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Abstract

Liquid democracy is a transitive vote delegation mechanism over
voting graphs. It enables each voter to delegate their vote(s) to
another better-informed voter, with the goal of collectively making
a better decision. The question of whether liquid democracy out-
performs direct voting has been previously studied in the context
of local delegation mechanisms (where voters can only delegate to
someone in their neighbourhood) and binary decision problems. It
has previously been shown that it is impossible for local delegation
mechanisms to outperform direct voting in general graphs. This
raises the question: for which classes of graphs do local delegation
mechanisms yield good results?

In this work, we analyse (1) properties of specific graphs and (2)
properties of local delegation mechanisms on these graphs, deter-
mining where local delegation actually outperforms direct voting.
We show that a critical graph property enabling liquid democracy is
that the voting outcome of local delegation mechanisms preserves
a sufficient amount of variance, thereby avoiding situations where
delegation falls behind direct voting!. These insights allow us to
prove our main results, namely that there exist local delegation
mechanisms that perform no worse and in fact quantitatively better
than direct voting in natural graph topologies like complete, ran-
dom d-regular, and bounded degree graphs, lending a more nuanced
perspective to previous impossibility results.
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1One can view our work as providing mathematical support for the disadvantages of

a dictatorship: delegating all the votes to a single dictator will, in this model, lead to
worse outcomes.
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1 Introduction

Liquid democracy is a process in which voters are allowed to tran-
sitively delegate their votes to other voters in a flexible way. In
other words, a voter (Alice) in a liquid democracy system has the
choice to cast a vote directly to decide the issue at hand, or to dele-
gate their vote to some other voter (Bob), who can in turn delegate
their vote to someone else (Carol). In doing so, and assuming Carol
does not delegate her vote to someone else, Carol’s eventual vote
effectively represents the votes of Alice, Bob, and Carol herself.
Recently, liquid democracy has become an increasingly popular
mechanism in governance structures and has been adopted by ac-
tual political parties like the German Pirate Party [26], corporate
governance [22], blockchain decentralised autonomous organisa-
tions (DAOs) [15, 17], as well as centralised financial investment
firms [30].

On the theoretical front, one of the driving questions behind
liquid democracy is whether delegation actually increases the prob-
ability of making a better decision. A natural model in the liter-
ature [25] is to assume a binary setting where there is a correct
voting outcome (say 1). Each voter v; has a corresponding com-
petency score p; € [0, 1], which represents their probability of
voting for the correct outcome. The social network of voters can be
modeled as a graph, and commonly studied delegation mechanisms
are local delegation mechanisms, which are mechanisms that only
allow delegation to voters in the graph that are adjacent to any
given voter.

In order to measure the performance of local delegation mecha-
nism over direct voting, we can consider the difference in probabil-
ity between delegation and direct voting with regards to deciding
on the correct outcome (also known as “gain” in related work). In
their seminal paper, Kahng et al. [25] answered the aforementioned
question in the negative: over general graph topologies, no local
delegation mechanism compared to direct voting can fulfill the
following properties at the same time: (1) (positive gain) asymptoti-
cally achieve higher gain in certain graph topologies, and (2) (do no
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harm) negative gain asymptotically goes to zero over all topologies.
Their negative result is based on a graph topology where voters
delegate their votes (transitively or not) to a very small set of final
delegates. This concentrates power in the hands of a few voters, and
this higher degree in correlation of votes can lead to a violatation
of the “do no harm” principle. We depict the star as an extreme
example of this in Figure 1.

Figure 1: Voters in a star topology labeled by competencies.
The central node has a high competency of ‘—é and each leaf
node has a lower competency of % We assume a delegation
mechanism that delegates votes to strictly more competent
voters. The probability of voting for the correct correct out-
come in the direct voting setting converges to 1 asymptot-
ically as the graph grows in size. However, delegation con-
centrates all voting power to the central node. Thus, the
probability of voting correctly in the delegation setting is %
leading to a negative gain of %

However, there are also first positive results. In particular, is has
been shown that in a complete graph, if we assume some restric-
tions on the delegation mechanisms and the competency vector
distribution, liquid democracy can achieve both probabilistic vari-
ants of positive gain and do no harm. In their influential work,
Halpern et al. [21] assume voters can delegate to anyone (i.e., the
voters form a complete graph topology), and the voters’ competen-
cies are sampled from some probability distribution. They go on
to show that there are some classes of distributions and delegation
mechanisms that satisfy probabilistic positive gain and do no harm.
Interestingly, the main technical insight of the work of [21] corrob-
orates the insight of [25] in the sense that they also show that a
sufficient condition on the complete graph to preserve the do no
harm principle is to ensure that the delegation mechanism does not
delegate too much votes to any single voter.

Given the negative result for general graph classes and the posi-
tive result on the complete graph, we ask the fundamental question
in this paper: how does the graph topology affect the feasibility of
liquid democracy?

1.1 Our Contribution

Specific Graph Topologies. Our work initiates the study of which
graph properties enable efficient liquid democracy voting. Our main
insight is that for many natural graphs liquid democracy is actu-
ally possible and outperforms direct voting. The graph topologies
that we show positive results for are topologies like the complete
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graph, random d-regular graphs, and bounded degree and bounded
minimal degree graphs, which are natural and well-studied [14, 35]
topologies that are of both practical and theoretical interest. Ad-
ditionally, the delegation mechanisms we analyse are simple and
local in nature: they only look at the local neighbourhood of a
node and delegate the vote to a random voter in the neighbourhood
with higher competency. We stress that focusing on connectivity
and local mechanisms allows the results of our work to apply to
various realistic settings in which liquid democracy could be im-
plemented where limited connectivity and locality is paramount
(for instance, in corporate or social network settings where voters
might be unwilling to delegate to users that are unfamiliar to them
a priori).

