate whether they are
a leader or a follower. The goal is to design the local update
rules so that the system reaches a stable configuration in
which (1) exactly one node v ∈ V is elected as the leader
and all other nodes are followers and (2) the node v remains
as the unique leader no matter what sequence of interactions
follows (i.e., all configurations reachable from a stable con-
figuration have the same output).

Complexity measures The time complexity is measured by
stabilization time, which is the total number of interaction
steps needed to reach a stable configuration. The typical aim
is to guarantee that stabilization time is small both in expecta-
tion and with high probability. Here, “with high probability”
refers to success probability of at least 1 − 1/nλ, where n
is the number of nodes in the graph and λ > 0 can be cho-
sen to be an arbitrary constant by adjusting constants of the
underlying protocols. Finally, we measure space complexity
as the maximum number of distinct node states employed by
the protocol.

1.2 Prior work on leader election in the population
model

Already the foundational work on population protocols
raised the question how the structure of the interaction graph
influences the computational power [2–4] and complexity [5]
of stable computation in the population model. In particular,
the complexity of stable leader election on general interaction
graphs has remained an open problem. Instead, most work in
this area has focused on a special case where the interaction
graph is restricted to be a clique [6, 7]. While this special
case naturally corresponds to well-mixed systems, it is often
too simplistic when modelling systems where the interaction
patterns among agents are influenced by some underlying
spatial structure.

Leader election is known to be an especially important
problem in the populationmodel: for instance, the early work
of Angluin, Aspnes and Eisenstat [8] showed that having a
leader can be useful in the populationmodel on cliques: semi-
linear predicates can be stably computed in O(n log5 n) time,
and randomized LOGSPACE computation can be performed
with small error [8]. The above result has motivated a vast
amount of follow-up work on the complexity of leader elec-
tion on cliques [6, 7, 9–18]. By now, the complexity of leader

election on the clique is well-understood: there exists a pro-
tocol that solves leader election in �(n log n) expected steps
using �(log log n) states per node [18], which is optimal.
To elect a leader in the clique model, all protocols require
�(n log n) expected steps [17], any o(log log n)-state proto-
col requiresn2/ polylog n expected steps [11] and the optimal
time complexity bound for constant-state protocols is �(n2)
expected steps [9].

Somewhat surprisingly, much less is known about the
complexity of leader election on general interaction graphs.
Angluin, Aspnes, Fischer and Jiang [4] showed that self-
stabilizing leader election is not generally possible on all
connected interaction graphs. At the same time, Beauquier,
Blanchard and Burman [19] showed that there exists a
constant-state protocol that solves stable leader election
as long as self-stabilization is not required. Subsequently,
research on leader election in the population model has
largely fallen into two categories: (1) work that tries to under-
stand computational complexity and space-time complexity
trade-offs of leader election under uniform random pairwise
interactions on the clique [9, 10, 12–18, 20], and (2) work
that aims to understand inwhich interaction graphs and under
what model assumptions leader election can be solved in,
e.g., a fault-tolerant manner [4, 19, 21–26].

An interesting question left open by this line of work is the
computational complexity of stable leader election, without
the requirement of self-stabilization, on general interaction
graphs [27]. One reason is that algorithmic [6, 7, 15, 16, 18,
20] and lower bound techniques [9, 11, 17] developed for
the clique model do not readily extend to the case of general
interaction graphs. More broadly, establishing tight bounds
for randomized leader election is known to be challenging
even in well-studied synchronousmodels of distributed com-
puting, such as the LOCAL and CONGESTmodels [28, 29].

1.3 Limits of existing techniques

Existing upper bound techniques on the clique naturally rely
on the fact that every pair of nodes can potentially inter-
act. Specifically, fast and space-efficient algorithms [15, 18,
20] combine (1) fast information dissemination dynamics,
typical for the clique, with (2) careful time-keeping across
“juntas of nodes” to obtain space-efficient phase clocks. It is
not straightforward to generalize either of these techniques
to, e.g., sparse or poorly-connected graphs.

The only existing work to explicitly consider the com-
plexity of non-self-stabilizing leader election on graphs is
by Alistarh, Gelashvili and Rybicki [27], whose general
goal is to find general ways of porting clique-based algo-
rithms to regular interaction graphs. (Chen and Chen [22]
considered complexity of self-stabilizing leader election in
regular graphs, but this is computationally harder than sta-
ble leader election [4].) Specifically for regular graphs,
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Alistarh et al. [27] gave a leader election protocol that sta-
bilizes in 1/φ2 · n polylog n steps in expectation and with
high probability and uses 1/φ2 · polylog n states, where
φ is the conductance of the interaction graph. While this
approach yields to fairly efficient leader election protocols
in graphs with high conductance, it performs poorly in low-
conductance graphs. For example, on cycles the protocol uses
n2 polylog n states and requires �(n3) steps to stabilize.

Alistarh et al. [27] also showed that the constant-state
protocol of Beauquier et al. [19] stabilizes in the order of
Dmn2 log n steps in expectation andwith high probability on
any graph with diameter D and m edges. This upper bound
can be further refined to O(C(G)·n log n), whereC(G) is the
cover time of a classic randomwalk on the graphG, by lever-
aging the recent results of Sudo, Shibata, Nakamura, Kim
and Masuzawa [25]. However, beyond the case of cliques,
there are no results indicating whether this bound could be
improved.

Specifically, existing lower bound techniques for popu-
lation protocols on the clique [9, 11, 17] do not directly
generalize to general graphs. In particular, such approaches
usually rely on the fact that short executions can lead to
“populous” configurations which have large “leader generat-
ing” sets of nodes; then, by carefully interleaving interactions
between nodes in such sets, short executions can be extended
to create new leaders. This suggests that short executions are
unlikely to yield stable configurations. However, to create
new leaders, existing arguments require the set of nodes to
be connected in the underlying graph. This is straightforward
on the clique, but non-trivial for general graphs.

The situation seems evenmore challenging when trying to
establish space-time complexity trade-offs, such as showing
that constant-state protocols cannot run in sublinear time. In
this case, the only known approach is the surgery technique
[9, 11], which requires keeping track of the distribution of
certain states that can be used to generate a leader. On general
graphs, one would therefore also need to keep track of the
spatial distribution of states created by the protocol, which
appears highly complex for general protocols and interaction
graphs.

To illustrate the difficulty of extending the above tech-
niques to general interaction graphs, a useful exercise is to
consider the case of star graphs: there is an O(1)-state pro-
tocol that elects a leader in a single interaction in any star of
size n.1 Thus, the lower bound for constant-state protocols or
the general lower bound of�(n log n) expected steps cannot
hold in general, as in some graphs, the graph structure can be
used to break symmetry fast using a small number of states.

1 For example, consider a protocol with states {0, 1, 2}, where all nodes
start in a state 0, the state 2 is the unique leader state, and the only rule
that can change nodes’ states is given by 0 + 0 → 1 + 2.

1.4 Our contributions

In this work, we give new upper bounds and lower bounds
for stable leader election in the population model on general
graphs. For many graph families, we obtain either tight or
almost tight bounds; please see Table 1 for a summary of our
results. We detail our main results in the following.

Bounds on information propagation in the population
model

We phrase our upper bounds in terms of worst-case
expected broadcast time B(G) on the graph G. Informally,
B(G) denotes the maximum expected time until a broadcast
originating from a single node reaches all other nodes in the
graph G. This process is often called “one-way epidemics”
in the population protocol literature [8].

In Section 3, we establish the worst-case expected broad-
cast time upper bounds of O(mD + m log n) and O(m/β ·
log n) for anym-edge graphwith diameter D and edge expan-
sion β. Thus, B(G) ∈ O(n3) for any connected graph, but
it can often be much smaller. We also provide lower bounds
on the time that information propagates to a given distance
k. These bounds are then used to lower bound both broadcast
time and leader election time for general protocols.

While for regular graphs these dynamics correspond to
well-studied asynchronous rumour spreading [30, 31], when
the graph is not regular, the dynamics in the populationmodel
behave differently: the interaction rate of a node depends on
its degree.

Fast space-efficient leader in close-to-broadcast time
We first observe that, if we disregard space complexity,
there exists a simple protocol that solves leader election in
O(B(G) + n log n) expected steps, on any connected graph
G: nodes can generate unique identifiers, and then broadcast
them to elect a leader. While this protocol is time-optimal
on many graphs, generating unique identifiers will require
polynomially-many states, and thus, results in a high space
complexity.

Our first contribution is a space-efficient protocol that
elects a leader in O(B(G) · log n) steps in expectation and
with high probability using onlyO(log n·h(G)) states,where
h(G) ∈ O(log n) is a parameter depending on the broadcast
time B(G). Contrasting to the identifier-based approach, this
space-efficient protocol achieves exponentially smaller space
complexity of O(log2 n), with a factor O(log n) increase in
stabilization time.

Our protocol builds on a time-optimal approach on the
clique by Sudo, Fukuhito, Izumi, Kakugawa and Masuzawa
[20], and significantly improves upon the state-of-the-art on
general graphs. Specifically,Alistarh,Gelashvili andRybicki
[27] gave a protocol for leader election on �-regular graphs
that stabilizes in O(n/φ2 · log6 n) expected steps and uses
O(log7 n/φ2) states per node, where φ = β/� is the con-
ductance of the graph. Our protocol has stabilization time
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Table 1 Complexity bounds for stable leader election. Stabilization
time refers to the expected number of steps required to reach a stable
configuration. Here B(G) is a characteristic of information dissemi-
nation dynamics in the population model defined in Section 3. The
quantityH(G) is the worst-case expected hitting time of a simple, clas-
sic random walk on G. The O(log2 n) and O(1)-state protocols also
stabilize in the reported time with high probability. For regular graphs,

φ denotes the conductance of the graph. (*) We define the class of ren-
itent graphs in Section 6. (**) For dense random graphs, the bounds
are for average-case complexity, when the input graph is a connected
Erdős-Reńyi random graph G ∼ Gn,p for any constant p > 0. Here,
the upper bounds follow from the fact that broadcast time is O(n log n)

with high probability in these graphs.

Graph family Stabilization time States Reference

General O(B(G) + n log n) O(n4) Theorem 4

O(B(G) · log n) O(log2 n) Theorem 5

O(H(G) · n log n) O(1) [19] + [25] + Theorem 3

Renitent* �(B(G)) ∞ Theorem 7

Regular O(φ−2n log6 n) O(φ−2 log7 n) [27]

O(φ−1n log n) O(n3) Theorem 4

O(φ−1n log2 n) O(log n · log(φ−1 · log n)) Corollary 1

O(φ−1n2 log2 n) O(1) Theorem 3

Cliques �(n log n) �(log log n) [11, 17, 18]

�(n2) O(1) [9]

Dense random** �(n log n) O(n4) Theorem 8 + 4

O(n log2 n) O(log2 n) Theorem 5

o(n2) impossible O(1) Theorem 9

O(n2 log2 n) O(1) Theorem 3

Stars O(1) O(1) Trivial

O(n/φ · log2 n) on regular graphs; this improves the depen-
dency on the conductance φ by a linear factor and the
polylogarithmic dependence from log6 n to log2 n. In terms
of space complexity, we get an exponential improvement
in conductance, as the parameter h in the space complex-
ity bound satisfies h ∈ O(log log n + log(1/φ)) in regular
graphs.

We emphasize that our protocol also works in non-regular
graphs, and guarantees that the elected leader has degree
�(�), where � is the maximum degree of the graph, with
high probability. Our protocol has high-degree nodes driving
a space-efficient and approximate distributed phase clock:
nodeswith degree�(�)generate “clock ticks” roughly every
B(G) steps with high probability. With this in place, we
devise a protocol in which high-degree nodes participate in
a tournament that lasts for O(log n) phases, and each phase
lasts for O(B(G)) steps.

Time lower bounds for general protocols
On the negative side, we show how to construct families

of graphs in which leader election and broadcast have the
same asymptotic time complexity. Our approach is based on
a probabilistic indistinguishability argument similar in spirit
to the lower bound argument of Kutten, Pandurangan, Peleg,
Robinson and Trehan [29] for randomized leader election in
the synchronous LOCAL and CONGEST models. However,
in the population model, communication patterns are asyn-

chronous and stochastic instead of synchronous, so we need
a more refined approach to establish the lower bounds.

Roughly speaking, we show that if (a) the nodes of
the graph can be divided into constantly many subsets
V1, . . . , VK such that the local neighbourhoods of these sets
are isomorphic up to some distance � and (b) there are
sets whose distance-� neighbourhoods are disjoint, then any
leader election protocol must propagate information at least
up to distance � to reach a stable configuration. If this prop-
agation takes at least f (n) steps with at least a constant
probability, then we get a lower bound of order f (n) for the
expected stabilization time. We call such graphs f -renitent
(see Section 6 for a formal definition).

In general, it is fairly straightforward to construct graphs
with diameter �(D) and �(m) edges, which are �(Dm)-
renitent for any 1 ≤ D ≤ n and n ≤ m ≤ n2. Moreover, in
these graphs broadcast time is �(Dm). Our proof works for
a general variant of the population model, in which we do not
restrict the state space of the protocol and give each node an
infinite stream of uniform, fair random bits that assign unique
identifiers for each node with probability 1 at the start of the
execution. Finally, we also show that in any sufficiently dense
graph, leader election requires �(n log n) expected steps.
This part of the argument extends the lower bound argument
of Sudo and Masuzawa [17] from cliques to dense graphs.

Worst-case and average-case complexity of constant-
state protocols As a baseline result, we observe that the
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constant-state protocol of Beauquier et al. [19] stabilizes in
O(H(G) · n log n) steps in expectation and with high proba-
bility, whereH(G) is the worst-case expected hitting time of
a classic random walk on G. For any connected graph, it is
known that H(G) ∈ O(n3), and if the graph is regular, then
H(G) ∈ O(n2) holds [32].

It follows from the analyses ofAlistarh et al. [27] andSudo
et al. [25] that this protocol stabilizes in O(H(G) · n log n)

steps in expectation and with high probability. In the prelim-
inary conference version of this paper [33], we erroneously
reported a running time in terms of O(B(G) · n log n); the
analysis was unfortunately flawed. It remains an interesting
question to determine if we can bound the hitting times of
tokens in the populationmodel also as a function of the broad-
cast time B(G), since this would immediately imply a bound
for the constant-state protocol as a function of the broad-
cast time as well. This would allow for a cleaner comparison
between the running times of the different protocols.

As our final contribution, we show that, in the class of
constant-state protocols, the average-case complexity of the
protocol by Beauquier et al. [19] on dense random graphs is
optimal up to an O(log n) factor. We show that the stabiliza-
tion time of any leader election protocol, that works on all
connected graphs, cannot be o(n2) in expectation for con-
nected Erdős-Rényi random graphs G ∼ Gn,p where p > 0
is any constant. This is tight up to a logarithmic factor, as the
hitting time satisfies H(G) ∈ O(n) asymptotically almost
surely in these graphs [34]. Therefore, the 6-state protocol
stabilizes in O(n2 log n) steps with probability 1 − o(1) on
a random graph G ∼ Gn,p. As B(G) ∈ �(n) for any graph
G, this implies that, on these graphs, constant-state protocol
of Beauquier et al. [19] stabilizes slower than optimal by a
factor of at most O(n log n).

To show the lower bound, we extend the surgery tech-
nique, used to prove space-time lower bounds for population
protocols so far only in the clique [9, 11], to the case of
(highly) dense random graphs.

2 Preliminaries

We now establish some key definitions and notation used
throughout the paper.

2.1 Graphs

Let G = (V , E) be a undirected graph, where V = V (G)

is the set of nodes and E(G) = E is the set of edges of the
graph. We use n = |V (G)| to denote the number of nodes
and m = |E(G)| the number of edges. The degree deg(v) of
a node v ∈ V is the number of edges incident to it. We use
� = max{deg(v) : v ∈ V } to denote the maximum degree
and δ = min{deg(v) : v ∈ V } the minimum degree of the

graph. Unless otherwise specified, we assume all graphs are
connected.

Given a nonempty node set S ⊆ V (G), the edge boundary
∂S of S is the set ∂S= {{u, v}∈E(G) : u ∈ S, v∈V (G) \ S}.
The edge expansion of the graph G is given by

β(G) = min

{ |∂S|
|S| : ∅ 	= S ⊆ V (G), |S| ≤ n/2

}
.

We define G[S] to be a subgraph of G induced on vertices
of S.

The distance between two vertices u and v is denoted by
dist(u, v). The radius-r neighbourhood of u is Br (u) = {v ∈
V : dist(u, v) ≤ r} and

Br (U ) =
⋃
u∈U

Br (u).

For r = 1, we use the short-hand B(u) = B1(u). The diam-
eter D(G) is given by D(G) = max{dist(u, v) : u, v ∈
V (G)}. For any two graphs G and H , we write G 
 H if
they are isomorphic.

For randomgraphs,weuse theErdős–Rényi randomgraph
model Gn,p. In this model, a random graph G ∼ Gn,p is
sampled as follows.We start with n nodes and for each u, v ∈
V such that u 	= v, we add the edge {u, v} with probability
p independently of all other edges.

2.2 Population protocols on graphs

A (stochastic) schedule on a graph G is an infinite sequence
(et )t≥1 of ordered pairs of nodes (v, u), where each et is
sampled independently and uniformly at random among all
pairs of nodes connected by an edge in G (there are 2m
such pairs). The order of nodes in the pair is used to dis-
tinguish between initiator and a responder. A protocol is a
tuple A = (�,�,
in, 
out, init, out), where � is the set
of states, � : � × � → � × � is the state transition func-
tion, 
in and 
out are the sets of input and output labels,
respectively, init : 
in → � is the initialization function,
and out : � → 
out is the output function.

A configuration is a map x : V → �, where x(v) is the
state of the node v in configuration x . For any e = (u, v) and
configurations x and x ′, wewrite x ⇒e x ′ if (x ′(u), x ′(v)) =
�(x(u), x(v)) and x ′(w) = x(w) for all w ∈ V \ {u, v}.
For any sequence σ = (e1, . . . , et ) we write x0 ⇒σ xt if
xi ⇒ei+1 xi+1 for each i ≥ 0. We say that x ′ is reachable
from x on G if there exists some k ≥ 1 and σ = (e1, . . . , ek)
such that x ⇒σ x ′. Given input f : V (G) → 
in, a protocol
and a schedule (et )t≥1, an execution is the infinite sequence
(xt )t≥0 of configurations, where x0 = init ◦ f is the ini-
tial configuration and xt ⇒et+1 xt+1 for t ≥ 0. Note that

123



212 D. Alistarh et al.

throughout the paper, the time step t denotes the total num-
ber of pairwise interactions that have occurred so far.

In the case of leader election, we assume that the input is
a constant function, unless otherwise specified. That is, all
nodes start in the same initial state. We say that a configura-
tion x is correct if out(x(v)) = leader for exactly one node
v ∈ V and for all u ∈ V \{v}we have out(x(u)) = follower.
A configuration x is stable if for every configuration x ′ reach-
able from x we have out(x(v)) = out(x ′(v)) for every node
v ∈ V . The stabilization time of a leader election protocolA
is the minimum t such that xt is stable and correct. The state
complexity of a protocol is |�|, the number of distinct states.

Some of the protocols we consider are non-uniform in the
following sense: the state space and transition function of the
protocol can depend on parameters that capture high-level
structural information about the population and the interac-
tion graph (e.g., number of nodes and edges, broadcast time
or the maximum degree). However, upon initialization, all
nodes receive exactly the same information. For example,
nodes do not initially know their own degree or identity in
the interaction graph.

2.3 Probability-theoretic tools

Let X and Y be real-valued random variables defined on the
same probability space. We say that X stochastically domi-
nates Y , written as Y � X , if Pr[X ≥ x] ≥ Pr[Y ≥ x] for all
x ∈ R. We start with three concentration bounds. The first is
a folklore result; see, e.g., [35] for a proof. The second result
gives standard Chernoff bounds for sums of Bernoulli ran-
dom variables. The third result gives tail bounds on the sums
of geometric random variables, via Janson [36, Theorems 2.1
and 3.1].

Lemma 1 Let X ∼ Poisson(λ) be aPoisson randomvariable
with mean λ. Then

(a) Pr[X ≥ cλ] ≤ exp
(−λ · (c − 1)2/c

)
for c ≥ 1,

(b) Pr[X ≤ cλ] ≤ exp
(−λ · (1 − c)2/(2 − c)

)
for c ≤ 1.

