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Abstract

A Laplacian matrix is a real symmetric matrix whose row and column sums are zero.
We investigate the limiting distribution of the largest eigenvalues of a Laplacian
random matrix with Gaussian entries. Unlike many classical matrix ensembles, this
random matrix model contains dependent entries. Our main results show that the
extreme eigenvalues of this model exhibit Poisson statistics. In particular, after
properly shifting and scaling, we show that the largest eigenvalue converges to the
Gumbel distribution as the dimension of the matrix tends to infinity. While the largest
diagonal entry is also shown to have Gumbel fluctuations, there is a rather surprising
difference between its deterministic centering term and the centering term required
for the largest eigenvalues.
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1 Introduction

The famous Tracy–Widom distribution appears as the limiting distribution for the
largest eigenvalue of many classical random matrix ensembles [14, 30, 42, 43, 47, 48,
53,54,56,59,63,64,73,74,75]. However, for many other matrix ensembles—such as
those containing certain structural properties or significantly less independence—other
distributions can appear as the limiting law for the largest eigenvalue [20,46,58].

The present paper focuses on the limiting distributions for the largest eigenvalues of
random Laplacian matrices with Gaussian entries.
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Extreme eigenvalues of Laplacian random matrices

Definition 1.1. For an n× n real symmetric matrix A, we define the Laplacian matrix
LA of A as

LA := DA −A,

where DA = (Dij) is the diagonal matrix containing the row sums of A:

Dii =

n∑
j=1

Aij .

We refer to LA as a Laplacian matrix.

Every real symmetric matrix that maps the all-ones vector to zero can be represented
as the Laplacian matrix LA of some real symmetric matrix A. In the literature, Laplacian
matrices are also known as Markov matrices.

When A is a random real symmetric matrix, we say LA is a random Laplacian matrix.
Random Laplacian matrices play an important role in many applications involving
complex graphs [25], analysis of algorithms for the Z2 synchronization problem [12],
community detection in the stochastic block model [1], and other optimization problems
in semidefinite programming [12]. In the theoretical physics literature, random Laplacian
matrices have also been used to study random impedance networks [39,68].

This paper focuses on the fluctuations of the largest eigenvalues of LA when A is
drawn from the Gaussian Orthogonal Ensemble. Recall that an n × n real symmetric
matrix A is drawn from the Gaussian Orthogonal Ensemble (GOE) if the upper-triangular
entries Aij , 1 ≤ i ≤ j ≤ n are independent Gaussian random variables, where Aij has

mean zero and variance 1+δij
n and δij is the Kronecker delta.

When A is drawn from the GOE, the limiting empirical spectral distribution for LA

is given by the free convolution of the semicircle law and the Gaussian distribution
[21,24,29] (see also the earlier derivations given in [39,68]). More generally, this is
also the limiting spectral distribution of LA when A is a properly normalized Wigner
matrix [21, 24, 29]; extensions of this result are also known for generalized Wigner
matrices [24], inhomogeneous and dilute Erdős–Rényi random graphs [23,44], and block
Laplacian matrices [28]. Moreover, the asymptotic location of the largest eigenvalue of
LA, for a large class of Wigner matrices A, has been established by Ding and Jiang [29].
When A is an n × n matrix drawn from the GOE, these results show that the largest
eigenvalue of LA is asymptotically close to

√
2 log n as the dimension n tends to infinity.

The generalized Wigner case was studied in [24], while the smallest eigenvalues were
investigated in [45]. Spectral norm bounds are also known [21,24].

The goal of this paper is to study the largest eigenvalues of LA when A is drawn from
the GOE. This particular random matrix appears in the Z2 synchronization problem of
recovering binary labels with Gaussian noise [12]. While we focus on the edge of the
spectrum, the eigenvalues in the bulk (and corresponding eigenvectors) were studied by
Huang and Landon [41] for the case when A is a Wigner matrix or the adjacency matrix
of a sparse Erdő–Rényi random graph. Similar to [41], we also use resolvent techniques
to prove our main results.

For any n × n real symmetric matrix M , we let λn(M) ≤ · · · ≤ λ1(M) be the or-
dered eigenvalues ofM . Recall that the standard Gumbel distribution has cumulative
distribution function

F (x) := exp
(
−e−x

)
, x ∈ R. (1.1)

Define

an :=
√
2 log n and bn :=

√
2 log n− log log n+ log(4π)− 2

2
√
2 log n

. (1.2)

While our main results describe the joint behavior of several eigenvalues, for simplic-
ity, we start with the largest eigenvalue of LA, which we show has Gumbel fluctuations.

EJP 30 (2025), paper 104.
Page 2/52

https://www.imstat.org/ejp

https://doi.org/10.1214/25-EJP1366
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Extreme eigenvalues of Laplacian random matrices

Theorem 1.2 (Largest eigenvalue). Let A be an n× n matrix drawn from the GOE. Then
the centered and rescaled largest eigenvalue of LA

an (λ1(LA)− bn)

converges in distribution as n→ ∞ to the standard Gumbel distribution, where an and
bn are defined in (1.2).

Remark 1.3. By symmetry, an analogous version of Theorem 1.2 holds for the smallest
eigenvalue of LA as well.

The value of the centering term bn is surprising as it does not coincide with the
location of the largest diagonal entry of LA. It was widely suspected that the behavior
of the largest eigenvalue of LA was dictated by the largest diagonal entry.1 The largest
diagonal entry of LA does indeed have a Gumbel distribution but with a different
deterministic shift. Define

b′n :=
√
2 log n− log log n+ log(4π)

2
√
2 log n

. (1.3)

It is shown in Appendix A that, when A is drawn from the GOE, the centered and rescaled
largest diagonal entry of LA

an

(
max
1≤i≤n

(LA)ii − b′n

)
converges in distribution as n → ∞ to the standard Gumbel distribution, where an is
specified in (1.2). In other words, while the scaling factors are the same, the centering
terms for the largest eigenvalue and the largest diagonal entry are different. The terms
an and b′n are the correct scaling and centering terms, respectively, when considering
the limiting fluctuations for the maximum of n independent and identically distributed
(iid) standard Gaussian random variables (see, for example, [51, Theorem 1.5.3]), as
described below. We refer the reader to [51,61] for more details concerning the extreme
values of sequences of iid random variables.

The difference between bn and b′n is can be explained by considering solutions E of
the equation

bn − E − Rem(E + in−1/4) = 0, (1.4)

where m is the Stieltjes transform of the free convolution of the semicircle law and the
Gaussian distribution, see (2.19) for a precise definition. As we show below, E ≈ bn+

1
bn

≈
b′n, and equations similar to (1.4) have previously appeared in the study of deformed
Wigner matrices as describing approximate locations of the largest eigenvalues, see for
example [52]. This shift by 1

bn
can also be thought of as an example of the Baik–Ben

Arous–Péché (BBP) [11] phenomenon for the largest eigenvalues of random matrices
with large deformations.

It is useful to compare our results with those of classical extreme value theory. To
that end, for each n ≥ 1, let ξ1, . . . , ξn be a sample of n iid standard Gaussian random
variables, and let ξ(n)1 > ξ

(n)
2 > · · · > ξ

(n)
n be their order statistics. Classical results

(see, for instance, [51, Theorem 1.5.3]) imply that the scaled and centered largest order
statistic

an(ξ
(n)
1 − b′n)

converges in distribution to the standard Gumbel distribution as n → ∞, where an
is defined in (1.2) and b′n is defined in (1.3). More generally, for any fixed integer

1In fact, this was the result of [7], which unfortunately contains an error in its proof [8].
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Extreme eigenvalues of Laplacian random matrices

k ≥ 1, there exists (see, for example, [51] Theorem 2.3.1 and the remarks thereafter) a
non-trivial joint cumulative distribution Fk : Rk → [0, 1] so that

lim
n→∞

P
(
an

(
ξ
(n)
1 − b′n

)
≤ x1, . . . , an

(
ξ
(n)
k − b′n

)
≤ xk

)
= Fk(x1, . . . , xk) (1.5)

for any fixed x1, . . . , xk ∈ R. (In particular, F1 is the cumulative distribution function of
the standard Gumbel distribution.) By using the correct deterministic centering term,
we show the same behavior for the k largest eigenvalues of LA.

Theorem 1.4 (k largest eigenvalues). Let A be an n × n matrix drawn from the GOE,
and fix an integer k ≥ 1. Then, for any fixed x1, . . . , xk ∈ R,

lim
n→∞

P (an (λ1(LA)− bn) ≤ x1, . . . , an (λk(LA)− bn) ≤ xk) = Fk(x1, . . . , xk),

where an and bn are defined in (1.2) and Fk is defined in (1.5).

Theorem 1.2 follows immediately from Theorem 1.4 by taking k = 1. In addition,
Theorem 1.4 allows us to study the gaps between the eigenvalues. While one can
consider the joint distribution of gaps between several consecutive eigenvalues, for
simplicity we only present a result for the limiting gap distribution of the largest two
eigenvalues.

Corollary 1.5 (Gap distribution). Let A be an n× n matrix drawn from the GOE. Then,
for any x > 0,

lim
n→∞

P (an (λ1(LA)− λ2(LA)) > x) = e−x,

where an is defined in (1.2).

Proof. In view of Theorem 1.4, the function F2 defined in (1.5) describes the limiting
joint distribution of an (λ1(LA)− bn) and an (λ2(LA)− bn). F2 also describes the limiting

joint distribution of the largest order statistics an
(
ξ
(n)
1 − b′n

)
and an

(
ξ
(n)
2 − b′n

)
, where

the limiting gap distribution can be deduced from standard techniques in extreme value
theory (see, for instance, [26,61]).

In addition to Corollary 1.5, Theorem 1.4 also allows us to show that the extreme
eigenvalues exhibit Poisson statistics. To this end, let Pn be the random point process
constructed from the rescaled eigenvalues of LA:

Pn =

n∑
j=1

δan(λj(LA)−bn), (1.6)

where an and bn are defined in (1.2) and δx is a point mass at x.

Corollary 1.6 (Poisson point process limit of extreme eigenvalues). Let A be an n× n

matrix drawn from the GOE. Then the random point process Pn, defined in (1.6) and
constructed from the eigenvalues of LA, converges in distribution in the vague topology
as n → ∞ to the Poisson point process P with intensity measure µ with density dµ =

e−xdx.

Remark 1.7. By symmetry, analogous versions of Theorem 1.4, Corollary 1.5, and
Corollary 1.6 hold for the smallest eigenvalue of LA as well.

In contrast to many classical models of random matrices with Gaussian entries, where
the limiting behavior of the eigenvalues at the edge is describe by a determinantal point
process [74, 75], Corollary 1.6 shows Poisson statistics for the extreme eigenvalues.
In random matrix theory, Poisson statistics also describe the extreme eigenvalues for
matrices with heavy-tailed or sparse entries (see, for example, [3, 9, 65, 66, 67] and
references therein).
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Extreme eigenvalues of Laplacian random matrices

We note that the Poisson point process P also arises when one considers the largest
order statistics from a sample ξ1, . . . , ξn of n iid standard normal random variables. That
is, if ξ(n)1 > ξ(n) > · · · > ξ

(n)
n are the order statistics of ξ1, . . . , ξn, then it follows from

standard results (see, for example, [61] Proposition 3.21) that the point process

Qn =

n∑
j=1

δ
an(ξ

(n)
j −b′n)

converges in distribution in the vague topology as n→ ∞ to the Poisson point process P.
Recall that an is defined in (1.2) and b′n is defined in (1.3).

In many matrix models with Gaussian entries (such as the GOE), there are explicit
formulas for the density of the eigenvalues. The authors are not aware of any formulas
for the eigenvalues of LA when A is drawn from the GOE. In particular, LA is not
orthogonally invariant in this case. The proof of Theorem 1.4—which is outlined in
Section 2 below—instead relies on comparing the largest eigenvalues of LA to the
largest eigenvalues of a matrix model with independent entries and then applying
resolvent techniques to analyze this new model. The fact that the entries are Gaussian is
crucial to our method, but we conjecture that Theorem 1.4 should still hold when A is a
Wigner matrix with some appropriate moment assumptions on the entries.

To conclude this section, we present the proof of Corollary 1.6 using Theorem 1.4.

Proof of Corollary 1.6. We begin with some preliminaries. Let a ∈ R, and fix an integer
k ≥ 0. It follows that

P(Pn([a,∞)) ≥ k) = P(an(λk(LA)− bn) ≥ a).

Thus, from Theorem 1.4, we conclude that Pn([a,∞)) converges in distribution to
P([a,∞)) for any a ∈ R. In particular, this implies that {Pn([a,∞))}n≥1 is tight. Hence,
for any a ∈ R and any ε > 0, there exists an integer N > 0 so that

P(Pn([a,∞)) > N) < ε (1.7)

for all n and
P(P([a,∞)) > N) < ε. (1.8)

We will now use (1.7) and (1.8) to prove Corollary 1.6. In view of Theorem 16.16
in [49] or alternatively the results in Chapter 4.2 of [50], it suffices to show that Pn(U)

converges in distribution to P(U) for any set U ⊂ R which is a union of finitely many
disjoint bounded intervals. In addition, since P(P({c}) > 0) = 0 for all c ∈ R, it suffices
to assume that U = [a1, b1) ∪ · · · ∪ [al, bl) for some integer l ≥ 1 and real numbers
a1 < b1 < · · · < al < bl. Thus, by writing each interval [ai, bi) as the difference of [ai,∞)

and [bi,∞), we find

P (Pn(U) = k) =
∑

k1,j1,...,kl,jl

p
(n)
k1,j1,...,kl,jl

where the sum on the right-hand side is over all non-negative integers k1, j1, . . . , kl, jl so
that k1 − j1 + k2 − j2 + · · ·+ kl − jl = k and

p
(n)
k1,j1,...,kl,jl

= P (Pn([a1,∞)) = k1,Pn([b1,∞)) = j1, . . . ,Pn([al,∞)) = kl,Pn([bl,∞)) = jl) .

Since

p
(n)
k1,j1,...,kl,jl

= P(an(λk1+1(LA)− bn) < a1 ≤ an(λk1
(LA)− bn), . . . ,

an(λjl+1(LA)− bn) < bl ≤ an(λjl(LA)− bn)),
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Extreme eigenvalues of Laplacian random matrices

by Theorem 1.4 each p(n)k1,j1,...,kl,jl
converges to pk1,j1,...,kl,jl , where (see Lemma 3.11)

pk1,j1,...,kl,jl

= P (P([a1,∞)) = k1,P([b1,∞)) = j1, . . . ,P([al,∞)) = kl,P([bl,∞)) = jl) .

Let ε > 0. By (1.7) and (1.8) (and the fact that {p(n)k1,j1,...,kl,jl
}k1,j1,...,kl,jl≥0 is a collection

of probabilities of disjoint events) there exists N > 0 so that∣∣∣∣∣∣
N∑

k1,j1,...,kl,jl

p
(n)
k1,j1,...,kl,jl

−
∑

k1,j1,...,kl,jl

p
(n)
k1,j1,...,kl,jl

∣∣∣∣∣∣ < ε

and ∣∣∣∣∣∣
N∑

k1,j1,...,kl,jl

pk1,j1,...,kl,jl −
∑

k1,j1,...,kl,jl

pk1,j1,...,kl,jl

∣∣∣∣∣∣ < ε,

where the notation
∑N

k1,j1,...,kl,jl
denotes the sum

∑
k1,j1,...,kl,jl

with the additional re-

striction that none of the indices k1, j1, . . . , kl, jl exceed N . In particular,
∑N

k1,j1,...,kl,jl
denotes a finite sum, and hence

lim
n→∞

N∑
k1,j1,...,kl,jl

p
(n)
k1,j1,...,kl,jl

=

N∑
k1,j1,...,kl,jl

pk1,j1,...,kl,jl .

Therefore, we conclude that

∑
k1,j1,...,kl,jl

pk1,j1,...,kl,jl − ε ≤
N∑

k1,j1,...,kl,jl

pk1,j1,...,kl,jl

≤ lim inf
n→∞

N∑
k1,j1,...,kl,jl

p
(n)
k1,j1,...,kl,jl

≤ lim inf
n→∞

∑
k1,j1,...,kl,jl

p
(n)
k1,j1,...,kl,jl

≤ lim sup
n→∞

∑
k1,j1,...,kl,jl

p
(n)
k1,j1,...,kl,jl

≤ lim sup
n→∞

N∑
k1,j1,...,kl,jl

p
(n)
k1,j1,...,kl,jl

+ ε

≤
N∑

k1,j1,...,kl,jl

pk1,j1,...,kl,jl + ε

≤
∑

k1,j1,...,kl,jl

pk1,j1,...,kl,jl + ε.

