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Abstract
A long-standing conjecture of Eckhoff, Linhart, and Welzl, which would generalize McMullen’s
Upper Bound Theorem for polytopes and refine asymptotic bounds due to Clarkson, asserts that
for k ⩽ ⌊ n−d−2

2 ⌋, the complexity of the (⩽ k)-level in a simple arrangement of n hemispheres in
Sd is maximized for arrangements that are polar duals of neighborly d-polytopes. We prove this
conjecture in the case n = d + 4. By Gale duality, this implies the following result about crossing
numbers: In every spherical arc drawing of Kn in S2 (given by a set V ⊂ S2 of n unit vectors
connected by spherical arcs), the number of crossings is at least 1

4 ⌊ n
2 ⌋⌊ n−1

2 ⌋⌊ n−2
2 ⌋⌊ n−3

2 ⌋. This lower
bound is attained if every open linear halfspace contains at least ⌊(n − 2)/2⌋ of the vectors in V .

Moreover, we determine the space of all linear and affine relations that hold between the face
numbers of levels in simple arrangements of n hemispheres in Sd. This completes a long line of
research on such relations, answers a question posed by Andrzejak and Welzl in 2003, and generalizes
the classical fact that the Dehn–Sommerville relations generate all linear relations between the face
numbers of simple polytopes (which correspond to the 0-level).

To prove these results, we introduce the notion of the g-matrix, which encodes the face numbers
of levels in an arrangement and generalizes the classical g-vector of a polytope.
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1 Introduction

Levels in arrangements (and the dual notions of k-sets and k-facets) play a fundamental role
in discrete and computational geometry and are a natural generalization of convex polytopes
(which correspond to the 0-level); we refer to [21, 30, 45] for more background.

It is a classical result in polytope theory that the Euler–Poincaré relation is the only linear
relation between the face numbers of arbitrary d-dimensional convex polytopes, and that
the Dehn–Sommerville relations (which we will review below) generate all linear relations
between the face numbers of simple (or, dually, simplicial) polytopes [23, Chs. 8–9]. Another
central result in polytope theory is McMullen’s Upper Bound Theorem [31], which asserts
that cyclic polytopes have the largest possible number of faces among all d-dimensional convex
polytopes with a given number of vertices.

Here, we are interested in generalizations of these results to levels and sublevels in
arrangements. To state our results formally, it will be convenient to work with spherical
arrangements in Sd (which can be seen as a “compactification” of arrangements of affine
hyperplanes or halfspaces in Rd that avoids technical issues related to unbounded faces).
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75:2 Levels in Arrangements, the g-Matrix, and Crossing Numbers

1.1 Levels in Arrangements, Dissection Patterns, and Polytopes

Throughout this paper, let r = d + 1 ⩾ 1, and let Sd be the unit sphere in Rr. We denote
the standard inner product in Rr by ⟨·, ·⟩, and write sgn(x) ∈ {−1, 0, +1} for the sign of
a real number x ∈ R. For a sign vector F ∈ {−1, 0, +1}n, let F+, F0, and F− denote the
subsets of coordinates i ∈ [n] such that Fi = +1, Fi = 0, and Fi = −1, respectively.

Let V = {v1, . . . , vn} ⊂ Rr be a set of n ⩾ r vectors; fixing the labeling of the vectors,
we will also view V as a matrix V = [v1| . . . |vn] ∈ Rr×n with columns vi. Unless stated
otherwise, we assume that V is in general position, i.e., that any r of the vectors are linearly
independent. We refer to V as a vector configuration of rank r.

Every vector vi ∈ V defines a great (d − 1)-sphere Hi = {x ∈ Sd | ⟨vi, x⟩ = 0} in Sd and
two open hemispheres

H+
i = {x ∈ Sd | ⟨vi, x⟩ > 0}, H−

i = {x ∈ Sd | ⟨vi, x⟩ < 0}.

The resulting arrangement A(V ) = {H+
1 , . . . , H+

n } of hemispheres in Sd determines a
decomposition of Sd into faces of dimensions 0 through d, where two points u, u′ ∈ Sd lie
in the relative interior of the same face of A(V ) iff sgn(⟨vi, u⟩) = sgn(⟨vi, u′⟩) for 1 ⩽ i ⩽ n.
Let F(V ) be the set of all sign vectors (sgn(⟨v1, u⟩), . . . , sgn(⟨vn, u⟩)) ∈ {−1, 0, +1}n, where
u ranges over all non-zero vectors (equivalently, unit vectors) in Rr; we can identify each
face of A(V ) with its signature F ∈ F(V ). By general position, the face with signature F

has dimension d − |F0| (the arrangement is simple, i.e., there are no faces with |F0| > d).
Moreover, we call |F−| the level of the face. Equivalently, the elements of F(V ) correspond
bijectively to the partitions of V by oriented linear hyperplanes, and we will also call them the
dissection patterns of V . In what follows, we will pass freely back and forth between a vector
configuration V and the corresponding arrangement A(V ) and refer to this correspondence
as polar duality (to distinguish it from Gale duality, see below).

▶ Definition 1 (f -matrix and f -polynomial). For integers s and t, let1

fs,t := fs,t(V ) := |{F ∈ F(V ) | |F0| = s, |F−| = t}|.

Thus, fs,t(V ) counts the (d − s)-dimensional faces of level t in A(V ).
Together, these numbers form the f -matrix f(V ) = [fs,t(V )]. Equivalently, we can encode

this data into the bivariate f -polynomial fV (x, y) ∈ Z[x, y] defined by

fV (x, y) :=
∑
s,t

fs,t(V ) xsyt =
∑

F ∈F(V )

x|F0|y|F−|.

We call a vector configuration V pointed if it is contained in an open linear halfspace
{x ∈ Rr : ⟨u, x⟩ > 0}, for some u ∈ Sd, or equivalently, if

⋂n
i=1 H+

i ≠ ∅. The closure of
this intersection is then a simple (spherical) polytope P , the 0-level of A(V ). By radial
projection onto the tangent hyperplane {x ∈ Rr : ⟨u, x⟩ = 1}, every pointed configuration
V ⊂ Rr corresponds to a point set S ⊂ Rd, see [30, Sec. 5.6]. The convex hull P ◦ = conv(S)
is a simplicial polytope (the polar dual of P ), and the elements of F(V ) correspond to the
partitions of S by affine hyperplanes; in particular, fs,0(V ) counts the (s − 1)-dimensional
faces of P ◦, and f0,k(V ) counts the k-sets of S.

