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Abstract
We revisit the majority problem in the population protocol com-

munication model, as first studied by Angluin et al. (Distributed

Computing 2008). We consider a more general version of this prob-

lem known as plurality consensus, which has already been studied

intensively in the literature. In this problem, each node in a system

of 𝑛 nodes, has initially one of 𝑘 different opinions, and they need to

agree on the (relative) majority opinion. In particular, we consider

the important and intensively studied model of Undecided State

Dynamics.

Our main contribution is an almost tight lower bound on the

stabilization time: we prove that there exists an initial configura-

tion, even with bias Δ = 𝜔 (
√︁
𝑛 log𝑛), where stabilization requires

Ω(𝑘𝑛 log
√
𝑛

𝑘 log𝑛
) interactions, or equivalently, Ω(𝑘 log

√
𝑛

𝑘 log𝑛
) par-

allel time for any𝑘 = 𝑜

( √
𝑛

log𝑛

)
. This bound is tight for any𝑘 ≤ 𝑛

1

2
−𝜖

,

where 𝜖 > 0 can be any small constant, as Amir et al. (PODC’23)

gave a 𝑂 (𝑘 log𝑛) parallel time upper bound for 𝑘 = 𝑂

( √
𝑛

log
2 𝑛

)
.
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1 Introduction
Population protocols are a simple and natural computational frame-

work, in which 𝑛 anonymous nodes (also called agents) commu-

nicate and interact with each other to solve a predefined problem

in a distributed manner. In the underlying communication model,
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a scheduler selects in each discrete time step two nodes for inter-

action. The selected nodes exchange their current states and each

of them changes its own state according to the transition function

defined by the population protocol. The set of nodes is expected to

eventually stabilize in a final configuration that is given by the prob-

lem definition. In the plurality consensus problem, as considered

in this paper, every node has at the beginning an opinion assigned

from a set of 𝑘 different opinions, and in the final configuration all

nodes agree on one of the initial opinions.

In the model introduced by Angluin et al. [7] the population is

represented by the nodes of a graph and a scheduler can only choose

nodes connected by an edge for interaction. The usual complexity

measures in which one is interested are the cardinality of the state

space of the transition function and the time needed for the popula-

tion to stabilize. The time is defined as the number of interactions

until a stable configuration is reached. As in previous work, we are

also interested in the so-called parallel time, which corresponds to

the number of interactions divided by the population size 𝑛.

Population protocols have various applications. In their original

paper, Angulin et al. [7] motivated population protocols in the con-

text of sensor networks where nodes perform simple computations.

Other motivating examples are processes in chemical reaction net-

works [29]. Population protocols can also be implemented at the

level of DNA molecules, as shown in [16]. Furthermore, Cardelli

and Csiksz-Nagy [15] considered similarities between biochemi-

cal regulatory processes in living cells and population protocols.

Population protocols highly influenced the way certain aspects of

distributed computing evolved in recent years, for which in 2020

the original paper by Angluin et al. [7] has been awarded the Edsger

W. Dijkstra Prize in Distributed Computing.

In the vast majority of the related papers, as in our paper as well,

it is assumed that the graph modeling the population is a clique

and a random scheduler is in place. That is, in each discrete time

step two nodes are selected uniformly at random for interaction.

One of the most prominent protocols for the plurality consensus

problem is the Undecided State Dynamics, on which we focus in

this paper. In its original, unconditional version, this protocol is

simple and only uses𝑘+1 different states (see the problem definition

below for details). This protocol and variants of it have extensively

been analyzed in different communication models. Although very

recently an upper bound of𝑂 (𝑘 log𝑛) on the parallel time has been

derived [6], the question of whether this bound is tight is still open.

1.1 Model and Problem
A population protocol and its time performance can be formalized

as follows (cf. [12]). Let𝑉 denote the set of agents in the population,
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and let 𝑛 = |𝑉 |. Let Σ be the set of states of the protocol, whose

cardinality may grow with 𝑛. Two interacting nodes change their

states according to a deterministic function 𝑓 : Σ2 ↦→ Σ2. That is,
𝑓 (𝑞′, 𝑞′′) = (𝑟 ′, 𝑟 ′′) describes the following transition: if a node

in state 𝑞′ interacts with a node in state 𝑞′′, then the first node

changes its state to 𝑟 ′ and the second node to 𝑟 ′′. A population

protocol is also assigned an output function 𝛾 : Σ → Γ, which maps

every state to an output value. The set Γ may be the same as Σ.
In this paper we analyze plurality consensus (aka the 𝑘-majority

problem): Each agent 𝑖 has as an input an initial opinion 𝑠𝑖 ∈ [𝑘],
and the goal of the agents is to decide which opinion was the

(relative) majority at the start of the computation. The transition

function we consider is given by the (unconditional) Undecided

State Dynamics: Σ consists of𝑘+1 states, the original𝑘 opinions, and
an extra one, ⊥, that represents the state of being undecided. Then

𝑓 (𝑠1, 𝑠2) = (⊥,⊥) if 𝑠1 ≠ 𝑠2, and 𝑠1, 𝑠2 ∈ [𝑘], 𝑓 (𝑠,⊥) = (𝑠, 𝑠) for any
𝑠 ∈ [𝑘]. Otherwise, 𝑓 is just the identity function. In other words,

when two agents with different opinions meet, they both become

undecided, but when a decided agent meets an undecided one, the

latter takes on the opinion of the former. Note that in the case of the

Undecided State Dynamics the set Γ = Σ and the output function 𝛾

is the identity. We assume that the interaction graph is a clique, and

at each time step, two nodes are selected for interaction, which are

chosen uniformly at random (without replacement), independently

of the other time steps. We ask how long it takes for the system to

stabilize, in the particular case where the majority opinion starts

with an initial additional bias of Ω(
√︁
𝑛 log𝑛). Note that such a bias

is probably needed in order to guarantee that w.h.p. the opinion

with the largest (relative) initial support wins (cf. [6, 9]).

1.2 Related Work
Computations over dynamic networks (such as sensor networks)

have already been studied intensively in the literature for vari-

ous models [1, 23, 26]. Probably the most studied problems in the

framework of population protocols are leader election and (exact)

majority. For two recent surveys, which focus on these problems,

we refer the reader to [4] and [20]. As in this paper we analyze

plurality consensus, we only present the most relevant results on

the related majority problem and adapt the description of [20] to

outline the related work on majority in population protocols. In

this problem, at the beginning every node is in one of two states

(called e.g. 𝐴 and 𝐵). In exact majority, the final opinion has to be

the one with the largest initial support, even if at the beginning

the difference between the support of the two was just 1. In ap-

proximate majority this requirement is weaker: the initial majority

should only win with high probability if there is a sufficiently large

initial bias between the two opinions (usually this bias is of order

Ω(
√︁
𝑛 log𝑛)).

For the majority problem (as well as leader election), there are

a number of results, which present lower bounds on the number

of states under certain time requirements, or bound the (stabiliza-

tion) time under specific assumptions w.r.t. the number of states.

Furthermore, several majority and leader election algorithms have

been derived, which upper bound the number of states as well as

the stabilization time.

Two early papers by Draief and Vojnović [19] and Mertzios et

al. [25] consider population protocols for exact majority. They stud-

ied (almost) the same four-state protocol, which has a polynomial

stabilization time (with high probability
1
and in expectation) on

any graph.

In an early paper, Angluin et al. [8] presented population proto-

cols with a constant number of states for several different functions.

The protocols they propose are only correct with high probability

and they assume that a designated leader is available from the start

of the computation, which synchronizes the nodes. Their exact

majority protocol has a w.h.p. stabilization time of 𝑂 (log2 𝑛), and
it alternates between so-called cancellation and duplication phases,

an idea used in many subsequent papers.