Since ε > 0 was arbitrary, the proof is complete.

We would like to mention that after this article appeared on arXiv, the PhD thesis
of R. Rivier addresses the convergence of the extreme eigenvalues of the Laplacian of
random sparse Erdős-Rényi graphs to a point process [62]. The argument in this thesis
is combinatorial in nature and does not extend to the dense regime.
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Extreme eigenvalues of Laplacian random matrices

2 Overview and main reduction

Let A be an n× n matrix drawn from the GOE. Define

L := D −A, (2.1)

where D is an n× n diagonal matrix with iid standard normal entries, independent of A.
We will show that the largest eigenvalues of L have the same asymptotic behavior as
that described in Theorem 1.4.

Theorem 2.1. Let L be the n× n random matrix defined above, and fix an integer k ≥ 1.
Then, for any fixed x1, . . . , xk ∈ R,

lim
n→∞

P (an (λ1(L)− bn) ≤ x1, . . . , an (λk(L)− bn) ≤ xk) = Fk(x1, . . . , xk),

where an and bn are defined in (1.2) and Fk is defined in (1.5).

Remark 2.2. Since L has the same distribution as D +A and A−D, Theorem 2.1 also
applies to the largest eigenvalues of these matrices. In fact, in the forthcoming proofs, it
will sometimes be convenient to work with these other, equivalent expressions for L.

Theorem 2.1 was motivated by many results in the literature for models of deformed
Wigner matrices, including the results in [22,40,46,52,55,60] and references therein.
In this section, we prove Theorem 1.4 using Theorem 2.1. We begin by introducing the
notation used here and throughout the paper.

2.1 Notation

For a complex number z, we let Re(z) be the real part and Im(z) be the imaginary
part of z. We will use i for both the imaginary unit and as an index in summations;
the reader can tell the difference based on context. We denote the upper-half plane as
C+ := {z ∈ C : Im(z) > 0}.

For a matrix A, we let Aij be the (i, j)-entry of A. The transpose of A is denoted AT,
and A∗ is the conjugate transpose of A. We use trA to denote the trace of A, and detA is
the determinant of A. If A is an n× n real symmetric matrix, we let λn(A) ≤ · · · ≤ λ1(A)

be its eigenvalues. For any matrixM , let ‖M‖ be its spectral norm (also known as the
operator norm). We let I be the identity matrix. IfM is a square matrix and z ∈ C, we
will sometimes writeM + z for the matrixM + zI. For a vector v, we use ‖v‖2 to mean
the standard Euclidean norm.

For an event E, P(E) is its probability. We let 1E be the indicator function of the
event E. For a random variable ξ, Eξ is its expectation. EAξ is the expectation of ξ
with respect to the GOE matrix A and EDξ is its expectation with respect to the random
diagonal matrix D.

For a natural number n, we let [n] = {1, . . . , n} be the discrete interval. For a finite
set S, |S| will denote the cardinality of S. The function log(·) will always denote the
natural logarithm.

Asymptotic notation is used under the assumption that n tends to infinity, unless
otherwise noted. We use X = O(Y ), Y = Ω(X), X � Y , or Y � X to denote the
estimate |X| ≤ CY for some constant C > 0, independent of n, and all n ≥ C. If C
depends on other parameters, e.g. C = Ck1,k2,...,kp , we indicate this with subscripts, e.g.
X = Ok1,k2,...,kp(Y ). The notation X = o(Y ) denotes the estimate |X| ≤ cnY for some
sequence (cn) that converges to zero as n → ∞, and, following a similar convention,
X = ω(Y ) means |X| ≥ cnY for some sequence (cn) that converges to infinity as n→ ∞.
Finally, we write X = Θ(Y ) if X � Y � X.
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2.2 Proof of Theorem 1.4

Using Theorem 2.1, we now complete the proof of Theorem 1.4.
We begin with an observation from [41]. Let A be an n× n matrix drawn from the

GOE and LA its corresponding Laplacian matrix as defined in Definition 1.1. Let R̃ be
any fixed, n× n orthogonal matrix with last column

e := (1/
√
n, . . . , 1/

√
n)T (2.2)

and we use the notation R̃ = (R|e), where R contains the first n− 1 columns of R̃. The
eigenvalues of LA coincide with those of R̃TLAR̃. The set of eigenvalues of R̃TLAR̃

are simply the n− 1 eigenvalues of RTLAR along with a zero eigenvalue. In particular,
with probability 1− o(1), the behavior of the largest eigenvalue of LA will be that of the
largest eigenvalue of RTLAR since these largest eigenvalues are positive with probability
tending to one (see Theorem 1 in [29] or, alternatively, see the proof of Proposition 2.5
below).

Lemma 2.3 (Proposition 2.10, [41]). The random matrix RTLAR is equal in distribution
to the matrix A′ +RTD̃R+ gI, where A′ is an (n− 1)× (n− 1) GOE matrix, D̃ is an n× n

diagonal matrix with iid centered Gaussian random variables with variance n/(n − 1)

along the diagonal, g is a centered Gaussian random variable with variance 1/(n− 1),
and A′, D̃ and g are jointly independent.

In the next lemma we make some minor reductions to remove some nuisances such
as the slight dimension discrepancy and the awkward variances.

Lemma 2.4. In the notation of Lemma 2.3, if we let W = A′ +
√

n−1
n RTD̃R and W ′ =

A′ +RTD̃R+ gI then for any k ∈ [n], we have

P(|λk(W )− λk(W
′)| ≥ 2

√
log n/n) = O(1/n)

Proof. We use a simple coupling argument by placingW andW ′ on the same probability
space. Since g is a Gaussian with variance 1/(n− 1), by Weyl’s inequality (also known as
Weyl’s perturbation theorem, see Corollary III.2.6 in [16]) we have that

|λk(W ′)− λk(A
′ +RTD̃R)| <

√
2 log n/n.

with probability at least 1− 1/n. Similarly, with probability 1−O(1/n)

|λk(W )− λk(A
′ +RTD̃R)| ≤ 1

n
‖RTD̃R‖ ≤ 1

n
‖D̃‖ = 3

√
log n/n,

where ‖D̃‖ was controlled using standard bounds on the maximum of iid normal random
variables (see, for example, [69, Theorem 3]). Therefore, the result follows from the
triangle inequality and a union bound.

In the final reduction, we compare RTD̃R+A′ to a slightly augmented matrix.

Proposition 2.5. We recall the notation of Lemma 2.3 and define

D :=

√
n− 1

n
D̃ (2.3)

A :=

√
n− 1

n

(
A′ Y

Y T g′

)
(2.4)

where Y is a random vector in Rn−1 with entries that are independent, centered Gaus-
sians of variance 1

n−1 , g
′ is a centered gaussian random variable with variance 2

n−1 . We
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consider a probability space in which D̃, A′, Y and g′ are all defined and are jointly
independent of each other. Then, for any fixed k independent of n,

P(|λk(RTDR+A′)− λk(R̃
TDR̃+A)| ≥ log log n/ log n) = o(1).

Remark 2.6. The scaling in (2.3) and (2.4) are designed so that D has iid standard
Gaussian random variables along its diagonal and A is drawn from a GOE so it is
compatible with our previous notation.

Proof of Proposition 2.5. Again, we use a coupling argument by embedding RTDR+A′

in a slightly larger matrix. Note that A is drawn from an n× n GOE, so we define

Z := R̃TDR̃+

√
n

n− 1
A =

(
RTDR+A′ Y +RTDe

eTDR+ Y T eTDe+ g′

)
.

We first establish that the largest eigenvalue of Z is sufficiently close to that ofRTDR+A′.
As RTDR+A′ is a submatrix of Z, we immediately have that

λ1(R
TDR+A′) ≤ λ1(Z). (2.5)

To find a corresponding lower bound for λ1(RTDR + A′), we consider the eigenvalue-
eigenvector equation for Z:

Zv =

(
RTDR+A′ Y +RTDe

eTDR+ Y T eTDe+ g′

)(
w

t

)
= λ1(Z)

(
w

t

)
. (2.6)

Here, v =

(
w

t

)
is a unit eigenvector of λ1(Z), w ∈ Rn−1 and t ∈ R. We observe that if

‖w‖2 > 0,
wT

‖w‖2
(RTDR+A′)

w

‖w‖2
≤ λ1(R

TDR+A′)

by the Courant minimax principle. Considering the top n − 1 coordinates of equation
(2.6) yields

(RTDR+A′)w + t(Y +RTDe) = λ1(Z)w. (2.7)

Multiplying this equation by wT

‖w‖2
2
from the left and rearranging, we conclude that

λ1(R
TDR+A′) ≥ wT

‖w‖2
(RTDR+A′)

w

‖w‖2
= λ1(Z)−

t

‖w‖22
wT(Y +RTDe). (2.8)

Our next goal is to control the size of t
‖w‖2

2
wT(A′ + RTDe). We define the following

events, which we later show hold with probability 1− o(1):

E1 =

{
‖A′‖ ≤ 10, ‖eTDR‖2 ≤ 10, ‖Y ‖2 ≤ 10, |eTDe+ g′| ≤ log log n√

n

}
,

E2 =
{
‖Y TRTD‖2 ≤

√
log log n, ‖eTDRRTD‖2 ≤

√
log log n

}
,

E3 =
{√

log n ≤ λ1(Z) ≤ 2
√
log n

}
.

We extract the final coordinate of equation (2.6) to obtain

(eTDR+ Y T)w + t(eTDe+ g′) = λ1(Z)t. (2.9)
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On the event E = E1 ∩ E2 ∩ E3, we have

|t| ≤ 2
(‖eTDR‖2 + ‖Y ‖2)‖w‖2

λ1(Z)
≤ 40√

log n
, (2.10)

which also assures us that ‖w‖2 ≥ 1/2 > 0 for all n sufficiently large. Left multiplying
equation (2.7) by Y T yields

Y TRTDRw + Y TA′w + tY T(Y +RTDe) = λ1(Z)Y
Tw.

This implies that on the event E ,

|Y Tw| ≤ ‖Y TRTD‖2‖Rw‖2 + ‖Y T‖2‖A′‖‖w‖2 + t‖Y ‖22 + t‖Y TRTD‖2‖e‖2
λ1(Z)

≤
√
log log n+ 100 + 4000/

√
log n+ 100

√
log log n/

√
log n√

log n

�

√
log log n

log n
. (2.11)

Left multiplying equation (2.7) by eTDR gives

eTDRRTDRw + eTDRA′w + teTDRY + teTDRRTDe = λ1(Z)e
TDRw

On the event E , we deduce that

|eTDRw| ≤ ‖eTDRRTD‖2‖Rw‖2 + ‖eTDR‖2‖A′‖‖w‖2
λ1(Z)

+
t‖eTDR‖2‖Y ‖2 + t‖eTDRRTD‖2‖e‖2

λ1(Z)

≤ 100 +
√
log log n+ 4000/

√
log n+ 40

√
log log n/

√
log n√

log n

�

√
log log n

log n
. (2.12)

Combining, equations (2.5), (2.8), (2.10), (2.11) and (2.12) we conclude that

λ1(Z)− o

(
log log n

log n

)
≤ λ1(Z)−

∣∣∣∣ t

‖w‖22
wT(Y +RTDe)

∣∣∣∣ ≤ λ1(R
TDR+A′) ≤ λ1(Z).

Therefore,

P(|λ1(RTDR+A′)− λ1(Z)| ≥ ε)

≤ P(|λ1(RTDR+A′)− λ1(Z)| ≥ ε|E) + P(Ec)

= o(1).

We can then remove the factor
√
n/n− 1 using Weyl’s inequality (as in the proof of

Lemma 2.4) to conclude that

P(|λ1(RTDR+A′)− λ1(R̃
TDR̃+A)| ≥ log log n/ log n) = o(1).

It remains to show that P(E) = 1− o(1). The bounds

‖A‖ ≤ 10, ‖eTDR‖2 ≤ 10, ‖Y ‖2 ≤ 10, |eTDe+ g′| ≤ log log n√
n
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are straightforward (and sub-optimal) gaussian concentration or random matrix theory
results, so the proofs are omitted (see [19, Section 5.4], [10, Chapter 5]). For E2, we first
observe that ‖Y TRT‖22 ≤ ‖Y ‖22. By Markov’s inequality,

P(|‖Y TRTD‖22 ≥ log log n) ≤ E‖Y TRTD‖22
log log n

≤ E‖Y ‖22
log log n

=
n

n−1

log log n
= o(1).

Thus, with probability 1− o(1),

‖Y TRTD‖2 ≤
√

log log n.

We now bound ‖eTDRRTD‖2. As R̃ is an orthogonal matrix, we have that

(RRT)ii = 1− 1

n
and (RRT)ij = − 1

n

for i 6= j. Therefore,

‖eTDRRTD‖22 =

n∑
i,j,k=1

1

n
Dii(RR

T)ijD
2
jj(RR

T)jkDkk

=
1

n

n∑
i=1

D4
ii

(
1− 1

n

)2

− 2

n2

∑
i 6=j

D3
iiDjj

(
1− 1

n

)
+

1

n3

∑
i 6=j

D2
iiD

2
jj +

1

n3

∑
i 6=j,j 6=k,k 6=i

DiiD
2
jjDkk.

Each sum on the right-hand side can be easily controlled via Markov’s inequality. For
the first sum, which is the dominant one,

P

(
1

n

n∑
i=1

D4
ii ≥

log log n

2

)
≤

2
∑n

i=1ED
4
ii

n log log n
=

6n

n log log n
= o(1).

For the second sum,

P

∣∣∣∣∣∣ 2n2
∑
i 6=j

D3
iiDjj

∣∣∣∣∣∣ ≥ 1

 ≤
4E

[(∑
i6=j D

3
iiDjj

)2]
n4

=
4
∑

i 6=j(ED
6
iiED

2
jj + ED

4
iiED

4
jj)

n4

= o(1),

where in the first equality we make use of the fact that odd moments of a centered
Gaussian random variable vanish. Similarly, for the third sum,

P

 1

n3

∑
i6=j

D2
iiD

2
jj ≥ 1

 = o(1).

For the final sum, we again make use of the fact that the odd moments of a centered
Gaussian random variable vanish to obtain

P

∣∣∣∣∣∣ 1n3
∑

i 6=j,j 6=k,k 6=i

DiiD
2
jjDkk

∣∣∣∣∣∣ ≥ 1

 ≤
E

∣∣∣∑i6=j,j 6=k,k 6=iDiiD
2
jjDkk

∣∣∣2
n6

= O

(
1

n2

)
.
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Thus, with probability 1− o(1),

‖eTDRRTD‖2 ≤
√

log log n,

which completes the proof for E2.
Now, we show that P(E3) = 1 − o(1). The eigenvalues of R̃TDR̃ are the diagonal

entries of D, which are independent Gaussian random variables, so λ1(R̃TDR̃) is the
maximum of n+1 iid Gaussian random variables. The result easily follows from standard
results (see Proposition 3.4) and Weyl’s inequality as ‖A‖ ≤ 10 with probability 1− o(1).
Thus, we have shown that with high probability,

|λ1(RTDR+A′)− λ1(R̃
TDR̃+A)| = O(log log n/ log n). (2.13)

We now can establish the result for a fixed k, independent of n. By Cauchy’s interlac-
ing theorem, we have that

λk+1(Z) ≤ λk(R
TDR+A′) ≤ λk(Z). (2.14)

Again, we consider the eigenvalue-eigenvector equation for Z:

Zv =

(
RTDR+A′ Y +RTDe

eTDR+ Y T eTDe+ g′

)(
w

t

)
= λk(Z)

(
w

t

)
. (2.15)

Here, v =

(
w

t

)
is a unit eigenvector of λk(Z), w ∈ Rn−1 and t ∈ R. We observe that

(RTDR+A′ − λk(Z))w = −t(Y +RTDe).

This implies that the least singular value of RTDR + A′ − λk(Z) is upper bounded

by ε := |t|‖w
TY ‖2+‖wTRTDe‖2

‖w‖2
. We let E ′

k be the event that
√
log n ≤ λk(Z) ≤ 2

√
log n.

Note that P(E ′
k) = 1− o(1) follows from Proposition 3.2. As before, on the event E ∩ E ′

k,
ε = O(log log n/ log n). As our matrices are symmetric, this implies thatRTDR+A′−λk(Z)
has an eigenvalue with absolute value at most ε. In other words, there exists a k′ such
that

|λk′(RTDR+A′)− λk(Z)| ≤ ε.

