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Abstract

The problem of mobile impurities in quantum baths is of fundamental importance in
many-body physics. There has recently been significant progress regarding our under-
standing of this due to cold atom experiments, but so far it has mainly been concerned
with cases where the bath has no or only weak interactions, or the impurity interacts
weakly with the bath. Here, we address this gap by developing a new theoretical frame-
work for exploring a mobile impurity interacting strongly with a highly correlated bath
of bosons in the quantum critical regime of a Mott insulator (MI) to superfluid (SF)
quantum phase transition. Our framework is based on a powerful quantum Gutzwiller
(QGW) description of the bosonic bath combined with diagrammatic field theory for the
impurity-bath interactions. By resumming a selected class of diagrams to infinite or-
der, a rich picture emerges where the impurity is dressed by the fundamental modes
of the bath, which change character from gapped particle-hole excitations in the MI to
Higgs and gapless Goldstone modes in the SF. This gives rise to the existence of several
quasiparticle (polaron) branches with properties reflecting the strongly correlated envi-
ronment. In particular, one polaron branch exhibits a sharp cusp in its energy, while a
new ground-state polaron emerges at the O(2) quantum phase transition point for inte-
ger filling, which reflects the nonanalytic behavior at the transition and the appearance
of the Goldstone mode in the SF phase. Smooth versions of these features are inherited
in the polaron spectrum away from integer filling due to the influence of Mott physics
on the bosonic bath. We furthermore compare our diagrammatic results with quantum
Monte Carlo calculations, obtaining excellent agreement. This accuracy is quite remark-
able for such a highly non-trivial case of strong interactions between the impurity and
bosons in a maximally correlated quantum critical regime, and it establishes the utility
of our framework. Finally, our results show how impurities can be used as quantum sen-
sors and highlight fundamental differences between experiments performed at a fixed
particle number or a fixed chemical potential.
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1 Introduction

The properties of dilute mobile impurities that interact with a quantum environment play a
key role in our understanding of nature. The problem is closely connected with the concept
of quasiparticles, which provides a relatively simple but very powerful description of many-
body systems [1]. Indeed, an impurity particle smoothly evolves into a quasiparticle when
interactions with its environment are turned on, assuming that no phase transitions occur.
This quasiparticle consists of the bare impurity dressed by excitations in its environment– a
picture that first emerged when studying an electron that excited lattice vibrations (phonons)
in a dielectric, thereby forming a so-called polaron [2,3]. Since then, quasiparticles have been
used successfully to describe a wide range of quantum many-body systems, from liquid helium
mixtures and electrons in crystals, to nuclear matter and quark-gluon plasmas [4–6].

Our understanding of mobile impurities in quantum environments and the formation of
quasiparticles has improved dramatically in recent years, mostly driven by impressive experi-
ments with cold atomic gases. These experiments have mainly focused on impurities in ideal
or weakly interacting Fermi gases forming so-called Fermi polarons [7, 8], and more recently
also on impurities in weakly interacting Bose-Einstein condensates (BECs) forming Bose po-
larons [9]. The Bose polaron consists of the impurity dressed by the Goldstone (Bogoliubov
sound) modes of the BEC, which, as we shall see, is a limiting case of the problem considered
in the present work.

Less attention has been devoted to mobile impurities and polaron formation in the case
when the bath is strongly correlated. Theoretical investigations include mobile impurities in
fermionic superfluids [10–14], in a lattice gas of hard core bosons [15], in supersolids [16], in
Bose systems in one dimension [17], and in topological systems [18–23]. The case of an impu-
rity interacting with a bath in the vicinity of a quantum critical point is particularly interesting
because there are strong quantum fluctuations across many length scales, which, however,
also makes it very challenging. Recently, an infinitely heavy impurity in a fermionic system
undergoing a Mott insulator to metal transition was investigated [24].

The Bose-Hubbard (BH) model describing repulsively interacting bosons in a lattice re-
alizes at integer filling a prototypical case of a quantum phase transition: the bosons are in
a Mott insulator (MI) phase for small hopping and in a superfluid (SF) phase for large hop-
ping with quantum phase transitions in the O(2) universality class in between [25].1 In an
early study, a mobile impurity immersed in such a BH model was explored using effective field
theory [26]. Recently, perturbation theory was used to explore a mobile impurity across the
MI-SF transition [27]. Here, the quantum Gutzwiller (QGW) approach, which was shown to
accurately capture features related to the quantum fluctuations and the static and dynamical
properties of the BH model in Refs. [28, 29], was used to elucidate the fundamental prop-
erties of the resulting polaron in the quantum critical region. Previous work with the QGW
method also considered a fixed impurity weakly coupled to a BH bath as a sensor for the MI-SF
transition able to identify the different universality classes of the model [30].

In this paper, we explore the properties of a mobile impurity interacting with repulsively
interacting bosons at integer filling in a square lattice. Using a QGW description of the bosons
in the quantum critical regime of the MI to SF transition, we develop a field theory describing
how the impurity excites elementary excitations of the bosons as it moves through the lattice.
We then apply a generalized ladder approximation, which includes strong two-body correla-
tions and the formation of impurity-boson bound states. Using this, we show that the interplay
between strong impurity-boson interactions and boson-boson correlations in the quantum-
critical regime gives rise to rich physics with several polaron branches. At the MI-SF phase-

1At non-integer filling the phase transition is due to a filling change. It is known as commensurate-
incommensurate phase transition and is essentially a vacuum to matter Bose-Einstein condensation [25].
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transition point, one polaron branch exhibits a cusp in its energy, and a new ground-state
polaron appears. These distinctive features arise because both the Goldstone and the Higgs
modes become gapless at the phase transition, and they also appear in smoothed-out versions
for filling fractions slightly different from unity. Our results are shown to agree remarkably
well with projector quantum Monte-Carlo (QMC) calculations for the many-body ground state,
which demonstrates the usefulness of our theoretical framework for describing this strongly
correlated many-body problem. Finally, we discuss important differences between performing
experiments at constant particle number or at constant chemical potential.

2 System

We consider a system consisting of a single mobile impurity interacting with a bath of bosons
in a square lattice composed of M sites as described by the BH model. The Hamiltonian reads

Ĥ = −t
∑

〈r ,s〉

(â†
r âs + ĉ†

r ĉs + h.c.)−µ
∑

r

n̂r +
U
2

∑

r

n̂r (n̂r − 1) + UIB

∑

r

n̂I ,r n̂r , (1)

where â†
r (ĉ†

r ) are creation operators for bosons (the impurity) on lattice site r . The first line
describes the hopping of the bosons and the impurity with equal tunneling parameter t for
simplicity, and µ is the boson chemical potential. The energy dispersion of both particles in
the absence of interactions is ϵk = 4t[sin2(kx/2)+ sin2(ky/2)] where we have used the usual
lattice Fourier transform and taken the minimum to define zero energy. We use units where
the lattice constant is unity. The second line in Eq. (1) describes the onsite interaction between
the bosons with strength U > 0 and between the impurity and the bosons with strength UIB,
where n̂r = â†

r âr and n̂I ,r = ĉ†
r ĉr . Depending on the ratio t/U and the chemical potential of

the bosons, they form either a MI or SF giving rise to the phase diagram shown in Fig. 1(a).
We will in the following explore the properties of the impurity in the region around the O(2)
phase transition between the MI and the SF at integer filling.

3 Methods

Previously, the lattice polaron in the transition region was studied for weak impurity-bath
interaction (|UIB/U | ≪ 1) in two dimensions using perturbative methods within the QGW ap-
proach [27]. In Sec. 3.1, basics of the QGW method are recapped followed by the development
of our novel diagrammatic theory for the impurity-bath system, which is capable of describing
the regime of strong interactions not only between the bosons but also between the impurity
and the bosons. In Sec. 3.2, we describe our Quantum Monte-Carlo calculations.

3.1 Quantum Gutzwiller (QGW) method

In this section, we develop a novel strong interaction approach to describe mobile impurities
immersed in a BH bath in the quantum critical regime. The method is based on combining
the semi-analytic QGW method with diagrammatic field theory, which we will implement in
practice using a generalized self-consistent ladder approximation. We begin with a recount of
the QGW method before outlining the diagrammatic technique. Further details on the QGW
method and numerical implementation can be found in App. A.

The Gutzwiller ansatz for the ground state of the BH Hamiltonian |Ψ0
G〉=
⊗

r
∑

n c0
n|n, r 〉 is

a tensor product of lattice Fock states |n, r 〉with amplitude c0
n describing the occupation of site r

by n bosons. Within this mean-field treatment, the bath density is given by n0 =
∑

n n|c0
n|

2, and

4

https://scipost.org
https://scipost.org/SciPostPhys.19.1.002


SciPost Phys. 19, 002 (2025)

the condensate order parameter by ψ0 =
∑

n
p

nc0
n−1c0

n. Minimizing the energy with respect
to |Ψ0

G〉 produces the phase diagram shown in Fig. 1(a). We refer the reader to Ref. [31] (and
references therein) for further details of the ground state calculation.

4t/U

SF (Hole)

SF (Particle)

Vacuum

n̂ = 0.8

n̂ = 1.2

n̂ = 1

0.0

0.5

1.0

ω
k
/U

1 2

(a)

(b)

1

O(2)

3

Hole

3

2

0.0 0.5 1.0

x(k)

Higgs

Goldstone
Particle

0.0 0.5 1.0

x(k)

Figure 1: (a) Phase diagram of repulsively interacting bosons as a function of t/U
and the chemical potential as calculated using the mean-field Gutzwiller approach
for the 2D case considered in this work; see [31] and references thererin. The shaded
purple area indicates the Mott insulator lobe of unit filling while the shaded green
area indicates the region of the hole superfluid. Lines of constant filling are shown
and 1⃝, 2⃝ and 3⃝ indicate points where the polaron properties are explored in
detail in Sec. 4. (b) In the bottom two panels are shown the lowest (solid) and
second lowest (dashed) elementary excitations of the bosons at the points in the
phase diagram considered in this work versus x(k) =

p

εk/8t which varies from 0 to
1, and x ≈ |k|/2

p
2 for small |k|. These modes are gapped particle-hole excitations in

the MI, gapless Goldstone and Higgs modes at the O(2) phase transition, and gapless
Goldstone and gapped Higgs modes in the SF.
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The QGW method describes density fluctuations on top of the ground state |Ψ0
G〉 by canon-

ical quantization as δĉn(r) = M−1/2
∑

λk ei k·r (uλ,k,n b̂λ,k + vλ,k,n b̂†
λ,−k) [28,32,33]. Here, b̂†

λ,k

(b̂λ,k) is a bosonic operator that creates (annihilates) an elementary excitation of the bosons
in the λth branch with momentum k, energy ωλ,k, and coefficient vλ,k,n (uλ,k,n), which can
be chosen to be real [34]. Deep in the MI phase this corresponds to an individual particle
or hole, while the lowest mode corresponds to the Bogolioubov sound deep in the SF phase.
Expanding the bath Hamiltonian to quadratic order in the fluctuations yields

ĤB =
∑

λ,k

ωλ,k b̂†
λ,k b̂λ,k , (2)

which describes a set of non-interacting bosonic modes. The QGW approach leading to Eq. (2)
is detailed in [28] where it was shown to provide a remarkably accurate description of the
bosonic bath even in critical regimes where quantum fluctuations are strong. Further details
of the QGW approach are provided in App. A.1.

In this work, we consider the BH bath at (or very close to) integer filling in the region of the
phase diagram where the MI-SF transition belongs to the O(2) universality class, as indicated
in Fig. 1(a) [25]. Here, the bath can be described by an effective relativistic (Lorentz-invariant)
field theory due to particle-hole symmetry. This symmetry yields a decoupling of amplitude
and phase degrees of freedom, resulting in a gapless Goldstone and a massive so-called Higgs
mode on the superfluid side (ψ0 ̸= 0) and gapped particle and hole excitations on the Mott
side of the transition. The mass of the Higgs mode vanishes at the transition point as shown in
Fig. 1(b) [34–38]. The superfluid at the O(2) point is of hybrid particle-hole character as the
derivative µ′(t) ≡ ∂ µ/∂ t evaluated at constant filling vanishes, separating a bounded region
of hole superfluidity µ′(t)< 0 from the (unbounded) region of particle superfluidity, as shown
in Fig. 1(a) [31]. As discussed in the seminal work [39], the hole or particle characterization
of the superfluid close to the Mott lobe is made in analogy with electron or hole conductance
of a material in solid-state physics. Ramifications for the character of vortices, solitons, and
elementary excitations are considered in Refs. [34, 40, 41]. Notably, the region of particle
superfluidity extends into the deep superfluid region where the lattice polaron in a weakly
interacting BEC was previously considered [42].

3.1.1 Diagrammatics

We now use the QGW formalism as a foundation to construct our diagrammatic field theory for
analyzing the properties of a mobile impurity interacting with the strongly correlated bosonic
bath.

In this approach, the basic object to calculate is the impurity Green’s function G(q,ω),
and we start by expanding the impurity-bath interaction ĤIB into different processes involving
the impurity and excitations of the bath. This expansion was given in Ref. [27], and here we
reformulate it in a way suitable for establishing the Feynman rules of a diagrammatic theory
capable of describing strong interactions. Expanding the impurity-bath interaction to quadratic
order in bath fluctuations yields

ĤIB ≈ UIB

∑

r

n̂I ,r [n0 +δ1n̂(r) +δ2n̂(r) + . . . ] , (3)

where the first term is the bath density in the mean-field ground state, while the second and
third terms are linear and quadratic in the bath fluctuation operators, respectively. This ex-
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pansion reads in momentum space (see Sec. A.1 for details)

ĤIB = UIB

∑

k,p,q

∑

λ,λ′

�

Uλk,λ′p ĉ†
q ĉq−p+k b̂†

k,λ b̂p,λ′ + Vλk,λ′p ĉ†
q ĉq+p−k b̂k,λ b̂†

p,λ′

+
1
2

Wλk,λ′p

�

ĉ†
q ĉq+p+k b̂†

k,λ b̂†
p,λ′ + ĉ†

q ĉq−p−k b̂k,λ b̂p,λ′

�

�

,

(4)

with two-particle vertices

Uλk,λ′q =
∑

n

�

n− n0(1−δλλ′δλ,0)
�

uk,n,λu∗q ,n,λ′ ,

Vλk,λ′q =
∑

n

(n− n0)vk,n,λv∗q ,n,λ′ ,

Wλk,λ′q =
∑

n

(n− n0)(uk,n,λv∗q ,n,λ′ + u∗q ,n,λ′ vk,n,λ) ,

(5)

corresponding to the structure factors of the density channel [30]. Here, the Gutzwiller mean-
field ground state is, for convenience, denoted by the λ = 0 “mode” with energy ωλ=0,k = 0,
uλ=0,k,n = c0

n, vλ=0,k,n = 0, and b̂λ=0,k = b̂†
λ=0,k = 1 [43]. In particular, this convention for

mode labeling gives U0k,0q = n0, V0k,0q = 0, W0k,0q = 0, reproducing Eq. (3).