Graph Properties, Strong Positive Cain, and Recycle Sampling. In
contrast to prior work, we define a set of graph properties (e.g.,
completeness, bounded degree etc.) as well as an effect of a dele-
gation mechanism over graphs that satisfy the graph properties.
Although positive gain is typically an easier property to prove
compared to do no harm, we define a novel and stronger notion
of positive gain, namely strong positive gain, that holds for all in-
stances of graphs and local delegation mechanisms that satisfy a
subset of the above properties and delegation effects. Additionally,
we quantify the exact amount of increase in expectation achieved by
our mechanisms over direct voting. The key technical tool involved
in proving strong positive gain is a novel model of dependent ran-
dom variables called recycle sampling (see Section 3.1) that captures
the dependency structure in our delegation mechanisms (i.e., that
the outcome of a voter is correlated with the outcomes of voters’
with higher competencies). We then leverage this specific depen-
dency structure to lower bound the sum of these dependent random
variables from their expectation (Lemma 1).

Variance and Do No Harm. As observed in the star example in Fig-
ure 1, the do no harm property can be violated when the voting
power concentrates around a small subset of voters. This phenom-
enon is also observed in prior work, which circumvent the issue
by either using non-local mechanisms [25] or ensuring that the
maximum weight of any single voter is bounded [21]. Our work
presents two complementary but distinct sufficient conditions that
preserves the do no harm property for the classes of graphs we
study (see Section 3.2). The commonality between these conditions
is that they ensure sufficient amount of variance in the voting out-
come such as to avoid concentrating power in the hands of a few
voters. The first sufficient condition is that the competencies of all
voters lie in an interval strictly bounded away from the extremal
values of 0 and 1 and that the total amount of delegation for any
local mechanism is less than nz ~ for all ¢ > 0 (Lemma 3). We stress
that our result holds for local mechanisms, closing the gap intro-
duced by the result of [25]. The second condition is an upper bound
on the maximum number of votes delegated to any voter in general
graphs (Lemma 5). Although this result is similar to prior work [21],
we note that their result was derived in the setting of complete
graphs, whereas our result holds for general graph topologies.

Implications. Altogether, our results imply that the best classes of
graphs for liquid democracy are graphs that do not have too much
structural asymmetry in the node degrees. Towards a widespread
and realistic adoption of liquid democracy, it would be interesting
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for future work to empirically examine our graph properties and
the variance inducing conditions specified in Lemmas 3 and 5 in
various real-world networks to see if our conditions are justified in
real-world settings.

1.2 Related Work

Delegated and proxy voting is a well-studied area of research [1,
29, 33]. Recently, several works [5, 6, 10, 21, 25] have focused on
the question of when is delegated voting better than direct voting,
showing that delegated voting increases the mean voting outcome.
The work of [25], however, was the first to propose an algorith-
mic model and analysis of local delegation mechanisms in general
graphs. In particular, [25] shows that although in general graphs
there will always be examples where delegated voting leads to a
better outcome compared to direct voting, there also exist cases
where delegation leads to worse outcomes, particularly when voters
concentrate their delegations on a few candidates. Our work is mo-
tivated by the model and negative result of [25], whereby we seek
to answer a separate but complementary question of which types
of graphs guarantee better performance of delegation mechanisms
and the reasons why this is the case. Our work is also closely re-
lated to the work of [21] which focuses on the setting where voters’
competencies are not fixed but sampled from a distribution and
they study distributions and delegation mechanisms that guarantee
to perform better than direct voting. In contrast, our work focuses
on graph topologies rather than competency distributions (i.e., we
focus on connectivity assumptions between voters rather than vot-
ers’ competencies), and thus is a complementary but orthogonal
line of research.

Empirical analyses of liquid democracy have been conducted
in actual political [7, 26, 34] and blockchain [3, 15, 17, 20, 24, 28]
settings. Most closely related to our work are recent empirical
studies that highlight a concentration of voting power [26, 32], as
well as the work of [18] that aims to minimise the amount of votes
sent to the maximum weighted voter in a liquid democracy voting
system. Our work solidifies the assumptions in these works that
too much weight to a single voter is adverse to the system, and is
the first to formally show this for general graphs.

Further upfield but also related are works that look at liquid
democracy from a rational perspective, examining the question of
when would delegation maximise a voter’s utility [9, 19]. [4, 36]
adopt a game theoretic perspective, showing the existence of delega-
tion strategies that form Nash Equilibria. These are complementary
directions that look at the decision making from a single agent
perspective, whereas our work focuses on cooperative decision
making.

The interaction model considered in this paper is restricted to
a voter’s neighbourhood, in the spirit of the LOCAL model in dis-
tributed computing [27, 31], in which among many other problems,
other types of voting problems have also been studied, such as the
spread of influence in social influence networks [16]. The main
difference between our local mechanisms and the LOCAL model is
that our mechanisms do not require voters to know the total num-
ber of voters, but instead need to know the set of voters in their
local neighbourhood that are more competent than themselves.
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2 Preliminaries
2.1 Model

Problem. We consider the problem of vote delegation initially pro-
posed by [25]. In this model, we have n voters that want to decide on
some binary issue by voting. We assume the existence of a ground
truth with regards to the binary question that is unknown to the
voters. Each voter v; has some competency level p; € [0, 1] that
denotes the probability that v; votes correctly on the issue.

We define an instance of our problem as a graph G = (V, E, p).
V represents the set of voters, and an edge between any two voters
v; and v; represents the fact that v; and v; are aware of each other.
The competency p; of each voter v; is denoted by the ith element
of the vector of competencies p = [p1, p2, . - ., pn]. Wlog, we order
the voters by their probability such that p; < p; ifi < j.
Graph Restrictions. In our work, we focus on certain classes of graphs
that give rise to positive results for delegation mechanisms over
direct voting. These are graphs that are restricted to satisfy certain
predefined graph properties. Formally, we define a restriction of the
problem setting on n vertices as a graph restriction. Let G, denote
the set of all graphs on n vertices (with corresponding competency
vector).

Definition 1. (Graph restriction.) A graph restriction an C Gn
for a set of graph properties P is the set of graphs G = (V, E, p) such
that forallG € G, G satisfies all properties in P.

For (V,E, p), we use the following graph restrictions:

K, the graph (V, E) is a complete graph;

Rand(n, d), the graph (V, E) is a random graph with degree d,
generated after p is assigned;

A < k, the largest degree of graph (V, E) is at most k;

& > k, the smallest degree of graph (V,E) is at least k;

PC = a, the sum of competencies satisfies % > %Z?zlpi >
e p € (B,1—P), all competencies lie in range (B, 1— p) for some
Be(0d).