By Cauchy interlacing, k′ can be chosen to be k−1 or k. We wish to exclude the possibility
that k′ = k − 1. Here, we use the spacing of the eigenvalues of Z. By Proposition 3.10
and a simple union bound,

|λ`(Z)− λ`+1(Z)| = Ω(log−3/4 n)

with high probability for all ` ≤ k. Proposition 3.10 applies to D + A which by the
rotational invariance of the GOE also applies to Z (followed by Weyl’s inequality due to

the slight perturbation from the factor
√

n
n−1 ). Therefore, by (2.13), on the event E ∩ E ′

2,

|λ2(RTDR+A′)− λ2(R̃
TDR̃+A)| = O(log log n/ log n).

Iterating this argument a constant number of times shows that

|λ`(RTDR+A′)− λ`(R̃
TDR̃+A)| = O(log log n/ log n)

for all ` ≤ k, which completes the proof.

We now summarize the reductions that culminate in the statement of Theorem 1.4.
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Proof of Theorem 1.4. We again use the notation introduced in Lemma 2.3 and Proposi-
tion 2.5, where all the random elements are placed on the same probability space. We
have the decomposition

an(λ1(A
′ +RTD̃R+ gI)− bn) = an(λ1(R̃

TDR̃+A)− bn)

+ an(λ1(R
TDR+A′)− λ1(R̃

TDR̃+A))

+ an(λ1(A
′ +RTD̃R+ gI)− λ1(R

TDR+A′)).

By Theorem 2.1 and the rotational invariance of A, an(λ1(R̃TDR̃+A)− bn) converges
in distribution as n → ∞ to the standard Gumbel distribution. By Lemma 2.4 and
Proposition 2.5, both

an(λ1(R
TDR+A′)− λ1(D +A))

and
an(λ1(A

′ +RTD̃R+ gI)− λ1(R
TDR+A′))

converge to zero in probability. Therefore, by Slutsky’s theorem,

an(λ1(A
′ +RTD̃R+ gI)− bn)

converges in distribution to the standard Gumbel distribution.
We let E be the event that λ1(LA) > 0 and E ′ the event that λ1(A′ +RTD̃R+ gI) > 0.

Now, by Lemma 2.3,
λ1(LA)1E

and
λ1(A

′ +RTD̃R+ gI)1E′

are equal in distribution. In addition, both

λ1(LA)1Ec

and
λ1(A

′ +RTD̃R+ gI)1E′c

converge to zero in probability since P(Ec) + P(E ′c) = o(1) by the remarks preceding
Lemma 2.3. Therefore, we conclude that an(λ1(LA)− bn) converges in distribution to
the standard Gumbel distribution as well.

2.3 Overview

The rest of the paper is devoted to the proof of Theorem 2.1. Our proof is based on
the resolvent approach, which compares the eigenvalues of L with the eigenvalues of D.
To this end, we define the resolvent matrices

G(z) := (L− z)−1 and Q(z) := (D − z)−1

for z ∈ C+ := {z ∈ C : Im(z) > 0}. Here, we use the convention that (L − z)−1

(alternatively, (D− z)−1) denotes the matrix (L− zI)−1 (alternatively, (D− zI)−1), where
I is the identity matrix. Often, we will simply write G and Q for the matrices G(z) and
Q(z), respectively. We will define the Stieltjes transforms

mn(z) :=
1

n
trG(z) and sn(z) :=

1

n
trQ(z). (2.16)

The limiting Stieltjes transform of sn is given by

s(z) :=

∫ ∞

−∞

φ(x)

x− z
dx (2.17)
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for z ∈ C+, where

φ(x) :=
1√
2π
e−x2/2 (2.18)

is the density of the standard normal distribution. The limiting Stieltjes transform m

(which is the free convolution of the semicircle law with the standard normal distribution)
of mn is uniquely defined as the solution of

m(z) =

∫ ∞

−∞

φ(x)

x− z −m(z)
dx, z ∈ C+, (2.19)

where zm(z) → −1 as |z| → ∞ in the upper-half plane.
For fixed (small) δ > 0, we define the spectral domains

Sδ := {z ∈ C+ :
√
(2− δ) log n ≤ Re(z) ≤

√
3 log n, n−1/4 ≤ Im(z) ≤ 1},

S̃δ := {z ∈ C+ :
√
(2− δ) log n ≤ Re(z) ≤

√
3 log n, Im(z) = n−1/4}

and
Ŝδ := {z ∈ C+ :

√
(2− δ) log n ≤ Re(z) ≤

√
3 log n, Im(z) =

√
2n−1/4}.

Our method requires us to mostly work on S̃δ and Ŝδ for some fixed δ > 0, but it will
sometimes be more convenient to state results for the larger domain Sδ. As is common
in the literature, we will often take E := Re(z) and η := Im(z).

For any fixed z ∈ C+, mn(z) is random and EAmn(z) will denote its expectation with
respect to the GOE random matrix A.

Our key technical result is the following.

Theorem 2.7. There exists δ > 0 so that

sup
z=E+iη∈S̃δ∪Ŝδ

nη |mn(z)− sn(z + EAmn(z))| = o(1)

with overwhelming probability2.

Theorem 2.7 will allow us to compare the largest eigenvalue of L to the largest
eigenvalue of D, up to a small shift, which we will need to track carefully. Theorem
2.7 should be compared to other local laws in the random matrix theory literature such
as [4,5,10,13,15,18,31,32,33,34,35,36,37,38,42,43,54,60,71,72] and references
therein; however, the reader should be aware that this list is very incomplete and
represents only a small fraction of the known local law results.

2.4 Outline of the remainder of the article

In the next section, we gather some technical tools and their proofs that will be of
use in the rest of the argument. In Section 4, we prove a quantitative stability theorem
for approximate solutions of (2.19). Section 5 is devoted to the concentration of mn(z)

near its expectation EAmn(z). Section 6 contains the proof of our main technical result,
Theorem 2.7. Finally, we combine all the results in Section 7 to prove Theorem 2.1.

3 Tools

This section introduces the tools we will need in the proof of Theorem 2.1. We begin
with a definition describing high probability events.

Definition 3.1 (High probability events). Let E be an event that depends on n.

2An event E holds with overwhelming probability if, for every p > 0, P(E) ≥ 1−Op(n−p); see Definition
3.1 for details.
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• E holds asymptotically almost surely if P(E) = 1− o(1).

• E holds with high probability if P(E) = 1−O(n−c) for some constant c > 0.

• E holds with overwhelming probability if, for every p > 0, P(E) ≥ 1−Op(n
−p).

For z = E + iη ∈ C+, the Ward identity states that

n∑
j=1

|Gij(z)|2 =
1

η
ImGii(z). (3.1)

If A and B are invertible matrices, the resolvent identity states that

A−1 −B−1 = A−1(B −A)B−1 = B−1(B −A)A−1. (3.2)

If ξ is a Gaussian random variable with mean zero and variance σ2 and f : R→ C is
continuously differentiable, the Gaussian integration by parts formula states that

E[ξf(ξ)] = σ2E[f ′(ξ)], (3.3)

provided the expectations are finite.
Our next result bounds (via Chernoff’s inequality) the number of large entries in the

diagonal matrix D.

Proposition 3.2. Let D be the n × n diagonal matrix whose entries are iid standard
normal random variables. Then, for any ε ∈ (0, 1/2), there exists δ > 0 so that∣∣∣{1 ≤ i ≤ n : Dii ≥

√
(2− δ) log n}

∣∣∣ = Oε(n
ε)

with overwhelming probability. Similarly, for any ε′ ∈ (0, 1/2), there exists a δ′ > 0 so
that ∣∣∣{1 ≤ i ≤ n : Dii ≥

√
(2− δ′) log n}

∣∣∣ = Ωε′(n
ε′)

with overwhelming probability.

Proof. Fix ε ∈ (0, 1/2), and let 2ε < δ < 2. Let Xi = 1{Dii≥
√

(2−δ) logn} and Sn =
∑n

i=1Xi.
Chernoff’s inequality (see Theorem 2.1.3 in [70]) gives that for any λ > 0

P
(
|Sn − ESn| ≥ λ

√
Var(Sn)

)
≤ Cmax

{
exp(−cλ2), exp(−cλ

√
Var(Sn))

}
(3.4)

for absolute constants C, c > 0, where Var(Sn) is the variance of Sn. From the standard
bounds (

1

x
− 1

x3

)
e−x2/2

√
2π

≤ P (D11 ≥ x) ≤ e−x2/2

x
√
2π

, x > 0

on standard Gaussian random variables it is straightforward to show that

nδ/2√
log n

� ESn ≤ nδ/2,

Var(X1) = P(X1 = 1)P(X1 = 0) ≥ 1

2
P(D11 ≥

√
(2− δ) log n),

and hence
nδ/2

2
√
2π(2− δ) log n

(
1− 1

(2− δ) log n

)
≤ Var(Sn) ≤ nδ/2. (3.5)

Letting λ =
√
Var(Sn) in (3.4) gives that

P
(
Sn > 2nδ/2

)
≤ C exp(−cVar(Sn)),
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and lower bounding Var(Sn) by (3.5) completes the proof of the first statement.
For the last statement, letting λ =

√
Var(Sn)/ log n in (3.4) gives that

P
(
Sn < ESn −Var(Sn)/ log

2 n
)
≤ P

(
Sn <

nδ/2

2 log n

)
≤ C exp(−cVar(Sn)/ log n).

Again, lower bounding Var(Sn) by (3.5) completes the proof.

We will need the following general concentration result for the Stieltjes transform of
random symmetric matrices with independent entries.

Proposition 3.3 (Naive concentration of the Stieltjes transform). Let W be an n× n real
symmetric random matrix whose entries on and above the diagonal Wij , 1 ≤ i ≤ j ≤ n

are independent random variables. Then

P

(∣∣∣∣ 1n tr(W − z)−1 − E 1

n
tr(W − z)−1

∣∣∣∣ ≥ t

η
√
n

)
≤ Ce−ct2

for any t ≥ 0 and any z = E + iη ∈ C+, where C, c > 0 are absolute constants.

Proof. Fix z = E + iη ∈ C+ and letM be an n× n real symmetric matrix. LetM ′ be an
n× n real symmetric matrix equal toM , up to possibly a single row and corresponding
column being different. Define R(z) = (M − z)−1 and R′(z) = (M ′ − z)−1. It follows from
the resolvent identity (3.2) that

rank (R(z)−R′(z)) ≤ 2. (3.6)

It then follows that∣∣∣∣ 1n tr(M − z)−1 − 1

n
tr(M ′ − z)−1

∣∣∣∣ = ∣∣∣∣ 1n tr
(
(M − z)−1 − (M ′ − z)−1

)∣∣∣∣
≤ rank (R(z)−R′(z))

n
‖R(z)−R′(z)‖

≤ 4

nη
.

We can then conclude from McDiarmid’s inequality (see [57]) that

P

(∣∣∣∣ 1n tr(W − z)−1 − E 1

n
tr(W − z)−1

∣∣∣∣ ≥ t

η
√
n

)
≤ Ce−ct2 , (3.7)

for any t ≥ 0, where C, c > 0 are absolute constants.

3.1 Basic concentration and linear algebra identities

We record several well-known concentration inequalities and algebraic identities that
will be of use. The first proposition is a strong concentration result for the maximum of a
sequence of iid Gaussian random variables.

Proposition 3.4 (Theorem 3 from [69]). Let X1, . . . , Xn be iid standard Gaussian random
variables. DefineMn = max1≤i≤nXi. Then, for any t ≥ 0,

P(|Mn − b′n|) > t) ≤ C exp(−ct
√
log n).

where b′n is defined in (1.3) and C, c > 0 are absolute constants.

The next lemma is a convenient moment bound for a martingale difference sequence.
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Lemma 3.5 (Lemma 2.12 from [10]). Let {Xk} be a complex martingale difference
sequence and Fk = σ(X1, . . . , Xk) be the σ-algebra generated by X1, . . . , Xk. Then, for
any p ≥ 2,

E

∣∣∣∣∣
n∑

k=1

Xk

∣∣∣∣∣
p

≤ Kp

E( n∑
k=1

Ek−1|Xk|2
)p/2

+ E

n∑
k=1

|Xk|p
 .

where Kp is a constant that only depends on p and Ek−1[·] := E[·|Fk−1].

The next concentration lemma is helpful in controlling the deviation of a quadratic
form from its expectation.

Lemma 3.6 (Equation (3) from [2]). Let X be an n-vector containing iid standard Gaus-
sian random variables, A a deterministic n× n matrix and ` ≥ 1 an integer. Then

E[X∗AX − trA|2` ≤ K`(trAA
∗)`

where K` is a constant that only depends on `.

Finally, we will require the following algebraic identity in Section 5.

Lemma 3.7 (Theorem A.5 from [10]). Let A be an n× n symmetric matrix and Ak be the
k-th major submatrix of size (n− 1)× (n− 1). If A and Ak are both invertible, then

tr(A−1)− tr(A−1
k ) =

1 + α∗
kA

−2
k αk

Akk − α∗
kA

−1
k αk

where αk is obtained from the k-th column of A by deleting the k-th entry.

3.2 Basic order statistics estimates

Let X1, . . . , Xn be iid standard Gaussian random variables. If we order these random
variables in order of magnitude, we denote this by

X(n) ≤ · · · ≤ X(2) ≤ X(1).

We define

φ(x) :=
1√
2π
e−x2/2,

and

Φ(x) =

∫ x

−∞
φ(t) dt.

We recall the well-known tail bounds

e−x2/2

√
2π

(
1

x
− 1

x3

)
≤
∫ ∞

x

1√
2π
e−t2/2 dt ≤ e−x2/2

x
√
2π

(3.8)

which hold for x > 0. Our first simple lemma captures the joint distribution between two
order statistics.

Lemma 3.8 (Chapter 2.2 of [26]). For 1 ≤ r < s ≤ n. Let f(r)(s) be the joint density of
X(r) and X(s). We have that for x > y,

f(r)(s)(x, y) =
n!Φn−s(y)φ(y)[Φ(x)− Φ(y)]s−r−1φ(x)[1− Φ(x)]r−1

r!(s− r − 1)!(n− s)!
.

We use the previous lemma to obtain some rough bounds on the gaps between the
extreme order statistics.

EJP 30 (2025), paper 104.
Page 17/52

https://www.imstat.org/ejp

https://doi.org/10.1214/25-EJP1366
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Extreme eigenvalues of Laplacian random matrices

Proposition 3.9. Consider a fixed k ∈ N. Then for δ > 0,

P(X(k) −X(k+1) < log−1/2−δ n) = Ok,δ(log
−δ n).

Proof. Applying Lemma 3.8, we can find the joint distribution of X(k) and X(k+1). For
x > y,

f(k)(k+1)(x, y) =
n!Φn−k−1(y)φ(y)φ(x)[1− Φ(x)]k−1

k!(n− k − 1)!
.

We let t = log−1/2−δ n. Therefore, we have that

P(X(k) −X(k+1) < t) =

∫ ∞

−∞

∫ ∞

−∞
1x−y<tf(k)(k+1)(x, y)1x>y dx dy

=
n!

k!(n− k − 1)!

∫ ∞

−∞

∫ ∞

−∞
1x−y<tΦ

n−k−1(y)φ(y)φ(x)[1− Φ(x)]k−11x>y dx dy

=
n!

k!(n− k − 1)!

∫ ∞

−∞
Φn−k−1(y)φ(y)

∫ y+t

y

φ(x)[1− Φ(x)]k−1 dx dy

=
n!

k!(n− k − 1)!

∫ ∞

−∞
Φn−k−1(y)φ(y)

[
(1− Φ(y))k

k
− (1− Φ(y + t))k

k

]
dy

=
n!

k!(n− k − 1)!

∫ √
logn

−∞
Φn−k−1(y)φ(y)

[
(1− Φ(y))k

k
− (1− Φ(y + t))k

k

]
dy

+
n!

k!(n− k − 1)!

∫ ∞

√
logn

Φn−k−1(y)φ(y)

[
(1− Φ(y))k

k
− (1− Φ(y + t))k

k

]
dy

= I1 + I2.

We control I1 first:

I1 ≤ nk+1

∫ √
logn

−∞
Φn−k−1(y)φ(y) dy

≤ nk+1

∫ 1−n−2/3

0

un−k−1 du

≤ exp(−n−2/3(n− k − 1) + k log n)

≤ exp(−n1/3/2).

Now, we consider I2. Note that in this integral, y ≥
√
log n so we make use of (3.8)

frequently. Indeed, we obtain

I2 =
n!

k!(n− k − 1)!

∫ ∞

√
logn

Φn−k−1(y)φ(y)

[
(1− Φ(x))k

k
− (1− Φ(x+ t))k

k

]
dy

≤ n!

k!(n− k − 1)!