(a)

U0

λ

Û1

λ

Û2

λ′ λ

Û3

λ′ λ

V̂1

λ

Ŵ1

λ

Ŵ2

λ′ λ

Ŵ3

λ′ λ

Ŵ4

(b)




Γ11 Γ12

Γ21 Γ22




=







+




Γ11 Γ12

Γ11 Γsym
12




(c)
Σ = Γ11 + Γ12 + Γ21 + Γ22 + Γ22

Figure 2: (a) The different impurity-boson interaction processes given by Eqs.(6)-
(13). Solid blue lines denote the impurity, dashed red lines without arrows denote
the Gutzwiller mean-field ground state of the bath (λ = 0), and solid red lines with
arrows denote elementary excitations of the bath (λ ̸= 0). Wavy lines denote U
(green), V (purple), and W (orange). The Ŵ1 and Ŵ2 vertices represent two (iden-
tical) processes and have been symmetrized, see Eqs. (10) and (11). (b) Bethe-
Salpeter equation for the in-medium scattering matrix at zero temperature given by
Eq. (14). The different vertices shown in panel (a) lead to four different scattering
processes since the number of bosonic excitations is not conserved in general. (c)
Generalized ladder approximation for the impurity self-energy at zero temperature.
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The interaction in Eq. (4) separates into a mean-field contribution U0 = n0 and the pro-
cesses

Û1 =
∑

p,q

∑

λ>0

U00,λp ĉ†
q ĉq−p b̂p,λ , (6)

Û2 =
∑

p,q

∑

λ>0

Uλp,00 ĉ†
q ĉq+p b̂†

p,λ , (7)

Û3 =
∑

p,q,k

∑

λλ′>0

Uλk,λ′p ĉ†
q ĉq−p+k b̂†

k,λ b̂pλ′ , (8)

V̂1 =
∑

p,q,k

∑

λλ′>0

Vλk,λ′p ĉ†
q ĉq+p−k b̂k,λ b̂†

p,λ′ , (9)

Ŵ1 =
(2)
2

∑

p,q

∑

λ>0

W00,λp ĉ†
q ĉq−p b̂p,λ , (10)

Ŵ2 =
(2)
2

∑

p,q

∑

λ>0

Wλp,00 ĉ†
q ĉq+p b̂†

p,λ , (11)

Ŵ3 =
1
2

∑

p,q,k

∑

λλ′>0

Wλp,λ′k ĉ†
q ĉq−p−k b̂p,λ b̂kλ′ , (12)

Ŵ4 =
1
2

∑

p,q,k

∑

λλ′>0

Wλp,λ′k ĉ†
q ĉq+p+k b̂†

p,λ b̂†
kλ′ , (13)

illustrated diagrammatically in Fig. 2(a). Here, the factors of 2 in Eqs. (10) and (11) arise
from the Bose statistics of the fluctuations and account for the symmetry of the W -vertex
under dummy label exchange [5]. Consequently, the corresponding processes Ŵ1 and Ŵ2
can be represented as in Fig. 2(a) or, equivalently, with the appropriate excitation line on
the opposite side of the vertex. As discussed in Refs. [27, 28, 28–30], the vertices must be
calculated numerically at each point on the phase diagram, with analytic forms available only
in limiting cases, see App. A.

From Fig. 2(a), we see that processes Û1, Û2, Ŵ1, and Ŵ2 involve scattering between
an impurity, the Gutzwiller mean field, and an elementary excitation. Although Û1 and Ŵ1
describe the same process, albeit with different interaction strengths, we distinguish them, as
well as Û2 and Ŵ2, due to distinctness of the underlying physics. The remaining processes
involve the impurity and elementary excitations of the bath, allowing for the involvement of
different modes within a single scattering process. This multimodal structure adds another
layer of complexity compared to the usual Bogoliubov theory, which describes only processes
between the impurity, Bogoliubov phonons, and the condensate. This approach is unsuitable
for describing the quantum critical region and the Mott insulator phase where condensate
depletion ranges from significant to total and many modes become important [42].

The rules for constructing Feynman diagrams follow the well-known formalism
for bosons [5], with fluctuation operators satisfying bosonic commutation relations
[b̂λ,k, b̂†

λ′,k] = δk,k′δλ,λ′ . Explicitly, a solid red line corresponds to a Green’s function

D(0)
λ>0(q, z) = 1/(z −ωq,λ) for a bosonic bath excitation, while a solid blue line corresponds

to a noninteracting (bare) impurity Green’s function G(0)(q, z) = 1/(z − ϵq). Dashed red lines
without arrows correspond to the λ= 0 mode, i.e. interaction with the mean-field Gutzwiller
ground state. Here, z denotes a Matsubara frequency, and we perform the usual analytical
continuation z→ω+ i0+ at the end of the calculation to obtain the retarded impurity Green’s
function.

The processes Ŵ3 or Ŵ4 involve the annihilation and creation of two modes, respec-
tively, and diagrams describing both permutations of the outputs contribute and must be
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summed over. Additionally, at zero temperature, any diagrams that involve internal back-
propagating excitation lines make vanishing contributions due to zero-mode occupation
nλ,k = 〈b̂

†
λ,k b̂λ,k〉= 0.

3.1.2 Impurity-boson scattering

Having established a general diagrammatic framework for analyzing the properties of a mobile
impurity in a BH bath, we now develop an approximate scheme for solving this in the regime of
strong impurity-boson interactions. In Ref. [27], this problem was studied in the perturbative
regime with impurity properties evaluated to quadratic order (UIB/U)2 (see App. A.3). Here,
we consider a range of coupling strengths beyond even |UIB/U | ∼ O(1) where truncation in
powers of the impurity-bath coupling is no longer justified, and selected classes of higher-order
Feynman diagrams must be included. Our approach is inspired by the remarkable accuracy of
the ladder approximation for describing impurities in a Fermi gas, i.e. the Fermi polaron [7], as
well as its good agreement with experimental data when describing impurities in a BEC [9].
We therefore expect a ladder approximation suitably generalized to the case at hand to be
reliable even at strong interactions, since a strongly repulsive Bose gas in a qualitative sense
is in between a weakly interacting BEC and a Fermi gas. As we shall see, this expectation is
confirmed to a remarkable degree by comparing with Monte-Carlo calculations.

We begin by deriving a set of coupled equations for the in-medium scattering matrices Γλλ
′

i j .
In analogy with Beliaev theory for a weakly interacting BEC [5], the scattering is described by
a matrix in which the different matrix elements correspond to the incoming and outgoing ex-
citations whose number is not conserved. Resumming scattering events with the bare vertices
shown in Fig. 2(a) within a ladder approximation generalized to the present case yields the
coupled Bethe-Salpeter equations

Γλλ
′

11 (P,p,p′) = UIBUλp,λ′p ′ +
UIBp

M

∑

p1,λ1>0

Uλp,λ1p1
Γ
λ1λ
′

11 (P,p1,p′)

z −ωp1,λ1
− ϵP−p1

,

Γλλ
′

12 (P,p,p′) = UIBW̃λp,λ′p ′ +
UIBp

M

∑

p1,λ1>0

Uλp,λ1p1
Γ
λ1λ
′

12 (P,p1,p′)

z −ωp1,λ1
− ϵP−p1

,

Γλλ
′

21 (P,p,p′) = UIBW̃λp,λ′p ′ +
UIBp

M

∑

p1,λ1>0

W̃λp,λ1p1
Γ
λ1λ
′

11 (P,p1,p′)

z −ωp1,λ1
− ϵP−p1

,

Γλλ
′

22 (P,p,p′) = UIBVλp,λ′p ′ +
UIBp

M

∑

p1,λ1>0

W̃λp,λ1p1
Ŝ[Γλ1λ

′

12 (P,p1,p′)]

z −ωp1,λ1
− ϵP−p1

,

(14)

where we have introduced the shorthand notation P ≡ (P, z) for the center-of-mass momen-
tum/energy. Equation (14) is shown diagrammatically in Fig. 2(b), which illustrates that
Γλλ

′

11 (P,p,p′) describes the scattering of the impurity on an excitation of the bath, Γλλ
′

12 (P,p,p′)
and Γλλ

′

21 (P,p,p′) describe the impurity annihilating/emitting two excitations, and Γλλ
′

22 (P,p,p′)
describe the impurity scattering on a “hole” excitation, all with in- and out-going relative mo-
menta p and p′. These processes are coupled due to the interactions in Eqs. (6)-(13). We
have used the shorthand notation W̃λp,λ′,p′ = (1 − δλ,0δλ′,0/2)Wλp,λ′,p′ in order to compress
four distinct Bethe-Salpeter equations describing the possible scatterings between the impu-
rity, Gutzwiller mean-field ground state, and elementary excitations into one expression in
Eq. (14) that applies for all λ, λ′. Also, one must symmetrize Γλλ

′

12 and Γλλ
′

21 for λ,λ′ > 0
due to the indistinguishability of the two incoming or outgoing elementary excitations, re-
spectively, which produces a factor of 2 when they are integrated over internally in a diagram.
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Figure 3: For UIB < 0, the impurity (blue) attracts the surrounding bosons (red)
forming an attractive polaron. For UIB/U ≲ −1, it forms a bound state with one
extra boson. For UIB > 0, the impurity repels the surrounding bosons forming a
repulsive polaron. For UIB/U ≳ 1, it pushes away the bosons completely forming a
bound state with a hole.

This is taken into account in the final line of Eq. (14) by the symmetrizer Ŝ which acts as 1+ P̂
when the in-medium scattering matrix element involves two elementary excitations with the
transposition operator P̂. When λ = 0 is involved, no symmetrization is performed (Ŝ = 1)
due to distinguishability. Finally, the Gutzwiller mean-field ground state is excluded from the
summations in Eq. (14) as it would give rise to disconnected diagrams.

Physically, the Bethe-Salpeter equation is an in-medium generalization of the Lippman-
Schwinger equation for the scattering of two particles in a vacuum. The denominators in the
summations in Eq. (14) describe the propagation of a bare impurity and a bath excitation and
their poles give rise to a scattering continuum, which is bounded from above due to the lattice.
For example, ϵk has a width of 8t, while the Goldstone mode in the Bogliubov theory of the
bath has a width

p

(8t)2 + 8t|ψ0|2U , decreasing from the deep superfluid to the quantum
critical regime. Note that in our calculations, finite size effects turn this continuum into a
discrete set of states which can be important for small systems; see App. A.4.

In the vacuum limit of a single boson and impurity, the in-medium scattering matrix re-
duces to the two-body scattering matrix with discrete poles at the energies of any bound states
consisting of one boson and one impurity. The ladder approximation therefore includes strong
two-body impurity-boson correlations and bound states exactly in a many-body environment.
This is crucial as we shall see, since the presence of several different impurity-boson dimer
states, illustrated in Fig. 3, significantly influences the properties of the impurity, leading to
the existence of several polarons, in analogy with what was found in the simpler case when
the bosons are deep in the superfluid regime [42].

In practice, at zero temperature, the in-medium scattering matrix can be solved by first
obtaining elements Γ11 and Γ12 self-consistently. The remaining components can be obtained
directly through matrix multiplication. Details of this numerical procedure are described in
App. A.6.
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3.1.3 Impurity self-energy

The properties of the impurity interacting with the lattice bosons are described within our
approach by the interacting impurity Green’s function

G(q, z) =
1

z − ϵq −Σ(q,ω)
, (15)

where Σ(q, z) is the impurity self-energy. In particular, the energy Ek of any quasipar-
ticle, which we denote as a polaron in the present context, is determined by solving
Ek = ϵk +ReΣ(k, Ek) [4].

Having derived a Bethe-Salpeter expression for the scattering between the impurity and
the bosons, we can now build this into a self-energy for the impurity. Figure 2(c) shows our
generalized ladder approximation for the impurity self-energy, which contains two classes of
diagrams. The first four diagrams in Fig. 2(c) correspond to the impurity scattering particles
out of the mean-field ground state of the bath (λ= 0), i.e. Γ 00

i j . In particular, Γ 00
11 includes the

mean-field energy UIBn0. Unlike the Bogoliubov approach, where the expansion is based on
the condensate density considering a condensate fraction close to unity, our method is based
on expanding the total density and therefore remains valid even near the critical point. Con-
sequently, the usual product of the condensate density and the in-medium scattering matrix
(c.f. [42, 44]) does not appear explicitly in our QGW method and is only recovered in the
weakly interacting BEC limit. This is due to the broader applicability of the QGW approach, in
particular to the quantum critical regime where the condensate is largely or totally depleted.