The first four restrictions are pure graph-theoretical restrictions.
We call PC = a the plausible changeability. It intuitively captures
the idea that the competency vector in the problem instance is
“sufficiently close” on average to % Hence, given enough instances
of delegation, a delegation mechanism can change the probability
of the voting outcome. We call restriction p € (f,1 — ) bounded
competency. It requires that no voter is either completely incom-
petent or competent at deciding on the underlying issue. We note
that this restriction is also present in [25].

Available Information. Given a parameter « > 0, for every voter i,
we define the set of approved voters J (i) to be the set of voters with
indices j, such that p; + & < p;. We assume that each voter only
knows the (pseudonymous) identity of their neighbouring nodes.
Moreover, each voter also knows which neighbours are approved.
We stress that we do not assume voters know competencies of their
own or anyone else, and all the voters from the set of approved
voters are indistinguishable.

2.2 Mechanisms

A delegation mechanism is a function that takes a problem instance
G as input and outputs for each voter a probability distribution over
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who to delegate their vote to (or none, in which case the voter simply
votes directly). We focus on local delegation mechanisms, which
make the decision only based on the approval set and an arbitrary
ranking over the voters in this set. We describe two examples of
local delegation mechanisms below.

Example 1. (Delegation based on approval set size.) Let M be a
mechanism that checks if | J(i)| > j for a threshold j and then del-
egates the vote of v; to a random voter in J(i) whenever the check
returns true. Then M is a local delegation mechanism.

Example 2. (Direct voting.) Let D be the mechanism that does not
delegate votes for all voters. That is, each voter simply votes directly
for themselves. Then M is also a local delegation mechanism.

Delegation. To evaluate the probability of making a correct decision
for a delegation mechanism M, we first apply the mechanism M to
the problem instance G. For each voter, we sample delegates from
the probability distribution output from M to get a directed delega-
tion graph where a directed edge between voters (v;,0;) denotes
that v; delegates their vote to vj. Observe that all the delegation
mechanisms that delegate the vote to the approved set create acyclic
delegation graph since a > 0. We say a delegation mechanism M is
acyclic if all possible induced delegation graphs from M are acyclic
(up to self cycles). An example of a possible delegation graph corre-
sponding to a delegation mechanism from Example 1 on a problem
instance is given in Figure 2.

Competencies:
Vs Vs
pP1 = 0.8
p2 =0.6 v vs v U3
ps = 0.5 Ve Ve
ps =04
ps =0.3 e Vg v . Vg
ps = 0.3 vz 2
pr =0.2 V7 Us vr Us
ps = 0.2
po = 0.1 x1,%2,T3,T4,T5,%6,27,T8,T9

Figure 2: The graph on the left depicts the problem instance
over a set of 9 voters vy, ..., 09 and their corresponding com-
petencies. We assume the parameter o = 0.01. The graph on
the right depicts a possible delegation graph corresponding
to the output of a local delegation mechanism (as in Exam-
ple 1 with threshold j = 0) on the problem instance. The x;s
below the graph on the right depicts the random variables
representing the voting outcomes of each voter.

Probability of Correct Decision. To evaluate the probability of making
a correct decision for a delegation mechanism M, we first apply
the mechanism M to the problem instance G. Let S denote the set
of sinks from the delegation graph output of M. We assign each
sink v; a corresponding weight w; denoting the number of votes
delegated to v; (including self-votes). For each v; € S, v; votes for the
correct option with probability p;. Finally, a decision is made based
on weighted majority vote, i.e., let S’ C S denote the voters that
voted for the correct option. Then, the correct option will be chosen

only if 3, cos Wi > X cs\s» Wi. We denote the probability that
mechanlzé;}ﬁe](s/l otlltputs fhe éorre::t decision for a problem instance

G by PM(G).
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Mechanism Gain. Let M denote a local delegation mechanism on
some problem instance G and let D denote direct voting over the
same instance. The gain of M over D on instance G is defined as
gain(M, G) = PM(G) — PP (G). We use loss to denote negative gain.
Delegate Restriction. Finally, in some results, we also restrict the
evaluation of our delegation mechanisms to mechanisms that, when
acting over a set of input graphs, satisfy the property that at least
some number of voters delegate their vote. Looking ahead, this
delegate restriction property is necessary to ensure that enough
votes are delegated to more competent voters to increase the gain
of the mechanism over direct voting.

Definition 2. (Delegate restriction.) Let M be a set of mechanisms,
and G¥ be a set of graphs. Then M, G¥ satisfy Delegate(n) > f(n)
if forallG € G¥ and all M € M at least f(n) voters delegate.

2.3 Desiderata

Here we define two important desiderata that our mechanisms need
to satisfy.

Do No Harm (DNH). The first desideratum we want our mecha-
nisms to satisfy is do no harm. Intuitively, this ensures that as our
restricted problem instances grow in size, the loss of our mecha-
nisms compared to direct voting goes to 0.

Definition 3. (Do no harm.) A mechanism M and set of graph
properties P satisfies the do no harm property if for every ¢ > 0,
3n’ € N such that for all graphs G € G wheren > n’, we have
gain(M,G) > —¢.

Strong Positive Gain (SPG). The second desideratum that we want
our mechanisms to achieve is strong positive gain. In [25], positive
gain (defined in Definition 4) ensures that as problem instances
grow in size there are some instances where delegated mechanisms
perform better (i.e., achieve positive gain) compared to direct vot-
ing. We define a more restrictive version of positive gain, strong
positive gain (SPG), to hold not just when our mechanisms on some
large enough problem instances perform better compared to direct
voting, but for all problem instances. Typically, we prove SPG for
all instances that in addition satisfy Delegate(n) > f(n) for some
function of the total number of voters f(n).

Definition 4. (Positive gain.) A mechanism M and set of graph
properties P satisfies the positive gain property if there existsy > 0
and n’ € N such that for alln > n’, there is a problem instance
Ge g,f’ where we have gain(M,G) > y.

Definition 5. (Strong positive gain.) A mechanism M, a set of graph
properties P, and a function f(n) satisfies the strong positive gain
property if there existsy > 0 and n’ € N such that for alln > n’, for
allG e QZ) such that (M, G) satisfies Delegate(n) > f(n), we have
gain(M,G) > y.

