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How key features of early development
shape deep convective systems
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Deep Convective Systems (DCSs) reaching scales of 100-1000 km play a pivotal role as the primary
precipitation source in the tropics. Those systems can have large cloud shields, and thus not only
affect severe precipitation patterns but also play a crucial part in modulating the tropical radiation
budget. Understanding the complex factors that control how these systems grow and how they will
behave in a warming climate remain fundamental challenges. Research efforts have been directed, on
one hand, towards understanding the environmental control on these systems, and on the other hand,
towards exploring the internal potential of systems to develop and self-aggregate in idealized
simulations. However, we still lack understanding on the relative role of the environment and internal
feedbacks on DCS mature size and why. The novel high-resolution global SAM simulation from the
DYAMOND project, combined with the TOOCAN Lagrangian tracking of DCSs and machine learning
tools, offers an unprecedented opportunity to explore this question. We find that a system’s growth
rate during the first 2 h of development predicts its final size with a Pearson correlation coefficient of
0.65. Beyond this period, growth rate emerges as the strongest predictor. However, in the early stages,
additional factors—such as ice water path heterogeneity, migration distance, interactions with
neighboring systems, and deep shear—play a more significant role. Our study quantitatively assesses
the relative influence of internal versus external factors on the mature cloud shield size. Our results
show that system-intrinsic properties exert a stronger influence than environmental conditions,
suggesting that the initial environment does not strictly constrain final system size, particularly for
larger systems where internal dynamics dominate.

Deep convective systems (DCSs) exert a profound influence on the
tropical water and energy cycle'. These systems refer to organized deep
cloud systems that span scales larger and last longer than an individual
convective cell. The largest of these systems (reaching mesoscales, and

and how they will behave in a warming climate remain fundamental
challenges™".
At the core of deep convection and DCSs formation lie three fun-

damental ingredients: moisture, instability, and a lifting mechanism'"".

known as mesoscale convective systems; here mesoscale refers to scales of
100s km, i.e., between the scale of individual convective clouds ~1 km
and the synoptic scale ~1000 km) contribute to over 50% of precipitation
tropicswide™. The disproportionate impact of large long lasting systems
on extreme rainfall* underscores the need to unravel the factors gov-
erning their development’. Modeling studies®” have further suggested
that the spatial distribution of deep convection, especially the degree of
clustering of deep clouds, could also impact tropospheric humidity and
cloud coverage, and thus the radiative balance of the Earth, which has
been confirmed by a recent study based on observational data®. Under-
standing the complex factors that control how these systems organize

Humidity supplies the water necessary for cloud formation while mini-
mizing the detrimental impact from dry air entrainment. Instability
reflects the atmosphere’s potential for vertical motion. Lifting mechan-
isms initiate the upward motion that triggers convection. These three
pillars are influenced by both internal feedbacks within DCSs and
external environmental factors. However, distinguishing between inter-
nal and external drivers is often challenging due to their complex inter-
actions and the limitations of data that capture both the large-scale and
finer-scale dynamics.

Given these constraints, past research has often approached internal
and external processes independently. On one hand, observational studies
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and global modeling efforts have largely concentrated on how large-scale
environmental factors influence the behavior of DCS'™'". Among these
efforts, a recent study" highlights that short-lived systems exhibit weak
regional variability, while long-lived systems show strong variability,
implying that external processes can’t explain the diversity of systems
observed and suggesting that internal dynamic might play a major role in
this. However, observational data alone have not been sufficient to con-
clusively validate this hypothesis. On the other hand, idealized studies, such
as radiative-convective equilibrium simulations, offer a simplified frame-
work to explore internal feedback mechanisms in greater depth, particularly
the self-aggregation of deep convection into larger cloud system'®"”. Within
those idealized controlled environments, four main physical processes have
been identified as playing a key role in organizing deep convection, namely
radiative feedbacks, turbulent entrainment at the edge of clouds, cold pools
and waves'®. But the relevance of these idealized studies to the organization
of clouds in the real tropics is still debated.

Although the underlying processes remain complex and not fully
understood, DCSs nonetheless exhibit a remarkably systematic life cycle.
Typically, DCSs exhibit a linear phase of growth, characterized by a rapid
expansion in size, followed by a linear phase of decay, where the system
gradually dissipates. This simple life cycle can be effectively captured by a
model with three key parameters: maximum area (A,,,,,), lifespan (D), and
duration of the growth phase (f,,,,) (see Materials and Methods, Fig. 6).
Notably, approximately 60% of cases investigated here exhibit a nearly
symmetrical life cycle, where t,,,, is equal to half of the lifespan. In our
dataset (described in the next paragraph), DCDs extend in mean approxi-
mately 115 km in one direction (/A,,,,), with a standard deviation of 45
km and have an average duration of 7.5 h (D) with a standard deviation of
2.7 h. This consistent life cycle may be due to the fact that the growth rate
encapsulates much of the information about the various internal processes
acting on the system. The growth rate dA/dt itself can be described by a
simplified mass balance equation*’

dA 1dM, 1dM, A

= A -t cEm 2 M
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where A represents the cloud shield area, A, is the convective area
(summed over the convective updrafts within the system), and the subscript
“src" refers to the fact that convection acts as a source for the total cloud
shield. Additionally, M, and M; correspond to the convective and stratiform
mass flux, respectively. Parameters p and 7 stand for the atmospheric density
and cloud shield area decay timescale, taken in the mid-troposphere.

