
Banana Trees for the Persistence in Time Series
Experimentally
Lara Ost #

Faculty of Computer Science, Doctoral School Computer Science, University of Vienna, Austria

Sebastiano Cultrera di Montesano #

Eric and Wendy Schmidt Center, Broad Institute of MIT, Cambridge, MA, USA
Harvard, Cambridge, MS, USA

Herbert Edelsbrunner #

IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria

Abstract
In numerous fields, dynamic time series data require continuous updates, necessitating efficient data
processing techniques for accurate analysis. This paper examines the banana tree data structure,
specifically designed to efficiently maintain the multi-scale topological descriptor commonly known
as persistent homology for dynamically changing time series data. We implement this data structure
and conduct an experimental study to assess its properties and runtime for update operations. Our
findings indicate that banana trees are highly effective with unbiased random data, outperforming
state-of-the-art static algorithms in these scenarios. Additionally, our results show that real-world
time series share structural properties with unbiased random walks, suggesting potential practical
utility for our implementation.

2012 ACM Subject Classification Theory of computation → Computational geometry; Mathematics
of computing → Topology

Keywords and phrases persistent homology, time series, data structures, computational experiments

Digital Object Identifier 10.4230/LIPIcs.SoCG.2025.71

Related Version Full Version: https://arxiv.org/pdf/2405.17920

Supplementary Material Software: https://github.com/laraost/BananaPersist
archived at swh:1:dir:8407d6500f6dbccdb5102f3de3db35a9160b79c8

Funding Lara Ost: Supported by the Vienna Graduate School on Computational Optimization
(VGSCO), FWF project no. W1260-N35.
Sebastiano Cultrera di Montesano: Supported by the Eric and Wendy Schmidt Center at the Broad
Institute of MIT and Harvard.
Herbert Edelsbrunner : Partially supported by the Wittgenstein Prize, FWF grant no. Z 342-N31,
and by the DFG Collaborative Research Center TRR 109, FWF grant no. I 02979-N35.

1 Introduction

Time series are pervasive across numerous disciplines, ranging from economics and finance
to environmental science and healthcare. Often, time series data is dynamic, not static; for
example, wearable devices continuously monitor health metrics such as heart rate or blood
sugar levels, requiring robust techniques for instant analysis and decision-making. Effective
synthesis of the underlying trends in such dynamic data is crucial for predictive modeling
and strategic interventions.

Within the field of topological data analysis, persistent homology [4, 11] is recognized as
a powerful framework for capturing multi-scale features in complex datasets. Researchers
have long considered the challenge of dynamic persistence, and the vineyard algorithm [7]

© Lara Ost, Sebastiano Cultrera di Montesano, and Herbert Edelsbrunner;
licensed under Creative Commons License CC-BY 4.0

41st International Symposium on Computational Geometry (SoCG 2025).
Editors: Oswin Aichholzer and Haitao Wang; Article No. 71; pp. 71:1–71:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lara.ost@univie.ac.at
https://orcid.org/0000-0003-4311-9928
mailto:scultrer@broadinstitute.org
https://orcid.org/0000-0001-6249-0832
mailto:herbert.edelsbrunner@ist.ac.at
https://orcid.org/0000-0002-9823-6833
https://doi.org/10.4230/LIPIcs.SoCG.2025.71
https://arxiv.org/pdf/2405.17920
https://github.com/laraost/BananaPersist
https://archive.softwareheritage.org/swh:1:dir:8407d6500f6dbccdb5102f3de3db35a9160b79c8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de


71:2 Banana Trees for the Persistence in Time Series Experimentally

was the first developed to address updates in persistence diagrams (defined in Section 2.1)
as the input data evolves; see [15] for an implementation. This algorithm, while capable of
handling data more general than just time series, requires time linear in the size of the input
complex per update, which is restricted to swapping the order of two values. This prompts
us to question whether faster processing could be achieved for one-dimensional data. To
address this challenge, we implement the banana tree data structure [8], recently introduced
and tailored specifically for the persistent homology of dynamic time series. Their theoretical
analysis promises the processing of each update in time logarithmic in the number of items
plus linear in the number of changes in the persistent diagram; compare this with the linear
time require to recompute the diagram [12]. This paper investigates what these results mean
in practice. We highlight some of the specific contributions:

Efficiency at scale: we demonstrate that for large datasets, such as those containing over
106 items, performing a local or topological update on an unbiased random walk using
banana trees is at least 100 times faster than recomputing persistence with Gudhi [16],
the state of the art static algorithm (see Figure 4).
Structure and performance: we explore how the structure of banana trees, characterized
by parameters such as the number of critical items, the nesting depth of bananas, and
the lengths of trails, directly impacts the running time of our algorithms. This analysis
identifies the types of data best suited for efficient processing (see Figure 2).
Worst-case scenarios: we construct specific examples that challenge our algorithms,
and show empirically that these scenarios are rare and highly unstable, reinforcing the
robustness of our approach (see Table 2).
Real-world data: through analysis of three specific datasets, we illustrate that real-world
data sometimes exhibits structural properties similar to those of unbiased random walks.
Preliminary evidence suggests potential for the broad applicability of banana trees in
practical scenarios (see Table 3).

In software for topological data analysis, tools like the Gudhi library [16], Dionysus [17, 18],
and Ripser [2] are established for static datasets but require complete recomputation for
updates, making them less suited in dynamic settings. We aim for our implementation to set
a new standard in the topological processing of dynamic time series.

