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Abstract 

Prenatal immune challenges pose significant risks to human embryonic brain and eye 
development. However, we still lack knowledge about the safe usage of anti-inflammatory 
drugs during pregnancy. Human induced pluripotent stem cell (hIPSC)-derived brain organoid 
models provide a unique opportunity to investigate neuronal development and have started 
to explore functional consequences upon viral infection. However, brain organoids usually 
lack microglia, the brain-resident immune cells. They are present in the early human 
embryonic brain and actively participate in neuronal circuit development. At the same time, 
microglia are known for their immune-sensing properties and will influence viral-mediated 
effects. In my thesis, I was interested to study the multifunctional role of human microglia 
during retinal development.  

In chapter 1, I characterize the innate occurrence of IBA1+-microglia-like cells within the 
retinal organoid differentiation (Bartalska et al., 2022). Therefore, we differentiate hIPSC 
using an unguided retinal organoid differentiation protocol and observe the presence of 
IBA1+-microglia-like cells alongside retinal cups between week 3 and 4 in 2.5D culture. 
However, instead of infiltrating the neuroectodermal sides, they enrich within non-
pigmented, 3D-cystic compartments that develop in low numbers parallel to 3D-retinal 
organoids. To enrich for IBA1+-microglia precursors (preMG), we guided the differentiation 
with a low-dosed BMP4 application, which prevents retinal cup development and enhances 
microglia and 3D-cysts formation. We characterize the differentiated preMG for their 
microglia-like identity and validated their functionality. In parallel, mass spectrometry 
identifies the 3D-cysts to express mesenchymal and epithelial markers. We confirm that 
comparable 3D-cysts are also the preferential environment for IBA1+-microglia-like cells 
within the unguided retinal organoid differentiation.  

In chapter 2, I investigate how microglia influence retinal development and whether they 
contribute to viral-mediated consequences (Schmied et al., 2025). Here, we assemble preMG, 
which we have characterized in chapter 1, into 3D-retinal organoids. Once the outer plexiform 
layer forms, microglia-like cells (iMG) populate them and interact with retinal cell types. 
However, at this developmental stage, the ganglion cell number decreases in 3D-retinal 
organoids. Thus, we adapted the model into 2D which promotes their survival. Integrated 
iMG engulf ganglion cells and control their cell number. In parallel, we apply the 
immunostimulant POLY(I:C) to mimic a fetal viral infection. Although POLY(I:C) stimulation 
affects iMG phenotype, it does not influence their interaction with ganglion cells. 
Furthermore, iMG presence significantly contributes to the supernatant’s inflammatory 
secretome and increases retinal cell proliferation. Simultaneous exposure to the non-
steroidal anti-inflammatory drug (NSAID) ibuprofen dampens POLY(I:C)-mediated 
consequences of the iMG phenotype and ameliorates cell proliferation. Remarkably, while 
POLY(I:C) disrupts neuronal calcium dynamics independent of iMG presence, ibuprofen 
rescues this effect only in the presence of iMG. Mechanistically, ibuprofen blocks the enzymes 
cyclooxygenase 1 and 2 (COX1/ PTGS1 and COX2/ PTGS2) simultaneously, from which iMG 
predominantly express COX1. Selective inhibition of COX1 does not restore the calcium peak 
amplitude upon POLY(I:C) stimulation, indicating ibuprofen’s effect depends on the presence 
and interplay of both, COX1 and COX2.  

In summary, we characterized the 3D-retinal organoid model for the occurrence of IBA1+-
microglia like cells. As the innately developing IBA1+-cells enrich in mesenchymal over retinal 
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structures, we optimized a protocol to differentiate IBA1+-microglia precursors. By combining 
these two models we generate microglia-assembled retinal organoids. Our results underscore 
the importance of microglia during neurodevelopment, in the context of prenatal immune 
challenges and provide insight into the mechanisms by which ibuprofen exerts its protective 
effects during embryonic development.  
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1. General introduction 

The central nervous system (CNS) summarizes the dense neuronal networks of the brain and 
the spinal cord (Thau et al. 2022). The neurons are surrounded by non-neuronal cells known 
as ‘neuroglia’, which support neuronal development, maintenance and function. (Allen and 
Barres 2009; Kettenmann et al. 1996) The term ‘glia’ derives from the Greek word for ‘glue’ 
reflecting the historical concept that these cells hold neurons together (Somjen 1988).  

Microglia are the primary resident macrophage population located in the CNS parenchyma 
(Colonna and Butovsky 2017), and depending on the brain region, represent up to 10% of all 
cells in the adult mouse (Lawson et al. 1990) and human brain (Mittelbronn et al. 2001). 
Microglia were first described by Pio del Rio-Hortega in 1919 as cells with small cell bodies 
and long, thin processes (Sierra et al. 2016). Beyond their role as immune cells to defend 
against invading pathogens, microglia play a multifunctional role during neuronal 
development, tissue homeostasis, and degeneration (Colonna & Butovsky, 2017; Hanisch & 
Kettenmann, 2007; Kettenmann et al., 2011). In vivo imaging of adult microglia has shown 
that they are highly dynamic cells, continuously extending and retracting their processes 
(Davalos et al. 2005; Nimmerjahn et al. 2005). Through this activity, microglia constantly 
monitor their local environment and can sense a wide range of stimuli, including molecular 
patterns or neuronal signals (Hickman et al. 2013; Pocock and Kettenmann 2007).  