Recent advances, notably using Lagrangian tracking of systems, have
enabled more comprehensive investigations of DCS life cycles, allowing for a
more holistic study of both internal and external influences. High-resolution
(4km) global simulation using the SAM model within the DYAMOND
project’” ™, combined with a sophisticated storm tracking method called
TOOCAN?, now provide over 100,000 tropical (30S to 30N, see Fig. 1A)
DCSs in August and September 2016 as an extensive dataset to explore. A
rigorous comparison of DCSs properties with observations™ indicates that
global SAM is well representative of the current global Cloud-Resolving
Models (CRMs) generation’s ability to represent organized DCSs. Although
our analysis focuses exclusively on SAM, these findings are likely applicable
to other global CRMs of similar class. The reliability of the TOOCAN
tracking algorithm is further substantiated by evidence showing minimal
model-observation differences in cloud shield properties compared to other
trackers™ (for a comparison of DCSs in the DYAMOND simulations and in
satellite observations, see Supporting Information Text §.4 and Fig. S9).

In this study, we leverage machine learning algorithms-random forest,
multilinear regression, and neural network multi-layer perceptron-to pre-
dict the maximum upper-level cloud shield extension that a DCS reaches
during its lifecycle. These predictions are based on the system’s early
development stages and initial environmental conditions from high-
resolution global simulations. Our main objective is to determine whether
the fate of DCSs-specifically their maximal area—is predetermined by their
initial stage, and if this holds true for the largest systems exceeding 100 km.
Achieving these objectives will help clarify the relative roles of internal and
external processes in controlling the size of the system.

In summary, DCSs are central to extreme precipitation events and play
a significant role in modulating the Earth’s radiative energy budget. Accu-
rately predicting their mature size is therefore essential, but what is even
more crucial is gaining a better understanding of the processes that govern
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Fig. 1 | Tropicwide overview of deep convective systems in DYAMOND-SAM
tracked by TOOCAN. A Snapshot from the DYAMOND-SAM summer simulation
(4 km horizontal resolution) during August 23, 2016 at 23 h 30 of the Precipitable
Water with on top the Deep Convective Systems tracked by TOOCAN focusing only
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on the tropics. bottom. Example of considered physical fields for a given DCSat 1 h
of development : B the system and its neighbors. C Relative humidity field. D Ice
water path. E Surface temperature. F Long wave emission. G Vertical velocity at
700 hPa (note the saturated colorbar to ease visualization).
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their evolution and identifying the factors that drive these changes. Given
the relatively straightforward life cycle of DCSs, it is likely that their early
developmental stages, particularly their growth rate, largely determine their
maximum extent. This study seeks to test this broader hypothesis by
addressing three key questions:

+ Can the maximum area of a DCS be reliably predicted based on its early
growth rate?

* Does the accuracy of predictions improve when using a broader set of
physical features, without explicitly accounting for growth rate? Which
types of systems show better predictive performance under this
approach, and what factors contribute to this accuracy?

» Which physical features, those associated with the DCS itself (internal)
or its surrounding environment (external), have a stronger impact on
the prediction?

Machine learning algorithms are used to investigate the relationship
between the onset of DCS growth and its maximum area. The DCSs ana-
lyzed, the machine learning pipelines applied, and the two experiments (one
based solely on growth rate area and the other incorporating additional
features) are outlined in the section Methods. The subsequent three sections
address each of the key questions in turn.

Results
Prediction of maximal size with growth rate only
Focusing first on the results when the learning relies solely on the initial
evolution of the growth rate of the area, we begin by examining the impact of
the observation period of the system on the final prediction of its maximum
extension (L,,.. = \/A, ., Where A,,,, denotes the maximum area of the
DCS, see Materials and Methods). As mentioned in the introduction, the
average maximal extension is 115 km with a standard deviation equal to
45 km. Figure 2A shows the evolution of the mean squared error and the
R-Squared index for each trained model (random forest, linear regression
(lasso), and neural network multilayer perceptron (mlp)) based on the
observation period of the growth rate, ranging from 30 min (frequency of
outputs from the DYAMOND-SAM simulation for the two-dimensional
variables used here) up to 5h. Firstly, we can see that increasing the
observation period improves the models performance, such that after 5 h,
they can predict the final extension of the system with an average accuracy of
10to 15 km. However, since the systems on average last 7.5 h and reach their
maximum area after around 3 h, beyond this point, the task becomes too
easy, and the models detect it effortlessly. Secondly, with 1.5 h of observa-
tion, all three models predict the maximum system size with a score of ~0.5
and an average error of about 35 km. This experiment demonstrates a strong
relationship between the initial evolution of the growth rate and the max-
imum extension of the system.

Finally, the similarity in performance across the three models suggests
a near-linear relationship, as this pattern is effectively captured by the
multilinear model within the first three hours. These results indicate that the
explosiveness of the system partly determines its maximum size, which
aligns with previous findings™ . This raises questions about whether the
simple growth rate theoretical model described in the introduction” is
optimal to predict DCSs maximum area, whether the score of 0.5 can be
improved by adding features, or whether adding features makes it possible
to predict the maximum system size from as early as one hour and a half. To
address these questions, we will examine the results of the second experi-
ment in the next section.

