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Abstract
There is no known polynomial-time algorithm for graph isomor-

phism testing, but elementary combinatorial “refinement” algo-

rithms seem to be very efficient in practice. Some philosophical jus-

tification for this phenomenon is provided by a classical theorem of

Babai, Erdős and Selkow: an extremely simple polynomial-time com-

binatorial algorithm (variously known as “naïve refinement”, “naïve

vertex classification”, “colour refinement” or the “1-dimensional

Weisfeiler–Leman algorithm”) yields a so-called canonical labelling

scheme for “almost all graphs”. More precisely, for a typical outcome

of a random graph G(𝑛, 1/2), this simple combinatorial algorithm

assigns labels to vertices in a way that easily permits isomorphism-

testing against any other graph.

We improve the Babai–Erdős–Selkow theorem in two directions.

First, we consider randomly perturbed graphs, in accordance with

the smoothed analysis philosophy of Spielman and Teng: for any

graph𝐺 , naïve refinement becomes effective after a tiny randomper-

turbation to 𝐺 (specifically, the addition and removal of 𝑂 (𝑛 log𝑛)
random edges). Actually, with a twist on naïve refinement, we show

that𝑂 (𝑛) random additions and removals suffice. These results sig-

nificantly improve on previous work of Gaudio, Rácz and Sridhar,

and are in certain senses best-possible.

Second, we complete a long line of research on canonical la-

belling and automorphisms for random graphs: for any 𝑝 (possi-

bly depending on 𝑛), we prove that a random graph G(𝑛, 𝑝) can
typically be canonically labelled in polynomial time. This is most

interesting in the extremely sparse regimewhere 𝑝 has order of mag-

nitude 𝑐/𝑛; denser regimes were previously handled by Bollobás,

Czajka–Pandurangan, and Linial–Mosheiff. Our proof also provides

a description of the automorphism group of a typical outcome of

G(𝑛, 𝑝) (slightly correcting a prediction of Linial–Mosheiff).
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1 Introduction
Given a pair of graphs𝐺1 and𝐺2 (on the same vertex set {1, . . . , 𝑛},
say), how can we test whether they are isomorphic? Perhaps the

most obvious first thought is to try to identify some easily com-

putable isomorphism-invariant information that distinguishes the

two graphs. For example, one can easily compute the degrees of

the vertices of 𝐺1 and the degrees of the vertices in 𝐺2, sort these

lists and check if they are the same. If they are different, we have

successfully determined that the graphs are not isomorphic (and if

they are the same our test was inconclusive).

Perhaps the most influential approach along these lines is called

colour refinement, also known as naïve refinement or the 1- dimen-
sional Weisfeiler–Leman algorithm1

. This is an algorithm that pro-

duces a “colour” for each vertex; the colour of a vertex describes

the degree of that vertex, together with all other data that one can

obtain by allowing degree information to “percolate through the

graph”. Briefly: at the start of the algorithm, every vertex “looks

the same”. Then, in the first step we distinguish vertices by their

degrees (i.e., the colour of each vertex is its degree). In the second

step, we distinguish vertices by their number of neighbours with
each degree (i.e., each vertex now has a colour consisting of its own

degree, together with a multiset of the degrees of its neighbours).

In general, at each step we update the colour of each vertex by

appending the multiset of colours of its neighbours. After some

number of iterations of this procedure, it will “stabilise” in the sense

that no further vertices can be distinguished from each other.

It turns out that the colour refinement algorithm can be executed

very efficiently: in a graph with 𝑛 vertices, the stable colouring can

be computed in time
2
in time 𝑂 (𝑛2 log𝑛). It is not hard to see

that if the algorithm manages to assign each vertex of 𝐺 a distinct
label, then the sequence of colours in the stable colouring uniquely

determines the isomorphism class of 𝐺 . In fact, more is true: in

this case one can use the colours to define a canonical labelling of

𝐺 . This notion is more formally defined in the full version of this

paper, but roughly speaking it means that one can label the vertices

1
The origin of this idea is difficult to pin down, but it seems to have been first proposed

by Morgan [51] in 1965 in the context of computational chemistry!

2
We are brushing over some subtleties here, which we discuss further in the full version

of the paper.
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of 𝐺 with the integers {1, . . . , 𝑛} (assuming 𝐺 has 𝑛 vertices), in

such a way that isomorphic graphs are always labelled the same

way.

Unfortunately, colour refinement is not always so effective. For

example, in a regular graph, where every vertex has the same degree,

colour refinement is useless on its own, as it cannot distinguish

any vertices from each other. However, a landmark result of Babai,

Erdős and Selkow [8] shows that this situation is “atypical”: the

proportion of 𝑛-vertex graphs which cannot be canonically labelled

using colour refinement tends to zero as 𝑛 → ∞ (see also the

improvements in [9, 40, 48]). This result is most easily stated in the

language of random graphs, as follows.

Theorem 1.1. For a random graph3 𝐺 ∼ G(𝑛, 1/2), whp4 the
colour refinement algorithm distinguishes all vertices from each other.
In particular, whp 𝐺 can be tested for isomorphism with any other
graph in polynomial time.

Theorem 1.1 is widely touted as philosophical justification for

why algorithms based on colour refinement seem to be so effective

in practice. Indeed, all graph isomorphism algorithms in common

usage employ a certain modification of colour refinement called

individualisation-refinement5. It is well-known that algorithms of

this type take exponential time on worst-case inputs (see [54] for

recent general results in this direction), but one rarely seems to en-

counter such inputs in practice. Of course, wewould be remiss not to

mention that from a theoretical point of view, fully sub-exponential

algorithms are now available: there is an amazing line of work due

to Babai, Luks, Zemlyachenko and others (see [6] for a survey)

applying deep ideas from group theory to the graph isomorphism

problem, which culminated in Babai’s recent quasipolynomial-time

graph isomorphism [5] and canonical labelling [7] algorithms.

Remark. The study of the colour refinement algorithm is of interest

beyond its direct utility in graph isomorphism testing. Indeed, if

graphs 𝐺 and 𝐻 are indistinguishable by colour refinement, we

say that 𝐺 and 𝐻 are fractionally isomorphic; this is an important

notion of intrinsic interest in graph theory, that has surprisingly

many equivalent formulations (e.g., in terms of first-order logic [21],

universal covers [2], tree homomorphism counts [28] and doubly-

stochastic similarity of adjacency matrices [59]). See for example

the surveys [33, 55] and the monograph [13] for more.