1.1. Ontogeny of CNS macrophages 
1.1.1. Microglia origin 

Fate mapping studies have identified that microglia derive from erythro-myeloid progenitors 
(EMPs), which are generated during the primitive (first) wave of hematopoiesis starting at 
embryonic day (E) 7.0 in the blood islands of the yolk sac in mice (Ginhoux et al., 2010; Schulz 
et al., 2012). Thus, microglia derive from the mesoderm while neurons and astrocytes 
differentiate from the ectoderm (Ginhoux and Prinz 2015). EMPs give rise to primitive 
macrophages that colonize the developing embryo, including the brain rudiment, between 
E8.5 and E9.5 (Alliot et al. 1999; Hoeffel et al. 2015; Kierdorf et al. 2013). In humans, microglia 
precursor cells also originate in the yolk sac (Bian et al. 2020) and populate the fetal brain as 
early as gestational week (GW) 4.5 (Monier et al. 2006, 2007). They enter from the ventricular 
lumen, leptomeninges, and choroid plexus (Hattori et al. 2020; Monier et al. 2006, 2007; 
Rezaie and Male 2003). 

In mice, the blood-brain barrier is established around E13.5, separating the CNS from the body 
periphery (Daneman et al. 2010). Influenced by local environmental cues, primitive 
macrophages mature to parenchymal and retinal microglia (Ginhoux et al. 2010; O’Koren et 
al. 2019). This maturation is associated with the gradual decrease in c-kit and an increase in 
CD45 and CX3CR1 expression (Kierdorf et al. 2013). Throughout life, microglia maintain by 
local self-renewal and exhibit slow turnover rates: in humans, 28% of the microglia population 
are replaced every year resulting in an average microglia age of 4.2 years (Lawson et al. 1990; 
Réu et al. 2017).  

Microglia are distinct from monocytes and peripheral tissue macrophages, which originate 
from hematopoietic stem cells generated during the definitive (second) wave of 
hematopoiesis, starting at E8.5 in the yolk sac (Lux et al. 2008). These progenitors replace 
primitive macrophages in the periphery and not the CNS (Ginhoux et al. 2010; Hoeffel and 
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Ginhoux 2015). The two hematopoietic waves differ in their dependency on transcription 
factors: the runt-related transcription factor 1 (RUNX1) is highly expressed by EMPs, while 
microglia precursor cells rely on Spi1 proto-oncogene (SPI1, also known as PU.1) and 
interferon regulatory factor 8 (IRF8) (Ginhoux et al. 2010; Hagemeyer et al. 2016). Progenitors 
generated during the second wave of hematopoiesis depend on c-myb expression, which is 
lacking in microglia precursor cells (Schulz et al. 2012). 

1.1.2. Origin of brain-border associated macrophages 

In addition to microglia, the CNS also contains brain-border associated macrophages (BAMs) 
which are located in the meninges (meningeal macrophages), the perivascular space 
(perivascular macrophages), and the choroid plexus (choroid plexus macrophages) 
(Goldmann et al. 2016; Prinz et al. 2017). Unlike microglia, BAMs have a heterogeneous 
ontogeny. They partially derive from EMPs produced during the first hematopoietic wave, 
similar to microglia. In addition, BAMs in the choroid plexus and meninges are supplemented 
by precursors from the second hematopoietic wave (Goldmann et al. 2016; Van Hove et al. 
2019; Utz et al. 2020). Although, microglia and BAMs partially share their origin, their 
common precursors differentiate into distinct cell types with unique transcriptional profiles 
which allows to distinguish CD206+ (Mannose Receptor C-Type 1)/ CD163+ (cluster of 
differentiation 163/ scavenger receptor cysteine-rich type 1 protein M130) BAMs and CD206–

/ CD163- microglia already early during fetal development (Utz et al. 2020).  