Note that any protocol for exact majority which uses a constant

number of states (as the four-state protocol described above) is in

general slow. However, if the initial imbalance between the support

of 𝐴 and 𝐵 is large, then the four-state protocol stabilizes fast. In

order to increase the initial imbalance, Alistarh et al. [5] multiplied

the opinion on each node by some (large) integer. Based on this

idea, Alistarh et al. [2] achieved a stabilization time of 𝑂 (log3 𝑛),
w.h.p. and in expectation, by utilizing 𝑂 (log2 𝑛) states.

Bilke et al. [14] extended the cancellation-duplication framework

from [8] to the leaderless case, provided that the agents have enough

states to store the number of interactions they performed so far. The

stabilization time of their majority protocol is 𝑂 (log2 𝑛) w.h.p. and
in expectation, and it utilizes 𝑂 (log2 𝑛) states.

On the lower bound side, Alistarh et al. [3] proved that any ex-

act majority protocol with expected stabilization time 𝑂 (𝑛1−𝜖 ) (𝜖
can be any positive constant), which satisfies two natural proper-

ties called monotonicity and output dominance, requires Ω(log𝑛)
states. They also presented an algorithm with Θ(log𝑛) states and
𝑂 (log2 𝑛) stabilization time (w.h.p. and in expectation). Monotonic

protocols have the property that their running time does not in-

crease if they are run on a smaller number of agents. Output domi-

nance means that “if the positive counts of states in a stable con-

figuration are changed, then the protocol will stabilize to the same

output" (cf.[20]). The (w.h.p. and expected) stabilization time has

subsequently been improved to 𝑂 (log5/3 𝑛) in [12], to 𝑂 (log3/2 𝑛)
in [11], and finally to 𝑂 (log𝑛) in [18], by keeping the number of

states at 𝑂 (log𝑛).
All the results above were derived for stabilization time, and

the lower bounds do not hold for the so-called convergence time.

The convergence time is the time required by the protocol to reach

a configuration with the correct output property; however, the

system may leave this configuration with a small probability. In

contrast, if the system stabilizes, then the output of the system does

not change anymore.
2
Kosowski and Uznański [22] and Berenbrink

et al. [13] derived algorithms with polylogarithmic convergence
time, which use 𝑜 (log𝑛) states. As outlined in [12], in [22] the au-

thors presented a programming framework that leads to protocols

which require only 𝑂 (1) states and converge in polylogarithmic

time (in expectation), but they are only correct w.h.p. These pro-

tocols can be changed so that they are always correct by either

1
With high probability or w.h.p. means with probability at least 1 − 𝑛−Ω (1)

, where 𝑛

is the number of agents.

2
See e.g. [13] for details. In the Undecided State Dynamics, convergence and stabiliza-

tion are equivalent.
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allowing 𝑂 (log log𝑛) states, while the convergence time still re-

mains polylogarithmic, or by allowing 𝑂 (𝑛𝜖 ) convergence time,

while keeping the number of states constant. In [13] the authors

presented an always correct protocol with a w.h.p. convergence

time of 𝑂 (log2 𝑛/log 𝑠) and Θ(𝑠 + log log𝑛) states, and an always

correct protocol with w.h.p. stabilization time of 𝑂 (log2 𝑛/log 𝑠)
and 𝑂 (𝑠 · log𝑛/log 𝑠) states, where 𝑠 ∈ [2, 𝑛].

One research direction in plurality consensus focuses on the

state complexity (regardless of the time complexity) of protocols,

which are required to always determine the plurality opinion.While

clearly at least𝑘 states are required to encode𝑘 opinions, [27] shows

that always correct plurality consensus needs even Ω(𝑘2) states.
The protocol of [21] utilizes 𝑂 (𝑘11) states, which can be improved

to 𝑂 (𝑘6) provided that a total ordering among the opinions exists.

Clearly, the lower bound of Ω(𝑘2) only holds, if it is required that

the correct plurality opinion is determined with probability 1. If

such strong guarantees are not required, then the number of states

can be much smaller. In [9] a synchronized variant of the Undecided

State Dynamics has been presented that reaches consensus w.h.p. in

𝑂 (log2 𝑛) parallel time using 𝑂 (𝑘 log𝑛) states. However, this pro-
tocol solves approximate plurality consensus, i.e., if the initial bias

is Ω(
√︁
𝑛 log𝑛), then w.h.p. the opinion with the initially largest

support wins, otherwise a so-called significant opinion wins w.h.p.

In the case 𝑘 = 2, the unconditional Undecided State Dynamics

has a w.h.p. and expected stabilization time of 𝑂 (log𝑛) [17]. Re-
cently, Amir et al. [6] analyzed the unconditional Undecided State

Dynamics for the plurality consensus problem and showed that

their protocol stabilizes w.h.p. within 𝑂 (𝑘 log𝑛) parallel time for

any initial configuration as long as 𝑘 = 𝑂 (
√
𝑛/log2 𝑛). The question

of whether this bound on the stabilization time is tight is still open.

We should note that the unconditional Undecided State Dynam-

ics has extensively been analyzed in the Gossip communication

model. In this model (which can be seen as a synchronous vari-

ant of the population protocol model) in each discrete time step,

every node randomly chooses another node for interaction to per-

form a state transition. Becchetti et al. defined the concept of

monochromatic distance md(𝑐) of a configuration 𝑐 and showed

that in this model the time needed to reach a final configuration

is 𝑂 (md(𝑐) log𝑛) w.h.p., where 𝑐 is the initial configuration in the

population [10]. They also derived a lower bound that is asymptot-

ically tight up to a log𝑛 factor.

As described by Amir et al. [6], the differences in how nodes are

scheduled for interaction in the population protocol model and the

Gossip model, respectively, cause the Undecided State Dynamics

to “exhibit significant qualitative differences when run in either

setting, even in the case when 𝑘 = 2”. One of the reasons for these

differences is the fact that while in the Gossip model in each step a

node may change its opinion only once, and each node is selected

for interaction, in the population protocol model a nodemay change

its opinion up to Ω(log𝑛) many times in 𝑛 consecutive interactions

(which corresponds to one parallel round) while a constant fraction

of nodes is not even selected for interaction. Thus, there are so far

no general analysis techniques that allow us to transfer results from

one model to the other one (cf. [17]).

1.3 Contribution
Our main contribution is an almost tight lower bound on the sta-

bilization time of Undecided State Dynamics for plurality con-

sensus in population protocols. Specifically, we show that the

time needed to stabilize is Ω
(
𝑘𝑛 log

√
𝑛

𝑘 log𝑛

)
interactions, or in

Ω
(
𝑘 log

√
𝑛

𝑘 log𝑛

)
parallel time

3
, in the case where 𝑘 = 𝑜 (

√
𝑛

log𝑛
). In

our proofs we assume that our initial configuration has bias at

most 𝑂 (
√
𝑛/(𝑘 log𝑛))1/4

√︁
𝑛 log𝑛. Interestingly, this includes even

an initial bias of 𝜔 (
√︁
𝑛 log𝑛). This bound is tight for any 𝑘 ≤ 𝑛

1

2
−𝜖

,

where 𝜖 > 0 can be any small constant, as Amir, Aspnes, Beren-

brink, Biermeier, Hahn, Kaaser, Lazarsfeld [6] gave a 𝑂 (𝑘 log𝑛)
parallel time upper bound. For larger values of 𝑘 , as any initial

configuration that is valid for 𝑘0 is also valid for 𝑘 ≥ 𝑘0, we can

simply plug in 𝑘0 =

√
𝑛

log𝑛 log log𝑛
to get a Ω

(√
𝑛 log log log𝑛

log𝑛 log log𝑛

)
parallel

time lower bound.

Our analysis is based on a precise characterization of the number

of undecided nodes over time, using drift analysis and random

walks. Our technical approach and its novelty will be discussed in

more details in the next section.

1.4 Notation and Organization
Throughout the paper, x represents a configuration the system

can be in: x = (𝑥1, . . . , 𝑥𝑘 , 𝑢), where 𝑥𝑖 is the number of agents

with opinion 𝑖 for all 𝑖 , and 𝑢 is the number of undecided agents.