Outline. Section 2 introduces persistent homology tailored to time series data and gives
an overview of the banana trees data structure. Section 3 evaluates the performance of
banana trees through experiments involving time series generated from random walks, with
and without a bias. Section 4 explores three distinct types of input time series to assess the
performance of banana trees: worst-case scenarios, quasi-periodic signals, and real-world
data. Section 5 concludes the paper with a summary of our findings.

2 Banana Trees for Time Series

We start by introducing persistent homology, a method to discern features of data across
multiple scales [10]. Forfeiting the generality of this theory, we focus on time series data. We
also explain what banana trees are and how they relate to persistent homology; see [8] for
details on this data structure and its algorithms.

2.1 Persistent Homology of Time Series
By a time series we mean a linear list of real numbers, c0, c2, . . . , cn−1, which we view as a
piecewise linear map, f : [0, n − 1] → R, with f(i) = ci for 0 ≤ i ≤ n − 1. We refer to i as an
item and ci its value. A critical item is a local minimum or a local maximum of this map,



L. Ost, S. Cultrera di Montesano, and H. Edelsbrunner 71:3

and all other items are non-critical, e.g. item i if f(i − 1) < f(i) < f(i + 1). To simplify
the discussion, we assume that the map is generic, by which we mean that its items have
distinct values. In this case, the endpoints (items 0 and n − 1) are necessarily critical.

The sublevel set of f at t ∈ R, denoted ft = f−1(−∞, t], are the points x ∈ [0, n − 1]
that satisfy f(x) ≤ t. When t passes the value of a minimum from below, then the number
of connected components of ft increases by 1, and if t passes the value of a maximum from
below, the number of connected components decreases by 1, unless the maximum is an
endpoint, in which case the number does not change. Symmetrically, we call f t = f−1[t, ∞)
the superlevel set of f at t. Observe that f t is the sublevel set of −f at −t, and that the
minima and maxima of −f are the maxima and minima of f . Persistent homology tracks
the evolution of the connected components while the sublevel set of f grows, and formally
defines when a component is born and when it dies. Complementing this with the same
information for the superlevel sets of f , we get what is formally referred to as extended
persistent homology; see [6] for details. It is best constructed in two phases:

In Phase One, we track the connected components of the sublevel set, ft, as t increases
from −∞ to ∞. A component is born at the smallest value of t at which a point of the
component belongs to ft, which is necessarily a minimum. The component dies when it
merges with another component that was born earlier, which is necessarily at a maximum
in the interior of [0, n − 1]. The ordinary subdiagram of f records the birth and death of
every component with a point in the plane whose abscissa and ordinate are those values
of t at which the component is born and dies, respectively; see Figure 1.
In Phase Two, we track the connected components of the superlevel set, f t, as t decreases
from ∞ to −∞. Birth and death are defined accordingly, and the components are recorded
in the relative subdiagram.

By construction, the points in the ordinary subdiagram lie above and those of the relative
subdiagram lie below the diagonal. The component born at the global minimum of f is
special because it does not die during Phase One. Instead, it dies at the global minimum
of −f , which is the global maximum of f . In topological terms, this happens because the
one connected component still alive at the beginning of Phase Two dies in relative homology
when its first point enters the superlevel set. This class is represented by the sole point
in the essential subdiagram. The extended persistence diagram is the disjoint union of the
three subdiagrams. Hence, the diagram is a multi-set of points in R2, and so are the three
subdiagrams, unless the map is generic, in which case the diagram is a set. See the left
panel in Figure 1 for an example but note that it only shows a small number of points in the
ordinary subdiagram. An important property of persistence diagrams is their stability with
respect to small perturbation of the input data, which was first proved in [5].

The points in the persistence diagram can be characterized using the concept of a window
introduced in [3]: start with a rectangular frame spanned by a minimum and a maximum
in the graph of f such that the minimum lies on the lower edge, and extend the frame
horizontally as long as the graph does not intersect the upper edge in its interior. Call the
initial frame the mid-panel, its extension the in-panel, and the symmetric extension for −f

the out-panel. As proved in [3], the min-max pair defines a point in the persistence diagram
iff the graph of f reaches the lower edge in the out-panel. In this case, we call the twice
extended frame a triple-panel window. The corresponding double-panel window consists of
the mid-panel and the in-panel but not the out-panel. Any two double-panel windows of f

are either disjoint or nested, a property not shared by the triple-panel windows. We use this
property to augment the persistence diagram by drawing an arrow from a point to another,
if the double-panel windows of the first point is nested inside the double-panel window of

SoCG 2025



71:4 Banana Trees for the Persistence in Time Series Experimentally

the other point, without any other window being nested between them. See Figure 1, which
shows four double-panel windows and the corresponding points and arrows in the augmented
persistence diagram. The displayed frames are indeed windows because each has an out-panel
– next to the mid-panel and thus opposite to the in-panel – which extends as far as the
horizontal projection of the minimum (a maximum of −f) to the graph of the function.

2.2 Banana Trees
We sketch the banana trees while referring to [8] for the details. Suffice to say that they
are based on the Cartesian tree introduced by Vuillemin [21], which stores a list of items in
order such that each path from a leaf to the root is ordered by value. This tree has a unique
decomposition into paths that correspond to double-panel windows, and the banana tree
splits each path into two trails representing the windows nested inside the in-panel and the
mid-panel of the corresponding window.