Prediction with physical features

In this section, we predict the maximum size of DCSs by analyzing key
physical features observed during their early development, aiming to
identify the primary drivers of growth. To that end, we retrain the model
without the growth rate but with physical features. These features, extracted
from high-resolution SAM-Dyamond simulations, include humidity,
atmospheric instability, vertical lifting, and wind shear, derived from both
2D and 3D data outputs (Table 1). To differentiate internal feedback
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Fig. 2 | Machine learning model performance in predicting system size over
varying observation periods. A Evolution of Pearson-r regression score in green
and mean square error in blue for the estimate of maximum extension £, in the
three machine learning models - Linear Regularized Regression in solid line, Multi
Layer Perceptron in dash-dotted line and Random Forest in dashed line - trained on
the evolution of the growth rate during a considered observed period. B Same with
physical features considered, which include system shape, physical field mean and
standard deviation, trajectory and neighbor influence. The Multi Linear model
performances from the top panel are repeated in the lower panel in gray to ease
comparison (ascending is pearson-r, descending is rmse). The horizontal blue dotted
line indicates the standard deviation of the dataset, representing the performance of
a random prediction.

processes from external influences, we compute scalar metrics—-mean and
standard deviation-within the DCS and within a 5° by 5° surrounding
region. This distinction enables us to capture both system-specific features
and environmental context. Additionally, we incorporate metrics related to
neighboring convective systems, such as their number, size, and proximity,
which can affect moisture distribution and lifting mechanisms™ (Table 2).
We also account for system-level attributes, including migration distance,
geographic position, and local time, to refine our understanding of DCS
growth (Table 2).

The first results of this second experiment are shown in Fig. 2B. As
before, this panel shows the evolution of the root mean squared error and
the R-Squared index for each trained model (random forest, linear regres-
sion, and neural network) based on the observation period of features,
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ranging from 30 min up to 5h. We again observe an increasing perfor-
mance, as the observation period increases. Compared to the previous
experiment, we find lower quantitative error from the initial 30 min, and
after 1.5 h of observation, we reach a score of 0.55 for the neural network
model and an average error of less than 35 km. With 2 h of observations, the
score reaches 0.6 for the three models and the error decreases to less than
30 km. We note in passing that the accuracy of the prediction is not greatly
influenced the duration of systems (see Supplementary Fig. S3). Our find-
ings indicate that after 1.5 h of observation, the growth rate emerges as the
most reliable predictor of system size. However, prior to this point, a
combination of additional features appears to be more influential. Our
current focus is on identifying which features are critical in these early stages
and understanding the mechanisms behind their predictive power, as
detailed in the section “Feature importance and dimensionality reduction”.

Before investigating the key features that allow to predict the size of the
systems, we aim to identify which systems are most sensitive to the inclusion
of new features, by analyzing how predictions from the multilinear model,
which includes all features, vary across different DCS sizes. Although other
models offer slightly better predictive performance (see Supplementary Figs.
S4A-D and S5A-D), we focus on the multilinear model for its clearer
interpretability of individual features. Figure 3 presents a one-to-one
comparison of the model’s predictions (y-axis) with the ground truth (x-
axis). Note that our goal here is not necessarily to optimize the prediction,
but rather to investigate the factors impacting the prediction, and to clarify
how much of the DCS fate is written from the start of its lifecycle. We

Table 1 | Physical fields used from SAM-Dyamond in the
second experiment

Physical Variables from SAM-Dyamond used for feature 2D or 3D
extraction

Precipitable Water 2D
Relative Humidity at 500 hPa 2D
Relative Humidity at 700 hPa 2D
Surface Temperature 2D
Ice Water Path 2D
U-component of Wind at 10 m 2D
V-component of Wind at 10 m 2D
Land Mask 2D
Omega at 500 hPa (Vertical Velocity) 2D
Omega at 700 hPa (Vertical Velocity) 2D
Omega at 850 hPa (Vertical Velocity) 2D
Wind Shear 3D
Deep Wind Shear 3D
Wind Shear (longitudinal) 3D
Deep Wind Shear (longitudinal) 3D

Difference in Moist Static Energy between Mid-Troposphere and 3D
Boundary Layer

The ‘2D or 3D’ column indicates whether the variables are directly available from 2D outputs or
derived from 3D data outputs.

therefore focus on the early 1.5 h and 2 h of observation, and investigate the
sensitivity of the prediction to the period of observation used, to the system
size, and to the variables included in the learning. Figure 3A shows results
where all other features during the first 1.5 h are provided for the training of
the model, and Fig. 3B shows the same for 2 h. We can see that adding times
of observation has led to an improvement in prediction for both small
systems (smaller than ~ 100 km) and larger systems (larger than ~100 km).
Notably, a positive bias is observed for smaller and more frequent systems;
however, this bias is not attributed to overfitting, as our analysis confirms
(not shown).

We can quantify this observation by looking at Fig. 3C, which com-
pares the evolution of the mean square error as a function of the maximal
size of DCSs for the multilinear model. Results are shown for the experiment
with all features, as a function of the observation period (curves with dif-
ferent shades). For small systems and large systems alike, increasing the
observation period used for training improves accuracy. With every addi-
tional 30 min of observation, the error is reduced by about 5 km.

Prediction accuracy is highest for systems smaller than 100-120 km,
while performance declines for larger systems, with regression scores
remaining below 0.5 even after two hours of observation (not shown). This
reduced skill may result from two factors: statistical bias, as large systems are
less frequent, or additional processes influencing large systems that are not
captured by early growth alone. However, since large systems (=120 km) still
comprise nearly 25% of the dataset (see Percentile Rank in Fig. 3C), sam-
pling limitations are unlikely to fully explain this discrepancy. We note in
passing that restricting training to mesoscale convective systems would
introduce a survival bias: the model may overlook features that appear
uniform within this subset but actually differentiate large systems from
smaller or less mature ones. Consequently, key variables that explain the
transition from small to large systems could be underrepresented, limiting
the model’s ability to capture essential developmental processes.

This highlights an inherent trade-off: training across a wide range of
systems enhances generality but may reduce accuracy for rare, extreme
cases. To test the robustness of our interpretation, we introduce a weighted
loss function that emphasizes larger systems by increasing their contribu-
tion to the error. While this adjustment leads to a modest decline in overall
performance (not shown), the main conclusions remain consistent. This
sensitivity analysis lends confidence to the stability of the results, particularly
in the interpretation presented in the following section, where we examine
what the model learns and the relative importance of environmental versus
intrinsic system properties (notably, results with this new loss function
confirm the list of most important variables listed below Fig. 4 and the
dominance of internal variables for large systems, not shown).