We denote by x(𝑡) the configuration of the system after the 𝑡-th

interaction, and x(0) is the initial configuration. 𝑥𝑖 (𝑡) is the number

of agents with opinion 𝑖 after interaction 𝑡 . Similarly, 𝑢 (𝑡) is the
number of undecided nodes after 𝑡 interactions. Accordingly, 𝑥𝑖 (0)
is the initial number of nodes with opinion 𝑖 (clearly, 𝑢 (0) = 0). We

assume that the opinions are initially ordered from most common

opinion to least common, i.e, 𝑥1 (0) ≥ 𝑥2 (0) ≥ · · · ≥ 𝑥𝑘 (0).
The remainder of this paper is organized as follows. We first

provide a technical overview and an empirical motivation in Section

2. Our lower bound analysis is presented in Section 3. We conclude

and discuss open research questions in Section 4. Some technical

details are deferred to the Appendix.

2 Motivation and Technical Overview
Before we delve into the technical details of our lower bound proof,

let us provide some intuition about how agent opinions propagate

across the distributed system, and how majority and minority opin-

ions evolve accordingly. Based on this intuition and the observed

challenges, wewill then give an overview of our analytical approach

and its key ideas.

To illustrate the evolution of opinions and the stabilization be-

havior, Figure 1 (left) plots a typical simulation run over parallel

time. In this example, all minority opinions are initially equally

frequent, while the majority one has an initial additional bias of√︁
𝑛 log𝑛. The majority opinion is plotted in red. The minority opin-

ions are plotted in yellow, except for a random one which we select

as an example and which we highlight in orange; for better visibility

we multiplied the number of each minority opinion by 𝑘 .

3
Recall that the parallel time is equal to the number of interactions divided by 𝑛.
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Figure 1: Intuition for stabilization of plurality consensus in undecided state dynamics. On the left figure, we scale up the
minority opinions by a 𝑘 factor for visibility. In this experiment, 𝑛 = 1, 000, 000 agents and 𝑘 =

√
𝑛

log𝑛 log log𝑛
. In the initial

configuration 𝑘 − 1 opinions had the same support, while opinion 1 had an additive advantage of
√︁
𝑛 log𝑛. Out of all the minority

opinions, we plot one with a darker color for visibility.

We make several observations which highlight parts of the com-

plexity of the problem. First, note that different minority opinions

evolve differently. In particular, not all minority opinions are strictly

decreasing over time, but many are actually increasing over a long

time period. In the example in Figure 1, one opinion even surpasses

its initial count. On the other hand, the majority opinion in this

example (which is typical for many runs) remains low for a long

time during stabilization, but then increases quickly toward the

end. We can also see that the number of undecided opinions stays

close to
𝑛
2
− 𝑛

4𝑘
throughout the execution.

In Figure 1 (right), we zoom in on the time period for which it

takes 𝑥1 to double from its initial number of nodes. We can see that

it takes most of the stabilization time to reach this configuration,

as the system needs around 70 parallel time to do so, after which

only 20 more rounds are required to fully stabilize.

These simulations also provide some intuitive motivation for

our choices for analyzing the problem theoretically in the next

section. We will prove that the number of undecided nodes does

not substantially exceed
𝑛
2
− 𝑛

4𝑘
with high probability, and we only

consider the interactions before 𝑥1 reaches 2𝑥1 (0), which we will

approximate as 2
𝑛
𝑘
. One particular ingredient we consider in our

analysis is the maximum difference between the majority opinion

andminority ones (also plotted in Figure 1 (right)):max𝑗≥2{𝑥1−𝑥 𝑗 }.
The idea is that as long as this difference stays small, the system is

very slow to change.

More concretely, for our analysis, we proceed as follows.

We first observe that a precise characterization of the number of

undecided nodes 𝑢 (𝑡) is key to understand the state dynamics as,

intuitively, for any opinion 𝑖 , the larger the number of undecided

nodes, the more new nodes can the 𝑖-opinionated nodes “convert”

to the opinion 𝑖 , hoping to compensate for the 𝑖-opinionated nodes

that meet nodes with other opinions and thus become themselves

undecided. In fact, in their analysis of the stabilization time, Amir,

Aspnes, Berenbrink, Biermeier, Hahn, Kaaser and Lazarsfeld [6]

derived an upper bound and a lower bound on the number of

undecided nodes throughout the interactions:
𝑛
2
−𝑥1

2
≤ 𝑢 (𝑡) ≤ 𝑛

2
for

any 𝑡 after the first𝑛 log𝑛 interactions.More precisely, the evolution

of the number of nodes in opinion 𝑖 is driven by the number of

undecided nodes. For each opinion, there exists a value 𝑢𝑖 of the

number of undecided nodes that acts as a threshold. That is, if the

number of undecided nodes 𝑢 is above 𝑢𝑖 , then the corresponding

opinion 𝑥𝑖 increases, whereas if 𝑢 is below the threshold, then 𝑥𝑖
decreases. The threshold is a decreasing function in the number of

nodes in opinion 𝑖: the larger 𝑥𝑖 is, the smaller 𝑢𝑖 is. One can see

this in action in Figure 1 on the left. When 𝑢 (𝑡) is still very small in

the beginning, all of the opinions decrease quickly. Then, once 𝑢 (𝑡)
settles around

𝑛
2
− 𝑛

4𝑘
, some opinions start to steadily increase (even

minority ones) while others decrease. One can understand this the

following way: in the initial steps, where the number of undecided

nodes increase quickly, some opinions, due to randomness, end up

having an advantage on the others. Towards the end, the number of

undecided nodes starts dropping, it thus goes below all thresholds

but the one of the majority opinion, which means all opinions drop

quickly apart from the majority one.

In our case, for the study of the lower bound, we fully control the

initial configuration of the opinions, and we are able to give a better

upper bound on 𝑢 (𝑡) over time, which happens to be very close to

the threshold of any opinion 𝑖 . To do so, we use drift analysis (for a

nice introduction, we refer to Lengler [24]). More specifically, we

use a result by Oliveto and Witt [28]. Here is a quick intuition on

drift analysis: assuming we know the current configuration of the

system, we compute the expectation of the change in the number

of agents in each state after the next interaction. The idea is, if a

number changes in expectation by a value 𝛼 at each interaction,

and our goal is to show that the actual number does not wander off

by more than 𝛽 from its original value, this takes at least Ω(𝛽/𝛼)
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many interactions. A few more hypotheses are needed to ensure

that this result holds with high probability, and to ensure that the

probabilities are well-behaved, but this is the main idea.

It turns out that𝑢 (𝑡) settles around 𝑛
2
− 𝑛

4𝑘
, and to show that𝑢 (𝑡)

never substantially exceeds this value, we prove that if it slightly

exceeds this value, then at each interaction, in expectation, 𝑢 (𝑡)
decreases by at least

√︁
log𝑛/𝑛. Drift analysis tools then allow us

to ensure that 𝑢 (𝑡) will drift no more than (roughly) 𝜃 (
√︁
𝑛 log𝑛)

away from that position.

The second step we make after giving an upper bound on 𝑢 (𝑡),
is to show that in 𝜃 (𝑘𝑛) interactions, no opinion can go from

3𝑛
2𝑘

nodes to
2𝑛
𝑘

agents. Here, classic drift analysis fails to help, and that

for one main reason: drift analysis essentially looks at how much

the expectation increases or decreases over time, but sometimes,

the expectation gets beaten by the variance of the process, and drift

analysis fails to capture the lack of concentration of the process. To

understand that, consider a random walk starting at 0 and which at

each step either increases or decreases by 1, each with probability

1/2. The expectation of its increase is 0 so in expectation, after𝑚

steps, it is still at 0. However, we know that with high probability

it will have reached 𝜃 (
√
𝑚) at some point during those𝑚 steps, as

one can see the position after𝑚 steps as the result of a binomial

distribution with parameters (1/2,𝑚), whose standard deviation is

of the order of

√
𝑚.