∫ ∞

√
logn

Φn−k−1(y)φ(y)

[
φ(y)k

kyk
− φ(y + t)k(1− (y + t)−2)k

k(y + t)k

]
dy

≤ n!

k!(n− k − 1)!k

∫ ∞

√
logn

Φn−k−1(y)φ(y)

(
φ(y)

y

)k
[
1− e−kyte−kt2/2(1− (y + t)−2)k

(1 + t/y)k

]
dy

≤ n!

k!(n− k − 1)!k

∫ ∞

√
logn

Φn−k−1(y)φ(y)
(1− Φ(y))k

(1− 1/y2)k

[
1− e−kyte−kt2/2(1− (y + t)−2)k

(1 + t/y)k

]
dy
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≤
[
1− e−k

√
lognt/2

] n!

k!(n− k − 1)!k

∫ ∞

√
logn

Φn−k−1(y)φ(x)(1− Φ(y))k dy

≤
[
1− e−k

√
lognt/2

] n!

k!(n− k − 1)!k

∫ 1

0

un−k−1(1− u)k du

≤ 1− e−k
√
lognt/2

= O(
√
log nt),

as desired.

The following proposition was used in the proof of Proposition 2.5.

Proposition 3.10. Let L be the matrix defined in (2.1). Consider a fixed k ∈ N. Then
for δ > 0,

P(λk(L)− λk+1(L) < log−1/2−δ n) = oδ(1).

The proof of Proposition 3.10 is a step in the proof of Theorem 2.1 given in Section
7. We emphasis that the only place where Proposition 3.10 is used is in the proof of
Proposition 2.5.

We were not able to find the following lemma in the literature, however it follows
implicitly from well known results on point processes and order statistics.

Lemma 3.11. Let X1, X2, . . . be a sequence of iid real random variables, an > 0 and bn
be sequences, and G a differentiable cumulative distribution function of some continuous
random variable. Let X(n)

1 ≥ X
(n)
2 ≥ · · · ≥ X

(n)
n be the order statistics of X1, . . . , Xn. The

following are equivalent:

1. an(X
(n)
1 − bn) converges in distribution as n → ∞ to some non-degenerate limit

with cumulative distribution function G.

2. There exists functions {Gk : Rk → R}∞k=1 such that for any k ∈ N and any x1 ≥
· · · ≥ xk ∈ R

lim
n→∞

P
(
an(X

(n)
1 − bn) ≤ x1, . . . , an(X

(n)
k − bn) ≤ xk

)
= Gk(G(x1), . . . , G(xk)).

3. The point process
∑n

i=1 δan(Xi−bn) converges in distribution as n→ ∞ to a Poisson

point process with intensity measure µ with density f(x) = G′(x)
G(x) where G(x) > 0

and µ([x,∞)) = ∞ for any x ∈ R such that G(x) = 0.

Proof. See [51] Theorems 2.3.1 and 2.3.2 for the equivalence of (2) and (1).
Assume (1), and fix x ∈ R such that G(x) > 0. It is straightforward to check that

n log (1− P(an(X1 − bn) ≥ x)) = logG(x) + o(1),

and thus
lim
n→∞

nP(an(X1 − bn) ≥ x) = − logG(x).

It then follows from [61] Proposition 3.21 that
∑n

i=1 δan(Xi−bn) converges to a Poisson
point process with an intensity measure µ such that µ([x,∞)) = − logG(x).

Assume (3), and fix x ∈ R. By [61] Proposition 3.21,

lim
n→∞

nP(an(X1 − bn) ≥ x) = − logG(x).

One can then check that

lim
n→∞

P(an(X
(n)
1 − bn) ≤ x) = G(x).

This completes the proof.
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3.3 Basic Stieltjes transform and free probability estimates

This section isolates some useful estimates on s(z) and m(z), defined by (2.17) and
(2.19) respectively. Several of the proofs use a contour integral arguement, which is
given in detail in Lemma 3.13 below. We begin by stating a result of Biane [17] on free
convolutions of semicircle distributions and an arbitrary distribution. For convenience,
we specialize this result to the Gaussian distribution.

Lemma 3.12 (Corollaries 3 and 4 from [17]). Define the function v : R→ [0,∞) by

v(u) = inf

{
v ≥ 0

∣∣∣∣∣ 1√
2π

∫
R

e−x2/2dx

(u− x)2 + v2
≤ 1

}
(3.9)

and the function ψ : R→ R by

ψ(u) = u+
1√
2π

∫
R

(u− x)e−x2/2dx

(u− x)2 + v(u)2
. (3.10)

Then ψ is an increasing homeomorphism from R to R, and the free additive convolution
of the semicircle distribution and the standard Gaussian distribution has density p : R→
[0,∞) with

p(ψ(u)) =
v(u)

π
. (3.11)

Moreover p is analytic where it is positive, and hence must be bounded.

The first lemma below is an important technical bound in our argument and is of
interest in its own right. It demonstrates that the free convolution of the semicircle
distribution with the standard Gaussian distribution is sub-Gaussian.

Lemma 3.13. Let p : R→ [0,∞) be the density of the free additive convolution of the
semicircle distribution and a standard Gaussian distribution. Then there exists some
constant C > 0 such that p(x) ≤ Ce−x2/2 for all x ∈ R.

Proof. Let p, v, and ψ be as in Lemma 3.12. It is straight forward to see from the
definitions that v is an even function of u, and ψ (and hence ψ−1) is odd. From now on
we will assume u > 0 and in this proof we will use asymptotic notation under u → ∞.
Consider R > 0 and curves γ1, γ2, γ3 in C where γ1 is the straight line from (0, 0) to (R, 0),
γ2 is the counterclockwise circular arc from (R, 0) to (2R/

√
5, R/

√
5), and γ3 the straight

line from (2R/
√
5, R/

√
5) to (0, 0). Let γ = γ1 ∪ γ2 ∪ γ3. The residue theorem gives for R

sufficiently large

1√
2π

∮
γ

e−z2/2dz

(u− z)2 + v(u)2
=

1√
2π

∮
γ

e−z2/2dz

(z − (u+ iv(u)))(z − (u− iv(u)))

=
2πi√
2π

e−(u+iv(u))2/2

2iv(u)

=

√
π

2
ev(u)

2/2e−iuv(u) e
−u2/2

v(u)
.

Taking R→ ∞, it is straight forward to show√
π

2
ev(u)

2/2e−iuv(u) e
−u2/2

v(u)
=

1√
2π

∫ ∞

0

e−x2/2dx

(u− x)2 + v(u)2
+

1√
2π

∫
γ′
3

e−z2/2dz

(u− z)2 + v(u)2

(3.12)
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where γ′3 =

{
z = x+ iy ∈ C

∣∣∣∣∣x ≥ 0, y = x/2

}
with orientation such that Re(z) is decreas-

ing. Note an equivalent definition of v is that v(u) is the unique solution to

1√
2π

∫
R

e−x2/2dx

(u− x)2 + v(u)2
= 1, (3.13)

for u ∈ R. For the first integral on the right-hand side of (3.12), note that

1√
2π

∫ ∞

0

e−x2/2dx

(u− x)2 + v(u)2
= 1− 1√

2π

∫ 0

−∞

e−x2/2dx

(u− x)2 + v(u)2
,

≥ 1− 1

2u2 + 2v(u)2
. (3.14)

The second integral on the right-hand side of (3.12) can also be bounded in modulus by
C/u2 for some absolute constant C > 0. Consider this bound and (3.14) in (3.12) yields
that there exists some bounded function f : [0,∞) → C such that√

π

2
ev(u)

2/2e−iuv(u) e
−u2/2

v(u)
= 1− f(u)

u2
,

and

v(u) =

(
1− f(u)

u2

)−1√
π

2
ev(u)

2/2e−iuv(u)e−u2/2. (3.15)

It follows from Lemma 3.12 that v is bounded, and thus we get from (3.15) that v(u) → 0

as u→ ∞ and there exists some constant C > 0 such that

v(u) ≤ Ce−u2/2 (3.16)

for u ∈ R and absolute constant C > 0.
We now turn our attention to ψ(u), in particular ψ(u)−u. Using the contour γ, we get

1√
2π

∮
γ

(u− z)e−z2/2dz

(u− z)2 + v(u)2
= −i

√
π

2
ev(u)

2/2e−iuv(u)e−u2/2.

Again taking R→ ∞ gives

1√
2π

∫ ∞

0

(u− x)e−x2/2dx

(u− x)2 + v(u)2

= − 1√
2π

∫
γ′
3

(u− z)e−z2/2dz

(u− z)2 + v(u)2
− i

√
π

2
ev(u)

2/2e−iuv(u)e−u2/2,

where the integral on the right-hand side is O
(
1
u

)
. It is also straightforward to show

1√
2π

∫ 0

−∞

(u− x)e−x2/2dx

(u− x)2 + v(u)2
= O

(
1

u

)
.

Thus we get ψ(u) = u+O
(
1
u

)
. Thus there exists some bounded continuous function g

such that

ψ(u) = u+
g(u)

u
,

and

u = ψ
(
ψ−1(u)

)
= ψ−1(u) +

g(ψ−1(u))

ψ−1(u)
.
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Solving for ψ−1(u), for u large enough, gives

ψ−1(u) =
1

2

(
u+ u

√
1− 4g(ψ−1(u))

u2

)
= u+O

(
1

u

)
. (3.17)

Combining (3.16), (3.17), and Lemma 3.12 we see there exists some absolute constant
C ′ > 0 such that p(u) ≤ C ′e−u2/2 for u ∈ R.

Our next lemma confirms that s(z) is bounded and Lipshitz continuous.

Lemma 3.14. There exists constants C,C ′ > 0 such that

|s(z)| ≤ C,

for all z ∈ C+ and s is C ′-Lipschitz continuous on C+.

Proof. It is clear that s(z) and s′(z) are both uniformly bounded by 1 for Im(z) ≥ 1. Let
γ : R→ C+ be the curve γ(t) = t+ 2i. Then for any z such that 0 < Im(z) ≤ 1 Cauchy’s
integral formula (after passing from finite contours to the image of γ, similar to what
was done in the proof of Lemma 3.13) gives that

s(z) = i
√
2πe−z2/2 +

∫
γ

1

w − z
e−w2/2dw,

and

s′(z) = −i
√
2πze−z2/2 +

∫
γ

1

(w − z)2
e−w2/2dw.

Both of which are uniformly bounded for 0 < Im(z) ≤ 1.

The next result establishes some simple asymptotics for s(z).

Lemma 3.15. The function z 7→ z2
(
s(z) + 1

z

)
is uniformly bounded on the strip {z ∈ C :

0 < Im(z) ≤ 1} ⊆ C+.

Proof. Let z ∈ C with 0 < Im(z) ≤ 1, and note

z2
(
s(z) +

1

z

)
=

1√
2π

∫
R

zx

x− z
e−x2/2dx.

Let γ : R→ C+ be the curve which is given piecewise by

γ(t) =


t− it/2, t ≤ −4

t+ 2i, −4 < t < 4

t+ it/2, t ≥ 4

,

with left to right orientation. Similar to what was done in the proof of Lemma 3.13 we can
approximate R ∪ γ with finite contours moving from (−R, 0) to (R, 0), then counterclock-
wise from (R, 0) to γ(2R/

√
5), then along γ to γ(−2R/

√
5) and finally counterclockwise

from γ(−2R/
√
5) to (−R, 0). Applying Cauchy’s integral formula we see that

1√
2π

∫
R

zx

x− z
e−x2/2dx =

√
2πiz2e−z2/2 +

1√
2π

∫
γ

zw

w − z
e−w2/2dw

where the right-hand side is easily seen to be uniformly bounded for z with 0 < Im(z) ≤
1.

EJP 30 (2025), paper 104.
Page 22/52

https://www.imstat.org/ejp

https://doi.org/10.1214/25-EJP1366
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Extreme eigenvalues of Laplacian random matrices

Biane [17, Lemma 3] provides a region where s is Lipschitz with Lipschitz constant
strictly less than 1. The next lemma gives a description of this region. This is a key
component of the stability result of Section 4.

Lemma 3.16. Fix t ≥ 1, and define vt : R→ [0,∞) by

vt(u) = inf

{
v ≥ 0

∣∣∣∣∣ 1√
2π

∫
R

e−x2/2dx

(u− x)2 + v2
≤ 1

t

}
.

Let Ωt = {x+ iy ∈ C+ : y ≥ vt(x)} be the region defined in [17, Lemma 3]. Then there
exists a constant Ct > 0 such that vt(x) ≤ Cte

−x2/2 for all x ∈ R and s is Lipschitz on Ωt

with Lipschitz constant at most 1
t .

Proof. The sub-Gaussian bound on v follows from a straightforward adaptation of the
proof of Lemma 3.13. The Lipschitz statement of s is the result of Biane [17, Lemma
3].

The next lemma on the behavior of m(z) can be deduced from the proof of Lemma
3.4 in [41].

Lemma 3.17. There exists a constant C > 0 so that m is C-Lipschitz continuous on C+

and
|m(z)| ≤ 1

for all z ∈ C+.

The following lemma exhibits the asymptotic behavior of m(z) near infinity.

Lemma 3.18. On C+, m has the asymptotic expansion at infinity given by

m(z) = −1

z
+O

(
1

z2

)
.

Proof. For z bounded away from the real line the result follows from a straightforward
application of the dominated convergence theorem. Applying Lemma 3.15 on the strip
{z ∈ C : 0 < Im(z) ≤ 1} and using that m is bounded, we obtain

m(z) = s(z +m(z))

= − 1

z +m(z)
+O

(
1

(z +m(z))2

)
= −1

z
+O

(
1

z2

)
,

which completes the proof.

For brevity we omit the proof of the following lemma as it follows nearly identically
to Lemmas 3.15 and 3.18.

Lemma 3.19. On C+, m′ has the asymptotic expansion at infinity given by

m′(z) =
1

z2
+O

(
1

z3

)
.

The lemma that follows controls the imaginary part of m(z) and is crucial in the
iteration argument in the proof of Theorem 2.1.

Lemma 3.20. Fix 0 < δ < 2/9. Then,

sup
z=E+iη∈S̃δ∪Ŝδ

Imm(z) = o(n−1/4). (3.18)
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Proof. Let p be the density of the free additive convolution of the semicircle distribution
and a standard Gaussian distribution. Applying Lemma 3.13, we have

Imm(z) =

∫
R

η

(u− E)2 + η2
p(u)du

≤ C

∫
R

η

(u− E)2 + η2
e−u2/2du

≤ C

∫
|u−E|≤E/4

η

(u− E)2 + η2
e−u2/2du

+ C

∫
|u−E|≥E/4

η

(u− E)2 + η2
e−u2/2du

≤ C ′
(
E

η
e−(3E/4)2/2 +

η

E2

)
≤ C ′′

(√
3 log nn1/4n−9(1− δ

2 )/16 +
n−1/4

(2− δ) log n

)
= o(n−1/4),

for absolute constants C,C ′, C ′′ > 0, completing the proof.

The next results is also utilized in the proof of Theorem 2.1.

Lemma 3.21. Fix 0 < δ < 1
2 . Then

sup
E+iη∈S̃δ

∣∣∣Rem(E + iη)− Rem(E + i
√
2η)
∣∣∣ = o

(
1

n1/2

)
. (3.19)

Proof. Let p be the density of the free additive convolution of the standard semicircle
measure and the standard Gaussian measure. Then

Rem(E + iη)− Rem(E + i
√
2η) = η2

∫
R

(u− E)p(u)

((u− E)2 + η2) ((u− E)2 + 2η2)
du. (3.20)

Let 0 < c2 < c1 < 1 be functions of E and η such that c1E → ∞, η
c2E

→ 0. We
will break the right-hand side of (3.20) up into the integral over four subsets of R.
Define first the set I1 = {u : |u − E| ≥ c1E}, where |E − u| is large. Then define
I2 = {u : c1E ≥ |u− E| ≥ c2E}, where |E − u| is not too large, but much larger then η.
Next define the set I3 = {u : c2E ≥ |u−E| ≥ η}, where |E − u| is roughly on the order of
η. Finally define I4 = {u : |u− E| ≤ η}, where |E − u| is smaller than η. Let

fE,η(u) =
(u− E)p(u)

((u− E)2 + η2) ((u− E)2 + 2η2)
.