Lines: 0

d
ea

th

m
id

−
tr

ai
l

in
−

tr
ai

l

in−panelmid−panel

inmid

midin

midin

birth

(f (a), f (b))

a

p

q

b

u

r

s

v

a

b

p

q

r

s

v

u

(f (r), f (s))

(f (u), f (v))

(f (p), f (q))

1

Figure 1 Middle: a piece of the graph of f with four double-panel windows of which three are
nested inside the fourth. Left: the corresponding points in the persistence diagram and the arrows
that reflect the nesting relation among the windows. Right: the four corresponding bananas in the
up-tree of f .

A time series represented by a piecewise linear function, f , is stored in two banana trees
together with a linked list and two standard dictionaries. We call the first banana tree the
up-tree of f because it corresponds to Phase One of the persistence diagram construction.
The second banana tree is the down-tree of f , which is the up-tree of −f . Because of this
symmetry, it suffices to describe the up-tree of f . Its leaves are the minima of f , and its
internal nodes are the maxima of f , with the exception of endpoint maxima, if they exist,
since they are not critical in Phase One. Each point in the ordinary persistence diagram
is a min-max pair, (a, b), and it is represented by a banana that connects the leaf a to the
internal node b with two parallel trails. The mid-trail is a doubly-linked list connecting a to
b with the maxima that span windows nested in the mid-panel of the window of a, b, and the
in-trail is symmetrically defined; see the right panel in Figure 1. The tree structure arises
because the maxima belong to the similarly defined bananas of the nested windows. Each
trail is sorted in the order of value but also in the order of location along the time series.
For example, the mid-trail of the big banana in Figure 1 stores a, s, q, b, which monotonically
increases in value and monotonically decreases in location. Compare this with the in-trail
storing a, v, b, which monotonically increases in value and in location after we discard b.
Indeed, we think of b as part of the mid-trail while only connecting the in-trail to the rest of
the tree without properly belonging to it. The global minimum of f (not shown in Figure 1)
is special because it is not paired in Phase One. Indeed, it is the extra leaf whose path
upward does not end at an internal node. We therefore add a special root as the parent of



L. Ost, S. Cultrera di Montesano, and H. Edelsbrunner 71:5

the root, connected to the global minimum by the root banana. While there is only one root
banana, there are possibly many leaf bananas, which are the bananas with two empty trails
(beside the minimum and maximum they connect). Indeed, we call the number of nodes
strictly between the minimum and maximum the length of the trail, which for trails of leaf
bananas is necessarily zero. Another important concept is the nesting depth of a banana,
which is the number of windows that contain the corresponding window. The root banana
has nesting depth zero, and all other bananas have positive nesting depth.

Each update to a time series stored in a banana tree reduces to a sequence of elementary
operations, which we name by their impact on the function, f . An interchange happens
when two maxima or two minima swap the order of their values. Unless their locations are
near each other, there is a good chance that an interchange does not have any effect on
the banana tree. Otherwise, it is akin a rotation in a binary search tree, if the interchange
is between two maxima, and akin a local rearrangement of the path decomposition, if the
interchange is between two minima. A cancellation removes a min-max pair or, equivalently,
the corresponding leaf banana, an anti-cancellation is the inverse of a cancellation, and a
slide swaps the type of a critical item with that of a neighboring non-critical item. The
latter three operations appear only a constant number of times whenever we adjust a value.
Nevertheless, anti-cancellations present challenges to fast implementation as we have to find
out where the new banana is to be inserted, and this search is not supported by any special
purpose data structure. On the other hand, multiple interchanges may happen in sequence,
so it is important to charge the time for processing each to a change in the persistence
diagram. We refer to [8] for details.

3 Experimental Results for Random Walks

This section studies the structural properties of banana trees for random walks, both biased
and unbiased. In addition, it compares the running times of local and topological operations
with the static algorithm in Gudhi [16]. We do not compare it with vineyards [7], which lack
optimized software for the one-dimensional case.

We implemented the banana trees data structure in C++20, using the AVL trees and splay
trees provided by boost.intrusive [14]. The former offer good performance in general, the
latter allow for simple splitting and joining. Hence, we use splay trees when performing
topological operations and AVL trees everywhere else. The experiments were run on a
machine with two AMD EPYC 9534 64 core CPUs and 1.5 terabyte of main memory.

3.1 The Experimental Set-up
We write γ ∼ N (µ, σ) for a normally distributed random variable with mean µ and standard
deviation σ. Given µ, σ, a random walk of length n is a function, r = rµ,σ, from the first n

non-negative integers to the reals, defined by

r(0) = 0 and r(i) = r(i − 1) + γi for 1 ≤ i < n, (1)

in which the γi ∼ N (µ, σ) are independent. The random walk is unbiased if µ = 0 and biased
if µ ̸= 0. We assume σ = 1 unless stated otherwise.