In our case, we avoid this problem by looking more carefully

at the probabilities involved. By considering the evolution of 𝑥𝑖 ,

while its expectation increases slowly over time, it is not overtaken

by the variance. To see that, think again of our example of our ±1
random walk: Imagine that now, the random walk increases with

probability 𝑝/2, decreases with probability 𝑝/2, and stays put with

probability 1−𝑝 . Look now at what happens after𝑚 steps. The walk

actually moved for 𝑝𝑚 out of those steps, and thus the standard

deviation is now around

√
𝑝𝑚. If 𝑝 = 𝑜 (1), this has a significant

impact.

This is exactly what happens in our case, where for 𝑥𝑖 to change,

in an interaction, a node with opinion 𝑖 must have been chosen. If

at most 2
𝑛
𝑘
nodes with this opinion exist, then the probability of

this event happening is of the order of 1/𝑘 = 𝑜 (1).
While we could have chosen to stop here for our analysis, and

thus give a Ω(𝑘) lower bound, we go one step further: there is a

weakness in this analysis, i.e., we overestimate the number of nodes

in opinion 𝑖 , by stating that the initial count is at most
3𝑛
2𝑘
, while

in practice, most opinions stay close to
𝑛
2𝑘

for most of the process.

This (high) estimate of 2
𝑛
𝑘
then gives a too low threshold on 𝑢 for

𝑥𝑖 to increase, and thus the upper bound on the rate at which 𝑥𝑖
increases is not tight enough. To improve the result, we would need

to give a better estimate on the initial 𝑥𝑖 , and show that it is close

to
𝑛
2𝑘
. This is not straightforward, as the initial count is close to

𝑛
𝑘
, and we would thus need to analyze the initial phase where 𝑢

increases sharply while all the 𝑥𝑖 decrease.

We find a workaround for this difficulty: while it might take

effort to accurately approximate 𝑥𝑖 after the first quick-changing

phase, a value that is easier to estimate is Δ𝑖 𝑗 = 𝑥𝑖−𝑥 𝑗 . Here, instead
of requiring a good estimate on 𝑥𝑖 and 𝑥 𝑗 to analyze the evolution of

Δ𝑖 𝑗 , it turns out that we only need their order of magnitude, as well

as a good estimate of Δ𝑖 𝑗 , which we have. Therefore, knowing that

𝑥𝑖 ≤ 2
𝑛
𝑘
for 𝜃 (𝑘𝑛) iterations allows us to show that the maximum

Δ𝑖 𝑗 needs at least 𝜃 (𝑘𝑛) iterations to double. However, if all Δ𝑖 𝑗 are
small enough (if they are all 𝑜 ( 𝑛

𝑘
)), then it means that no opinion

drifts far from the others, and thus 𝑥𝑖 ≤ 3𝑛
2𝑘

after those 𝜃 (𝑘𝑛)
interactions.

Hence, our high level argument works as follows: First give a

good estimate on 𝑢, then on the number of nodes in each opinion,

and on the maximum difference between opinions: As long as

𝑥𝑖 ≤ 3𝑛
2𝑘

at a time 𝑡 and Δ𝑖 𝑗 = 𝑜 ( 𝑛
𝑘
) for all 𝑖, 𝑗 , then the order

of 𝑥𝑖 does not change in the next 𝜃 (𝑘𝑛) interactions, which in

turn is used to show that Δ𝑖 𝑗 does not double during those same

interactions. This in turn shows that 𝑥𝑖 ≤ 3𝑛
2𝑘
, which allows us to

restart another iteration of the induction. The induction holds for

log

( √
𝑛

𝑘 log𝑛

)
iterations, which then gives the lower bound.

3 Lower Bound
In this section, we will give a lower bound on the number of rounds

needed for the protocol to stabilize. For that, we analyze the sit-

uation where all minority opinions start with the same number

of nodes, that is, 𝑥𝑖 (0) = 𝑥 𝑗 (0) for any 𝑖, 𝑗 ∈ [2, 𝑘], while the

majority opinion starts with an initial gap of 𝑥1 (0) − 𝑥2 (0) =

𝑂

(
(
√
𝑛/(𝑘 log𝑛))1/4

√︁
𝑛 log𝑛

)
. We also require that 𝑘 = 𝑜

( √
𝑛

log𝑛

)
.

Since a Ω(log𝑛) lower bound for the problem is trivial (in 𝑜 (log𝑛)
parallel time, w.h.p. there are nodes that have not interacted at all)

which implies a Ω(𝑘 log𝑛) lower bound for 𝑘 = 𝑂 (1), we focus on
the case 𝑘 = 𝜔 (1).

We first begin by giving an upper bound on the number of

undecided nodes.

Lemma 3.1. For any 𝜏 ≤ 𝑛4, and any initial configuration, it holds
with probability at least 1−𝑛−4 that 𝑢 (𝜏) ≤ 𝑛

2
− 𝑛

4𝑘
+ 10𝑛

(𝑘−1)2 + (20 ·
132 + 1)

√︁
𝑛 log𝑛.

Proof. To prove the lemma, we will use Theorem A.1. Wemodel

𝑢 (𝑡) to be a random walk over integers, and first compute the

expectation of 𝑢 (𝑡 + 1) conditioned on the configuration of the

system at time 𝑡 , which is denoted by x = (𝑥1, . . . , 𝑥𝑘 , 𝑢) (for ease
of notation, we write 𝑥𝑖 instead of 𝑥𝑖 (𝑡) and 𝑢 instead of 𝑢 (𝑡)).
Clearly, the number of undecided nodes can either decrease by 1, if

a decided node interacts with an undecided node, or it can increase

by two, if two nodes of different opinions interact. The probability

to decrease by one is 2
𝑢
𝑛 · 𝑛−𝑢𝑛−1 , while the probability to increase by

two is

∑
𝑖∈ [𝑘 ] 𝑥𝑖
𝑛 ·

∑
𝑗≠𝑖 𝑥 𝑗

𝑛−1 . Note that
1

𝑛−1 = 1

𝑛 +𝑂 ( 1

𝑛2
). We therefore

have:

E[𝑢 (𝑡 + 1)
��x(𝑡) = x]

= 𝑢 − 2

𝑢

𝑛
· 𝑛 − 𝑢

𝑛
+ 2

∑
𝑖∈[𝑘 ] 𝑥𝑖
𝑛

∑
𝑗≠𝑖 𝑥 𝑗

𝑛
+𝑂

(
1

𝑛

)
= 𝑢 − 2

𝑢

𝑛
+ 2

𝑢2

𝑛2
+ 2

∑
𝑖∈[𝑘 ] 𝑥𝑖 (𝑛 − 𝑢 − 𝑥𝑖 )

𝑛2
+𝑂

(
1

𝑛

)
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For the second equality we used

∑
𝑗≠𝑖 𝑥 𝑗 = 𝑛 − 𝑢 − 𝑥𝑖 . Splitting

𝑥𝑖 (𝑛−𝑢 −𝑥𝑖 ) into 𝑥𝑖 (𝑛−𝑢) and −𝑥2𝑖 , and writing
∑
𝑖∈[𝑘 ] 𝑥𝑖 = 𝑛−𝑢

we obtain

= 𝑢 − 2

𝑢

𝑛
+ 2

𝑢2

𝑛2
+ 2

𝑛2 − 2𝑢𝑛 + 𝑢2
𝑛2

− 2

∑
𝑖∈[𝑘 ] 𝑥

2

𝑖

𝑛2
+𝑂

(
1

𝑛

)
= 𝑢 − 6

𝑢

𝑛
+ 4

𝑢2

𝑛2
+ 2 − 2

∑
𝑖∈[𝑘 ] 𝑥

2

𝑖

𝑛2
+𝑂

(
1

𝑛

)
Clearly, if we fix 𝑛 − 𝑢, the sum

∑
𝑖∈[𝑘 ] 𝑥

2

𝑖
is minimized if all 𝑥𝑖 are

equal. Then we have

E[𝑢 (𝑡 + 1)
��x(𝑡) = x]