In adulthood, microglia express markers like TMEM119 and P2RY12 while BAMs are positive 
for CD206, CD163, CD169, LYVE1, CD38 and CD11c (Mrdjen et al. 2018). Due to their specific 
locations between the parenchyma and peripheral tissues, BAMs acquire specialized roles 
(Dermitzakis et al. 2023; Mrdjen et al. 2018). They are crucial for immune surveillance by 
monitoring for pathogens and foreign molecules, antigen representation and BBB integrity 
(Fabriek et al. 2005; Goddery et al. 2021; Rustenhoven et al. 2021). 
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1.2. Retinal development and microglia colonization 
The retina develops from the posterior part of the 
forebrain, the diencephalon (Jacobson and Hirose 
1978). Two eye fields split form the neural tube and 
give rise to the optic vesicles, which invaginate to 
form the optic cup (Adler and Canto-Soler 2007; Pei 
and Rhodin 1970). The retinal progenitors undergo 
symmetric proliferation and differentiate to generate 
the five major neuronal cell classes: photoreceptors, 
horizontal-, bipolar-, amacrine-, and ganglion cells. By 
mid-gestation, the neuronal cell bodies are organized 
within the three nuclear layers with their processes 
localized in two synaptic layers, the outer- and the 
inner plexiform layers (OPL and IPL, respectively) 
(Figure 1) (Gupta et al. 2016; Kolb et al. 1995). The 
outer nuclear layer (ONL), adjacent to the choroid, 
consists of photoreceptor cells, while the inner 
nuclear layer (INL) contains bipolar-, amacrine- and 
horizontal cells. The ganglion cell layer (GCL), located 
close to the vitreous, consists of ganglion cells and 
displaced amacrine cells (Hendrickson 2016; Hoshino 
et al. 2017). In humans, the IPL forms first by GW11-12, followed by the OPL, which becomes 
visible by GW16-17 (Hendrickson 2016; Hoshino et al. 2017; Nag and Wadhwa 2001). In 
addition to the six major neuronal cell types, retinal progenitors also give rise to Müller glia 
cells, whose cell bodies are located in the INL with processes spanning the entire retina 
(Hendrickson et al. 2012).  

In the retina, microglia are present by E11.5 in mice (Anderson et al. 2019; Santos et al. 2008) 
and by GW5 in humans (Hu et al. 2019; Mellough et al. 2019). Microglia precursors have been 

suggested to enter the retina 
via two routes: Before 
vascularization is 
established, they migrate 
from the ciliary margin zone 
and cross the vitreous-retina 
surface (Diaz-Araya et al. 
1995; Santos et al. 2008).  

After vascularization, they 
enter from the optic nerve or 
via blood vessels (Diaz-Araya 
et al. 1995; Li, Jiang, and 
Samuel 2019). During 
development, the 
distribution of microglia 
correlates with the retinal 

cell layer formation (Figure 2): Before retinal lamination, most microglia localize close to or 
within the developing GCL. Only few colonize the neuroblastic layer (NbL), which consists of 

Figure 1 – Schematic side view of the adult 
retina. 
ONL: outer nuclear layer, OPL: outer 
plexiform layer, INL: inner nuclear layer, IPL: 
inner plexiform layer, GCL: ganglion cell 
layer. Figure designed with Biorender. 

Figure 2 – Timepoint of retinal lamination in mouse and human.  

GCL: ganglion cell layer. GW: gestational week. INL: inner nuclear layer. 

IPL: inner plexiform layer. NbL: neuroblastic layer. ONL: outer nuclear 

layer. OPL: outer plexiform layer. P: postnatal day. Orange cells: microglia.  
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neuronal progenitor cells (Anderson et al. 2019; Santos et al. 2008). Once the IPL forms 
between the NbL and the GCL, approximately 80% of microglia populate the newly formed 
synaptic layer (Nag and Wadhwa 2001; Santos et al. 2008). Following OPL formation, microglia 
colonization occurs, while they avoid the ONL (Diaz-Araya et al. 1995; Santos et al. 2008; Li et 
al. 2019). In the adult healthy retina, 47% of the retinal microglia reside in the OPL and 53% 
populate the IPL/GCL (Li et al. 2019; O’Koren et al. 2019).  

1.3. The multifunctional role of microglia  
1.3.1. Microglia function during embryonic development 

 

During brain development, neurons are 
generated, organized and connected to 
each other (Barresi 2020; Kelley and Pașca 
2022). Microglia have been identified to 
play a multifunctional role during various 
steps of development, from neurogenesis 
to neuronal organization and connectivity 
(Figure 3). 

 

Microglia influence neurogenesis and neuronal survival  

During embryonic development, multiple studies suggest that microglia promote the 
differentiation of neural stem cells into intermediate progenitors. In zebrafish, the absence 
of microglia prolongs retinal progenitor cell proliferation, thereby inhibiting neuronal 
differentiation resulting in microphthalmia (Huang et al. 2012). Microglia repopulation 
partially recovered this phenotype. Also in mice, microglia elimination results in a decreased 
number of TBR2+ (t-box brain protein 2) intermediate progenitors, concurrently an increase 
of PAX6+ (paired box 6) neural stem cells in the developing forebrain (Arnò et al. 2014; Hattori 
and Miyata 2018).  