Note that strong positive gain is a stronger notion of positive
gain as designing mechanisms that satisfy positive gain as in Defi-
nition 4 only shows the existence of problem instances of a certain
size where delegation mechanisms perform better compared to
direct voting. In contrast, designing mechanisms that satisfy strong
positive gain constructs an entire class of problem instances of a
certain size that satisfies positive gain.
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3 Principles of Liquid Democracy: Sampling
and Graph Properties

In this section, we present the core lemmas that we use in Sec-
tions 4 and 5 to show SPG and DNH for certain classes of graphs.
In Section 3.1, we define a novel technique to bound the sum of
dependent random variables to show SPG for complete and ran-
dom d-regular graphs. Unlike the classic extension of the Chernoff
bound to negatively correlated random variables [13], the random
variables in our setting are positively correlated and capture the spe-
cific dependency of the outcomes of votes in the delegated setting.
In Section 3.2, we define two core graph properties that ensure suf-
ficient variance in the voting outcome and thus serve as sufficient
conditions for DNH.

3.1 A New Notion of Sampling and Bound on
the Sum of Dependent Random Variables

A crucial feature of liquid democracy and delegation is that dele-
gating votes fixes one’s voting outcome to that of the voter one
delegates to. This then creates a certain dependency between the
outcomes of the votes. Here we present a way to model the specific
dependency of the outcomes of votes in the delegated setting and
bound the corresponding sum of correct votes. We are not aware
of an existing model of such dependencies and a method to bound
the sum of variables that depend on each other in this particular
way, so we believe that this is a result of independent interest.

We define a new sampling notion in Definition 6 called recycle
sampling that captures the dependency in the delegated voting pro-
cess, as well as a way to measure the degree of dependency among
the random variables. We then prove in Lemma 2 that the sum of
the correct votes is close to its expectation as long as the degree of
dependency is not too high. Looking ahead, Lemma 2 is used in Sec-
tion 4 to show SPG for local delegation mechanisms restricted to
the complete graph and random d-regular graphs problem settings.

To model the dependency of the delegated voting process, we
first define the recycle sampling graph that captures the delegation
outcome in an abstract manner. The recycle sampling graph is de-
fined for Bernoulli random variables where the Bernoulli parameter
can either sampled from a set of previously known parameters
corresponding to some random variables (hence the parameter is
“recycled”), or a fresh parameter is chosen. This captures probability
of voting correctly in the delegation setting where this probability
(the Bernoulli parameter) depends on whether one votes directly
or delegates to someone else (and hence recycles their Bernoulli
parameter).

Definition 6. We say G is a (j, ¢, n)-recycle sampling graph if

e vertices are ordered {v1,v3,...,v,} and for everyi > j' for
some j' > j, we have a directed edge (v;,vy) for allk € [i’]
where i’ > j,

o vertices are labelled by (z;, p;) and represent random variables
X1,...,Xn where x; with probability 1 — z; takes the value
of a random successor and with probability z;, it is Bernoulli
random variable with parameter p;.

o the longest path in G (sometimes called partition complexity)
has length at most c.
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Let Xy = X1, xi be the recycle sampling random variable associated
with G. It is the outcome of realizing G: for increasing i, x; is either
(with probability z; ) the outcome of a random variable with parameter
pi; or it is equal to a randomly selected successor.

Intuitively, the parameter ¢ captures the degree of dependency
introduced among the random variables from the process. A larger
c indicates a larger degree of dependency. We note that ¢ depends
on the approval threshold « and a simple upper bound for any
mechanism is é <ec

Lemma 1. For every ¢ > 0 and every j, with probability at most
-Q('"?) istsi > j
e , there exists i > j such that

X; < (1 - ]1%) u(X;).

Proor. Let us examine X; for i < j. From the Chernoff bound,
we have
£
for a constant ¢ and p(X;) € O(i).
Now we look at the case where i > j. We can sum the probabili-

PIX; < (1 )ﬂ<xi>] <20

ties where X < (1 - ﬂ%) u(X;) over alli > j. to get

Ze—ﬂ(i”3> € e QU

i>j
which completes the proof. O
Lemma 2. Let X;, be a random variable associated with G, (j, c,n)-
recycle-sampled graph, then we have with probability at least 1 —
e—QUY?)

Xp > p(Xn) - c%
J

Proof Idea and Outline. The goal in the proof is twofold: (1) to
create a modified sequence of independent random variables X;, =
{%X1,...%n} such that we can use Lemma 1 (Chernoff bound) to
bound the probability that =7 | X; deviates too far below (Xp). We
do so partition by partition (sets where there is no edge between two
vertices): we modify the Bernoulli parameter of some of the original
random variables x; in a single partition such that the parameter
does not depend on the variables in predecessor partitions. This
eventually decorrelates all variables in the modified sequence. (2)
The way we modify the parameter takes into account the worst-
case behaviour (i.e., more incorrect votes than expected) that could
happen in the predecessor partition. This means that each time we
make the modification we decrease the concentration lower bound
of the modified sequence (i.e., make the lower tail of the distribution
of X, = 27 %; fatter). However, for a constant number of partitions
¢, this will only decrease the concentration lower bound by a factor
of cjl—/'g

Proor. Step 1: (Bounding the failure probability of the
first partition.) Let ¢ denote the partition complexity of M and let
7, ..., e denote each partition index. Let us consider the random
variables that belong in the first partition. Recall that these would
be the first 71 elements of M, i.e., {x1,..., X, }. Since this is the
first partition, the random variables {x1, ..., x,, } are independent,
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hence we can use Lemma 1 to bound the probability that X, <
(1 - ﬂ%) (X)) tobe 1 - e=QU") for some j < 71.

Step 2: (Creating a modified sequence of independent ran-
dom variables.) The random variables in M are recycle-sampled,
hence dependent. We now define a new modified sequence M =
{X1,...%n} of independent Bernoulli variables, where we modify the
Bernoulli parameter of random variables in the original sequence
M if their outcomes depend on another random variable earlier in
the sequence (i.e., with smaller index). Since the random variables
in the first partition are already independent and, by definition of
the first partition, the variables in the first partition cannot depend
on variables in earlier partitions, X1,..., Xz = x1,...,Xz,.