We also remark that the colour refinement algorithm represents

the limit of so-called graph neural networks for graph isomorphism

testing [53, 62]; these connections have recently been of signifi-

cant interest in the machine learning community (see [46, 52] for

surveys).

3
In the random graph G(𝑛, 𝑝 ) (called the binomial or sometimes the Erdős–Rényi
random graph), we fix a set of 𝑛 vertices and include each of the

(𝑛
2

)
possible edges

with probability 𝑝 independently.

4
We say a property holds with high probability, or “whp” for short, if it holds with
probability tending to 1. Here and for the rest of the paper, all asymptotics are as

𝑛 → ∞.

5
It will not be relevant for the present paper to formally describe this paradigm,

but for the curious reader: the idea is that occasionally a vertex must be artificially

distinguished from the other vertices of its colour in order to “break regularity” (one

must then consider all possible ways to make this artificial choice).

1.1 Smoothed Analysis
As our first main direction in this paper, we take the philosophy

of Theorem 1.1 much further, combining it with the celebrated

smoothed analysis framework of Spielman and Teng [58]. To give

some context: the simplex algorithm for linear optimisation is an-

other fundamental example of an algorithmwhich seems to perform

well in practice but takes exponential time in the worst case. As a

very strong explanation for this, Spielman and Teng proved that

if one takes any linear optimisation problem and applies a slight

(Gaussian) random perturbation to its coefficients, then for a typical

outcome of the resulting perturbed linear optimisation problem,

the simplex algorithm succeeds in polynomial time. This shows

that poorly-performing instances are “fragile” or “unstable”, and

perhaps we should not expect them to appear in practice.

Linear optimisation is a continuous problem, and for discrete

problems one needs a different notion of random perturbation.

In a later paper, Spielman and Teng [57] suggested that the most

natural way to define a discrete random perturbation is in terms

of symmetric difference: for graphs 𝐺,𝐺 ′
on the same vertex set,

write𝐺△𝐺 ′
for the graph containing all edges which are in exactly

one of 𝐺 and 𝐺 ′
(we can think of 𝐺 ′

as the “perturbation graph”,

specifying where we should “flip” edges of 𝐺 to non-edges, or vice

versa). Significantly strengthening Theorem 1.1, we prove that for

any graph, randomly perturbing each edge with probability about

log𝑛/𝑛 (i.e., adding and removing about 𝑛 log𝑛 random edges
6
) is

sufficient to make colour refinement succeed whp.

Theorem 1.2. Fix a constant 𝜀 > 0 and consider any 𝑝 ∈ [0, 1/2]
satisfying 𝑝 ≥ (1 + 𝜀) log𝑛/𝑛. For any graph 𝐺0, and with 𝐺rand

∼
G(𝑛, 𝑝), whp the colour refinement algorithm distinguishes all vertices
of 𝐺0△𝐺rand

from each other. In particular, whp 𝐺0△𝐺rand
can be

tested for isomorphism with any other graph in polynomial time.

Note that the 𝑝 = 1/2 case of Theorem 1.2 is precisely The-

orem 1.1. Indeed, when 𝑝 = 1/2, the random perturbation is so

extreme that all information from the original graph is lost and we

end up with a purely random graph. (We may restrict our attention

to 𝑝 ≤ 1/2, because perturbing𝐺 with a random graph G(𝑛, 𝑝) is
the same as perturbing the complement of 𝐺 with a random graph

G(𝑛, 1 − 𝑝).)
We remark that we are not the first to consider smoothed analysis

for graph isomorphism: this setting was also recently considered by

Gaudio, Rácz and Sridhar [31], though only under quite restrictive

conditions on 𝐺0, and with a stronger assumption on 𝑝 (both of

which make the problem substantially easier). Specifically, they

found an efficient canonical labelling scheme that succeeds whp

as long as 𝐺0 satisfies a certain “sparse neighbourhoods” property,

and as long as 𝑝 has order of magnitude between (log𝑛)2/𝑛 and

(log𝑛)−3.
It is not hard to see that the assumption on 𝑝 in Theorem 1.2 can-

not be significantly improved. Indeed, if𝐺0 is the empty graph and

𝑝 ≤ (1 − 𝜀) log𝑛/𝑛, then 𝐺0△𝐺rand
is likely to have many isolated

vertices (see e.g. [29, Theorem 3.1]), which cannot be distinguished

by colour refinement. This does not necessarily mean that colour

refinement fails to provide a canonical labelling scheme (isolated

vertices can be labelled arbitrarily), but to illustrate a more serious

6
Note that G(𝑛, 𝑝 ) tends to have about 𝑝

(𝑛
2

)
≈ 𝑝𝑛2

edges.
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problem, suppose𝐺0 is a disconnected graph in which every com-

ponent is a 3-regular graph on at most 10 vertices. If we perturb

with edge probability 𝑝 ≤ (1/20) log𝑛/𝑛, it is not hard to see that

whp many of the components of 𝐺 will be completely untouched

by the random perturbation (and therefore colour refinement will

be unable to distinguish the vertices in these components, despite

the components potentially having very different structure).

Of course, while tiny regular components may foil colour re-

finement, they are not really a fundamental problem for canonical

labelling (as we can afford to use very inefficient canonical labelling

algorithms on these tiny components). We are able to go beyond

Theorem 1.2 via a modification of the colour refinement algorithm

in this spirit. Indeed, with a variation on the colour refinement

algorithm called the 2-dimensional Weisfeiler–Leman algorithm, and

a new notion of a disparity graph (which allows us to define an

appropriate generalisation of the notion of a “tiny component”),

together with an exponential-time canonical labelling algorithm

of Corneil and Goldberg [22] (only applied to the analogues of

“tiny components”), we are able to define a combinatorial canoni-

cal labelling scheme which becomes effective after extremely mild

random perturbation (perturbation probability about 1/𝑛).

Theorem 1.3. There is a set of graphsH , and an explicit polynomial-
time canonical labelling algorithm for graphs inH (which can also
detect whether a graph lies inH ), such that the following holds.

Consider any 𝑝 ∈ [0, 1/2] satisfying 𝑝 ≥ 100/𝑛. For any graph
𝐺0, and 𝐺rand

∼ G(𝑛, 𝑝), whp 𝐺0△𝐺rand
∈ H . In particular, whp

𝐺0△𝐺rand
can be tested for isomorphism with any other graph in

polynomial time.