The last diagram in Fig. 2(c) involves a loop sum over collective modes, and at zero tem-
perature this process is only non-zero for the Γλλ22 in-medium scattering matrix element, con-
tributing for all λ > 0. We note that this involves processes not taken into account in the
usual diagrammatic expansion method based on the Fröhlich model [45], which was shown
in Ref. [27] to provide a poor description of the physics particularly in the Mott and quan-
tum critical regimes. It is also insufficient to describe the Bose polaron deep in the superfluid
regime [44, 46]. Furthermore, this diagram contains UIB〈δ2n̂(r)〉, the quantum correction to
the mean-field coupling due to quantum fluctuations [27–29]. Explicit expressions for the
self-energy diagrams can be found in App. A.3 for the interested reader. Finally, we note that
when iterating the in-medium scattering matrix to second order, the self-energy in Fig. 2(c)
recovers the first and second order terms considered in Ref. [27].

3.1.4 Self-consistency

So far, the internal impurity Green’s functions in our diagrams have been non-interacting
(bare), which corresponds to assuming a non-interacting impurity in the scattering pro-
cesses. Technically, this can be seen from the fact that the bare impurity energy ϵp appears
in the denominators of Eq. (14), which therefore describe the pair propagation of a non-
interacting impurity and a bath excitation. In the first four diagrams of Fig. 2(c), this in
turn gives rise to a scattering continuum of states consisting of a non-interacting impurity
and one bath excitation with energies spanning minp(ωp,λ + ϵP−p) ≤ω ≤maxp(ωp,λ + ϵP−p)
with P the total momentum. Likewise, in the last diagram of Fig. 2(c), it gives rise to a
continuum of states of a non-interacting impurity and two bath excitations with energies
minp,q(ωp,λ +ωq,λ′ + ϵP−p−q) ≤ ω ≤ maxp,q(ωp,λ +ωq,λ′ + ϵP−p−q). This is unphysical since
the impurity in the intermediate scattering states of course interacts with its environment.

Since we are interested in the interplay between these scattering continua and polaron
formation, we now address this problem.
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In principle, the problem can be solved by using full interacting impurity Green’s functions
everywhere in the diagrams, and such a self-consistent approximation has indeed been imple-
mented for an impurity in a weakly interacting BEC [44], as well as for two-component Fermi
mixtures [47–49].

The self-consistent approximation can be implemented using an iterative procedure via
successive replacements ϵq→ ϵq+Σ(q,ω) in the calculation of the in-medium scattering ma-
trix. In practice, we find that the numerical cost even of the order O(101) iterations (as done in
Ref. [44]) becomes rapidly prohibitive as the calculation of the vertices and associated Bethe-
Salpeter equation is fully numerical in the quantum critical regime. Issues that arise through
the numerical implementation of the self-consistent approximation already at the single itera-
tion level are discussed further in App. A.7 for the interested reader. We find instead that the
simple replacement ϵq→ ϵq+UIB〈n̂〉 in the Bethe-Salpeter equation, i. e. adding the mean-field
shift to the impurity energies in the intermediate states, is sufficient to capture the main effects
of self-consistency over the range of couplings considered in this work. Note that since there
is only one impurity, we assume that the bath is essentially unaffected in the thermodynamic
limit so that we can use bare bath Green’s functions.

3.2 Full configuration interaction quantum Monte Carlo (QMC)

In this section, we discuss a completely different method to analyze an impurity immersed in a
strongly correlated boson gas, which in principle allows for an exact calculation of the ground
state properties. Full configuration interaction QMC is a type of projector Monte Carlo, which
can be used to stochastically sample the ground state eigenpair (E0,v0) of a matrix H [50]. In
the context of this paper, H is a matrix realization of the Hamiltonian defined in Eq. (1), E0 is
its ground state energy, and v0 a vector representation of the ground state. Full configuration
interaction QMC samples these quantities by repeatedly stochastically applying the following
scheme to an arbitrarily chosen initial coefficient vector c(0):

c(n+1) = c(n) +δτ
�

S(n)1−H
�

c(n) , (16)

where, δτ is a (small) time step, 1 the identity matrix and S(n) a scalar energy shift that is
updated after every step in order to keep the 1-norm of the vectors c(n) constant [51]. For a
large number of steps n, the iteration converges such that the expectation value of the shift S(n)

coincides with the ground state energy E0 and the vectors c(n) fluctuate around the eigenvector
v0. In practice, the ground state energy is estimated from a sample mean of S(n) excluding
steps from an initial equilibration phase. See App. B for detailed information on the method.

While the Bose-Hubbard Hamiltonian does not exhibit the QMC sign problem, and the
method itself is in principle exact, the noise in the shift introduces a statistical bias, also known
as the population control bias [52–54]. We apply importance sampling [55–57] as a similarity
transformation to the Hamiltonian matrix based on an optimized guiding vector that approx-
imates the exact ground state. Importance sampling brings the dual benefit of reducing the
sampling noise and with it the stochastic uncertainty in the energy estimators as well as sup-
pressing the population control bias to undetectable levels. Importance sampling was essential
to obtain high quality results for the largest system sizes reported in this work (100 bosons and
1 impurity particle in a 10×10 lattice with a Hilbert space dimension of≈ 1060), where without
importance sampling, the variance of the energy would be so large to be effectively unusable.
More details on the importance sampling and optimization of the guiding vector can be found
in App. B.2. All QMC results reported in this work were obtained with the open-source library
Rimu.jl [58].
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Figure 4: Impurity spectral function A(k = 0,ω) for the three points 1⃝, 2⃝ and 3⃝
in the phase diagram in Fig. 1. (a) The Mott insulator phase with µ/U =

p
2 − 1,

4t/U = 0.1292. (b) The O(2) point (coming from the superfluid side) with
µ/U = 0.4142, 4t/U = 0.1723 and condensate fraction 0.01. (c) The superfluid
phase with µ/U = 0.4014, 4t/U = 0.2154 and condensate fraction 0.3. The dashed
red lines are the energy of the lattice polaron within second-order perturbation the-
ory [27], the black lines are the energy U for strong repulsion, and the black dash-
dotted lines are the energy 2UIB + U for strong attraction.

4 Results

We now present numerical results for the impurity properties obtained from our QGW and
QMC calculations.2 We focus on the vicinity of the O(2) point of the MI-SF transition taking
the filling fraction to be at or very close to unity. The filling factor is calculated by choosing the
value of µ/U such that 〈n̂〉= n0+〈δ2n̂〉 is held fixed (Eq. (A.9) in App. A). The correction 〈δ2n̂〉
accounts for zero point quantum fluctuations of the bath which modify the filling particularly
in the quantum critical regime, while it is zero in the Mott phase. We focus on the case of
zero momentum, leaving momentum-dependent lattice polaron properties, such as the full
quasiparticle dispersion and effective mass, as the subject of future work.

In Secs. 4.1.1-4.1.3, we analyze the impurity properties obtained using our diagrammatic
approach as a function of the impurity-boson interaction strength at the fixed points indicated
in the phase diagram in Fig. 1(a). In Sec. 4.2-4.3, we consider the impurity properties across
the O(2)MI-SF phase transition for fixed impurity-boson interaction strength. Finally, Sec. 4.3
compares the QGW results with those of the QMC calculations.

4.1 Results for a fixed bath and variation of UIB

4.1.1 Mott insulating bath

We first consider the case where the bosons are in the MI phase taking 4t/U = 0.1292 corre-
sponding to the point labeled 1⃝ in Fig. 1. In this regime, the Gutzwiller mean-field ground
state is an incompressible Fock state, and the only allowed excitations in the bath are gapped
particle and hole excitations, which must occur in pairs due to number conservation. The
individual gaps of the particle and hole excitations depend on the chemical potential of the
bath [59], whereas the energy gap to excite a particle-hole pair does not.

In Fig. 4 (a), QGW results for the impurity spectral function A(p,ω) = −2ImG(p,ω) are
shown as a function of the impurity-boson interaction strength. In the MI phase, the first

2The QGW results presented in this work were performed with finite cutoffs for modes (λ≤ 2) and occupation
numbers (n≤ 7) and checked for convergence by performing calculations for increased cutoffs.
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diagram in Fig. 2(c) contributes to the self-energy with a mean field term, the three middle
diagrams are zero due to particle conservation, whereas the last term contributes by dressing
the impurity with bosons depleted from the mean-field ground state due to boson-boson inter-
actions. Such particle-hole scatterings are possible even at zero temperature via the process
V̂1, which contributes quantum corrections to the filling factor. Additionally, at order O(U2

IB),
the Ŵ3 and Ŵ4 processes can describe the virtual excitation and de-excitation of a particle-hole
pair in the polaron cloud [27]. In our ladder approximation, such processes are generalized
to strong interactions by inserting an infinite number of re-scatterings of the impurity and an
excitation (hole or particle) via the process Û3.

We see that the impurity spectral function in Fig. 4(a) exhibits sharp lines corresponding
to quasiparticles, i.e. polarons. For weak impurity-boson interaction strength, the ground state
of the system is a well-defined polaron with a large spectral weight and an energy close to the
mean-field value UIB〈n̂〉. This extends over a wide range of interaction strengths |UIB/U |≲ 1,
reflecting the incompressible nature of the MI phase, which is relatively insensitive to the
impurity. The closely lying faint lines above the polaron line in Fig. 4(a) are a finite-size
version of the scattering continuum in the thermodynamic limit consisting of the impurity and
two bath (particle-hole) excitations as discussed in Sec. 3.1.4, which is separated in energy
from the polaron ground state by the Mott gap; see Fig. 1(b). These finite-size effects appear
because we use a lattice with 10 × 10 sites in our diagrammatic calculations, as detailed in
App. A.4.

Figure 4(a) also shows a pair of avoided crossings at |UIB/U | ≃ 1. Here, the ground state
changes abruptly as a non-perturbative regime emerges for stronger interactions. For attractive
interaction UIB/U ≲ −1, the attractive polaron energy depends linearly on UIB with a larger
slope than in the mean-field regime. This can be understood from the ability of the impurity
to bind to one of the bosons to form a dimer state, as illustrated in Fig. 3. The energy of such
a dimer state is approximately 2UIB+U since two bosons occupy the same site as the impurity.
This agrees well with the obtained energy of the attractive polaron, see Fig. 4 (a)

The horizontal line in Fig. 4(a) for a strong repulsive impurity-boson interaction UIB/U ≳ 1
corresponds to a repulsive polaron with an energy independent of UIB, which can also be
interpreted in terms of bound-state physics. In this case, the impurity pushes bosons away
from the site it occupies, which is equivalent to an “excitonic” bound state between the impurity
and a hole as illustrated in Fig. 3. When the impurity pushes away a boson, it creates a site
containing two bosons, and the energy of this repulsive polaron is therefore U , which agrees
well with the numerical results.

The particle-hole symmetry at unit filling discussed in Sec. 3.1 can in fact be used to show
that the spectrum is symmetric with respect to UIB↔−UIB in the vicinity of the O(2) point
aside from the mean-field shift. This symmetry is recovered by our diagrammatic theory. From
a technical point of view, these bound states give rise to poles in the in-medium scattering ma-
trix entering the impurity self-energy, which are related by a particle-hole symmetry at unit
filling. Indeed, since the process Û3 entering as an infinite series inside the last diagram of
Fig. 2(c) is of equal magnitude but opposite sign for impurity-particle and impurity-hole pro-
cesses at unit filling (see App. A.2), the poles of the in-medium scattering matrix are invariant
with respect to the sign of UIB/U aside from the mean-field shift UIB〈n̂〉 thus giving the above
relation between the attractive and repulsive polaron energies.

Interestingly, Fig. 4 (a) shows a strong well-defined polaron branch above the ground
state in the strong interaction regime. Since its energy closely follows the mean-field value
UIB〈n̂〉, we denote this branch as a “mean-field” polaron, which physically corresponds to the
impurity moving in an incompressible background. This mean-field polaron is well defined
because it is separated in energy from the continuum of states because of the excitation gap
of the MI. Finally, there is also a faint horizontal line in Fig. 4(a) close to the energy ∼ U for
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strong attraction. This is a continuation of the repulsive polaron state in the regime of strong
attractions, where it becomes an “upper polaron” as an excited state stabilized by the fact that
it is above the scattering continuum.

4.1.2 Critical bath – O(2) point

We now turn our attention to the intriguing and challenging region in the vicinity of the O(2)
transition where the bosonic bath is highly correlated. This transition occurs for µ/U =

p
2−1

and 4t/U = (
p

2− 1)2 in the mean-field Gutzwiller calculation [59].
As the O(2) point is approached from the MI phase, the gap of individual particle or hole ex-

citations closes, see Fig. 1(b), and the elementary excitations become pure phase (Goldstone)
and amplitude (Higgs) modes. Both modes are gapless due, respectively, to the spontaneous
breaking of U(1) phase symmetry and Lorentz invariance at the O(2) point in the low-energy
effective field theory [60]. The Higgs mode is gapless only at the transition point, as is typical
for a quantum phase transition.

In Fig. 4 (b), we show the impurity spectral function as a function of UIB but now for
4t/U = 0.1723, corresponding to the point labeled 2⃝ in Fig. 1 just on the superfluid side of
the O(2) point. Here, the ground state at unit filling is accurately described by a superposition
of the lowest number states |0〉, |1〉, and |2〉 at each lattice site [35], where a large amplitude
of the |1〉 state corresponds to an insulator-like component and small and equal amplitudes
for the |0〉 and |2〉 states dictate the properties of the particle-hole symmetric superfluid com-
ponent. The compressibility of the bath increases due to the condensate and the sound speed
takes a finite value [59]. Since a non-zero superfluid density in our approach corresponds
to the breaking of particle number conservation, the processes Û1, Û2, Ŵ1, and Ŵ2 given by
Eqs. (6), (7), (10) and (11) now contribute with Û3 re-scatterings, see Fig. 2(a) and App A.2.
Consequently, all elements of the in-medium scattering matrix are non-zero and all diagrams
in Fig. 2(c) now contribute to the self-energy.