Moreover, microglia regulate neuronal cell population size. They phagocytose cleaved-
caspase3+ apoptotic cells as well as viable neurons including TBR2+-PAX6+ neuronal 
progenitors and PCNA+ (proliferating cell nuclear antigen) postmitotic neurons (Cunningham 
et al. 2013). Also in the prenatal retina, microglia have been shown to control RGC number 
(Anderson et al. 2019). Beside their phagocytic activity they are also involved in programmed 
cell death. By releasing superoxide ions, microglia actively induce apoptosis of developing 
Purkinje cells in the mouse cerebellum (Marín-Teva et al. 2004).  

Moreover, microglial processes control neuronal proliferation by interacting with somas of 
DCX+-(doublecortin) immature postmitotic neurons via purinergic signaling (P2RY12) (Cserép 
et al. 2022). Deletion of microglial P2RY12 results in the decrease of proliferating DCX+-
neuron. Postnatally, this interaction assists cortical layer formation and controls neuronal 
density in cortical layer 1 and 6.  

Figure 3 – The multifunctional role of microglia during 

neuronal development.  
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In addition, microglia influence neuronal survival. They secrete multiple neurotrophins in a 
brain region dependent manner (Elkabes et al. 1996) exemplified in the white matter where 
a subset of microglia release insulin-like growth factor 1 (IGF-1), which promotes survival of 
layer V pyramidal neurons (Ueno et al. 2013).  

Microglia assist neuronal circuit formation 

Beside their role during neurogenesis, microglia fine-tune neuronal positioning as shown for 
Lhx6+-interneurons, progenitors of somatostatin-positive interneurons and fast-spiking 
interneurons, in a CX3CR1-dependent manner (Squarzoni et al. 2014). In the retina, microglia 
influence horizontal cell positioning as well as their shape (Burger et al. 2020). Moreover, 
embryonic microglia impact neuronal wiring by restricting dopaminergic axonal outgrowth 
(Squarzoni et al. 2014) and influencing the organization and bundling of axonal fibers within 
the corpus callosum (Pont-Lezica et al. 2014).  

On a synaptic level, microglia promote the formation (Miyamoto et al. 2016; Paolicelli et al. 
2011; Parkhurst et al. 2013), and selective elimination known as ‘synaptic pruning’ of 
immature synapses via the fractalkine receptor CX3CR1 (Paolicelli et al. 2011) or in a 
complement-dependent manner (Schafer et al. 2012; Stevens et al. 2007) to refine neuronal 
connections during postnatal development.  

Microglia impact gliogenesis and vascularization  

Besides regulating neuronal development, microglia-derived factors such interleukin 6 (IL6) 
and leukemia inhibitory factor (LIF) impact astrocyte- and oligodendrocyte differentiation and 
survival (Marsters et al. 2020; Nakanishi et al. 2007). Similar as shown for neuronal 
progenitors, microglia phagocytose oligodendrocyte progenitors, thus influencing their 
maturation into oligodendrocytes which in turn affects neuronal myelination (Nemes-Baran 
et al. 2020). 

In addition, microglia have proangiogenic properties, thereby promoting vascularization. By 
migrating towards endothelial tip-cells, they stimulate their sprouting via the release of 
soluble mediators (Rymo et al. 2011). Moreover, their presence affects the branching 
complexity of the developing vasculature in a region-specific and age-dependent manner 
(Chen et al. 2024). 

 

1.3.2. Microglia phenotype during development 

Transcriptional profiling has identified that microglia are highly heterogenous during 
development and that this diversity decreases with age, resulting in limited heterogeneity in 
the healthy adult CNS in mice (Hammond et al., 2019; Li et al., 2019; Masuda et al., 2019; 
Matcovitch-Natan et al., 2016) and human (Kracht et al. 2020; Yaqubi et al. 2023). Human 
prenatal microglia show a gene signature associated to a high phagocytic capacity and a high 
activity of transcription factors that control cell proliferation compared to postnatal microglia, 
which acquire an immune-responsive profile (Han et al. 2023; Kracht et al. 2020; Yaqubi et al. 
2023).  



6 
 

Microglia maturation is further indicated by their morphology. During development, they 
commonly represent an amoeboid or bipolar-like shape, with large and rounded cell bodies 
and short, thick branches (Diaz-Araya et al. 1995; Monier et al. 2007; Santos et al. 2008). In 
contrast, in adulthood, microglia exhibit a ramified shape under homeostatic condition (Sierra 
et al. 2016). Although less ramified, also embryonic microglia monitor their environment by 
constantly extending and retracting their processes (Hattori and Miyata 2018; Rosin et al. 
2021).  

1.3.3. Microglia function as immune cells 

As the main resident immune cells of the CNS, microglia play a key role in neuroinflammation 
(Hanisch and Kettenmann 2007; Kreutzberg 1996). They express a set of pattern recognition 
receptors, such as toll-like receptors (TLRs), to detect damage-associated molecular patterns 
(DAMPs) and pathogen-associated molecular patterns (PAMPs) to recognize injuries and 
diseases or potential infections respectively (Bsibsi et al. 2002; Davalos et al. 2005; Hickman 
et al. 2013; Venegas and Heneka 2017).  