To evaluate the performance of local updates, we change the value of a single item, and
since it depends on the amount, we fix parameters ∆ ∈ R and k ∈ N and do 2k + 1 parallel
updates by changing the value of the i-th item from r(i) to r(i) + δj , with δj = j

k ∆ for all
integers j with −k ≤ j ≤ k. For the experiments, we pick ∆ = 5.0 or 50.0 and k = 10, while
doing the update on a random walk of length between 102 and 106 generated for µ ∈ [−1, 1]

SoCG 2025



71:6 Banana Trees for the Persistence in Time Series Experimentally

and σ = 1. Each experiment is repeated one hundred times and averages as well as deviations
from the average are reported. For each experiment, we also measure the time to run Gudhi
on the walk after the value change. This provides the appropriate reference time, since Gudhi
needs to recompute the persistence diagram from scratch after each update.

To evaluate the performance of topological updates, we pick a fraction, c ∈ (0, 1), generate
a random walk of length n, and then cut it into a left walk containing the first ⌊cn⌋ items and
a right walk containing the remaining ⌈(1 − c)n⌉ items. There are two such updates, which
we now define. To split, we first construct the banana tree of the entire random walk, which
we then cut into two banana trees, one for the left and the other for the right walk. To glue,
we first construct the banana trees of the left and right walks, which we then combine to a
single banana tree for the walk of length n. Doing this for fractions c ∈ {0.1, 0.3, 0.5, 0.7, 0.9},
we compare the time to split with the time used by Gudhi to construct the persistence
diagrams of the left and right walks, and the time to glue with the time used by Gudhi to
construct the persistence diagram of the entire random walk.

3.2 Structural Properties
We focus on three structural properties of banana trees, which have direct implications
for the running time of our algorithms: the number of critical items, the nesting depth of
bananas, and the lengths of trails. Since a banana tree does not store non-critical items, its
number of nodes is the number of critical items. In an unbiased random walk, the expected
number of critical items is 50% of all items. This fraction decreases when the bias increases,
with about 27% for µ = ±1; see the left panel in Figure 2 for more detailed information.

0.25

0.30

0.35

0.40

0.45

0.50

−1.0 −0.5 0.0 0.5 1.0

µ

fr
a
c
ti
o
n
 o

f 
c
ri

ti
c
a
l 
it
e

m
s

2

3

4

0 500K 1.0M 1.5M 2.0M

number of items n

a
v
g
. 
n
e
s
ti
n
g
 d

e
p

th

4

8

12

−1.0 −0.5 0.0 0.5 1.0

µ

m
a
x
. 
n
e
s
ti
n
g
 d

e
p

th

Figure 2 Left: the average fraction of items that are critical as a function of the bias µ. Middle:
the average nesting depth of leaf bananas in banana trees of unbiased random walks with n items.
The ribbon extends from the minimum to the maximum observed value for each n; the dots mark
the mean. The red line is the graph of a constant times log n obtained by linear regression. Right:
the maximum nesting depth at n = 106 items as a function of the bias µ.

The middle panel of Figure 2 shows the average nesting depth of a leaf banana for an
unbiased random walk, which appears to scale like the logarithm of the number of items. In
the unbiased case, even the maximum nesting depth seems to be small (about 13 on average
for a random walk of length 2 · 106), and scale logarithmically in the number of items. With
increasing bias, the maximum nesting depth decreases, to about 4 at µ = ±1; see the right
panel of Figure 2. This is because in the biased case, there are fewer critical items but also
the bananas tend to arrange in parallel rather than inside each other. We observe that the
nesting depth is about the same on average in up-trees and down-trees, both for biased and
unbiased random walks, so our results hold for both trees.



L. Ost, S. Cultrera di Montesano, and H. Edelsbrunner 71:7

in−trail mid−trail

0.00

0.25

0.50

0.75

1.00

−1.0 −0.5 0.0 0.5 1.0

µ

a
v
g

. 
tr

a
il 

le
n

g
th

0.00

0.25

0.50

0.75

1.00

−1.0 −0.5 0.0 0.5 1.0

µ

re
l.
 m

a
x
. 

tr
a
il 

le
n
g

th

Figure 3 Left: the average length of in-trails (orange dots) and mid-trails (blue triangles) in
banana trees of random walks with bias µ, averaged over all input sizes. Right: the fraction of
nodes on the longest in-trail (orange dots) and longest mid-trails (blue triangles) in banana trees of
random walks with bias µ, averaged over all input sized.

For topological reasons, the mid-trails of the up-tree are the mid-trails of the down-
tree, except that they are upside down. In contrast, the in-trails of the two trees are not
directly related because the in-panels in one direction become the out-panels in the other.
Notwithstanding, we observe that the length of the in-trails in the up-tree and the mid-trails
in the down tree are very similar on the average, and by symmetry the same holds for the
mid-trails in the up-tree and the in-trails in the down-tree. These two facts do not contradict
each other, because for biased data most of the critical items belong to the root banana, which
does not adhere to the topological constraints just mentioned. Let us therefore focus on the
up-tree. The left panel in Figure 3 shows how the average length of in- and mid-trails depends
on the bias. In the unbiased case, both types of trails have the same length on average. For
positive µ, the mid-trails tend to be longer than the in-trails, while the reverse happens for
negative µ. The main cause for this trend is the longest trail, which starts to dominate the
others in length as the bias increases; see the right panel in Figure 3. Assuming µ > 0, the
global minimum and maximum tend to lie to the left and right of the middle, respectively,
with the majority of the items between them. By convention, the connecting in-trail and
mid-trail contain the items to the left and right of the global minimum, respectively. This
explains why the mid-trail dominates in this case, and why the in-trail dominates when
µ < 0. Indeed, for µ = ±1, we observe about 95% of the internal nodes (the local maxima)
on the longest trail.