We complete the proof by showing
∣∣∣∫Ik fE,η(u)du

∣∣∣ = o(1) uniformly on S̃δ for k = 1, 2, 3, 4

for c1 = 1/
√
E and c2 =

√
η. Note that, by Lemma 3.13, there exists C > 0 such that

p(u) ≤ Ce−u2/2 for all u ∈ R.
I1: On I1 we have |fE,η(u)| ≤ p(u)

c31E
3 . Recalling that p is a probability density the

conclusion is clear.
I2: On I2 we have that∣∣∣∣∫

I2

fE,η(u)du

∣∣∣∣� c1E
2(c1 − c2)

c42E
4

exp
(
−(E − c1E)2/2

)
= o(1)

uniformly on S̃δ for δ < 1/2.
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I3: On I3 we have that∣∣∣∣∫
I3

fE,η(u)du

∣∣∣∣� c2E(c2E − η)

η4
exp

(
−(E − c2E)2/2

)
= o(1)

uniformly on S̃δ for δ < 1/2.
I4: Finally on I4 we have that∣∣∣∣∫

I4

fE,η(u)du

∣∣∣∣� 1

η2
exp

(
−(E − η)2/2

)
= o(1)

uniformly on S̃δ for δ < 1.

In the final lemma of this section, we determine the existence and behavior of a
solution to an equation that appears in our analysis.

Lemma 3.22. Let Xn > 0 and ηn > 0 be such that Xn → ∞ and ηn → 0 as n→ ∞. Then
for any fixed n there exists a solution En to the equation

Xn − En − Rem(En + iηn) = 0, (3.21)

and En = Xn + 1
Xn

+ O
(

1
X2

n

)
. Moreover if

√
3 log n ≥ Xn ≥

√
(2− δ) log n for some

0 < δ < 1/2, ηn = n−1/4, and En is the solution to (3.21), then

Xn − En − Rem(En + i
√
2ηn) = o(η2n).

Proof. Existence of a solution to (3.21) follows from the intermediate value theorem.
The asymptotic statement is then an immediate application of Lemma 3.18. The final
statement follows from Lemma 3.21 after noting En + iηn ∈ S̃δ.

4 Stability of the fixed point equation

In this section, we establish a stability property for approximate solutions of the
fixed-point equation (2.19) on S̃δ. Stability of similar equations was considered by the
third author and Vu in [60], though the techniques used there are not applied here.

Theorem 4.1 (Stability). For any δ ∈ (0, 1), there exists C > 0 so that the following
holds. Let {εn} be a sequence of complex numbers so that |εn| ≤ 1 for all n and εn = o(1).
Assume m̃n is a complex number with Im m̃n ≥ 0 which satisfies

m̃n = s(z + m̃n) + εn (4.1)

for some z ∈ S̃δ. Then |m(z)− m̃n| ≤ Cεn for all n > C.

Proof. It follows from Lemma 3.14 that m̃n is bounded and from Lemma 3.17 that
|m(z)| ≤ 1. Let Ω2 and v2 be defined as in Lemma 3.16. There exists a constant Nδ ∈ N
depending only on δ such that for n ≥ Nδ

v2(Re(z +m(z))) ≤ Ce−(Re(z+m(z)))2/2

≤ Ce−(E−1)2/2

= Ce−E2/2eEe−1/2

≤ Ce−1/2n−(1−δ/2)e
√

3 log(n)

≤ n−1/4

≤ η,

EJP 30 (2025), paper 104.
Page 25/52

https://www.imstat.org/ejp

https://doi.org/10.1214/25-EJP1366
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Extreme eigenvalues of Laplacian random matrices

for some absolute constant C > 0. Thus is follows that z+m(z) ∈ Ω2. A similar argument
shows z + m̃n ∈ Ω2. It then follows from Lemma 3.16 that

|m(z)− m̃n| ≤ |s(z +m(z))− s(z + m̃n)|+ εn

≤ 1

2
|m(z)− m̃n|+ εn.

A rearrangement completes the proof.

5 Concentration of the Stieltjes transform

This section is devoted to the following bound.

Theorem 5.1 (Concentration). There exists δ > 0 so that

sup
z=E+iη∈S̃δ∪Ŝδ

nη |mn(z)− EAmn(z)| = o(1)

with overwhelming probability.

Proof. By Proposition 3.2, there exists a δ′ > 0 such that

E =
{∣∣∣{1 ≤ i ≤ n : Dii ≥

√
(2− δ′) log n}

∣∣∣ ≤ n1/8
}

holds with overwhelming probability. Thus, it suffices to prove the theorem conditioned
on the occurrence of E . As A is independent of E , for the sake of brevity, we omit this
conditioning from our notation. Furthermore, in the remainder of the proof, we will use
E to mean EA.

We let δ = δ′/2 and begin by considering a fixed z ∈ S̃δ ∪ Ŝδ. Let Ek denote the
conditional expectation with respect to the σ-field generated by Aij with i, j > k, so that
Enmn(z) = Emn(z) and E0mn(z) = mn(z). Thus, mn(z)− Emn(z) can be written as the
following telescopic sum

mn(z)− Emn(z) =

n∑
k=1

(Ek−1mn(z)− Ekmn(z)) :=

n∑
k=1

γk.

The following martingale argument is inspired by a similar calculation in [10, Chapter 6].
We let Gk denote the resolvent of L after removing the k-th row and column and ak is
obtained from the k-th column of L by removing the k-th entry. We then have that

γk =
1

n
(Ek−1 tr(L− z)−1 − Ek tr(L− z)−1)

=
1

n

(
Ek−1

[
tr(L− z)−1 − tr(Lk − z)−1

]
− Ek

[
tr(L− z)−1 − tr(Lk − z)−1

])
=

1

n
(Ek−1 − Ek)

(
a∗kG

2
kak − Eak

a∗kG
2
kak

Lkk − z − a∗kGkak
+

1 + Eak
a∗kG

2
kak

Lkk − z − a∗kGkak

− 1 + Eak
a∗kG

2
kak

Lkk − z − Eak
a∗kGkak

)

=
1

n
(Ek−1 − Ek)

(
a∗kG

2
kak − Eak

a∗kG
2
kak

Lkk − z − a∗kGkak

− (1 + Eak
a∗kG

2
kak)(a

∗
kGkak − Eak

a∗kGkak)

(Lkk − z − a∗kGkak)(Lkk − z − Eak
a∗kGkak)

)
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=
1

n
(Ek−1 − Ek)

(
a∗kG

2
kak − 1

n trG2
k

Lkk − z − a∗kGkak

−
(1 + 1

n trG2
k)(a

∗
kGkak − 1

n trGk)

(Lkk − z − a∗kGkak)(Lkk − z − 1
n trGk)

)
,

where the third equality follows from Lemma 3.7 and Eak
indicates expectation over the

random variables in ak.
We define the following quantities,

αk = a∗kG
2
kak − 1

n
trG2

k,

βk =
1

Lkk − z − a∗kGkak
, β̄k =

1

Lkk − z − 1
n trGk

,

bk =
1

Lkk − z − 1
nE trGk

δk = a∗kGkak − 1

n
trGk, δ̂k = a∗kGkak − 1

n
E trGk

εk = 1 +
1

n
trG2

k,

so that

mn(z)− Emn(z) =
1

n

n∑
k=1

(Ek−1 − Ek)αkβk − 1

n

n∑
k=1

(Ek−1 − Ek)εkδkβkβ̄k

:= S1 − S2.

We will show that nη|S1| = o(1) and nη|S2| = o(1) with overwhelming probability
uniformly for all z ∈ S̃δ ∪ Ŝδ. This will be done via the method of moments. We begin with
S1. By Markov’s inequality, it suffices to bound E|ηnS1|2` = E|η

∑n
k=1(Ek−1 −Ek)αkβk|2`

for ` ∈ N.
By Lemma 3.5, for any ` ≥ 1,

E

∣∣∣∣∣η
n∑

k=1

(Ek−1 − Ek)αkβk

∣∣∣∣∣
2`

≤ K`

E( n∑
k=1

Ek|ηαkβk|2
)`

+

n∑
k=1

E|ηαkβk|2`
 .

We use K` to indicate a constant that only depends on `, but may change from line to
line. Since Im a∗kGkak > 0,

|βk| ≤ η−1.

Therefore,

E

∣∣∣∣∣η
n∑

k=1

(Ek−1 − Ek)αkβk

∣∣∣∣∣
2`

≤ K`

E( n∑
k=1

Ek|ηαkβk|2
)`

+

n∑
k=1

E|αk|2`
 . (5.1)

By Lemma 3.6,

E|αk|2` ≤ K`n
−2`E| trG2

kG
∗2
k |`.

Let E ′ denote the event that ‖A‖ ≤ 10. We have already seen that E ′ occurs with
overwhelming probability. Note that on the event E ∩ E ′, due to Cauchy’s interlacing
theorem and Weyl’s inequality, with overwhelming probability, the eigenvalues of L after
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removing the k-th row and k-th column will have at most n1/4 eigenvalues larger than√
(2− 2δ) log n (see Proposition 3.2) for n sufficiently large. Thus, we have

trG2
kG

∗2
k =

(
n∑

i=1

1

((λi − E)2 + η2)2

)
1E′ +

(
n∑

i=1

1

((λi − E)2 + η2)2

)
1E′c

≤ n1/4η−4 +Oδ(n log
−2 n) + nη−41E′c

≤ 2n5/4 + n21E′c . (5.2)

The same argument establishes that with overwhelming probability,

trGkG
∗
k ≤ n+ n21E′c . (5.3)

We now have that

E|αk|2` ≤ K`n
−2`E|2n5/4 + n21E′c |`

≤ K`n
−2`(n5`/4 + n2`E1E′c)

= K`n
−2`(n5`/4 + n2`P(E ′c))

≤ K`n
−3`/4

where the last line follows from the observation that since E ′ occurs with overwhelming
probability, P(E ′c) = O`(n

−100`), say. Therefore, by equation (5.1),

E

∣∣∣∣∣η
n∑

k=1

(Ek−1 − Ek)αkβk

∣∣∣∣∣
2`

≤ K`

E( n∑
k=1

Ek|ηαkβk|2
)`

+ n−3`/4+1

 .

We now direct our attention to the remaining sum on the right-hand side. Observe
that

|αkβk| ≤
∣∣∣∣ a∗kG

2
kak

Lkk − z − a∗kGkak

∣∣∣∣+ ∣∣∣∣ 1
n trG2

k

Lkk − z − a∗kGkak

∣∣∣∣
≤ |a∗kG2

kak|
| Im(Lkk − z − a∗kGkak)|

+

∣∣∣∣ 1
n trG2

k

Lkk − z − a∗kGkak

∣∣∣∣
≤ η−1 + η−3,

where the last inequality follows from the observation that

|a∗kG2
kak| ≤ 1 + a∗k(Lk − z)−1(Lk − z̄)−1ak = −η−1 Im(Lkk − z − a∗kGkak)

where Lk denotes the matrix L with the k-th row and column removed. Thus, for a fixed
constant K0 > 0,

|αkβk|2 ≤ 4K2
0α

2
k + 4η−61|βk|≥2K0

.

We again have by Lemma 3.6 and (5.2) that for some constant K > 0,

Ek|αk|2 ≤ K

n2
Ek trG

2
kG

∗2
k ≤ K(n−3/4 + Ek1E′c).

We now return to bounding S1. Let I denote the indices such thatDii ≥
√
(2− δ′) log n.
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On the event E , |I| ≤ n1/8, so we have that

P(nη|S1| ≥ ε) ≤ K`

E( n∑
k=1

Ek|ηαkβk|2
)`

+ n−3`/4+1


≤ K`

E(∑
k∈I

Ek|ηαkβk|2
)`

+

(∑
k/∈I

Ek|ηαkβk|2
)`

+ n−3`/4+1


≤ K`

E(∑
k/∈I

Ek(4K
2
0α

2
kη

2 + 4η−41|βk|≥2K0
)

)`

+ n−5`/8


≤ K`

(
η2`n`/4 + η−4`n`−1

∑
k/∈I

P(|βk| ≥ 2K0) + n−5`/8

)

≤ K`

(
η−4`n`−1

∑
k/∈I

P(|βk| ≥ 2K0) + n−`/4

)
, (5.4)

where in the third inequality we have utilized the calculation

E

(∑
k∈I

Ek|ηαkβk|2
)`

≤ E

(∑
k∈I

Ek|αk|2
)`

≤ E

(∑
k∈I

K(n−3/4 + Ek1E′c)

)`

≤ K`

n−5`/8 + E

(∑
k∈I

Ek1E′c

)`


≤ K`

(
n−5`/8 + n(`−1)/8E

(∑
k∈I

Ek1E′c

))

≤ K`

(
n−5`/8 + n(`−1)/8

∑
k∈I

P(E ′c)

)
≤ K`n

−5`/8. (5.5)

A nearly identical calculation justifies the fourth inequality in (5.4).
To control P(|βk| ≥ 2K0) in (5.4), we make the following observation. For k /∈ I,

|bk| ≤
1

|Re(Lkk − z − 1
nE trGk)|

≤ 1

(δ/10)
√
log n− | 1nE trGk|

≤ K0.

Therefore, if |βk| ≥ 2K0 then,

|Lkk − z − a∗kGkak| = |Lkk − z − 1

n
E trGk +

1

n
E trGk − a∗kGkak|

= |b−1
k − δ̂k|

≤ 1

2K0
,

which implies that δ̂k ≥ 1
2K0

.
Thus, continuing from (5.4),

P(nη|S1| ≥ ε) ≤ K`

(
η−4`n`−1

∑
k/∈I

P(|δ̂k| ≥ 1/2K0) + n−`/4

)
.
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A straight-forward calculation shows that

E|δk − δ̂k|8` ≤ K`n
−4`. (5.6)

As the proof is similar to the many calculations we have done above, it is omitted. One
can find the analogous argument in Section 6.2.3 of [10].

By Markov’s inequality and equation (5.3),

P

(
|δ̂k| ≥

1

2K0

)
≤ E|δ̂k|8`

(2K0)8`

≤ K`(E|δ̂k − δk|8` + E|δk|8`)
≤ K`(n

−4` + E|δk|8`)

≤ E|a∗kGkak − 1

n
E trGk|8`

≤ K`n
−4`.

We then have that

P(nη|S1| ≥ ε) ≤ K`

(
η−4`n−3` + n−`/4

)
≤ K`n

−`/4.

As ` can be arbitrarily large, we have established that nη|S1| = o(1) uniformly in z, with
overwhelming probability.

We now show that nη|S2| = o(1) with overwhelming probability. Again, the argument
is quite similar to the above, so we will be more brief. By Markov’s inequality,

P(nη|S2| ≥ ε) ≤
E

∣∣∣∣∣η∑n
k=1(Ek−1 − Ek)εkδkβkβ̄k

∣∣∣∣∣
2`

ε2`
.

By the same argument in (5.2), we have that |εk| ≤ 2 + n21E′c . As E ′ occurs with
overwhelming probability, we omit the 1E′c term in the remainder of this calculation as it
is negligible as seen from (5.5).

We continue with

E

∣∣∣∣∣η
n∑

k=1

(Ek−1 − Ek)εkδkβkβ̄k

∣∣∣∣∣
2`

≤ K`

E( n∑
k=1

Ek|ηεkδkβkβ̄k|2
)`

+

n∑
k=1

E|ηεkδkβkβ̄k|2`


≤ K`

E( n∑
k=1

Ek|ηδkβkβ̄k|2
)`

+ η−2`n−`+1


≤ K`

 E

(∑
k/∈I

Ek|ηδkβkβ̄k|2
)`

+ η−2`n−7`/8


≤ K`

 E

(∑
k/∈I

Ek|ηδkβkβ̄k|2
)`

+ n−3`/8

 .

The summands on the right-hand side can be bounded as follows:

|δkβkβ̄k|2 ≤ (2K0)
4|δk|2 + η−4|δ2k|1|βkβ̄k|≥(2K0)2

≤ (2K0)
4|δk|2 + η−4|δ2k|1|δk|≥1/(4K0) or |δ̂k|≥1/(4K0)

.
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The final inequality is due to the observation that on the event that

|Lkk − z − a∗kG
−1
k ak||Lkk − z − 1

n
trG−1

k | ≤ (2K0)
2,

either
|Lkk − z − a∗kG

−1
k ak| ≤ 2K0

or

|Lkk − z − 1

n
trG−1

k | ≤ 2K0.