In the CNS, microglia express various TLRs (Bsibsi et al. 2002) to either sense viral components 
such as double-stranded RNA via TLR3 (Alexopoulou et al. 2001; Town et al. 2006) or single-
stranded RNA via TLR7 and TLR8 (Seitz et al. 2018; Wheeler et al. 2018). Upon receptor 
stimulation, a signaling cascade involving the NFkB- and the interferon pathway is triggered, 
resulting in the release of inflammatory mediators including cytokines and chemokines 
(Alexopoulou et al. 2001; Kawai and Akira 2010; Matsumoto and Seya 2008; Town et al. 2006). 
These signaling molecules are important to recruit peripheral immune cell populations 
including monocytes, neutrophils, dendritic cells and T-cells into the CNS to resolve the 
infection (Chen et al. 2003; Fife et al. 2001; Johnson et al. 2011; Romagnani and Crescioli 
2012; Ubogu et al. 2006). 

Beside secreting inflammatory mediator, microglia response to viral infections is associated 
to morphological changes (Quick et al. 2014), and that they phagocytose infected, damaged 
or dead cells (Chhor et al. 2013; Colonna and Butovsky 2017; Quick et al. 2014). Upon viral 
infection, microglia exhibit a dual role: On one hand, they are protective as microglia restrict 
viral growth and reduce mortality (Seitz et al., 2018; Wheeler et al., 2018). On the other hand, 
they have destructive effects by removing synapses (Garber et al. 2019).  

1.4. Establishing a human model system 

Although rodent models have provided important insights into the multifunctional role of 
microglia, there is still limited knowledge about their role in humans. Beside their brain size, 
human and rodents differ in their developmental timeline, neuronal composition and 
diversification as well as brain complexity and organization (Agoston, 2017; Boldog et al., 
2018; Vanderhaeghen & Polleux, 2023; Zeiss, 2021). Their difference is also reflected by 
microglial transcriptional signature and metabolic reprogramming associated with immune 
response and neurodegenerative diseases (Geirsdottir et al. 2019; Sabogal-Guáqueta et al. 
2023) emphasizing the necessity to establish and investigate human models.  
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Primary human microglia cultures 

One possible strategy to study human microglia is to generate primary microglia cultures by 
isolating them acutely from human fetal and post-mortem tissue, or disease surgical explants 
(Mizee et al. 2017; Rustenhoven et al. 2016). Besides ethical concerns and accessibility, 
several biological concerns exist such as tissue origin and age of the donor or cell manipulation 
due to the isolation procedure which affects microglia survival rates (Pesti et al. 2024). 
Moreover, it has been shown that isolated microglia quickly adapt to their local 
microenvironment upon removal from their native tissue context (Bohlen et al. 2017; 
Butovsky et al. 2014; Gosselin et al. 2017). In vitro, microglia adapt their morphology from a 
ramified homeostatic to a more ameboid shape (Bohlen et al. 2017) and alter their 
transcriptional profile by downregulating microglia specific genes like P2RY12 and TMEM119 
(Gosselin et al. 2017). 

Microglia cell lines 

Human microglia cell lines such as the human microglial clone 3 cell line (HMC3) provide an 
alternative to primary cultures. HMC3 cells originate from primary human embryonic 
microglia cultures immortalized through transduction of the oncogene SV40 (SV40 
Transcriptional Enhancer Factor) (Janabi et al. 1995; Timmermanet al. 2018). The 
immortalization induces an unrestricted proliferative capacity, which might interfere with the 
microglia phenotype (Dello Russo et al. 2018). In parallel, it allows to overcome limitations in 
availability and variability in donor origin compared to primary cultures. Since these cell lines 
are derived from primary microglia similar disadvantages apply as described for primary 
microglia cultures.  
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1.4.1. Human pluripotent stem cells (hPSC) 

Human embryonic stem cells (hESC) 

Human pluripotent stem cells (hPSC) provide the unique possibility to establish human-
related models. In 1998, Thompson et al. generated the first human embryonic stem cell 
(hESC) line, derived from an embryo’s inner cell mass at the blastocyst stage. These cells 
express pluripotency markers like SSEA-4 (stage-specific embryonic antigen 4), or the 
podocalyxin (TRA-1-60 and TRA-1-81), and have the potential to differentiate into cells from 
all three germ layers endoderm, mesoderm and ectoderm in vitro (Thomson et al. 1998). Since 
hESCs are obtained from in vitro fertilized human embryos, which raises strong ethical 
concerns, researchers have investigated alternative methods to generate pluripotent stem 
cells from somatic tissue.  