First, we see from from Fig. 4 (b) that in the weak interaction regime, there is still a well-
defined polaron with an energy close to the mean-field value, as expected. However, because
of the larger compressibility of the bath, the mean-field region is smaller than in the MI phase,
and second-order effects are stronger. Also, the scattering continuum now appears just above
the mean-field energy since the excitations of the bath are gapless, see Fig. 1(b). Perturbation
theory breaks down already at |UIB|/U ≃ 0.5, and we see that two kinds of polarons emerge
below the continuum as the strongly interacting regime is entered. The polarons with the
largest spectral weight for UIB/U ≳ 0.5 and UIB/U ≲ −0.5 are smoothly connected to the
repulsive and attractive polarons in the MI discussed above with almost the same energy. This
is because the character of the Mott insulating ground state is inherited across the quantum
phase transition into the superfluid phase, a phenomenon which is commonly referred to as
“Mottness” [34].

Interestingly, Fig. 4(b) shows that a new polaron with a smaller spectral weight and lower
energy emerges for strong attractive and repulsive interactions. The origin of this new polaron
branch, which is now the ground state, is a strong dressing of the impurity by the gapless
modes of the bosonic bath, which significantly lowers its energy. This dressing comes from
the first four diagrams in Fig. 2(c), which are zero in the MI phase. Because of the small
condensate fraction, the residue of this new attractive and repulsive polaron is very small, and
hence the spectral line is faint. The appearance of a new polaron branch is due to the non-
analytic behavior of the excitation spectrum of the bosonic bath, with both the Higgs and the
Goldstone modes becoming gapless at the O(2) transition point. This will be analyzed further
in Sec. 4.2. Finally, we see that the upper polaron with energy ∼ U in the strongly attractive
region discussed above for the MI phase remains in the superfluid phase.
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Figure 5: Impurity spectral function A(k = 0,ω) at unit filling line deeper into the
superfluid phase with µ/U = 0.3021, 4t/U = 0.4, and condensate fraction 0.74.
Lines are as in Fig. 4.

4.1.3 Superfluid bath

We now explore the spectral properties of the impurity deeper in the superfluid phase at unit
filling taking 4t/U = 0.2154 corresponding to the point labeled 3⃝ in Fig. 1(a). The cor-
responding QGW results for the impurity spectral function as a function of the interaction
strength UIB are shown in Fig. 4(c).

First, we note that the weakly interacting regime, where the energy of the polaron ground
state is given by second-order perturbation theory, has decreased further with the quadratic
dependence more prominent, which again reflects the increased compressibility of the bosonic
bath.

While the Higgs mode becomes increasingly gapped in the superfluid phase, the Gold-
stone (Bogoliubov sound) mode remains gapless, and the scattering continuum consequently
appears just above the mean-field energy.

For strong repulsive and attractive impurity-boson interactions, the ground state repulsive
and attractive polaron, visible as faint lines in Fig. 4(b), have now increased their spectral
weight significantly, due to the increased condensate fraction, which makes the Goldstone
mode dominating the dressing of the impurity.3

As t/U increases further, boson-boson correlations decrease and the bath becomes a weakly
interacting BEC. It has been shown that in this regime the QGW approach coincides with the
Bogoliubov theory for the BH model [28, 59]. Therefore, the ground state polarons evolve
into the usual repulsive (UIB > 0) and attractive (UIB < 0) polarons in a weakly interacting
lattice BEC studied in Ref. [42]. The polaron branches above the ground state (Fig. 4(c)),
remnants of the attractive and repulsive polaron in the MI phase, on the other hand, decrease

3Formally, this means the final self-energy diagram in Fig. 2(c) decreases since the Higgs mode becomes in-
creasingly gapped, whereas the first four diagrams increase.
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Figure 6: Impurity spectral function A(k = 0,ω) across the Mott insulator to super-
fluid transition for fixed unit filling 〈n̂〉= 1 and different impurity-boson interaction
strengths. The dashed red lines are the polaron energy obtained from second-order
perturbation theory [27]. The dotted black line indicates the O(2) critical point,
which occurs at µ/U =

p
2− 1, 4t/U = (

p
2− 1)2 within mean-field Gutzwiller the-

ory. The QMC results in panel (b) and (c)(yellow dots) are extrapolated from the
results for M = (5× 5, 6× 6, . . . , 10× 10) bosons on a square lattice of M = N2 sites
and are discussed in Sec. 4.3. The QMC hopping parameter has been rescaled by a
factor tc/tQMC = 0.7179 to align the O(2) critical points of the two methods.

in spectral weight with t/U . They eventually move into the scattering continuum as shown in
Fig. 5 where they become damped as the gap of the Higgs mode increases.

In addition, two kinds of polarons are now visible above the scattering continuum for at-
tractive interactions in Fig. 4(c). Going deeper into the superfluid phase, we find that the
polaron with the lowest energy increases its spectral weight, while the one with higher energy,
which evolved smoothly from the one in the MI phase, disappears; see Fig. 5. There is also
a polaron line above the scattering continuum for strong repulsive interactions. This corre-
sponds to the upper polaron found in the limit of a weakly interacting BEC [42]. It arises from
a repulsively bound state consisting of the impurity and a boson, which has been observed
experimentally [61].

4.2 Results for fixed UIB and variation of the bath

In Fig. 6, we show the polaron spectral function for a few values of UIB, across the unit filling
MI-SF phase transition by varying t/U .4 The yellow dots in Fig. 6 (b) and (c) represents QMC
results that will be discussed in the context of finite-sized systems in the next Sec. 4.3.

Let us first focus on the results for an attractive impurity-boson interaction shown in
Fig. 6(a)-(b). The simplest case is for a weak impurity-boson attraction, UIB/U = −0.5 shown
in panel (b). Here, the polaron energy is fairly constant across the transition and given accu-
rately by perturbation theory. The decrease in polaron energy is due to the compressible nature
of the superfluid phase [27]. One can also see how the polaron spectral function clearly in-
herits the gap closing that characterizes the O(2) critical point of the bath.

4We note two shortcomings of the QGW model that appear as the limit U/t → 0 is taken in the superfluid phase.
First, the Gutzwiller ground state ansatz chosen in Sec. 3.1 describes a condensate with infinite off-diagonal long-
range order. In two dimensions, quantum correlations (such as 〈δ2n̂〉) exhibit infrared divergences according to the
Mermin-Wagner theorem. Second, the interaction strengths develop density dependence in the weakly interacting
limit not accounted for in the Hamiltonian Eq. (1) [62]. In practice, we have found in previous works [27,29] that
these issues do not influence our calculations in the vicinity of the phase transition, but worsen the description as
the limit U/t → 0 of the weakly interacting BEC is taken.
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For strong impurity-boson attraction UIB/U = −1.5, the situation is very different. In
Fig. 6(a), we see two sharp lines in the MI phase clearly separated from the continuum: The
ground state attractive polaron and the mean-field polaron as discussed in Sec. 4.1.1. As the
gap to the scattering continuum decreases with increasing t/U , the attractive polaron energy
decreases due to increased dressing. At the phase-transition point, its energy exhibits a cusp,
after which it starts to increase in the superfluid phase. In addition, a new attractive polaron
appears with a lower energy at the transition point, which arises from the dressing of gapless
modes, see Secs. 4.1.2-4.1.3. In particular, Fig. 6(a) shows in a more dramatic way the already
discussed failure of perturbation theory in describing the ground state polaron energy in the
strong coupling regime, since it cannot describe the formation of impurity-bath bound states.

Due to particle-hole symmetry, we find analogous results across the phase transition for re-
pulsive couplings, as shown in Fig. 6 (c)-(d). Here, we find that the repulsive polaron energies
are independent of UIB for strong interactions due to the association with the impurity-hole
(exciton) bound state as discussed previously in Sec. 4.1.1.

Our results promote the intriguing prospect of using polaron spectroscopy in the quantum
critical regime for quantum sensing. We note that such non-analytic features appear in many
observables at the transition point, including the magnitude of zero-point quantum fluctua-
tions and the gap of the Higgs mode (c.f. [28,29]).

4.3 Comparison with QMC

In this section, we compare the results of our QGW method with those from the full configura-
tion interaction QMC calculations described in Sec. 3.2. Since the problem of a mobile impu-
rity strongly interacting with a bosonic bath in a quantum critical regime is very challenging,
such a comparison is highly useful. In particular, the QMC results can serve as a benchmark
for the diagrammatic QGW method. As we shall see, our comparison also highlights differ-
ences between experiments realizing systems in the canonical and grand canonical ensembles.
The study of finite systems is therefore important towards possible cross-benchmarking as dis-
cussed further in Sec. 5.

The QMC results presented in this section were obtained by optimizing a variational ansatz
and using it for importance sampling in the simulation; see App B for details. The mean
of the shift S was used as the energy estimator. This was repeated for various lattice sizes
(M = 5×5,6×6, . . . , 10×10) and extrapolated to an infinite lattice size, as detailed in App. B.3.
The QGW results are produced on a square lattice of size M = 10 × 10 as in the previous
sections, and the formalism works in the grand canonical ensemble in such a way that the
density far away from the impurity is fixed to unity. In order to compare the results of the
semi-analytical QGW method and the fully numerical QMC method, the hopping parameter
employed in the latter has been rescaled by a factor tc/tQMC = 0.7179 to align the O(2)
critical points of the two methods [63]. The difference in critical points between the two
methods reflects the mean-field nature of Gutzwiller ground state calculation. However, the
QGW description of the quantum fluctuations is expected to be accurate as evidenced by the
quantitative agreement found with compared to QMC in Ref. [28].

Before comparing the QGW and QMC results, we need to analyze a fundamental difference
between the two approaches. The QMC simulations keep the number of bosons fixed and
therefore work in the canonical ensemble. We find that for sufficiently attractive impurity-
boson interactions UIB/U ≲ −1, the QMC calculations show that the impurity forms a bound
state dimer with one boson in agreement with the QGW results discussed in Sec. 4.1.1. When
there is one boson per site in a finite lattice, such a bound state, however, takes the system
away from unit filling since one lattice site now contains the impurity and two bosons, see
Fig. 3, making the effective filling fraction of the rest of the lattice 1 − 1/M . This prevents
the bosons from ever entering the MI phase, and instead the system is taken to the SF phase
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Figure 7: Impurity spectral function A(k = 0,ω) from the field theoretical QGW
method compared with the polaron energy from the QMC method (yellow points).
The QGW results correspond to the filling 〈n̂〉 = 0.99 in panels (a), (b), and
〈n̂〉 = 1.01 in panels (c), (d), while the QMC results are extrapolated from the re-
sults for M = (5× 5,6× 6, . . . , 10× 10) bosons on a square lattice of M = N2 sites.
The dashed red lines are second-order perturbation theory for the polaron energy
from the QGW method [27], which unphysically diverges for t/U → 0. This diver-
gence is remedied by the ladder resummation. The QMC hopping parameter has
been rescaled by a factor tc/tQMC = 0.7179 to align the O(2) critical points of the
two methods.

just below the 〈n̂〉 = 1 Mott lobe for t/U → 0 with an extremely small superfluid fraction.
Likewise, QMC calculations show that for a strong and repulsive impurity-boson interaction
UIB/U ≳ 1, the impurity pushes the bosons away from their lattice position, forming a bound
state with a hole, again confirming the QGW results. This also takes the system away from
unit filling to an effective filling fraction 1+ 1/M so that it stays just above the 〈n̂〉 = 1 Mott
lobe. We have numerically verified that the QMC simulations do not enter the MI phase for
|UIB/U | ≳ 1 by computing the charge gap across various values of t and UIB as explained
further in App. B.4.

The QGW method, on the other hand, operates in the grand canonical ensemble where the
bosonic bath maintains a constant density at a distance from the impurity, effectively treating
the bosons as a particle reservoir. It should be noted however that the QGW method does
not allow the impurity to change the density of the bath, and it interacts with a fixed bath.
This means that the bath remains at unit filling even in the regime of strong impurity-boson
interactions where bound states are formed, as we explicitly saw in Sec. 4.1.1. This fundamen-
tal difference between the two methods makes it necessary to adjust the filling of the QGW
calculation to compare against results of the QMC method for strong interaction |UIB/U |≳ 1.

First, Fig. 6(b) and (c) compare the results of the QGW and QMC calculations across the
phase transition for weak interaction |UIB/U |= ±0.5. In this case, no adjustments to the QGW
filling are necessary as no bound states are formed. We see that there is excellent quantitative
agreement between the two methods.

In Fig. 7(a)-(b), we compare the QMC and QGW results for stronger attractive impurity-
boson interactions. The QGW calculations are performed for a fixed non-integer filling
〈n̂〉 = 0.99 in order to compare with the QMC results in the presence of bound impurity-
boson dimers, as explained above. This corresponds to a line in Fig. 1 very close to the 〈n̂〉= 1
line in the superfluid phase up to the O(2) point, after which it is just below the lower bound-
ary of the 〈n̂〉 = 1 Mott lobe. Figure 7(b) demonstrates a remarkable quantitative agreement
between the QGW and QMC calculations for the polaron ground state energy for UIB/U = −1.
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This includes a highly non-trivial smeared cusp feature close to the phase transition point,
which appears due to the inherited Mottness of the bath with decreasing t/U despite never
entering the insulating phase. For even stronger attraction UIB/U = −1.5 in Fig. 7(a), there
is still good agreement between the QGW and QMC results. This confirms the accuracy of
our diagrammatic QGW framework, which is remarkable given the very complex nature of a
strongly correlated many-body system close to a quantum phase transition and given that the
QGW is built upon a mean-field ansatz, which is unable to quantitatively predict the critical
interaction strength for the MI to SF quantum phase transition.5

For completeness, in Fig. 7(a)-(b) we report the results from second-order perturbation
theory, which completely fails to describe the polaron energy for strong interactions; see also
Sec. 4.2. In particular, it predicts a diverging energy in the limit t/U → 0 for non-integer
filling. Here, the compressibility of the superfluid diverges [27], and the perturbative analysis
predicts a divergence in the energy that comes from a macroscopic dressing cloud around
the impurity. This prediction is unphysical since a non-zero U still penalises a macroscopic
dressing of the impurity. Our diagrammatic ladder resummation, on the other hand, provides
a comprehensive description of this regime with a finite value for the ground state energy
in excellent quantitative agreement with QMC. The ladder resummation therefore resolves
the unphysical energy divergence predicted by perturbation theory, although the quasiparticle
residue still vanishes as t/U → 0. Instead for discussion of the orthogonality catastrophe
in the context of the conventional Bose polaron problem, we direct the interested reader to
Refs. [64,65].