1 By general position, fs,t(V ) = 0 unless 0 ⩽ s ⩽ d and 0 ⩽ t ⩽ n − s.
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1.2 Exact Upper Bounds for Sublevels
The following two special vector configurations will play an important role in this paper.

▶ Example 2 (Cyclic and Cocyclic Configurations). Let t1 < t2 < · · · < tn be real numbers and
define vi := (1, ti, t2

i , . . . , tr−1
i ) ∈ Rr. We call Vcyclic(n, r) := {v1, . . . vn} and Vcocyclic(n, r) :=

{(−1)ivi : 1 ⩽ i ⩽ n} the cyclic and cocyclic configurations of n vectors in Rr, respectively.2

Cyclic and cocyclic configurations are examples of neighborly and coneighborly configurations,
which we define next. Let V = {v1, . . . , vn} ⊆ Rr be a vector configuration in general position.
A subset W ⊆ V is extremal if there exists a linear hyperplane H bounding an open halfspace
H+ such that W ⊂ H and V \ W ⊂ H+. In particular, V is pointed iff ∅ ⊂ V is extremal.

▶ Definition 3 (Neighborly and Coneighborly Configurations). A vector configuration V =
{v1, . . . , vn} ⊆ Rr is coneighborly if every open linear halfspace contains at least ⌊ n−r+1

2 ⌋
vectors of V . It is neighborly if every subset W ⊆ V of size |W | ⩽ ⌊ r−1

2 ⌋ is extremal.

Cyclic configurations are neighborly, cocyclic configurations are coneighborly [48, Cor. 0.8],
and these notions are Gale dual to each other (see Section 2). Every neighborly vector
configuration V ⊂ Rr is pointed, hence corresponds to a point set S ⊂ Rd, d = r − 1, and
V being neighborly means the simplicial d-polytope conv(S) is a neighborly polytope, i.e.,
every subset of S of size at most ⌊ d

2 ⌋ forms a face. We note that for r = 1, 2 (d = 0, 1)
neighborliness is the same as being pointed, and for r = 3, 4 (d = 2, 3) V is neighborly iff
the point set S is in convex position. By a celebrated result of McMullen [31] neighborly
polytopes maximize the number of faces of any dimension:

▶ Theorem 4 (Upper Bound Theorem for Convex Polytopes). Let V ⊂ Rr be a configuration
of n vectors in general position. Then

fs,0(V ) ⩽ fs,0(Vcyclic(n, r)) (0 ⩽ s ⩽ d = r − 1)

with equality if V is neighborly.

Eckhoff [20, Conj. 9.8], Linhart [26], and Welzl [46], independently of one another (and in
slightly different forms) conjectured a far-reaching generalization of Theorem 4 for sublevels
of arrangements. To state this conjecture, let fs,⩽k(V ) :=

∑
t⩽k fs,t(V ).

▶ Conjecture 5 (Generalized Upper Bound Conjecture for Sublevels). Let V ⊂ Rr be a
configuration of n vectors in general position, and 0 ⩽ k ⩽ ⌊ n−r−1

2 ⌋. Then

fs,⩽k(V ) ⩽ fs,⩽k(Vcyclic(n, r)) (0 ⩽ s ⩽ d = r − 1)

Equality holds if V is neighborly.

A random sampling argument due to Clarkson (see [18]) shows that Conjecture 5 is true
asymptotically, for fixed r and n, k → ∞, up to a constant factor depending on r. For the
case s = d of vertices at sublevel (⩽ k), Conjecture 5 was proved by Peck [36] and by Alon
and Győri [10] for r ⩽ 3 and by Welzl [46] for pointed vector configurations in rank r = 4.
The second author [44] proved that it is true up to a factor of 4 for arbitrary rank r. Here,
we prove the conjecture for corank n − r = 3.

2 The combinatorial types of these configurations are independent of the choice of the parameters ti.

SoCG 2025



75:4 Levels in Arrangements, the g-Matrix, and Crossing Numbers

▶ Theorem 6. Let V ⊂ Rn−3 be a configuration of n vectors in general position. Then

fs,⩽k(V ) ⩽ fs,⩽k(Vcyclic(n, r)) (0 ⩽ k ⩽ 1, 0 ⩽ s ⩽ d = r − 1)

Equality holds if V is neighborly.

▶ Remark 7. Bounding the maximum number of faces at level exactly k is of a rather different
flavor. For coneighborly configurations, all 2

(
n

r−1
)

vertices of the dual arrangement are
concentrated at one or two consecutive levels k = ⌊ n−r+1

2 ⌋ and k = ⌈ n−r+1
2 ⌉. By contrast,

determining the maximum number fd,k of vertices at level k for pointed vector configurations
in Rr is a difficult open problem, first studied by Lovász [28] and Erdős, Lovász, Simmons,
and Straus [22] in the 1970s (see [45] or [30, Ch. 11] for more details and background); even
for r = 3 (i.e., d = 2) there remains a big gap between the best upper and lower bounds to
date, which are O(nk1/3) and neΩ(

√
log k), respectively (due to Dey [19] and Tóth [43]).

1.3 The Spherical Arc Crossing Number of Kn

By Gale duality (see Section 2), Theorem 6 yields the following result about crossing numbers.
Determining the crossing number cr(Kn) of the complete graph Kn (the minimum number

of crossings in any drawing of Kn in the plane, or equivalently in the sphere S2, with edges
represented by arbitrary Jordan arcs) is one of the foundational unsolved problems in
geometric graph theory, first studied by Hill in the 1950’s. Hill conjectured the following:

▶ Conjecture 8 (Hill).

cr(Kn) = X(n) := 1
4

⌊n

2

⌋⌊n − 1
2

⌋⌊n − 2
2

⌋⌊n − 3
2

⌋
= 3

8

(
n

4

)
+ O(n3) (1)

This is known to hold for n ⩽ 12, but remains open in general (see [37, Sec. 1.3] or [42] for
further background and references). There are several families of drawings showing that
cr(Kn) ⩽ X(n) for all n, but the best lower bound to date [14] is cr(Kn) ⩾ 0.985 · X(n).

We prove Hill’s conjecture for the following class of drawings. Let V = {v1, . . . , vn} ⊂ S2

be a configuration of n unit vectors in general position. If we connect every pair of vectors in
V by the shortest geodesic arc between them in S2 (which is unique, since no two vectors are
antipodal, by general position) we obtain a drawing of the complete graph Kn in S2, which
we call a spherical arc drawing. Let cr(V ) denote the number of crossings in this drawing.