Lemma 2 Let X = Y1 + . . . + Yk be a sum of independent
Bernoulli random variables with Pr[Yi = 1] = pi . Then

(a) Pr[X ≥ (1 + λ) · E[X ]] ≤ exp
(−E[X ] · λ2/(2 + λ)

)
for any λ ≥ 1, and

(b) Pr[X ≤ (1 − λ) · E[X ]] ≤ exp
(−E[X ] · λ2/2

)
for any

λ ≤ 1.

Note that in the special case when pi = p for all 1 ≤ i ≤ k,
the sum X ∼ Bin (k, p) is a Binomial random variable.

Lemma 3 Let p1, . . . , pk ∈ (0, 1] and X = Y1 + . . . + Yk
be a sum of independent geometric random variables with

Yi ∼ Geom(pi ). Define p = min{pi : 1 ≤ i ≤ k} and
c(λ) = λ − 1 − ln λ. Then

(a) Pr[X ≥ λ · E[X ]] ≤ exp (−p · E[X ] · c(λ)) for any
λ ≥ 1, and

(b) Pr[X ≤ λ · E[X ]] ≤ exp (−p · E[X ] · c(λ)) for any
0 < λ ≤ 1.

Lemma 4 (Wald’s identity) Let (Xi )i≥1 be a sequence of
real-valued independent and identically distributed random
variables and N a non-negative integer-valued random vari-
able independent of (Xi )i≥1. If N and all Xi have finite
expectation, then E[X1 + · · · + XN ] = E[N ] · E[X1].

3 Bounds on information propagation

Our results will rely on notions of broadcast time and prop-
agation time in the population model. For this, we define the
following infection process on a graphG: initially, each node
v ∈ V holds a unique message. In every step, when nodes
u and v randomly interact they inform each other about all
messages they have so far received.

The distance-k propagation time is the minimum time
until some message has reached a node at distance k from
its source. The broadcast time is the expected time until all
nodes in the network are aware of all messages. Propaga-
tion times are used in our lower bounds, whereas broadcast
time appears in our upper bounds. Before we formalize these
notions below, we briefly discuss some work on related,
but different stochastic information propagation dynamics
on graphs.

3.1 Information propagation in relatedmodels

Many variants of the above broadcasting process have been
studied in settings ranging from information dissemination
[30, 31, 37–41] tomodels of epidemics [42–44]. For example,
in the synchronous push-pull model [37, 40], Chierichetti,
Lattanzi and Panconesi [30] first showed that broadcast
succeeds with high probability in O(log4 n/φ6) rounds on
graphs of conductance φ. Subsequently, they improved the
running time bound to O(log n/φ · log2(1/φ)) rounds [41].
Finally, Giakkoupis [45] showed that the push-pull algorithm
succeeds in O(log n/φ) rounds with high probability, and
showed that for all φ ∈ �(1/n) there is a family of graphs
in which this bound is tight.

In the asynchronous setting, Acan, Collevecchio, Mehra-
bian and Wormald [38] and Giakkoupis, Nazari and Woelfel
[31] studied broadcasting in the continuous-time push-pull
model, where each node has a (probabilistic) Poisson clock
that rings at unit rate. They showed that on graphs in which
the protocol runs in T rounds, the asynchronous protocol runs
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in O(T + log n) continuous time. Ottino-Löffler, Scott and
Strogatz [43] studied a discrete-time infection model that is
similar to this asynchronous setting, and characterized broad-
cast time in cliques, stars, lattices and Erdős–Rényi random
graphs.

Although the interaction patterns in the stochastic popula-
tion model and the above asynchronous models are the same
for regular graphs, they are different in general graphs. In
the population model, instead of sampling a node and then
one of its neighbours in each step, our scheduler samples
an edge. In the continuous-time setting, this corresponds to
having an independent Poisson clock at each edge rather than
each node in the network. Thus, high-degree nodes interact
more often than low-degree nodes in the population model.

3.2 Information propagation in the population
model

We now define information propagation dynamics in our
setting. Let (et )t≥1 be a stochastic schedule on a graph
G = (V , E). For each node v ∈ V , let I0(v) = {v}. For
t ≥ 0, define

It+1(v) =
{
It (v) ∪ It (u) if et+1 = (u, v) or et+1 = (v, u)

It (v) otherwise.

Following Sudo and Masuzawa [17], we say that It (v) is the
set of influencers of node v at the end of step t . Nodes in It (v)

are nodes that can (in principle) influence the state of nodev at
step t . The above dynamics can be seen as a rumour spreading
process, where each node starts with a unique message, and
whenever two nodes interact, they inform each other about
each message they hold.

Broadcast and propagation time Let T (v, u) = min{t :
v ∈ It (u)} be the minimum time until node u is influenced
by node v. The broadcast time from source v is

T (v) = max{T (v, u) : u ∈ V (G)}.

We define the worst-case expected broadcast time on G to
be

B(G) = max{E[T (v)] : v ∈ V }.

For each k ≥ 0 and u ∈ V , let

Tk(u) = min{T (u, v) : v ∈ V , dist(u, v) = k}.

Thedistance-k propagation time inG isTk(G) = min{Tk(u) :
u ∈ V }. If there are no nodes at distance k from node u, then
Tk(u) = ∞. Moreover, Tk(G) = ∞ for all k > D(G).
Note that the expected distance-k propagation time gives

lower bound for the expected broadcast time as for each
1 ≤ k ≤ D(G) we have

E[Tk(G)] ≤ E[TD(G)] ≤ B(G).

Sampling edge sequences For a finite sequence ρ ∈ Ek

of k edges, let X(ρ) be the length of the shortest prefix of
the schedule (et )t≥1 that contains ρ as a subsequence. This
corresponds to number of steps until the scheduler has sam-
pled each edge from ρ in order (with possibly other edges in
between). Note that

X(ρ) = Y1 + · · · + Yk

is a sum of i.i.d. geometric random variables, where Yi ∼
Geom(1/m) is the number of steps until the i th edge of ρ is
sampled after sampling the (i − 1)th edge in the sequence ρ.
The next lemma follows immediately from Lemma 3.

Lemma 5 Let c(λ) = λ − 1 − ln λ. For any
ρ ∈ Ek, we have E[X(ρ)] = km and

(a) Pr[X(ρ) > λkm] ≤ exp (−kc(λ)) for λ ≥ 1, and
(b) Pr[X(ρ) < λkm] ≤ exp (−kc(λ)) for 0 < λ ≤ 1.

With the above lemma, it is fairly straightforward to estab-
lish the upper bounds on the worst-case expected broadcast
time B(G). We give the details in the next section.

3.3 Upper-bounding the broadcast time

In this section, we give establish the following upper bound
result on the broadcast time.

Theorem 1 Let G be a graph with n nodes, m edges, edge
expansion β and diameter D. Then the worst-case expected
broadcast time satisfies

B(G) ∈ O

(
m · min

{
log n

β
, log n + D

})
.

Note that there are graphs in which ln n/β > D, e.g.,
cycles, and ln n/β < D, e.g., cliques. We will later give
leader election protocols whose stabilization time is bounded
as a function of B(G) on any graph G. In general, for any
increasing function T between�(n log n) and O(n3), we can
find families of graphs in which both the expected broadcast
time and leader election time are �(T ). We give the con-
struction in Section 6.

We first derive an upper bound of order m · (ln n + D)

and then a bound of order m · ln n/β. For both cases, we use
the following observation that certain tail bounds imply an
upper bound for the expectation of the broadcast time T (v).
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Lemma 6 Let n ≥ 2 and t∗ ≥ 1. If for each v ∈ Vand all
λ ≥ 1 the random variable T (v) satisfies

Pr[T (v) > λt∗] ≤
(
1

n

)λ

,

then B(G) ≤ 2t∗ + 1.

Proof Let v ∈ V . Since T (v) is a non-negative discrete ran-
dom variable, we have that

E[T (v)] =
∞∑
t=0

Pr[T (v) > t]

=
t∗∑
t=0

Pr[T (v) > t] +
∞∑

t=t∗+1

Pr[T (v) > t]

≤ t∗ + 1 +
∞∑

t=t∗+1

Pr[T (v) > t].

It remains to show that the infinite sum is bounded by one.
To this end, we apply the hypothesis of the lemma to each
term of the infinite sum with λ(t) = t/t∗. Note that λ(t) ≥ 1
for t ≥ t∗. We then bound the resulting sum with an integral
to obtain

∞∑
t=t∗+1

Pr[T (v) > t] =
∞∑

t=t∗+1

Pr[T (v) > λ(t) · t∗]

≤
∞∑

t=t∗+1

(
1

n

)λ(t)

≤
∫ ∞

t∗

(
1

n

)λ(t)

dt

=
∫ ∞

0

(
1

n

)λ(t+t∗)
dt

=
∫ ∞

0

(
1

n

)1+x

t∗ dx = t∗

n ln n
≤ t∗,

where in the last line we performed integration by substitu-
tion. Since v ∈ V was arbitrary, we have that E[T (v)] ≤
2t∗ + 1 holds for all v ∈ V . This implies that

B(G) = max{E[T (v)] : v ∈ V } ≤ 2t∗ + 1.

��
We now establish the first tail bound in terms of the diam-

eter of the graph.

Lemma 7 There exists a constant C such that for any con-
nected graph G = (V , E) with n nodes, m edges and
diameter D we have

Pr[T (v) > λCm · max{ln n, D}] ≤ 1/nλ

for all λ ≥ 1 and v ∈ V .

Proof Let u ∈ V . We first bound the probability that the
propagation time T (v, u) is large. Consider a shortest path
ρ of length k between u and v. Let X(ρ) be the shortest
prefix of the stochastic schedule that contains the edges of
ρ as a subsequence, as defined in Section 3.2. Observe that
T (v, u) � X(ρ).

Let c(λ) = λ−ln λ−1.Note that there exists somepositive
constant C such that c(Cx) ≥ 2x holds for all x ≥ 1. Fix
smallest such constant C and define

η = λC

k
· max{ln n, D}.

By applying Lemma 5 and the definition of η, we get that

Pr[T (v, u) > η · E[X(ρ)]] ≤ Pr[X(ρ) > η · E[X(ρ)]]
≤ exp(−kc(η))

≤ exp (−2λ ln n)

= 1/n2λ.

By using the union bound over all u ∈ V and the fact that
λ ≥ 1, we get

Pr[T (v)>η · E[X(ρ)]]
= Pr[max{T (v, u):u∈V }>η·E[X(ρ)]]
≤
∑
u∈V

Pr[T (u, v) > η · E[X(ρ)]] ≤ 1/nλ.

The claim now follows, as η · E[X(ρ)] = ηkm = λCm ·
max{ln n, D}. ��

Now Lemma 6 and Lemma 7 together immediately imply
the following result.

Lemma 8 Let G be a graph with n nodes, m edges and diam-
eter D. Then the worst-case expected broadcast time satisfies

B(G) ∈ O (m · max{ln n, D}) .

Next, we establish an upper bound of order m/β log n
on the broadcast time using edge expansion. We will use a
similar proof strategy as above: provide a suitable tail bound
and then apply Lemma 6.

Lemma 9 Let G = (V , E) be a graph with edge expansion
β > 0. Then there exists a constant C such that for all λ ≥ 1
and any v ∈ V the broadcast time T (v) satisfies

Pr

[
T (v) ≥ λCm ln n

β

]
≤
(
1

n

)λ

.

Proof Consider a node v ∈ V and let St = {u : v ∈ It (u)}
be the set of nodes influenced by node v at time step t .
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Note that for any time step t ≥ 0, the event |St+1| > |St |
occurs if and only if the scheduler samples an edge from
the boundary ∂St of the set St . By definition of edge expan-
sion, |∂St | ≥ β|St | when |St | ≤ n/2 and |∂St | ≥ β|V \ St |
otherwise. Since the scheduler samples edges in each step
independently from all other steps, the probability of this
event is at least βi/m when |St | = i ≤ n/2 and at least
β(n − i)/m when n/2 < i ≤ n − 1. Thus, the number Xi of
steps it takes from the set of influenced nodes to grow from i
to i +1 is stochastically dominated by the geometric random
variable Yi ∼ Geom(pi ) with pi = βi/m for 1 ≤ i ≤ n/2
and pi = β(n − i)/m for n/2 < i ≤ n − 1.

Let Y = Y1 + · · · + Yn−1. By linearity of expectation, we
get

E[Y ] = E

[
n−1∑
i=1

Yi

]
=

n−1∑
i=1

E [Yi ] =
n−1∑
i=1

1

pi

= m

β
·
⎛
⎝�n/2�∑

i=1

1

i
+

n−1∑
i=�n/2�+1

1

n − i

⎞
⎠

= m

β
· (H�n/2� + H�n/2�−1

)
,

where in the second line we applied the definition of pi and
Hk denotes the kth harmonic number. Since the harmonic
numbers satisfy ln k ≤ Hk ≤ 1 + ln k, for all sufficiently
large values of n we get that

m ln n

β
≤ E[Y ] ≤ 2m ln n

β
.

Theminimum timeuntil all nodes are influencedbyv satisfies
T (v) � Y . Therefore,

Pr

[
T (v) ≥ λCm ln n

β

]
≤ Pr

[
T (v) ≥ λC

2
· E[Y ]

]

≤ Pr

[
Y ≥ λC

2
· E[Y ]

]
.

Let c(λ) = λ − ln λ − 1 be the function from Lemma 3. We
choose the constant C to be large enough so that c(λC/2) ≥
λ holds for any λ ≥ 1. Since Y = Y1 + · · · + Yn−1 is a
sum of independent geometric random variables with Yi ∼
Geom(pi ) and pi ≥ β/m, applying the above bounds and
Lemma 3 with p = β/m yields

Pr

[
Y ≥ λC

2
· E[Y ]

]
≤ exp

(
−p · E[Y ] · c

(
λC

2

))

≤ exp

(
−c

(
λC

2

)
ln n

)
≤
(
1

n

)λ

.

��

Lemma 6 and Lemma 9 imply the following result.

Lemma 10 For any graph G with n nodes, m edges and edge
expansion β > 0, the expected broadcast time satisfies

B(G) ∈ O

(
Cm log n

β

)
.

Now Lemma 8 and Lemma 10 together imply the bounds
given in Theorem 1. Finally, we briefly remark that broad-
cast time on dense random graphs is O(n log n) with high
probability. This bound can be used to establish that in con-
nected dense random graphs leader election can be solved
fast (Table 1).

Remark 1 Let p > 0 be a constant and G ∼ Gn,p with G
conditioned on being connected. Then B(G) ∈ O(n log n)

in expectation and with high probability.

Proof sketch. In the following, we say that an event holds
with exponential probability if it happens with probability
at least 1 − exp

(−n�(1)
)
. It is well-known that sufficiently

dense random graphs have a small spectral gap. For example,
from [46, Theorem 1.1] it follows that the spectral gap of a
normalized Laplacian is o(1) with exponential probability
for Erdős-Rényi graphs Gn,p with p ∈ �(1).

From the Cheeger inequality, it follows that conductance
φ of the graph is 1 − o(1), which implies that m/β ∈
n(1 + o(1)), since an Erdős-Rényi graph with p ∈ �(1)
is almost regular: all degrees are within [(1 − ε)(n −
1)p, (1+ε)(n−1)p]with exponential probability. Addition-
ally,m/β ∈ O(n3) deterministically for any connected graph
G. Thus, Theorem 1 implies that B(G) ∈ O(m/β · log n) in
expectation and with high probability for G ∼ Gn,p condi-
tioned on connectivity.

3.4 Lower bounds for propagation and broadcast
time

We now establish lower bounds on the propagation and
broadcast time. Note that T (v) ≥ n − 1 is a trivial lower
bound, as every node needs to interact at least once with a
node that was influenced by the source node. We start with a
simple bound that applies to any graph.

Lemma 11 For any graph G with maximum degree �, we
have

B(G) ≥ m/� · ln(n − 1).

Proof Let v ∈ V . In any given step, the probability that the
number of nodes influencedbynode v increases from i to i+1
by one is at most pi+1 = �i/m. Let Xi+1 be the number
of steps it takes from the set of nodes influenced by v to
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grow from i to i +1. Now Xi+1 stochastically dominates the
geometric random variable Yi+1 ∼ Geom(pi+1). Therefore,

E[T (v)] =
n−1∑
i=1

E[Xi+1] ≥
n−1∑
i=1

E[Yi+1]

=
n−1∑
i=1

m

�i
= m

�
· Hn−1,

where the harmonic number Hn−1 satisfies Hn−1 ≥ ln(n−1).
��

For the lower bounds, we bound the distance-k propa-
gation times Tk(G) using the notion of an obstructing set,
which acts as a bottleneck for information propagation. For
any r , k ∈ N such that r ≤ k, we say that a set K ⊆ Er

of length-r edge sequences is an (r , k)-obstructing set for
node v ∈ V if every path ρ(v, u) from v to a node u with
dist(u, v) = k contains some σ ∈ K as a subsequence. The
next lemma is useful for bounding propagation times.

Lemma 12 Let K be a (r , k)-obstructing set for v. Then for
any 0 < λ ≤ 1, we have

Pr[Tk(v) < λrm] ≤ |K | · e−rc(λ),

where c(λ) = λ − 1 − ln λ.

Proof Let P be the set of paths of from v to any node u
at distance k from v. Since any path ρ ∈ P contains some
σ ∈ K as a subsequence, if the stochastic schedule contains
ρ as a subsequence, then it also contains σ as a subsequence.
Therefore, by using the union bound and Lemma 5, we get
that

Pr[Tk(v) < λrm] ≤
∑
ρ∈P

Pr[X(ρ) < λrm]

≤
∑
σ∈K

Pr[X(σ ) < λrm]

≤ |K | · e−rc(λ).

��
We next bound Tk in terms of the maximum degree � of

the graph.

Lemma 13 If G is a graph with maximum degree � and k ≥
ln n, then

Pr
[
Tk(G) < (km)/(�e3)

]
≤ 1/n.

Proof Consider some node v ∈ V and let K be the set of
all paths of length k originating from v. If no such paths
exist, then Tk(v) = ∞. Observe that K is a (k, k)-obstructing

set for v and that |K | ≤ �k = exp(k ln�). Choose λ =
1/(e3 · �) and let c(λ) = λ − 1 − ln(λ). Observe that

ln� − c(λ) = ln� − (λ − 1 − ln λ)

= ln� − λ + 1 + ln λ

= ln� − 1

e3�
+ 1 − ln(e3�) < −2.

Applying Lemma 12 with K and λ yields

Pr

[
Tk(v) <

km

�e3

]
≤ |K | · e−k·c(λ)

≤ ek ln� · e−kc(λ)

= ek(ln�−c(λ))

≤ e−2k ≤ 1/n2,

since k ≥ ln n. The lemma follows by taking the union bound
over all v ∈ V . ��

Wenowcan give lower bounds for theworst-case expected
broadcast time in regular and bounded-degree graphs.

Theorem 2 Let G be a graph with n nodes and diameter D.
Then the worst-case expected broadcast time B(G) satisfies
the following:

• If G is regular, then B(G) ∈ �(n · max{D, log n}).
• If G is a bounded-degree graph, then B(G) ∈ �(n ·
max{D, log n}).

Proof We first establish the lower bounds. Note that for both
graph classes Lemma 11 gives the lower bound �(n log n).
Therefore, if D < ln n, the claimed lower bounds immedi-
ately follow. Therefore, suppose that D ≥ ln n and let t =
(Dm)/(�e3). Lemma13 implies that Pr[TD(G) < t] ≤ 1/n.
Note that for any u ∈ V we have

TD(G) ≤ TD(u) ≤ T (u).

By monotonicity of expectation, we get that E[TD(G)] ≤
B(G). Now

B(G) ≥ E[TD(G)]
≥ E[TD(G) | TD(G)≥t] · Pr[TD(G)≥t]≥t(1−1/n).

The first lower bound follows from observing that for regular
graphs m = �n/2. The lower bound for the second claim
follows by observing that � is a constant. Theorem 1 gives
the upper bound for bounded-degree graphs, asm ∈ O(n) in
such graphs and so B(G) ∈ O (n · (log n + D)), which is of
order n · max{log n, D}. ��
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4 Baselines for stable leader election on
graphs

In this section, we discuss two protocols, which act as our
baselines for time complexity and space complexity of sta-
ble leader election on general graphs. First, we note that
constant-state protocol given by Beauquier et al. [19] sta-
bilizes in O(H(G) · n log n) steps in expectation and with
high probability, where H(G) is the worst-case hitting time
of a simple, classic random walk [32]. Second, we observe
that if we allow for polynomially-many states, then there is
a simple protocol that elects a leader in O(B(G) + n log n)

expected steps. This protocol is time-optimal for a large class
of graphs.