Human induced pluripotent stem cells (hIPSC)  

In 2007, human induced pluripotent stem cells (hIPSC) were reprogrammed from human 
dermal fibroblasts via the expression of a cocktail of four transcriptions factors (pluripotency 
factors): octamer-binding transcription factors 4 (OCT4), sex determining region Y-box 2 

(SOX2), kruppel-like 
factor 4 (KLF4), and bHLH 
transcription factor MYC 
proto-oncogene c-Myc  
(Takahashi et al. 2007); 
or OCT4, SOX2, nanog 
homeobox (NANOG) and 
zinc finger CCHC domain-
containing protein 
(LIN28) (Yu et al. 2007). 
hIPSC can be derived 

from various somatic cell types using different approaches to deliver the reprogramming 
factors (Malik and Rao 2013). hIPSCs show similar characteristics as hESCs because they self-
renew and can differentiate into any somatic adult cell type from all three germ layers endo-
, meso-, and ectoderm Figure 4 (Takahashi et al. 2007; Yu et al. 2007).  

1.4.2. Differentiation of hPSC-derived microglia precursors 

hESCs and hIPSCs can be differentiated into diverse cell types, from neurons to astrocytes 
(Emdad et al. 2012; Qi et al. 2017; TCW et al. 2017). In 2012, the first study described the 
differentiation of microglia-like precursors (Roy 2012). Several groups have guided iPSC-
differentiation to specifically obtain EMPs or microglia precursors (Abud et al. 2017; Douvaras 
et al. 2017; Guttikonda et al. 2021; Haenseler et al. 2017; Konttinen et al. 2019; McQuade et 
al. 2018; Muffat et al. 2016; Pandya et al. 2017; Takata et al. 2017). These protocols aim to 
mirror the main characteristics of microglia development, inspired by ontogeny studies 
(Ginhoux et al. 2010; Kierdorf et al. 2013). The steps include mesoderm induction, followed 
by hematopoietic lineage specification, which gives rise to EMPs. Those are further 
differentiated into MYB-independent microglia precursors (Guttikonda et al. 2021; Haenseler 
et al. 2017; Takata et al. 2017). A common feature of all protocols is that they sequentially 
apply a cocktail of growth factors or small molecules to induce microglia differentiation (Abud 

Figure 4 – Schematic overview of hIPSCs. HIPSC: human in human induced 
pluripotent stem cells. 
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et al. 2017; Douvaras et al. 2017; Guttikonda et al. 2021; Haenseler et al. 2017; Konttinen et 
al. 2019; McQuade et al. 2018; Muffat et al. 2016; Pandya et al. 2017; Takata et al. 2017). 

Growth factors 

The protocols differ in the initiation of the differentiation, which affects the requirement of 
growth factors, the duration of the culture periods, the necessity of enriching intermediate 
progenitors, and the overall yield (see Table 1). Each protocol is based on a unique 
combination and timing of growth factors. However, a common growth factor is the bone 
morphogenetic protein 4 (BMP4), which is applied to mimic mesodermal lineage induction 
(Abud et al. 2017; Douvaras et al. 2017; Guttikonda et al. 2021; Konttinen et al. 2019; 
McQuade et al. 2018; Pandya et al. 2017; Takata et al. 2017). BMPs regulate multiple aspects 
of embryonic development and progenitor fate decisions: E.g. they are critical for the 
formation of the body plan (Heisenberg and Solnica-Krezel 2008), early hematopoiesis 
(Larsson and Karlsson 2005), and neuronal development (Liu and Niswander 2005). Therefore, 
the timing and duration of BMP4 treatment is critical: while short-term treatment (~24 hours) 
promotes early mesoderm induction, which can subsequently differentiate into e.g., 
hematopoietic lineages (Feng et al. 2016); long-term treatment for more than two days leads 
to trophoblast and extraembryonic endoderm formation (P. Zhang et al., 2008). In addition 
to BMP4, some protocols use stem cell factor (SCF) and/ or vascular endothelial growth factor 
(VEGF) to promote further mesodermal specification (Abud et al. 2017; Douvaras et al. 2017; 
Guttikonda et al. 2021; Haenseler et al. 2017; Konttinen et al. 2019; McQuade et al. 2018; 
Muffat et al. 2016; Pandya et al. 2017; Takata et al. 2017). 

Once the mesodermal lineage is induced, these protocols supplement the media with 
macrophage colony stimulating factor (MCSF/ CSF1), granulocyte-macrophage colony 
stimulating factor (GMCSF) and interleukin 34 (IL34), which bind to the colony stimulating 
factor 1 receptor (CSF1R) to promote microglia precursors specification (Abud et al. 2017; 
Douvaras et al. 2017; Guttikonda et al. 2021; Haenseler et al. 2017; Konttinen et al. 2019; 
McQuade et al. 2018; Muffat et al. 2016; Pandya et al. 2017; Takata et al. 2017). CSF1R 
signaling is essential for microglia colonization, proliferation, differentiation, and survival 
(Easley-Neal et al. 2019; Ginhoux et al. 2010; Greter et al. 2012).  