≤ 𝑢 − 6

𝑢

𝑛
+ 4

𝑢2

𝑛2
+ 2 − 2

(𝑛 − 𝑢)2
𝑘𝑛2

+𝑂
(
1

𝑛

)
= 𝑢 − 6

𝑢

𝑛
+ 4

𝑢2

𝑛2
+ 2 − 2

𝑘
+ 4𝑢

𝑛𝑘
− 2𝑢2

𝑛2𝑘
+𝑂

(
1

𝑛

)
Let us assume that𝑢 = 𝑛

2
− 𝑛

4𝑘
+ 10𝑛

(𝑘−1)2 +𝑐
√︁
𝑛 log𝑛 for some constant

𝑐 . Then,

E[𝑢 (𝑡 + 1)
��x(𝑡) = x]

≤ 𝑢 − 6

𝑛
2
− 𝑛

4𝑘
+ 10𝑛

(𝑘−1)2 + 𝑐
√︁
𝑛 log𝑛

𝑛

+ 4

( 𝑛
2
− 𝑛

4𝑘
+ 10𝑛

(𝑘−1)2 + 𝑐
√︁
𝑛 log𝑛)2

𝑛2
+ 2 − 2

𝑘

+
4( 𝑛

2
− 𝑛

4𝑘
+ 10𝑛

(𝑘−1)2 + 𝑐
√︁
𝑛 log𝑛)

𝑛𝑘

−
2( 𝑛

2
− 𝑛

4𝑘
+ 10𝑛

(𝑘−1)2 + 𝑐
√︁
𝑛 log𝑛)2

𝑛2𝑘
+𝑂

(
1

𝑛

)
≤ 𝑢 − 3 + 3

2𝑘
− 60

(𝑘 − 1)2
− 6𝑐

√︂
log𝑛

𝑛

+ 1 + 1

4𝑘2
− 1

𝑘
+ 40

(𝑘 − 1)2

+ 4𝑐

√︂
log𝑛

𝑛
+ 2 − 2

𝑘
+ 2

𝑘
− 1

𝑘2
− 1

2𝑘
+ 1

2𝑘2

+𝑂
(
1

𝑘3

)
+ 𝑜

(√︂
log𝑛

𝑛

)
≤ 𝑢 − 𝑐

√︂
log𝑛

𝑛

for any 𝑐 ≥ 1 if 𝑘 is large enough. Define �̃� = 𝑛
2
− 𝑛

4𝑘
+ 10𝑛

(𝑘−1)2 .
We can now apply Theorem A.1 with 𝑋𝑡 = −𝑢 (𝑡), 𝑋0 = 0, 𝑎 =

−�̃� −
√︁
𝑛 log𝑛 − 20 · 132

√︁
𝑛 log𝑛,𝑏 = −�̃� −

√︁
𝑛 log𝑛, ℓ = 20 ·

132

√︁
𝑛 log𝑛, 𝜖 =

√︃
log𝑛
𝑛 and 𝑟 =

√
5. Then, we obtain that 𝑇 ∗

, the

first time so that𝑢 (𝑇 ∗) ≥ 𝑛
2
− 𝑛
4𝑘
+ 10𝑛
(𝑘−1)2 +

√︁
𝑛 log𝑛+20·132

√︁
𝑛 log𝑛,

satisfies:

P[𝑇 ∗ ≤ exp(4 log𝑛)] ≤ 𝑂 (exp(−4 log𝑛))
This implies that P[𝑇 ∗ ≤ 𝑛4] ≤ 𝑂 (𝑛−4). Therefore, with high prob-

ability 𝑢 (𝑡) is less than 𝑛
2
− 𝑛

4𝑘
+ 10

(𝑘−1)2 +
√︁
𝑛 log𝑛 +20 · 132

√︁
𝑛 log𝑛

for all 0 ≤ 𝑡 ≤ 𝑛4. □

We will need the following lemma to continue our analysis. It is

a simplified version of Theorem 20 in [24], and provides the tool

we need for Lemmas 3.3 and 3.4.

Lemma 3.2. Let𝑌 (𝑡), 𝑡 ≥ 0, be a random walk defined over the set of
integers as follows:𝑌 (0) = 0,𝑌 (𝑡+1) = 𝑌 (𝑡) with probability 1−𝑝 (𝑡),
𝑌 (𝑡 +1) = 𝑌 (𝑡)+1with probability 𝑝 (𝑡 )+𝑞 (𝑡 )

2
, and𝑌 (𝑡 +1) = 𝑌 (𝑡)−1

with probability 𝑝 (𝑡 )−𝑞 (𝑡 )
2

. Assume there are values 𝑝 > 0 and 𝑞 > 0

such that 0 ≤ 𝑝 (𝑡) ≤ 𝑝 and −𝑝 (𝑡) ≤ 𝑞(𝑡) ≤ 𝑞. For any 𝑇 such that

𝑇 ≥ 32

(
𝑝−𝑞2
2𝑞 + 2

3

)
log𝑛, with probability at least 1 −𝑛−2, 𝑌 (𝑡) < 𝑇

for every 𝑡 < min{ 𝑇
2𝑞 , 𝑛

2} steps.

Proof. To prove this lemma, we will need Bernstein’s inequality

(cf. Theorem A.2). We first introduce the random variables �̃� (𝑡),
coupled to 𝑌 (𝑡) as follows: �̃� (𝑡) is a random walk such that with

probability 1− 𝑝 (𝑡), �̃� (𝑡 + 1) = �̃� (𝑡), with probability
𝑝 (𝑡 )+𝑞

2
, �̃� (𝑡 +

1) = �̃� (𝑡) + 1, and with probability
𝑝 (𝑡 )−𝑞

2
, �̃� (𝑡 + 1) = �̃� (𝑡) − 1.

Also, with probability 1, 𝑌 (𝑡 + 1) = 𝑌 (𝑡) iif �̃� (𝑡 + 1) = �̃� (𝑡) and if

𝑌 (𝑡 + 1) ≥ 𝑌 (𝑡), then �̃� (𝑡 + 1) ≥ �̃� (𝑡).
This can easily be done by sampling a random number 𝑟 (𝑡) ∈

(0, 1) uniformly at random for every 𝑡 . If 𝑟 (𝑡) ≤ 1 − 𝑝 (𝑡), we set
𝑌 (𝑡 + 1) = 𝑌 (𝑡) and �̃� (𝑡 + 1) = �̃� (𝑡). If 1− 𝑝 (𝑡) ≤ 𝑟 (𝑡) ≤ 1− 𝑝 (𝑡) +
𝑝 (𝑡 )+𝑞 (𝑡 )

2
, we set 𝑌 (𝑡 + 1) = 𝑌 (𝑡) + 1 and �̃� (𝑡 + 1) = �̃� (𝑡) + 1. If

1 − 𝑝 (𝑡) + 𝑝 (𝑡 )+𝑞 (𝑡 )
2

≤ 𝑟 (𝑡) ≤ 1 − 𝑝 (𝑡) + 𝑝 (𝑡 )+𝑞
2

, we set 𝑌 (𝑡 + 1) =
𝑌 (𝑡) − 1 and �̃� (𝑡 + 1) = �̃� (𝑡) + 1. Else, we set 𝑌 (𝑡 + 1) = 𝑌 (𝑡) − 1

and �̃� (𝑡 + 1) = �̃� (𝑡) − 1.

Essentially, if 𝑌 (𝑡) increases, so does �̃� (𝑡). If 𝑌 (𝑡) stays put, so
does �̃� (𝑡). If 𝑌 (𝑡) decreases, �̃� (𝑡) might either decrease or increase.