4.1 First baseline: A space-efficient protocol

Ourbaseline for space-efficient protocols is the constant-state
leader election protocol given by Beauquier et al. [19]. This
protocol stabilizes in any connected graph in finite expected
time.

Here, we first observe the following bound on the stabi-
lization time as a function worst-case hitting time of a classic
random walk. This result essentially follows from the recent
techniques developed by Sudo et al. [25] combined with the
algorithm of Beauquier et al. [19].

Theorem 3 There is a 6-state protocol such that if given a
nonempty set of leader candidates as input, then the protocol
elects exactly one candidate as a leader in O(H(G) ·n log n)

steps in expectation and with high probability, where H(G)

is the worst-case hitting time of a classic random walk on G.

Overview of the protocol The idea of the protocol is
simple: as input, we are given a nonempty set of leader candi-
dates. That is, each node v receives a single bit f (v) ∈ {0, 1}
as local input denoting whether it is a leader candidate or not.
The guarantee is that if there is at least one leader candidate,
then one of these will be eventually the leader.

At the start of the execution, each leader candidate creates
a “black token”. In each interaction, the selected nodes swap
their tokens with each other. Whenever two black tokens
meet, one of them is colored white and the other token is
left black. Whenever a leader candidate receives a white
token, this candidate becomes a follower and removes the
token from the system. Eventually exactly one black token
and leader candidate remain. That is, the protocol is always
correct.

The formal description of this protocol appears in [19] and
[27]. In particular, [19] gives a proof of correctness, i.e., that
the protocol eventually stabilizes in any connected graph.
Similarly to Alistarh et al. [27], we exploit this property by
using this constant-state protocol as a backup protocol for
faster protocols that may fail to elect a unique leader with

a polynomially small probability. We note that the idea of
using backup protocols was already introduced by Angluin,
Aspnes and Eisenstat [8].

Comparison to previous analyses
The main idea for the analysis is that black and white

tokens in the protocol perform random walks on the inter-
action graph G. Recently, Alistarh et al. [27] analysed this
protocol using the meeting and hitting times of randomly
walking tokens in the populationmodel. They obtain a bound
on these times through the diameter and the number of edges
of the graph. Sudo et al. [25] provide a more refined analy-
sis of the meeting and hitting times in the population model
by relating them to hitting times of a classic random walk,
which are well-understood for large families of graphs.

In this section, we adapt these results to obtain a upper
bound on the stabilization time of the protocol of Beauquier
et al. [19]. In Section 7, we show that the average-case time
complexity of this protocol ondense randomgraphs is almost-
optimal among constant-state protocols.

Classic random walks and random walks in the popu-
lation model

First, we give a definition of a simple random walk in the
populationmodel. Let (et )t≥1 be the sequence of (undirected)
edges sampled by the stochastic scheduler. We use Xt (v) to
represent the position of a random walk started at node v at
time t ≥ 0. The dynamics of the random walk are given by

Xt+1(v) =
{

w if et+1 = {Xt (v), w}
Xt (v) otherwise.

In other words, the random walk travels to the other end of
an edge if the edge containing its current position is sampled.

In contrast, we use XS
t (v) to denote the position of a clas-

sic random walk started at node v at time t ≥ 0. For a classic
randomwalk, we have XS

0 (v) = v and the conditional distri-
bution XS

t+1(v) | XS
t (v) is uniform on the neighbourhood of

XS
t (v). That is, if the classic random walk is at node u, then

the next location of the random walk is sampled uniformly
at random among the neighbours of u.

Hitting times Let HP (u, v) denote the expected time for
a random walk started at node u to reach node v in the pop-
ulation model. Define HP (G) = max{HP (u, v) : u, v ∈
V (G)} to be the worst-case expected hitting time in the pop-
ulation model. Similarly, let H(v, u) denote the expected
hitting time from u to v of a classic random walk, and define
H(G) = max{H(u, v) : u, v ∈ V (G)}. Sudo et al. [25,
Lemma 2] show the following relationship between H(G)

and HP (G).

Lemma 14 For any graph G, we haveHP (G) ≤ 27n ·H(G).

Meeting timesWe say that a random walk meets another
random walk at time step t , if the two random walks are
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located at the opposite ends of the edge et sampled at time
step t . LetM(u, v) denote the expected time until the random
walks started at nodes u and v meet.

Following Sudo et al. [25], we note that the meeting times
in the population model can be bounded using the hitting
times using essentially the same proof as the proof of Copper-
smith, Tetali andWinkler [47, Theorem 2] for classic random
walks on graphs, with minor modifications. This yields the
next lemma; for the sake of completeness, we provide its
proof in Appendix A.

Lemma 15 For any u 	= v, we have M(u, v) ≤ 2 · HP (G).

With the above lemma, we can now prove the next result,
which slightly refines the bounds on hitting times given by
Sudo et al. [25] to also hold with high probability in addition
to expectation.

Lemma 16 Suppose we start a random walk at every node
of G. Then each random walk visits every node and meets
every other random walk within O(H(G) · n log n) time in
expectation and with high probability.

Proof Let v, u ∈ V and consider a random walk started at
vertex v. By Lemma 14, the expected hitting timeHP (w, u)

is upper bounded by 27n · H(G) for any node w ∈ V .
Let k ≥ 3 be a constant and consider k log n time intervals

of length 54n · HP (G). In each such interval, the random
walk started at node v hits node u with probability at least
1/2 by Markov’s inequality, regardless of its position at the
beginning of the interval. Hence, it hits node u in 54k ·H(G) ·
n log n steps with probability at least

1 −
(
1

2

)k log n

≥ 1 − 1

nk
.

Then, by union bound over all pairs of vertices, we have for
any k ≥ 2,

Pr
[
HP (G) ≥ 54k · H(G) · n log n

]
≤ 1

nk−2 ,

thus, every randomwalk hits every node in O(H(G)·n log n)

steps with high probability. To get an upper bound on the
expectation, let T0 = 54 ·H(G) ·n log n and note that for any
n ≥ 2,

E
[
HP (G)

]
=

∞∑
�=0

Pr
[
HP (G) > �

]

≤ T0 ·
∞∑
k=0

Pr
[
HP (G) > k · T0

]

≤ T0 ·
(
3 +

∞∑
k=3

Pr
[
HP (G) > k · T0

])

≤ T0 ·
(
3 +

∞∑
k=3

1

nk−2

)

≤ 4T0 ∈ O(H(G) · n log(n))

Now let v, u ∈ V , and consider random walks started at
vertices v and u. By Lemma 15 and Lemma 14, the expected
meeting timeM(v, u) is upper bounded by 54n ·H(G). Con-
sider k log n intervals of length 108n ·H(G). In each interval,
the random walk started at node v meets a random walk
started at node u with probability at least 1/2 by Markov’s
inequality, regardless of their positions at the start of the
interval. Hence, they meet in 108k ·H(G) ·n log n steps with
probability at least

1 −
(
1

2

)k log n

≥ 1 − 1

nk
.

Then, similarly to the above, by union bound over all pairs
of vertices, every pair of random walks meet in O(H(G) ·
n log n) time in expectation and with high probability, since
k ≥ 3 was chosen to be an arbitrary constant. ��

Analysis of the token-based protocol
We can finally apply the above results to analyze the token

dynamics of the constant-state leader election protocol. It is
easy to see that each individual black or white token fol-
lows the simple randomwalk in the populationmodel defined
above.

For the purposes of our analysis, when a white token dis-
appears, we replace it by a “white ghost token”. Similarly, we
treat a black token that turns white as a “black ghost token”,
while keeping the white token as well. This is done so that we
can reason about the meeting/hitting times without worrying
about the fact that black or white token may disappear before
a meeting/hitting event occurs. With the above, we are now
ready to prove Theorem 3.

Theorem 3 There is a 6-state protocol such that if given a
nonempty set of leader candidates as input, then the protocol
elects exactly one candidate as a leader in O(H(G) ·n log n)

steps in expectation and with high probability, where H(G)

is the worst-case hitting time of a classic random walk on G.

Proof First, the number of steps until there remains exactly
one black token in the system is O(H(G) · n log n) steps
in expectation and with high probability. This follows from
Lemma 16, as all black tokens (or their ghosts) have met
after O(H(G) · n log n) steps (in expectation and with high
probability), and every time two (non-ghost) black tokens
meet, one of them turns into a white token. This implies only
one black token remains in the system by this time. Indeed, if
there were at least two black tokens, they would meet before
that, causing one of them to turn into awhite token.Moreover,
the number of black tokens can never be less than one.
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Suppose w white tokens remain after all but one black
token have been eliminated. This means there arew+1 lead-
ers in the system. Now Lemma 16 implies that each white
token (or its ghost)will hit every one of thew+1 leader nodes
after O(H(G) · n log n) steps in expectation and with high
probability. Therefore, there is exactly one leader candidate
left in the system after O(H(G) · n log n) steps in expecta-
tion and with high probability. At this point the protocol has
stabilized. ��

Thebound inTheorem3 simplifies,when a randomErdös-
Renyi graph is considered. The result below is a direct
consequenceof a boundgivenbyLöweandTorres [34,Corol-
lary 2.1]. The result below together with Theorem 3 gives
the upper bound for constant-state protocol for dense random
graphs that appears in Table 1.

Proposition 1 Let G ∼ Gn,p with p ∈ logω(1)(n)/n. Then,
with probability 1 − o(1), we have H(G) ∈ O(n).

4.2 Second baseline: A time-efficient protocol

We next discuss our baseline for fast protocols. For this, we
use a simple protocol that stabilizes in O(B(G) + n log n)

expected steps using polynomially many states. The results
in Section 6 show that this protocol is time-optimal for a
large class of graphs, as there are graphs where leader elec-
tion requires �(B(G)) steps and B(G) ∈ �(n log n). The
protocol is non-uniform: we assume that the nodes know the
value of log n, when initializing the protocol.

In this protocol, we first generate unique identifiers with
high probability by using the stochasticity of the scheduler
and a large state space. Once we have unique identifiers, we
can elect the node with the largest identifier as the leader
by a broadcast process. The main detail to handle is that
nodes only get one random bit per interaction. Therefore, the
sampling of random bits is spread over�(log n) interactions.

The only non-trivial part is to get finite expected stabiliza-
tion time. This is achieved by interleaving the always-correct
constant-state protocol with a broadcasting process: Once a
node has generated its identifier, the node starts an instance
of the constant-state protocol labelled with its own identifier
and designating itself as a leader candidate in this instance. If
a node encounters an instance of the constant-state protocol
labeled with an identifier that is higher than the identifier of
its current instance (or its own identifier), the node joins as
a follower to the instance with the higher identifier. In the
case that two or more nodes generated the same (highest)
identifier, the constant-state protocol ensures that eventually
only one leader candidate remains. Specifically, we show the
next result.

Theorem 4 There is a protocol that uses O(n4) states on gen-
eral graphs and O(n3) states on regular graphs that elects
a leader in O(B(G) + n log n) steps in expectation.

Description of the time-efficient protocol Let � denote
the set of states of the constant-state protocol A given by
Theorem 3. Recall that the protocol can be given as input a
nonempty subset of nodes out of which the leader is elected.

Let init : {leader, follower} → � be the initialization
function of A so that init(leader) gives the state in which a
node starts as a leader candidate and init(follower) the state
in which the node has been designated as a follower. Each
node v ∈ V maintains two local variables:

• state(v) ∈ �, and
• id(v) ∈ {1, . . . , 2k+1 − 1}, where k ∈ �(log n) is a

parameter.

At the start of the protocol, each node v initializes its state
variables to

id(v) ← 1 and state(v) ← init(follower).

During an interaction (v0, v1), where v0 is the initiator and
v1 is the responder, node vi ∈ {v0, v1} updates its state by
applying the following rules:

1. If id(vi ) < 2k , then

– set id(vi ) ← 2 · id(vi ) + i , and
– if now id(vi ) ≥ 2k , then initialize state(vi ) ←

init(leader).

2. If id(vi ) < id(v1−i ) and id(v1−i ) ≥ 2k , then set

id(vi )←id(v1−i ) and state(vi ) ← init(follower).

3. Update state(vi ) as per the rules of the constant-state
protocolA, by usingstate(v0) andstate(v1) as input
for the transition function of A.

The three rules of the protocol are executed in sequence: first
both interacting nodes execute Rule (1) in parallel, then Rule
(2) in parallel, and finally Rule (3). At the end of each time
step, the output of node v is defined to be the output of the
constant-state protocol A in state state(v).

Analysis of the time-efficient protocol
We say that node v starts an instance of A with the

identifier j if there exists a time step t > 0 such that v

executes the rule state(v) ← init(leader) while id(v) =
j holds. This can only happen when applying Rule (1). If
node executes state(v) ← init(follower) in Rule (2) at
time step t > 0, then we say that node v joins an instance of
A (at time step t).

Note that a node can join many instances, but it if it joins
a new instance, the new instance must have a higher identi-
fier than the previous instance. Moreover, node can start an
instance only once by Rule (1) and this must happen before
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the node joins any instance. While two nodes can start an
instance with the same identifier, they do so with a small
probability, as shown next.

Lemma 17 Suppose node u starts an instance with identifier
i and node v starts an instance with identifier j . Then Pr[i =
j] ≤ 1/2k .

Proof We now bound the probability of the event that u and
v generate the same identifier (which happens by applying
the first rule k times). For node v, the probability that it is
an initiator on any of its interactions is 1/2. This means that
the identifier of v will be uniformly distributed across the set
{2k, . . . , 2k+1 − 1}. While the identifiers are not in general
independent, we show that the identifiers will be the same
with probability at most 1/2k . To this end, we distinguish
three cases:

1. If u and v assign their bth bits at the same time step t > 0,
then one of them will be the initiator and one the respon-
der. Therefore, the bth bit and the identifiers of u and v

will be different with probability 1.
2. If u and v never interact before assigning all of their k

bits in their identifiers, then their identifiers are different
with probability 1/2k . In particular, the bth bits will be
different with probability 1/2.

3. If v assigns its bth bit at an earlier time step t > 0 than
node u, then v assigns the bit at position b to 0 or 1 with
equal probability, regardless of who is its interaction part-
ner or previous bit assignments of v and u. Thus, the
probability that u and v have the same bit in position b is
at most 1/2.

From the above, we have that nodes u and v have the same
bth bit, for 1 < b ≤ k + 1, in their generated identifiers with
probability at most 1/2. Therefore, the probability that all of
the k assigned bits are equal is at most 1/2k . ��

Let idt (v) be the value of the state variable id(v) after
t interactions. Define M(t) = max{idt (v) : v ∈ V } to be
the maximum id value that any node has at time step t and
M = max{M(t) : t ≥ 0} themaximumvalue attained during
the entire execution. Note that M is always bounded. Let T
be the minimum time until all nodes have either started an
instance of the constant-state protocol A with identifier M
or joined an instance with identifier M . (We show below that
T is in fact finite.)

Note that by time T all nodes start executing the same
instance of the constant-state protocolA, which is guaranteed
to stabilize in finite expected time. In particular, after time
T if there are more than one leader, then A will reduce the
number of leaders to one. From Lemma 17 it follows that the
probability that there is more than one leader is small.

Lemma 18 We have E[T ] ≤ kn + 2 · B(G).

Proof Let v ∈ V be a node with deg(v) = � and X be
the number of steps until node v has been activated k times.
Clearly, node v satisfies idX (v) ≥ 2k at time step X , as
node v has either executed Rule (1) of the algorithm k times
or it has satisfied the condition in Rule (2) by this time. Let
T (v) denote the number of steps until a broadcast initiated
at node v at time step X reaches all nodes. Therefore, for all
t ≥ X + T (v), we have that idt (u) ≥ 2k for all u ∈ V and
no node will satisfy the condition in Step (1) at time step t .

Note that M(t) = M(t ′) for all t ′ ≥ t ≥ X + T (v). Now
let u be the node that attained the maximum id value at time
step X + T (v). The broadcast initiated from node u at time
step X + T (v) will reach all nodes in the system by some
random time T (u). Hence, by time step X +T (v)+T (u) all
nodes have the sameid value. Hence, T ≤ X+T (v)+T (u).
By monotonicity and linearity of expectation,

E[T ] ≤ E[X ] + E[T (v)] + E[T (u)].

Since X = Y1 + · · · + Yk is the sum of k geometric random
variables with mean m/ deg(v) = m/� ≤ n, we get that
E[X ] ≤ kn. As E[T (v)] + E[T (v)] ≤ 2B(G) by definition
of the broadcast time, we get that E[T ] ≤ kn + 2B(G). ��

Theorem 4 There is a protocol that uses O(n4) states on gen-
eral graphs and O(n3) states on regular graphs that elects
a leader in O(B(G) + n log n) steps in expectation.

Proof Let F be the event that more than one node starts an
instance with identifier M and let v be any such node. The
probability that some other node u starts an instance with
identifier is atmost Pr[F] ≤ n/2k byusingLemma17and the
union bound over all nodes. Let T ′ be the stabilization time
of protocol A. Using Lemma 18, the expected stabilization
time of the overall protocol is

E[T | F] · Pr[F] + E[T ′ | F] · Pr[F]
≤ E[T ] + E[T ′] · Pr[F]
≤ kn + 2 · B(G) + E[T ′] · n/2k .

Because the worst-case hitting time of a classic randomwalk
on general connected graphs is O(n3) and O(n2) on regu-
lar graphs [32], by Theorem 3, we have E[T ′] ≤ Cn4 log n
for some constant C for any connected graph and E[T ′] ≤
Cn3 log n for any connected, regular graph. For general
graphs, we can set the parameter controlling the identifier
space to k = �4 log n� so that number of states is O(n4) and
the expected stabilization time becomes O(B(G)+ n log n).
For regular graphs, it suffices to set k = �3 log n� to get the
desired bound. ��
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5 Space-efficient and fast leader election

We now give a leader election protocol whose stabilization
time is parameterized by the worst-case expected broadcast
timeB(G) andwhose state complexity depends on the expan-
sion properties of the graph. The protocol uses tournament
style leader election, an approach in many leader election
protocols in the clique [10, 12, 15, 20]. The idea is to prune
the number of leaders iteratively so that in each iteration cur-
rently remaining leader candidates flip a coin, and if some
candidate got 1 as their coin flip, all candidates who got 0 get
removed.

In particular, our approach is inspired by a time-optimal
algorithm on the clique due to Sudo et al. [20], but with
significant differences: for instance, our algorithm works on
any connected graph and guarantees that a high-degree node
is elected as a leader. Themain challenge is thatwhenmoving
from cliques to general graphs, nodes can interact at different
rates (depending on their degree) and time to disseminate
information in the graph can depend on the structure of the
graph.

Theorem 5 For any connected graph G with maximum
degree �, there is a leader election protocol that uses
O(log n · h(G)) states and stabilizes in O(B(G) · log n)

steps in expectation and with high probability, where h(G) ∈
O(log(�/β · log n)) and β is the edge expansion of G.

The protocol is non-uniform: when initializing the pro-
tocol, we assume that the nodes know the values (or upper
bounds up to additive constants) of log(B(G) · �/m) and
log n. Observe that parameter h(G) ∈ O(log n), so the pro-
tocol uses O(log2 n) states. Moreover, for graphs where the
ratio�/β is small, we can obtain o(log2 n) space complexity.
For example, in regular graphs we get the following bounds.

Corollary 1 In any regular graph with conductance φ =
β/�, there is a leader election protocol that stabilizes in
O(1/φ · n log2 n) steps in expectation and with high proba-
bility using O(log n · (log log n − logφ)) states.

The algorithm consists of three parts. First, we describe
a space-efficient way for nodes to approximately count the
number of local interactions. The second part is a two-phase
protocol that first removes low-degree nodes from the set
of leader candidates and then reduces the number of high-
degree leader candidates to onewith high probability. Finally,
to guarantee finite expected stabilization time, we use the
constant-state token-based leader election protocol given in
Theorem 3 as a backup protocol to handle the unlikely cases
where the fast part fails.

5.1 Local approximate clocks on graphs

We first describe a subroutine that is used to trigger events
every �(2h) expected interactions using exactly h + 1 local
states, where h ≥ 1 is a given parameter controlling the
frequency of the triggered events. Each node v maintains a
variable streak(v) ∈ {0, . . . , h}, which is initialized to
0. When node v interacts, it updates its streak counter as
follows:

• If v is the initiator, then set

streak(v) ← streak(v) + 1.

Otherwise, set

streak(v) ← 0.

• If streak(v) = h, then node v is said to complete a
streak and set

streak(v) ← 0.

In the above clock protocol, a local event is triggered at a
node whenever the node completes a streak.