We highlight that the algorithm for Theorem 1.3 is a “combinato-

rial” algorithm, using completely elementary refinement/recursion

techniques (in particular, the algorithm can be interpreted as falling

into the individualisation-refinement paradigm, and it does not use

any group theory). Actually, up to constant factors, the restriction

𝑝 ≥ 100/𝑛 in Theorem 1.3 is essentially best possible for combina-

torial algorithms, given state-of-the-art worst-case guarantees: if

we were to take 𝐺
rand

∼ G(𝑛, 𝑝) for 𝑝 = 𝑜 (1/𝑛) (i.e., if we were to
take a milder random perturbation than in Theorem 1.3), then any

polynomial-time canonical labelling algorithm that succeeds whp

for graphs of the form𝐺0△𝐺rand
would immediately give rise

7
to a

sub-exponential-time canonical labelling algorithm for all graphs
(i.e., an algorithm that runs in time 𝑒𝑜 (𝑛) ). Although such algo-

rithms are known to exist (most obviously, we already mentioned

Babai’s quasipolynomial time algorithm), they all fundamentally

use group theory.

The proof of Theorem 1.3 involves a wide range of different ideas,

which we outline at some length in Section 1.3. As an extremely

brief summary: we first use expansion and anticoncentration es-

timates, together with a characterisation of colour refinement in

terms of universal covers, to prove that the colour refinement al-

gorithm (applied to 𝐺0△𝐺rand
) typically assigns distinct colours to

the vertices in the so-called 3-core of 𝐺
rand

. This is already enough

7
For any graph 𝐺∗

, we can consider a larger graph 𝐺0 with many copies of 𝐺∗

as connected components, with parameters chosen such that a very mild random

perturbation typically leaves some copies of𝐺∗
completely unaffected (and therefore a

canonical labelling of the randomly perturbed graph can be translated into a canonical

labelling of𝐺∗
). We omit the details.

to prove Theorem 1.2, but to prove Theorem 1.3 (with its weaker

assumption on 𝑝), we need to combine this with a delicate sprin-
kling argument, in which we slowly reveal the edges of 𝐺

rand
, and

study how the 3-core changes during this process. Every time a new

vertex joins the 3-core (thereby receiving a unique colour by the

colour refinement algorithm), this new colour information cascades

through the 2-dimensional Weisfeiler–Leman algorithm, breaking

up many of the colour classes into smaller parts. This has the effect

of partitioning the graph into smaller and smaller parts, which can

be treated separately at the end.

1.2 Sparse Random Graphs
After the Babai–Erdős–Selkow theorem (Theorem 1.1) on canonical

labelling for G(𝑛, 1/2), one of the most obvious directions for fur-

ther study was to consider sparser random graphs G(𝑛, 𝑝𝑛) (note
that it suffices to consider 𝑝𝑛 ≤ 1/2, since canonical labelling is not
really affected by complementation).

The first work in this direction was by Bollobás (see [17, Theo-

rem 3.17]), who showed that the proof approach for Theorem 1.1

works as long as 𝑝𝑛 does not decay too rapidly with 𝑛. Combin-

ing this with a later result of Bollobás [16] (which considered a

very different type of canonical labelling scheme, under different

assumptions on 𝑝𝑛), and a result of Czajka and Pandurangan [23]

(which considered colour refinement for an intermediate range

of 𝑝𝑛), one obtains polynomial-time canonical labelling schemes

as long as 𝑛𝑝𝑛 − log𝑛 → ∞ as 𝑛 → ∞. This condition on 𝑝𝑛 is

significant because it is the same range where random graphs are

typically rigid: as was famously proved by Wright [61], such ran-

dom graphs typically have only trivial automorphisms, whereas if

𝑛𝑝𝑛 − log𝑛 → −∞ then there typically exist many automorphisms.

Even sparser graphs were recently considered by Linial and

Mosheiff [47]; they handled the regime where 𝑛𝑝𝑛 → ∞ using

another different type of canonical labelling scheme. The regime

𝑛𝑝𝑛 → 0 is easy, as in this regime (see [29, Section 2.1]) the compo-

nents of G(𝑛, 𝑝𝑛) are all trees with size at most 𝑜 (log𝑛) (so various
different types of trivial canonical labelling schemes suffice; see for

example [4]). That is to say, the only regime left unaddressed is the

regime where 𝑝𝑛 is about 𝑐/𝑛 for some constant 𝑐 .

As our next main result, we close this gap, finding a canonical

labelling scheme for all 𝑝𝑛 .

Theorem 1.4. There is a set of graphs H , and an explicit polyno-
mial time canonical labelling algorithm for graphs in H (which can
also detect whether a graph lies in H ), such that the following holds.

For any sequence (𝑝𝑛)𝑛∈N ∈ [0, 1]N, and 𝐺𝑛 ∼ G(𝑛, 𝑝𝑛), whp
𝐺𝑛 ∈ H . In particular, whp 𝐺𝑛 can be tested for isomorphism with
any other graph in polynomial time.

In fact, we prove that colour refinement on its own yields a

canonical labelling scheme whp, unless 𝑝𝑛 has order of magnitude

𝑐/𝑛. If 𝑝𝑛 has order of magnitude 𝑐/𝑛, then colour refinement still

almost works; the only obstruction is connected components which

have a single cycle, which can be easily handled separately in a

number of different ways.

Remark 1.5. There are important connections between the colour

refinement algorithm and mathematical logic (see for example the

monograph [32]). Our proof shows that random graphs of any

2100
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density typically have Weisfeiler–Leman dimension at most 2 (and

if we delete components with a single cycle, the Weisfeiler–Leman

dimension is exactly equal to 1). That is to say, random graphs of any

density can typically be uniquely distinguished by the 2-variable

fragment of first-order logic with counting quantifiers.

Remark 1.6. An equivalent version of Theorem 1.4, in the regime

𝑝𝑛 = 𝑂 (1/𝑛), has been independently proved in concurrent work

by Oleg Verbitsky and Maksim Zhukovskii [60] (they also study

the colour refinement algorithm, but with quite different methods:

while we take advantage of our general machinery already used

to prove Theorem 1.3, Verbitsky and Zhukovskii take advantage

of structural descriptions of the “anatomy” of a sparse random

graph [26, 27]). We believe both proof approaches to be of indepen-

dent interest.