Feature importance and dimensionality reduction

Focusing solely on the 1.5-h prediction, we now seek to identify the features
that contribute to predicting the maximum extension. As mentioned in the
introduction, from the literature we expect variables related to lift,
instability, and moisture to matter, as well as land/ocean contrasts. The
former can be quantified with large-scale ascendance/subsidence, the sec-
ond with CAPE, which we approximate with the MSE difference between
the boundary layer and free troposphere. The third is quantified with RH,
which matters through its effect on entrainment, and the fourth is identified

Table 2| List of features associated with surrounding systems and system-level attributes

Features characterizing the surrounding DCSs

Features characterizing the system of interest

Number of Surrounding Systems

Eccentricity (core and envelope)

Average and Maximal Age of Surrounding Systems

Geographic Position (latitude and longitude)

Average and Maximal Size of Surrounding Systems

Local Time (for diurnal cycle)

Average and Maximal Distance of Surrounding Systems

Migration Distance

Average and Maximal Distance of Surrounding Systems Weighted by Their Size

The left column lists features related to the surrounding DCSs, while the right column describes system-level attributes. We evaluate neighboring DCSs by examining either the average or maximum value of

specific characteristics (e.g., size).
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Fig. 3 | One-to-one comparison of predicted and observed system sizes using
physical features in a multi-linear model. One-to-one diagrams for the prediction
and the target for the multi-linear model trained with all features, including shape,
physical fields, migration distance and neighboring systems influence, based on
A 1.5 h of observation and B 2 h of observation. The color of the scatters represents
the density of the points, calculated as the joint distribution of (x, y). C Evolution of
the relative mean square error for all systems of a given maximal extension for
different periods of training. The percentile corresponding to a given maximal

extension is indicated below the x-axis.

with the landmask fraction. We further classify these processes into internal
and external contributions, by averaging the relevant variables under the
cloud system only, or in the environment (5° 5° domain centered at the
DCS, lower panels of Fig. 1).

Since all three models exhibit similar performance, we focus here on
the linear Lasso model, which is easier to interpret. We determine the
important features for the linear model with the amplitude of coefficients
assigned to each variable. Figure 4A shows the top 15 important variables for

this model. We note in passing that we can also identify the important
features of the random forest, using the average Gini index score over all
decision trees for each variable. Although they do not appear in exactly the

same order, we find the same first variables of importance for both models to
be consistent (see Supplementary Fig. S6).

Among these variables, we identify the heterogeneity of the ice water
path (std IWP) distribution both within and outside the system, the migration
distance, the eccentricity of the DCS core, the average IWP within the cloud
anvil, the standard deviation of integrated moist static energy (MSE) asso-
ciated with the system, the land mask under the system and outside the

system, the mean vertical velocity at 700 hPa and 850 hPa, the mean long-

wave radiation emitted by all DCSs in the environment, relative humidity at

500 hPa and 700 hPa, and the initial deep shear within the system. These 15
variables collectively form a robust set for predicting the maximum extension
of the system. Importantly, these variables are not independent (see supple-
mentary Fig. S7 for the correlation matrix). But we note that the correlations
between the different variables are always smaller than 0.5.

Among the variables of importance, we recover the expected con-
tributions from lift, instability, moisture, and landmask. The lift is captured
by the mean vertical velocity omega in the system and in its environment.
Instability is reflected through the system’s MSE (which is indicative of
CAPE) and the ice water path, which is associated with the altitude reached
by deep convection. Ice formation thus serves as a proxy for both convective
velocities and the vertical extent of convection. Additionally, the standard
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Fig. 5 | Partitioning variance in dcs maximal All systems

extension between system and environmental
factors. Fraction of the total variance of the DCS
maximal extension prediction explained by the
system or environmental conditions for A all sys-
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deviation of ice water path (IWP) emerges as a strong predictor of system
growth, highlighting the role of spatial heterogeneity in ice content. We
interpret the variability of IWP as an indicator for the number of intense
convective sources within the system. This aligns with the idea that multiple
convective sources can enhance the overall growth rate, as described in
Eq. (1). This interpretation is further supported by a statistical analysis of
4000 randomly sampled systems, which reveals a positive correlation
between the standard deviation of IWP and the number of convective
clusters (not shown). Moisture, with relative humidity (RH) being the key
variable, is critical as it governs the role of entrainment in limiting the
development of deep convection. Landmask, both within the system and its
environment, also plays a significant role. Additionally, the role of shear,
particularly deep-layer shear, in organizing convection is highlighted,
consistent with recent studies™. This pronounced influence of shear may
be partially linked to its effect on squall line organization’*, which could
also be related to the migration distance and eccentricity variables, that
emerge as significant factors™. The final contribution, which, to the best of
our knowledge, has not been emphasized in DCS studies, pertains to the
influence of neighboring systems. One expected impact of nearby systems is
the reduction in available CAPE, as the potential instability is distributed
among all the systems triggering convection. However, even with CAPE
included in our variables, the presence of neighboring systems remains a
significant factor, with a positive coefficient indicating a favorable impact on
the growth. This may be linked to conditions that promote aggregation (as
evidenced by the presence of surrounding systems) which would provide a
positive feedback on the growth and warrants further investigation.