3.3 Local Maintenance
We evaluate the performance of banana trees when the value of a single item changes by
δ. Note that the corresponding update is a combination of some number of interchanges
and at most one cancellation, at most one anti-cancellation, and at most two slides [8]. Not
surprisingly, the time increases with the amount of change. For example, there is no effect at
all on the persistence diagram for about 70% of the updates with δ = ±0.26, for about 36%
of the updates with δ = ±0.79, but only about 1% for updates with δ = ±3.4. Taking this
into account, it is not surprising that banana trees are faster than Gudhi when δ = ±0.26 for
all lengths of random walks we tried.

The left panel in Figure 4 focuses on the case δ = ±5.0. As indicated by the vertical
dashed and dotted lines, banana trees are faster than Gudhi for all random walks of length
n ≥ 1059, and faster in the median for all n ≥ 144. Not shown in the panel is that the

SoCG 2025



71:8 Banana Trees for the Persistence in Time Series Experimentally

µ 0 0.04 0.08 0.2 1

n
 =

 1
0

5
9

n
 =

 1
4

4

100

101

102

103

102 103 104 105
106

number of items n

sp
e

e
d

u
p

 o
ve

r 
G

u
d
h

i

1

10

100

100 1K 10K 100K 1M

number of items

sp
e
e

d
u
p
 o

ve
r 

G
u
d

h
i

1

10

100

100 1K 10K 100K 1M

number of items

sp
e
e

d
u
p
 o

ve
r 

G
u
d

h
i

Figure 4 Comparing the maintenance of banana trees with reconstructing the persistence diagram
with Gudhi, in which the baseline of no speedup (100 = 1) is marked with a horizontal gray line.
Left: the speedup for updating a value with δ = ±5.0 depending on the length of the random walk,
n. The ribbon spans the minimum and maximum observed speedup, with the black curve tracing
the median speedup. Middle: the speedup for using banana trees to cut a random walk with bias
µ in half. The type and color of the curve encodes the amount of bias, and each curve shows the
median speedup over a hundred repeats for each n. Right: the speedup for using banana trees to
concatenate two equally long random walks with bias µ.

speedup decreases with increasing bias. In particular, for n = 106, the speedup of 612 at
µ = 0 decreases to 258 at µ = 1, and for n = 1059, the speedup of 6.0 at µ = 0 decreases
to 2.9 at µ = 1. This can be explained by recalling that for large bias the majority of the
internal nodes belong to the longest trail, which connects the global minimum to the global
maximum. Hence, items with similar values are likely to be near each other and thus require
interchanges when an update is performed. However, even for a large change, such as for
δ = ±50.0, maintaining the banana tree is still faster than reconstructing the persistence
diagram with Gudhi. For example, the median speedup for n = 104 exceeds 10 and for
n = 106 it exceeds 100.

3.4 Topological Maintenance

We call the operations of cutting a list into two, and concatenating two lists to one topological
because they change the number of lists in the overall organization of the data. We begin
with evaluating the performance of cutting a random walk. The middle panel in Figure 4
shows the speedup over Gudhi when we cut a biased or unbiased random walk in half. In the
unbiased case, the speedup increases with the length of the walk. Recalling the discussion of
structural properties, this can be rationalized by noticing that the maximum nesting depth
bounds the number of bananas that need to be split, and the trail length bounds the time
to reorganize bananas. The maximum nesting depth scales like log n and the average trail
length is only 0.5, so we anticipate logarithmic time for splitting, which we indeed observe in
our experiments. Altering the position of the cut increases the speedup, namely by about
2% for c = 0.5 ± 0.2 and by about 7% for c = 0.5 ± 0.4.

The advantage of the banana tree over Gudhi diminishes when the random walks get
progressively more biased. The reason is again that the larger the bias, the larger the fraction
of internal nodes in the longest trail of the banana tree. Splitting the corresponding banana
requires the resetting of many pointers stored in nodes along this trail, which in some cases
costs time proportional to the number of critical items, which we indeed observe in our



L. Ost, S. Cultrera di Montesano, and H. Edelsbrunner 71:9

experiments. Unfortunately, this more than compensates for the low nesting depth, which
guarantees that only a small number of bananas need to be split. The upper half of Table 1
shows the running time and the speedup over Gudhi for cutting a random walk in half.

Table 1 Upper half : the average time for cutting a random walk of length n = 106 in half, and
the speedup over Gudhi. Lower half ; the average time for concatenating two random walks of length
n = 106/2 each, and the speedup over Gudhi.

µ = 0 µ = 0.04 µ = 0.08 µ = 0.2 µ = 1

Cut time in µs 93 1417 2807 5350 1683
speedup 105.00 7.24 3.54 1.68 2.15

Concatenate time in µs 90 1809 3041 5138 1228
speedup 105.00 5.31 3.12 1.74 3.22

We finally address the reverse operation, that of concatenating two random walks or,
correspondingly, of gluing two banana trees. The curves in the right panel of Figure 4 are
similar to those in the middle panel, which suggests that the performance is similar to that
of cutting, which is confirmed by the numbers in Table 1. For n ≤ 104, gluing appears to be
slightly faster than splitting, but the difference is less clear already for n = 106.