Analysis of the clock protocol
Let K denote the number of times a fixed node needs to

interact until it first completes a streak. Here K is the number
of fair coin flips needed to observe h consecutive heads, as the
scheduler picks the role of initiator and responder uniformly
at random and independently from previous interactions.

We start with a technical result that approximates the dis-
tribution of K using geometric random variables. Recall that
X � Y denotes that Y stochastically dominates X .

Lemma 19 The randomvariable K satisfies Z0 � K � Z1+
h, where Z0 ∼ Geom(2−h) and Z1 ∼ Geom(2−h−1).

The proof of Lemma 19 is given in Appendix B. We use
X(d) to denote the number of steps (i.e., the number of node
pairs sampled by the scheduler) until a fixed node of degree
d completes a streak. Note that high degree nodes have a
higher probability to complete their streaks, as they interact
more often.

The next lemma summarizes some useful properties of K
and X(d). The proof follows by application of concentra-
tion bounds on geometric random variables (Lemma 3) and
Wald’s identity (Lemma 4).

Lemma 20 Let 1 ≤ d ≤ n. The random variables K and
X(d) satisfy the following:

(a) The expected value of K is E[K ] = 2h+1 − 2.
(b) The expected value of X(d) is E[X(d)] = E[K ] · m/d.
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(c) For any 0 ≤ λ ≤ 1 we have Pr[X(d) ≤ λE[X(d)]] ≤
4λ + 21−λh.

Proof For claim (a), let s(h) denote the expected number of
fair coin flips to obtain h consecutive heads. By law of total
expectation, s(h) satisfies the recurrence

s(h + 1) = 1

2
(s(h) + 1) + 1

2
(s(h) + s(h + 1) + 1)

Rewriting this yields s(h + 1) = 2s(h) + 2. Noting that
s(1) = 2 and solving this recurrence yields E[K ] = s(h) =
2h+1 − 2.

For claim (b) and claim (c), note that X(d) is the random
sum

X(d) = Y1 + · · · + YK

of K independent and identically distributed geometric ran-
dom variables, where Yi ∼ Geom(d/m) is the number of
steps until the fixed node of degree d interacts for the i th
time after its (i − 1)th interaction for all i ≥ 1. Since the
random variable K is independent of the sequence (Yi )i≥1,
Wald’s identity (Lemma 4) implies

E[X(d)] = E[K ] · E[Y1] = E[K ] · m/d,

which establishes claim (b).
Finally, to prove claim (c), set k = �2λ ·E[K ]� and define

X = Y ′
1 + · · · + Y ′

k , where Y ′
i ∼ Geom(d/m) and all Y ′

i ’s
are independent. By linearity of expectation, we have

E[X ] = km

d
= k

E[K ] · E[X(d)] ≥ 2λ · E[X(d)].

Then conditioned on the event K ≥ k, the random variable
X(d) stochastically dominates X . That is, Pr[X(d) ≥ x |
K ≥ k] ≥ Pr[X ≥ x]. This means that

Pr[X(d) ≤ λ · E[X(d)] | K ≥ k]
≤ Pr[X ≤ λ · E[X(d)]]
≤ Pr[X ≤ E[X ]/2]
≤ exp

(
− d

m
· E[X ] · c(1/2)

)
≤ exp(−k/4)

≤ exp
(
−λ · 2h−1

)
≤ 2−λh,

where the third inequality follows from Lemma 3b and last
inequality follows from 2h−1 ≥ h. Using the law of total
probability, we get

Pr[X(d) ≤ λ · E[X(d)]]= Pr[X(d) ≥ λ · E[X(d)] | K<k]
· Pr[K < k]

+ Pr[X(d) ≥ λ · E[X(d)] | K
≥ k] · Pr[K ≥ k]

≤ Pr[K < k] + Pr[X(d) ≤ λ

· E[X(d)] | K ≥ k]
≤ Pr[K < k] + 2−λh .

Recall that for a geometric randomvariable Z ∼ Geom(1/2h),
we have

Pr[Z ≤ k] = 1 − (1 − 1/2h)k .

Note also that k ≤ 2λ · E[K ] + 1 ≤ λ2h+2 + 1. The claim
now follows using Lemma 19 and applying the Bernoulli
inequality to the term Pr[K < k], as

Pr[K < k] ≤ Pr[Z < k] ≤ 1 − (1 − 1/2h)k ≤ k

2h

≤ 4λ + 2−h .

Therefore, since λ ≤ 1, it follows that

Pr[X(d) ≤ λ · E[X(d)]] ≤ 4λ + 2−h + 2−λh ≤ 4λ + 21−λh .

��

Together with the above results, we can show that the
number R of interactions to complete � ≥ ln n streaks is
strongly concentrated around the interval [E[R]/2, 4 ·E[R]].
Thus, the above process can be essentially used as space-
efficient local clock which ticks at a desired (approximate)
frequency. In the following, we write c(λ) = λ−1− ln λ for
any λ > 0.

Lemma 21 Let � ≥ ln n and R be the number of interactions
a node needs to complete � streaks. Then

(a) The expected value of R is E[R] = (2h+1 − 2)�.
(b) Pr[R ≤ λ · E[R]/2] ≤ 1/nc(λ) for all 0 < λ ≤ 1
(c) Pr[R ≥ 4λ · E[R]] ≤ 1/nc(λ) for all λ ≥ 1

Proof Note that (a) follows immediately from linearity of
expectation and the fact that R is a sum of � i.i.d. copies of
K . To show (b) and (c), define the following sums

R0 = Y1 + · · · + Y� and R1 = Y ′
1 + · · · + Y ′

�

of independent geometric random variables, where Yi ∼
Geom(1/2h) and Y ′

i ∼ Geom(1/2h+1) for each 1 ≤ i ≤ �.
By linearity of expectation, we have that

E[R0] = �2h and E[R1] = �2h+1.
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Lemma19 implies that R0 � R � R1+�h. Note that R0 � R
implies

Pr[R ≤ λ · E[R]/2] = Pr[R ≤ λ · �(2h − 1)]
≤ Pr[R ≤ λ�2h]
= Pr[R ≤ λE[R0]]
≤ Pr[R0 ≤ λE[R0]]
≤ e−�c(λ) ≤ n−c(λ),

where the last two inequalities follow from Lemma 3 and
� ≥ ln n. Similarly, R � R1 + �h implies

Pr[R ≥ 4λ · E[R]] = Pr[R ≥ λ�(2h+3 − 8)]
≤ Pr[R ≥ λ�2h+2]
= Pr[R ≥ 2λ · E[R1]]
≤ Pr[R1 + �h ≥ 2λ�2h+1]
= Pr[R1 ≥ 2λ�2h+1 − �h]
≤ Pr[R1 ≥ λ�2h+1]
≤ e−�c(λ) ≤ n−c(λ),

where the third inequality follows from λ ≥ 1 and �h ≤
�2h+1 and the last two from Lemma 3 and � ≥ ln n. ��

Finally, we examine the concentration of the number of
steps until a node completes a certain number of streaks.

Lemma 22 Suppose h ∈ ω(1). Let � ≥ ln n and S = S(d, �)

be the number of steps until a fixednodeof degree d completes
� streaks. Then for all sufficiently large n,

(a) E[S] = E[K ] · �m/d = (2h+1 − 2) · �m/d,
(b) Pr[S ≤ λ2 · E[S]/4] ≤ 2/nc(λ) for any λ ≤ 1, and
(c) Pr[S ≥ 8λ2 · E[S]] ≤ 2/nc(λ) for any λ ≥ 1.

Proof Let (Yi )i≥1 an infinite sequence of i.i.d. geometric ran-
dom variables, where Yi ∼ Geom(d/m). Note that S is the
randomsum S = Y1+· · ·+YR ,where R is the (random)num-
ber of interactions node takes to complete � streaks. Since R
is independent of the sequence (Yi )i≥1, Wald’s inequality
(Lemma 4) implies that E[S] = E[R] ·E[Y1]. Together with
Lemma 21a this implies claim (a) of the lemma, as

E[S] = E[R] · E[Y1] =
(
2h+1 − 2

)
·
(

�m

d

)
.

To show claim (b), let λ ≤ 1 and define

r0 = �λ · E[R]/2� and S0 =
r0∑
i=1

Yi .

Note that since � ≥ ln n, for large enough n we have

λ · E[R]/4 ≤ r0 ≤ λ · E[R]/2.

Observe thatE[S0] ≥ λE[S]/4. If the event R ≥ r0 happens,
then S0 ≤ S. Hence,

Pr[S ≤ λ2 · E[S]/4 | R ≥ r0] ≤ Pr[S0 ≤ λ2 · E[S]/4]
≤ Pr[S0 ≤ λ · E[S0]]
≤ e−r0·c(λ) ≤ 1/nc(λ),

where the last two inequalities follow from Lemma 3 and the
fact that for large enoughnwehave r0 ∈ �(�2h) ⊆ ω(log n).
By law of total probability,

Pr[S ≤ λ2 · E[S]/4]
= Pr[S ≤ λ2 · E[S]/4 | R ≥ r0] · Pr[R ≥ r0]
+ Pr[S ≤ λ2/4 · E[S] | R < r0] · Pr[R < r0]
≤ Pr[S ≤ λ2/4 · E[S] | R ≥ r0] + Pr[R < r0]
≤ 1/nc(λ) + 1/nc(λ),

as the term Pr[R < r0] is at most 1/nc(λ) by Lemma 21.
Finally, the proof of the claim (c) follows a similar pattern.

Let λ ≥ 1 and define

r1 = �λ · 4E[R]� and S1 =
r1∑
i=1

Yi .

Note that since � ≥ ln n, for large enough n we have

λ · 8E[R] ≥ r0 ≥ λ · 4E[R].

Observe that 8λ · E[S] ≥ E[S1]. If R < r1, then S < S1.
Now we get that

Pr[S ≥ 8λ2 · E[S] | R < r1] ≤ Pr[S1 ≥ 8λ2 · E[S]]
≤ Pr[S1 ≥ λ · E[S1]]
≤ e−r1·c(λ) ≤ 1/nc(λ),

where the last two inequalities follow from Lemma 3 and the
fact that r1 ∈ �(�2h) ⊆ ω(log n). By lawof total probability,

Pr[S ≥ 8λ2 · E[S]]
= Pr[S ≥ 8λ2 · E[S] | R ≥ r1] · Pr[R ≥ r1]
+ Pr[S ≥ 8λ2 · E[S] | R < r1] · Pr[R < r1]
≤ Pr[R ≥ r1] + Pr[S ≥ λ2 · E[S] | R < r1]
≤ 1/nc(λ) + 1/nc(λ),

as Pr[R ≥ r1] ≥ 1/nc(λ) by Lemma 21 and the second term
we bounded above. ��
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5.2 The fast leader election protocol

With the time-keeping mechanism in place, we now describe
and analyse the leader election protocol that reduces the
number of leader candidates to one, with high probability,
in O(B(G) · log n) steps.

Let τ ≥ 1 be an arbitrary fixed constant that controls the
probability that the protocol fails (increasing τ decreases the
probability of failure). Fix the parameters

h = 8 +
⌈
log

(
B(G) · �

m

)⌉
and L = �2τ log n�,

where � denotes the maximum degree of the graph G.
Note that with this choice of parameters X(d) ∈ O(B(G))

in expectation and with high probability for any d ≤ � and
also X(d) ∈ �(B(G)) in expectation and with high proba-
bility for d ∈ �(�). We also note that h ∈ �(log log n), as
in any graph B(G) ≥ m ln(n − 1)/�; see Lemma 11.

The fast, space-efficient leader election protocol As a
subroutine, each node runs the streak counter protocol with h
fixed as above. In addition, every node v maintains two state
variables status(v) ∈ {leader, follower} and a counter
level(v) ∈ {0, . . . , α(τ ) ·L}, where α(τ) > 1 is a constant
we fix later in the analysis.

Initially, eachnodev initializes thevariables tostatus(v)

← leader and level(v) ← 0. When v interacts with u,
node v updates its state using the following rules applied in
sequence:

1. If v completes a streak and status(v) = leader, then
set

level(v) ← min{level(v) + 1, α(τ ) · L}.

2. If level(v) < level(u) and level(u) ≥ L , then set

status(v) ← follower.

3. If max{level(u),level(v)} ≥ L , then set

level(v) = max{level(u),level(v)}.

Analysis of the fast, space-efficient leader election pro-
tocolWe now analyse the above protocol. We say that a node
is at level � at time step t if its level variable is � at time
step t . A node is in the elimination phase if it is at least at
level L . Otherwise, it is in the waiting phase. When a node v

in the waiting phase interacts with a node in the elimination
phase, then v moves to the elimination phase (as a follower).

Note that a node can only remain a leader and increase its
level if it completes a streak. When a node increases its level
without completing a streak, it must become a follower by

Rules (2) and (3). Moreover, by Rule (2), in every time step
one of the nodes in the graph with the highest level must be
a leader. Thus, the protocol guarantees that there is always at
least one leader in every step. Finally, as B(G) is the worst-
case expected broadcast time, Rule (3) implies that if some
node is at level � ≥ L at step given step, then within B(G)

expected steps all nodes are at level at least �.
The first step in the analysis considers fixed pairs of nodes,

characterizing the period of time after which at least one node
from a given pair drops out of contention.

Lemma 23 Let u and v be nodes with degree at least d. If u
and v have level at least L and less than α(τ) · L at step t,
then at least one of them is a follower at time step t + 16 ·
(E[X(d)] + B(G)) with probability at least 1/8.

Proof Let L ≤ � < α(τ) · L be the maximum of the levels
of u and v at step t . Let X be the minimum number of steps
until the one of the nodes increments its level to � + 1 after
step t . Since both nodes have degree at least d, we get that
X � X(d), which implies

Pr[X ≥ 16 · E[X(d)]] ≤ Pr[X(d) ≥ E[X(d)]] ≤ 1/16

by Markov’s inequality. If either u or v is a not leader at step
t + X , then the claim follows. Suppose that both are leader
candidates at step t + X . This means that only one of the
nodes interacts at step t + X : if both interact at step t + X ,
then the initiator will complete its streak, increasing its level
to �+1, and the responder will fail to complete its streak and
become a follower due to Rule (2).

Without loss of generality, suppose that node v interacts
at step t + X . Denote T to be the number of steps it takes for
broadcast from v to reach u. Then T ∼ T (v, u). Note that if
by the time t+X+T node u has not completed a streak, then
it is at level at most � and will be eliminated by the broadcast
from v by Rule (2). Let Y be the number of steps after time
t + X until u completes a streak.

Note that the probability that u is a leader at time t + X +
16 ·B(G) is at most Pr[T > 16 ·B(G)]+Pr[Y ≤ 16 ·B(G)].
We show that this is at most 3/4. The bound on the first term
follows from Markov’s inequality and the fact that B(G) is
the worst-case expected broadcast time, as

Pr[T ≥ 16 · B(G)]] ≤ Pr[T ≥ 16 · E[T ]] ≤ 1/16.

To bound the second term, let A denote the event that during
its first interaction after time t + X , node u resets its streak
counter (i.e., u is a responder). Clearly, Pr[A] = 1/2. Note
that Y | A � X(d) � X(�), and in particular by Lemma 20b
we have

E[Y | A] ≥ E[X(�)] ≥ 28 · B(G)�

m
· m
�

= 256 · B(G).
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Then, by law of total probability and Lemma 20c, we have

Pr[Y ≤ 16 · B(G)] = Pr[Y ≤ 16 · B(G) | A] · Pr[A]
+ Pr[Y ≤ 16 · B(G) | A] · Pr[A]

≤ 1

2
+ 1

2
Pr[X(�) ≤ 1/16 · E[X(�)]]

≤ 1

2
+ 1

2
·
(
1

4
+ 21−h/16

)

≤ 5

8
+ 2−h/16 ≤ 3

4
,

as h ≥ 48 for large enough n. Thus, u is a leader by time
t+X+8·B(G)with probability atmost 3/4+1/16 = 13/16.
Since Pr[X ≥ 16 · E[X(d)]] ≤ 1/16, the lemma follows by
union bound. ��

The second technical lemma leverages this to show a
higher concentration result for eliminating all-but-one can-
didate from contention, assuming all nodes are in the
elimination phase.

Lemma 24 Suppose all leader candidates have degree at
least d and all nodes are in the elimination phase. Let

t(d) = 16(τ + 2) · log8/7 n · (E[X(d)] + B(G)) .

If no node reaches level α(τ)L by time t + t(d), then exactly
one leader candidate remains at time step t+ t(d)with prob-
ability at least 1 − O(n−τ ).

Proof Let A(u, v) denote the event that at time t + t(d) both
u and v are leader candidates. The claim follows by using
Lemma 23 and the union bound over all u 	= v, as

∑
u 	=v

Pr[A(u, v)] ≤
∑
u 	=v

(
7

8

)(τ+2)·log8/7 n
≤ n2/nτ+2 ≤ 1/nτ .

��
Next, we provide an upper bound on the time when, with

high probability, all nodes are in the elimination phase, and
all nodes of small degree have become followers.

Lemma 25 There exist constants λ ≥ 1 and γ ≥ 1 such
that at time λL · B(G) the following holds with probability
1 − O(n−τ ):

1. all nodes are in the elimination phase, and
2. all nodes of degree at most �/γ are followers.

Proof Let λ0 ≥ 1 be a constant such that c(λ0) ≥ τ , where
c(λ) = λ − 1 − ln λ. Define S(d, �) as in Lemma 22 and
define t as t = 8λ20 E[S(�, L)]. Note that t ∈ O(L · B(G))

by Lemma 22 and by choice of h. First we show that by time

step t at least one node has reached level L with probability
1 − O(n−τ ). Consider a node v with degree �. If at step
t it is not a leader, then there must exist another node at
level at least L by Rule (2). Otherwise, by Lemma 22, after t
steps this node completed L streaks with probability at least
1−O(n−τ ). Then there is at least one node at level at least L
by time t with probability 1 − O(n−τ ). Let u be such node.

Notice that once broadcast from u reaches all other nodes,
all nodes will be at level at least L . The probability that
the broadcast from u does not reach all other nodes after
2B(G) steps is at most 1/2 by Markov’s inequality. Then
the probability that broadcast from u reaches all other nodes
by time B(G) · L is at least 1 − (1/2)τ log n ∈ 1 − O(n−τ )

since L ≥ 2τ log n. Thus, all nodes will be at level at least L
within t + B(G) · L steps with probability 1 − O(n−τ ). As
t ∈ O(L ·B(G)), for large enough n, we have that t +B(G) ·
L ≤ λL ·B(G) for some constant λ ≥ 1. This completes the
proof of the claim (1).

For claim (2), choose a constant λ1 ≤ 1 such that c(λ1) ≥
τ + 1 and let γ = 32λ20/λ

2
1. Clearly, γ is a constant at least

1, since λ0 ≥ 1 and λ1 ≤ 1 are constants. Consider a node
w with degree deg(w) = d ≤ �/γ . Let S ∼ S(d, L) be
the number of steps until w completes L streaks. Then by
Lemma 22 we have that

Pr[S ≤ t] = Pr[S ≤ 8λ20 E[S(d, L)]] ≤ Pr[S ≤ 8λ20/γ E[S]]
= Pr[S ≤ λ21/4E[S]] ≤ 2/nc(λ1) ≤ 2/nτ+1.

Claim (2) now follows by the union bound over all nodes
with degrees less than �/γ . ��

Finally, we put everything together to obtain a bound on
the time by which there is a single leader candidate left that
holds with high probability.

Lemma 26 There exist constants α(τ) and C = C(τ ) such
that there is exactly one leader candidate at time step C ·
B(G) · log n with probability at least 1 − O(n−τ ).

Proof Let λ and γ by constants given by Lemma 25 and d =
��/γ �. Then with probability 1−O(n−τ ) before λL ·B(G)

steps all nodes are at level at least L and all nodeswith degrees
less than d are followers by Lemma 25. For the remaining
part of the proof, suppose this holds. We now lower bound
the time it takes for some node to reach the maximum level
α(τ)L . Note that by Lemma 20 we get that

E[X(d)] = (2h+1 − 2) · m
d

≤ 2h+1 · m
d

≤ 512 · B(G) · �

m
· m
d

≤ 512γ · B(G).
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Let τ ′ ≤ 1 be a constant such that c(τ ′) ≥ τ + 1. Set t as

t = 16(τ + 2) (512γ + 1) · log8/7 n · B(G)

≥ 16(τ + 2) · log8/7 n · (E[X(d)] + B(G))

and set t ′ as

t ′ = 4096(τ ′)2 · B(G) · (α(τ) − 1)L.