If |Lkk−z−a∗kG
−1
k ak| ≤ 2K0, then on the event that |bk| ≤ K0 we have that |δ̂k| ≥ 1/(2K0)

as before. On the other hand, if |Lkk − z − 1
n trG−1

k | ≤ 2K0 then

|b−1
k − δk| ≤

1

2K0

which implies that |δk| ≥ 1/(2K0). Returning to the moment calculation, we have

E

∣∣∣∣∣η
n∑

k=1

(Ek−1 − Ek)εkδkβkβ̄k

∣∣∣∣∣
2`

≤ K`

E(∑
k/∈I

Ekη
2|δk|2 + Ekη

−2|δ2k|1|δk| or |δ̂k|≥1/(2K0)

)`

+ n−3`/8


≤ K`

η2` + E(∑
k/∈I

Ekη
−2|δ2k|1|δk| or |δ̂k|≥1/(2K0)

)`

+ n−3`/8


≤ K`

(
η−2`n`−1

∑
k/∈I

E|δk|2`1|δk| or |δ̂k|≥1/(2K0)
+ n−3`/8

)

≤ K`

(
η−2`n`−1

∑
k/∈I

(E|δk|4`)1/2(P(|δk| ≥ 1/(2K0)) + (P(|δ̂k| ≥ 1/(2K0))
1/2

+ n−3`/8

)

≤ K`

(
η−2`n`−1

∑
k/∈I

√
E|δk|4`

√
E|δk|2` + E|δ̂k|2` + n−3`/8

)
≤ K`

(
η−2`n−` + n−3`/8

)
≤ K`n

−3`/8.

Thus, we have shown that for a fixed z ∈ S̃δ ∪ Ŝδ, nη|mn(z) − Emn(z)| = o(1) with
overwhelming probability where the probability and the o(1) error are uniform in z. To
extend this result to all z ∈ S̃δ ∪ Ŝδ, we observe that mn(z) is n2-Lipschitz so it suffices to
establish the result for an n−3-net of S̃δ ∪ Ŝδ. Such a net will be of size at most O(n4) and
since an event that holds with overwhelming probability can tolerate a polynomial-sized
union bound, the result is proved.

6 Proof of Theorem 2.7

We now turn to the proof of Theorem 2.7. We begin with some preliminary results
and notation we will need for the proof. For convenience, we establish the result for S̃δ

as an identical argument applies to Ŝδ.
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Fix ε ∈ (0, 1/100). Since A is a GOE matrix, it follows from standard norm bounds
(see, for example, [27, 76] and references therein) that ‖A‖ ≤ 3 with overwhelming
probability. Thus, by Proposition 3.2 and Weyl’s perturbation theorem (see, for instance,
Corollary III.2.6 in [16]), there exists δ > 0 so that the event{

|{1 ≤ i ≤ n : λi(L) ≥
√
(2− 2δ) log n}| = O(nε)

}
(6.1)

holds with overwhelming probability. Moreover, by taking δ smaller if needed, we can
also ensure the same value of δ applies to the bounds in Theorem 5.1 and Proposition
3.2. For convenience, we define the event

E :=
{
|{1 ≤ i ≤ n : λi(L) ≥

√
(2− 2δ) log n}| = O(nε)

}
⋂{

sup
z=E+iη∈S̃δ

nη |mn(z)− EAmn(z)| = o(1)

}
⋂{∣∣∣{1 ≤ i ≤ n : Dii ≥

√
(2− 2δ) log n}

∣∣∣ = Oε(n
ε)
}

to be the intersection of the events from (6.1), Theorem 5.1, and Proposition 3.2. It
follows that E holds with overwhelming probability, and we will work on this event
throughout the proof. For the remainder of the proof, we consider ε and δ fixed. We
will allow implicit constants in our asymptotic notation to depend on these parameters
without denoting this dependence.

Since the event E holds with overwhelming probability, we will often be able to insert
or remove the indicator function 1E into the expected value with only negligible error.
For example, using the naive bound, supi,j |Gij(z)| ≤ ‖G(z)‖ ≤ 1

η , we have

E
∑
i,j

Gij(z) = E
∑
i,j

Gij(z)1E + E
∑
i,j

Gij(z)1Ec ,

where ∣∣∣∣∣∣E
∑
i,j

Gij(z)1Ec

∣∣∣∣∣∣ ≤ n2

η
P(Ec) = Op

(
1

npη

)
for any p > 0. Here, we use the convention that all indices in the sums are over [n] unless
otherwise noted. In particular, taking p sufficiently large shows that

E
∑
i,j

Gij(z) = E
∑
i,j

Gij(z)1E + o

(
1

nη

)
for any z in the spectral domain Sδ. In a similar way, one can apply the same procedure
to the conditional expectation EA

∑
i,j Gij(z), where the error term

EA

∑
i,j

Gij(z)1Ec

can be bounded with overwhelming probability using an L1-norm bound as above and
Markov’s inequality. We will often insert and remove indicator functions of events that
hold with overwhelming probability in this way. As the arguments are all of a similar
format, we will not always show all of the details, and we refer to this as procedure as
“inserting the indicator function using naive bounds.”

Theorem 2.7 focuses on the spectral domain S̃δ ∪ Ŝδ. However, it will sometimes be
convenient to work on the larger spectral domain Sδ. We begin with some initial bounds
for mn in the spectral domain Sδ.
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Lemma 6.1. With overwhelming probability,

sup
z∈Sδ

E|mn(z)|+ sup
z∈Sδ

EA|mn(z)|+ sup
z∈Sδ

|mn(z)| = O

(
1√
log n

)
.

Proof. We start by bounding
sup
z∈Sδ

E|mn(z)|.

By inserting the indicator function of E using naive bounds, it suffices to bound

sup
z∈Sδ

E|mn(z)1E |.

For z = E + iη ∈ Sδ, we have the uniform bound

E |mn(z)1E | ≤ E
1

n

n∑
j=1

1√
(λj(L)− E)2 + η2

1E

≤ E 1

n

∑
j:λj(L)≥

√
(2−2δ) logn

1

η
1E + E

1

n

∑
j:λj(L)<

√
(2−2δ) logn

1

|λj(L)− E|
1E

� nε

nη
+

n

n
√
log n

,

where in the first sum we used that, on the event E , there are only O(nε) terms in the
sum and in the second sum we bounded the number of summands by n and used that
λj(L) <

√
(2− 2δ) log n while E ≥

√
(2− δ) log n. Thus, since η ≥ n−1/4 and ε < 1/100,

we conclude that

sup
z∈Sδ

E|mn(z)| = O

(
1√
log n

)
.

The same method also bounds supz∈Sδ
EA|mn(z)|, where we can again use naive

bounds to insert the the indicator function of E into the conditional expectation. In this
case, one also needs to use a net argument and continuity to establish the result for all
z ∈ Sδ; we omit the details. The bound for supz∈Sδ

|mn(z)| is also similar. However, in
this case, we do not have any expectation and can simply repeat the arguments above
by working on the event E , which holds with overwhelming probability; we omit the
details.

With Theorem 5.1 and Lemma 6.1 in hand, we can now complete the proof of Theorem
2.7.

Proof of Theorem 2.7. For z ∈ Sδ, we define

G := G(z)

and
Q := Q(z + EAmn(z)),

where G(z) := (L− z)−1 is the resolvent of L and Q(z) := (D− z)−1 is the resolvent of D.
In particular, sn(z + EAmn(z)) =

1
n trQ = EA

1
n trQ since Q does not depend on A. By

the resolvent identity (3.2), we have

EAmn(z)− sn(z + EAmn(z)) = EA
1

n
trG− 1

n
trQ (6.2)

= EA
1

n
tr(GAQ)− EAmn(z)EA

1

n
tr(GQ).
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We will apply the Gaussian integration by parts formula (3.3) to

EA
1

n
tr(GAQ) =

1

n

∑
i,j

QiiEA[GijAji], (6.3)

where we used the fact that Q is a diagonal matrix and does not depend on A (so we can
pull it out of the conditional expectation). A simple computation involving the resolvent
identity (3.2) shows that

∂Gkl

∂Aij
=

{
GkiGjl +GkjGil, if i 6= j,

GkiGjl, if i = j.

Thus, returning to (6.3) and applying (3.3), we obtain

EA
1

n
tr(GAQ) =

1

n2
EA

∑
i,j

QiiG
2
ij +

1

n
EAmn(z) tr(QG),

which when combined with (6.2) yields

EAmn(z)− sn(z + EAmn(z)) =
1

n2
EA

∑
i,j

QiiG
2
ij +

1

n
EAmn(z) tr(QG) (6.4)

− EAmn(z)EA
1

n
tr(GQ).

We aim to bound the terms on the right-hand side uniformly for z ∈ S̃δ.
For the first term, we apply the Ward identity (3.1) to get∣∣∣∣∣∣ 1n2EA

∑
i,j

QiiG
2
ij

∣∣∣∣∣∣ ≤ EA
1

n2

∑
i

|Qii|
∑
j

|Gij |2

≤ EA
1

n2η

∑
i

|Qii| ImGii

≤ EA
1

n2η

∑
i

1

|Dii − z − EAm(z)|
ImGii.

Define the event

F :=

{
sup
z∈S̃δ

EAmn(z) = O

(
1√
log n

)}
, (6.5)

and note that, by Lemma 6.1, F holds with overwhelming probability. By using naive
bounds, we can insert the indicator function of the event E ∩ F into the above equations
to obtain

EA
1

n2η

∑
i

1

|Dii − z − EAm(z)|
ImGii

= EA
1

n2η

∑
i

1

|Dii − z − EAm(z)|
ImGii1E∩F + o

(
1

nη

)
= EA

1

n2η

∑
i:Dii≥

√
(2−2δ) logn

1

|Dii − z − EAm(z)|
ImGii1E∩F

+ EA
1

n2η

∑
i:Dii<

√
(2−2δ) logn

1

|Dii − z − EAm(z)|
ImGii1E∩F + o

(
1

nη

)
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with overwhelming probability.
Observe that since Re(z) ≥

√
(2− δ) log n, one has

|Dii − z − EAm(z)| �
√

log n

on the event F whenever Dii <
√
(2− 2δ) log n. Thus, we have

EA
1

n2η

∑
i:Dii<

√
(2−2δ) logn

1

|Dii − z − EAm(z)|
ImGii1E∩F

� 1

nη
√
log n

EA Immn(z)1E∩F

= o

(
1

nη

)
.

For the other term, we apply the naive bounds ‖G‖ ≤ 1
η and 1

|Dii−z−EAm(z)| ≤
1
η to obtain

EA
1

n2η

∑
i:Dii≥

√
(2−2δ) logn

1

|Dii − z − EAm(z)|
ImGii1E∩F � nε

n2η3
= o

(
1

nη

)

uniformly for z ∈ S̃δ.
Combining the terms above, we conclude that, with overwhelming probability,

1

n2
EA

∑
i,j

QiiG
2
ij = o

(
1

nη

)
uniformly for z ∈ S̃δ. In view of (6.4), it remains to show

1

n
EAmn(z) tr(QG)− EAmn(z)EA

1

n
tr(GQ) = o

(
1

nη

)
(6.6)

with overwhelming probability, uniformly for z ∈ S̃δ. We will use Theorem 5.1 to establish
(6.6). Indeed, by using naive bounds, we can insert the indicator function of the event
E ∩ F , and it suffices to bound

sup
z∈S̃δ

EA

∣∣∣∣ 1nmn(z) tr(QG)− EA [mn(z)]
1

n
tr(GQ)

∣∣∣∣1E∩F .

In order to bound this term, we will need the following result.

Lemma 6.2. One has

sup
z∈S̃δ

∣∣∣∣ 1n tr(GQ)

∣∣∣∣1E∩F = O

(
1

log n

)
with probability 1.

We prove Lemma 6.2 below, but let us first complete the proof of Theorem 2.7. Indeed,
applying Lemma 6.2, we obtain

EA

[∣∣∣∣ 1nmn(z) tr(QG)− EA [mn(z)]
1

n
tr(GQ)

∣∣∣∣1E∩F

]
≤ EA

[
|mn(z)− EA [mn(z)]|

∣∣∣∣ 1n tr(GQ)

∣∣∣∣1E∩F

]
� 1

log n
EA [|mn(z)− EA [mn(z)]|1E∩F ]

uniformly for z ∈ S̃δ. Applying Theorem 5.1 (which we included in the event E for just
this purpose) establishes (6.6). In view of (6.4), this completes the proof of Theorem
2.7.
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We now give the proof of Lemma 6.2.

Proof of Lemma 6.2. By the Cauchy–Schwarz inequality, it suffices to show

sup
z∈S̃δ

1

n
tr(GG∗)1E∩F = O

(
1

log n

)
(6.7)

and

sup
z∈S̃δ

1

n
tr(QQ∗)1E∩F = O

(
1

log n

)
(6.8)

with probability 1. Fix z = E + iη ∈ S̃δ; all of our bounds will be uniform in z and hold
with probability 1.

For the term on the left-hand side of (6.7), we apply the spectral theorem to obtain

1

n
tr(GG∗)1E∩F =

1

n

∑
j

1

(λj(L)− E)2 + η2
1E∩F

=
1

n

∑
j:λj(L)≥

√
(2−2δ) logn

1

(λj(L)− E)2 + η2
1E∩F

+
1

n

∑
j:λj(L)<

√
(2−2δ) logn

1

(λj(L)− E)2 + η2
1E∩F .

Observe that, on the event E , the first sum only contains O(nε) terms, and so using a
naive bound we obtain

1

n

∑
j:λj(L)≥

√
(2−2δ) logn

1

(λj(L)− E)2 + η2
1E∩F � nε

nη2
= O

(
1

log n

)

with probability 1. For the second sum, we have

1

(λj(L)− E)2 + η2
� 1

log n

uniformly for z ∈ S̃δ since λj(L) <
√

(2− 2δ) log n and E ≥
√
(2− δ) log n. Thus, we find

1

n

∑
j:λj(L)<

√
(2−2δ) logn

1

(λj(L)− E)2 + η2
� n

n log n
= O

(
1

log n

)

with probability 1, where we bounded the total number of terms in this sum by n. This
completes the proof of (6.7).

The proof of (6.8) is similar. Since Q is a diagonal matrix, we have

1

n
tr(QQ∗)1E∩F =

1

n

∑
j

1

|Djj − z − EAmn(z)|2
1E∩F

=
1

n

∑
j:Djj≥

√
(2−2δ) logn

1

|Djj − z − EAmn(z)|2
1E∩F

+
1

n

∑
j:Djj<

√
(2−2δ) logn

1

|Djj − z − EAmn(z)|2
1E∩F .

On the event E , the first sum contains O(nε) terms, and so using a naive bound we obtain

1

n

∑
j:Djj≥

√
(2−2δ) logn

1

|Djj − z − EAmn(z)|2
1E∩F ≤ nε

nη2
= O

(
1

log n

)
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with probability 1. We now turn our attention to the second sum. On the event F ,
EAmn(z) is uniformly bounded for z ∈ S̃δ. Thus, on the event E ∩ F , whenever Djj <√
(2− 2δ) log n, we have

1

|Djj − z − EAmn(z)|2
� 1

log n

uniformly for z ∈ S̃δ since E ≥
√

(2− δ) log n. Therefore, we conclude that

1

n

∑
j:Djj<

√
(2−2δ) logn

1

|Djj − z − EAmn(z)|2
1E∩F � n

n log n
= O

(
1

log n

)

with probability 1, and the proof is complete.

We include the following extensions of Theorem 2.7, which we will need in the next
section.

Theorem 6.3. There exists δ > 0 so that

sup
z∈S̃δ∪Ŝδ

√
nη |Emn(z)−m(z)| = o(1). (6.9)

Remark 6.4. It is likely that the error term in (6.9) can be improved. However, we will
not need a sharp bound to prove our main results. In addition, the proof reveals that
(6.9) can be extended to hold for all z ∈ Sδ, but we will not need a larger spectral domain
in this work.

Proof of Theorem 6.3. The proof is similar to the proof of Theorem 2.7. Again, for
notational convenience, we only prove this for S̃δ. We outline the main ideas of the proof
here.

Fix ε ∈ (0, 1/100). Since A is a GOE matrix, it follows from standard norm bounds
(see, for example, [27, 76] and references therein) that ‖A‖ ≤ 3 with overwhelming
probability. Thus, by Proposition 3.2 and Weyl’s perturbation theorem (see, for instance,
Corollary III.2.6 in [16]), there exists δ > 0 so that the event given in (6.1) holds with
overwhelming probability. Moreover, by taking δ smaller if needed, we can also ensure
the same value of δ applies to the bounds in Proposition 3.2. For convenience, we define
the event

Ê :=
{
|{1 ≤ i ≤ n : λi(L) ≥

√
(2− 2δ) log n}| = O(nε)

}
⋂{

sup
z=E+iη∈S̃δ

√
nη(log n)3/4 |mn(z)− Emn(z)| = o(1)

}
⋂{∣∣∣{1 ≤ i ≤ n : Dii ≥

√
(2− 2δ) log n}

∣∣∣ = Oε(n
ε)
}

to be the intersection of the events from (6.1), Proposition 3.2, and Proposition 3.3.
Here, we applied Proposition 3.3 with t = (log n)3/4 and then used continuity and a net
argument to extend the bound to all z ∈ S̃δ. It follows that Ê holds with overwhelming
probability, and we will work on this event throughout the proof.