4 Special Time Series

This section considers three types of time series: worst-case examples to expose when banana
trees under-perform, quasi-periodic data to illustrate how banana trees reflect periodicity,
and real-world data to demonstrate that banana trees are not just theory. While banana
trees struggle for data of the first type, they mirror the performance observed in unbiased
random walks for the latter two types.

4.1 Worst-Case Examples
The size of the augmented persistence diagram (number of points and arrows) is proportional
to the number of critical items. There are configurations in which a single update changes
almost the entire diagram and thus takes time at least linear in the number of such items. We
construct such worst-case inputs and study the performance of banana trees when confronted
with such data.

−20

−10

0

10

20

0 5 10 15

x

f(
x
)

−5.0

−2.5

0.0

2.5

5.0

0 5 10 15

x

f(
x
)

Figure 5 Worst-case examples for local and topological maintenance. Left: to increase the value
of the marked item triggers a linear number of interchanges. Right: to cut the list at the dashed line
affects every persistent pair. Both operations take time linear in the number of critical items, which
for the two time series are all or almost all items.

SoCG 2025



71:10 Banana Trees for the Persistence in Time Series Experimentally

Consider first the operation that increases the value of the marked item in the left panel of
Figure 5. Initially, we have a linear sequence of double-panel windows, each nested inside the
next. When the value of the marked item passes that of its left neighbor, an anti-cancellation
adds the banana they span to the banana tree, and its window is nested inside the others.
As we increase the value further, the marked item interchanges with the maxima to its right,
each time moving up one level within the sequence of windows. When the marked item finally
becomes the global maximum, it will have interchanged with all other maxima, which takes
Θ(n) time. For n = 102 and n = 106, we measured 3.4µs and 4.7ms on average, respectively.
This corresponds to a median speedup by a factor of 0.05 and 0.02 if compared with Gudhi,
which is really a slowdown by a factor of 20 and 50, respectively.

Table 2 Performance of splitting and gluing banana trees for the example time series in the right
panel of Figure 5, showing the median slowdown/speedup if compared to Gudhi. The parameter
interpolates between these time series at λ = 0 and unbiased random walks at λ = 1.

split glue
λ = 0.0 0.0001 0.01 1.0 λ = 0.0 0.0001 0.01 1.0

n = 102 0.06 0.06 0.04 0.35 0.40 0.44 0.68 2.38
n = 104 0.04 0.03 5.81 11.20 0.46 0.83 33.6 41.40
n = 106 0.09 4.71 54.70 111.00 0.46 81.0 255 397.00

Consider second the operation that cuts the time series in the right panel of Figure 5
in the middle, which is marked by the vertical dashed line. We observe an average running
time between 10µs at n = 102 and 72ms at n = 106. Compare this with an average running
time of 7µs at n = 102 and 48ms at n = 106 for concatenating the two lists back to the
original length. This comparison agrees with the earlier observation that gluing banana trees
is slightly faster than splitting them. Table 2 lists the speedup if compared to Gudhi, which
for a factor less than 1 is really a slowdown. To create a more informative experiment, we
interpolate between these time series and unbiased walks, with drastic improvements even
for small λ > 0; see Table 2. Indeed, the noise quickly flattens the banana tree by decreasing
the length of trails, which explains the improvement.

4.2 Quasi-Periodic Data
Random walks are not periodic, but real-world time series often exhibit some amount of
periodicity, at least approximately. To study banana trees under these conditions, we
construct what we call quasi-periodic inputs. This term does not have a mathematical
definition, and for our experiments just means a periodic signal that is randomly perturbed.
Specifically, we generate such input by modifying the iterative construction in (1):

r(0) = 0 and r(i) = r(i − 1) + ηi for 1 ≤ i < n, (2)

in which the ηi ∼ N (µi, σ) are independent and normally distributed, with the mean changing
periodically, ηi = sin(2πωi), as governed by the frequency parameter 0 ≤ ω < 1, which we fix
to ω = 5/n. It will be useful to compare the influence of the standard deviation, so we no
longer assume σ = 1.

For large σ, the banana trees of the time series show the features we have seen for unbiased
random walks, while for small σ, they locally behave like biased random walks. For example,
for σ = 1, we observe about 37% of the items to be critical, while for σ = 0.5 and σ = 0.02
only about 21% and 1% of the items are critical, on average. Like the number of critical



L. Ost, S. Cultrera di Montesano, and H. Edelsbrunner 71:11

trail in−trail mid−trail

0.25

0.50

0.75

0.00 0.25 0.50 0.75 1.00
σ

a
vg

. 
tr

a
il 

le
n
g
th

n = 104

0.1

0.2

0.3

0.4

0.00 0.25 0.50 0.75 1.00
σ

re
l. 

m
a
x.

 t
ra

il 
le

n
g

th

n = 2 × 106

0.050

0.075

0.100

0.125

0.150

0.175

0.00 0.25 0.50 0.75 1.00
σ

re
l. 

m
a
x.

 t
ra

il 
le

n
g

th

Figure 6 Measuring trail lengths. The in-trails and mid-trails are marked with orange dots and
blue triangles, respectively, and the ribbons extend from the minimum to the maximum observed
values. Left: the average length of in-trails and mid-trails depending on the standard deviation and
averaged over all input sizes. Middle and right: the fraction of nodes on the longest in-trail and
mid-trail, again depending on the standard deviation but now averaged over inputs of size 104 and
2 · 106, respectively.

items, also the maximum nesting depth for quasi-periodic signals is similar to that of random
walks: it scales like log n for large σ and decreases as σ goes to 0. In contrast, the average
nesting depth is independent of n, ranging from 2 to 4.7 with mean 2.4. The behavior of the
trail length is illustrated in Figure 6. As shown in the left panel, the average trail length
is about 0.5, with consistently shorter in-trails than mid-trails, on average. This difference
is more pronounced for small σ, when the quasi-periodic signal behaves more like a biased
rather than unbiased random walk. The middle and right panels show how the fraction of
internal nodes on the longest trail increases as σ goes to 0.