Figure 7(c)-(d) shows the same analysis performed for strong repulsive impurity-boson
interactions.

The QGW calculations are performed using a filling fraction 〈n〉 = 1.01 to account for
the formation of bound impurity-hole states taking a finite system out of the MI phase, as ex-
plained above. Again, we observe excellent agreement between the QGW and QMC results,
confirming the remarkable accuracy of our diagrammatic resummation, whereas perturbation
theory completely fails to describe the system in this strongly correlated regime. For complete-
ness, we have also compared the QGW and QMC in the superfluid regime at unit filling as a
function of the interaction strength, and we find again an excellent quantitative agreement;
see App. A.7 and Fig. 13.

Finally, we comment briefly on the extreme limit UIB/U → −∞. Here, we expect the
impurity to form a cluster state with a macroscopic number of bosons in its dressing cloud.
Such an N -body bound state cannot be described within our ladder approximation, which only
includes two-body impurity-boson correlations, necessitating the inclusion of more diagrams
or using variational wave functions as done for the conventional Bose polaron [9]. For large
repulsive interactions UIB/U →∞, on the other hand, the impurity can still only push one bo-
son away at unit filling, as shown in Fig. 3, and therefore we expect our ladder approximation
to be reliable even in this extreme limit.

The fate of differences between the canonical and grand canonical ensembles in the ther-
modynamic limit is an interesting question. It should be noted that these effects have been
explored in other contexts that show that impurities can significantly alter the bath [66].

5 Discussion and outlook

In this work, we explored a mobile impurity immersed in a strongly correlated lattice Bose
gas in the vicinity of a O(2) quantum phase transition between a MI and a SF phase at inte-
ger filling. Based on a QGW description of the bosonic bath, we developed a powerful field

5A similar feature has been reported for short range correlations when compared to QMC results in [28].
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theoretical framework describing the impurity scattering with the fundamental excitations of
the Bose gas. By resumming a selected class of generalized ladder diagrams, we showed how
the interplay between strong boson-impurity interactions, quantum criticality, and the evolu-
tion from gapped particle-hole to Higgs and gapless Goldstone modes of the bosons gives rise
to very rich and non-trivial physics with several polaron branches. Our semi-analytical field
theory was furthermore shown to compare very well with quantum Monte-Carlo calculations,
which is remarkable for such a strongly correlated many-body system. This demonstrates the
utility of our field-theoretical framework and opens up several new research directions.

Our work highlights how polarons immersed in strongly correlated baths can exhibit much
richer physics compared to more conventional polarons in weakly or non-interacting Bose and
Fermi gases. It also illustrates how polarons can be used to probe non-trivial quantum many-
body systems in the spirit of quantum sensing, as analyzed previously for example for geomet-
ric and topological properties of the environment [20–23, 67]. The present results show that
polarons can explore quantum criticality including the precise point of the phase transition.
This motivates further investigations into how coherent superpositions of internal states of the
impurity can be used to enhance the sensitivity of the impurity probe while minimizing the
back-action on the environment [68–71].

The predictions of this work should be accessible in cold-atom experiments using opti-
cal lattices where the BH model and, in particular, the MI-SF transition have already been
realized [72]. Radio-frequency pulses have been used in continuum atomic gases to mea-
sure the spectral function of polarons [9,73], and quantum gas microscopy in optical lattices
can furthermore provide complementary information regarding the spatial properties of po-
larons [74,75]. This raises interesting questions concerning the wave function of the polaron
and spatial correlations with the surrounding bosons in the quantum critical regime, which are
left as the subject of future study. Polarons have also been observed in new 2D transition metal
dichalchogenide semiconductors [76, 77], which may open up ways to observe the predicted
results in a solid-state setting.

Our theoretical framework can also be generalized to explore the properties of the polaron
at non-zero temperature and momentum. Other interesting questions include the interaction
between polarons mediated by the elementary excitations of the bosons in the quantum critical
regime, which may support bound states (bi-polarons), as has been predicted for polarons in
weakly interacting BECs [42,78,79]. Understanding this is crucial for developing a consistent
quasiparticle description of a non-zero concentration of impurities in the BH model. Another
interesting problem concerns a possible phase separation that takes place at the borders of the
MI lobe for strong interactions [80].

Our results moreover reinforce the notion that an impurity, particularly in small systems,
can significantly alter the bath’s properties even taking it out of a given quantum phase. This
raises questions concerning how to experimentally observe the sharp features predicted at
unit filling in this paper. One could imagine using a setup where a harmonic trap creates a
“wedding cake” structure of rings with different densities [81]. In such a setup, regions with a
non-integer filling could act as particle reservoirs for the region with integer filling where the
impurities are located, effectively realizing an impurity experiment with constant chemical
potential. Taken together, these extensions show the potential for exploring a wide area of
territory for new physics as well as cross-benchmarking theory and experiment in the field of
quantum simulation [82].
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A Further details on QGW method

A.1 Background

In this section, we provide further details on the QGW method relevant to this work (c.f.
Refs. [28,28–30]). The QGW method is based on the canonical quantization of the Lagrangian

L[c, c∗] =



ΨG

�

� iħh∂t − ĤB

�

�ΨG

�

=
iħh
2

∑

r,n

[c∗n(r)ċn(r)− c.c.] + J
∑

〈r,s〉

[ψ∗(r)ψ(s) + c.c.]−
∑

r,n

Hn |cn(r)|
2 , (A.1)

where ĤB is the bath Hamiltonian in Eq.(1), and Hn = U n (n− 1)/2−µn. The Lagrangian is
a functional of the complex amplitudes cn(r) of the Gutzwiller ansatz

|ΨG〉=
⊗

r

∑

n

cn(r) |n, r〉 . (A.2)

The quantization promotes these amplitudes to operators that obey equal-time canonical com-
mutation relations

�

ĉn(r), ĉ†
m(s)
�

= δr,sδn,m . (A.3)

In analogy with the Bogoliubov approximation for a dilute Bose-Einstein condensate, these op-
erators are expanded around the ground state values c0

n (see Sec. 3.1) as ĉn(r) = Â(r) c0
n+δĉn(r)

with local normalization operator Â(r) and fluctuations 〈δĉn (r)〉= 0, which can be expanded
in momentum space as

δĉn(r)≡ M−1/2
∑

k

eik·rδĈn(k) . (A.4)

Retaining only up to quadratic terms in the fluctuations, one finds

〈ΨG|ĤB|ΨG〉 ≈ E0 +
1
2

∑

k

�

δĈ
†
(k, −δĈ(−k)
�

L̂k

�

δĈ(k)
δĈ(−k)

�

, (A.5)
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where where E0 is the mean-field Gutzwiller ground-state energy, the vector δĈ contains the
components δĈn, and L̂k is a pseudo- Hermitian matrix [28]. Eq. (A.5) is diagonalized by a
suitably chosen Bogoliubov rotation

δĈn(k) =
∑

λ

uλ,k,n b̂λ,k +
∑

λ

v∗λ,−k,n b̂†
λ,−k , (A.6)

recasts the quadratic form of the Hamiltonian into diagonal form

ĤB ≈
∑

λ

∑

k

ωλ,k b̂†
λ,k b̂λ,k , (A.7)

where each b̂λ,k corresponds to a different many-body excitation mode with frequency ωλ,k,
labeled by its momentum k and index λ.

The accuracy of the QGW method can be estimated by calculating the magnitude of the
quantum fluctuations about the Gutzwiller mean-field, quantified by the control function
F = 1 − 〈Â〉. The control function F displays a cusp at the O(2) phase transition, as found
in Refs. [28, 29]. However, in two dimensions, F grows away from the transition in the limit
t/U due to the incorrect description of the condensate order parameter by the Gutzwiller
mean-field ansatz as discussed in Ref. [29].

Contributions of quantum fluctuations of the bath beyond the mean field can be systemati-
cally included, as described in Ref. [28]. This procedure yields the expansion in Eq. (4). Here,
the bath density operator has been expanded as n̂r ≈ n0 +δ1n̂(r) +δ2n̂(r) where

δ1n̂(r) =
∑

n

n c0
n

�

δĉn(r) +δĉ†
n(r)
�

, (A.8)

gives the Fröhlich-type coupling and

δ2n̂(r) =
∑

n

nδĉ†
n(r)δĉn(r)− n0 1̂− Â2(r) , (A.9)

involves contributions from quantum fluctuations as well as their feedback onto the Gutzwiller
mean-field ground state via the operator Â(r). Application of the Bogoliubov rotation
(Eq. (A.6)) to Eqs. (A.8) and (A.9) yields the vertex contributions present in Eq. (4) (see
also Ref. [27]).

The QGW expansion of ĤIB (Eq. (4)) connects with the Bogoliubov approximation of ĤIB
[42] in the limit U/t → 0 where |ψ0|2/n0 ≈ 1 as discussed in Refs. [27, 28, 59]. Here, the
canonical quantization procedure is applied instead to the condensate order parameter

ψ̂(r) =
∑

n

p
n ĉ†

n−1(r) ĉn(r)≈ψ0 +δ1ψ̂(r) +δ2ψ̂(r) . . . , (A.10)

where ψ0 corresponds to the mean-field condensate density and

δ1ψ̂(r) =
1
p

I

∑

λ

∑

k

�

Uλ,k ei k·r b̂λ,k + Vλ,k e−i k·r b̂†
λ,k

�

, (A.11)

while δ2ψ̂(r) can be calculated by a straightforward extension. The quantities |Uλ,k|2 and
|Vλ,k|2 are the quasi-particle and quasi-hole excitation strengths, respectively, and identify the
character of elementary excitations [31]. In Ref. [59], ĤB was expanded to order δ1ψ̂(r) and
the lowest collective mode was shown to become identical to the Bogoliubov dispersion in the
U/t → 0 limit. We note that in this limit, all other modes in the QGW method become strongly
gapped, justifying the single-mode description.
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Figure 8: Magnitude of the interaction vertices across the O(2) phase transition at
unity filly. (a-c) interactions between equal momentum excitations. (d-f) interactions
between opposite momentum excitations. Explicitly, λ = 0 refers to the Gutzwiller
mean-field ground state, while λ = 1, 2 refers to particle and hole processes in the
MI or Goldstone and Higgs processes in the superfluid phase, respectively. λλ′ = nm
refers then to the corresponding two-excitation process. Here we have evaluated the
vertices at a fixed lattice momentum |p|= 0.39 for clarity.

A.2 Vertices across the O(2) transition

In this section, we provide additional information about the two-particle vertices given in
Eq. (5), which set the bare interaction strengths for the processes shown in Fig. 2(a). In
general, these vertices have non-trivial momentum and mode dependence, particularly across
the O(2) transition where many processes determine the behavior of the lattice polarons.

In Fig. 8, we show results for the magnitudes of the vertices as a function of the hopping
strength across the transition at unit filling. Here, we consider pair processes that involve
elementary excitations of equal (a)-(c) as well as opposite (d)-(f) momenta. We remark that
λ = 0 or λ′ = 0 describes isotropic single-excitation processes involving scattering off the
Gutzwiller mean-field.

We first discuss the MI regime. In (a), (b), and (d), (e), we see that the U and V vertices for
particle-particle and hole-hole processes are equal (and opposite). We note from the form of
the Bethe-Salpeter equation that only the Γλλ22 in-medium scattering matrix element contributes
in this region, as shown in Fig. 2(c). There, the V vertex contributes only to quantum correc-
tions of the filling due to zero-point quantum fluctuations. The W vertex instead describes the
process exciting particle-hole pairs, which is followed by the ladder of Û3Û3 . . . re-scatterings
capped by Ŵ3, returning the pairs to the bath. We note that in the perturbative calculation at
O(U2

IB), the effect of the U vertex in processes is absent beyond the mean-field level. Rather,
we see that this vertex plays a crucial role in determining the polarons via particle-particle
or hole-hole processes depending on the sign of UIB as discussed in Sec. 4.1.1. Here, we see
that these processes have roughly equal (and opposite) strengths, which is a general charac-
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Figure 9: Loop diagram contribution to the impurity self-energy. Momentum and
energy conservation is enforced, and the Γ12 in-medium scattering matrix element
is properly symmetrized according to Eq. (14). This results in two diagrams which
give equal contributions to the self energy expression in Eq. (A.14), shown here for
completeness.

teristic of the QGW calculation in the vicinity of the O(2) point. In Figs. 8(c) and (f), we see
instead that the W vertex only contributes in the MI for particle hole pairs of opposite rather
than equal momentum. This reflects the constraint of particle conservation on a single site in
the MI in the generation of a local particle-hole pair, which recalls the physics producing the
particle-hole dressing cloud of the conventional Fermi polaron (c.f. [7]).

On the superfluid side of the O(2) point, we see instead that W vertices for equal momen-
tum become non-zero, while the U and V vertices inheriting particle-particle and hole-hole
processes from the MI sharply drop off, with visible tradeoff to particle-hole (Higgs-Goldsone)
pair processes on the superfluid side of the transition. Notably, a cusp is formed as a result of
this tradeoff, which is reflected as a non-analyticity in the polaron energies across the transi-
tion, as noted in Sec. 4.2. Physically, this tradeoff reflects an abrupt change in the processes
which produce the dressing cloud of the polarons. Namely, the cloud is dominated by the vir-
tual excitation of Higgs and Goldstone modes, which are generated at all orientations of pair
momentum. Notably, at zero temperature the V vertices do not contribute beyond O(UIB) and
are therefore absent from the ladder summations.