Now let us examine the random variables in the second partition,
ie, x; for m; < i < mp. Each m; for 1y < i < my is created by

the following thought experiment: suppose that for some j < i’ <
m, Xy < (1 - ]1%) 1(Xjr), ie., the sum of correct votes of some
subsequence in the first partition drops significantly below the
mean of the subsequence. Such an event happens with probability
e~ QU ) . When such an event occurs, this could affect the variables
in the second partition that are dependent on the “bad outcomes” of
the variables in the first partition, which could then result in X, <

(1 - ﬂ%) H#(Xy,) for some j < mp. To avoid this, we pretend all
outcomes of the random variables in the first partition are such that

no such bad event happens, and create the modified random variable
x; for m1 < i < mp where the Bernoulli parameter of x; is modified
tobe % (1 - ﬂ%) 1(X;) (whereas x; has success probability % u(Xi)).
In doing so, all variables in the second partition are independent of
the variables in the first partition and their probability is decreased
by 11% In other words, for 1 < i < my, £ > x; — ﬂ%

Step 3: (Applying the previous steps recursively for all
partitions.) For a general partition 2 < t < ¢, we apply the modifi-
cation procedure described in the previous step to the variables in
the partition. Suppose the following inequality holds for all vari-
ables in previous partitions: X; > x; — D. Let Xm = ZZ.TZ‘IJ?,-. Then,
for all i < 7; all the variables {X1,...,%, } are independent, and
we can apply Lemma 1 to get

with probability at most e 20" for Jj < i. The RHS of the inequal-

£

u(%) = (u(X0) - D) (1 -

ity is asymptotically p(X;) — (D + ﬁ%

). This means that the success
probability for a variable in partition ¢ is at least X; > x;— (D + ﬁ% )
Solving the recurrence, we get that the decrease in probability is at
most (t — l)ﬂ% in partition .

Now, we can again use the Chernoff bound to show that with
probability at least 1 — e=20U"") we have
e-n

Xn > p(Xn) - cjl/3 .

O

3.2 Transmutation?: Manipulating Variance to
Ensure DNH

Here we present two core graph properties that, together with a
reasonable delegate restriction, provide sufficient conditions that
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ensure delegation mechanisms satisfy DNH. Informally, a common
thread running through both properties is that they ensure suffi-
cient variance in the voting outcome. This enables the delegation
mechanisms to avoid the voting outcomes where the overall deci-
sion hinges on the choices of a few influencial voters, which could
lead to settings where delegation performs worse than direct voting
(e.g., in the example in Figure 1).

3.2.1 Anti-concentration forp € (f,1— ). We show a connection
between the assumption that all voters’ competencies are bounded
away from the extremal values of 0 and 1 and the DNH property.
We prove that any delegation mechanism (both local and non-local)
over any problem instance satisfies the DNH as long as the number
of delegated votes is sufficiently small. The key insight is that
p € (B, 1 — p) guarantees a sufficient amount of variance in the
outcome of the direct voting setting, such that if only small number
of voters delegate the loss of the mechanism (i.e., the harm) goes
asymptotically to 0. We formally state our result as follows.

Lemma 3. Foralle > 0 and all P where (p € (f,1— p)) € P, any

mechanism that delegates less than n2 ¢ votes satisfies DNH.

Proof Idea and Outline. We use the fact that the distribution of
the total number of correct votes in the direct voting setting with
bounded competencies (denoted by X) converges asymptotically
to the Normal distribution with known mean and variance. This
allows us to show anti-concentration bounds on the expected value
of X,P .

Proor. We first state a lemma as written in [25] which shows
and proves the convergence to a normal distribution of the sum of
independently distributed Bernoulli random variables. This corre-
sponds to the distribution of the total number of correct votes of
direct voting in the bounded competencies setting.

Lemma 4 (from Kahng et al. [25]). LetY = {Y1,Ys,...,Yp,...} be
a sequence of independent Bernoulli random variables where Y; has
success probability p; € [f,1-f] for f € (0,1/2). Then ZZZI Yy con-
verges to a normal distribution with mean 3.}’ _| E[Yy] and variance
2y_; Var[Yx] as n goes to infinity; i.e.,

n n n
ZYk_’N ZE[Yk],ZVar[Yk] asn — oo,
k=1 k=1 k=1

Now, we are ready to prove Lemma 3 itself.

The variance of a single Bernoulli random variable with parame-
ter that lies in the interval [, 1— ] for § € (1, %) lies in the interval
[B(1-P), 4—11], since the variance increases with f, up to a maximum
of %. Using our notation, recall that XD denotes the sum of the total
number of correct votes for the direct voting mechanism. Since
each variable is independent, from Lemma 4 we have that X2 is
a random variable that approaches the normal distribution with
mean ;(XP) and the variance in [nf(1 - f), 21. That means the

standard deviation o ofX,? must lie in [\/nf(1 - p), \/TH]

Definition from the DnD 5e handbook: “You are a student of spells that modify energy
and matter”.


https://dnd5e.wikidot.com/wizard:transmutation
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Now suppose that the n%~¢ number of voters that delegated their
votes in the delegated setting all voted incorrectly (i.e., the voters
they delegated to voted incorrectly, hence their votes are counted
as incorrect as well). Let us also suppose that in the direct voting
setting all of these voters (the ones who delegated their votes as
well as the ones who got votes delegated to) all voted correctly.
This means that the loss of the delegated mechanism where at most
ni= delegate is in the worst case 2n2 ¢,

We need to compute the probability that the outcome of voting
changes due to delegation. This means, in the direct voting setting,
we have over %n correct votes and in the delegated setting, we have
at least %n incorrect votes.

We want to compute the probability that X2 lies in (u(X2) -
2n27¢, u(XPy + Zn%_g). Since the distribution of X2 for large n
approaches the normal distribution with standard deviation of order
4/n, we can use the error function for the normal distribution to
bound this probability.