We can pick α(τ) to be a large enough constant such that
t ′ > t holds for all large enough n, since both t and t ′ are of
order �(B(G) · log n).

Suppose there is a node v that reached level α(τ)L . We
aim to show this happened after time λL · B(G) + t ′ with
probability 1−O(n−τ ). As wementioned above, we assume
all nodes reached level L before time λL · B(G). After that,
to reach level α(τ)L node v needs to complete a streak at
least (α(τ)−1)L times. Let S be the time for that to happen.
Then S(�, (α(τ) − 1)L) � S. Then by Lemma 22

Pr[S ≤ t ′] ≥ Pr[S(�, (α(τ) − 1)L) ≤ t ′]
≥ Pr[S(�, (α(τ) − 1)L) ≤ (τ ′)2

· 8E[S(�, (α(τ) − 1)L)]]
≥ 1 − n−c(τ ′) ∈ 1 − O(n−τ−1).

Then, by union bound, in t ′ steps none of the nodes have
reached the maximal level α(τ)L with probability 1 −
O(n−τ ). Since t ′ > t , Lemma 24 implies that a unique leader
will be elected before time t with probability 1 − O(n−τ ).
It remains to note that there exists a constant C(τ ) such that
t < C(τ )B(G) log n since L ∈ �(log n). ��

Finally, to guarantee finite expected stabilization time,
the protocol includes a backup phase following the same
approach as in [27]. The first node to reach level α(τ)L must
be a leader candidate. When a node v reaches level α(τ)L ,
it switches to executing the constant-state token-based
leader election protocol. When this happens, node initial-
izes the constant-state protocol with the input status(v) ∈
{leader, follower} and starts running the protocol while
simultaneously continues broadcasting its level(v) value
using Rule (3). Within B(G) expected steps, all nodes are
running the constant-state protocol. This protocol guarantees
that eventually only one leader remains after polynomially
many expected steps.

Theorem 5 For any connected graph G with maximum
degree �, there is a leader election protocol that uses
O(log n · h(G)) states and stabilizes in O(B(G) · log n)

steps in expectation and with high probability, where h(G) ∈
O(log(�/β · log n)) and β is the edge expansion of G.

Proof The protocol uses O(hL) states. By Theorem 1,
B(G) ≤ Cm/β log n for some constant C . Thus,

h = 8 +
⌈
log

(
B(G) · �

m

)⌉
≤ 8

+
⌈
log

(
Cm log n · �

mβ

)⌉
∈ O

(
log

(
log n · �

β

))
.

Clearly, L ∈ �(log n), so the claim on the state complex-
ity follows. By Lemma 26, the fast protocol stabilizes in
O(B(G) · log n) steps with probability at least 1 − O(n−τ ).
By Theorem 3, the constant-state backup protocol stabilizes
in O(n4 log n) expected steps, as the worst-case hitting time
of a classic random walk is O(n3) steps [32]. With probabil-
ity at most O(n−τ ), at least two leader candidates enter the
backup phase. Choose τ ≥ 4 and let T be stabilization time
of the protocol. Then

T ∈ O
(
B(G) · log n + n−τ · n4 log n

)
,

which is O(B(G) · log n). ��

6 Time lower bounds for general protocols

In this section, we establish time lower bounds for stable
leader election for general protocols with unbounded state
space. First, we give a fairly general technique for construct-
ing graphs,where leader election has a given time complexity
of any order between �(n log n) and O(n3). This technique
can be also applied to specific graph families to characterize
the complexity of leader election in these families. Finally,
we also give a result that shows that in any sufficiently dense
graph leader election requires �(n log n) expected steps.

6.1 The lower bound construction for renitent
graphs

We first introduce the notion of isolating covers. The idea
is that we can cover the nodes of the graph with at most
K subsets of the same size, each of which has isomorphic
neighbourhood up to some distance � ≥ 0, and that there are
at least two such sets that are sufficiently far apart.

Let G = (V , E) be a graph and C = {V0, . . . , VK−1} ⊆
2V be a collection of subsets of V . We say that C is a (K , �)-
cover of the graph G if

1. for each 0 ≤ i < j < K there exists an isomorphism φ

betweenG[B�(Vi )] andG[B�(Vj )] such thatφ(Vi ) = Vj ,
2. there exists some Vi and Vj such that B�(Vi )∩ B�(Vj ) =

∅, and
3. V0 ∪ · · · ∪ VK−1 = V (G).
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That is, (1) the local neighbourhoods are isomorphic up to
distance � and this isomorphism maps vertices of Vi to Vj ,
(2) there are two sets whose vertices are all far apart, and (3)
the union of the sets covers the entire graph.

We define

Y (C) = min{t : It (Vi ) \ B�(Vi ) 	= ∅ for some Vi }

to be the isolation time of the cover C. This is the minimum
time until some node in Vi is influenced by some node at
distance greater than � from all nodes of Vi . We say that C is
t-isolating if Pr[Y (C) ≥ t] ≥ 1/2. This property states that
it is unlikely that during the first t steps, nodes in the set Vi
can be influenced by nodes that are far away from nodes in
Vi .

Note that if the distance-� propagation time on G satisfies
Pr[T�(G) < t] ≤ 1/2, then any (K , �)-cover of G is t-
isolating. Thus, we may bound the minimum propagation
times to show that a cover is isolating.

Let G be an infinite family of graphs and f : N → N

be an increasing function. We say that graphs in G are f -
renitent if there exists a constant K ≥ 2 and function
� : N → N and such that every n-node graph G ∈ G has
an f (n)-isolating (K , �(n))-cover. In this section, we prove
the following result.

Theorem 6 If the graphG is f -renitent, then any leader elec-
tion protocol takes �( f ) expected steps to stabilize on G.

Our approach is inspired by the lower bound construction
for randomized leader election in synchronous message-
passingmodels byKutten et al. [29,Theorem3.13].However,
unlike in synchronous message-passing models, in the pop-
ulation model communication is both stochastic and asyn-
chronous with sequential interactions, so we need to further
refine the approach to make it work in our setting.

We prove our result in a stronger variant of the population
model: we do not restrict the number of states used by the
nodes and give each node access to its own (independent
and infinite) sequence of random bits. Formally, we assume
that each node v ∈ V is given as input a random value y(v)

sampled independently and uniformly at random from the
unit interval [0, 1). Since we do not restrict the state space of
the nodes, the nodes can locally store this value to access an
infinite sequence of i.i.d. randombits. The randombits assign
nodes unique identifiers with probability 1. Any protocol that
does not use these random bits can ignore them.

Proof of Theorem 6 Suppose G is f -renitent and A is leader
election protocol onG that stabilizes in T steps.Without loss
of generality, assume f (n) ≥ 6, as otherwise the claim of
Theorem 6 is trivially true.

Fix any f (n)-isolating (K , �)-cover C = {V0, . . . , VK−1}
of the graph G, where K is a constant independent of n, and

let Y = Y (C) be the isolation time of the cover. Let X ∼
Poisson(λ) be a Poisson random variable with mean λ =
f (n)/2 and E be the event that X < Y . Here, X represents a
random time step (independent of Y ) at which we investigate
the state of the system. To this end, we define Li to be the
event that some node v ∈ Vi outputs that it is a leader at step
X .

Lemma 27 The following hold:

(a) Pr[L0 | E] = Pr[Li | E] for each 0 ≤ i < K, and
(b) Pr[Li ∩ L j | E] = Pr[Li | E] · Pr[L j | E] for some

0 ≤ i < j < K.

Proof Let P(G) = {(v, u), (u, v) : {v, u} ∈ E(G)} be the
set of ordered pairs of nodes that can interact and let (et )t≥1

be a stochastic schedule on G. Note that each et is sampled
from P uniformly at random independent of other interaction
pairs. Let σ = (e1, . . . , eX ) be the sequence of first X inter-
actions, where X ∼ Poisson(λ) is a Poisson random variable
with mean λ = f (n)/2.

First we note that the distribution of σ can be equivalently
expressed using the following continuous-time process. Sup-
pose each pair (v, u) ∈ P(G) is activated at unit rate
independently of all other elements of P(G) and previous
activations of (v, u), that is, the number of activations of
(v, u) on time interval [0, t) is a Poisson random variable
with mean t . The sum Z = Z1 + Z2 of two independent
Poisson random variables with mean λ1 and λ2 is a Pois-
son random variable with mean λ1 + λ2. Therefore, since
|P(G)| = 2m, the total number Z of activated pairs dur-
ing the interval [0, λ/(2m)) is Poisson random variable with
mean λ. That is, Z ∼ X and the sequence σ ′ = (e′

1, . . . , e
′
X ),

where e′
i is the i th pair activated in the continuous-time pro-

cess, has the same distribution as σ .
For each 0 ≤ i < K , let Ui = B�(Vi ) and σi be the

sequence of pairs of nodes from G[Ui ] that are activated
during the time interval [0, λ/(2m)) in the continuous time
process. If the edge sets of G[Ui ] and G[Uj ] are disjoint,
then σi and σ j are independent. Moreover, since G[Ui ] 

G[Uj ] for all 0 ≤ i ≤ j < K , the sequences σ0, . . . , σK−1

are identically distributed up to isomorphism, i.e., Pr[σi =
a] = Pr[σ j = φ(a)], where φ is the isomorphism between
G[Ui ] and G[Uj ]. Note that σi corresponds to the longest
subsequence of (e1, . . . , eX ) of pairs of nodes which are both
in Ui .

Now suppose the event E occurs. Then the set of influ-
encers satisfies IX (Vi ) ⊆ Ui for each 0 ≤ i < K . Property
(1) of (K , �)-covers implies that |Vi | = |Vj | for each i 	= j .
Let N = |V0| and xi,t : Vi → � be the configuration of
nodes in the set Vi at after t steps. If E occurs, then xi,t can
only dependon the sequenceσi of interactions betweennodes
in Ui and the initial random values yi ∈ [0, 1)Ui assigned to
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nodes in Ui . In particular, we get that xi,X is a function of
the pair (yi , σi ).

Since the isomorphism φ takes Vi to Vj , (yi , σi ) and
(y j , σ j ) are identically distributed (but not necessarily inde-
pendent). Hence, the configurations xi,X and x j,X are iden-
tically distributed given that E occurs. This implies claim
(a) of the lemma. By the second property of (K , �)-covers,
there exist some i < j such that B�(Vi ) ∩ B�(Vj ) = ∅ and
soUi ∩Uj = ∅. If the event E happens, then edges of G[Ui ]
and G[Uj ] are disjoint, and so the random sequences σi and
σ j are conditionally independent given E . Thus, (yi , σ j ) and
(y j , σ j ) are also conditionally independent given E , which
implies that xi,X and x j,X are conditionally independent
given E . This implies claim (b). ��
Lemma 28 There exists a constant C(K ) > 0 such that the
stabilization time T of protocol A satisfies Pr[T > X ] ≥
C(K ).

Proof Let x be the configuration at the random time step X .
Note that T ≤ X if and only if x is a stable configuration
with a unique leader. Let A denote the event T ≤ X and
define Pr[A] = α, Pr[E] = ε and Pr[L0 | E] = γ . Observe
that

Pr[A | E] = Pr[A ∩ E]
Pr[E] = Pr[A] − Pr[A | E] · Pr[E]

Pr[E]
≥ 1 − α − (1 − ε)

ε
= 1 − α

ε
.

Since the configuration x contains a node in a leader state,
union bound yields

Pr[A | E] ≤
K−1∑
i=0

Pr[Li | E] = Kγ,

where the equality of probabilities follows from Lemma 27a.
Let i < j be as given by Lemma 27b. Since the configuration
x cannot be stable if at least two nodes are in a leader state,
we have that

Pr[A | E] ≥ Pr[Li ∩ L j | E] = Pr[Li | E] · Pr[L j | E] = γ 2,

because by Lemma 27b the events Li and L j are condition-
ally independent given E . Combining all of the above yields

1 − α/ε ≤ Pr[A | E] ≤ Kγ ≤ K
√

α/ε.

Thus, α needs to satisfy the quadratic inequality 1 − α/ε ≤
K

√
α/ε. The solution of this inequality for ε > 0 is given

by

√
α ≥

√
ε

2

(√
K 2 + 4 − K

)
≥ 0.

Finally, we show that ε = Pr[E] > 1/4. Since the cover
V0, . . . , VK−1 is f (n)-isolating, we have Pr[Y ≥ f (n)] ≥
1/2. By the law of total probability,

Pr[Y < X ] ≤ Pr[X > 2λ] + Pr[Y ≤ 2λ]
≤ exp(− f (n)/4) + Pr[Y ≤ f (n)]
≤ exp(−3/2) + 1/2 ≤ 3/4,

where we applied the definition of λ = f (n)/2, Lemma 1a
with c = 2, and the assumption f (n) ≥ 6. Thus, α > 0
is a positive constant denoting the probability of the event
T > X . ��
Theorem 6 If the graphG is f -renitent, then any leader elec-
tion protocol takes �( f ) expected steps to stabilize on G.

Proof We first show that there exist constants n0 and C < 1
such that for any n ≥ n0, we have Pr[T ≤ λ/2] ≤ C .
By law of total probability and the definition of conditional
probability, we get that

Pr[T ≤ λ/2] ≤ Pr[T ≤ X ] + Pr[T ≤ λ/2 ∧ T > X ]
≤ Pr[T ≤ X ] + Pr[X ≤ λ/2]
≤ 1 − C(K ) + exp(− f (n)/12) ≤ C .

We can pick constant C < 1 satisfying the above since
C(K ) > 0 is a constant by Lemma 28 and exp(− f (n)/12)
is a term that tends to 0 as n increases, as f is an increasing
function. Finally, since 1 − C > 0 is a positive constant and
T is a non-negative random variable, we have

E[T ] ≥ E[T | T ≥ λ/2] · Pr[T ≥ λ/2]
≥ (1 − C)λ

2
= 1 − C

4
f (n).

��

6.2 Constructing renitent graphs

We now give examples of f -renitent graphs; by Theorem 6
the expected stabilization time on these graphs will be�( f ).
For example, as a warmup, it is not hard to see that cycles
are �(n2)-renitent: We can split the cycle into six paths
V0, . . . , V5 of length roughly n/6 and information propa-
gation from set V 0 to V 3 requires�(n2) steps with constant
probability.

Lemma 29 Cycle graphs are �(n2)-renitent.

Proof Let G be an n-cycle with nodes V = {v0, . . . , vn−1}
and n = 6�. Define

Vi = {vi�, . . . , v(i+1)�−1}

123



Near-Optimal Leader Election in Population Protocols… 229

for i ∈ {0, 1, . . . , 5}. Observe that each B�(Vi ) is isomorphic
to a path of the same length, B�−1(V0) ∩ B�−1(V3) = ∅ and
V0 ∪ · · · ∪ V5 = V . Lemma 13 implies that

Pr[T�(G) ≤ c�n] ≤ 1/n ≤ 1/2

for some constant c > 0. Thus, {V0, . . . , V5} is �(n2)-
isolating (6, �)-cover. ��

In fact, for any constant k > 0, the above idea general-
izes to higher dimensions: k-dimensional toroidal grids are
�(n1+1/k)-renitent; one can partition such grids into con-
stantly many subcubes of diameter �(n1/k) and observe
that propagating information to distance �(n1/k) in regular
graphs requires �(n1+1/k) steps with constant probability.

The next lemma allows us to obtain �(Dm)-renitent
graphs for essentially anydiameter D andnumberm of edges.

Lemma 30 Let G be a connected graph with n nodes, m
edges and diameter D. For any integer � such that D ≤
� ≤ n, there exists an �(�m)-renitent graph G ′ with �(n)

nodes,�(m) edges and diameter�(�). In addition,B(G ′) ∈
�(�m).

Proof Fix a node v∗ of G. We construct the graph G ′ as
follows: take four copiesG0, . . . ,G3 of the graphG and con-
nect the i th copy v∗

i of v∗ to v∗
(i+1) mod 4 by a using a path Pi

of length 2�. Define Vi = V (Gi )∪V (Pi ) for i ∈ {0, 1, 2, 3}.
By construction C = {V0, . . . , V3} gives a (4, �)-cover ofG ′,
as G ′[Bk(Vi )] 
 G ′[Bk(Vj )] for all i, j ∈ {0, 1, 2, 3} and
k ≥ 0, B�(V0) ∩ B�(V2) = ∅ and V0 ∪ · · · ∪ V3 = V (G ′).

We now show that the cover is t-isolating for t = λ�m
for some constant λ > 0. For each 0 ≤ i ≤ 3, let ρi and
ρ′
i be the sequence of edges in P(i+1) mod 4 and P(i−1) mod 4

ordered towards v∗
i . Note that for It (Vi ) \ B�(Vi ) 	= ∅ to

hold, the scheduler must have sampled either at least half of
sequence ρi or at least half of ρ′

i (both sequences have length
2�), since D ≤ �. Denote by ρ̂i and ρ̂′

i
the halves of ρi and ρ′

i respectively that are closest to Vi .
Now for any 0 ≤ i ≤ 3, we have that

Pr[It (Vi ) \ B�(Vi ) 	= ∅] ≤ Pr[X(ρ̂i ) > t] + Pr[X(ρ̂′
i ) > t]

≤ 2 · exp(−�c(λ)) ≤ 1/8

by using Lemma 5 and choosing λ > 0 to be a sufficiently
small constant. By union bound, Pr[Y (C) ≥ λ�m] ≥ 1/2.
The above also implies that the distance �-propagation time
of v∗

i satisfies Pr[T�(v
∗
i ) > t] ≥ 7/8. It now follows that

B(G) = max{E[T (u)] : u ∈ V } ∈ �(�m), as

E[T (v∗
i )] ≥ E[T�(v

∗
i ) | T�(v

∗
i ) > t] · Pr[T�(v

∗
i ) > t] ≥ 7t

8
.

��

Theorem 7 For any increasing function T : N → N such that
n log n ≤ T (n) ≤ n3, there is an infinite family of graphs in
which stable leader election takes �(T (n)) expected steps
and the broadcast time satisfies B(G) ∈ �(T ) .

Proof For any N ≥ 1, we construct a graph G with n ≥ N
nodes as follows. We distinguish two cases:

• First, if T ∈ ω(n2 log n), then take a clique H of size N
and set � = �T (N )/N 2�.

• Otherwise, if T ∈ O(n2 log n), then set � = �log N +
T (N )/(N log N )�, take a star graph and add�(T (N )/�)

edges in an arbitrary fashion to obtain the graph H .
Adding this many edges is always possible since T (N )/�

∈ O(N 2).

In both cases, we apply Lemma 30 with H and � to obtain
a graph G. Note that Lemma 30 implies that the graph
G will be �(T )-renitent and satisfy B(G) ∈ �(T ). By
Theorem 6 stable leader election will take �(T ) expected
steps on this graph. The graph H has constant diameter, and
since � ∈ �(log n), the graph G has diameter �(log n).
By construction, Dm ∈ �(T ), so Theorem 1 implies that
B(G) ∈ O(T ). Now Theorem 4 implies the upper bound for
leader election time. ��

6.3 A lower bound for dense graphs

The above construction gives graph families in which
expected leader election and broadcast time are of the same
order. However, this is not generally true. Leader election
time can bemuch lower than broadcast time in graphs, where
the local structure helps break symmetry fast. The star graph
(i.e., a tree of depth one) is the simplest example: there is a
trivial constant-state protocol that elects a leader in one inter-
action, but broadcast time in a star is �(n log n) by a simple
coupon collector argument.

The above example rules out, for example, the existence
of a general �(n log n) lower bound for leader election in
sparse graphs. In this section, we show that in dense graphs
with sufficiently high minimum degrees, we cannot easily
exploit local graph structure to break symmetry fast, even if
we use any number of states per node.

Theorem 8 Let 0 < λ < 1 and 0 < φ < 1 be constants. If G
has minimum degree δ ≥ λnφ and m ≥ λn2 edges, then any
stable leader election protocol requires �(n log n) expected
steps to stabilize on G.

At its core, the argument is an extension of lower bound
result of Sudo and Masuzawa [17] from cliques to gen-
eral high-degree graphs. However, to deal with the general
structure of the interaction graph, we introduce the two new
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concepts: multigraphs of influencers and leader generating
interaction patterns.

Our proof strategy is roughly as follows. We assume that
there is a fast protocol that stabilizes in o(n log n) steps in
a graph with the properties as in the above theorem. First,
we capture the spatial structure of the part of the graph that
influences a node to be elected as a leader; we call such
structures “leader generating interaction patterns”. We show
that there must be such patterns that are fairly small and
almost tree-like. This means they can be unfolded into trees,
without growing their size too much. Then we argue that,
because the graph has high degrees, such a tree is likely to
be found in the set of nodes that have not interacted by time
o(n log n). Since a new leader can be generated in this part
of the graph, this implies that any configuration reached in
o(n log n) steps is unlikely to be stable.