This coupling ensures that �̃� (𝑡) ≥ 𝑌 (𝑡) for all 𝑡 . To prove the

theorem, it thus suffices to prove the theorem for �̃� (𝑡).
We will now use Bernstein’s inequality with 𝑋𝑖 = �̃� (𝑖 + 1) −

�̃� (𝑖) − 𝑞. We use𝑀 = 2 and E[𝑋 2

𝑖
] = (1 − 𝑝 (𝑡))𝑞2 +

(
𝑝 (𝑡 )+𝑞

2

)
(1 −

𝑞)2 +
(
𝑝 (𝑡 )−𝑞

2

)
(−1 − 𝑞)2 = 𝑝 (𝑡) − 𝑞2 ≤ 𝑝 − 𝑞2. Hence for any 𝑁 ,∑

𝑖∈[𝑁 ] E[𝑋 2

𝑖
] ≤ 𝑁 (𝑝 − 𝑞2). With 𝑁 ≤ 𝑇

2𝑞 :

P
(
�̃� (𝑁 ) ≥ 𝑇

)
= P

(
𝑁∑︁
𝑡=1

𝑋𝑖 ≥ 𝑇 − 𝑞𝑁

)
≤ P

(
𝑁∑︁
𝑡=1

𝑋𝑖 ≥
𝑇

2

)
≤ exp

(
−

1

8
𝑇 2∑

𝑖∈[𝑁 ] E[𝑋 2

𝑖
] + 2𝑇

3

)
≤ exp

(
−

1

8
𝑇 2

𝑁 (𝑝 − 𝑞2) + 2𝑇
3

)
≤ exp

©­«−
1

8
𝑇

𝑝−𝑞2
2𝑞 + 2

3

ª®¬
≤ 𝑛−4

Using a union bound over the first min{ 𝑇
2𝑞 , 𝑛

2} steps, we get

that the probability that 𝑇 is reached within the first min{ 𝑇
2𝑞 , 𝑛

2}
steps is at most 𝑛−2. □

We now prove that w.h.p. any given opinion can not increase too

much in 𝜃 (𝑘𝑛) interactions, if it starts with fewer than
3𝑛
2𝑘

nodes.

Lemma 3.3. Let 𝑖 ∈ {1, . . . , 𝑘} be an arbitrary but fixed opinion.
Let 𝜏

3𝑛/2𝑘 ≤ 𝑛2 be a time where 𝑥𝑖 (𝜏3𝑛/2𝑘 ) ≤ 3𝑛
2𝑘

and 𝜏
2𝑛/𝑘 the
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random variable denoting the time at which 𝑥𝑖 (𝜏2𝑛/𝑘 ) = 2𝑛
𝑘
. Then,

with probability at least 1−𝑂 (𝑛−2) we have 𝜏 = 𝜏
2𝑛/𝑘 −𝜏3𝑛/2𝑘 ≥ 𝑘𝑛

25
.

Proof. Let us consider the evolution of 𝑥𝑖 (𝑡) for some 𝑡 ∈
{𝑡0, . . . , 𝑡0 + 𝑘𝑛/25}, where 𝑡0 = 𝜏

3𝑛/2𝑘 . For the analysis, we cre-

ate a new random process y similar to x as follows: y(0) =

x(0), and for every 𝑡 , y(𝑡 + 1) = x(𝑡 + 1) if y(𝑡) = x(𝑡) and

𝑢 (𝑡 + 1) ≤ �̃� + (20 · 132 + 1)
√︁
𝑛 log𝑛. If 𝑢 (𝑡 + 1) does not sat-

isfy the condition, we halt y (we do not define y(𝑡 + 1)) and say

that y fails at time 𝑡 + 1. By Lemma 3.1, y fails with probability

𝑂 (𝑛−4) in the first 𝑛4 rounds. The modification described above

enforces that in y the number of undecided nodes never surpasses

𝑛
2
− 𝑛

4𝑘
+ 10𝑛

(𝑘−1)2 + (20 · 132 + 1)
√︁
𝑛 log𝑛. Clearly, if during the

execution of x the number of undecided nodes does not reach

𝑛
2
− 𝑛

4𝑘
+ 10𝑛

(𝑘−1)2 +
√︁
𝑛 log𝑛 + 20 · 132

√︁
𝑛 log𝑛, which happens with

probability at least 1 − 𝑛−4 in the first 𝑛4 interactions, then x and y
behave identically.

Let us now consider the evolution of 𝑥𝑖 (𝑡) in y. 𝑥𝑖 (𝑡) increases
by one if a node of opinion 𝑖 meets with an undecided node, which

happens with probability

P(+1) := P(𝑥𝑖 (𝑡 + 1) − 𝑥𝑖 (𝑡) = 1

��y(𝑡) = y) = 2

𝑥𝑖

𝑛

𝑢

𝑛 − 1

Similarly, the probability that it decreases by one is

P(−1) := P(𝑥𝑖 (𝑡 + 1) − 𝑥𝑖 (𝑡) = −1
��y(𝑡) = y) = 2

𝑥𝑖

𝑛

𝑛 − 𝑢 − 𝑥𝑖

𝑛 − 1

The goal is to use Lemma 3.2. We thus need to compute 𝑝 (𝑡) =

P(+1) + P(−1) and 𝑞(𝑡) = P(+1) − P(−1).
As long as 𝑥𝑖 ≤ 2

𝑛
𝑘
, we have that P(+1) + P(−1) = 2

𝑥𝑖
𝑛

𝑛−𝑥𝑖
𝑛−1 =

2
𝑥𝑖
𝑛 (1 + 𝑜 (1)) ≤ 5

𝑘
. The difference between the two is

P(+1) − P(−1)

= 2

𝑥𝑖

𝑛 − 1

(𝑢
𝑛
− 𝑛 − 𝑢 − 𝑥𝑖

𝑛

)
= 2

𝑥𝑖

𝑛(𝑛 − 1) (2𝑢 − 𝑛 + 𝑥𝑖 )

≤ 2

𝑥𝑖

𝑛2

(
𝑛 − 𝑛

2𝑘
+𝑂

(
𝑛

𝑘 log𝑛

)
− 𝑛 + 2𝑛

𝑘

)
=

𝑥𝑖

𝑛2
(3 +𝑂 ( 1

log𝑛
))𝑛
𝑘
= 3

𝑥𝑖

𝑛

1 + 𝑜 (1)
𝑘

≤ 6

𝑘2
(1 + 𝑜 (1))

We apply Lemma 3.2, with 𝑝 = 5

𝑘
, 𝑞 = 6.25

𝑘2
, 𝑇 = 𝑛

2𝑘
. It now

suffices to check the conditions of Lemma 3.2.

𝑝 − 𝑞2

2𝑞
≤

5

𝑘

2
6.25
𝑘2

= 𝑂 (𝑘) = 𝑜 (𝑘 log𝑛)

and

𝑇 =
𝑛

2𝑘
≥ 𝑘2 log2 𝑛

2𝑘
= 𝜔 (𝑘 log2 𝑛)

Therefore, we have that 𝑇 ≥ 8( 𝑝−𝑞
2

2𝑞 + 2

3
) log𝑛. Thus, 𝑥𝑖 (𝑡0 + 𝜏) <

2𝑛
𝑘

for any 𝜏 ≤ 𝑘𝑛
25

with probability at least 1 − 𝑛−2 in y. As x
and y behave identically with probability 1 − 𝑛−4 in the first 𝑛4

interactions, the lemma follows. □

Now that we have a good upper bound on 𝑢 and a good estimate

on the order of magnitude of all of the 𝑥𝑖 , we can show that it

takes 𝜃 (𝑘𝑛) interactions for the difference between two opinions

to double.

Lemma 3.4. Assume that at some time step 𝑡0 ≤ 𝑛𝑘 log2 𝑛 the
difference between any two opinions is at most 𝛼

2
= 𝜔 (

√︁
𝑛 log𝑛),

where 𝛼 = 𝑜

(
𝑛
𝑘

)
. Furthermore, assume that 𝑥𝑖 (𝑡0)) ≤ 3𝑛

2𝑘
for every

𝑖 ∈ [𝑘]. Then, with probability at least 1 −𝑂 (𝑘2/𝑛2), the difference
between any two opinions does not exceed 𝛼 before interaction 𝑡0 + 𝜏 ,
where 𝜏 = 1

24
𝑘𝑛.