For o, the standard deviation, this probability is at most

ni=e

erf(znig) < erf(\/iné) = erf(n—‘/_;)

But we know
. n_*
nlg'[go erf($) =0.
This means the probability that the outcome is changed in the
delegated setting compared to direct voting goes to 0 asymptotically.
O

3.22  Maximum Weight of a Single Voter in General Topologies. The
second condition is a bound on the maximum weight of any voter
as a result of delegation. Intuitively, a small maximum weight guar-
antees that there will be enough sinks in the delegation graph. This
consequently generates sufficient variance in the voting outcome
to preserve DNH.

Lemma 5. Let X, be the voting outcome any delegation mechanism
where every sink has weight at most w. Then with probability 1 —
e~ ) for any constant ¢ > 0 we have

1 ———
|p(Xn) — Xn| < —Vnltéw.
c

Note that Lemma 5 implies that the maximum weight w < n1*¢.

Proor. The proof of the lemma is a simple consequence of using
the largest weight to lower bound the number of sinks, and then
use Hoeffding’s inequality.

First, we state Hoeffding’s inequality [23], then use it to prove
Lemma 6.

THEOREM 1 (HOEFFDING’S INEQUALITY). Let X1,Xo,..., X, be
independent random variables such that a; < X; < bj, then for
212

S =X, Xi holds
Z;l:l(bi - ai)z) .

Lemma 6. Let x1,x2,...,X, be the Bernoulli random variables rep-
resenting sinks in the delegation graph with weights w1, wa, ..., wp.

Let p(X) = Y; wipi and X = )}; wix;.

PIIS ~ E[S]] > t] < 2exp (_
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Let w := max; w;. Then for any constant ¢ > 0, we have

1
IX — p(X)| < =Vnl*tew.
c

with probability 1 — e~ (%)

The biggest weight is w, so there has to be at least & sinks. We
plug into Theorem 1, we have (b; — a;)? < w? and this gives at
least 2 summands. Then we have

2t
PlIX —pu(X)| = t] < 2exp (_E) .

setting ¢ = Vnl*éw, we get
P[IX = p(X)| = Vnl*éw] < 2exp (-n%) ,

which completes the proof. O

Lemma 5. Let X; be the voting outcome any delegation mechanism
where every sink has weight at most w. Then with probability 1 —
e~ n) for any constant ¢ > 0 we have

1 v
[u(Xn) = Xn| < —Vnltew.
Cc

Proor. Simple instantiation of Lemma 6. O

4 Breaking the Impossibility for Certain Graphs

We now proceed to analyse two classes of graphs, complete and
random d-regular graphs, and propose local delegation mechanisms
that achieve SPG and DNH on both these classes of graphs.

4.1 Complete Graphs

In this section, we propose a delegation mechanism (detailed in Al-
gorithm 1) that describes the delegation mechanism for a single
voter. For a voter v;, we check the size of the approval set |J(i)| to
compare it with a threshold j(n). The argument of j is the number
of neighbours of v; which, in the complete graph, is equivalent
to the total number of voters n. If | J(i)| > j(n), v; delegates their
vote to a randomly selected approved neighbour from J(i). Oth-
erwise, v; casts a vote which will be correct with probability p;.
The guarantees provided by Algorithm 1 are good for small j(n)
(even j(n) € o(n)), since we want the maximum number of votes
to be delegated (such that M satisfies Delegate(n) > %}) Looking
ahead, the proof of DNH in Lemma 7 assumes j(n) < %.

Algorithm 1 Delegation algorithm for a single voter v; in K,

Input: number of neighbors n, a set of approved voters J (i), thresh-
old function j
Output: decisions to vote or delegate to another voter
1: if J(i) = j(n) then
2 oy < RanpomCHOICE(J (i)
3 DELEGATE(vf)
4 else
5 VoTtE(v;)

Let V; denote the set {v1, ..., v;}, that is, the top i voters accord-
ing to competency level. Let Y, = {y;,...,yn} denote the corre-
sponding sequence of random variables representing the outcomes
of the votes as output by Algorithm 1 on each of the voters in the
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sequence V. That is, y; denotes the random variable representing
the outcome of voter v;. We let Y := Z;‘:lY,- denote the sum of
correct votes in the sequence Yy,. Recall that we use X, to denote
the sum of an independent sequence of Bernoulli random vari-
ables {x1,...,x,} with Bernoulli parameters {p1, ..., pn}. We can
think of the sequence {x1,...,x,} representing the outcomes of
the voters vy, . ..,v, in the direct voting setting (i.e., unmodified
by Algorithm 1).

Lemma 7. (Increase in expectation.) Let Y, be sequence given by
Algorithm 1 where k voters do not delegate, we have
PIY > (X)) + (n—K)a— 1 —T ] 51— =20
o j(m)'/3

Proof Idea and Outline. The proof of Lemma 7 makes use of two key
insights. First, Y, forms a sequence of (j(n), é, n)-recycle-sampled
random variables. Thus, we can use Lemma 2 to bound the sum of
the variables Y against the expected value of Y. The second insight
is that every act of delegation as specified by Algorithm 1 increases
the expected value of Y by at least @, which gives us a way to
compute the expected value of Y given a bound of the number of
voters that do not delegate their votes.

PRrOOF. Let Vi denote the set of voters that did not delegate their
vote. Since j(n) serves as the threshold determining if a voter should
delegate their vote or not in Algorithm 1, we know that k > j(n).
From this we know that for all of the voters that delegated, the
expected value of their delegated vote is an average of all approved
neighbours. This means the random variables in Y, create (j(n), n)-
recycle-sampled random variables and the expected value of the
outcome y; of voter v; that delegated their vote is at least p; +
(since all of v;’s approved neighbours are at least @ more competent
than v;).

Since K, is complete, the partition complexity of Yy, is %. We can
split the interval [0, 1] into partitions of size ¢ with the ith partition
contains all voters with competency level between [(i—1) - @, i - ]
forie [é]. From our definition of partitions, any voter lying in
any one of these partitions cannot approve of anyone else inside
the same partition. That means we can use Lemma 2 to show that
with probability 1 — e_Q(j(”)l/S), we have
1 ¢n
2 i

Now, we need to compute p(Y), the expected value of the sum
of the correct votes of the sequence Y;,. We first observe that every
voter that delegated their vote increased the expected total sum
1(Y) by at least . This gives us the following lower bound for

p(Y):

Y > p(Y) - (1)

p(Y) > p(Xa) + (= K.
Combining this with the previous bound in Equation (1), we get

g L -Q(j(m)'?)
PlY > p(Xn) + (n—k)a Otj(n)l/3] <e .