Recall that It (v) ⊆ V denotes the set of influencers of
node v at time t . We start with the following lemma showing
that the sets of influencers grow slowly on dense graphs.

Lemma 31 Let 0 < ε < 1 be a constant. There exists a
constant 0 < c < c(ε, λ) such that for any node v ∈ V and
any 0 ≤ t ≤ cn log n, we have

Pr[|It (v)| > nε] ∈ exp
(
−�

(√
nε
))

.

Proof Define

K =
⌊
λ/2 ·

(
nε/2 − 1

)⌋
� =

⌊
2/λ ·

(
nε/2 − 1

)⌋

rk =
⌊

λn

2k

⌋
t0 =

K∑
k=1

rk .

Note that K� ≤ nε − 1. Assume that n is large enough so
that t0 > 0. Let J0(v) = {v}, and for 0 ≤ t < t0 define

Jt+1(v) =

⎧⎪⎨
⎪⎩
Jt (v) ∪ {w} if et0−t = (u, w) or et0−t

= (w, u) for some w ∈ Jv(t)

Jt (v) otherwise,

wherewe take e0 = ∅. That is, Jt+1(v) = Jt (v)∪{w} if some
node in u ∈ Jv(t) interacted with node w at step t0 − t . We
can think of Jt (v) as an evolution of It (v) played in reverse.
Note that Jt0(v) = It0(v). Hence, it is enough to show that
the event |Jt0(v)| < nε is likely to happen.

We now lower bound the number of steps it takes for Jt (v)

to grow from 1 to K� + 1 ≤ nε. Note that Jt (v) changes by
at most one every step. Moreover,

Pr[|Jt+1(v)| = k + 1 | |Jt (v)| = k] ≤ nk

m
≤ k

λn
= p(k),

as m ≥ λn2 and there are most n|Jt (v)| edges incident to
nodes in Jt (v). Let t(a, b) be the time it takes for |Jt (v)| to

grow from size a to size b. Note that when Jt (v) has size at
most b, then the probability of Jt (v) growing in a single step
is upper bounded by p(b) = b/(λn).

We divide the interval [1, K�+1] into K disjoint intervals
of length �. Let [ak, bk] to be kth such interval. For the count
to grow from ak to bk we need bk − ak = � steps in which
the size of Jt (v) increases. The probability that it takes no
more than rk steps for the count to grow from ak to bk can be
upper bounded by the probability of the event Yk ≥ �, where
Yk ∼ Bin (rk, p(bk)) is a binomial random variable. Since

E[Yk] = rk · p(bk) ≤ λn

2k
· bk
λn

≤ �k

2k
= �/2,

the Chernoff bound from Lemma 2 implies that

Pr[t(ak, bk) ≤ rk] ≤ Pr [Yk ≥ �]

≤ Pr[Yk ≥ 2 · E[Yk]] ∈ exp
(
−�

(√
nε
))

,

as E[Yk] ∈ �(
√
nε). Now by using the union bound over all

K intervals, we have

Pr[|Jt0(v)| ≤ nε] ≤ Pr
[
t(1, nε) ≤ t0

]

≤ Pr

[
t(1, K� + 1) ≤

K∑
k=1

rk

]

≤
K∑

k=1

Pr[t(ak, bk) ≤ rk]

∈ exp
(
−�

(√
nε
))

,

since E[Yk], K , � ∈ �(
√
nε). Now we observe that for all

sufficiently large n, we have

t0 =
K∑

k=1

rk ≥
K∑

k=1

(
λn

2k
− 1

)

=λn

2

(
K∑

k=1

1

k

)
− K = λnHk

2
− K ≥ cn log n,

where HK is the K th harmonic number and c > 0 is some
constant such that

c log n ≤ λHK

2
− K

n
,

for all sufficiently large n. Such a constant exists, since K ∈
�(

√
nε) and 0 < ε < 1 is a constant. Thus, the claim of the

lemma follows for this c. ��
Next we show that for any set U of nodes of size N and

any constant ε > 0, there likely is a subset of�(N 1−ε) nodes
in U that have not interacted by time step o(n log n).
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Lemma 32 Let 0 < ε ≤ 1 be a constant. Fix a set U ⊆ V of
size N. Let X(t) be the number of nodes in U that have not
interacted by step t ≥ 0. Then for any small enough constant
0 < c < c(ε, λ) and for all 0 ≤ t < cn log N, we have

Pr[X(t) ≤ N 1−ε] ∈ exp
(
−�

(
N 1−ε

))
.

Proof Clearly X(0) = N . We estimate the time until X(t) <

N 1−ε holds. Note that

Pr[X(t + 1) < X(t) | X(t) = k] ≤ kn

m
≤ k

λn
= p(k),

as m ≥ λn2. Moreover, 0 ≤ X(t) − X(t + 1) ≤ 2, as in
each iteration the number of nodes that have interacted can
increase by at most two. Let t(a, b) denote the number of
steps until X(t) decreases from a to b. Given that X(t) = a,
the probability that the number of nodes that have not yet
interacted decreases is at most p(a). For their count to drop
below b, we need at least (a − b)/2 steps in which the count
decreases.

Define

� = 2

⌈
N 1−ε

⌉
K =

⌊
N

�

⌋
− 1 tk =

⌊
λn

4(k + 1)

⌋

t =
K∑

k=1

tk

and partition the interval [(K + 1)�, �] into K disjoint inter-
vals of length �. Let [ak, bk] be the kth interval, where
ak = (k + 1)� and bk = k�.

The probability of the event t(ak, bk) ≤ tk is at most
the probability of the event Yk ≤ (ak − bk)/2 = �/2, where
Yk ∼ Bin (tk, p(ak)) is a binomial randomvariable. From the
Chernoff bound of Lemma 2 and the fact that E[Yk] ≤ �/4,
we get that

Pr[t(ak, bk) ≤ tk] = Pr

[
Yk ≥ �

2

]

≤ Pr[Yk ≥2 · E[Yk]] ∈ exp
(
�
(
N 1−ε

))
,

as E[Yk] ∈ �(N 1−ε). Taking the union bound over all K ∈
�(N ε) intervals yields

Pr[X(t) ≤ N 1−ε] = Pr

[
t(N , N 1−ε) ≤

K∑
k=1

tk

]

≤
K∑

k=1

Pr[t(ak, bk) ≤ tk]

∈ exp
(
−�

(
N 1−ε

))
.

Now observe that for all sufficiently large N , we have

t=
K∑

k=1

tk ≥
K∑

k=1

(
λn

4(k + 1)
−1

)
≥ λn

4

(
K∑

k=1

1

k + 1

)
− K

≥ λn(HK − 1)

4
− K ≥ cn log N ,

where HK is the K th harmonic number and c > 0 is some
constant. Such a constant exists as K ∈ �(N ε) and 0 < ε <

1 is a constant. ��
Now we show that the set of nodes that remain in their

initial state after o(n log n) steps is likely to contain a large
induced subgraph that contains a polynomially-sized tree.
Let S(t) denote the set of nodes that have not interacted by
step t .

Lemma 33 Suppose G has m ≥ λn2 edges and minimum
degree δ ≥ λnφ . There exist constants ε > 0 and c > 0 such
that for all t ≤ cn log n, the subgraph induced by nodes in
S(t) contains any tree of size nε+c with high probability.

Proof Fix ε < 1/2 to be a small enough constant such that
φ(1− ε) > 2ε. Note that for all sufficiently large n, we have
the following properties:

(a) By applying Lemma 32 with U = V , we get that there
exists a positive constant c1 = c1(ε, λ) such that the
event

|S(t)| ≥ n1−ε

happens with high probability for any 0 ≤ t ≤ c1n log n.
(b) Note that the minimum degree of G is at least δ ≥ λnφ

inG. For any v ∈ V , by applying Lemma 32 with the set
U = B(v), we get that there exists a positive constant
c2 = c2(ε, λ) such that the event

|B(v) ∩ S(t)| ≥ |B(v)|1−ε ≥ δ1−ε ≥ nφ(1−ε)

happens with high probability for any 0 ≤ t ≤ c2n log n.
By union bound, the event happens for all v ∈ V with
high probability.

Let c = min{c1, c2, ε} and t ≤ cn log n. Note that c is a
positive constant. We condition the rest of the proof that the
events in (a) and (b) happen for this t .

Assume that n is large enough so that nφ(1−ε) > 2n2ε >

2nε+c = 2k holds and suppose T is any tree of size k = nc+ε.
We show that there is an isomorphic tree in the subgraph
of G induced by S(t). Let U = {u1, . . . , uk} be the nodes
of the tree T ordered by a breadth-first search and Ui =
{u1, . . . , ui }. We define Ti to be the subgraph of T induced
by the nodes Ui . We show by induction that we can map
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each node ui ∈ V (T ) to a node vi ∈ V (G) such that the set
{v1, . . . , vi } induces a subgraph in T that contains the edges
of Ti .

For the base case, we map u1 to an arbitrary node v1 ∈
S(t). For the inductive step, suppose that {v1, . . . , vi } induces
a subgraph that contains the edges of Ti . Clearly ui+1 has at
most k neighbours in T , as T has atmost k nodes. Let u j ∈ Ui

be the parent of ui+1 in T . Note that j ≤ i . From (b), we
have that

|S(t) ∩ B(v j )| − |Ui | ≥ nφ(1−ε) − k > k,

so we can find a node vi+1 ∈ S(t) ∩ B(v j ) that is not
in {v1, . . . , vi }. Map ui+1 to this node. Now the subgraph
induced by {v1, . . . , vi+1} contains the edges of Ti+1. ��

Multigraphs of influencers
To finish the proof, we need more knowledge about how

the sets of influencers look like. For eachv ∈ V and t ,we con-
struct a directed multigraph of influencers It (v) that keeps
tracks of the interactions that have influenced v in a more
fine-grained manner than the set It (v) of influencers alone
would. The latter only keeps track of the nodes that can influ-
ence the state of v at step t , not the sequence of interactions
that have influenced the node.

We define this multigraph as follows. Let (et )t≥1 be the
stochastic schedule on the interaction graph G. The set of
nodes of It (v) will be the set of influencers It (v) and the
multiset of (directed) edges is given by the following recur-
rence. Define It (v) = ∅ and for all t ≥ 0, define

It+1(v) =
{
It (v) ∪ It (u) ∪ {(v, u)t+1} if et+1 = (v, u)

It (v) otherwise.

In the first line, (v, u)t+1 is understood to be a directed edge
timestamped with the time step t + 1 of its activation. That
is, It (v) is a directed multigraphwhere edges of multiplicity
> 1 are allowed as long as they have different timestamps.
However, note that there can be no self-loops.

The multigraph It (v) fully captures interactions that hap-
pened before time step t and which can affect the state of v

at step t . Hence, given It (v), we can determine the state of
node v at time t . This gives us more information than sets of
influencers alone.

It will be easier to analyze It (v), when its evolution
is played in reverse. Fix t0 ≥ 0 and define Jt (v) to be
the induced subgraph constructed on edges of It (v) that
were added after step t0 − t for t ≤ t0. Observe that
Jt0(v) = It0(v) and that Jt (v) follows the recurrence given

by J0(v) = ({v},∅) and

Jt+1(v) =

⎧⎪⎨
⎪⎩
Jt (v) ∪ {(u, w)t0−t } if et0−t = (u, w) and

{u, w} ∩ V (Jt (v)) 	= ∅
Jt (v) otherwise.

In the first line, V (Jt (v)) denotes the nodes of Jt (v), and
Jt (v) ∪ {(u, w)t0−t } is interpreted as adding a directed edge
to the multiset as edges of Jt (v) along with adding u and w

to the set of nodes of Jt (v), if one of them does not belong
to V (Jt (v)) yet. We also keep original timestamps on edges
of the multigraph.

Call an interaction of two nodes u andw at time step t− t0
internal if both u and w are contained in Jv(t). Internal
interactions create cycles in Jv(t). We show that internal
interactions almost never happen before �(n log n) steps,
which means that Jv(t0) is tree-like for small enough t0.

Lemma 34 For any ε > 0, any small enough 0 < c < c(ε, λ)

and any t0 ≤ cn log n, with high probability the following
events happen for all v ∈ V simultaneously

• there are at most c log n internal interactions in Jt0(v),
and

• Jt0(v) has size at most nε.

Proof Consider some v ∈ V . By Lemma 31, for any small
enough c, we have that

It0(v) contains at most nε nodes with high probability for
any t0 ≤ cn log n. Hence, Jt0(v) also contains at most nε

nodes. Thus, for all 0 ≤ t ≤ t0 we know that Jt (v) contains
at most nε nodes, since the size of Jt (v) does not exceed the
size of Jt0(v). Therefore, the probability that any two nodes
in Jt (v) interact during any time step 1 ≤ t ≤ t0 is at most

p = n2ε

2m
≤ 1

λn2−2ε .

The number of internal interactions during the interval
{1, . . . , t0} is stochastically dominated by a binomial random
variable X ∼ Bin (t0, p) with mean E[X ] = t0 p. Using the
version of Chernoff’s bound as in Theorem 2.3.1 of [48], we
have

Pr[X ≥ c log n] ≤ exp(−E[X ])
(
eE[X ]
c log n

)c log n

≤
(
eE[X ]
c log n

)c log n

≤
(

et0 p

c log n

)c log n

≤
( e

λn1−2ε

)c log n

∈ exp
(
−�(log2 n)

)
.
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Now taking the union bound over all v implies the claim. ��
Similarly to It0(v), given Jt0(v), we can determine the

state of v at time step t0. We say that a multigraph J (v)

is a leader generating interaction pattern for node v if
Jt0(v) = J (v) implies that node v is a leader at step t0. We
now show that we can unfold such multigraphs into trees,
without increasing their size too much.

Lemma 35 Suppose J (v) is a leader generating interaction
pattern for node v with N distinct nodes and k internal inter-
actions. Then there exists a leader generating interaction
pattern K(v) for node v that has k − 1 internal interactions
and has size at most 2N.

Proof Consider an internal interaction between nodes u and
w in J (v) at time r , such that r has the smallest value. Con-
sider all interactions that influenced nodes u and w before
step r . Because the interaction between u and w is an inter-
nal interaction with the smallest timestamp, the interactions
that influenced nodes u and w before step r are given by
some multigraphs of influencers I(u) and I(w), which are
trees disjoint in edges and vertices. We now construct a new
multigraph K as follows:

• First, remove the interaction between u and w at step
r from J (v). Additionally, for every interaction with
timestamp larger than r (i.e., interaction that happened
after u and w interacted), shift the value of its timestamp
ahead by 2r + 1. This way, every interaction in the cur-
rentmultigraph has timestamp either less than r or greater
than 3r + 1.

• Second, create isomorphic and disjoint copies I(u′) and
I(w′) of the multigraphs of influencers I(u) and I(w),
respectively. Add these interactions (and the new nodes
that take part in these interactions) to the multigraph K.
Shift all timestamps of I(u′) ahead by r and shift all
timestamps of I(w′) ahead by 2r . That way, timestamps
of all interactions given by I(u′) is between r and 2r−1,
timestamps of all interactions given byI(w′) are between
2r and 3r − 1.

• Finally, add the interactions (u, w′) and (u′, w) at time
step 3r and 3r + 1.

See Figure 1 for an illustration of the above construc-
tion. First, note that interactions in the graphK have distinct
timestamps. Additionally, note that the new interactions at
steps 3r and 3r + 1 will update the states of nodes u and w

the same way in K, as the interaction (u, w) did previously,
because u′ and w′ are influenced by isomorphic interaction
sequences as u and w were in J (v), and since the nodes
are anonymous in the population model and have no inputs
in the leader election problem. In particular, this means that
node node v will have the same state after the system has

executed interactions in K as it would have when executing
interactions from J (v). Thus, K is also a leader generating
pattern for v.

Finally, observe thatK has at most 2N vertices: by adding
I(u′) and I(w′) toK we at most doubled the number of ver-
tices inJ (v), asJ (v) contained its copies of I(u) and I(w)

initially. Moreover,K has at most k−1 internal interactions,
as we removed at least one internal interaction of J (v)with-
out adding any new ones.

��

We are now ready to prove the lower bound.

Theorem 8 Let 0 < λ < 1 and 0 < φ < 1 be constants. If G
has minimum degree δ ≥ λnφ and m ≥ λn2 edges, then any
stable leader election protocol requires �(n log n) expected
steps to stabilize on G.

Proof By Lemma 33, there exist constants ε > 0 and c0 > 0
such that for any t ≤ c0n log n, the set S(t) contains any tree
of size nε+c0 with high probability. Moreover, let c1 > 0
be the constant obtained from Lemma 34 with this ε. Let
c = min{c0, c1}. Let P be any a leader election protocol
on G. Consider the configuration x at any fixed time step
t ≤ cn log n.Note that for such t , the statements ofLemma34
and Lemma 33 hold with high probability; we condition the
rest of the proof on the event that both statements hold. We
show that in such case x is not a stable configuration.

Suppose x is stable and v is the elected leader. Now
J (v) = Jt (v) is a leader generating pattern. By Lemma 34,
J (v) has at most c log n internal interactions and size at most
nε with high probability. By applying Lemma 35 repeatedly
for c log n times, we can obtain a new patternJ ′(v)with size
nε+c without any internal interactions. That is, the edges in
J ′(v) (when the orientation of the edges is ignored) form a
tree T of size atmost nε+c; note that absence of internal inter-
actions also means absence of edges of multiplicity higher
than 1.

By Lemma 33, the subgraph induced by S(t) contains a
subgraph isomorphic to T . In particular, this means that we
can construct a leader generating interaction pattern J (w)

isomorphic toJ (v) for somenodew ∈ S(t)using only nodes
of S(t). This means that there is an execution, where node
w ∈ S(t) will be elected as a leader. Hence, x is not a stable
configuration with high probability. Thus, the stabilization
time TP of the protocol P satisfies

E[TP ] =
∞∑
i=0

Pr[TP > i] ≥
t∑

i=0

Pr[TP > i] ≥ Ct

for some constant C > 0. Thus, E[TP ] ∈ �(n log n). ��
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Fig. 1 Illustration of the proof
strategy of Lemma 35. (a)
Multigraph J (v) with an
internal interaction between u
and w. (b) Multigraph K with
one internal interaction less.

7 Lower bound for constant-state protocols

In this section, we consider average-case lower bounds for
constant-state protocols that guarantee stabilization in finite
expected time on any connected graph. In the clique, the clas-
sic approach has been to utilize the so-called surgery tech-
nique of Doty and Soloveichik [9], later extended by Alistarh
et al. [11] to show lower bounds for super-constant state
protocols. Roughly, surgeries consist of carefully “stitching
together” transition sequences, in order to completely elim-
inate states whose count decreases too fast (e.g., the leader
state), thus resulting in incorrect executions (e.g., executions
without a leader).

When moving beyond cliques, applying surgeries is dif-
ficult. The key challenge is that in addition to keeping track
of the counts of states, we also need to control the spatial
distribution of generated states in order to determine if a
given configuration is stable. For example, if we know that
an interaction (a, b) → (c, d) produces a leader, then in the
case of a clique it suffices to check if states a and b are present
in the overall population to determine if this interaction can
produce a new leader. However, in the case of general inter-
action graphs, the rule (a, b) → (c, d) can only produce a
leader if some nodes with states a and b in the configuration
are adjacent.

We circumvent this obstacle by considering a random
graph setting, where the interaction graph itself is probabilis-
tic. Instead of showing a lower bound for a given graph, we
give a lower bound that holds in most graphs, where “most”
is interpreted as having graphs coming from a certain proba-
bility distribution.Wewill focus on the Erdős–Rényi random
graph model Gn,p. As we are only interested in connected
graphs G, we adopt the convention that stabilization time
TP (G) = ∞ if G is disconnected. Let Gc

n,p be the distri-
bution of an Erdős–Rényi random graph conditioned on the

sampled graph being connected. Our main result is then the
following.

Theorem 9 LetP be a constant-state protocol that stabilizes
in finite expected time on any connected graph. Fix a constant
p > 0, and let G ∼ Gc

n,p. Then the expected stabilization

time of P on G satisfies E[TP (G)] ∈ �(n2).

In the above, the state transition function of the protocol
must be independent from the realized graph. Furthermore,
randomness is both over the draw of the random graph and
the execution of the protocol. In addition, we condition on
G being connected in order for our lower bound to be mean-
ingful: indeed, ifG is disconnected with positive probability,
then any protocol has infinite expected stabilization time.