Having identified the key predictors of DCS size, we now further
examine the relative contributions of internal system dynamics versus
external environmental factors in shaping system size. To do so, we
decompose the variability in DCS size into two primary axes: one repre-
senting the system’s intrinsic characteristics (features shown with an *) and
the other reflecting environmental conditions (other features). Our goal is to
determine whether these two axes account for the primary sources of var-
iation in system size, if they have a relatively balance role and to understand
how they relate to both small and large systems. In summary, we seek to
establish whether DCS size is predominantly influenced by internal
dynamics, environmental factors, or a combination of both, and whether the
relative importance of these drivers differs between small and large systems.
To do so, in Fig. 4, we have projected the DCSs onto these two axis, where the
x-axis encapsulates the system’s internal conditions (which have stars in
Fig. 4A), while the y-axis represents the external environmental conditions.
To be more precise, we can express this as follows:

Lonax = Lo+ Uf 1o f 55 f) ~ Lo + 15 fr0f15) @

~Ly+afiFof, ot asfis (3

where £, denotes the maximum extension of the system, £, the average
DCS extension, € is the linear form trained on all features, f; are the features
in order of importance (normalized by removing the mean and dividing by
the standard deviation), and c; are the associated coefficients. We can then
separate the features into those related to the system (indicated by stars) and

those related to the environment:

LW:EOJFZ cfj+chj. @)
icsysx Jjeenv

We can calculate these two terms for all DCSs and observe how the
maximum extension of the system varies in this phase diagram, similar to a
principal component analysis (PCA, see Supplementary Fig. S8 for a PCA
analysis which shows a similar clustering of small and large systems as in
Fig. 4; here we focus on the decomposition of Fig. 4 as it allows to directly
interpret the axes as internal and external variables). The result is shown in
Fig. 4B. The color of the markers represents the maximum extension of the
system. We observe that the maximum extension increases linearly with
the increase in both axes. For very low values of x, we see that the system will
be small regardless of the value of y. Beyond this, both the environment and
the system jointly contribute to the prediction.

We further quantify the relative roles of the environment and of the
system in the prediction of the maximal extension by computing the
explained variance, following the same method as described in ref. 34.
Applying the variance -a non-linear operator- to eq. [(4)], it writes,

i€sysk Jjeenv

+2C0oV (leszys* of ,jgv cjj> ,
where V denotes the variance over the systems, and COV the co-variance,
also along the system set.

Figure 5A shows the three contributions of the right-hand side as
percentages of the total variance explained for all DCSs (for the prediction
using all features during the first 1.5 h of the system). As noted in Fig. 4, both
the system and the environment contribute to the prediction, and Fig. 5A
further shows that internal processes play a predominant role, accounting
for 40.3% of the variance in maximal extension across all systems, while
environmental factors account for 26%.

Figure 5B, C show these same contributions separately for relatively
small systems (<120 km) and relatively large systems (>120 km) respectively
(the 120 km cutting scale was used as it corresponds to the scale beyond
which the score falls by a factor of about 2, not shown). We analyze small and
large systems separately, anticipating that larger systems develop distinct
internal dynamics and are thus more strongly governed by internal feed-
backs than by environmental conditions. It is well established that DCSs
reaching mesoscale develop complex internal circulations that sustain
convection and moisture inflow”. Our analysis confirms that internal
processes increasingly dominate in larger systems. In contrast, smaller
systems are more influenced by environmental factors, the variance being
impacted by the greater variability of the ice water path (IWP) in their
environment.

Consistent with these expectations, for small systems, the fraction of
the variability in their maximal extension explained by their initial envir-
onment is larger than for all systems (32.2%); conversely for the larger
systems, the maximal extension seems to depend largely on the system’s
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characteristics. More precisely, the ratio between the system and the
environment contribution to the variance reaches 42% at 80km (not
shown) and keeps increasing as the size of systems does. These results are
based on the first 1.5 h. Sensitivity tests (not shown) indicate that longer
observation periods increase variability, highlighting a need for further
analysis. But overall, this suggests that large systems have the potential to
create their own conditions and internal feedbacks favoring cloud shield
growth. Given the strong societal and climate impacts of DCSs that reach
mesoscales, these results open new interesting research avenues to address
the nature and strength of internal feedbacks leading to DCS growth beyond
that predicted from initial environmental conditions.

Discussion

The objective of this study is to conduct a data-driven analysis of storms,
with a focus on clarifying the relationship between DCS and associated
variables. Previous literature has identified a range of commonly considered
factors (e.g., lift, instability, etc.). In this work, we incorporate additional
variables into machine learning models to allow the data to reveal potentially
overlooked or unexpected factors. The ultimate aim is to identify the key
processes that influence the extent of DCS and to highlight new, promising
research directions that warrant further investigation.

To that end, we investigated the relationship between DCSs early stage
of development, and their maximal size. We utilized global high-resolution
simulation with the model SAM from the DYAMOND project, coupled
with the storm tracking algorithm TOOCAN. To predict the maximum
extension of DCSs, we compared three different machine learning models
based on early development stages and initial environmental conditions of
the systems. Interestingly, we find that the initial growth rate of the system
area strongly anticipates its eventual maximum extension. By analyzing
growth rates during the first two hours of development, we achieved a
regression score of 0.65, regardless of the system’s ultimate lifespan. As all
three models exhibited similar performances, this shows a near-linear
relationship between growth rate and system size. However, with only one
hour of data, the score dropped to around 0.25, suggesting that the growth
rate itself is the result of earlier underlying processes. Incorporating addi-
tional variables - including physical fields, features of surrounding DCSs,
and characteristics of the system itself — into a neural network model
improved the regression score from 0.25 to 0.47 within the first hour. This
increase in predictive accuracy enabled us to identify key factors influencing
DCS size, offering new insights into the roles of both environmental and
internal processes.