We conclude that banana trees on quasi-periodic signals with large standard deviation
resemble unbiased random walks in terms of their structural parameters, and drift toward
biased random walks as the standard deviation goes to 0.

4.3 Real World Examples
We analyze structural properties of banana trees constructed on three types of real-world
time series:

electrocardiography (ECG) data from PhysioNet [13, 1, 20]; limiting ourselves to record-
ings of length at least 105, each separated into up to 12 leads, gives 32443 time series in
total;
audio data from EasyCom [9], of which we use 1336 audio files;
physical activity data from PAMAP2 [19] (temperature, heart rate along with recordings
from accelerometers, gyroscopes, and magnetometers), of which we use 560 time series.

We preprocess the data by adding uniformly distributed noise to ensure all values are distinct,
making sure the noise is small enough so it breaks ties but does not otherwise alter the
ordering.

We observe that the average max nesting depth for the three data sets is only a small
factor larger than for unbiased random walks; see the middle three columns in Table 3.
The largest maximum nesting depth for PhysioNet data is a bit higher, by a factor 6.3,
but 99% of the time series from this data have maximum nesting depth at most 1.68 times
that for unbiased random walks. The average trail lengths are again similar to those of

SoCG 2025



71:12 Banana Trees for the Persistence in Time Series Experimentally

Table 3 Structural properties of the banana trees constructed for time series from three databases.
The average, minimum, and maximum of the maximum nesting depth is measured relative to the
depth we observe for unbiased random walks with the same fraction of critical items.

fraction of max nesting depth average length
critical items avg min max in-trail mid-trail

PhysioNet 0.24 1.2 0.8 6.3 0.48 0.52
EasyCom 0.22 2.7 1.6 4.9 0.48 0.52
PAMAP2 0.48 1.9 1.2 3.2 0.49 0.51

unbiased random walks – see the last two columns, with standard deviation about 0.05
throughout – and so are the fractions of items in the longest trails, whose geometric means
are 0.8%, 0.008%, 0.1% of all critical items for the in-trails and 0.8%, 0.008%, 0.2% of all
critical items for the mid-trails in the three data sets, compared with about 0.3% and 0.4%
in unbiased random walks.

5 Discussion

We provide an implementation of the banana tree data structure and supply experimental
evidence demonstrating its efficiency. The work reported in this paper confirms the theoretical
advantages of banana trees over static alternatives and opens up avenues for further theoretical
inquiries and practical applications. One intriguing question that arises in the context of
quasi-periodic data is whether we can determine the (possibly varying) period of the data
without prior knowledge, or provide meaningful quantification of the extent to which a signal
deviates from being periodic.

The potential applications of banana trees extend beyond academic research into practical,
real-world scenarios. Comparisons with other methods and identifying impactful use cases
represents a promising next step to provide valuable insights in fields such as healthcare,
where real-time analysis of patient data is crucial, or finance, where the swift analysis of
market data is essential.

References
1 Erick A. Perez Alday, Annie Gu, Amit J. Shah, Chad Robichaux, An-Kwok Ian Wong, Chengyu

Liu, Feifei Liu, Ali Bahrami Rad, Andoni Elola, Salman Seyedi, Qiao Li, Ashish Sharma, Gari D.
Clifford, and Matthew A. Reyna. Classification of 12-lead ECGs: the PhysioNet/Computing
in Cardiology Challenge 2020. Physiological Measurement, 41(12):124003, December 2020.
doi:10.1088/1361-6579/abc960.

2 Ulrich Bauer. Ripser: efficient computation of Vietoris–Rips persistence barcodes. Jour-
nal of Applied and Computational Topology, 5(3):391–423, September 2021. doi:10.1007/
s41468-021-00071-5.

3 Ranita Biswas, Sebastiano Cultrera di Montesano, Herbert Edelsbrunner, and Morteza
Saghafian. Geometric characterization of the persistence of 1D maps. Journal of Applied and
Computational Topology, June 2023. doi:10.1007/s41468-023-00126-9.

4 Gunnar Carlsson. Topology and data. Bulletin of the American Mathematical Society,
46(2):255–308, 2009. doi:10.1090/S0273-0979-09-01249-X.

5 David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence dia-
grams. Discrete & Computational Geometry, 37(1):103–120, January 2007. doi:10.1007/
s00454-006-1276-5.

https://doi.org/10.1088/1361-6579/abc960
https://doi.org/10.1007/s41468-021-00071-5
https://doi.org/10.1007/s41468-021-00071-5
https://doi.org/10.1007/s41468-023-00126-9
https://doi.org/10.1090/S0273-0979-09-01249-X
https://doi.org/10.1007/s00454-006-1276-5
https://doi.org/10.1007/s00454-006-1276-5


L. Ost, S. Cultrera di Montesano, and H. Edelsbrunner 71:13

6 David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Extending persistence using
Poincaré and Lefschetz duality. Foundations of Computational Mathematics, 9(1):79–103,
February 2009. doi:10.1007/s10208-008-9027-z.