This result generalizes the lower bound of Doty and
Soloveichik [9] from cliques to dense random graphs. As
such, we follow a similar approach, but provide new ideas
to deal with the structure of the interaction graph. For the
remainder of the proof, we assume that for infinitely many
n the protocol P stabilizes on a random graph G ∼ Gc

n,p

in o(n2) expected steps and show that this leads to a contra-
diction. It will be useful to have a tail bound on stabilization
time ofP . Specifically, we have the following simple lemma.

Lemma 36 Suppose P stabilizes on a random graph G ∼
Gc

n,p in o(n2) expected steps. Then there exists an (integer)

time step t ∈ o(n2) such that P stabilizes on G ∼ Gn,p in t
steps with probability 1 − o(1).

Proof By our assumption, we have E[TP (G)] ∈ o(n2) as
G ∼ Gc

n,p. Consider the time step

t =
⌈√

n2 E[TP (G)]
⌉
.
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Note that t ∈ o(n2) and

Pr[TP (G) > t] ≤
√
E[TP ]
n2

∈ o(1)

by Markov’s inequality, which gives control on the tail of
TP . It is also well known that G ∼ Gn,p with p ∈ �(1) is
connected with probability 1 − o(1) (e.g., see [49, Exercise
2.14]). Then, as G ∼ Gn,p, we have by the law of total
probability,

Pr[TP (G) > t]
= Pr[TP (G) > t | G is connected] Pr[G is connected]

+ Pr[TP (G) > t | G is disconnected] Pr[G is disconnected]
≤ Pr[TP (G) > t | G is connected] + Pr[G is disconnected]

∈ o(1) + o(1) = o(1),

as desired. ��
Note that we additionally switched from Gc

n,p to Gn,p in the
conclusion of the above lemma, since sampling from Gn,p

is more convenient in the following.
First, we show that any protocol starting from a uniform

initial configuration, passes through a “fully dense” config-
uration with very high probability on a sufficiently-dense
Erdős–Rényi random graph. Second, we show that if the
protocol stabilizes too fast, then there exist reachable con-
figurations with many states in low count. Finally, we use
surgeries to show that such a protocol must fail even on the
clique.

7.1 First step: Reaching fully dense configurations

Fix the protocolP as in Theorem 9. Let� be the set of states
of the protocol. Let sinit be the initial state in which all nodes
start. Without loss of generality, we assume that every state
in � is producible by some schedule.

For α > 0, a configuration x is said to be α-dense with
respect to a set�′ ⊆ � if every state in�′ is present in count
at least αn. A configuration is fully α-dense with respect to
�′ if additionally all other states have count zero. We now
show that the protocol reaches a fully α-dense configuration
with respect to � with probability 1 − exp(−�(n)) on a
random Erdős–Rényi graph. For any two sets S, T ⊆ V (G),
we write e(S, T ) for the number edges between nodes in S
and T .

Lemma 37 Let p, c > 0 be constants and G ∼ Gn,p. Then,
the following events hold with probability 1 − exp(−�(n))

for all disjoint S, T ⊆ V (G) with |S|, |T | > cn simultane-
ously

• p|S||T |/2 ≤ e(S, T ) ≤ 3p|S||T |/2 and

• p|S|2/4 ≤ e(S, S) ≤ 3p|S|2/4 .

Proof Note that in an Erdős–Rényi random graph, the num-
ber e(S, T ) of edges between S and T follows the binomial
distribution Bin (|S||T |, p) with mean μ = p|S||T | ∈
�(n2). Using standard Chernoff bounds (Lemma 2), we get
that

Pr
[
|e(S, T ) − μ| <

μ

2

]

> 1 − 2 · exp
(
− μ

12

)
∈ 1 − exp

(
−�

(
n2
))

.

The first claim follows by applying the union bound over
at most 4n pairs of sets. Observe that e(S, S) follows a
binomial distribution of Bin (|S| (|S| − 1) /2, p) with mean
μ′ = p|S| (|S| − 1) /2 ∈ �(n2). Therefore, the second
claim also follows by an analogous argument. ��
Lemma 38 Let p > 0 be a constant and G ∼ Gn,p. Then
there exists a constant α = α(p, |�|) such that an execution
ofP on G reaches a fully α-dense configuration with respect
to � in O(n) steps with probability 1 − exp(−�(n)).

Proof Suppose all nodes start in the initial state sinit. Without
loss of generality, assume that every state in � is producible
by some transition sequence from the initial configuration.
Then there exists a sequence of sets {sinit} = �1 � · · · �

�|�| = � such that the state bi+1 ∈ �i+1 \�i is producible
using some interaction between nodes with states from �i .
Let f (1) = p/4 and for i ≥ 1 define

f (i + 1) = f 2(i) · p

960
.

Note that f is decreasing and f (i+1) ≤ f (i)/2 for every i ≥
1. By Lemma 37 applied with the constant c = f (|�| + 1),
all of the following hold with probability 1 − exp(−�(n)):

1. The number of edges in G satisfies pn2/4 ≤ m ≤
3pn2/4.

2. For any disjoint setsU ,U ′ ⊆ V of size at least n f (i), we
have that e(U ,U ′) ≥ |U ||U ′|p/2 for 1 ≤ i ≤ |�| + 1.

3. For any set U ⊆ V of size at least n f (i), we have
e(U ,U ) ≥ |U |2 p/4 for 1 ≤ i ≤ |�| + 1.

We say that an event holds with very high probability if it
holds with probability 1 − exp(−�(n)). We now prove by
induction on i that the protocol reaches an f (i)-dense con-
figuration with respect to�i with very high probability. This
implies that we reach a f (|�|)-dense configurationwith very
high probability. The base case i = 1 of the induction is vac-
uous, as the initial configuration is 1-dense with respect to
�1 = {sinit}, and hence, also f (1)-dense with respect to �1.
We say that a state s has density ρ in a configuration if there
are ρn nodes in state s.
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For the inductive step, suppose we have reached a con-
figuration that is f (i)-dense with respect to �i for some
1 ≤ i < |�|. Suppose this happens at step t . Let s ∈ �i and
define N = np/32. By the induction assumption, the density
of s is at least f (i) at step t .

First, we show that the density of s remains at least
f (i)/2 ≥ f (i + 1) for the next N = np steps with very
high probability. Suppose that the density of s goes below
f (i)/2 before step t + N and let t ′ < t + N be the last
time when the density is at least f (i). Note that if the count
of s decreases, it can decrease by at most two. The claim
follows if we can show that with very high probability the
count of s decreases atmost n f (i)/4 times during the interval
I = {t ′, t ′ + 1, . . . , t + N }, which would be a contradiction.
During this interval, the density of s is at most f (i) and the
probability of the density decreasing in a single step is at
most the probability that a stochastic scheduler samples an
edge incident with a node in state s. Since every node in state
s has degree at most n, the probability is at most

r(i) = f (i)n2

m
≤ 4 f (i)

p
≤ 1,

where the bound on m follows from (1) and the fact that
f (i) ≤ p/4. The number X(s) of times the density of s
decreases during the interval I is stochastically dominated
by the binomial random variable Y ∼ Bin (N , r(i)) with
mean

E[Y ] = Nr(i) = npr(i)

32
≤ np

32
· 4 f (i)

p
= n f (i)

8
.

Using Chernoff bounds (Lemma 2) applied with λ = 1, we
get that

Pr

[
X(s) ≥ n f (i)

4

]
≤ Pr

[
Y ≥ n f (i)

4

]

≤ Pr[Y ≥ 2 · E[Y ]]
≤ exp(−E[Y ] · 1/3) ∈ exp(−�(n)).

By union bound, the density of every s ∈ �i remains at least
f (i)/2 ≥ f (i + 1) until step t + N + 1 with very high
probability.

To complete the induction, we show that the density of
bi+1 ∈ �i+1\�i reaches f (i+1) before step t+N with very
high probability. Suppose that the density of bi+1 remains
less than f (i + 1) until step t + N . Similarly, as in the argu-
ment above, the probability that the count of bi+1 decreases
given that its density is at most f (i + 1) is at most

r(i + 1) = f (i + 1)n2

m
≤ 4 f (i + 1)

p
≤ 1.

Let s, s′ ∈ �i be a pair of states whose interaction gener-
ates the state bi+1 (such states must exist by definition of
bi+1). The probability that the density of bi+1 increases is
the probability that some pair of nodes (v, u) is sampled by
the stochastic scheduler, where v is in state s and u is in state
s′. Above, we showed that the density of s and s′ is at least
f (i)/2, so the probability that the density of bi+1 increases
is at least

q(i + 1) = (n f (i)/2)2 p

2 · 2m ≥ (n f (i))2 p

16
· 4

3pn2

= f 2(i)

12
≥ 960 f (i + 1)

12p

= 80 f (i + 1)

p
,

wherewe have used properties (1)–(3), the fact that f (i)/2 ≥
f (i + 1) ≥ f (|�| + 1), and the definition f (i + 1) =
f 2(i)p/960. Suppose the density of bi+1 is at most f (i +1)
during the interval t, . . . , t+N .Wewill show that this implies
that with very high probability by time step t + N the num-
ber of steps during which the count of bi+1 increases is at
least 2 f (i +1), and the number of decrease events is at most
f (i +1)/2. Since every step that decreases the count of bi+1

can decrease its count by at most two, this implies that the
density is at least f (i + 1) by time t + N .

Given that the density of state bi+1 remains at most
f (i + 1) during the interval t, . . . , t + N , the number
of steps that increase the density stochastically dominates
the binomial random variable Y ∼ Bin (N , q(i + 1)). The
number of steps that decrease the count of bi+1 is in
turn stochastically dominated by a binomial random vari-
able Z ∼ Bin (N , r(i + 1)). Now using standard Chernoff
bounds (Lemma 2), we have that

Pr[Y ≤ E[Y ]/2] ∈ exp(−�(n)) and

Pr[Z ≥ 2 · E[Z ]] ∈ exp(−�(n)).

That is, with very high probability the number of increases is
at leastE[Y ]/2 and the number of decreases at most 2 ·E[Z ].
From the above bounds on r(i + 1) and q(i + 1), we get that

E[Y ]/2 − 2 · E[Z ] = Nq(i + 1)

2
− 2Nr(i + 1)

≥ N ·
(
80 f (i + 1)

2p
− 8 f (i + 1)

p

)

= n f (i + 1),

since N = np/32. Therefore, the density of bi+1 must be at
least f (i + 1) by step t + N with very high probability. ��

In the proof above, the only information we use about the
interaction graph is the information provided by Lemma 37.
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We note that Lemma 38 also holds for deterministic graphs
having similar connectivity properties as guaranteed by
Lemma 37. In particular, any dense graph with small spectral
gap would also produce fully dense configurations with high
probability.

7.2 Second step: Controlling for low count states

A set S ⊆ � is leader generating if S either contains a leader
state (i.e., a state in which node’s output is leader), or given
enough nodes in each state of S, there exists a finite sequence
ρ = (e1, . . . , et ) of interactions such that these nodes gen-
erate a leader on the clique. Alistarh et al. [11, Lemma A.7]
showed that for any leader generating set S we need at most
2|�| nodes in each state to generate a leader on the clique,
i.e., a clique of size |S| ·2|�| suffices to generate a new leader
state. Say that the state s is present in low count in the con-
figuration x if its count is less than 2|�| in x . Otherwise, we
will say that it is present in high count.

The goal of this subsection is to show that, if the protocol
stabilizes in t ∈ o(n2) steps with high probability, then, with
at least constant probability, after t steps no leader generating
set has all states in high counts. More formally, the goal of
this subsection is to prove the following lemma.

Lemma 39 Let t ∈ N be such that, as G ∼ Gn,p, we have

Pr[TP (G) > t] ∈ o(1).

Let xt be a configuration reached by the protocol after t steps.
Let ξ(xt ) be a set of states in low count in xt . Then, we have
that ξ(xt ) ∩ S 	= ∅ for all leader generating sets S with
probability �(1) bounded away from zero.

The utility of the above lemma is as follows. Having con-
trol on the counts of states in leader generating sets will allow
us to apply a variant of the “surgery technique” of [9] and
construct an execution with no leader and no possibility to
elect a leader, thus leading to a contraction.

We now elucidate why the proof of the above result is
non-trivial. Consider the following informal attempt at prov-
ing Lemma 39. Suppose, for the sake of contradiction, that
with probability 1− o(1), there exist a leader generating set
S ⊆ � for which xt contains all states of S in high counts.
Take 2|�| nodes in xt of each state in S, and letU be the result-
ing set. By definition of a leader generating set and using once
again the result of Alistarh et al. [11, Lemma A.7], we know
that if nodes in U form a clique, then a new leader can be
generated, and thus xt cannot be stable. If nodes ofU form a
clique with at least constant probability, then the probability
that xt is not a stable configuration is at least constant as well.
Thus, to achieve a contradiction, it remains to lower bound
the probability of nodes in U forming a clique. This might
initially seem like a trivial task: the cardinality ofU is upper

bounded by |�|2|�| ∈ O(1), and the probability that each
edge between vertices ofU is present in G is p ∈ �(1), i.e.,

the resulting probability should be p(
|U |
2 ) ∈ �(1). However,

recall that our choice of nodes U depends on the configura-
tion xt , and thus, on the realization of the graphG. Therefore,
computing the probability of U forming a clique is a highly
non-trivial task, because of its dependencewith the execution
of the protocol.

This prompts us to bound the correlations between real-
ization of G and execution of the protocol. Intuitively, the
protocol only has a limited view of the graph G, e.g., it can
only see the edges of G that were activated as part of the
stochastic schedule. We will now formalize this intuition.
Let A = {(u, v) : u, v ∈ V , u 	= v}. For any sequence
ρ = (e1, . . . , et ) ∈ At of pairs of nodes, let Exec(ρ) be
the event that sequence ρ was sampled by the scheduler in
the first t steps, i.e., ρ is a prefix of the stochastic sched-
ule. Slightly abusing the notation, we also let |ρ| denote the
number of distinct edges in ρ.

In the following, wewant to consider all graphsG ∼ Gn,p

in which ρ could be executed and infer something about the
presence of edges in such graphs.However,we cannot simply
state that e ∈ E(G)with probability p, because the fact thatρ
was sampled by the scheduler introduces bias into the random
graph G ∼ Gn,p, i.e., the events e ∈ E(G) and Exec(ρ) are
correlated. The next lemma shows that this correlation is
small, as long as |ρ| is sufficiently large.

Lemma 40 Let t ≥ 1 be a positive integer and F ⊆ A. Let
ρ be a fixed sequence of edges of length t. Then the random
graph G = (V , E) ∼ Gn,p satisfies

Pr[F ⊆ E | Exec(ρ)] ≥
[
p

(
1 − 1

|ρ|
)t]|F |

.

Proof The event Exec(ρ) implies that pairs inρ are contained
in E , that is, for every (v, u) ∈ ρ we have {v, u} ∈ E . In
other words, all necessary edges to perform the interactions
in ρ are present in the random graph. We write E(ρ) for the
edges in ρ and use the shorthand ρ ⊆ E to denote the event
that all edges in E(ρ) are contained in E . Then by Bayes’
law, we get

Pr[F ⊆ E | Exec(ρ)] = Pr[F ⊆ E | Exec(ρ) ∧ ρ ⊆ E]
= Pr[Exec(ρ) | F ⊆ E ∧ ρ ⊆ E]

Pr[Exec(ρ) | ρ ⊆ E]
· Pr[F ⊆ E | ρ ⊆ E]

≥ Pr[Exec(ρ) | F ⊆ E ∧ ρ ⊆ E]
Pr[Exec(ρ) | ρ ⊆ E]

· Pr[F ⊆ E]
= Pr[Exec(ρ) | F ⊆ E ∧ ρ ⊆ E]

Pr[Exec(ρ) | ρ ⊆ E] · p|F |,
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where for the inequality we used the fact that

Pr[F ⊂ E ∧ ρ ∈ E] = Pr[(F ∪ E(ρ)) ⊂ E]
≥ Pr[F ⊂ E] · Pr[ρ ⊂ E].

Let F = { f1, . . . , fh}. We use Q0 to denote the event that
ρ ⊆ E happens. For i ≥ 1, define the events Qi = Qi−1 ∧
fi ∈ E and Q∗

i = Qi−1 ∧ fi /∈ E . Next, we show that the
following holds for all i ≥ 1:

Pr[Exec(ρ) | Qi ]
Pr[Exec(ρ) | Qi−1] ≥

(
1 − 1

N

)
.

The statement is trivial if fi ∈ E(ρ), as in that case Qi =
Qi−1. Suppose then that fi /∈ E(ρ). We now want to lower
bound the ratio

Pr[Exec(ρ) | Qi ]
Pr[Exec(ρ) | Q∗

i ]
.

Note that if we know ρ ⊆ E holds, then Pr[Exec(ρ) | G] =
1/(2m)t , where m is the number of edges in E . It follows
then that

Pr[Exec(ρ) | Qi ] = E[(2m)−t | Qi ].

Similarly, Pr[Exec(ρ) | Q∗
i ] = E[(2m)−t | Q∗

i ]. That is, we
have

Pr[Exec(ρ) | Qi ]
Pr[Exec(ρ) | Q∗

i ]
= E[(2m)−t | Qi ]

E[(2m)−t | Q∗
i ]

= E[m−t | Qi ]
E[m−t | Q∗

i ]
.

Let N ≥ |ρ| be the number of distinct edges among
E(ρ) ∪ { f1, . . . , fi−1}. Note that, conditioned on Qi , m fol-
lows the distribution of a shifted binomial random variable
Bin

(
n(n−1)

2 − N − 1, p
)
+N+1. Similarly, conditioned on

Q∗
i ,m follows the distribution ofBin

(
n(n−1)

2 − N − 1, p
)
+

N . Let X ∼ Bin
(
n(n−1)

2 − N − 1, p
)
. Then,

Pr[Exec(ρ) | Qi ]
Pr[Exec(ρ) | Q∗

i ]
= E[(X + N + 1)−t ]

E[(X + N )−t ]

=
∑

x≥0 Pr[X = x](x + N + 1)−t∑
x≥0 Pr[X = x](x + N )−t

≥
(
1 − 1

N

)t

≥
(
1 − 1

|ρ|
)t

,

where the second inequality follows since for any x ≥ 0
the ratio (x+N+1)−t

(x+N )−t is lower bounded by (1 − 1/N )t . Next,
consider the ratio

Ri = Pr[Exec(ρ) | Qi ]
Pr[Exec(ρ) | Qi−1] .

Observe that

Ri = Pr[Exec(ρ) | Qi ]
Pr[Exec(q) | Qi ] · Pr[ fi ∈ E | Qi−1] + Pr[Exec(ρ) | Q∗

i ] · Pr[ fi /∈ E | Qi−1]
= 1

Pr[ fi ∈ E | Qi−1] + Pr[Exec(ρ)|Q∗
i ]

Pr[Exec(ρ)|Qi ] · Pr[ fi /∈ E | Qi−1]
≥ 1

Pr[ fi ∈ E | Qi−1] + (1 − 1/|ρ|)−t · Pr[ fi /∈ E | Qi−1]
≥ 1

(1 − 1/|ρ|)−t · (Pr[ fi ∈ E | Qi−1] + Pr[ fi /∈ E | Qi−1]) =
(
1 − 1

|ρ|
)t

.

Therefore,

Pr[Exec(ρ) | F ⊆ E ∧ ρ ⊆ E]
Pr[Exec(ρ) | ρ ⊆ E]

=
h∏

i=1

Ri =
h∏

i=1

Pr[Exec(ρ) | Qi ]
Pr[Exec(ρ) | Qi−1] ≥

(
1 − 1

|ρ|
)t |F |

,

which concludes the proof. ��
The above lemmacanbe seen as an adaptation of the “prin-

ciple of deferred decisions” in our setup. Indeed, the lemma
shows that we can defer the sampling of a part of G of con-
stant size until a later point in the executionofP ,while paying
a small price in the bias of edges, provided (1 − 1/|ρ|)t is
not too small. Below, we show that (1 − 1/|ρ|)t is typically
lower bounded by a constant,whenρ is sampled by a stochas-
tic schedule. Specifically, let σt be the length-t prefix of the
stochastic schedule. Then, we prove that |σt | is of the same
order as t with high probability.