Several key factors emerged as important for predicting the behavior of
DCSs, reflecting both well-known and less expected influences. As expected,
lift, instability, moisture, and land-ocean differences play major roles. Lift is
captured by vertical velocity, while instability is represented by moist static
energy (MSE)-a proxy for CAPE-and the ice water path, which reflects the
depth of convection and, through its standard deviation, the number of
convective updraft sources. Moisture is mainly controlled by relative
humidity, which affects entrainment, and the land mask highlights the
different behavior of convection over land and ocean. Our analysis also
confirms the importance of deep-layer shear, a factor that helps organize
convective systems and supports the development of squall lines. Although
shear has been recognized in past studies, our statistical analysis further
highlights its relevance.

More unexpectedly, features associated with surrounding systems also
emerge as significant. Even more surprising is that these features appear
alongside our proxy for CAPE, suggesting that the influence of neighboring
systems extends beyond merely modifying available energy, possibly by
promoting aggregation. These additional factors could only be uncovered
through a data-driven approach, in which the model was supplied with a
broader set of variables beyond the conventional drivers of deep convection.

Several directions could help improve the performance of data-driven
models. One promising approach is to use causal inference techniques-such
as those proposed by Beucler et al.**~to identify true cause-and-effect rela-
tionships, rather than relying only on correlations. Although the models

include many input variables, their skill scores after 1.5h of prediction
remain moderate (around 0.5-0.6 for linear and neural network models),
suggesting that important factors may still be missing. A better under-
standing of boundary conditions, including processes during the growth
phase that are not tied to the initial state, could help capture more of the
system’s behavior. It may also be important to rethink how spatial infor-
mation is used. Instead of relying on averages and standard deviation,
applying convolutional neural networks could help detect spatial patterns
and interactions between fields, potentially improving prediction. These
improvements could make the models more accurate and allow the
approach to be extended to other datasets, including satellite observations”.

Although further improvements to the modeling framework are
possible-particularly in feature selection and the treatment of spatial
information-the current analysis already provides significant insight. We
find that both internal and external drivers contribute to predicting the
maximal size of DCSs, with contributions of 40.3% and 26%, respectively.
This indicates that a system’s initial environment does not necessarily limit
its eventual size. This effect is especially pronounced for larger systems,
whose growth is more significantly influenced by their internal character-
istics (48.6%). This aligns with the well-documented internal circulation that
DCSs can develop, enabling them to expand to mesoscales®. This obser-
vation is particularly intriguing when considering systems developing
within a cohort of DCSs, where CAPE is likely low (consumed by convection
within the DCS and its neighbors). Understanding the organization between
mesoscale convective systems and the processes that allow a system to thrive
among many others warrants further in-depth research.

Methods

Global CRM coupled with storm tracking algorithm

Current satellite data does not provide complete information on the vertical
structure of variables, notably dynamical fields, therefore, we have turned to
simulation data for our study. To investigate the life cycle of DCSs, we rely
on high-resolution (4 km) global simulation with the model System for
Atmospheric Model (SAM™), an anelastic model of fluid dynamics with
parametrized microphysics (part of the DYAMOND project™). This global-
storm resolving simulation ran for a 40-day period (1 August-10 September
2016), outputting two-dimensional variables (which we used in this study)
every half hour. By resolving the transient dynamics of convective storms in
the tropics, global storm-resolving models eliminate the need to para-
meterize tropical deep convection, leading to a more robust representation
of the climate system and a more natural connection to high-resolution data
from satellite-borne sensors.

Most DYAMOND models, including SAM, accurately capture
essential DCS characteristics such as lifetime, cloud shield area, and volume
of rainfall’®. Simulated DCS movement speeds over the ocean generally
agree with observations, but over land, some models produce faster speeds,
possibly indicating stronger cold pool intensities that promote DCS
movements®. To detect, track, and measure the evolution of DCSs, we
leverage the capabilities of the cloud tracking algorithm TOOCAN™, which
relies on a definition of a DCS consisting in a combination of a convective
core, characterized by low brightness temperature, associated to an anvil
cloud, characterized by relatively higher brightness temperature than con-
vective cores. These components evolve over time, and the TOOCAN
algorithm links the convective cores with their respective anvil clouds within
a spatio-temporal domain to identify individual convective systems. This is
achieved by processing a spatio-temporal volume of infrared images
through an iterative process of detection and dilatation of convective seeds
in three dimensions. This process continues until it encounters the outer
limits of the high cold cloud shield, demarcated by a brightness temperature
threshold of 235K (calibration details can be found in the Supplementary
section Tracking algorithm calibration). As a result, TOOCAN is able to
identify and track individual DCSs in a single process, and to partition the
high cold cloud shield into DCS components. The DCSs identified through
this process exhibit a broad spectrum of convective organization, from
short-lived, small and isolated systems, to long-lived and large systems”,
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similar to observations (see Supplementary section, Assessing realistic
properties of MCSs in DYAMOND-SAM simulation and Fig. S8). The
initial dataset comprises 287,031 simulated systems during August and
September 2016 worldwide, which were then pre-processed prior to analysis
as described next.

Pre-processing of data

In the following paragraphs, we describe the pre-processing steps applied to
the TOOCAN dataset prior to using machine learning algorithms. From the
systems tracked by TOOCAN, we focus solely on tropical DCSs, restricting
our analysis to within £30 degrees of latitude. Our particular interest lies in
relatively long-lasting and large-scale systems, defined as those with a
minimum lifespan of 5 h and a minimum extent of at least 40 km. From the
initial systems, we then focus on 107,582 DCSs that fit these criteria.