Single-particle processes, which vanished in the MI, now rapidly become non-zero across
the phase transition. In particular, this consists of processes initiated by Ŵ2 or Û2 followed by
re-scatterings via Û3 and capped by Ŵ1 or Û1. Here, we see that the corresponding vertices are
dominated by the Goldstone mode. We comment on the limit U/t → 0 and the connection with
the Bogoliubov approach, which has been discussed previously in Refs. [28,59]. In this limit,
the Gutzwiller ansatz is well-described by the discrete Gross-Pitaevskii equation (DGPE), with
the ground state well-approximated by a coherent state. Furthermore, the excitation spectrum
is described by the Goldstone mode, which recovers the well-known Bogoliubov dispersion
with good agreement for the sound velocity in the t/U → 0 limit. Instead, the Higgs mode,
which is not captured in the DGPE, is increasingly gapped with t/U .

A.3 Explicit expressions for the self-energy

In this section, we provide explicit expressions for the zero-temperature self-energy diagrams
shown in Fig. 2(c) and discussed in Sec. 3.1.3. From this figure, we find five distinct contribu-
tions to the self-energy

Σ(k,ω) =
2
∑

i, j=1

Σ00
i j (k,ω) +
∑

λ>0

Σλλ22 (k,ω) . (A.12)

The first four contributions follow simply from the in-medium scattering matrix as
Σ00

i j (k,ω) = Γ 00
i j (k,ω) and therefore can be obtained from Eq. (14). The fifth contribution
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however requires the summation over the closed loop of the elementary excitation as

Σλλ22 (k,ω) = −
∫

dω′

2π

∑

q

D(0)
λ
(k− q,ω′)Γλλ22 (P,q,q) , (A.13)

where P = (k,ω−ω′) and D(0)
λ

is the Green’s function for a bosonic bath excitation defined in
Sec. 3.1.1. The Feynman diagram corresponding to Eq. (A.13) is shown in Fig. 9, where we
sum over indistinguishable processes involving the Γ12 in-medium scattering matrix element
according to the action of the symmetrizer in Eq. (14) and the Feynman rule discussed in
Sec. 3.1.2. This produces a trivial factor of 2.

Crucially, we note that the collisional energy of the Γ12 in-medium scattering matrix el-
ement is just ω, as the process described involves two incoming elementary excitations at
energies ω′ and ω′′ as well as the incoming impurity at energy ω−ω′ −ω′′, which matches
the total energy ω of the outgoing impurity line in the calculation of the impurity Green’s
function. This diagram gives then the following contribution to the self-energy

∑

λ

Σλλ22 (k,ω) = UIB

∑

q

∑

λ

Vλq ,λq+
UIB

M

∑

q ,k1

∑

λ,λ1>0

Wλq ,λ1k1
Γ
λ1λ
12 (K ,k− k1,k+ q)

ω−ωq ,λ −ωk1,λ1
− ϵP−q−k1

+ i0+
, (A.14)

where K = (k,ω). We recognize the first contribution in Eq. (A.14) as UIB〈δ2n̂〉, the quantum
correction to the filling due to zero-point quantum fluctuations of the bath. We note that
iteration to quadratic order in the coupling produces the perturbative expression found in
Ref. [27]

Σ(k,ω)≈ UIB〈n̂〉+
U2

IBp
M

∑

k,λ

|Wkλ,0,0 + Ukλ,0,0|2

ω−ωk,λ − ϵq−k + i0+

+
U2

IB

2M

∑

k,p
λ,λ1

|Wλk,λ1p |2

ω−ωk,λ −ωp,λ1
− ϵq−k−p + i0+

,
(A.15)

where we note differing conventions for the vertices used in that work. The dashed red lines
in Figs. 4-7 correspond to the results for Σ(0, 0) at this level of approximation.

A.4 Finite-size effects

In this section, we discuss finite-size effects in the QGW method calculation of the impurity
spectral function. For simplicity, we analyze results within the non-self-consistent approxi-
mation (NSC), where the simple replacement discussed in Sec. 3.1.4 is not made. In this
approximation, finite-size effects are more easily interpreted, and the limitations of the NSC
approximation, alluded to in Sec. 3.1.4, become visually evident. In lattice systems, the grid
spacing of the reciprocal lattice is determined by the size of the system with knλ = 2πnλ/

p
M ,

nλ = 0,1, . . . ,
p

M −1. The closed-loop integrations in the Bethe-Salpeter equation (Eq. (14))
run over the grid of the reciprocal lattice, and therefore the impurity-bath scattering continua
are only finitely resolved. This is illustrated in Fig. 10 for lattice sizes M = 62 and 102, where
the (P = 0) single-excitation continua across the O(2) transition for the lowest three collec-
tive modes are shown. Here, the lines correspond to fixed values of the crystal momentum,
with the density of lines of a particular color determined by the corresponding local density
of states. Furthermore, the width of the continua for each band broadens with increasing
t/U as anticipated from the scaling of the widths of ϵk and the Bogoliubov mode. We see
then that finite-size effects become more pronounced in this limit as the bandwidth of the
single-excitation continua increases while the momentum spacing in the first Brillouin zone
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remains fixed. Therefore, it becomes numerically prohibitive to study lattice polarons in the
deep superfluid regime within the QGW method, where instead the Bogoliubov theory be-
comes numerically advantageous [42]. This is further justified by the growth of the gaps for
all but the lowest collective mode, which justifies the neglect of these modes in the deep su-
perfluid regime. We note that these remarks apply also to two-excitation continua, which also
enters the calculation of the self-energy through the final diagram of Fig. 2(c).

In Fig. 11, we show finite-size effects in the in-medium scattering matrix calculated within
the NSC approximation for lattice sizes M = 62 and 102. Here, we note two classes of features:
(i) layered horizontal bands and (ii) curves attached to the boundaries of these banded regions
asymptoting with ±UIB/U . Features (i) are the single-excitation continua, filling in with in-
creasing system size. This increased resolution also corresponds to a defining of the upper and
lower boundaries of the continua; see Fig. 3. In particular, the lower boundary establishes the
scattering threshold, while the upper boundary is set by the finite bandwidth of the particular
mode. We note that for a calculation including Nmode modes, there are Nmode distinct single-
excitation continua as well as Nmode(1 + Nmode)/2 two-excitation continua. However, their
“weight” in Fig. 11 over regions of ω/U is ultimately determined by the vertices which en-
ter into the closed-loop integrations in the Bethe-Salpeter equation (Eq. (14)). Furthermore,
both impurity-Goldstone and impurity-Higgs single-excitation continua are visible in Fig. 11,
which can be confirmed by visual comparison with Fig. 10. We then understand the resolution
of features of type (i) as the finite-size effect discussed in the previous paragraph. However,
features of type (ii) show finite-size effects for |UIB/U | ≪ 1 where they merge with the vari-
ous scattering thresholds. These are the energies of the upper and lower impurity-bath bound
states, which include impurity particle and impurity hole states that are expected to be weakly
bound for |UIB/U | ≪ 1, hence extended and sensitive to finite size effects. Away from the
single-excitation continua however, these lines are robust to finite-size effects, consistent with
a strongly bound, localized state. We comment that for attractive couplings, the linear scaling
∝ UIB/U is consistent with the asymptotic energy UIB + 4t of the vacuum impurity-particle

Figure 10: Single-excitation impurity scattering continua along the 〈n̂〉 = 1 line for
system sizes (a) M = 62 and (b) M = 102. The continua associated with elementary
excitations λ = 1 (orange), 2 (green), and 3 (red). In the superfluid regime, the
λ= 1 mode corresponds to the Goldstone mode, while the λ= 2 modes corresponds
to the Higgs mode with the latter displaying a visible non-analytic cusp in the opening
and closing of the gap at the O(2) transition. Continuous lines correspond to a fixed
value of the lattice momentum as a function of 4t/U with line density reflecting the
local density of states.
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Figure 11: In-medium scattering matrix evaluated for µ/U = 0.4142 and
4t/U = 0.1723 for system sizes (a) M = 62 and (b) M = 102, corresponding to
the superfluid edge of the O(2) transition. The zero-momentum components of the
in-medium scattering matrix are shown for simplicity, which describes scattering be-
tween the impurity and particles in the mean-field ground state. Additionally, we
subtract the mean-field shift UIB〈n̂〉, which is fixed and does not display finite-size
effects.

bound state energy for |U/UIB| → 0 [42,61,83]. The impurity-hole bound state, including its
upper branch, has no vacuum limit because it requires the concept of a hole. However, these
states obey an analogous linear scaling law with the coupling to the impurity-particle bound
states due to particle-hole symmetry.

A.5 General Bethe-Salpeter equation

For completeness, we give the Bethe-Salpter equation at finite temperatures in Fig. 12. This
equation can be written self consistency using a matrix notation:

Γ(P, p, p′) = V(p, p′) +V(p, p′)Π(P, p1)Γ(P, p, p1) , (A.16)

where Γ and V are indicated explicitly in Fig. 12 while the pair propagator matrix is given by:

Π =




0

0







Γ11 Γ12

Γ21 Γ22




=







+




Γ11
+ Γsym

21 Γ12
+ Γ22

Γ11
+ Γ21 Γsym

12
+ Γ22




Figure 12: Diagrammatic representation of the general Bethe-Salpeter equation. In
the zero temperature limit, the expression in Fig. 2b is recovered.
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We note that Π
22

vanishes in the zero temperature limit from which the expressions in
Sec. 3.1.2 can be recovered. Furthermore, the presence of internal back-propagating exci-
tation lines requires the equivalent representations of the Ŵ1 and Ŵ2 processes discussed in
Sec. 3.1.1.

A.6 Solving the Bethe-Salpeter equation

In this section, we detail the numerical method utilized to solve the Bethe-Salpeter equation
(Eq. (14)) in the NSC approximation. As discussed in Sec. 3.1.2, Γ11 and Γ12 can be obtained by
matrix inversion, with the remaining elements of the in-medium scattering matrix following
then straightforwardly via matrix multiplication. Without loss of generality, we then detail
how to obtain Γλλ

′

11 (P,p,p′) in the case P = 0 considered in this work. First, we work on a grid
of momentum knλ discussed in Sec. A.4, writing the in-medium scattering matrix elements as
six-dimensional arrays, which must be re-evaluated for each value of z. The Bethe-Salpeter
equation for Γ11 becomes

(Γ11[z])
λλ′

pix ,p jy ,pnx ,pmy
= UIBUλλ

′

pix ,p jy ,pnx ,pmy

+
UIBp

M

∑

λ1

∑

n′,m′

Uλλ1
pix ,p jy ,pn′x

,pm′y

z −ωpn′x
,pm′y

,λ1
− ϵpn′x

,pm′y

(Γ11[z])
λ1λ
′

pn′x
,pm′y

,pnx ,pmy
.

(A.17)

This can be written as an element of the matrix equation given by Eq. (A.16):

Γ
11
[z] = V

11
+V

11
Π

11
[z]Γ

11
[z] ,

where

(V
11
Π

11
[z])λλ

′

pix ,p jy ,pnx ,pmy
=

UIBp
M

Uλλ1
pix ,p jy ,pn′x

,pm′y

z −ωpn′x
,pm′y

,λ1
− ϵpn′x

,pm′y

.

This matrix equation can then be solved by inversion Γ
11
[ω+ iη] = (1−Π

11
[ω+ iη])−1V

11
where η is a positive infinitesimal number taken to be η = 10−2 in this work. Further-
more, these are square matrices with N2

bandM4 total elements. Here, Nband is the cutoff on
the number of modes included in the calculation, which determines the summations of λ, i.e.
λ = 0, 1, . . . , Nband − 1, where we recall that λ = 0 denotes the mean-field Gutzwiller ground
state. In this work, we take Nband = 3, which leads to converged results in all the regimes
considered. Furthermore, the Fock space summations are cutoff at NFock = 7, noting that this
is sufficient for numerical convergence in the quantum critical regime but must eventually be
increased in the limit U/t → 0 where the ground state becomes a coherent state [59]. With
these cutoffs and grids, the calculation of the lattice polaron self energy can be accomplished
on the timescale of a few hours or less on a standard machine.

A.7 Self-consistent approximations

In this section, we discuss the implementation of the self-consistent (SC) approximation within
the QGW method discussed in Sec. 3.1.4. Because the vertices and multi-band excitation spec-
trum are calculated numerically in the QGW method, the implementation of the SC approxi-
mation has a more significant numerical cost than in the Bogoliubov method where the vertices
and mode spectra are known analytically and the ground state is assumed coherent. However,
this cost is associated with the strongly correlated nature of the BH bath in the quantum crit-
ical regime, as opposed to a weakly interacting BEC bath. Multiple iterations and successive
improvements of the in-medium scattering matrix elements Γλλ

′

(n),i j and self-energies Σ(n), then
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quickly become numerically prohibitive, motivating the mean-field implementation taken in
the main text.

In this section, we compare various implementations of the SC approximation as shown in
Fig. 13. In Fig. 13(a), the NSC result is shown, where we see a polaron line following the mean-
field energy at attractive couplings. At repulsive couplings, this line enters, and decays into,
the impurity-bath continua and is replaced by an energy following the impurity-hole binding
energy from Fig. 11. The merging of the polaron line with the continuum is analogous to what
was found in the NSC treatment of Ref. [42].

In Fig. 13(b), we show results for a single iteration (n= 1) of the SC approximation. Here,
we see that the NSC impurity-bath continua now depend on the impurity-bath interaction
strength, and the line of highest spectral density matches the QMC result. However, we see
that this is not the ground state as there are faint spectral lines for repulsive coupling at lower
energy. In comparison to panel (a), we see that these are remnants of the NSC dimer lines,
which is a clear artifact of the iterative procedure. Namely, the NSC result for the self-energy
has poles at these locations, which consequently also appear as poles in subsequent iterations.
Further iterations can reduce these effects; however, as a consequence, a continued fraction
of poles is produced in the propagator, which requires many iterations to dampen.