Given the machinery developed to prove Theorem 1.3, the proof

of Theorem 1.4 is rather simple. Special care needs to be taken in

the regime where 𝑝 is very close to 1/𝑛 (this is the critical regime

for the phase transition of Erdős–Rényi random graphs).

A related problem is to characterise the automorphism group of

a random graph. Linial and Mosheiff achieved this when 𝑛𝑝𝑛 → ∞,

and asked about the case where 𝑝𝑛 has order of magnitude 1/𝑛
(specifically, they wrote that they “suspect” that the largest bicon-

nected component of the so-called 2-core has trivial automorphism

group). We prove that Linial and Mosheiff’s suspicion is mostly

(but not exactly) correct. To state our theorem in this direction, we

need a further definition.

Definition 1.7. For a graph𝐺 , let core𝑘 (𝐺) be its 𝑘-core (its largest
subgraph with minimum degree at least 𝑘). A bare pathin a graph

is a path whose internal vertices have degree 2.

Note that any graph𝐺 can always be obtained by gluing a (possi-

bly trivial) rooted tree to each vertex of core2 (𝐺), and adding some

tree components. As observed by Linial and Mosheiff, in order to

characterise the automorphisms of𝐺 , it suffices to characterise how

such automorphisms act on core2 (𝐺). Indeed, having specified how
an automorphism acts on core2 (𝐺), all that remains is to specify

automorphisms of the rooted trees attached with each vertex, and

the tree components. (Note that automorphisms of rooted trees

are easy to characterise; we can only permute vertices at the same

depth, and only if their corresponding subtrees are isomorphic).

Theorem 1.8. Consider any sequence (𝑝𝑛)𝑛∈N and let𝐺 ∼ G(𝑛, 𝑝𝑛).
Then, 𝐺 satisfies the following property whp. Every automorphism
of 𝐺 fixes the vertices of the core2 (𝐺), with the following (possible)
exceptions.

• For every cycle component of core2 (𝐺), automorphisms of this
cycle may give rise to automorphisms of 𝐺 .

• For every pair of cycle components in core2 (𝐺) which have
the same length, there may be an automorphism of 𝐺 which
exchanges these two cycles.

• For a pair of vertices 𝑢, 𝑣 with degree at least 3 in core2 (𝐺),
such that (in core2 (𝐺)) there are multiple bare paths between
𝑢 and 𝑣 , there may be an automorphism of𝐺 which exchanges
these bare paths.

• For a vertex 𝑢 with degree at least 3 in core2 (𝐺), such that (in
core2 (𝐺)) there is a (closed) bare path from 𝑢 to itself, there

may be an automorphism of 𝐺 which “flips” this bare path
(reversing the order of the internal vertices).

If 𝑛𝑝𝑛 → ∞, it is not hard to see that whp none of the above

exceptions actually occur. Indeed, in the 2-core, whp: there is no

pair of bare paths of the same length between any pair of degree-3

vertices, there are no bare paths from a vertex to itself, and there

are no cycle components. However, when say 𝑝𝑛 = 2/𝑛, there
is a non-negligible probability that each of the aforementioned

configurations exist (and that the rooted trees attached to these

configurations permit automorphisms of𝐺 which permute vertices

of core2 (𝐺)): the asymptotic distribution of the numbers of each of

these configurations can be described by a sequence of independent

Poisson random variables with nonzero means. This can be shown

by the method of moments (see for example [37, Section 6.1]); we

omit the details.

Remark 1.9. In the independent work of Verbitsky and Zhukovskii

mentioned in Remark 1.6, they also deduced Theorem 1.8. They

also went on to characterise all the automorphisms of core2 (𝐺)
(not just those induced by automorphisms of𝐺); this requires some

additional work.

1.3 Key Proof Ideas
The details of the proofs of Theorems 1.2 to 1.4 and 1.8 can be found

in the full version of this paper (which is available on the arXiv). In

this extended abstract, we informally describe the key ideas in the

proofs.

1.3.1 Exploring Universal Covers. The starting point for all the

proofs in this paper is an observation essentially due to Angluin [2],

that the stable colouring obtained by the colour refinement al-

gorithm assigns two vertices the same colour if and only if the

universal covers rooted at those vertices are isomorphic. We will

use a minor modification of the notion of a universal cover called

a view, which encodes the same information but which is slightly

more convenient for our purposes. Roughly speaking, the view

T𝐺 (𝑣) rooted at a vertex 𝑣 in a graph 𝐺 is a (potentially infinite)

tree encoding all possible walks in 𝐺 starting from 𝑣 .

Without random perturbation, we are helpless to deal with the

fact that many vertices may have isomorphic views (e.g., if 𝐺 is

𝑑-regular, then T𝐺 (𝑣) is always isomorphic to the infinite rooted

tree where each vertex has𝑑 children). The power of random pertur-

bation is that, if two vertices 𝑢 and 𝑣 “see different vertices in their

walks” (for example, if the set of neighbours of 𝑢 is very different

from the set of neighbours of 𝑣), then the random perturbation is

likely to affect T𝐺 (𝑢) and T𝐺 (𝑣) differently, distinguishing them

from each other. One of the key technical results in this paper is a

general “exploration lemma” which makes this precise.

1.3.2 Distinguishing Vertices Via Random Perturbation: Expansion
and Anticoncentration. It is difficult to give a quick summary of our

exploration lemma without the necessary definitions, but to give a

flavour: we define sets S𝑖 ({𝑢, 𝑣}) which describe the vertices which
“feature differently” in length-𝑖 walks starting from 𝑢 and length-

𝑖 walks starting from 𝑣 . Our exploration lemma says that even

extremely mildly randomly perturbed graphs typically have the

property that if for some vertices 𝑢, 𝑣 , and some 𝑖 , the set S𝑖 ({𝑢, 𝑣})
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contains more than about log𝑛 vertices, then 𝑢 and 𝑣 are assigned

different colours by colour refinement.