For maintenance and maturation of microglia-like cells (iMG), precursor cells are either co-
cultured with neurons or astrocytes (Guttikonda et al. 2021; Haenseler et al. 2017; Pandya et 
al. 2017; Takata et al. 2017), or the medium is supplemented with growth factors such as 
transforming growth factor beta (TGFb) to mimic a neuronal microenvironment (Abud et al. 
2017; Douvaras et al. 2017; Konttinen et al. 2019; McQuade et al. 2018).  
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Table 1 – Comparison of protocols differentiating microglia-like cells. BMP4: bone morphogenic protein 4. 
C1QA: Complement C1q A chain. CD11B: Integrin subunit alpha M. CD11C: Integrin subunit alpha X.CD14: 
monocyte differentiation antigen CD14. CD34:CD43: Hematopoietic progenitor cell antigen CD34. CD43: 
Leukosialin. CD45: Protein tyrosine phosphatase receptor type C. CD163: Scavenger receptor cysteine-rich type 
1 protein M130. CD200: CD200 antigen. CHIR9902: GSK3 inhibitor. CX3CL1: C-X3-C motif chemokine ligand 1. 
CX3CR1: C-X3-C motif chemokine receptor 1. EB: embryoid body. FGF: fibroblast growth factor. FLT3: Fms related 
receptor tyrosine kinase 3. GMCSF: granulocyte-macrophage colony stimulating factor. GPR34: G protein-
coupled receptor 34. hIPSC: human induced pluripotent stem cells. HLA-DR: Major histocompatibility complex, 
class II, DR beta 1. IBA1: Ionized calcium-binding adapter molecule 1. IL: interleukin. IWP: Nodal signaling 
activator. LiCl: lithium chloride. MCSF: macrophage colony stimulating factor. P2RY12: Purinergic receptor P2Y, 
G-protein coupled, 12. PU.1: Hematopoietic transcription factor PU.1/ Spi-1 proto-oncogene. SCF: stem cell 
factor. TGFb: transforming growth factor β. TMEM119: Transmembrane protein 119. TPO: thioperoxides. 
TREM2: Triggering receptor expressed on myeloid cells 2. VEGF: vascular endothelial growth factor.  
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et al. 
2017 

Douvaras 
et al. 
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Haenseler 
et al.  
2017 

Takata 
et al. 
2017 

Konttinen 
et al.  
2018 

McQuade 
et al.  
2018 

Gutti-
konada 

et al. 2021  

Starting 
condition 

EBs hIPSC  IPSC  hIPSC  EBs hIPSC  hIPSC  hIPSC  hIPSC  

Factors for 
mesoderm 

specification 
 

BMP4, 
VEGF, 
SCF, 

ActivinA 
(Hypoxia  
until D10) 

BMP4, 
VEGF, 
FGF2, 

ActivinA, 
LiCl 

(Hypoxia 
until D4) 

BMP4, 
VEGF, 
SCF, 
bFGF 

BMP4, 
VEGF, 

SCF 

BMP4, 
VEGF, 
bFGF, 

CHIR99021 
(Hypoxia 
until D10) 

BMP4, 
CHIR99021 

ActivinA 
Rock 

inhibitor 
(Hypoxia 
until D4) 

Medium A 
Supp-

lement A 

CHIR9902 
BMP-4, 

ActivinA,  
IWP2 

Factors for 
progenitor 
expansion 

IL34, 
MCSF 

IL3, IL6, 
G-CSF, 

SCF, 
BMP4, 
Flt3L 

SCF, 
FGF2, 

TPO, IL3, 
IL6 

IL3, 
TPO, 
FLT3 

MCSF, 
SCF, 

IL3, 
M-CSF 

IL3, IL6, 
SCF, 

VEGF, 
bFGF, 
DKK1 

VEGF, 
FGF2, 

SB431512, 
IL3, IL6, 

SCF, TPO 

Medium B 
Supp-

lement B 

VEGF, 
FGF2, 

SCF, IL6, 
IL3, 
TPO 

Progenitor 
maturation 

IL34, 
MCSF 

IL3, 
MCSF, 
GMCSF 

IL34, 
MCSF, 
TGFb 

IL34, 
GMCSF, 

FLT3 

IL34, 
MCSF 

MCSF 

IL34, 
MCSF 

IL34, 
MCSF, 
TGFb 

IL34, 
MCSF 

Terminal 
different-

iation  
into iMG 

Astrocytes 
+ IL3, 
MCSF, 
GMCSF 

Rat 
neurons 

IL34, 
MCSF, 
TGF,  

CD200, 
CX3CL1 

GMCSF, 
IL34 

Cortical 
neurons 

Cortical 
neurons 

IL34, 
MCSF, 
TGFb, 

CD200, 
CX3CL1 

Cortical 
neurons +  

IL34.  
MCSF 

Table continued on next page… 
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adherent 
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adherent 
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adherent 
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harvests 
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harvests 

Single 
harvest 
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harvest 

Single 
harvest 
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harvest 
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microglia 
markers 