In the present work, the numerical cost of iterating on the order of 101 times to investigate
the convergence of this procedure was found to be numerically prohibitive. Instead, we have
implemented the back action in a minimal way by incorporating the mean-field energy in
the bare impurity dispersion in the calculation of the Bethe-Salpeter equation as described in
Sec. 3.1.4. This produces the result in Fig. 13(c), which is in good quantitative agreement
with the QMC prediction and without remnants. We note that this simple approximation

Figure 13: Impurity spectral function A(k = 0,ω) from the QGW method within
different levels of approximation for µ/U = 0.4014, 4t/U = 0.2154, and unit filling
〈n̂〉= 1 for a square lattice with M = 102 sites. (a) Results of the NSC approximation
with coupling independent impurity-bath continua thresholds. The region of largest
spectral density follows (roughly) the perturbative QGW polaron energy indicated by
the red dashed line. (b) Results of the (n = 1) SC approximation, where remnants
of the NSC continua and bound state spectrum from (a) are indicated explicitly. (c)
Results of the NSC approximation with mean-field shifted impurity dispersion. The
QMC results are shown for comparison with hopping parameter rescaled by a factor
tc/tQMC = 0.7179 to align the O(2) critical points of the two methods.
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appears to provide good agreement with the QMC method in the coupling regimes considered
in this work; however, its utility for larger coupling strengths where the back action effects are
possibly more significant is questionable.

B Further details on the full configuration interaction QMC
method

In this section, we discuss the details of the full configuration interaction QMC computations.
We start by discussing the setup required to make the Hamiltonian of Eq. (1) compatible with
full configuration interaction QMC. Next, we discuss the importance sampling scheme we used
to reduce full configuration interaction QMC’s inherent statistical bias. Finally, we discuss the
extrapolation scheme we used to extrapolate our results to infinite lattice sizes.

B.1 Matrix representation of the Hamiltonian

To be able to apply the full configuration interaction QMC algorithm, we start by representing
the Hamiltonian of Eq. (1) as a matrix in the basis of Fock states (here for a single species of
bosons)

|n〉= |n1, n2, . . . , nM 〉=
M
∏

i=1

1
p

ni!

�

â†
i

�

|0〉 , (B.1)

where ni is the number of bosons occupying the lattice site i and M is the number of lattice
sites (and for the purpose of this representation, all lattice sites of a given square lattice are
labeled by a scalar index). Now, the Hamiltonian can be realized as a matrix H with the matrix
elements

Hn,m = 〈n|Ĥ|m〉 . (B.2)

Similarly, a quantum state can be written as

|ψ〉=
∑

n

cn|n〉 , (B.3)

where cn are elements of the coefficient vector c. When an impurity is present in addition to
the many-particle boson bath, we use product states of a Fock basis for the bosons and for the
impurity as a basis. Now, the matrix realization of the Hamiltonian can be used as shown in
Eq. (16), allowing us to estimate the energy and properties of the ground state of Ĥ.

Realizing the BH Hamiltonian in a Fock basis yields a matrix that blocks with respect to
the number of particles. Starting a QMC computation with a vector c(0) with a fixed particle
number will only sample that block in H. This makes the chemical potential µ a simple energy
shift and allows us to set it to zero. Moreover, the BH Hamiltonian in the real-space Fock basis
is stoquastic (i.e. all off-diagonal matrix elements are negative) and thus full configuration
interaction QMC does not experience a sign problem. This allows us to treat relatively large
systems without additional approximations. All QMC calculations in this work were performed
with the Rimu.jl package [58].

B.2 Importance sampling

To reduce the noise and population control bias in full configuration interaction QMC, we
apply importance sampling [55–57]. Importance sampling is a similarity transform applied to
the Hamiltonian H

H̃= ΦHΦ−1 , (B.4)
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where Φ is the diagonal matrix with elements taken from a guiding vector φ

Φn,n = φn . (B.5)

While transforming H this way does not change its spectrum, it transforms the eigenvectors.
In particular, if v is an eigenvector of H, the corresponding eigenvector of H̃ is Φv. If φ is close
to the ground state eigenvector of H, the modified eigenvector becomes more compact, which
has the beneficial effect of reducing noise in the algorithm, which in turn reduces population
control bias and makes computations more efficient [54,57]. However, it should be noted that
Φ does not need to be a particularly good approximation of the ground state to benefit the
computation. As such, it is common to use a simple ansatz to use as the guiding vector [57].

In this work, we use

φn(p) =

� M
∏

i=1

1
ni!

�p

, (B.6)

for the elements of the guiding vector, where ni is the occupation number of site i in the Fock
basis state |n〉 and p is a parameter that can be optimized. This is the exact ground-state
eigenvector of the one-component non-interacting BH model when p = 1/2, and it equally
describes the Mott insulating ground state obtained for t = 0 when p→∞. We have found
that by varying p, it can give reasonable estimates of the ground state even when the strength of
the interaction is high. We have also observed that optimizing this ansatz on a smaller system
and using the same value of p for a larger one still significantly improves the performance of
QMC. In the case of the larger systems, we were unable to even finish computations without
importance sampling, as they would require more memory than what was available.

B.3 Computation parameters and extrapolation

We compute the energies presented in this paper using the following procedure. First, we
optimize the importance sampling parameter p on a 3 × 3 lattice by minimizing the varia-
tional energy of the guiding vector. We can do this since, benefiting from importance sam-
pling, the ansatz does not need to be optimized perfectly and an approximate setting is good
enough [57]. Then, we sample an initial vector c(0) from the optimized ansatz using a kinetic
Monte Carlo procedure [84]. This is done to reduce QMC equilibration times. Finally, we run
QMC for 100 000 steps, where we discard the first 25000 and use the rest to compute a sample
mean of the shift S(n), which gives an estimate of the ground state energy of the system. The
standard error of the energy is estimated from the variance of the time series after removing
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Figure 14: Examples of the application of the extrapolation procedure. The solid line
is the fitted curve (Eq. (B.8)) and the dots represent QMC results for various lattice
sizes with error bars. The panes (a-f) show fits for UIB/U = −1.5,−1,−0.5, 0.5,1, 1.5,
respectively.
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correlations by a blocking analysis [85] with automated hypothesis testing [86]. The popula-
tion control bias is estimated using the methods of Ref. [54] and found to be smaller than the
stochastic standard error. All QMC results in this work are presented with error bars, which,
however, are typically smaller than the marker size in the plots.

To compute the polaron energy Ep, we run two separate computations, one with the in-
teracting impurity, which gives us the ground state energy E(UIB ̸=0), and another with a non-
interacting impurity (that is, setting UIB = 0 in Eq. (1)), giving the ground state energy E(UIB=0).
Then, we calculate the polaron energy for a given lattice with M sites as

E(M)p = E(UIB ̸=0) − E(UIB=0) . (B.7)

For each pair of parameters (UIB, t), we compute the finite system polaron energy E(M)p on grids

of M = 52, 62, . . . 102 sites. The result is then extrapolated to infinite system size by fitting Ep
and λ to the relation

E(M)p = Ep +λ
1
p

M
, (B.8)

where M is the number lattice points. The extrapolated energy Ep is reported as the QMC
result in the main part of the paper. Some examples of the extrapolation procedure are shown
in Fig. 14.

B.4 The charge gap

To verify that a strongly interacting impurity disturbs the bath and prevents it from entering
the MI phase, we compute the charge gap for different values of the impurity strengths UIB as
a function of the hopping strength t. The charge gap is defined as

∆Ec =
1
2
(EN=M+1 − EN=M−1 − 2EN=M ) , (B.9)

where EN is the energy of the ground state with M lattice sites and N bosons in the bath.
In the Bose-Hubbard model, the charge gap is an order parameter for the MI-SF phase

transition. In an infinite system, it has a value of zero in the SF phase and non-zero in the
MI phase [87]. We compute the charge gap for lattices of sizes M = 42, 62, 82 and 102. The
data is presented in Fig. 15. As seen in the figure, the computed charge gap values at strong
impurity-boson interaction (|UIB/U | ≥ 1) are small and decrease with system size, which is
consistent with them being zero for an infinite system. At zero hopping,∆Ec can be computed
analytically and is zero if and only if |UIB/U | ≥ 1, regardless of the size of the system.
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Δ
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Figure 15: Disappearance of the charge gap for strong impurity-boson inter-
action. The plot panes (a-f) show the values of the charge gap ∆Ec for
UIB/U = −1.5,−1,−0.5,0.5, 1,1.5, respectively, at various lattice sizes M . The error
bars on the points are smaller than the symbol size and the lines are guides to the
eye. The values shown at 4t/U = 0 are computed analytically.
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[17] M. Yang, M. Čufar, E. Pahl and J. Brand, Polaron-depleton transition in the Yrast excitations
of a one-dimensional Bose gas with a mobile impurity, Condens. Matter 7, 15 (2022),
doi:10.3390/condmat7010015.

[18] A. K. Sorout, S. Sarkar and S. Gangadharaiah, Dynamics of impurity in the environment
of Dirac fermions, J. Phys.: Condens. Matter 32, 415604 (2020), doi:10.1088/1361-
648X/ab9d4d.

[19] A. Vashisht, I. Amelio, L. Vanderstraeten, G. M. Bruun, O. K. Diessel and N. Goldman, Chi-
ral polaron formation on the edge of topological quantum matter, Nat. Commun. 16, 4918
(2025), doi:10.1038/s41467-025-60166-w [preprint doi:10.48550/arXiv.2407.19093].

[20] A. Camacho-Guardian, N. Goldman, P. Massignan and G. M. Bruun, Dropping an impurity
into a Chern insulator: A polaron view on topological matter, Phys. Rev. B 99, 081105
(2019), doi:10.1103/PhysRevB.99.081105.

[21] F. Grusdt, N. Y. Yao, D. Abanin, M. Fleischhauer and E. Demler, Interferometric mea-
surements of many-body topological invariants using mobile impurities, Nat. Commun. 7,
11994 (2016), doi:10.1038/ncomms11994.

[22] N. Baldelli, B. Juliá-Díaz, U. Bhattacharya, M. Lewenstein and T. Graß, Trac-
ing non-Abelian anyons via impurity particles, Phys. Rev. B 104, 035133 (2021),
doi:10.1103/PhysRevB.104.035133.

[23] A. Muñoz de las Heras, E. Macaluso and I. Carusotto, Anyonic molecules in atomic frac-
tional quantum Hall liquids: A quantitative probe of fractional charge and anyonic statistics,
Phys. Rev. X 10, 041058 (2020), doi:10.1103/PhysRevX.10.041058.

[24] I. Amelio, G. Mazza and N. Goldman, Polaron formation in insulators and the key role
of hole scattering processes in band insulators, charge density waves, and Mott transi-
tions, Phys. Rev. B 110, 235302 (2024), doi:10.1103/physrevb.110.235302 [preprint
doi:10.48550/arXiv.2408.01377].

[25] S. Sachdev, Quantum phase transitions, Cambridge University Press, Cambridge, UK,
ISBN 9780521514682 (2011), doi:10.1017/CBO9780511973765.

[26] M. Punk and S. Sachdev, Mobile impurity near the superfluid–Mott-insulator
quantum critical point in two dimensions, Phys. Rev. A 87, 033618 (2013),
doi:10.1103/PhysRevA.87.033618.

[27] V. E. Colussi, F. Caleffi, C. Menotti and A. Recati, Lattice polarons across the
superfluid to Mott insulator transition, Phys. Rev. Lett. 130, 173002 (2023),
doi:10.1103/PhysRevLett.130.173002.

[28] F. Caleffi, M. Capone, C. Menotti, I. Carusotto and A. Recati, Quantum fluctuations be-
yond the Gutzwiller approximation in the Bose-Hubbard model, Phys. Rev. Res. 2, 033276
(2020), doi:10.1103/PhysRevResearch.2.033276.

[29] V. Colussi, F. Caleffi, C. Menotti and A. Recati, Quantum Gutzwiller approach
for the two-component Bose-Hubbard model, SciPost Phys. 12, 111 (2022),
doi:10.21468/SciPostPhys.12.3.111.

35

https://scipost.org
https://scipost.org/SciPostPhys.19.1.002
https://doi.org/10.1103/physrevb.111.054524
https://doi.org/10.48550/arXiv.2407.03505
https://doi.org/10.3390/condmat7010015
https://doi.org/10.1088/1361-648X/ab9d4d
https://doi.org/10.1088/1361-648X/ab9d4d
https://doi.org/10.1038/s41467-025-60166-w
https://doi.org/10.48550/arXiv.2407.19093
https://doi.org/10.1103/PhysRevB.99.081105
https://doi.org/10.1038/ncomms11994
https://doi.org/10.1103/PhysRevB.104.035133
https://doi.org/10.1103/PhysRevX.10.041058
https://doi.org/10.1103/physrevb.110.235302
https://doi.org/10.48550/arXiv.2408.01377
https://doi.org/10.1017/CBO9780511973765
https://doi.org/10.1103/PhysRevA.87.033618
https://doi.org/10.1103/PhysRevLett.130.173002
https://doi.org/10.1103/PhysRevResearch.2.033276
https://doi.org/10.21468/SciPostPhys.12.3.111


SciPost Phys. 19, 002 (2025)

[30] F. Caleffi, M. Capone, I. de Vega and A. Recati, Impurity dephasing in a Bose-Hubbard
model, New J. Phys. 23, 033018 (2021), doi:10.1088/1367-2630/abe080.

[31] K. V. Krutitsky, Ultracold bosons with short-range interaction in regular optical lattices,
Phys. Rep. 607, 1 (2016), doi:10.1016/j.physrep.2015.10.004.

[32] J.-P. Blaizot, Quantum theory of finite systems, MIT Press, Cambridge, USA, ISBN
9780262022149 (1985).

[33] C. Cohen-Tannoudji, J. Dupont-Roc and G. Grynberg, Photons and atoms, Wiley, Hobo-
ken, USA, ISBN 9783527414444 (1997), doi:10.1002/9783527618422.

[34] M. Di Liberto, A. Recati, N. Trivedi, I. Carusotto and C. Menotti, Particle-hole character of
the Higgs and Goldstone modes in strongly interacting lattice bosons, Phys. Rev. Lett. 120,
073201 (2018), doi:10.1103/PhysRevLett.120.073201.