To prove this, we first use the expansion properties of random

graphs (via a coupling of the type often appearing in analysis of

branching processes) to “boost” the condition on S𝑖 ({𝑢, 𝑣}), show-
ing that if S𝑖 ({𝑢, 𝑣}) has more than about log𝑛 vertices then there

is typically some 𝑗 ≥ 𝑖 such that S 𝑗 ({𝑢, 𝑣}) has 𝑛1−𝑜 (1) vertices.
There is then a huge amount of “space” in S 𝑗 ({𝑢, 𝑣}) to take ad-

vantage of fluctuations due to the random perturbation. In particu-

lar, we show how to algorithmically divideS 𝑗 ({𝑢, 𝑣}) into “buckets”
with different degree statistics, use the edges within these buck-

ets to describe certain fluctuations in T𝐺 (𝑢) and T𝐺 (𝑣) via certain
essentially independent inhomogeneous random walks on Z, and
then apply an anticoncentration inequality (a variant of the classical

Erdős–Littlewood–Offord inequality) to show that it is extremely

unlikely that these random walks behave in the same way for 𝑢

and 𝑣 (so unlikely that we can union bound over all 𝑢, 𝑣).

Of course, in order to actually apply our exploration lemma, we

need to study the pairs 𝑢, 𝑣 for which S𝑖 ({𝑢, 𝑣}) has more than

about log𝑛 vertices (for some 𝑖). If the perturbation probability is

greater than about log𝑛/𝑛 (as in Theorem 1.2), it is easy to show

that whp all pairs of vertices have this property (in this case we

can even take 𝑖 = 1). For milder random perturbation (or sparser

random graphs), we will need to restrict our attention to certain

pairs 𝑢, 𝑣 lying in certain special subgraphs, as we discuss next.

1.3.3 The 2-core and the Kernel. Recall from Definition 1.7 that the

𝑘-core of a graph 𝐺 is its maximal subgraph of minimum degree at

least 𝑘 . The kernel of𝐺 is the smallest multigraph homeomorphic

to the 2-core of 𝐺 (i.e., with the same topological structure as the

2-core). It can be obtained from the 2-core by iteratively replacing

bare paths (also defined in Definition 1.7) by single edges.

Especially in the setting of random graphs, cores and kernels

are objects of fundamental interest, typically possessing extremely

strong expansion properties. In particular, the kernel of a random

graph in some sense describes its fundamental underlying expander

structure: a celebrated theorem of Ding, Lubetzky and Peres [27]

shows that one can in some sense “build a random graph from its

kernel” by (very informally) starting from a random expander (the

kernel), randomly replacing some edges with bare paths, (to obtain

the 2-core), and randomly affixing some trees.

If 𝑘 ≥ 3, the expansion properties of the 𝑘-core make it quite

convenient to apply our exploration lemma: it is fairly simple to

show that, for 𝑘 ≥ 3, a mildly randomly perturbed graph typically

has the property that colour refinement assigns a unique colour

to all vertices of the 𝑘-core of 𝐺
rand

. This immediately implies

Theorem 1.2 (since when 𝑝 ≥ (1 + 𝜀) log𝑛/𝑛 the 3-core of 𝐺
rand

typically comprises the entire vertex set).

However, in very sparse regimes (in particular, when 𝑝 < 𝑐/𝑛
for a certain constant 𝑐 , famously computed by Pittel, Spencer and

Wormald [56]), the 3-core is typically empty, and we are forced

to turn to the 2-core and the kernel. Unfortunately, this makes

everything much more delicate. We prove a somewhat technical

lemma showing that a mildly randomly perturbed graph typically

has the property that colour refinement can distinguish the vertices
8

of degree at least 3 in the 2-core.

1.3.4 Sparse Random Graphs. The above considerations on the 2-

core apply when 𝑝 ≥ (1+𝜀)/𝑛 (for any constant 𝜀 > 0). Considering

the case where the initial graph 𝐺0 is empty, it is straightforward

to deduce that simple canonical labelling schemes are typically

effective for sparse random graphs G(𝑛, 𝑝), when 𝑝 ≥ (1 + 𝜀)/𝑛
(thus proving Theorem 1.4 in this regime).

The significance of this assumption on 𝑝 is that it corresponds

to the celebrated phase transition for Erdős–Rényi random graphs:

when the edge probability is somewhat above 1/𝑛, there is typically
a giant component with good expansion properties, but when the

edge probability is somewhat less than 1/𝑛, there are typically

only tiny components with very poor expansion properties (see for

example the monographs [17, 29, 37] for more).

In the critical regime (1 − 𝜀)/𝑛 < 𝑝 < (1 + 𝜀)/𝑛, we proceed

differently. In this regime, every component of G(𝑛, 𝑝) with more

than one cycle has quite large diameter : exploration processes can

run for quite a long time without exhausting all the vertices in the

graph, and we can accumulate quite a lot of independent random-

ness over this time. The anticoncentration from this randomness

gives us another way to prove that different vertices are assigned

different colours by colour refinement (completing the proof of

Theorem 1.4).

1.3.5 Sprinkling Via the 3-core. For Theorem 1.3 (on canonical

labelling of very mildly randomly perturbed graphs), the role of

the 𝑘-core (and our lemmas about it) is that it provides a kind of

“monotonicity” that allows us to use a technique called sprinkling.
For the unfamiliar reader: sprinkling, in its most basic form,

is the observation that a random graph 𝐺
rand

∼ G(𝑛, 𝑝) can be

interpreted as the union of two independent random graphs𝐺1

rand
∪

𝐺2

rand
, where 𝐺1

rand
,𝐺2

rand
∼ G(𝑛, 𝑝′) with 1 − 𝑝 = (1 − 𝑝′)2. This

observation allows one to first show that certain properties hold

whp for 𝐺1

rand
, then reveal an outcome of 𝐺1

rand
satisfying these

properties, and use the independent randomness of𝐺2

rand
to “boost”

these properties.

Sprinkling only really makes sense when we are dealing with

properties of 𝐺
rand

that are monotone, in the sense that once we

have established the property for some subgraph of 𝐺
rand

, adding

the remaining edges of𝐺
rand

cannot destroy the property. Unfortu-

nately, the colour refinement algorithm is highly non-monotone:

in general, adding additional edges can allow the algorithm to dis-

tinguish more vertices, but can also prevent the algorithm from

distinguishing some vertices. In the proof of Theorem 1.3, the crit-

ical role played by the ideas in Section 1.3.3 is that they makes a

connection between the colour refinement algorithm and the 𝑘-

core, which is a fundamentally monotone object. For example, if a

vertex is in the 𝑘-core of 𝐺1

rand
, then it is guaranteed to be in the

𝑘-core of 𝐺1

rand
∪𝐺2

rand
.