During the analysis of system life cycles, we noticed that some take time
to dissipate, as shown in Supplementary Fig. S10, and although they last for
more than 5 h, their effective duration is shorter. In a smaller proportion of
cases, a system may also experience a delayed growth phase. In both
instances, we chose to concentrate on the active life cycle of the systems,
namely those with significant growth and decay rates of area, at the
boundary of the life cycle (see Fig. S10A for an illustration). In other words,
these boundaries are meant to represent the start and end points of the
system’s active life cyle. To determine these thresholds, we aim to strike a
balance between maximizing the correlation between maximum area and
lifespan, as expected from observations, while minimizing the number of
systems removed (often active cycles fall below the 5-hour minimum life-
span threshold). These thresholds are described in more detail in the sup-
plementary Fig. S10B, which depicts the evolution of the first criterion
(correlation between area and lifespan) and the second criterion (number of
systems removed) based on different thresholds applied to the growth and
decay rates. An optimal compromise is found at 1000 km?/h. It is worth
noting that the growth rate of area threshold remains fixed and independent
of the maximum area of the systems, ensuring there are no a priori biases or
information embedded in this threshold.

Finally, the DCS life cycle, and size, lifespan, and growth time, are
illustrated in Fig. 6A for a few DCSs, alongside the joint distribution of
lifespan and maximum extension shown in Fig. 6B. This dataset of
68,913 systems, coupled with high-resolution physical fields, is the dataset
used for the application of machine learning. In the next section, we will
describe the protocols utilizing machine learning algorithms to address the
overarching question of this study: What determines, during the early stages
of growth, whether a system will become large, and why?

Implementation of Machine Learning Pipelines : models, input,
output and error quantification

Handling all this data is challenging, especially considering all the dynamic
and thermodynamic fields accessible for all systems. The machine learning
approach can be seen as an initial step towards developing a physical model.
Learning occurs when a program solves tasks without being explicitly
programmed for them. In the case of supervised learning, as is the focus
here, programs primarily create a model that minimizes the average sta-
tistical error with respect to the target task.

Our method aims to first understand statistically what leads to sig-
nificant extensions of the systems and then to comprehend the physical
interpretation of this learning. The protocol involves training a learning
model on a subset of DCSs (the train and validation datasets represent 85%
of all systems) to predict the maximum extension of a DCS based on its early
growth information. Subsequently, we assess its performance on new sys-
tems, separately in a test set (the remaining 15% of DCSs, randomly chosen).
In the following, we define the model used and precisely specify the input
characteristics of the model. We compare three methods: a multilinear
model, a neural network, and a random forest.

Machine Learning models. The multilinear model optimizes the weights
of a linear form that maps the input vector of system characteristics to the
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Fig. 6 | Life cycle evolution and size-duration relationship of deep convective
systems. A Superimposed evolution of the life cycle of tracked Deep Convective
Systems (arbitrarily chosen) - i.e., the normalized area evolution as a function of the
normalized time for 100 systems. The solid black line represent the simple theore-
tical model proposed in ref. 15 which captures the life cycle with 3 parameters, the
maximal area, the duration and the time of maximal area which is most of the time
close to half of the duration. B Joint distribution of the duration and the maximal
extension for all considered systems. The color indicates the density of points.
Through post-processing of data, see Supplementary Fig. S9, correlation between
maximal extension and duration is equal to 0.67 consistent with observations of deep
convective systems.

target maximum size. Here, we employ a lasso model, which includes weight
regularization, requiring the model to minimize the prediction error and also
minimize the L1 norm of the linear form. For the neural network, the
principle is the same, except there are non-linear activation thresholds in the
layers. Lastly, the random forest consists of a collection of decision trees.
Each decision tree describes a set of possible outcomes (also known as
leaves), each representing the consequence of a logical decision made at each
tree node. The decision is determined by a threshold applied to an input
variable. The order of variables and the threshold are optimized in the
training process to minimize the prediction error. The iteration involves
promoting variables with a high Gini impurity score, which represents a
variable’s ability to be correlated with the output compared to a random
variable. The random forest aggregates predictions from the collection of
trees, allowing for a more robust prediction. The advantage is that the
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average Gini score for each variable can be known, facilitating result inter-
40

pretation. All our analysis uses the Sklearn Python Package™.

Output variable and error quantification. We trained these three
machine learning models to predict the square root of maximum area of a
DCS (we made the arbitrary choice to work with square root of area
instead of area, although similar results are obtained with area prediction,
not shown), based on the evolution of the early stage of the system,
observed at intervals ranging from 30 min up to 5h (the minimum
duration of all systems). To assess the performance of each model, we
used the Pearson correlation coefficient, denoted as r, which is defined as:

_ Cov(ypred ’ yturget)

T G(ypred)g(ytarget) (5)

where y,,.q represents the set of model-predicted square root of maximum
areas, Yyarger is the true target square root of maximum areas, cov denotes
covariance, and o denotes variance. This score measures how well the
model’s predictions align with the target values, accounting for any
recurrent biases. It is important to note that a high correlation does not
necessarily mean the model is accurate, as systematic overestimation or
underestimation could still lead to a high correlation.

To evaluate if the model achieves its intended goal, we consider a
second criterion, the Root Mean Squared Error (rmse), defined as:

rmse = E[(ypred - ytarget)z] (6)

where E represents the first moment operator, and ypeq and g are
defined as above. The mean squared error is the criterion minimized during
model training, meaning that the correlation coefficient still incorporates
this information, but does not include it explicitly.

Input variables. Regarding the input data, as described in the intro-
duction, we designed two experiments. In the first experiment, we input
only the evolution of the growth rate of the area to predict the maximum
size. More precisely, for each DCS we compute the following array

dA dA dA
{E(t =t,+ At)’E(t =ty + 2At), ..,E(t =t,+ nAt)}, 7)

where A is the area of the cloud shield, #, is the birth time of the system, At is
equal to 30 min, nis an integer less or equal to 10 (which correspond to 5 h of
development), and dA/dt is estimated by finite difference between the
timestep and the previous one. We conduct 10 cases, by varying the
observed period of evolution of the system from 30 min to 5 h. We note in
passing that in the theoretical model described in Fig. 6 the growth rate is
constant in the increasing phase, but in the data there are some small
variations in area growth rate which we retain. This protocol serves as our
baseline and will investigate if the growth rate already incorporates envir-
onmental parameters.