For z ∈ Sδ, we define
G := G(z)

and
Q := Q(z + Emn(z)),

where G(z) := (L−z)−1 is again the resolvent of L and Q(z) := (D−z)−1 is the resolvent
of D.
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Similar to the proof of Theorem 2.7, we can use the resolvent identity (3.2) to write

Emn(z)− Esn(z + Emn(z)) = E
1

n
trG− E 1

n
trQ

= E
1

n
tr(GAQ)− Emn(z)E

1

n
tr(GQ).

Applying the same Gaussian integration by parts argument from the proof of Theorem
2.7 and noting that

Esn(z + Emn(z)) = s(z + Emn(z)),

we obtain

Emn(z)− s(z + Emn(z)) =
1

n2
E
∑
i,j

QiiG
2
ij +

1

n
Emn(z) tr(QG) (6.10)

− Emn(z)E
1

n
tr(GQ).

Our goal is to bound the error terms on the right-hand side. The first term

1

n2
E
∑
i,j

QiiG
2
ij

is handled using the Ward identity, exactly in the same way as it was bounded in the
proof of Theorem 2.7, and we omit the details.

We now turn to bounding the error term∣∣∣∣ 1nEmn(z) tr(QG)− Emn(z)E
1

n
tr(GQ)

∣∣∣∣ ≤ E [|mn(z)− E [mn(z)]|
∣∣∣∣ 1n tr(QG)

∣∣∣∣] .
Using naive bounds, we can insert the indicator function of Ê , and it suffices to bound

E

[
|mn(z)− E [mn(z)]|

∣∣∣∣ 1n tr(QG)

∣∣∣∣1Ê

]
.

We will need the following analogue of Lemma 6.2.

Lemma 6.5. One has

sup
z∈S̃δ∪Ŝδ

∣∣∣∣ 1n tr(GQ)

∣∣∣∣1Ê = O

(
1

log n

)
with probability 1.

We provide the proof of Lemma 6.5 below, but first we complete the proof of Theorem
6.3. Indeed, we find

E

[
|mn(z)− E [mn(z)]|

∣∣∣∣ 1n tr(QG)

∣∣∣∣1Ê

]
� 1

log n
E
[
|mn(z)− E [mn(z)]|1Ê

]
� 1√

n(log n)1/4η

= o

(
1√
nη

)
uniformly for z ∈ S̃δ. Here, we used Lemma 6.5 in the first bound and

sup
z=E+iη∈S̃δ

√
nη(log n)3/4 |mn(z)− Emn(z)| = o(1),

which is part of the event Ê , in the second bound.
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Combining the bounds above with (6.10), we conclude that

sup
z∈S̃δ

√
nη |Emn(z)− s(z + Emn(z))| = o(1).

An application of Theorem 4.1 now completes the proof.

We now outline the proof of Lemma 6.5.

Proof of Lemma 6.5. The proof of Lemma 6.5 follows the proof of Lemma 6.2 nearly
exactly. Only the following changes need to be made:

• One needs to replace the indicator function 1E∩F with 1Ê and any use of the event

E by Ê .
• Occurrences of EAmn(z) need to be replaced by Emn(z).
• One does not need the event F to control Emn(z) (in fact, Emn(z) is deterministic).
Instead, one can use that Emn(z) is bounded uniformly for z ∈ S̃δ by Lemma
6.1.

To conclude this section, we present the following concentration bound, which we
will also need in the next section.

Lemma 6.6. For any fixed δ > 0, asymptotically almost surely, one has

sup
z∈S̃δ∪Ŝδ

√
nη |Emn(z)− EAmn(z)| = o(1). (6.11)

Proof. We will establish (6.11) by applying the Gaussian Poincaré inequality. Since
EAmn(z) only depends on the randomness from D, we will apply the tensorization
property of the Poincaré inequality to the n iid standard normal entries of D. We refer
the reader to Section 4.4 of [6] for further details concerning the Poincaré inequality
and its uses in random matrix theory.

For any z := E + iη ∈ S̃δ ∪ Ŝδ, we begin with

E |EAmn(z)− Emn(z)|2 ≤ 1

n2
E
∑
i

∣∣∣∣∣∣
∑
j

EAGjiGij

∣∣∣∣∣∣
2

≤ 1

n2
E
∑
i

∣∣∣∣∣∣
∑
j

GjiGij

∣∣∣∣∣∣
2

,

where the first inequality follows from the Gaussian Poincaré inequality and the second
from Jensen’s inequality. Here, we also used the fact that

∂EAGjj

∂Dii
= −EA [GjiGij ] ,

which can be deduced from the resolvent identity (3.2). Applying the triangle inequality
and the Ward identity (3.1), we obtain

E |EAmn(z)− Emn(z)|2 ≤ 1

n2
E
∑
i

∑
j

|Gij |2
2

≤ 1

n2η2
E
∑
i

(ImGii)
2

≤ 1

n2η3
E Immn(z)

� 1

n2η3
√
log n

,
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where we used Lemma 6.1 in the last step. Thus, by Markov’s inequality, we conclude
that

sup
z∈S̃δ∪Ŝδ

P

(
|EAmn(z)− Emn(z)| ≥

1√
nη(log n)1/4

)
� 1

nη
=

1

n3/4
. (6.12)

We now extend the bound in (6.12) to hold simultaneously for all z ∈ S̃δ by a net
argument. We note that all of our bounds below will hold uniformly for z ∈ S̃δ ∪ Ŝδ. Let
N be a 1√

n(logn)1/4
-net of S̃δ ∪ Ŝδ. A counting argument shows that N can be chosen to

have cardinality

|N | = Oδ(
√
n log n).

Therefore, (6.12) together with the union bound implies that the event{
sup
z∈N

|EAmn(z)− Emn(z)| ≤
1√

nη(log n)1/4

}
holds with probability 1− o(1). Let F ′ be the intersection of the event above with the
event F , defined in (6.5). It follows that F ′ holds with probability 1− o(1), and we will
prove that (6.11) holds on F ′. Indeed, let z ∈ S̃δ ∪ Ŝδ be arbitrary. Then there exists
z′ ∈ N so that

|z − z′| ≤ 1√
n(log n)1/4

. (6.13)

Thus, on the event F ′, we have

|EAmn(z
′)− Emn(z

′)| � 1√
nη(log n)1/4

.

Moreover, by the resolvent identity (3.2), we find

|Emn(z)− Emn(z
′)| = 1

n
|z − z′| |E tr(G(z)G(z′))|

≤ |z − z′| 1
n
E
∑
i,j

[
|Gij(z)|2 + |Gij(z

′)|2
]

=
|z − z′|
η

[E Immn(z) + E Immn(z
′)]

� 1√
nη(log n)3/4

,

where we used the Ward identity (3.1), Lemma 6.1, and (6.13). Similarly, we have

|EAmn(z)− EAmn(z
′)| ≤ |z − z′| 1

n
EA

∑
i,j

[
|Gij(z)|2 + |Gij(z

′)|2
]

=
|z − z′|
η

[EA Immn(z) + EA Immn(z
′)]

� 1√
nη(log n)3/4

,

where the final inequality holds on the event F ⊃ F ′. Combining the bounds above, we
conclude that

|EAmn(z)− Emn(z)| = o

(
1√
nη

)
.

Since this bound holds uniformly for z ∈ S̃δ ∪ Ŝδ, the proof is complete.
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7 Proof of Theorem 2.1

This section is devoted to the proof of Theorem 2.1. In view of Theorem 2.7 (noting
that S̃δ1 ⊆ S̃δ2 for any 0 < δ1 < δ2), there exists δ̃ > 0 so that for any 0 < δ < δ̃

sup
z=E+iη∈S̃δ∪Ŝδ

nη |mn(z)− sn(z + EAmn(z))| = o(1) (7.1)

with overwhelming probability. Throughout this section we will make repeated use of
Proposition 3.2, so we fix 0 < δ < δ̃ such that∣∣∣{1 ≤ i ≤ n : Dii ≥

√
(2− δ) log n}

∣∣∣ = O(n1/100)

with overwhelming probability. Considering imaginary parts, we conclude that, on the
same event as (7.1),

sup
z=E+iη∈S̃δ∪Ŝδ

∣∣∣∣∣
n∑

j=1

η2

(λj(L)− E)2 + η2

−
n∑

j=1

η2 + η ImEAmn(z)

(Djj − E − ReEAmn(z))2 + (η + ImEAmn(z))2

∣∣∣∣∣ (7.2)

tends to 0.
We begin by noting that by applying Lemma 3.20 with Theorem 6.3 and Lemma 6.6,

we deduce that
sup

z=E+iη∈S̃δ∪Ŝδ

ImEAm(z) = o(η) (7.3)

with overwhelming probability. If E + iη ∈ S̃δ ∪ Ŝδ is chosen such that (Djj − E −
ReEAmn(z))

2 = 0 for some j, then from (7.3)

n∑
j=1

η2 + η ImEAmn(z)

(Djj − E − ReEAmn(z))2 + (η + ImEAmn(z))2
≥ η2 + η ImEAmn(z)

(η + ImEAmn(z))2

≥ η2 + o(η2)

η2 + o(η2)

= 1 + o(1).

Hence, the first sum must also be asymptotically at least 1. One way in which the first
sum can be close to 1 is if E is close to an eigenvalue of L and the other terms are
negligible. Bai and Silverstein (see [10, Chapter 6]) used this observation to show the
spectra of certain random matrix models separate. In this section, we use a similar
method (and an iteration argument) to precisely locate λ1(L). We then extend this
argument to λ2(L), . . . , λk(L) and complete the proof of Theorem 2.1.

For the remainder of this section we fix η = n−1/4. For any z1 = E + iη ∈ S̃δ, let
z2 = E + i

√
2η and consider the differences

I1 =

n∑
j=1

η2

(λj(L)− E)2 + η2
−

n∑
j=1

η2

(λj(L)− E)2 + 2η2
,

and

I2 =

n∑
j=1

η2 + η ImEAmn(z1)

(Djj − E − ReEAmn(z1))2 + (η + ImEAmn(z1))2

−
n∑

j=1

η2 + 1√
2
η ImEAmn(z2)

(Djj − E − ReEAmn(z2))2 + (
√
2η + ImEAmn(z2))2

.
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From (7.1) we have that
sup

z1=E+iη∈S̃δ

|I1 − I2| = o(1), (7.4)

with overwhelming probability. Note that

I1 =

n∑
j=1

η4

((λj(L)− E)2 + η2)((λj(L)− E)2 + 2η2)
,

and

I2 =

n∑
j=1

Nj,n

Bj,n
,

where

Bj,n = ((Djj − E − ReEAmn(z1))
2 + (η + ImEAmn(z1))

2)

× ((Djj − E − ReEAmn(z2))
2 + (

√
2η + ImEAmn(z2))

2),

and

Nj,n = η2
[(√

2η + ImEAmn(z2)
)2

− (η + ImEAmn(z1))
2

]
+ η ImEAmn(z1)

(√
2η + ImEAmn(z2)

)2
− 1√

2
η ImEAmn(z2) (η + ImEAmn(z1))

2

+ η2
[
(Djj − E − ReEAmn(z2))

2 − (Djj − E − ReEAmn(z1))
2
]

+ η ImEAmn(z1) (Djj − E − ReEAmn(z2))
2

− 1√
2
η ImEAmn(z2) (Djj − E − ReEAmn(z1))

2
.

In several steps we now show Nj,n = η4(1 + o(1)) uniformly on S̃δ. The implied
constants in our asymptotic notation in this section are uniform over j ∈ [n]. From (7.3)
we see that

sup
z1=E+iη∈S̃δ

∣∣∣∣η2 [(√2η + ImEAmn(z2)
)2

− (η + ImEAmn(z1))
2

]∣∣∣∣ = η4(1 + o(1)), (7.5)

and

η ImEAmn(z1)
(√

2η + ImEAmn(z2)
)2
− η ImEAmn(z2)√

2
(η + ImEAmn(z1))

2
= o(η4),

(7.6)

uniformly for z1 ∈ S̃δ with overwhelming probability. The following lemma allows us to
control the terms of Nj,n which involve ReEAmn.

Lemma 7.1. There exists δ > 0 such that

sup
z1=E+iη∈S̃δ

|ReEAmn(z1)− ReEAmn(z2)| = o
(
n−1/2

)
,

with overwhelming probability.

Lemma 7.1 is very similar to Lemma 3.21, however neither follows from the other
as we do not have a result comparing EAmn(z) to m(z) within the appropriate error
o(n−1/2). The proof of Lemma 7.1 follows in a nearly identical way to the proof of Lemma
3.21, with summation replacing integration.
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Proof of Lemma 7.1. Fix E + in−1/4 ∈ S̃δ. We begin by considering

Remn(z1)− Remn(z2) =
1

n

n∑
j=1

η2(λj − E)

((λj − E)2 + η2) ((λj − E)2 + 2η2)
, (7.7)

where we let λn ≤ · · · ≤ λ1 denote the eigenvalues of L. We divide {1, . . . , n} into
three subsets J1 = {j : |λj − E| ≥

√
E}, J2 = {j : n−1/8E ≤ |λj − E| <

√
E}, and

J3 = {j : |λj − E| < n−1/8E}. Note for any E ∈ [
√

(2− δ) log n,
√
3 log n], J2, J3 ⊆

{j : λj ≥
√
(2− δ) log n − [(2− δ) log n]

1/4}. From standard bounds on ‖A‖ (see, for
example, [27,76] and references therein) and taking δ sufficiently small in Proposition
3.2, we have

|J2|, |J3| ≤
∣∣∣{j : λj ≥√(2− δ) log n− [(2− δ) log n]

1/4}
∣∣∣ = O(n1/100) (7.8)

with overwhelming probability. Note that∣∣∣∣∣∣ 1n
∑
j∈J1

η2(λj − E)

((λj − E)2 + η2) ((λj − E)2 + 2η2)

∣∣∣∣∣∣ ≤ η2

(2− δ)3/4 log3/4 n
, (7.9)

and so we focus on the sets where |λj − E| is small. For J2 applying (7.8)∣∣∣∣∣∣ 1n
∑
j∈J2

η2(λj − E)

((λj − E)2 + η2) ((λj − E)2 + 2η2)

∣∣∣∣∣∣ ≤ 1

n

∑
j∈J2

η2

|λj − E|3

= η2O

(
n1/100

nη2E3

)
(7.10)

= o(η2)

with overwhelming probability and implicit constants depending only on δ. In a similar
fashion applying (7.8),∣∣∣∣∣∣ 1n

∑
j∈J3

η2(λj − E)

((λj − E)2 + η2) ((λj − E)2 + 2η2)

∣∣∣∣∣∣ ≤ 1

n

∑
j∈J3

η2|λj − E|
η4

≤ O
(
η5/2

√
3 log nn1/100

)
(7.11)

= o(η2)

with overwhelming probability and implicit constants depending only on δ. Combining
(7.7), (7.9), (7.10), and (7.11) we can conclude that

Remn(z1)− Remn(z2) = o(η2)

with overwhelming probability. Applying Theorem 5.1 we see that

|ReEAmn(z1)− ReEAmn(z2)| ≤ |ReEAmn(z1)− Remn(z1)|
+ |ReEAmn(z2)− Remn(z2)|
+ |Remn(z1)− Remn(z2)|

= o(η3) + o(η2)

with overwhelming probability and implicit constants depending only on δ. To extend to
the supremum over S̃δ note that EAmn (or any Stieltjes transform) is Lipschitz on S̃δ with
Lipschitz constant at most

√
n. Taking a 1

n4 -net and using the union bound completes the
proof.
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Thus we have from Lemma 3.17, Theorem 6.3, Lemma 6.6, and Lemma 7.1 that

η2
[
(Djj − E − ReEAmn(z2))

2 − (Djj − E − ReEAmn(z1))
2
]

= η2 [(2Djj − 2E − ReEAmn(z2)− ReEAmn(z1)) (ReEAmn(z1)− ReEAmn(z2))]

= o(η4|Djj − E − ReEAmn(z1)|), (7.12)

with overwhelming probability.
To deal with the last term in Nj,n,

η ImEAmn(z1) (Djj − E − ReEAmn(z2))
2

− 1√
2
η ImEAmn(z2) (Djj − E − ReEAmn(z1))

2
,

(7.13)

note some algebra leads to

η Immn(z1)−
1√
2
η Immn(z2) =

1

n
I1. (7.14)

Applying Theorem 5.1 (to drop EA), (7.3) (to control the imaginary part of the Stieltjes
transforms), Lemma 7.1 (to compare the real parts of the Stieltjes transforms at different
inputs after factoring in a way similar to (7.12)), and (7.14) to (7.13) gives

η ImEAmn(z1) (Djj − E − ReEAmn(z2))
2

− 1√
2
η ImEAmn(z2) (Djj − E − ReEAmn(z1))

2

=
(Djj − E − ReEAmn(z1))

2

n
I1 + o(η4|Djj − E − ReEAmn(z1)|2)

(7.15)

uniformly for E ∈ [
√
(2− δ) log n,

√
3 log n] and j ∈ [n], with overwhelming probability.