▶ Theorem 9. For every configuration V ⊂ S2 of n unit vectors in general position,

cr(V ) ⩾ 1
4

⌊n

2

⌋⌊n − 1
2

⌋⌊n − 2
2

⌋⌊n − 3
2

⌋
Moreover, the lower bound is attained with equality if V is coneighborly.

The fact that coneighborly configurations yield spherical arc drawings of Kn achieving
the number X(n) of crossings in Hill’s conjecture, and the connection to the Eckhoff–Linhart–
Welzl conjecture were first observed by Wagner [44, 45]. It is known [35] that there are at
least n

3
2 (1−o(1))n combinatorially different coneighborly configurations of n vectors in S2.

Spherical arc drawings generalize the well-studied class of rectilinear drawings of Kn

(given by n points in general position in R2 connected by straight-line segments), which
correspond to spherical arc drawings given by pointed vector configurations V ⊂ S2.

Theorem 9 complements earlier results of Lovász, Vesztergombi, Wagner, and Welzl [29]
and Ábrego and Fernández-Merchant [6], who showed that the rectilinear crossing number
cr(Kn) (the minimum number of crossings in any rectilinear drawing of Kn) is at least
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X(n); in fact, cr(Kn) ⩾ ( 3
8 + ε + o(1))

(
n
4
)

for some constant ε > 0 [29]. Thus, unlike the
spherical arc crossing number, the rectilinear crossing number cr(Kn) is strictly larger than
X(n) ⩾ cr(Kn) in the asymptotically leading term. We refer to [8] for a detailed survey,
including a series of subsequent improvements [15, 9, 7, 4] leading to the currently best bound
[5] cr(Kn) > 277/729

(
n
4
)

+ O(n3) > 0.37997
(

n
4
)

+ O(n3). We remark that the arguments
in [29, 6] have been generalized to verify Hill’s conjecture for other classes of drawings,
including 2-page drawings [2], monotone drawings [13], cylindrical, x-bounded, and shellable
drawings [3], bishellable drawings [1], and seq-shellable drawings [34]. Currently we do not
know how spherical arc drawings relate to these other classes of drawings.

1.4 The g-Matrix
The central notion of this paper is the g-matrix g(V → W ) of a pair V, W ∈ Rr×n of vector
configurations, which encodes the difference f(W ) − f(V ) between the f -matrices. The
geometric definition of the g-matrix is given in Sec. 3, based on how the f -matrix changes by
mutations in the course of generic continuous motion (an idea with a long history, see, e.g.,
[11]). The g-matrix is characterized by the following properties:

▶ Theorem 10. Let V, W ∈ Rr×n be a pair of vector configurations in general position.
The g-matrix g(V → W ) of the pair is an (r + 1) × (n − r + 1)-matrix with integer entries

gj,k := gj,k(V → W ), 0 ⩽ j ⩽ r, 0 ⩽ k ⩽ n − r, which has the following properties:
1. For 0 ⩽ j ⩽ r and 0 ⩽ k ⩽ n − r, the g-matrix satisfies the skew-symmetries

gj,k = −gr−j,k = −gj,n−r−k = gr−j,n−r−k (2)

Thus, the g-matrix is determined by the submatrix [gj,k : 0 ⩽ j ⩽ ⌊ r−1
2 ⌋, 0 ⩽ k ⩽ ⌊ n−r−1

2 ⌋],
which we call the small g-matrix. Equivalently, the g-polynomial g(x, y) := gV →W (x, y) :=∑

j,k gj,kxjyk ∈ Z[x, y] satisfies

g(x, y) = −xrg( 1
x , y) = −yn−rg(x, 1

y ) = xryn−rg( 1
x , 1

y ) (3)

2. The g-polynomial determines the difference fW (x, y) − fV (x, y) of f -polynomials by

fW (x, y) − fV (x, y) = (1 + x)rg( x+y
1+x , y) =

∑r
j=0

∑n−r
k=0 gj,k · (x + y)j(1 + x)r−jyk (4)

Equivalently (by comparing coefficients), for 0 ⩽ s ⩽ d and 0 ⩽ t ⩽ n,

fs,t(W ) − fs,t(V ) =
∑
j,k

(
j

t − k

)(
r − j

s − j + t − k

)
gj,k(V → W ), (5)

3. g(W → V ) = −g(V → W ), and g(U → W ) = g(U → V ) + g(V → W )
▶ Remark 11. The system of equations (5) yields a linear transformation T = Tn,r through
which the g-matrix g = g(V → W ) of the pair determines the difference ∆f = f(W ) − f(V )
of f -matrices by ∆f = T (g). In the presence of the skew-symmetries (2), the transformation
T is injective (Lemma 25), i.e., g(V → W ) is uniquely determined by ∆f = f(W ) − f(V ).
Thus, Theorem 10 could be taken as a formal definition of the g-matrix.

1.5 Linear Relations
Linear relations between face numbers of levels in simple arrangements have been studied
extensively [33, 24, 27, 12, 16].

The first set of linear relations is given by the antipodal symmetry F ↔ −F of F(V ):

SoCG 2025



75:6 Levels in Arrangements, the g-Matrix, and Crossing Numbers

▶ Observation 12. Let V = {v1, . . . , vn} ⊂ Rr. Then fV (x, y) = ynfV ( x
y , 1

y ); equivalently,

fs,t(V ) = fs,n−s−t(V ) for all s and t (6)

Moreover, it is well-known [23, Sec. 18.1] that the total number of faces of a given
dimension d − s (of any level) in a simple arrangement in Sd depends only on n, d, and s:

▶ Lemma 13. Let A(V ) be a simple arrangement of n hemispheres in Sd. Then, for
0 ⩽ s ⩽ d, the total number of (d − s)-dimensional faces (of any level) in A(V ) equals

∑
t

fs,t(V ) = 2
(

n

s

) d−s∑
i=0

(
n − s − 1

i

)
=

d∑
i=0

(1 + (−1)i)
(

n

d − i

)(
d − i

s

)
(7)

In terms of the f -polynomial, this can be expressed very compactly as

fV (x, 1) =
∑d

i=0
(

n
i

) (
1 + (−1)d−i

)
(1 + x)i = 2

((
n
d

)
(x + 1)d +

(
n

d−2
)
(x + 1)d−2 + . . .