7 David Cohen-Steiner, Herbert Edelsbrunner, and Dmitriy Morozov. Vines and vineyards by
updating persistence in linear time. In Proceedings of the Twenty-Second Annual Symposium on
Computational Geometry, SCG ’06, pages 119–126, June 2006. doi:10.1145/1137856.1137877.

8 Sebastiano Cultrera di Montesano, Herbert Edelsbrunner, Monika Henzinger, and Lara Ost.
Dynamically maintaining the persistent homology of time series. In Proceedings of the 2024
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Proceedings, pages 243–295,
January 2024. doi:10.1137/1.9781611977912.11.

9 Jacob Donley, Vladimir Tourbabin, Jung-Suk Lee, Mark Broyles, Hao Jiang, Jie Shen, Maja
Pantic, Vamsi Krishna Ithapu, and Ravish Mehra. EasyCom: An augmented reality dataset to
support algorithms for easy communication in noisy environments, 2021. arXiv:2107.04174.

10 Herbert Edelsbrunner and John L. Harer. Computational Topology: An Introduction. American
Mathematical Society, January 2022.

11 Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persistence and
simplification. Discrete & Computational Geometry, 28(4):511–533, November 2002. doi:
10.1007/s00454-002-2885-2.

12 Marc Glisse. Fast persistent homology computation for functions on R, 2023. doi:10.48550/
arXiv.2301.04745.

13 Ary L. Goldberger, Luis A. N. Amaral, Leon Glass, Jeffrey M. Hausdorff, Plamen Ch. Ivanov,
Roger G. Mark, Joseph E. Mietus, George B. Moody, Chung-Kang Peng, and H. Eugene
Stanley. PhysioBank, PhysioToolkit, and PhysioNet. Circulation, 101(23):e215–e220, 2000.
doi:10.1161/01.CIR.101.23.e215.

14 Olaf Krzikalla and Ion Gaztanaga. Boost.Intrusive C++ library. http://www.boost.org/.
(version 1.74).

15 Yuan Luo and Bradley J. Nelson. Accelerating iterated persistent homology computations
with warm starts. Computational Geometry, 120:102089, June 2024. doi:10.1016/j.comgeo.
2024.102089.

16 Clément Maria, Jean-Daniel Boissonnat, Marc Glisse, and Mariette Yvinec. The Gudhi
library: Simplicial complexes and persistent homology. In Hoon Hong and Chee Yap, editors,
Mathematical Software – ICMS 2014, pages 167–174, 2014. doi:10.1007/978-3-662-44199-2_
28.

17 Dmitriy Morozov. Dionysus. https://mrzv.org/software/dionysus/, 2023.
18 Dmitriy Morozov. Dionysus 2. https://mrzv.org/software/dionysus2/, 2023.
19 Attila Reiss. PAMAP2 physical activity monitoring. UCI Machine Learning Repository, 2012.

doi:10.24432/C5NW2H.
20 Matthew A. Reyna, Nadi Sadr, Erick A. Perez Alday, Annie Gu, Amit J. Shah, Chad Robichaux,

Ali Bahrami Rad, Andoni Elola, Salman Seyedi, Sardar Ansari, Hamid Ghanbari, Qiao Li,
Ashish Sharma, and Gari D. Clifford. Will two do? varying dimensions in electrocardiography:
The PhysioNet/Computing in Cardiology Challenge 2021. In 2021 Computing in Cardiology
(CinC), volume 48, pages 1–4, September 2021. doi:10.23919/CinC53138.2021.9662687.

21 Jean Vuillemin. A unifying look at data structures. Communications of the ACM, 23(4):229–239,
April 1980. doi:10.1145/358841.358852.

SoCG 2025

https://doi.org/10.1007/s10208-008-9027-z
https://doi.org/10.1145/1137856.1137877
https://doi.org/10.1137/1.9781611977912.11
https://arxiv.org/abs/2107.04174
https://doi.org/10.1007/s00454-002-2885-2
https://doi.org/10.1007/s00454-002-2885-2
https://doi.org/10.48550/arXiv.2301.04745
https://doi.org/10.48550/arXiv.2301.04745
https://doi.org/10.1161/01.CIR.101.23.e215
http://www.boost.org/
https://doi.org/10.1016/j.comgeo.2024.102089
https://doi.org/10.1016/j.comgeo.2024.102089
https://doi.org/10.1007/978-3-662-44199-2_28
https://doi.org/10.1007/978-3-662-44199-2_28
https://mrzv.org/software/dionysus/
https://mrzv.org/software/dionysus2/
https://doi.org/10.24432/C5NW2H
https://doi.org/10.23919/CinC53138.2021.9662687
https://doi.org/10.1145/358841.358852

	1 Introduction
	2 Banana Trees for Time Series
	2.1 Persistent Homology of Time Series
	2.2 Banana Trees

	3 Experimental Results for Random Walks
	3.1 The Experimental Set-up
	3.2 Structural Properties
	3.3 Local Maintenance
	3.4 Topological Maintenance

	4 Special Time Series
	4.1 Worst-Case Examples
	4.2 Quasi-Periodic Data
	4.3 Real World Examples

	5 Discussion