Proof. Consider two arbitrary but fixed opinions 𝑖 and 𝑗 . Sim-

ilarly to the proof of Lemma 3.3 we analyze the evolution of

Δ𝑖 𝑗 (𝑡) = 𝑥𝑖 (𝑡) − 𝑥 𝑗 (𝑡) for a time step 𝑡 ∈ {𝑡0, . . . , 𝑡0 + 𝜏}. For the
analysis, we create a new random process y similar to x as follows:

y(0) = x(0), and for every 𝑡 , y(𝑡 + 1) = x(𝑡 + 1) if y(𝑡) = x(𝑡) and
𝑢 (𝑡 + 1) ≤ �̃� + (20 · 132 + 1)

√︁
𝑛 log𝑛 and 𝑥𝑖 (𝑡 + 1) ≤ 2𝑛

𝑘
for every 𝑖 .

If either 𝑢 (𝑡 + 1) or one of the 𝑥𝑖 does not satisfy the condition, we

halt y (we do not define y(𝑡 + 1)) and say that y fails at time 𝑡 + 1.

Clearly, x and y behave identically with probability 1−𝑂 (𝑘𝑛−2)
according to Lemmas 3.1 and 3.3 (by union bound over the 𝑘 differ-

ent opinions).

We consider now the evolution ofΔ𝑖 𝑗 (𝑡) in y. For ease of notation,
we set 𝑥𝑖 = 𝑥𝑖 (𝑡), 𝑥𝑖 = 𝑥𝑖 (𝑡), and 𝑢 = 𝑢 (𝑡). Δ𝑖 𝑗 (𝑡) increases by one

if 𝑥𝑖 increases by one, which happens when a node with opinion 𝑖

interacts with an undecided node, hence with probability 2
𝑥𝑖
𝑛

𝑢
𝑛−1 . It

also increases by 1 if 𝑥 𝑗 decreases by one, but not 𝑥𝑖 , which happens

when a node with opinion 𝑗 interacts with a node of opinion in

[𝑘] \ {𝑖, 𝑗}, hence with probability 2
𝑥𝑖
𝑛

𝑛−𝑢−𝑥𝑖−𝑥 𝑗

𝑛−1 . Therefore, the

probability that Δ𝑖 𝑗 (𝑡 + 1) > Δ𝑖 𝑗 (𝑡) is:

P(+1) := P(Δ𝑖 𝑗 (𝑡 + 1) − Δ𝑖 𝑗 (𝑡) = 1

��y(𝑡) = y)

= 2

𝑥𝑖

𝑛

𝑢

𝑛 − 1

+ 2

𝑥 𝑗

𝑛

𝑛 − 𝑢 − 𝑥𝑖 − 𝑥 𝑗

𝑛 − 1

Similarly, the probability that it decreases by one is

P(−1) := P(Δ𝑖 𝑗 (𝑡 + 1) − Δ𝑖 𝑗 (𝑡) = −1
��y(𝑡) = y)

= 2

𝑥 𝑗

𝑛

𝑢

𝑛 − 1

+ 2

𝑥𝑖

𝑛

𝑛 − 𝑢 − 𝑥𝑖 − 𝑥 𝑗

𝑛 − 1

The goal is to use Lemma 3.2. We thus need to compute 𝑝 (𝑡) =

P(+1) + P(−1) and 𝑞(𝑡) = P(+1) − P(−1). Expanding the terms,

we get that the sum of P(+1) and P(−1) is:

P(+1) + P(−1) = 2

(𝑥𝑖 + 𝑥 𝑗 )𝑢
𝑛(𝑛 − 1) + 2

(𝑥𝑖 + 𝑥 𝑗 )
𝑛(𝑛 − 1) (𝑛 − 𝑢 − 𝑥𝑖 − 𝑥 𝑗 )

≤ 2

4
𝑛
𝑘

𝑛(𝑛 − 1) (𝑛 − 𝑥𝑖 − 𝑥 𝑗 ) = 8

1

𝑘
(1 + 𝑜 (1))

The difference between the two is:
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P(+1) − P(−1)

=
2

𝑛(𝑛 − 1) ((𝑢𝑥𝑖 + 𝑛𝑥 𝑗 − 𝑢𝑥 𝑗 − 𝑥𝑖𝑥 𝑗 − 𝑥2𝑗 )

+ (−𝑢𝑥 𝑗 − 𝑛𝑥𝑖 + 𝑢𝑥𝑖 + 𝑥2𝑖 + 𝑥𝑖𝑥 𝑗 ))

=
2

𝑛(𝑛 − 1) (2𝑢 (𝑥𝑖 − 𝑥 𝑗 ) − 𝑛(𝑥𝑖 − 𝑥 𝑗 )

+ (𝑥𝑖 − 𝑥 𝑗 ) + (𝑥𝑖 − 𝑥 𝑗 ) (𝑥𝑖 + 𝑥 𝑗 ))

=
2

𝑛(𝑛 − 1) (𝑥𝑖 − 𝑥 𝑗 ) (2𝑢 − 𝑛 + 𝑥𝑖 + 𝑥 𝑗 )

≤ 2

𝑛(𝑛 − 1) (𝑥𝑖 − 𝑥 𝑗 ) (𝑛 − 𝑛

2𝑘
+ 𝑜 (𝑛

𝑘
) − 𝑛 + 2

𝑛

𝑘
)

=
3

𝑛 − 1

Δ𝑖 𝑗 (
1

𝑘
+ 𝑜 ( 1

𝑘
))

If the difference at a time 𝑡 is𝑥𝑖 (𝑡)−𝑥 𝑗 (𝑡) ≤ 𝛼 , thenP(+1)−P(−1) ≤
3𝛼
𝑛𝑘

(1 + 𝑜 (1)).
We apply Lemma 3.2, with 𝑝 = 9

𝑘
, 𝑞 = 6𝛼

𝑛𝑘
, and 𝑇 = 𝛼

2
, 𝑌 (𝑡) =

Δ𝑖 𝑗 (𝑡) − 𝛼
2
. Indeed, we can see the problem as a random walk that

starts at 𝑌 (0) = 0 (which corresponds to Δ𝑖 𝑗 =
𝛼
2
) and whose target

is 𝑌 (𝜏) = 𝛼
2
(which corresponds to Δ𝑖 𝑗 = 𝛼). As long as the target

is not reached, we have that Δ𝑖 𝑗 ≤ 𝛼 , and thus, 𝑞(𝑡) ≤ 6𝛼
𝑛𝑘

. It now

suffices to check the conditions of Lemma 3.2.

We have 𝑇 = 𝛼
2

= 𝜔 (
√︁
𝑛 log𝑛), 2

3
log𝑛 = 𝑜 (

√︁
𝑛 log𝑛)

and
𝑝−𝑞2
𝑞 log𝑛 ≤ 𝑝

𝑞 log𝑛 = 𝑂 ( 𝑛𝛼 log𝑛) = 𝑜 ( 𝑛√
𝑛 log𝑛

log𝑛) =

𝑜 (
√︁
𝑛 log𝑛), and thus 32 log𝑛

(
𝑝−𝑞2
2𝑞 + 2

3

)
= 𝑜 (

√︁
𝑛 log𝑛) ≤ 𝑇 =

𝜔 (
√︁
𝑛 log𝑛). We thus know that with probability at least 1 − 𝑛−2

the difference will not exceed 𝛼 before
𝑇
2𝑞 = 1

24
𝑘𝑛.

Taking a union bound over all 𝑘 (𝑘 − 1)/2 pairs of opinions, we
know that the probability that one difference exceeds 𝛼 at time 𝑡0+𝜏
is less than 𝑘2/𝑛−2. Since x and y as described at the beginning

of this proof behave identically with probability 1 −𝑂 (𝑘𝑛−2), we
obtain the lemma. The lemma also implies that with probability

1−𝑂 (𝑘2/𝑛2) the support of each opinion is less than 3𝑛/2𝑘 at time

𝑡0 + 𝜏 . □

We are now ready to prove the main theorem.