)
(8)

Linhart, Yang, and Philipp [27] proved the following result, which generalizes the classical
Dehn–Sommerville relations for simple polytopes:

▶ Theorem 14 (Dehn–Sommerville Relations for Levels in Simple Arrangements). Let V ∈ Rr×n

be a vector configuration in general position. Then

fV (x, y) = (−1)dfV (−(x + y + 1), y) (9)

Equivalently (by comparing coefficients), for 0 ⩽ s ⩽ d and 0 ⩽ t ⩽ n,

fs,t(V ) =
∑

j

∑
ℓ

(−1)d−j

(
j

s

)(
j − s

t − ℓ

)
fj,ℓ(V ) (10)

▶ Remark 15. The Dehn–Sommerville relations for polytopes correspond to the identity
fV (x, 0) = (−1)dfV (−(x + 1), 0). The coefficients on the right-hand side of (10) are zero
unless ℓ ⩽ t (and j ⩾ s). This yields, for every k, a linear system of equations among the
numbers fs,t, 0 ⩽ s ⩽ d and t ⩽ k, of face numbers of the (⩽ k)-sublevel of the arrangement
A(V ). An equivalent system of equations (expressed in terms of an h-matrix that generalizes
the h-vector of a simple polytope) was proved earlier by Mulmuley [33], under the additional
assumption that the (⩽ k)-sublevel is contained in an open hemisphere. Related relations
have been rediscovered several times (e.g., in the recent work of Biswas et al. [16]).
▶ Remark 16. The skew-symmetry g(x, y) = −xrg( 1

x , y) of the g-matrix reflects the Dehn–
Sommerville relation (9), and the symmetry g(x, y) = xryn−rg( 1

x , 1
y ) reflects the antipodal

symmetry (6).
Let Vn,r denote the set of vector configurations V ∈ Rr×n in general position. Let

Fn,r := aff{f(V ) : V ∈ Vn,r}, Gn,r := lin{g(V → W ) : V, W ∈ Vn,r}

be the affine space spanned by all f -matrices, and the linear space spanned by all g-matrices
of pairs, respectively. Let V0

n,r ⊂ Vn,r be the subset of pointed configurations, and let

F0
n,r := aff{f(V ) : V ∈ V0

n,r}, G0
n,r := lin{g(V → W ) : V, W ∈ V0

n,r}

be the corresponding subspaces of Fn,r and Gr,n. Answering a question posed by Andrzejak
and Welzl [12], we determine these spaces:
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▶ Theorem 17. dimFn,r = dimGn,r = ⌊ r+1
2 ⌋⌊ n−r+1

2 ⌋. More precisely,

Gn,r =
{

g ∈ R(r+1)×(n−r+1) : gj,k = −gr−j,k = −gj,n−r−k = gr−j,n−r−k

for 0 ⩽ j ⩽ r, 0 ⩽ k ⩽ n − r

}
(11)

is the space of all real (r + 1) × (n − r + 1)-matrices satisfying the skew-symmetries (2), and

Fn,r = f(V0) + T (Gn,r)

for any fixed V0 ∈ Vn,r, where T = Tn,r is the injective linear transformation given by (5).

▶ Theorem 18. dimF0
n,r = dimG0

n,r = ⌊ r−1
2 ⌋⌊ n−r+1

2 ⌋. More precisely,

G0
n,r = {g ∈ Gn,r : g0,k = 0, 0 ⩽ k ⩽ n − r}, and F0

n,r = f(V0) + T (G0
n,r)

for any V0 ∈ V0
n,r.

As a specific base configuration V0 in both theorems, one can take the cyclic vector
configuration Vcyclic(n, r) (see Example 2), whose f -matrix is known explicitly [12].

2 Gale Duality and Dependency Patterns

Let V = {v1, . . . , vn} ⊂ Rr be a vector configuration in general position, and let F∗(V ) be
the set of all sign vectors (sgn(λ1), . . . , sgn(λn)) ∈ {−1, 0, +1}n given by non-trivial linear
dependencies

∑n
i=1 λivi = 0 (with coefficients λi ∈ R, not all of them are zero). We call

F∗(V ) the dependency patterns of V . Both F∗(V ) and F(V ) are invariant under invertible
linear transformations of Rr and under positive rescaling (multiplying each vector vi by
some positive scalar αi > 0).

If V is a pointed configuration corresponding to a point set S ⊂ Rd, d = r − 1, then the
elements of F∗(V ) encode the sign patterns of affine dependencies of S, hence they correspond
bijectively to (ordered) Radon partitions S = S− ⊔ S0 ⊔ S+, conv(S+) ∩ conv(S−) ̸= ∅.

▶ Definition 19 (f∗-matrix and f∗-polynomial). For integers s and t, define3

f∗
s,t(V ) := |{F ∈ F∗(V ) | |F−| = t, |F+| = s − t}|

Together, these numbers form the f∗-matrix f∗(V ) = [f∗
s,t(V )]. Equivalently, we can encode

this data into the bivariate f∗-polynomial f∗
V (x, y) ∈ Z[x, y] defined by

f∗
V (x, y) :=

∑
F ∈F∗(V )

x|F0|y|F−| =
∑
s,t

f∗
s,t(V ) xn−syt

Dependency patterns and dissection patterns are, in a precise sense, dual to each other:

▶ Definition 20 (Gale Duality). Two vector configurations V ∈ Rr×n and W ∈ R(n−r)×n

are called Gale duals of one another if the rows of V and the rows of W span subspaces of
Rn that are orthogonal complements of one another.

Since we always assume that V and W are in general position and of full rank, V and W are
Gale dual to each other iff V W ⊤ = 0.

3 Note that f∗
s,t(V ) = 0 unless r + 1 ⩽ s ⩽ n and 0 ⩽ t ⩽ s.

SoCG 2025
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It is well-known that Gale dual configurations determine each other up to linear isomor-
phisms of their ambient spaces Rr and Rn−r, respectively [30, Sec. 5.6]. Thus, we will speak
of the Gale dual of V , which we denote by V ∗. It follows from the definition that (V ∗)∗ = V .

As another consequence of the definition, F∗(V ) = F(V ∗), hence f∗
s,t(V ) = fn−s,t(V ∗)

for all s, t; equivalently, f∗
V (x, y) = fV ∗(x, y).

By the well-known separation theorem for convex sets [30, Sec. 1.2], a vector configuration
V in general position is either pointed (equivalently, f0,0(V ) = 1), or there is a linear
dependence of the vectors all of whose coefficients are positive (i.e., f∗

n,0(V ) = 1); the same
holds for all subsets W ⊆ V . It follows from this that F(V ) and F∗(V ) determine each
other (see, e.g., [40, Sec. 2] for more details). In particular, a vector configuration V ⊂ Rr is
neighborly iff f∗

s,t(V ) = 0 for t ⩽ ⌊ r−1
2 ⌋, i.e., V is neighborly iff V ∗ is coneighborly.