]

As a direct consequence of Lemma 7, we get the following, which
gives us SPG for the mechanism described in Algorithm 1 with
graph properties £ and mechanism-graph property Ps.

THEOREM 2. Algorithm 1 satisfies
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e SPG for graph properties = {Kn, PC = %} andDelegate(n) >
%forsomek >1lande >0,
e and DNH for P = {K,}.

Proof Idea and Outline. The first result is a consequence of Lemma 7.
It shows the increase in expectation of the delegation mechanism

when there are at least Q (W) delegations. If at least = voters

delegate, in the case satisfying PC = £, then the outcome is 1 with
high probability. For DNH, the cases when a lot of voters delegate or
when the competencies are bounded away from 0 and 1 are handled
by Lemmas 3 and 7. For those remaining, we show that the outcome
of direct voting and delegation aligns with high probability.

Proor. From Lemma 7, we have a positive gain for Q(W)

delegated votes. From Lemma 3, we have a DNH for competencies
in (f,1-p) for O(nl/2—¢) delegated votes. We note that the proof
of Lemma 3 requires the standard deviation of the sequence of inde-
pendent Bernoulli random variables (corresponding to the voting
outcomes in direct voting) to be at least Q(+/n). This means that the
requirement for the competency to be in (f, 1 — ) can be violated
for some constant say %n voters and the theorem still holds, since
in this case the standard deviation is scaled only by %.

Now, suppose that at least %n of voters have competencies
outside the interval (f,1 — f). We select f < min(l_T“, %a) (since
0<a<1).

Recall that in the complete graph setting, voters delegate only if
they have more than j(n) approved neighbours. Now we split the
distribution of the 1—90n voters that lie outside the interval into two
cases:

(1) there are at least j(n) voters with competency larger than
1-p

(2) less than j(n) voters have competency larger than 1 — f

Let us analyse the first case. If at least j(n) voters have com-
petency above 1 — ff, we know all voters with competency be-
low S delegate. This is due to the fact that f is chosen such that
1 -2 > a, and since the graph is complete, so every voter sees
the top j(n) voters with competencies > 1 — f§ and delegates to
them. Now let us examine the total number of vote delegations.
From Lemma 7 we know that if at least 1—10 n voters delegate we have
positive gain. When less than % voters delegate, we know that
at least %n voters have competency above 1 — . Recall we chose
B such that f < min(l_T“, %a), which means that § < 1/3. Since
B < 1/3, the expected number of correct votes would be at least
%n . % = %n > %n. This means that for this case where at least
Jj(n) voters have competency above 1 — f these highly competent
voters already ensure the voting outcome will be correct with high
probability.

Now we analyse the second case where less than j(n) voters have
competency above 1 — . In this setting, we have %n — j(n) voters
with competency at most . The %n voters with competencies in
the interval (S, 1 — ) thus have competency at most 1 — f5, and the
remaining less than j(n) voters have competency at most 1. Recall
we assume that j(n) < %n Hence, the expected number of correct
votes is at most

1 1

7 3
-n+ —pn+ —(1-p)n,
3 30’3 30( 2
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which is strictly less than %n for f < % That means that the voting
outcome is incorrect with a high probability. O

4.2 Random d-regular Graphs

Algorithm 2 describes the creation of Rand(n,d) as well as the
delegation mechanism. In the algorithm, every voter v; first samples
d random neighbours. Then v; checks if at least j(d) of these d
neighbours are in its approval set. If so, v; delegates their vote to a
randomly approved neighbour.

Algorithm 2 Algorithm for a single voter v;.

Input: parameter d,
RANDOMNEIGHBOURS
Output: decisions to vote or delegate to voter
1: D < RANDOMNEIGHBOURS(d) > Selects d random voters.
2. J(i) N D « ApproVED(D, p;) > Selects approved voters
if J(i) N D > j(d) then > j(d) is a fraction of d.
vf RanpomMCHoIce(J (i) N D)
DELEGATE(vf)
else
VotEe(v;)

function j, sampling function

THEOREM 3. Algorithm 2 satisfies
e SPG for graph properties P = {Rand(n,d),PC = £} and
Delegate(n) > - for somek > 1 and ¢ > 0,
o and DNH for graph property P = {Rand(n,d)}.

Proof Idea and Outline. The key ingredient to the proof is realising
that the situation on the random graph is similar to the complete
graph with threshold %n Then, we have all delegation happen-
ing not surely, but in expectation. This, with a small modification,
allows us again to use recycle sampling.

Proor. The important observation is that the output of Algo-
rithm 1 with threshold j(d) and output of Algorithm 2 with thresh-
old nj(% on the same input behave very similarly. The only differ-
ence is that the Algorithm 1 delegates surely, whereas Algorithm 2
delegates in expectation.

Lemma 8. Let Y, be sequence given by Algorithm 2 where k voters
do not delegate. We have
2 -(n*
PIY > u(Xp) + (n—Ka— 28> 1- o(n).
a nf
Proor. If j(d) € Q(nf), then we have (j(d), é,n) recycled
random variables. The first j(d) voters cannot delegate and all
others have, before sampling, the same probability to delegate to
all voters that are in the approved set (if they delegate). Then the
proof follows.
Otherwise, we examine the first jg%nfl voters. They delegate
with probability at most
d\( 1)
if\nl-e) ~

2

izj(d)
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If any voter among the first @ne’ voters delegates, we treat it in-
stead as voting incorrectly. That means every voter among the first
decreases its p; by at most n~1*¢' This creates (n¢, é, n)-recycled
random variables. However, the delegation does not produce an
increase of correctness probability by «, but only by «a — nl¥e

Hence the decrease of the bound by £ £

a pe’ o

Proof of SPG follows from Lemma 8. We prove the DNH property
for the random d-regular graph as a small change to the proof of the
DNH property for the complete graph. We can replace everywhere
j(n) by @n and all certainties are now happening in expectation.
Since these expectations are concentrated around the mean, we can

argue about them as in the complete graph. O

5 General Graphs: Graphs with Bounded Degree

In this section, we extend our analysis to general graphs with
bounded degree and minimal degree. We show local delegation
mechanisms on these classes of graphs that achieve SPG and DNH.