Thus we conclude from (7.5), (7.6), (7.12), and (7.15) that

I2 =

n∑
j=1

η4(1 + o(1)) + n−1 (Djj − E − ReEAmn(z1))
2
I1 + o(η4|Djj − E − ReEAmn(z1)|2)

Bj,n
,

(7.16)
with overwhelming probability. A straightforward application of Proposition 3.2 with
ε = 1/100 (similar to (7.10) and (7.11) in the proof of Lemma 7.1) yields

sup
z1=E+iη∈S̃δ

∣∣∣∣∣∣
n∑

j=1

η4 (Djj − E − ReEAmn(z1))
2

Bj,n

∣∣∣∣∣∣ = o(1) (7.17)

and

sup
z1=E+iη∈S̃δ

∣∣∣∣∣∣
n∑

j=1

o(η4|Djj − E − ReEAmn(z1)|2)
Bj,n

∣∣∣∣∣∣ = o(1), (7.18)

with overwhelming probability. Combining (7.4), (7.16), (7.17), and (7.18) we arrive at
the conclusion

sup
z1=E+iη∈S̃δ

∣∣∣∣∣∣(1 + o(1))I1 − (1 + o(1))

n∑
j=1

η4

Bj,n

∣∣∣∣∣∣ = o(1), (7.19)

with overwhelming probability, where we have pulled out (1 + o(1)) terms which are
uniform in j. At this point, we order the diagonal entries of D as D(1) > D(2) > · · · > D(n).
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With the technical estimates complete we will now locate λ1(L) with respect to D(1). Let
E(1) be a solution, whose existence is guaranteed by Lemma 3.22, to the equation

D(1) − E − Rem(E + iη) = 0. (7.20)

As we will see below, the solution E(1) to (7.20) is essentially the location of λ1(L). Before
proving this rigorously, let us see heuristically why this is the case. For z = E + iη

very close to the largest eigenvalue of L, we can expect Immn(z) to be dominated by
the largest term in the sum, and hence approximately 1

n
η

(λ1(L)−E)2+η2 , and if we choose

E = λ1(L) we can expect that nη Immn(z) ≈ 1. Applying this expected behavior to I2,
we arrive at (7.20) as the equation making the “non-η” terms of the denominator of the
dominant summand (approximately) zero. We also point out that Lee and Schnelli [52,
Proposition 4.3] show a similar relationship between eigenvalues of deformed Wigner
matrices and the largest entry of the diagonal.

From Lemma 3.22 we see that asymptotically almost surely E(1) = D(1) +
1

D(1)
+

O

(
1

D2
(1)

)
. After noting D(1) = an + o(1) asymptotically almost surely, from Theorem 6.3

that supz=E+iη∈S̃δ∪Ŝδ
|EA Remn(z)− Rem(z)| = o(η), (7.3), and Lemma 7.1 we can see

that at z1 = E(1) + iη

Bj1,n = ((Rem(z1)− ReEAmn(z1))
2 + (η + ImEAmn(z1))

2)

× ((Rem(z1)− ReEAmn(z2))
2 + (

√
2η + ImEAmn(z2))

2)

=
(
o(η2) + (η + o(η))2

) (
o(η2) + (

√
2η + o(η))2

)
= 2η4 (1 + o(1)) ,

(7.21)

where Dj1j1 = D(1). We then conclude from (7.21) that

sup

E∈
[
E(1)− 1

a
3/2
n

,E(1)+
1

a
3/2
n

](1 + o(1))

n∑
j=1

η4

Bj,n
≥ 1

2
. (7.22)

Thus, from (7.19)

sup

E∈
[
E(1)− 1

a
3/2
n

,E(1)+
1

a
3/2
n

] I1 ≥ 1/2, (7.23)

asymptotically almost surely.

Assume, for the sake of contradiction, that there is not at least one eigenvalue of L
within 1/a

3/2
n of E(1). For any δ

′ > 0, E(1) ≥
√

(2− δ′) log n asymptotically almost surely.
By taking δ′ sufficiently small and applying Proposition 3.2 there are at most O(n1/100)

eigenvalues of L greater than
√
(2− 2δ′) log n. If J = {j : λj(L) ≥

√
(2− 2δ′) log n}, then

asymptotically almost surely

I1 ≤ o(1)
∑
j /∈J

η4 +
∑
j∈J

η4

1/a6n
= o(1) +O

(
a6n

n99/100

)
= o(1), (7.24)

a contradiction of (7.19) and (7.23). Thus there must be at least one eigenvalue of L
within 1/a

3/2
n of E(1). Let δ′′ > 0 be sufficiently small such that from Proposition 3.2
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J̃ = {j : Djj ≥
√
(2− δ′′) log n} has O(n1/100) elements. Then,

sup

E∈
[
E(1)+

1

a
3/2
n

,
√
3 logn

]
∣∣∣∣∣∣

n∑
j=1

η4

Bj,n

∣∣∣∣∣∣ ≤ sup

E∈
[
E(1)+

1

a
3/2
n

,
√
3 logn

]
∣∣∣∣∣∣
∑
j∈J̃

η4

Bj,n

∣∣∣∣∣∣
+ sup

E∈
[
E(1)+

1

a
3/2
n

,
√
3 logn

]
∣∣∣∣∣∣

n∑
j /∈J̃

η4

Bj,n

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
j∈J̃

a6nη
4

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
j /∈J̃

η4

(2− δ′′)4 log2 n

∣∣∣∣∣∣
= o(1). (7.25)

Note to bound the denominator for the sum over J̃ in (7.25) we make use Lemma 3.19 to
deal with the non-linearity of the Stieltjes transform. Since ‖L‖ ≤

√
3 log n asymptotically

almost surely, if there exists an eigenvalue of L beyond 1

a
3/2
n

of E(1), it would then follow

from the definition of I1 that

sup

E∈
[
E(1)+

1

a
3/2
n

,
√
3 logn

] I1 ≥ 1

2
, (7.26)

a contradiction of (7.19) and (7.25). Thus there cannot be an eigenvalue of L beyond 1

a
3/2
n

of E(1) asymptotically almost surely, and hence |λ1(L)− E(1)| = O
(

1

a
3/2
n

)
asymptotically

almost surely. Using the asymptotic expansion in Lemma 3.22 and the fact that D(1) =√
2 log n+ o(1) asymptotically almost surely we see that with probability tending to one

E(1) = D(1) +
1√

2 log n
+O

(
1

log n

)
.

Let b′n be defined as in (1.3), we conclude the proof of Theorem 2.1 in the case that k = 1

by noting with probability tending to one

an(λ1(L)− bn) = an(E(1) − bn) + o(1)

= an(D(1) − b′n) + o(1)

and hence for any x ∈ R

lim
n→∞

P (an(λ1(L)− bn) ≤ x) = lim
n→∞

P
(
an(D(1) − b′n) ≤ x+ o(1)

)
= e−e−x

,

where the last equality is a well known result for maximum of iid Gaussian random
variables (see, for instance, [51, Theorem 1.5.3]).

For any k ∈ N, we now define E(k) to be a solution to

D(k) − E − Rem(E + iη) = 0.

Again, using the asymptotic expansion in Lemma 3.22 we see that with probability
tending to one that

E(k) = D(k) +
1√

2 log n
+O

(
1

log n

)
. (7.27)
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Above we showed that |λ1(L)−E(1)| = O
(

1

a
3/2
n

)
asymptotically almost surely, however

this comparison can be improved significantly to show |λk(L)−E(k)| = o(η) for any fixed
k ∈ N. To this end, fix k ∈ N and consider the first k eigenvalues λ1(L) ≥ λ2(L) ≥ · · · ≥
λk(L) of L. Using the notation above we have that

sup

E∈
[
E(1)− 1

a
3/2
n

,E(1)+
1

a
3/2
n

]
∣∣∣∣∣∣(1 + o(1))I1 −

n∑
j=1

η4(1 + o(1))

Bj,n

∣∣∣∣∣∣ = o(1) (7.28)

asymptotically almost surely. We also have with probability tending to one (see Proposi-

tion 3.9) that E(2) /∈
[
E(1) − 1

a
3/2
n

, E(1) +
1

a
3/2
n

]
and hence

sup

E∈
[
E(1)− 1

a
3/2
n

,E(1)+
1

a
3/2
n

]
∣∣∣∣∣∣

n∑
j=1

η4(1 + o(1))

Bj,n

∣∣∣∣∣∣ = 1

2
+ o(1). (7.29)

Now let cn be such that cnη = E(1) − λ1(L). From the above we know cnη ∈
[
− 1

a
3/2
n

, 1

a
3/2
n

]
asymptotically almost surely. WhenE = λ1(L), I1 ≥ 1/2 and, using Lemma 3.19 to control
the non-linearity of m, the second sum of (7.28) is 1

(1+c2n)(2+c2n)
+ o(1), a contradiction of

(7.29) unless cn = o(1). It then follows |λ1(L)− E(1)| = o(η).

In fact, for any eigenvalue λj(L) ∈
[
E(1) − 1

a
3/2
n

, E(1) +
1

a
3/2
n

]
, the preceding argu-

ment shows |λj(L) − E(1)| = o(η). If there are N eigenvalues of L in the interval[
E(1) − 1

a
3/2
n

, E(1) +
1

a
3/2
n

]
and hence within o(η) of E(1), then

sup

E∈
[
E(1)− 1

a
3/2
n

,E(1)+
1

a
3/2
n

] |I1| ≥ N

2
+ o(1).

We then see from (7.28) and (7.29) that N = 1.
We now outline the argument for locating λ2(L), as it is extremely similar to that of

λ1(L). An identical argument to the establishment of (7.23) and (7.24) concludes there
must be at least one eigenvalue of L within 1

a
3/2
n

of E(2) asymptotically almost surely.

After noting

sup

E∈
[
E(2)+

1

a
3/2
n

,E(1)− 1

a
3/2
n

]
∣∣∣∣∣∣

n∑
j=1

η4(1 + o(1))

Bj,n

∣∣∣∣∣∣ = o(1),

we see that λ2(L) must be within 1

a
3/2
n

of E(2) asymptotically almost surely. It then follows

in an identical manner to that of λ1(L) that |λ2(L)− E(2)| = o(η) asymptotically almost
surely. Union bounding we see

P
(
‖(λ1, λ2)− (E(1), E(2))‖ ≥ η

)
= o(1). (7.30)

Iterating for all 2 < j ≤ k allows us to conclude

P
(
‖(λ1, λ2, . . . , λk)− (E(1), E(2), . . . , E(k))‖ ≥ η

)
= o(1). (7.31)

At this point it is worth noting Proposition 3.10 follows from Proposition 3.9, (7.27), and
(7.31). From (7.31) we have that for any Borel set B ⊂ Rk

P (an ((λ1, λ2, . . . , λk)− bn) ∈ B) = P
(
an
(
(D(1), D(2), . . . , D(k))− b′n

)
∈ B

)
+o(1). (7.32)

Theorem 2.1 then follows from the definition of Fk, (1.5), and (7.32) with the choice
B =

∏k
j=1(−∞, xj ].

EJP 30 (2025), paper 104.
Page 47/52

https://www.imstat.org/ejp

https://doi.org/10.1214/25-EJP1366
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Extreme eigenvalues of Laplacian random matrices

A Limiting law for largest diagonal entry (by Santiago Arenas-
Velilla and Victor Pérez-Abreu)

This appendix is devoted to the following result, which describes the fluctuations
of the largest diagonal entry of LA when A is drawn from the GOE. The arguments
presented here originally appeared in the preprint [7].

Theorem A.1. Let A be drawn from the GOE. Then the centered and rescaled largest
diagonal entry of LA

an

(
max
1≤i≤n

(LA)ii − b′n

)
converges in distribution as n → ∞ to the standard Gumbel distribution, where an is
defined in (1.2) and b′n is defined in (1.3).

Proof. Let

v = (vi)
n
i=1 =

(
(LA)11, (LA)22, · · · , (LA)nn

)T
,

and note that v is a multivariate normal random vector with mean zero. The covariance
matrix, Σ, associated to v is of the form

Σij =

{
n−1
n , if i = j,

1
n , otherwise.

The eigenvalues of Σ are n−2
n (with multiplicity n− 1) and 2n−2

n (with multiplicity 1). Let

Σ = OΛOT

be the spectral decomposition of Σ, where O is an orthogonal matrix whose last column
is the vector e, defined in (2.2). We observe that

g = (gi)
n
i=1 := Σ−1/2v

is a vector of iid standard Gaussian random variables. Since

Σ
1/2
ij =

n∑
k=1

OikΛ
1/2
kk O

T
kj =

(√
n− 2

n

n∑
k=1

OikO
T
kj

)
+

(√
2n− 2

n
−
√
n− 2

n

)
OinO

T
nj .

we find that

Σ
1/2
ij =


√

n−2
n + 1

n

(√
2n−2

n −
√

n−2
n

)
, if i = j,

1
n

(√
2n−2

n −
√

n−2
n

)
, otherwise.

Therefore, we have

vi =
(
Σ1/2g

)
i

=

√
n− 2

n
gi +

1

n

(√
2n− 2

n
−
√
n− 2

n

)
n∑

k=1

gk.

Taking a maximum over i ∈ {1, 2, . . . , n} yields

max
i
vi =

√
n− 2

n
max

i
gi +

1

n

(√
2n− 2

n
−
√
n− 2

n

)
n∑

k=1

gk.
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After centering and scaling, we obtain that

an(max
i
vi − b′n) = an(max

i
gi − b′n) + an

((√
n− 2

n
− 1

)
max

i
gi

)

+
an
n

(√
2n− 2

n
−
√
n− 2

n

)
n∑

k=1

gk.

Both of the latter two terms on the right-hand side converge to zero in probability. So
by Slutsky’s theorem, an(maxi vi − b′n) converges to the Gumbel distribution, as it is
well-known (see, for instance, [51, Theorem 1.5.3]) that this is the limiting distribution
of an(maxi gi − b′n).

References

[1] Emmanuel Abbe, Afonso S. Bandeira, Annina Bracher, and Amit Singer, Decoding binary
node labels from censored edge measurements: phase transition and efficient recovery, IEEE
Trans. Network Sci. Eng. 1 (2014), no. 1, 10–22. MR3349181

[2] Radosław Adamczak, Rafał Latała, and Rafał Meller, Hanson-Wright inequality in Banach
spaces, Ann. Inst. Henri Poincaré Probab. Stat. 56 (2020), no. 4, 2356–2376. MR4164840

[3] Johannes Alt, Raphael Ducatez, and Antti Knowles, Poisson statistics and localization at
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Matrices Theory Appl. 10 (2021), no. 1, Paper No. 2150009, 34. MR4193182

[24] Anirban Chatterjee and Rajat Subhra Hazra, Spectral properties for the Laplacian of a
generalized Wigner matrix, Random Matrices Theory Appl. 11 (2022), no. 3, Paper No.
2250026, 66. MR4440252

[25] Fan Chung and Linyuan Lu, Complex graphs and networks, CBMS Regional Conference
Series in Mathematics, vol. 107, Published for the Conference Board of the Mathematical
Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006.
MR2248695

[26] H. A. David and H. N. Nagaraja, Order statistics, third ed., Wiley Series in Probability and
Statistics, Wiley-Interscience [John Wiley & Sons], Hoboken, NJ, 2003. MR1994955

[27] Kenneth R. Davidson and Stanislaw J. Szarek, Local operator theory, random matrices
and Banach spaces, Handbook of the geometry of Banach spaces, Vol. I, North-Holland,
Amsterdam, 2001, pp. 317–366. MR1863696

[28] Xue Ding, On some spectral properties of large block Laplacian random matrices, Statist.
Probab. Lett. 99 (2015), 61–69. MR3321497

[29] Xue Ding and Tiefeng Jiang, Spectral distributions of adjacency and Laplacian matrices of
random graphs, Ann. Appl. Probab. 20 (2010), no. 6, 2086–2117. MR2759729

[30] Noureddine El Karoui, Tracy-Widom limit for the largest eigenvalue of a large class of
complex sample covariance matrices, Ann. Probab. 35 (2007), no. 2, 663–714. MR2308592
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