We will actually split our random perturbation 𝐺
rand

into many

independent random perturbations𝐺1

rand
, . . . ,𝐺𝑇

rand
∈ G(𝑛, 𝑝′) (in

the proof of Theorem 1.3 we will take𝑇 = 8). If 𝑝′ ≥ 10/𝑛, then one

can show that whp the first randomperturbation𝐺1

rand
already has a

8
This is not strictly speaking true; for the purposes of this outline we are ignoring a

technical caveat concerning very rare configurations of edges in the 2-core.
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giant 3-core
9
, and (recalling Section 1.3.3) we can safely assume that

each of the vertices in this 3-core will be assigned unique colours by

the colour refinement algorithm (applied to the randomly perturbed

graph 𝐺 = 𝐺0△(𝐺1

rand
∪ · · · ∪𝐺𝑇

rand
), which we have not yet fully

revealed). Then, in each subsequent random perturbation 𝐺𝑖
rand

,

for 𝑖 ≥ 2, additional vertices randomly join the 3-core, and we can

assume that they will also receive unique colours.

The upshot is that, whatever properties we are able to prove

about the stable colouring produced by the colour refinement al-

gorithm, we can “boost” these properties by randomly assigning

unique colours to some vertices (and studying how this new infor-

mation propagates through the colour refinement algorithm). To

describe the types of properties we are interested in, we need to

define the notion of a disparity graph10, as follows.

1.3.6 Small Components in Disparity Graphs. Recall that Theo-
rem 1.2 cannot hold for 𝑝 = 𝑜 (log𝑛/𝑛). The key obstruction to

keep in mind is that if 𝐺0 has many tiny regular connected com-

ponents, then very mild random perturbation will leave some of

these components untouched, and the colour refinement algorithm

will not be able to distinguish the vertices in these components.

For the proof of Theorem 1.3, we therefore need an appropriate

generalisation of the notion of “tiny component” (taking into ac-

count the fact that tiny components in the complement of 𝐺 play

the same role as tiny components of𝐺). To this end, we introduce

the notion of a disparity graph.

Definition 1.10. For a graph𝐺 , a set of colours Ω and a colouring

𝑐 : 𝑉 (𝐺) → Ω, define the majority graph 𝑀 (𝐺, 𝑐) (on the same

vertex set as 𝐺) as follows. For any (possibly non-distinct) pair of

colours 𝜔,𝜔 ′ ∈ Ω:

• If at least half of the possible edges between vertices of

colours 𝜔 and 𝜔 ′
are in fact present as edges of 𝐺 , then

𝑀 (𝐺, 𝑐) contains every possible edge between vertices of

colours 𝜔 and 𝜔 ′
.

• Otherwise (if fewer than half of the possible edges between

vertices of colours 𝜔 and 𝜔 ′
are present),𝑀 (𝐺, 𝑐) contains

no edges between vertices of colours 𝜔 and 𝜔 ′
.

Then, define the disparity graph 𝐷 (𝐺, 𝑐) = 𝑀 (𝐺, 𝑐)△𝐺 .

Informally speaking, the majority graph𝑀 (𝐺, 𝑐) is the best possi-
ble approximation to𝐺 among all graphs which are “homogeneous”

between colour classes (for every pair of colour classes, to decide

whether to put all edges between them or no edges between them,

we look at the majority behaviour in 𝐺 among vertices of those

colours). Then, the disparity graph identifies the places where the

majority graph differs from 𝐺 . Equivalently, we can define the dis-

parity graph to be the graph obtained by considering every pair

of colour classes and deciding whether to complement the edges

between those colour classes or not, depending on which of the

two choices would make the graph sparser.

If 𝑐 is the stable colouring obtained from the colour refinement

algorithm, it is not hard to show that a canonical labelling of𝐷 (𝐺, 𝑐)
9
With a little more work, it would suffice to consider the vertices of degree at least 3

in the 2-core, in which case we only need 𝑝′
to be slightly larger than 1/𝑛. However,

the 3-core is much more convenient to work with.

10
This notion has previously been introduced under the name “flip graph” [41, 42]; we

thank the anonymous referees for bringing this to our attention.

yields a canonical labelling of 𝐺 . So, we can canonically label 𝐺 in

polynomial time whenever 𝐷 (𝐺, 𝑐) has sufficiently small compo-

nents (small enough that we can afford to use known inefficient

canonical labelling schemes on each component).

1.3.7 Percolation for a Weaker Result. Let 𝑐 be the stable colour-
ing obtained by the colour refinement algorithm. To prove The-

orem 1.3, it would suffice to prove that whp the disparity graph

𝐷 (𝐺0△𝐺rand
, 𝑐) has small components (for a polynomial-time com-

binatorial algorithm, we need every component to have 𝑂 (log𝑛)
vertices, so that we can afford to use an exponential-time canonical

labelling algorithm of Corneil and Goldberg [22] on each compo-

nent
11
).

Unfortunately, we were not quite able to manage this when

the random perturbation probability is 𝑂 (1/𝑛) (as demanded by

Theorem 1.3). Indeed, our proof of Theorem 1.3 requires a more

sophisticated variant of the colour refinement algorithm, as we

discuss later in this outline. However, the above goal is achievable if

the random perturbation probability is at least (say) 100 log log𝑛/𝑛.
For expository purposes we next sketch how to prove this, before

moving on to the more sophisticated ideas in the full proof of

Theorem 1.3.

As discussed in Section 1.3.5, we can interpret our random per-

turbation 𝐺
rand

as a composition of three random perturbations

𝐺1

rand
∪𝐺2

rand
∪𝐺3

rand
. The first random perturbation𝐺1

rand
already

whp establishes a giant 3-core (of size at least 𝑛/2, say); we can
assume that the vertices in this 3-core get unique colours (and are

hence isolated vertices in the disparity graph), so we only need to

worry about the vertices outside the 3-core. Our two additional

random perturbations𝐺2

rand
and 𝐺3

rand
each cause an independent

random subset of vertices to receive unique colours (as they join

the 3-core): if 𝑝 ≥ 100 log log𝑛/𝑛, we calculate that each vertex

receives a unique colour with probability at least 1 − 𝑜 (1/log𝑛).
With one round of sprinkling (i.e., with the random assignment

of unique colours provided by 𝐺2

rand
, followed by the colour refine-

ment algorithm)we can show that the disparity graph hasmaximum

degree 𝑂 (log𝑛) whp12. Indeed, the disparity graph describes how

the neighbourhood of a vertex differs from the “majority behaviour”

among vertices of its colour class, so if there is a vertex with high

degree in the disparity graph, then there is a pair of vertices in

the same colour class with very different neighbourhoods. With a

union bound over pairs of vertices, it is easy to show that no such

pairs persist after a round of sprinkling (the random assignment of

unique colours typically allows the colour refinement algorithm to

distinguish all such pairs).