Moreover, one can show that the f -matrix and the f∗-matrix of a vector configuration, or
equivalently the polynomials fV (x, y) and f∗

V (x, y) determine each other as well [40, Sec. 2]:

▶ Theorem 21. Let V ∈ Rr×n be a vector configuration in general position. Then

f∗
V (x, y) = (x + y + 1)n − (−1)rxn − (x + 1)nfV (− x

x+1 , x+y
x+1 ) (12)

and
fV (x, y) = (x + y + 1)n − (−1)n−rxn − (x + 1)nf∗

V (− x
x+1 , x+y

x+1 ) (13)

By Gale duality, Theorem 17 immediately gives a complete description of the affine
space F∗

n,r spanned by the f∗-matrices of vector configurations V ∈ Rr×n, and there is an
analogous characterization for the subspace (F∗

n,r)0 spanned by the f∗-matrices of pointed
vector configurations in Rr (which count the number of Radon partitions of given types for
the corresponding point sets in Rd), see [40, Sec. 1.2]

We say that two vector configurations V, W ∈ Rr×n have the same combinatorial type
if (up to a permutation of the vectors) F(V ) = F(W ) (equivalently, F∗(V ) = F∗(W )).
Furthermore, we call V and W weakly equivalent if they have identical f -matrices (equivalently,
identical f∗-matrices).
▶ Remark 22. For readers familiar with oriented matroids (see [48, Ch. 6] or [17]), F∗(V )
and F(V ) are precisely the sets of vectors and covectors, respectively, of the oriented matroid
realized by V . However, speaking of “(co)vectors of a vector configuration” seems potentially
confusing, and we hope that the terminology of dissection and dependency patterns is more
descriptive. The Dehn–Sommerville relations hold for (uniform, not necessarily realizable)
oriented matroids. The definition of the g-matrix via continuous motion does not carry
over to the oriented matroid setting, but one can still define the g-matrix formally, by the
properties described in Theorem 10. We plan to treat this in detail in a future paper.

3 Continuous Motion and the g-Matrix

3.1 The g-Matrix of a Pair
Any two configurations V = {v1, . . . , vn} and W = {w1, . . . , wn} of n vectors in general
position in Rr can be deformed into one another through a continuous family V (t) =
{v1(t), . . . , vn(t)} of vector configurations, where vi(t) describes a continuous path from
vi(0) = vi to vi(1) = wi in Rr. If we choose this continuous motion sufficiently generically,
then there is only a finite set of events 0 < t1 < · · · < tN < 1, called mutations, during which
the combinatorial type of V (t) (which is encoded by F(V (t))), changes, in a controlled way
(see Figures 1 and 2 for an illustration in the case d = 2). Specifically, during a mutation,
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a unique r-tuple of vectors in V (t), indexed by some R = {i1, . . . , ir} ⊂ [n], momentarily
becomes linearly dependent and the orientation of this r-tuple (i.e., the sign of det[vi1 | . . . |vir

])
changes, while the orientations of all other r-tuples of vectors remain unchanged. Thus, any
two vector configurations are connected by a finite sequence V = V0, V1, . . . , VN = W such
that Vs−1 and Vs differ by a mutation, 1 ⩽ s ⩽ N .

We describe the change from F(V ) to F(W ) when V and W differ by a mutation. Let
R ∈

([n]
r

)
index the unique r-tuple of vectors that become linearly dependent. In terms of

the polar dual arrangements, this means that the r-tuple of great (d − 1)-spheres Hi, i ∈ R,
momentarily intersect in an antipodal pair u, −u of points in Sd. Immediately before and
immediately after the mutation, these r great (d − 1)-spheres bound an antipodal pair of
simplicial d-faces σ, −σ in A(V ) and a corresponding pair of simplicial d-faces τ, −τ in A(W ),
respectively. We have F ∈ F(V ) \ F(W ) iff the face of A(V ) with signature F is contained
in σ or −σ, and F ∈ F(W ) \ F(V ) iff the face of A(W ) with signature F is contained in τ

or −τ . All other faces are preserved, i.e., they belong to F(V ) ∩ F(W ).
Let Y ∈ F(W ) be the signature of τ . We define a partition [n] = I ⊔ J ⊔ A ⊔ B by

I := R ∩ Y+, J := R ∩ Y−, A := ([n] \ R) ∩ Y+, B := ([n] \ R) ∩ Y−

Define j := |J | and k := |B|. We call the pair (j, k) the type of the simplicial face τ . The
signature X ∈ F(V ) of the corresponding simplicial face σ of A(V ) satisfies Xi = −Yi for
i ∈ R and Xi = Yi for i ∈ [n] \ R. Thus, σ is of type (r − j, k). Analogously, −τ and −σ are
of type (r − j, n − r − k) and (j, n − r − k), respectively, see Figures 1 and 2.

Let us define fσ(x, y) :=
∑

F ⊆σ x|F0|y|F−|, where we use the notation F ⊆ σ to indicate
that the sum ranges over all F ∈ F(V ) corresponding to faces of A(V ) contained in σ.
The polynomials f−σ(x, y), fτ (x, y), and f−τ (x, y) are defined analogously. These four
polynomials have a simple form:

fσ(x, y) = yk
[
(x + 1)j(x + y)r−j − xr

]
, f−σ(x, y) = yn−r−k

[
(x + 1)r−j(x + y)j − xr

]
fτ (x, y) = yk

[
(x + 1)r−j(x + y)j − xr

]
, f−τ (x, y) = yn−r−k

[
(x + 1)j(x + y)r−j − xr

]
We say that the mutation V → W is of Type (j, k) ≡ (r − j, n − r − k). The reverse mutation
W → V is of Type (r − j, k) ≡ (j, n − r − k). We can summarize the discussion as follows:

▶ Lemma 23. Let V → W be a mutation of Type (j, k) ≡ (r − j, n − r − k) between
configurations of n vectors in Rr. Then

fW (x, y) − fV (x, y) =
(
yk − yn−r−k

) [
(x + 1)r−j(x + y)j − (x + 1)j(x + y)r−j

]
(14)

Note that the right-hand side of (14) is zero if 2j = r or 2k = n − r.
We are now ready to define the g-matrix g(V → W ) of a pair of vector configurations.