In the second experiments, we predict the maximum size of DCSs by
analyzing key physical features observed during their early stages of
development, derived from high-resolution SAM-Dyamond simulations.
Humidity is represented by relative humidity at 500 hPa and 850 hPa,
obtained from the 2D outputs of the simulations. Atmospheric instability is
quantified by the difference in moist static energy (MSE) between the mid-
troposphere and the boundary layer, a measure derived from the 3D out-
puts, offering a computationally feasible alternative to more complex indices
such as CAPE and CIN. Low-level instability, often linked to cold pool
activity, is approximated using 2m-temperature data available in the 2D
outputs. Lifting mechanisms, critical for convective development, are cap-
tured through vertical velocity fields and the ice water path (IWP), which
reflects the role of ice loading within the system. Wind shear, a key factor not
provided as a 2D field, is calculated from 3D velocity data by determining

the difference in horizontal wind speeds between the upper and lower
atmospheric levels (respectively 4000 m and 1000 m). In addition to these
primary variables, supplementary 2D fields from the SAM-Dyamond
simulations, as outlined in Table 1, are incorporated to investigate if they
enhance the predictive capability of our data-driven methods.

Scalar features, namely the mean and standard deviation of these
variables, are computed for each system and serve as inputs to our models.
To distinguish between internal feedback processes and external influences,
these metrics are calculated both within the DCS and within a 5° by 5° region
centered on the system’s barycenter. Bottom panels of Fig. 1, as well as
supplementary examples in supplementary Fig. S1, show examples of
physical fields for a given DCS at 1.5 h of development. This dual approach
provides a comprehensive view of values within the system and in the
environment surrounding the system, allowing us to better understand how
internal and external conditions influence the size of mature systems.
Additionally, we also include features that account for the influence of
surrounding convective systems -number, age, and proximity of these
neighboring systems, as detailed in the Table 2- since they may impact
moisture distribution, CAPE or enhance lifting through gravity wave
interactions™. One key features, called inferaction power denotes the
influence of each neighboring system size (see Fig. 1B), quantified by
weighting its distance to the center of the system of interest (using
exp(—(d/ do)z), where d is the distance to the center, and d,, = 50 km), and
then averaging over all neighboring systems to obtain the average influence
factor. For the maximum influence factor, we took the maximum value
instead of the average (nearest neighbor). Finally, system-level attributes,
such as eccentricity, geographic position (latitude and longitude), local time,
and migration distance and whether it forms over land or ocean are also
incorporated into the analysis, as described in Table 2.

At each time step of the system’s evolution (every 30 min), these fea-
tures are calculated and concatenated into a single vector, which is then
provided as input to the model. To ensure all input features are weighted
equally, each variable is standardized by removing the mean and scaling to
unit variance. We first apply a filter to exclude scalar features with corre-
lations greater than 85% (except for land mask). Then, to accelerate training,
we use a genetic algorithm to preselect 70% of the input data based on its
statistical correlation with the target prediction. We proceed to train three
models-random forest, lasso, and neural network-incorporating these
selected features.

Accession codes

This study utilizes the global Cloud-Resolving Model (CRM) SAM from
the DYAMOND project, which is stored alongside other global CRMs
at the Deutsches Klimarechenzentrum (DKRZ). SAM is an open acces
model (http://rossby.msrc.sunysb.edu/SAM/). The tracking algorithm
TOOCAN source code and ressources can be found here https://data.
ipsl.fr/catalog/srv/eng/catalog.search#/metadata/9e924ac9-7e43-4c9a-
ba2e-188b0309a783. The resulting TOOCAN-SAM-DYAMOND
dataset is accessible here: https://data.ipsl.fr/catalog/srv/eng/catalog.
search#/metadata/0d567c47-3318-4767-8365-e5416b256aff. The pro-
cessed data supporting the findings of this study are archived at the
World Data Center for Climate (WDCC). These include the system’s
environmental fields, the train and test feature dataset, available at
https://www.wdc-climate.de/ui/entry?acronym=DeepFate. The var-
ious algorithms related to the machine learning component and the
main script developed in this article are freely available on the Zenodo
DeepFate project repository (https://doi.org/10.5281/zenodo.12588221).

Data availability

This study utilizes the global Cloud-Resolving Model (CRM) SAM from the
DYAMOND project, which is stored alongside other global CRMs at the
Deutsches Klimarechenzentrum (DKRZ). SAM is an open acces model
(http://rossby.msrc.sunysb.edu/SAM/). The tracking algorithm TOOCAN
source code and ressources can be found here https://data.ipsl.fr/catalog/srv/
eng/catalog.search#/metadata/9e924ac9-7e43-4c9a-ba2e-188b0309a783. The
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resulting TOOCAN-SAM-DYAMOND dataset is accessible here: https://
data.ipsl.fr/catalog/srv/eng/catalog.search#/metadata/0d567c47-3318-4767-
8365-e5416b256aff. The processed data supporting the findings of this study
are archived at the World Data Center for Climate (WDCC). These include
the system’s environmental fields, the train and test feature dataset, available at
https://www.wdc-climate.de/ui/entry?acronym=DeepFate. The various algo-
rithms related to the machine learning component and the main script
developed in this article are freely available on the Zenodo DeepFate project
repository (https://doi.org/10.5281/zenodo.12588221).
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