For our second round of sprinkling (provided by𝐺3

rand
), we view

the random assignment of unique colours as percolation: if a vertex
gets a unique colour, then it becomes isolated in the disparity graph,

and we can imagine that that vertex is deleted. We are interested

11
We remark that it does not actually seem to make the problem much easier if we

weaken this requirement on the size of each component (which we may, if we are

willing to use a more sophisticated group-theoretic algorithm, with better worst-case

guarantees, on each connected component).

12
For this bound we only need that (say) 𝑝 ≥ 100/𝑛 (this implies that in each round

of sprinkling, every vertex joins the 3-core with probability at least 0.9). Using that

𝑝 ≥ 100 log log𝑛/𝑛 (so in every round of sprinkling, every vertex joins the 3-core

with probability at least 1 − 𝑜 (1/log𝑛)), we can actually show that the degrees are

at most𝑂 (log𝑛/log log𝑛) whp. But, this stronger bound would not really affect the

final result.
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in the connected components that remain after these deletions
13
.

But if the disparity graph has degree 𝑂 (log𝑛) before sprinkling,
and each vertex is deleted with probability 1 − 𝑜 (1/log𝑛), one can
show that these deletions usually shatter the disparity graph into

small components (the necessary analysis is similar to analysis of

subcritical branching processes). This percolation step is the part

where we are fundamentally using that the random perturbation

probability is at least about log log𝑛/𝑛: if the perturbation probabil-

ity were smaller than this, then the deletions would not be severe

enough to break the disparity graph into small components.

1.3.8 Splitting Colour Classes and Components. In order to go be-

yond the ideas in the previous subsection, to work with random

perturbation probabilities as small as 𝑂 (1/𝑛), we need to get a

much stronger conclusion from our sprinkled random perturbation.

Every time a vertex is added to the 3-core (and gets a unique colour),

this vertex is not simply removed from the disparity graph: the new

colour information has a cascading effect (via the colour refinement

algorithm) that affects the colours of many other vertices, indirectly

affecting the connected components of the disparity graph.

First, it is instructive to think about the effect of sprinkling on

the connected components (of the disparity graph) which intersect

a given colour class 𝐶 . If there is a vertex 𝑣 which has a neighbour

in𝐶 (with respect to the disparity graph), then assigning 𝑣 a unique

colour causes 𝐶 to break into multiple colour classes: namely, the

colour refinement algorithm will be able to distinguish the vertices

in 𝐶 adjacent to 𝑣 from the vertices in 𝐶 which are not adjacent to

𝑣 (it is a simple consequence of the definition of the disparity graph

that 𝑣 is adjacent to at most half the vertices in 𝐶).

So, we can consider an exploration process that starts from the

vertices of𝐶 , and explores14 all the vertices which share a connected

component with a vertex in𝐶 . Each time we consider a new vertex,

we reveal whether it is assigned a unique colour, and propagate this

information via the colour refinement algorithm
15
. As we continue

this exploration/refinement process, the colour classes will start to

break up into smaller pieces. There is a limit to how long this process

can continue, since colour classes of size 1 cannot be broken up

further. Indeed, by considering an auxiliary submartingale (which

measures how the number of colours we have discovered so far

compares to the number of vertices we have explored so far, at each

point in the process), we can prove that our exploration process

is likely to terminate after 𝑂 ( |𝐶 |) steps, having explored all the

vertices that share a component with a vertex in 𝐶 . That is to say,

the sizes of the connected components of the disparity graph (after

sprinkling) are bounded in terms of the sizes of the colour classes

(before sprinkling).

Unfortunately, we cannot hope to show that the colour classes

are small, in general (indeed, if 𝐺 has many isolated vertices, then

all these vertices will be assigned the same colour by any canon-

ical vertex-colouring scheme). However, the above idea can be

13
Here we are sweeping under the rug some technical issues related to the “consistency”

of the disparity graph as the underlying graph changes. This turns out to be quite

delicate!

14
For the purposes of this outline, the reader can imagine that at each step we choose

the unexplored vertex which is closest to𝐶 in the current disparity graph, though our

actual exploration process is a bit more complicated.

15
The resulting changes to the colouring also change the disparity graph. In particular,

vertices which used to be in the same connected component may later be spread over

multiple connected components, but this is not really a problem.

“localised” to a connected component: We prove a crucial lemma,

which tells us that in order to show that the disparity graph has

connected components with 𝑂 (log𝑛) vertices (after sprinkling),
it suffices to show that, before sprinkling, for all colour classes

𝐶 and connected components 𝑋 of the disparity graph, we have

|𝐶 ∩ 𝑋 | = 𝑂 (log𝑛).
In order to show that these intersection sizes |𝐶∩𝑋 | are small, we

need another round of sprinkling which “shatters large components

into small colour classes”. In order for this sprinkling to have a

strong enough effect, we need to consider a more powerful variant

of the colour refinement algorithm, as follows.

1.3.9 Distinguishing Vertices Via the 2-dimensionalWeisfeiler–Leman
Algorithm. The 2-dimensional Weisfeiler–Leman algorithm refines

colourings of pairs of vertices: startingwith a certain “trivial” colour-
ing 𝜙𝐺 : 𝑉 (𝐺)2 → Ω, we repeatedly refine 𝜙𝐺 based on statistics of

3-vertex configurations, until a stable colouring 𝑓 : 𝑉 (𝐺)2 → {0, 1}
is reached. This colouring of pairs of vertices then gives rise to a

colouring of individual vertices 𝑣 ↦→ 𝑓 (𝑣, 𝑣), which contains a lot

more information than the result of ordinary colour refinement.