5.1 Bounded Degree

THEOREM 4. Let M be any delegation mechanism, then M satis-
fies
e SPG for properties P = {A < t%/(1+€) pC = £} and
Delegate(n) > t foranyt and e > 0,
e and DNH for properties P = {A < n®/(2+¢) p e (6,1 - p)}.

Proof Idea and Outline. The main idea for SPG is to use the maximum
degree to bound the length of the longest delegation path. This and
the maximum degree bounds the total weight of any sink, which
allows us to use Lemma 6 to guarantee a sufficient increase in
expected value in order to show SPG. The proof of DNH follows
as a consequence of both Lemma 3 and a positive gain, depending
on the number of delegations. The full proof of Theorem 4 is in
Appendix B.8 of the extended version of our paper at [8].

5.2 Bounded Minimal Degree

THEOREM 5. Let M be a delegation mechanism where a voter
delegates if at least % of its neighbors are approved. Then, M satisfies

o SPG for properties = {6 > n®,PC = ‘;‘—,}l’} andDelegate(n) >
h for anyh > y/n and ¢ > 0,
e and DNH for properties = {§ = n®,pe (f,1-f)}.

Proof Idea and Outline. We first upper bound the maximum weight
of the top ZT‘S voters in terms of competency as well as use the
Chernoff bound to probabilistically bound the maximum weight
of the most competent voter. We then show that our choice of
parameters results in the maximum weight being small enough
to use Lemma 5 to show that the total number of correct votes
in the delegated setting is close to its expectation. The full proof
of Theorem 5 is in Appendix B.9 of the extended version of our
paper at [8].
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6 Discussion, Extensions, and Implications

General Graph Structures and Structural Symmetry. Our results
from Sections 4 and 5 show that the types of graphs that yield
the best results for delegation over direct voting are graphs that
do not have too much structural asymmetry in terms of degrees
among nodes. A direct and obvious implication of our results is that
concentration of influence could lead to harmful decision making.
An interesting and perhaps less obvious follow up question is the
connection between uniform weights and network connectivity in
ensuring that harmful outcomes do not happen with delegation. We
believe it would be interesting to think about and further explore
the social implications of this (perhaps in relation to spreading
misinformation in social networks [12]). We leave this as a direction
of future work.

Weighted Majority Vote. The delegation mechanisms proposed so
far in our work are extremely simple and rely only on the knowledge
of the delegates in a voter’s approval set and a random choice of
a voter in this approval set to delegate to. We conjecture that our
model and analysis can be extended to the more sophisticated
weighted majority vote setting, as they are emerging on certain
blockchains [11]. In this setting, a voter delegates their vote to
some number of approved delegates, and then takes a weighted
majority of the delegated votes using some locally defined weight
function over the delegates>. It is easy to see that as long as voters
only delegate to more competent delegates, our analysis and results
on strong positive gain will also transfer to the weighted majority
setting (it is similar to sampling the random delegate multiple times
and taking the best outcomes in the setting where voters can only
delegate to one random other voter in their approval set). For DNH,
we conjecture that as long as the weighting function together with
the mechanism satisfies Lemma 5, we would also be able to ensure
sufficient variance in the voting outcome to preserve DNH.

Vote Abstaining. Our model and analysis can be easily extended
to the setting where voters can abstain from voting or delegating
their votes. Specifically, we examine the abstinence model where a
voter can abstain from voting only if they can delegate their vote to
someone else. This models decision-agnostic behaviour where voters
that do not particularly care about the issue at hand can simply not
vote instead of entrusting their vote to someone else, corroborating
the empirical analysis of [20] that these decision-agnostic voters
form a large majority of voters in liquid democracy voting systems.
We first observe that this model of abstaining preserves the DNH
property. This is because DNH typically gets violated when there is
too much delegation (which runs the risk of too many votes being
delegated to a few voters)*. We note that our analysis and results
of strong positive gain also extends to this model of abstaining,
again under a similar delegate restriction that some amount of
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delegation has to occur. We emphasise though, that the amount of

3We note that any non-trivial weight function already assumes additional information
about the delegates compared to our model assumptions as described in Section 2.1.
“In general, one has to be careful of how abstaining is defined. Allowing all voters the
possibility of abstaining from voting could result in all but one sink abstaining and
thus could violate DNH. However, if we limit the possibility of abstaining only to the
voters that can delegate, as described in our model of abstaining, then we avoid such
violations.

gain guaranteed would likely be smaller compared to the setting

where abstaining is not allowed.

Practical Considerations in Implementing Liquid Democracy. Lem-
mas 3 and 5 gives us sufficient conditions to guarantee delegation
mechanisms on certain classes of graphs satisfy DNH. In the context
of implementing liquid democracy in real world settings, an inter-
esting implication would be to check if the assumptions specified
in Lemmas 3 and 5 actually exist in reality. For instance, it would be
interesting to empirically verify if social networks or even random
graphs that model social networks (e.g., Barabasi Albert graphs [2])
satisfy the assumptions on the amount of sinks with not too much
weight in Lemma 5. Additionally, in practice the vector of compe-
tencies will not be deterministic as in our model, but probabilistic
(similar to the model in [21]). Extending our model and analysis
to account for probabilistic competencies in addition to classes of
graphs would be an interesting and important step towards im-
plementing liquid democracy delegation mechanisms in practice.
Doing so would also unify our analysis on graph properties with
the competency distributions analysis of [21] to present a coher-
ent set of properties of both competency distributions and graph
topologies in order to guarantee better delegation performance
compared to direct voting.

7 Conclusion

In this work, we examined the question of whether there are some
classes of graphs and delegation mechanisms in which liquid democ-
racy outperforms direct voting. We show that for complete graphs,
random d-regular graphs, bounded degree and bounded minimal
degree graphs, as long as the total amount of delegation meets some
minimal amount, the delegation mechanisms enjoy strong positive
gain over direct voting. For the same classes of graphs, we also
show that any local delegation mechanism will not cause harm.
We believe our work opens up a wide range of future directions
(discussed in Section 6) and we hope that our paper would pave the
way for future work to tackle these issues.
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