Lemma 41 Suppose t ∈ N is such that t ∈ o(n2). Then
we have |σt | ≥ �t/2� with probability 1 − exp(−�(t)) −
exp(−�(n)).
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Proof Let m be the number of edges in graph G. Note
that, since t ∈ o(n2) and m ∈ �(n2) with probability
1− exp(−�(n)) by Lemma 37, we can ensure m ≥ 2t with
probability 1 − exp(−�(n)). In the rest of the proof, condi-
tion on this event (i.e., assume m ≥ 2t is given).

The remainder of the proof is similar to the coupon col-
lector argument. Let s be arbitrary, and suppose |σs | =
k − 1. Note that the number of edges that need to be
sampled to reach k distinct edges follows a geometric dis-
tribution Geom

(m−k+1
m

)
. For each 1 ≤ k ≤ m, let Xk ∼

Geom
(m−k+1

m

)
. Then, we have

Pr

[
|σt | ≥

⌊
t

2

⌋]
= Pr

⎡
⎣�t/2�∑

i=1

Xi ≤ t

⎤
⎦

= 1 − Pr

⎡
⎣�t/2�∑

i=1

Xi > t

⎤
⎦

≥ 1 − Pr

⎡
⎣�t/2�∑

i=1

Yi > t

⎤
⎦ ,

where Yi ∼ Geom
(
m−t/2

m

)
, and the last line holds since

success probabilities of Xi ’s are lower bounded by m−t/2
m .

Sincem ≥ 2t , we have m−t/2
m ≥ 3/4, and thus, by Lemma 3,

Pr

⎡
⎣�t/2�∑

i=1

Yi > t

⎤
⎦ ≤ Pr

⎡
⎣�t/2�∑

i=1

Yi >
3

2
E

⎡
⎣�t/2�∑

i=1

Yi

⎤
⎦
⎤
⎦

∈ exp(−�(t)),

which concludes the proof. ��
Finally, we combine Lemma 41 and Lemma 40 to control

the structure of the graph even when we condition on the
configuration reached.

Lemma 42 Let t ∈ N be such that t ∈ ω(1) and t ∈ o(n2).
Let xt be a (random) configuration reached by the proto-
col after t steps. Let F(xt ) be a (random) set of edges that
depends only on xt . Suppose F(xt ) ∈ �(1) holds almost
surely. Then,

Pr[F(xt ) ⊆ E] ∈ �(1).

Proof First, note that we have

Pr[F(xt ) ⊆ E] ≥ Pr

[
F(xt ) ⊆ E ∧ |σt | ≥

⌊
t

2

⌋]

Let C ∈ �(1) be the almost sure upper bound on F(xt ). Let
ρ(1), . . . , ρ(k) be all possible interaction sequences of length

t that have at least �t/2� distinct edges, and let x (1), . . . , x (k)

be the corresponding configurations reached (i.e., x (i) is the
configuration reached when ρ(i) is executed by the stochastic
schedule, for 1 ≤ i ≤ k). For 1 ≤ i ≤ k, let F (i) = F(x (i)).
Then, for any 1 ≤ i ≤ k, by Lemma 40, we have

Pr
[
F (i) ⊆ E | Exec(ρ(i))

]
≥
[
p

(
1 − 1

�t/2�
)t]|F (i)|

≥
[
p

(
1 − 1

�t/2�
)t]C

,

since |F (i)| ≤ C for all 1 ≤ i ≤ k. Then, by the law of total
probability, we get that

Pr

[
F(xt ) ⊆ E ∧ |σt | ≥

⌊
t

2

⌋]

=
k∑

i=1

Pr
[
F (i) ⊆ E | Exec(ρ(i))

]
· Pr

[
Exec(ρ(i))

]

≥
[
p

(
1 − 1

�t/2�
)t]C

·
k∑

i=1

Pr
[
Exec(ρ(i))

]

=
[
p

(
1 − 1

�t/2�
)t]C

· Pr
[
|σt | ≥

⌊
t

2

⌋]

∈ �(1) · �(1) = �(1),

with last transition following by Lemma 41 and since C ∈
�(1), p ∈ �(1), and

(
1 − 1

�t/2�
)t ∈ �(1) for t ≥ 4. ��

The above lemmagives us the power to overcome the chal-
lenge described in the introduction: we have control over the
structure of the graph when conditioned on a given config-
uration. However, we only have meaningful control over a
portion of the graph of constant size. Turns out, this is suffi-
cient for us.

Proof of Lemma 39 Suppose we can find in xt a leader gen-
erating set S with all states s ∈ S being present in high count
in xt . That is, every state s ∈ S has count at least 2|�| in xt .
Pick 2|�| nodes of each state in configuration x and call this
set U . As mentioned above, by [11, Lemma A.7], a leader
can be elected from nodes inU given that all necessary edges
between them are present. (If all leader generating sets in xt
have a low-count state, set U = ∅.) Let F∗ be the set of
edges between all nodes in U . Note that F∗ is given by a
deterministic function of xt and the set has at most constant
size, and thus, by Lemma 42

Pr[U is a clique] = Pr[F∗ ⊆ E] ∈ �(1).

Let Stable(x) denote the event that x is a stable configuration
and LowCount(x) the event that all leader generating sets in
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x have at least one state in low count. Then the above implies

Pr
[
Stable(xt )

]
≥ Pr

[
U is a clique ∧ LowCount(xt )

]

= Pr
[
U is a clique

]
− Pr

[
U is a clique ∧ LowCount(xt )

]
≥ Pr

[
U is a clique

]− Pr [LowCount(xt )] .

Rearranging the above, we get

Pr [LowCount(xt )] ≥ Pr
[
U is a clique

]
−Pr

[
Stable(xt )

]
∈ �(1) − o(1)

= �(1),

which concludes the proof.

7.3 Last step: Adapting the surgery technique

Lemma 39 allows us to adapt the surgery technique of [9] to
the setting of incomplete graphs. In particular, we are able
to prove a statement analogous to Lemma 4.4 in [9]. We
borrow some definitions and notation from [9]. We call an
interaction between states a and b a k-bottleneck if at the
time of the interaction, the state counts of a and b are upper
bounded by k. Also in the following, we use x ⇒ y to denote
that the configuration y is reachable from the configuration
x on a clique. Moreover, by x ⇒ρ y we denote that after
executing interactions in ρ starting from configuration x , we
end up in configuration y.

Lemma 43 Suppose P stabilizes in o(n2) steps with prob-
ability 1 − o(1) on G ∼ Gn,p for infinitely many n. Then
there exists an infinite set K ⊆ N of indices and set ξ ⊆ �

of states such that for every leader generating set S we have
ξ ∩ S 	= ∅ and there exist an infinite sequence of config-
urations ((x (k), y(k)))k∈K along with transition sequences
(ρ(k))k∈K such that the following holds

1. x (k) ⇒ρ(k) y(k) and ρ(k) does not contain any k-
bottleneck interactions,

2. x (k) contains every state in count at least k, and
3. y(k) contains all states from ξ in low count.

Proof Suppose n is such that P takes o(n2) steps to stabilize
with probability 1 − o(1). We first condition on the event
|E | > pn2/4. Since this holds with probability 1 − o(1) by
Lemma 37, this will not affect the high-probability asymp-
totics of the stabilization time of the protocol. Next, we apply
the union bound over Lemma 38 and Lemma 39 to conclude
that with at least constant positive probability, the stochastic
schedule σ satisfies the following properties provided that n
is large enough:

(a) σ passes through a fully dense configuration by time t
(Lemma 38), and

(b) in step t , the system is in a stable configuration, where
every leader generating set has a state in low count
(Lemma 39).

Suppose every such sequence contains a k-bottleneck inter-
action for some constant k ∈ N independent of n. Note that
at every time step there are at most |�|2 pairs of states with
state counts at most k. Additionally, two nodes in states a
and b with state count at most k interact with probability at
most k2

m . Then the probability of a k-bottleneck interaction
occurring at an arbitrary time step is at most

8k2|�|2
pn2

by definition of k-bottleneck transitions and since m ≥
pn2/4. Since (a) and (b) hold with at least constant posi-
tive probability, this implies that the stabilization time is of
order �(n2) with probability at least �(1) (similarly to [9,
Observation 4.1]), contradicting our assumption. Hence, for
all large enough n,

• by property (a), we get that there exists a dense configu-
ration x (k), and

• by property (b), we get that there exists a configuration
y(k) where every leader generating set has a state in low
count, along with a k-bottleneck free transition sequence
ρ(k) such that x (k) ⇒ρ(k) y(k) (as shown above).

From such k-bottleneck free transition sequences, we may
form a sequence ((x (k), y(k), ρ(k)))k∈N of configurations and
transition sequences which satisfy first two conditions of the
lemma. Additionally, for every leader generating set, y(k)

has a state from it in low count. Notice however that for
every k we may have a different set ξ of low count states.
This can be resolved using the pigeonhole principle: since
there are at most 2|�| possibilities for ξ ⊆ �, we can select
K ⊆ N and an infinite subsequence ((x (k), y(k), ρ(k)))k∈K
of ((x (k), y(k), ρ(k)))k∈N such that ξ is the same for all y(k).

��

With Lemma 43, Theorem 9 now follows using standard
surgery techniques [9]. Consider the execution of sequences
from Lemma 43 on the clique. This setting is the same as
the one considered by Doty and Soloveichik [9] with our
Lemma 43 corresponding to their Lemma 4.4. The rest of the
proof is now almost identical to proof by Doty and Solove-
ichik [9]. For the sake of completeness, we now state the
necessary results needed to finish the proof of Theorem 9;
we refer to [9] for details.

123



Near-Optimal Leader Election in Population Protocols… 241

First, the transition ordering lemma follows from Lemma
43 (this corresponds to Lemma 4.5 from [9]):

Lemma 44 Let b1, b2 be positive integers such that b2 >

|�|b1 and K , ξ and (x (k), y(k), ρ(k))k∈K be as in Lemma 43.
For any k ∈ K, there is an order on ξ = {d1, . . . , dl} such
that for all i ∈ {1, . . . , l} there exists a transition αi , where
node in state di transitions to state o1 and node in state si
transitions to state o2, such that

• si , o1, o2 /∈ {d1, . . . , di }, and
• αi occurs at least (b2 − b1|�|)/|�|2 times in ρ(k).

Recall that a configuration x is a map V → �. We say
two configurations x1 : V1 → � and x2 : V2 → � are
disjoint if V1∩V2 = ∅. Then, for two disjoint configurations
x1 : V1 → � and x2 : V2 → �, define x1 + x2 to be a
configuration on V1 ∪ V2, where

(x1 + x2)(v) =
{
x1(v) if v ∈ V1
x2(v) otherwise.

With the above, we get the following lemma, which cor-
responds to (slightly adapted) Claims 1–3 given in [9]:

Lemma 45 Take ((x (k), y(k), ρ(k)))k∈K and ξ as inLemma43
and let x ⇒ y denote that configuration y is reachable from
configuration x on a clique. Then:

1. There exists a configuration q and a sequence (zk)k∈K
such that for large enough k we have x (k) + q ⇒ zk and
the counts of states from ξ are zero in zk .

2. For any configuration q, there exist configurations q ′ and
a sequence (zk)k∈K such that for large enough k we have
q ′ + x (k) ⇒ q ′ + zk + q and the counts of states in ξ are
are zero in zk .

3. Let x̃ (k) be a copy of x (k) disjoint with x (k). For large
enough k, there exists a configurationwk such that x (k) +
x̃ (k) ⇒ wk and counts of states from ξ are zero in wk .

We note that while we use only Lemma 45.3 in the next
proof, Lemma 45.3 follows from Lemma 44, Lemma 45.1
and Lemma 45.2; we refer to [9] for the details. With the
above, we are now ready to prove the lower bound result.

Theorem 9 LetP be a constant-state protocol that stabilizes
in finite expected time on any connected graph. Fix a constant
p > 0, and let G ∼ Gc

n,p. Then the expected stabilization

time of P on G satisfies E[TP (G)] ∈ �(n2).

Proof For the sake of contradiction, suppose thatP stabilizes
in expected o(n2) steps in G ∼ Gc

n,p. By Lemma 36, as G ∼
Gn,p, we have TP (G) ∈ o(n2) with probability 1−o(1). By
Lemma 43 and Lemma 45.3, there exists a configuration w

that is reachable on the clique in which all states from ξ have
zero count, where ξ is some set that intersects every leader
generating set.

The only states that may have a non-zero count in w are
sets from � \ ξ . Since every leader generating set has a
non-empty intersection with ξ , the set � \ ξ cannot com-
pletely contain any leader generating set. Then, by definition
of leader generating sets, a leader cannot be generated from
w. Additionally,w has zero leaders since every leader state is
itself a leader generating set. Therefore, w is a stable reach-
able configuration without any leaders, a contradiction. ��

8 Conclusions

In this work, we performed the first focused investigation
of time-space trade-offs in the complexity of leader election
on general graphs, in the population model. We provided
some of the first time and space-efficient protocols for leader
election, and the first time complexity bounds that are tight up
to logarithmic factors. We introduced “graphical” variants of
classic population protocol techniques, such as information
dissemination and approximate phase clocks on the upper
bound side, and indistinguishability arguments and surgeries
for lower bound results.

Our work leaves open the question of tight bounds for
both space and time complexity on general graph families,
particularly in the case of sparse graphs. Another direction is
considering other fundamental problems, such as majority,
in the same setting, for which our techniques should prove
useful.

A Proof of Lemma 15

Proof For a function f : V → R let f (x̄) denote the aver-
age of f over all deg(x) neighbours w ∈ B(x) of x .
Note that for u 	= v, the expected hitting times satisfies
HP (u, v) = HP (ū, v) + 1. Using the fact that the random
walks are reversible, it can be shown analogously to Lemma
2 in [47] that the hitting times in the population model satisfy

HP (x, y) + HP (y, z) + HP (z, x)

= HP (x, z) + HP (z, y) + HP (y, x) (1)

for any x, y, z ∈ V . To see why, the probability of sampling
any sequence of edges e1, . . . , ek that has the walk start from
x and end in x is 1/mk . The number of walks x � y �
z � x and x � z � y � x are equal. Hence, the expected
length of both types of walks are equal, which yields (1). The
above implies that the relation x ≤ y of the nodes defined
by x ≤ y ⇔ HP (x, y) ≤ HP (y, x) gives a preorder on the
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nodes. In particular, there exists a minimum value z in this
preorder such that HP (x, z) ≥ HP (z, x) for all x ∈ V . Fix
such a minimum node z. For any x, y ∈ V , define

�(x, y) = HP (x, y) + HP (y, z) − HP (z, y)

= HP (y, x) + HP (x, z) − HP (z, x) = �(y, x),

where the second line follows from the identity (1). By choice
of z, the potential �(x, y) is non-negative. Moreover, the
potential satisfies �(x, y) = �(x̄, y) + 1 = �(x, ȳ) + 1.

Now we show that M(x, y) ≤ �(x, y) for all x, y ∈
V , which implies the claim of the lemma, as �(x, y) ≤
2 · HP (G). For the sake of contradiction, suppose this is
not true. Let α > 0 be the maximum value attained by
M(x, y) − �(x, y) over x, y ∈ V . Choose x, y to be the
closest pair of nodes that satisfies M(x, y) = �(x, y) + α.
Note that x 	= y andM(x ′, y) ≤ �(x ′, y)+α for all x ′ ∈ V .
However, there is some neighbour w of x that is closer to y
than x , so M(w, y) < �(w, y) + α. However, this yields a
contradiction, as

M(x, y) = 1 + M(x̄, y) < 1 + �(x̄, y) + α

= �(x, y) + α = M(x, y).

��

B Proof of Lemma 19

Let h > 0 be an integer and K be the number of fair coin
flips needed to observe h consecutive heads. We now show
the following technical lemma.

Lemma 19 The randomvariable K satisfies Z0 � K � Z1+
h, where Z0 ∼ Geom(2−h) and Z1 ∼ Geom(2−h−1).

Define f (k) = Pr[K ≥ k] for all k ≥ 0.Clearly, f (k) = 1
for 0 ≤ k ≤ h. We will now show that for all k ≥ h the
function f (k) satisfies

(
1 − 1

2h

)k

≤ f (k) ≤
(
1 − 1

2h+1

)k−h

.

This then establishes Lemma 19, as the lower bound equals
Pr[Z0 ≥ k] and the upper bound equals Pr[Z1 + h ≥ k].
Lemma 46 For all k ≥ h, we have the identity

f (k + 1) = f (k) − f (k − h)

2h+1 .

Proof Recall that K is the length of the shortest prefix of
the infinite sequence (Xi )i≥1 of i.i.d. random variables that
contains h consecutive ones, where Xi denotes if the nodes

was a initiator on its i th interaction and Pr[Xi = 1] = 1/2
for all i ≥ 1. Note the function f : N → [0, 1] is non-
increasing. Suppose that K = k, then the lasth coinflipsmust
have been heads and the (h + 1)th coin flip from end must
have been zero.Moreover, the subsequence X1, . . . , Xk−h−1

cannot contain h consecutive ones. Therefore, for k ≥ h, we
have the identity

Pr[K = k] = 1

2h+1 · Pr[K ≥ k − h] = f (k − h)

2h+1 .

For all k ≥ h, this gives the recurrence relation

f (k + 1) = f (k) − f (k − h)

2h+1 .

��

Lemma 47 For all k ≥ 0, the function f (k) satisfies

(
1 − 1

2h

)k

≤ f (k).

Proof Wenow showby induction that f (k) > f (k−h)/2 for
k ≥ h. As the base case, note that for h ≤ k ≤ 2h Lemma 46
gives

f (k) = f (h) − k − h

2h+1 ≥ 1 − h

2h+1 > f (k − h)/2,

since f (i) = 1 for all i ≤ h. As the induction hypothesis,
suppose f (k′) > f (k′ − h)/2 holds for all k ≥ k′ ≥ h. The
inductive step now follows by observing that for k > 2h we
have

f (k) = f (k − 1) − 1

2h+1 f (k − h − 1)

= f (k − 2) − 1

2h+1 f (k − h − 1)− 1

2h+1 f (k−h−2)

. . .

= f (k − h) − 1

2h+1 f (k − h − 1)

− 1

2h+1 f (k − h − 2) − . . . − 1

2h+1 f (k − 2h)

≥ f (k − h) − h

2h+1 f (k − 2h)

> f (k − h) − h

2h
f (k − h)

≥ f (k − h) − 1

2
f (k − h) = 1

2
f (k − h),

where the last inequality is given by the induction hypothesis.
This completes the induction. Since f is non-increasing, we
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get the that for any k > h

f (k + 1) = f (k) − f (k − h)

2h+1 ≥ f (k) ·
(
1 − 1

2h

)
.

Moreover, note that above holds for k ≤ h as well since
f (k) = 1 for any k ≤ h. Thus,

f (k) ≥
(
1 − 1

2h

)k

.

��
Lemma 48 For all 0 ≤ k ≤ h, we have f (k) = 1 and for all
k ≥ h, the function f (k) satisfies

f (k) ≤
(
1 − 1

2h+1

)k−h

.

Proof The proof of the upper bound proceeds in a similar
fashion. We prove by induction that

f (k) ≤
(
1 − 1

2h+1

)k−h

for all k ≥ h. For the base case of the induction, note that
for h ≤ k ≤ 2h we have from Lemma 46 and the fact that
f (i) = 1 for 0 ≤ i ≤ h that

f (k) = f (h) − k − h

2h+1 = 1 − k − h

2h+1 ≤
(
1 − 1

2h+1

)k−h

,

where the inequality follows from the Bernoulli inequality
1 + r x ≤ (1 + x)r for x ≥ −1 and r ≥ 0. For the inductive
step, we get that

f (k + 1) = f (k + 1 − h) − 1

2h+1 ·
h∑

i=1

f (k + 1 − h − i)

≤ f (k + 1 − h) − h

2h+1 · f (k + 1 − h)

≤ f (k + 1 − h) ·
(
1 − h

2h+1

)

≤ f (k + 1 − h) ·
(
1 − 1

2h+1

)h

≤
(
1 − 1

2h+1

)k+1−2h

·
(
1 − 1

2h+1

)h

=
(
1 − 1

2h+1

)k+1−h

by using the Bernoulli inequality and the induction hypoth-
esis. ��

Lemma 19 The randomvariable K satisfies Z0 � K � Z1+
h, where Z0 ∼ Geom(2−h) and Z1 ∼ Geom(2−h−1).

Proof The claim follows using the definition of f (k) =
Pr[K ≥ k] and stochastic domination, since

Pr[Z0 ≥ k] =
(
1 − 1

2h

)k

≤ f (k) = Pr[K ≥ k]

≤
(
1 − 1

2h+1

)k−h

= Pr[Z1 + h ≥ k].

��
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