[35] E. Altman and A. Auerbach, Oscillating superfluidity of bosons in optical lattices, Phys. Rev.
Lett. 89, 250404 (2002), doi:10.1103/PhysRevLett.89.250404.

[36] S. D. Huber, B. Theiler, E. Altman and G. Blatter, Amplitude mode in the quantum phase
model, Phys. Rev. Lett. 100, 050404 (2008), doi:10.1103/PhysRevLett.100.050404.

[37] S. D. Huber, E. Altman, H. P. Büchler and G. Blatter, Dynamical proper-
ties of ultracold bosons in an optical lattice, Phys. Rev. B 75, 085106 (2007),
doi:10.1103/PhysRevB.75.085106.

[38] N. H. Lindner and A. Auerbach, Conductivity of hard core bosons: A paradigm of a bad
metal, Phys. Rev. B 81, 054512 (2010), doi:10.1103/PhysRevB.81.054512.

[39] M. P. A. Fisher, P. B. Weichman, G. Grinstein and D. S. Fisher, Boson lo-
calization and the superfluid-insulator transition, Phys. Rev. B 40, 546 (1989),
doi:10.1103/PhysRevB.40.546.

[40] C. Wu, H.-d. Chen, J.-p. Hu and S.-C. Zhang, Vortex configurations of bosons in an optical
lattice, Phys. Rev. A 69, 043609 (2004), doi:10.1103/PhysRevA.69.043609.

[41] K. V. Krutitsky, J. Larson and M. Lewenstein, Dark solitons near the Mott-
insulator–superfluid phase transition, Phys. Rev. A 82, 033618 (2010),
doi:10.1103/PhysRevA.82.033618.

[42] S. Ding, G. A. Domínguez-Castro, A. Julku, A. Camacho Guardian and G. M. Bruun,
Polarons and bipolarons in a two-dimensional square lattice, SciPost Phys. 14, 143 (2023),
doi:10.21468/SciPostPhys.14.6.143.

[43] Y. Castin, Bose-Einstein condensates in atomic gases: Simple theoretical results, in Coher-
ent atomic matter waves, Springer, Berlin, Heidelberg, Germany, ISBN 9783540410478
(2001), doi:10.1007/3-540-45338-5_1.

[44] S. P. Rath and R. Schmidt, Field-theoretical study of the Bose polaron, Phys.
Rev. A 88, 053632 (2013), doi:10.1103/PhysRevA.88.053632 [preprint
doi:10.48550/arXiv.1308.3457].

[45] H. Fröhlich, Electrons in lattice fields, Adv. Phys. 3, 325 (1954),
doi:10.1080/00018735400101213.

36

https://scipost.org
https://scipost.org/SciPostPhys.19.1.002
https://doi.org/10.1088/1367-2630/abe080
https://doi.org/10.1016/j.physrep.2015.10.004
https://doi.org/10.1002/9783527618422
https://doi.org/10.1103/PhysRevLett.120.073201
https://doi.org/10.1103/PhysRevLett.89.250404
https://doi.org/10.1103/PhysRevLett.100.050404
https://doi.org/10.1103/PhysRevB.75.085106
https://doi.org/10.1103/PhysRevB.81.054512
https://doi.org/10.1103/PhysRevB.40.546
https://doi.org/10.1103/PhysRevA.69.043609
https://doi.org/10.1103/PhysRevA.82.033618
https://doi.org/10.21468/SciPostPhys.14.6.143
https://doi.org/10.1007/3-540-45338-5_1
https://doi.org/10.1103/PhysRevA.88.053632
https://doi.org/10.48550/arXiv.1308.3457
https://doi.org/10.1080/00018735400101213


SciPost Phys. 19, 002 (2025)

[46] R. S. Christensen, J. Levinsen and G. M. Bruun, Quasiparticle properties of a mo-
bile impurity in a Bose-Einstein condensate, Phys. Rev. Lett. 115, 160401 (2015),
doi:10.1103/PhysRevLett.115.160401 [preprint doi:10.48550/arXiv.1503.06979].

[47] R. Haussmann, W. Rantner, S. Cerrito and W. Zwerger, Thermodynamics of the BCS-BEC
crossover, Phys. Rev. A 75, 023610 (2007), doi:10.1103/PhysRevA.75.023610.

[48] K. Van Houcke et al., Feynman diagrams versus Fermi-gas Feynman emulator, Nat. Phys.
8, 366 (2012), doi:10.1038/nphys2273.

[49] P. Dyke et al., Higgs oscillations in a unitary Fermi superfluid, Phys. Rev. Lett. 132, 223402
(2024), doi:10.1103/PhysRevLett.132.223402.

[50] G. H. Booth, A. J. W. Thom and A. Alavi, Fermion Monte Carlo without fixed nodes: A game
of life, death, and annihilation in Slater determinant space, J. Chem. Phys. 131, 054106
(2009), doi:10.1063/1.3193710.

[51] M. Yang, E. Pahl and J. Brand, Improved walker population control for full con-
figuration interaction quantum Monte Carlo, J. Chem. Phys. 153, 174103 (2020),
doi:10.1063/5.0023088.

[52] N. Cerf and O. C. Martin, Finite population-size effects in projection Monte Carlo methods,
Phys. Rev. E 51, 3679 (1995), doi:10.1103/PhysRevE.51.3679.

[53] M. Boninsegni and S. Moroni, Population size bias in diffusion Monte Carlo, Phys. Rev. E
86, 056712 (2012), doi:10.1103/PhysRevE.86.056712.

[54] J. Brand, M. Yang and E. Pahl, Stochastic differential equation approach to understanding
the population control bias in full configuration interaction quantum Monte Carlo, Phys.
Rev. B 105, 235144 (2022), doi:10.1103/PhysRevB.105.235144.

[55] C. J. Umrigar, M. P. Nightingale and K. J. Runge, A diffusion Monte Carlo algorithm with
very small time-step errors, J. Chem. Phys. 99, 2865 (1993), doi:10.1063/1.465195.

[56] E. M. Inack, G. E. Santoro, L. Dell’Anna and S. Pilati, Projective quantum Monte Carlo
simulations guided by unrestricted neural network states, Phys. Rev. B 98, 235145 (2018),
doi:10.1103/PhysRevB.98.235145 [preprint doi:10.48550/arXiv.1809.03562].

[57] K. Ghanem, N. Liebermann and A. Alavi, Population control bias and importance sampling
in full configuration interaction quantum Monte Carlo, Phys. Rev. B 103, 155135 (2021),
doi:10.1103/PhysRevB.103.155135.
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and S. Fratini, Rise and fall of Landau’s quasiparticles while approaching the Mott transi-
tion, Nat. Commun. 12, 1571 (2021), doi:10.1038/s41467-021-21741-z.

[67] D. Pimenov, A. Camacho-Guardian, N. Goldman, P. Massignan, G. M. Bruun and M.
Goldstein, Topological transport of mobile impurities, Phys. Rev. B 103, 245106 (2021),
doi:10.1103/PhysRevB.103.245106.

[68] A. Klein, M. Bruderer, S. R. Clark and D. Jaksch, Dynamics, dephasing and clustering of im-
purity atoms in Bose-Einstein condensates, New J. Phys. 9, 411 (2007), doi:10.1088/1367-
2630/9/11/411.

[69] H. T. Ng and S. Bose, Single-atom-aided probe of the decoherence of a Bose-Einstein con-
densate, Phys. Rev. A 78, 023610 (2008), doi:10.1103/PhysRevA.78.023610.

[70] M. Mehboudi, A. Sanpera and L. A. Correa, Thermometry in the quantum regime: Recent
theoretical progress, J. Phys. A: Math. Theor. 52, 303001 (2019), doi:10.1088/1751-
8121/ab2828.

[71] M. T. Mitchison, T. Fogarty, G. Guarnieri, S. Campbell, T. Busch and J. Goold, In situ
thermometry of a cold Fermi gas via dephasing impurities, Phys. Rev. Lett. 125, 080402
(2020), doi:10.1103/PhysRevLett.125.080402.

[72] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch and I. Bloch, Quantum phase transition
from a superfluid to a Mott insulator in a gas of ultracold atoms, Nature 415, 39 (2002),
doi:10.1038/415039a.

[73] P. Massignan and G. M. Bruun, Repulsive polarons and itinerant ferromagnetism in strongly
polarized Fermi gases, Eur. Phys. J. D 65, 83 (2011), doi:10.1140/epjd/e2011-20084-5.

[74] W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling and M. Greiner, A quantum gas microscope
for detecting single atoms in a Hubbard-regime optical lattice, Nature 462, 74 (2009),
doi:10.1038/nature08482.

[75] J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch and S. Kuhr, Single-
atom-resolved fluorescence imaging of an atomic Mott insulator, Nature 467, 68 (2010),
doi:10.1038/nature09378.

[76] K. F. Mak and J. Shan, Semiconductor moiré materials, Nat. Nanotechnol. 17, 686 (2022),
doi:10.1038/s41565-022-01165-6.

38

https://scipost.org
https://scipost.org/SciPostPhys.19.1.002
https://doi.org/10.1103/PhysRevA.77.015602
https://doi.org/10.1103/PhysRevA.110.023310
https://doi.org/10.1103/PhysRevA.103.013317
https://doi.org/10.1038/s41467-021-21741-z
https://doi.org/10.1103/PhysRevB.103.245106
https://doi.org/10.1088/1367-2630/9/11/411
https://doi.org/10.1088/1367-2630/9/11/411
https://doi.org/10.1103/PhysRevA.78.023610
https://doi.org/10.1088/1751-8121/ab2828
https://doi.org/10.1088/1751-8121/ab2828
https://doi.org/10.1103/PhysRevLett.125.080402
https://doi.org/10.1038/415039a
https://doi.org/10.1140/epjd/e2011-20084-5
https://doi.org/10.1038/nature08482
https://doi.org/10.1038/nature09378
https://doi.org/10.1038/s41565-022-01165-6


SciPost Phys. 19, 002 (2025)

[77] M. Sidler, P. Back, O. Cotlet, A. Srivastava, T. Fink, M. Kroner, E. Demler and A. Imamoglu,
Fermi polaron-polaritons in charge-tunable atomically thin semiconductors, Nat. Phys. 13,
255 (2016), doi:10.1038/nphys3949.

[78] A. Camacho-Guardian and G. M. Bruun, Landau effective interaction between
quasiparticles in a Bose-Einstein condensate, Phys. Rev. X 8, 031042 (2018),
doi:10.1103/PhysRevX.8.031042 [preprint doi:10.48550/arXiv.1712.06931].

[79] A. Camacho-Guardian, L. A. Peña Ardila, T. Pohl and G. M. Bruun, Bipo-
larons in a Bose-Einstein condensate, Phys. Rev. Lett. 121, 013401 (2018),
doi:10.1103/PhysRevLett.121.013401.

[80] B. Capogrosso-Sansone, M. Guglielmino and V. Penna, Mott-insulator-SF transition
lobe in the presence of a second superfluid component, Laser Phys. 21, 1443 (2011),
doi:10.1134/S1054660X11150023.

[81] C. Gross and I. Bloch, Quantum simulations with ultracold atoms in optical lattices, Science
357, 995 (2017), doi:10.1126/science.aal3837.

[82] I. M. Georgescu, S. Ashhab and F. Nori, Quantum simulation, Rev. Mod. Phys. 86, 153
(2014), doi:10.1103/RevModPhys.86.153.

[83] J. H. Denschlag and A. J. Daley, Exotic atom pairs: Repulsively bound states in an
optical lattice, in Ultra-cold Fermi gases, IOS Press, Amsterdam, Netherlands, ISBN
9781607503187 (2007), doi:10.3254/978-1-58603-846-5-677.

[84] I. Sabzevari and S. Sharma, Improved speed and scaling in orbital space variational Monte
Carlo, J. Chem. Theory Comput. 14, 6276 (2018), doi:10.1021/acs.jctc.8b00780.

[85] H. Flyvbjerg and H. G. Petersen, Error estimates on averages of correlated data, J. Chem.
Phys. 91, 461 (1989), doi:10.1063/1.457480.

[86] M. Jonsson, Standard error estimation by an automated blocking method, Phys. Rev. E 98,
043304 (2018), doi:10.1103/PhysRevE.98.043304.

[87] M. P. A. Fisher, P. B. Weichman, G. Grinstein and D. S. Fisher, Boson lo-
calization and the superfluid-insulator transition, Phys. Rev. B 40, 546 (1989),
doi:10.1103/PhysRevB.40.546.

39

https://scipost.org
https://scipost.org/SciPostPhys.19.1.002
https://doi.org/10.1038/nphys3949
https://doi.org/10.1103/PhysRevX.8.031042
https://doi.org/10.48550/arXiv.1712.06931
https://doi.org/10.1103/PhysRevLett.121.013401
https://doi.org/10.1134/S1054660X11150023
https://doi.org/10.1126/science.aal3837
https://doi.org/10.1103/RevModPhys.86.153
https://doi.org/10.3254/978-1-58603-846-5-677
https://doi.org/10.1021/acs.jctc.8b00780
https://doi.org/10.1063/1.457480
https://doi.org/10.1103/PhysRevE.98.043304
https://doi.org/10.1103/PhysRevB.40.546

	Introduction
	System
	Methods
	Quantum Gutzwiller (QGW) method
	Diagrammatics
	Impurity-boson scattering
	Impurity self-energy
	Self-consistency

	Full configuration interaction quantum Monte Carlo (QMC)

	Results
	Results for a fixed bath and variation of UIB
	Mott insulating bath
	Critical bath – O(2) point
	Superfluid bath

	Results for fixed UIB and variation of the bath
	Comparison with QMC

	Discussion and outlook
	Further details on QGW method
	Background
	Vertices across the O(2) transition
	Explicit expressions for the self-energy
	Finite-size effects
	General Bethe-Salpeter equation
	Solving the Bethe-Salpeter equation
	Self-consistent approximations

	Further details on the full configuration interaction QMC method
	Matrix representation of the Hamiltonian
	Importance sampling
	Computation parameters and extrapolation
	The charge gap

	References