In particular, this more sophisticated refinement operation allows

us to distinguish vertices based on distances: in the final vertex-

colouring, every two vertices of the same colour see the same

number of vertices of every given colour at any given distance (in

the disparity graph). As discussed in Section 1.3.7, after a single

round of sprinkling whp the disparity graph has maximum degree

𝑂 (log𝑛), so if a connected component 𝑋 has more than logarithmi-

cally many vertices then it is quite sparse, meaning that there is a

very rich variety of different pairs of vertices at different distances.

So, when sprinkling causes new vertices to receive unique colours,

hopefully the 2-dimensional Weisfeiler–Leman algorithm will be

able to significantly break up the colour classes in 𝑋 (recall that our

goal is now to prove that the intersections between colour classes

and connected components have size 𝑂 (log𝑛)).
Naïvely, one might hope to prove this via a simple union bound

over subsets 𝑍 ⊆ 𝑋 of about log𝑛 vertices: for any such set 𝑍 ,

one might try to prove that after a round of sprinkling, and the

2-dimensional Weisfeiler–Leman algorithm, it is overwhelmingly

unlikely that all vertices of 𝑍 have the same colour. To prove this, it

would suffice to show that for any such 𝑍 there are many vertices

which see some vertices of 𝑍 at different distances (so if any of

these many vertices receive a new unique colour, this could be used

by the 2-dimensional Weisfeiler–Leman algorithm to give different

colours to some of the vertices of 𝑍 ).

Unfortunately, this direct approach does not seem to yield any

nontrivial bounds, without making structural assumptions about𝐺 .

Instead, we use a “fingerprint” technique reminiscent of the method

of hypergraph containers in extremal combinatorics, which reduces

the scope of our union bound. Specifically, if there were a large

colour class𝐶′ ⊆ 𝑋 after sprinkling, we show that this would imply

the existence of a much smaller “fingerprint” set 𝑆 ⊆ 𝑋 which sees

many vertices (specifically, many vertices of 𝐶′
) at a variety of

different distances. We can then take a cheaper union bound over

the smaller fingerprint sets 𝑆 .

We remark that the above sketch was very simplified, and serves

only to illustrate the rough ideas. The full proof of Theorem 1.3

confronts a number of delicate technical issues and requires seven
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rounds of sprinkling, each of which gradually reduce the degrees,

colour classes and connected components of the disparity graph.

1.4 Further Directions
There are a very large number of natural directions for further

research. First is the question of optimising the probability implicit

in the “whp” in each of Theorems 1.2 to 1.4, and improving the run-

times of the relevant algorithms. In the setting of Theorem 1.1, both

these issues were comprehensively settled by Babai and Kucera [9]:

they showed that, except with exponentially small probability, two

steps of colour refinement suffice (yielding a linear-time algorithm).

The algorithm in Theorem 1.2 (colour refinement) runs in time

𝑂 ((𝑛 +𝑚) log𝑛), where 𝑛 and𝑚 are the numbers of vertices and

edges of our graph of interest, while the algorithm in Theorem 1.4

naïvely runs in time𝑂 (𝑛(𝑛 +𝑚) log𝑛), due to repeated iteration of

the colour refinement algorithm. With some careful analysis, it may

be possible to bound the necessary number of colour refinement

steps, to obtain an optimal linear-time algorithm in the setting of

Theorem 1.2. In fact, the work of Gaudio, Rácz and Sridhar [31],

mentioned earlier in the introduction, already makes some initial

steps in this direction: they essentially show that three steps of

colour refinement suffice, as long as 𝑝 has order of magnitude

between (log𝑛)2/𝑛 and (log𝑛)−3. It seems plausible that in fact

three steps of colour refinement suffice as long as 𝑝 ≥ (1+𝜀) log𝑛/𝑛,
and recent work on “shotgun reassembly” [30, 38] indicates that

there should be a phase transition between two steps of colour

refinement being necessary, and three steps being necessary, at

around 𝑝 = (log𝑛)2 (log log𝑛)−3/𝑛.
With similar considerations on the necessary number of colour

refinement steps, and the necessary number of iterations of the

colour refinement algorithm, it may also be possible to improve the

runtime in the setting of Theorem 1.4 to near-linear-time. Regarding

Theorem 1.3: this algorithm also naïvely runs in about quadratic-

time, due to the use of the 2-dimensional Weisfeiler–Leman al-

gorithm. However, we do not need the full power of the general

algorithms that we cite, and it seems plausible that special-purpose

variants could be designed that might also yield a near-linear-time

algorithm.

Also, there is the possibility of improving on the amount of ran-

dom perturbation in Theorem 1.3. In particular, taking advantage

of group-theoretic techniques (e.g., using the quasipolynomial-time

algorithm of Babai [7]), it might be possible to design a canoni-

cal labelling scheme that becomes effective with tiny amounts of

random perturbation (e.g., perturbation probability 𝑜 (1/𝑛)). In the

case where 𝐺0 is a regular graph, it may also be worth considering

alternative models of random perturbation that do not destroy the

regularity of 𝐺0, as colour refinement is completely ineffective for

regular graphs. Perhaps surprisingly, this may actually make the

problem easier, as sparse random regular graphs are much better

expanders than sparse Erdős–Rényi random graphs (cf. the work

of Bollobás [16] showing that distance profiles provide an efficient

canonical labelling scheme even for very sparse random regular

graphs).

Next, there is the possibility of stronger connections between our

results on smoothed analysis for graph isomorphism, and the work

of Spielman and Teng on smoothed analysis for linear optimisation.

Indeed, (a slight variant of) the colour refinement algorithm is used

for dimension reduction in linear optimisation (see [34]) and it would

be interesting to consider smoothed analysis in this setting.

There is also the possibility of considering smoothed analysis for

many different types of graph algorithms other than isomorphism-

testing. Some early work in this direction was undertaken by Spiel-

man and Teng [57] (see also [11, 12, 49, 50]), but somewhat sur-

prisingly, despite the algorithmic origin of the smoothed analysis

framework, there is now a much larger body of work on randomly

perturbed graphs in extremal and probabilistic graph theory (see

for example [1, 3, 10, 14, 15, 18–20, 24, 25, 35, 36, 39, 43–45]) than

on algorithmic questions.

In particular, it is worth remarking that canonical labelling is

related to the so-called “network alignment problem” (also known

as the “graph matching problem”), where the objective is to find

a mapping between the vertex sets of two graphs such that the

number of adjacency disagreements between the two graphs is

minimised. It would be interesting to explore if this can be extended

to the smoothed analysis setting.
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