▶ Definition 24 (g-Matrix of a pair). Let V, W be configurations of n vectors in Rr.
If V → W is a single mutation of Type (i, ℓ) ≡ (r − i, n − r − ℓ) then we define the

g-matrix g(V → W ) = [gj,k(V → W )], 0 ⩽ j ⩽ r and 0 ⩽ k ⩽ n − r, as follows:
If 2i = r or 2ℓ = n − r, then gj,k(V → W ) = 0 for all j, k. If 2i ≠ r and 2ℓ ̸= n − r, then

gj,k(V → W ) :=


+1 if (j, k) = (i, ℓ) or (j, k) = (r − i, n − r − ℓ)
−1 if (j, k) = (r − i, ℓ) or (j, k) = (i, n − r − ℓ)
0 else.

SoCG 2025
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1 2

3

k + 3

k + 2

k + 1

k + 1 k + 1

k + 2k + 2 k

k + 1

k + 2

k + 1

k + 1
k + 2

k + 2

1 2

3

n− k − 3

n− k − 2

n− k − 1

n− k − 2

n− k − 2
n− k − 1

n− k − 1

1 2

3

1 2

3

n− k

n− k − 1

n− k − 2

n− k − 2 n− k − 2

n− k − 1n− k − 1

(0, k)

(3, k)

(3, n− 3− k)

(0, n− 3− k)

Figure 1 A mutation of Type (0, k) ≡ (3, n − 3 − k) (from left to right), respectively (3, k) ≡
(0, n − 3 − k) (from right to left) in S2. The upper row shows the triangular faces σ and τ before
and after the mutation, and the lower row shows the corresponding antipodal faces −σ and −τ . The
little arrows indicate positive halfspaces, and the labels in full-dimensional faces indicate levels.

More generally, if V and W are connected by a sequence V = V0, V1, . . . , VN = W , where
Vs−1 and Vs differ by a single mutation, then we define

gj,k(V → W ) :=
N∑

s=1
gj,k(Vs−1 → Vs)

Proof of Thm 10. All three properties follow directly from Definition 24 and Lemma 23. ◀

A priori, it may seem that the definition of the g-matrix depends on the choice of a
particular sequence of mutations transforming V to W . However, this is not the case:

▶ Lemma 25. Let f(x, y) =
∑

s,t fs,tx
syt and g(x, y) =

∑
j,k gj,kxjyk be polynomials (with

real coefficients fs,t and gj,k that are zero unless 0 ⩽ s ⩽ d and 0 ⩽ t ⩽ n, respectively
0 ⩽ j ⩽ r and 0 ⩽ k ⩽ n − r). Suppose that f(x, y) and g(x, y) satisfy the identity

f(x, y) = (1 + x)rg( x+y
1+x , y) =

∑r
j=0

∑n−r
k=0 gj,k · (x + y)j(1 + x)r−jyk (15)

Then, for every fixed t, the numbers gj,t, 0 ⩽ j ⩽ r, are linear combinations of the numbers
fs,ℓ, 0 ⩽ s ⩽ d and 0 ⩽ ℓ ⩽ t, with coefficients given inductively by the polynomial equations∑

j

gj,tx
r−j =

∑
s

fs,t(x − 1)s −
∑

j

∑
k<t

gj,k

(
j

t − k

)
xr−j
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k + 3

k

k + 2 k + 2

k + 1k + 1 k + 1

k + 2

k + 1

k + 2

k

k + 1

k + 3

1 2

3

n− k − 2

n− k − 1

n− k − 2

n− k − 1

n− k − 3
n− k − 2

n− k

1 2

3

1 2

3

n− k − 1

n− k

n− k − 3

n− k − 1 n− k − 1

n− k − 2n− k − 2

(1, k)

(2, k)

(2, n− 3− k)

(1, n− 3− k)

Figure 2 A mutation of Type (1, k) ≡ (2, n − 3 − k) (from left to right), respectively (2, k) ≡
(1, n − 3 − k) (from right to left) in S2.

Proof. The coefficient of yt in (x + y)j(x + 1)r−jyk equals
(

j
t−k

)
(x + 1)r−j (which is zero

unless 0 ⩽ k ⩽ t). Thus, fixing t and collecting terms in (15) according to yt, we get∑
s

fs,tx
s =

∑
j

∑
k⩽t

gj,k

(
j

t − k

)
(1 + x)r−j

Moving the terms with k < t to the other side yields∑
j

gj,t(1 + x)r−j =
∑

s

fs,tx
s −

∑
j

∑
k<t

gj,k

(
j

t − k

)
(1 + x)r−j

The result follows by a change of variable from x to x − 1 (inductively, the numbers gj,k,
k < t, are determined by the numbers fs,ℓ, ℓ < t.) ◀

By Theorem 21, the f -polynomial and the f∗-polynomial of a vector configuration
determine each other. This yields the following analogue of Theorem 10 (which can also
proved directly, by studying how F∗ changes during mutations):

▶ Theorem 26. Let V, W be configurations of n vectors in Rr. Then

f∗
W (x, y) − f∗

V (x, y) =
∑
j,k

gj,k(W → V )︸ ︷︷ ︸
=−gj,k(V →W )

(x + y)k(x + 1)n−r−kyj (16)

Theorems 10 and 26 imply the following:

SoCG 2025
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▶ Corollary 27. Let V, W ∈ Rr×n be vector configurations, and let V ∗, W ∗ ∈ R(n−r)×n be
their Gale duals. Then gj,k(V → W ) = −gk,j(V ∗ → W ∗).

Using the above results, one can show [40, Sec. 3.1] that any pair of neighborly configura-
tions of n vectors in Rr have the same f -matrix and the same f∗-matrix (equivalently, the
g-matrix of the pair is identically zero); analogously for coneighborly configurations.

Moreover, an inductive argument based on deletions and contractions [40, Sec. 3.2] yields
the following result. We say that a vector configuration V ⊂ Rr is j-neighborly if every
subset of V of size j is extremal, and we call V is k-coneighborly if fs,t = 0 for t ⩽ k, i.e., if
every open linear halfspace contains at least k + 1 vectors from V .