Theorem 3.5. For any 𝑘 = 𝜔 (1), 𝑘 = 𝑜 (
√
𝑛

log𝑛
), any initial con-

figurations where the maximum difference between two opinions is

max𝑖, 𝑗∈[𝑘 ] {𝑥𝑖 (0) − 𝑥 𝑗 (0)} = 𝑂

(
(
√
𝑛/(𝑘 log𝑛))1/4

√︁
𝑛 log𝑛

)
under

the Undecided State Dynamics for Plurality Consensus does not stabi-

lize in 𝑘
25

log

√
𝑛

𝑘 log𝑛
parallel time, with high probability.

Proof. Define 𝑓 : 𝑓 (𝑛) =
( √

𝑛

𝑘 log𝑛

) 1

4

.

We bunch together the interactions by groups of 𝜏 = 𝑘𝑛
25

interac-

tions, and use induction on ℓ : For ℓ ≤ log

©­­«
𝑛
3

4

𝑘
1

2√
𝑛 log𝑛𝑓 (𝑛)

ª®®¬, after the
ℓ-th group of interactions, we have that 𝑥𝑖 (ℓ𝜏) ≤ 3𝑛

2𝑘
for every 𝑖 , and

that Δ(ℓ𝜏) := max𝑖 𝑗 Δ𝑖 𝑗 (ℓ𝜏) ≤ 2
ℓ𝛽 with probability 1 −𝑂 (ℓ𝑘2/𝑛2),

where the initial bias starts at Δ(0) = 𝛽 = 𝑂

(
𝑓 (𝑛)

√︁
𝑛 log𝑛

)
.

The base step is trivial. To show the induction step, we first note

that for ℓ ≤ log

©­­«
𝑛
3

4

𝑘
1

2√
𝑛 log𝑛𝑓 (𝑛)

ª®®¬, we have 2ℓ𝛽 ≤ 𝑛
3

4

𝑘
1

2

, which in turn

means that, using 𝑘 ≤ 𝑛
1

2

log𝑛
, 2

ℓ𝛽 ≤ 𝑛
3

4

𝑘
1

2

·
(

𝑛
1

2

𝑘 log𝑛

) 1

2

= 𝑜 ( 𝑛
𝑘
). We then

apply Lemmas 3.3 and 3.4: First, since for any 𝑖 , 𝑥𝑖 (ℓ𝜏) ≤ 3𝑛
2𝑘
, and by

our result on𝑢 (Lemma 3.1), we apply Lemma 3.3 to have that during

the whole interval, with probability at least 1 − 𝑂 (𝑛−2), 𝑥𝑖 does
not exceed 2

𝑛
𝑘
. By union bound over all values of 𝑖 , it holds that for

all 𝑖 , no 𝑥𝑖 exceeds 2
𝑛
𝑘
during the

𝑘𝑛
25

interactions with probability

at least 1 −𝑂 (𝑘𝑛−2). Then, since Δ(ℓ𝜏) ≤ 2
ℓ𝛽 , 𝑥𝑖 (𝑡) ≤ 2

𝑛
𝑘
for any

𝑡 ≤ (ℓ + 1)𝜏 , and by our result on 𝑢, we can apply Lemma 3.4.

This ensures that Δ((ℓ + 1)𝜏) ≤ 2
ℓ+1𝛽 with probability at least

1 − 𝑂 ((ℓ + 1)𝑘2/𝑛2). For ℓ + 1 ≤ log

©­­«
𝑛
3

4

𝑘
1

2√
𝑛 log𝑛𝑓 (𝑛)

ª®®¬, this ensures
Δ((ℓ + 1)𝜏) ≤ 𝑛

3

4

𝑘
1

2

, which in turn means that, using 𝑘 ≤ 𝑛
1

2

log𝑛
,

Δ((ℓ + 1)𝜏) ≤ 𝑛
3

4

𝑘
1

2

·
(

𝑛
1

2

𝑘 log𝑛

) 1

2

= 𝑜 ( 𝑛
𝑘
). Thus 𝑥𝑖 ((ℓ + 1)𝜏) ≤ 3𝑛

2𝑘
for

every 𝑖 ∈ [𝑘], as otherwise∑
𝑗∈[𝑘 ] 𝑥 𝑗 ((ℓ+1)𝜏) ≥ 3

2

𝑛
𝑘
+∑

𝑗≠𝑖 𝑥 𝑗 ((ℓ+
1)𝜏) ≥ 3

2

𝑛
𝑘
+ (𝑘 − 1) 𝑛

𝑘
> 𝑛. This proves the double induction.

Hence, with high probability, the system does not stabilize

before
𝑘𝑛
25

log

©­­«
𝑛
3

4

𝑘
1

2√
𝑛 log𝑛𝑓 (𝑛)

ª®®¬ = 𝑘𝑛
25

(
1

2
log

( √
𝑛

𝑘 log𝑛

)
− log 𝑓 (𝑛)

)
=

𝜃

(
𝑘𝑛 log

√
𝑛

𝑘 log𝑛

)
interactions, concluding the proof. □

4 Conclusion
We presented an almost tight lower bound on the stabilization time

of the Undecided State Dynamics for plurality consensus in the

population protocol model. While our result settles the question

about the stabilization time, there are several interesting avenues

for future research. In particular, it would be interesting to explore

scenarios where (slightly) more memory is available at the nodes

and where synchronization is possible to some extent: at which

point can we break the lower bound barrier? Another open question

concerns the required initial bias. While it is known from previous

work that with an initial bias in the order of𝑂 (
√
𝑛), the system can

stabilize to a minority opinion with non-negligible probability [17],

we assumed a slightly higher initial bias of Ω(
√︁
𝑛 log𝑛) which

ensures stabilization to the majority opinion (cf. [6]); it remains to

close this small gap.
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A Useful Theorems
Theorem A.1 (Theorem 2 of [28]). Let 𝑋𝑡 , 𝑡 ≥ 0,be real-valued

random variables describing a stochastic process over some state space.
Suppose there exist an interval [𝑎, 𝑏] ⊆ R and, possibly depending
on ℓ := 𝑏 − 𝑎, a drift bound 𝜖 := 𝜖 (ℓ) > 0 as well as a scaling factor
𝑟 := 𝑟 (ℓ) such that for all 𝑡 ≥ 0 the following three conditions hold:

• E[𝑋𝑡+1 − 𝑋𝑡 |𝑋0, . . . , 𝑋𝑡 ;𝑎 < 𝑋𝑡 < 𝑏] ≥ 𝜖 .
• P[|𝑋𝑡+1 − 𝑋𝑡 | ≥ 𝑗𝑟 |𝑋0, . . . , 𝑋𝑡 ] ≤ 𝑒− 𝑗 for 𝑗 ∈ N0.
• 1 ≤ 𝑟2 ≤ 𝜖ℓ

132 log
𝑟
𝜖

.

Then for the first hitting time 𝑇★
:= min{𝑡 ≥ 0 : 𝑋𝑡 ≤

𝑎 |𝑋0, . . . , 𝑋𝑡 ;𝑋0 ≥ 𝑏} it holds that P
[
𝑇 ∗ ≤ exp

(
𝜖ℓ

132𝑟 2

)]
=

𝑂

(
exp

(
− 𝜖ℓ
132𝑟 2

))
Theorem A.2 (Bernstein’s Ineqality). Let𝑋1, . . . , 𝑋𝑛 be inde-

pendent zero-mean random variables. Suppose that |𝑋𝑖 | ≤ 𝑀 almost
surely, for all 𝑖 . Then, for all positive 𝑡 ,

P

(
𝑛∑︁
𝑖=1

𝑋𝑖 ≥ 𝑡

)
≤ exp

(
−

1

2
𝑡2∑𝑛

𝑖=1 E
[
𝑋 2

𝑖

]
+ 1

3
𝑀𝑡

)
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