▶ Lemma 28. Let 0 ⩽ j ⩽ r−1
2 , 0 ⩽ k ⩽ n−r−1

2 , and let V, W ∈ Rr×n be vector configurations
such that V is k-coneighborly and W is j-neighborly. Then

gj,k(V → W ) =
(

n−k−r+j
j

)(
k+r−1−j

k

)
−

(
n−k−r+j−1

j−1
)(

k+r−j
k

)
> 0 (17)

3.2 The g-Matrix and the g∗-Matrix
We are now ready to define the g-matrix and the g∗-matrix of a vector configuration.

▶ Definition 29 (g-matrix and g∗-matrix). Let V be a configuration of n vectors in Rr. Set

gj,k(V ) := gj,k(Vcocyclic(n, r) → V ), and g∗
j,k(V ) := gj,k(V → Vcyclic(n, r))

for 0 ⩽ j ⩽ r and 0 ⩽ k ⩽ n − r. We call g(V ) = [gj,k(V )] and g∗(V ) = [g∗
j,k(V )] the

g-matrix and the g∗-matrix of V , respectively. By the skew-symmetries (2), both matrices are
determined by their “upper left” quadrants indexed by 0 ⩽ j ⩽ ⌊ r−1

2 ⌋ and 0 ⩽ k ⩽ ⌊ n−r−1
2 ⌋,

which we call the small g-matrix and the small g∗-matrix, respectively.

By Gale duality, we get g∗
j,k(V ) = gk,j(V ∗), i.e., the g∗-matrix of V is the transpose of

the g-matrix of the Gale dual V ∗. Moreover, by Lemma 28,

gj,k(V ) + g∗
j,k(V ) =

(
n−k−r+j

j

)(
k+r−1−j

k

)
−

(
n−k−r+j−1

j−1
)(

k+r−j
k

)
> 0 (18)

for 0 ⩽ j ⩽ r−1
2 and 0 ⩽ k ⩽ n−r−1

2 .
The 0-th column [gj,0(V ) | 0 ⩽ j ⩽ r] of the g-matrix corresponds to the classical g-vector

of a simple polytope. The Generalized Lower Bound Theorem (first proved by Stanley [39],
as part of a full characterization of g-vectors, and hence f -vectors of simple polytopes, see
[48, Sec. 8.6]), asserts that gj,0(V ) ⩾ 0 for 0 ⩽ j ⩽ r−1

2 .
The 0-th row [g∗

0,k | 0 ⩽ k ⩽ n − r] corresponds to a Gale dual version of the g-vector of
convex polytopes studied by Lee [25] and Welzl [46]. The following is implicit in [46, Sec. 4]
(and implies McMullen’s Upper Bound Theorem):

▶ Theorem 30. Let V ⊂ Rr be a configuration of n vectors in general position. Then

g∗
0,k(V ) ⩽

(
k + r − 1

r − 1

)
(0 ⩽ k ⩽ ⌊n − r − 1

2 ⌋)

Equivalently, by (18), g0,k ⩾ 0 for 0 ⩽ k ⩽ ⌊ n−r−1
2 ⌋. Equality holds if V is coneighborly.

As a common generalization of the Upper Bound Theorem, the Generalized Lower Bound
Theorem, and the Eckhoff–Linhart–Welzl Conjecture (Conj. 5), we propose the following:

▶ Conjecture 31 (Nonnegativity of the Small g-Matrix). Let V ⊂ Rr be a configuration of n

vectors in general position. Then gj,k(V ) ⩾ 0 for 0 ⩽ j ⩽ r−1
2 and 0 ⩽ k ⩽ n−r−1

2 .
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Our main result (which implies Theorems 9 and 6) is the following:

▶ Theorem 32. Let V ⊂ R3 be a configuration of n vectors in general position. Then

g∗
1,k(V ) ⩽ (k + 1)n − 3

(
k + 2

2

)
(0 ⩽ k ⩽ ⌊n − 4

2 ⌋)

Equivalently, g1,k(V ) ⩾ 0 for 0 ⩽ k ⩽ ⌊ n−4
2 ⌋. Equality holds if V is coneighborly.

4 The Space Gn,r Spanned by g-Matrices

Here, we prove Theorem 17. (The proof of the corresponding result for pointed configurations
– Theorem 18 – uses similar ideas but is more involved, see [40]). By Theorem 10, the
description of the space Fn,r follows from the description of the space Gn,r, so it remains to
prove the latter. Recall that Vn,r is the set of all vector configurations V ∈ Rr×n in general
position.

By Theorem 10, the g-matrix g = g(V → W ) of any pair V, W ∈ Vn,r satisfies the
skew-symmetries gj,k = −gr−j,k = −gj,n−r−k = gr−j,n−r−k in (2). Thus, in order to prove
Theorem 17, it remains to show that Gn,r = lin{g(V → W ) : V, W ∈ Vn,r} has dimension
⌊ r+1

2 ⌋⌊ n−r+1
2 ⌋. To see this, consider a generic continuous deformation from a coneighborly

configuration V0 to a neighborly configuration VN , and let Vt, 0 ⩽ i ⩽ N , be the intermediate
vector configurations, i.e., Vt and Vt−1 differ by a mutation. Thus, the g-matrices g(V0 → Vt)
and g(V0 → Vt−1) differ by the g-matrix of a mutation, i.e., their first quadrants (small
g-matrices) differ in at most one coordinate, by +1 or −1. Moreover, g(V0 → V0) is identically
zero, and every entry of the first quadrant of g(V0 → VN ) is strictly positive by Lemma 28.
Thus, the proof of Theorem 17 is completed by the following lemma:

▶ Lemma 33. Let X0, X1, . . . , XN be vectors in Rm such that
1. X0 = 0;
2. Xt and Xt−1 differ in one coordinate, by +1 or −1;
3. All coordinates of XN are non-zero.

Then there is a subset Xt1 , . . . , Xtm
of vectors that form a basis of Rm.

Proof. For 1 ⩽ i ⩽ m, let ti be the smallest t ∈ {1, . . . , N} such that the i-th coordinate of
Xti is non-zero; the index ti exists by Properties 1 and 3. Moreover, by Property 2, no two
coordinates can become non-zero at the same time, i.e., the indices ti are pairwise distinct.
Up to re-labeling the coordinates, we may assume t1 < t2 < . . . < tm. Then, for 1 ⩽ i ⩽ m,
the vector Xti

is linearly independent from the vectors Xt1 , . . . Xti−1 , since all of the latter
vectors have i-th coordinate zero. Thus, the Xti

form a basis. ◀

5 Bounding the Spherical Arc Crossing Number

In this section, we outline the proof of Theorem 32 and explain how it implies Theorems 6
and 9. By Gale duality, Theorem 6 is equivalent to the following:

▶ Theorem 34. Let V = {v1, . . . , vn} ⊂ R3 be a vector configuration in general position.
Then, for all s ⩽ n, the numbers f∗

s,0(V ) and f∗
s,⩽1(V ) := f∗

s,0(V ) + f∗
s,1(V ) are maximized if

V is coneighborly.

Theorem 26 and the skew-symmetries of the g∗-matrix imply the following (see [41]):

SoCG 2025
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o

o o

Type 0 Type 1 Type 2

Figure 3 The three combinatorial types of four vectors in general position in R3.

▶ Lemma 35. Let V ∈ R3×n be a vector configuration in general position and let s ⩾ 4.
Then there are non-negative integers α(n, s, k) and β(n, s, k), 0 ⩽ k ⩽ ⌊ n−4

2 ⌋, such that

f∗
s,0(V ) =

⌊ n−4
2 ⌋∑

k=0
α(n, k, s) · g∗

0,k(V )

and

f∗
s,⩽1(V ) =

⌊ n−4
2 ⌋∑

k=0
α(n, k, s) · g∗

1,k(V ) +
⌊ n−4

2 ⌋∑
k=0

β(n, s, k) · g∗
0,k(V )

Specifically, α(n, k, s) =
(

n−3−k
s−3

)
−

(
k

s−3
)

and β(n, s, k) =
(

n−3−k
s−4

)
k −

(
k

s−4
)
(n − 3 − k).

Proof of Theorem 34. By Lemma 35, for s ⩾ 4, f∗
s,0(V ) and f∗

s,⩽1(V ) are non-negative
linear combinations of the numbers g∗

0,k(V ) and g∗
1,k(V ), 0 ⩽ k ⩽ ⌊ n−4

2 ⌋. Hence, Theorem 34
follows from Theorems 30 and 32. ◀

Proof of Theorem 9. Let V ⊂ R3 be a configuration of n vectors in general position. There
are three combinatorial types of quadruples W ⊂ V , which we call Type 0, Type 1, and
Type 2, respectively, see Fig. 3. Each quadruple of Type i supports exactly two dependency
patterns F, −F ∈ F∗(V ) with four non-zero signs, one with |F−| = i negative signs, and the
other one with |F+| = 4 − i negative signs. It follows that

f∗
4,0(V ) + f∗

4,1(V ) + 1
2f∗

4,2(V ) =
(

n

4

)
Moreover, if all the vectors in V have unit length, then the number of crossings in the induced
spherical arc drawing of Kn equals cr(V ) = 1

2 f∗
4,2(V ). Thus Theorem 9 is equivalent to

the statement that f∗
4,2(V ) ⩾ 2X(n), equivalently, f∗

4,0(V ) + f∗
4,1(V ) ⩽

(
n
4
)

− X(n), where
equality holds in both bounds if V is coneighborly. By the special case s = 4 of Theorem 34,

f∗
4,⩽1(V ) ⩽

⌊ n−4
2 ⌋∑

k=0
(n − 3 − 2k)

(
(k + 1)n − 3

(
k + 2

2

))
=: Y (n), (19)

with equality if V is coneighborly. By a direct calculation (see [41]), Y (n) =
(

n
4
)

− X(n). ◀

▶ Remark 36. We mention a connection to geometric probability. Let µ be a probability
distribution on R3; we assume that µ is non-degenerate in the sense that every plane
through the origin has µ-measure zero. A beautiful argument due to Wendel [47] shows
that if µ is centrally symmetric and W = {w1, w2, w3, w4} ⊂ R3 is a set of four independent
µ-random vectors then the probability that W is of Type i ∈ {0, 1, 2} (Fig. 3) equals qi, where
q0 = (4

0)+(4
4)

24 = 1
8 , q1 = (4

1)+(4
3)

24 = 1
2 , and q2 = (4

2)
24 = 3

8 ; it follows that for any set V ⊂ R3 of
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n independent µ-random vectors, the expected number of quadruples of type i equals qi

(
n
4
)
.

In particular, if the vectors in V are chosen independently and uniformly at random from
S2 then the expected number of crossings in the spherical arc drawing given by V is 3

8
(

n
4
)
,

which was also independently shown by Moon [32]. Theorem 9, together with a well-known
limiting argument [38] implies that for an arbitrary (not necessarily centrally symmetric)
non-degenerate probability distribution µ on S2, the expected number of crossings in the
spherical arc drawing given by n independent µ-random points is at least 3

8
(

n
4
)
.

To conclude, we outline some of the main ideas for the proof of Theorem 32 (see [41]
for the details). Let V = {v1, . . . , vn} ⊂ R3 be a configuration of n vectors in general
position. We will view V as the set S − o of differences vi = pi − o between a point set
S = {p1, . . . , pn} ⊂ R3 (the tips of the vectors) and another point o ∈ R3 (the origin).

Choose a line ℓ in R3 through o in general position. By positively rescaling the vectors
vi, we may assume that S is a subset of the cylinder Z consisting of the points in R3 at
Euclidean distance 1 from ℓ; in particular, S is a point set in convex position.

The point set S ⊂ R3 corresponds to a neighborly configuration U = {u1, . . . , un} of
vectors in R4, and the origin o ∈ R3 corresponds to an additional vector u0 ∈ R4. Let
A({u0} ⊔ U) = {H+

0 , H+
1 , . . . , H+

n } be the polar dual arrangement of hemispheres in S3. The
intersection A(U) ∩ H0 is a spherical arrangment in the equatorial 2-sphere H0 ∼= S2, which
is combinatorially isomorphic to the arrangement A(V ).

Let C = Hi ∩Hj be the great circle in S3 formed by the intersection of two great 2-spheres
of the arrangement A(U), 1 ⩽ i < j ⩽ n. For k ⩽ ⌊ n−4

2 ⌋, consider the subgraph of A(U)
consisting of the vertices and edges of A(U) contained in C and at sublevel (⩽ k). This
subgraph cannot cover the entire circle C, since C contains at least one pair of antipodal
vertices at levels ⌊ n−2

2 ⌋, ⌈ n−2
2 ⌉. Thus, the connected components of this subgraph form closed

intervals, which we call k-arcs of A(U). We define λk(U, u0) as the number of k-arcs of A(U)
that are completely contained in the negative open hemisphere H−

0 .
Suppose we move the origin o continuously along the line ℓ, while keeping the set S fixed.

Consider the corresponding continuous motions of the vector configurations V = S − o in
R3 and {u0} ⊔ U in R4. A careful analysis of how λk(U, u0) and g1,k(V ) change during this
continuous motion yields

g1,k(V ) = λk(U, u0) ⩾ 0

for 0 ⩽ k ⩽ ⌊ n−4
2 ⌋, which proves Theorem 32.
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