TMEM119, 
P2RY12, 

IBA1, 
CD45, 
PU.1, 

CD11B 

CD11B, 
IBA1, 
CD45, 

CX3CR1, 
TREM2, 
HLA-DR 

CD11B, 
CD45, 

TREM2, 
PU.1, 

CX3CR1, 
P2RY12 

IBA1, 
CD11C, 

TMEM119, 
CD11B, 
CX3CR1 

CD11B, 
CD14, 
CD45, 

TMEM119, 
P2RY12 

IBA1, 
CX3CR1 

IBA1, 
CX3CR1, 

TMEM119, 
P2RY12, 
TREM2 
PU.1, 

P2RY12,  
TREM2, 

CD45 

IBA1, PU.1, 
CX3CR1, 

TMEM119, 
C1QA, 

P2RY12, 
GPR34 

Functional 
assays 

Phago-
cytosis 

Migration, 
phago-
cytosis 

Phago-
cytosis 

Phago-
cytosis, 

inflamm-
atory 

response 

Migration, 
phago-
cytosis, 

inflamm-
atory 

response 

Phago-
cytosis 

 
Phago- 
cytosis 

Phago-
cytosis, 

Inflamm-
atory 

response 
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Alternative strategies 

Alternatively, forward programming has been applied to generate iMG. This approach rapidly 
directs hIPSCs to differentiate into a distinct somatic cell by transiently overexpressing key 
transcription factors characteristic for the specific cell type. To induce iMG-differentiation, 
studies use two or a combination of up to six transcription factors highly expressed by microglia 
(Table 2) (Chen et al. 2021; Dräger et al. 2022; Speicher et al. 2022). PU.1 overexpression is a 
common feature, as it is highly expressed throughout embryonic development of microglia 
(Ginhoux et al. 2010; Hagemeyer et al. 2016) Depending on the protocol, iMG are generated 
within 8 to 16 days and resemble other hIPSC-derived iMGs in their identity and functionality.  

Table 2 – Overview forward programming approaches to generate microglia like cells. 
C1QA: Complement C1q A chain. Ca2+: calcium ion. CD11B: Integrin subunit alpha M. CEBPα: CCAAT enhancer 
binding protein alpha. CEBPβ: CCAAT enhancer binding protein beta. CX3CR1: C-X3-C motif chemokine receptor 1. 
GAS6: Growth arrest specific 6. GPR34: G protein-coupled receptor 34. IBA1: Ionized calcium-binding adapter 
molecule 1. IRF5: Interferon regulatory factor 5. IRF8: Interferon regulatory factor 8. MAFB: MAF BZIP transcription 
factor B. MERTK: MER receptor tyrosine kinase. P2RY12: Purinergic receptor P2Y, G-protein coupled, 12. PROS1: 
Protein S.PU.1: Hematopoietic transcription factor PU.1/ Spi-1 proto-oncogene. ROS: reactive oxygen species. 
TMEM119: Transmembrane protein 119. TREM2: Triggering receptor expressed on myeloid cells 2.  

Protocol 
Transcription 
factors used 

Days required 
until analysis 

Tested microglia 
markers 

Functional assays 

Chen et al. 
2021 

• PU.1 

• (CEBPα) 
10 days 

CD11B, C1QA, 
CX3CR1, IBA1, PU.1, 
P2RY12, TMEM119, 

TREM2 
RNA sequencing 

Ca2+-activity, 
phagocytosis, 
inflammatory 

response 

Dräger et al. 
2022 

• PU.1 

• MAFB 

• CEBPα 

• CEBPβ 

• IRF5 

• IRF8 

8 days 
IBA1, GPR34 

RNA sequencing 

Phagocytosis, 
inflammatory 

response 

Speicher et al. 
2022 

• PU.1 

• CEBPβ 
16 days 

IBA1, P2RY12, GAS6, 
MERTK, C1QA, 
PROS1, GPR34, 

CX3CR1, TMEM119 
RNA sequencing 

Ca2+-activity, 
phagocytosis, 
inflammatory 

response,  
ROS production 

Validation 

HIPSC-derived iMG are characterized using various combinations of several methods including 
immunohistochemistry, gene expression profiling and functional analysis (Table 1-2). To verify 
their microglia-like identity, studies performed immunofluorescent staining, florescent activated 
cell sorting (FACS) or real-time quantitative polymerase chain reaction (rt-qPCR) to assess the 
expression of general macrophage markers including CD45, CX3CR1, IBA1 and microglia-specific 
markers TMEM119 and P2RY12(Abud et al. 2017; Chen et al. 2021; Douvaras et al. 2017; Dräger 
et al. 2022; Guttikonda et al. 2021; Haenseler et al. 2017; Hübschmann, Korkut-Demirbaş, and 
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Siegert 2022; Konttinen et al. 2019; McQuade et al. 2018; Muffat et al. 2016; Pandya et al. 2017; 
Speicher et al. 2022; Takata et al. 2017). To confirm that iMG exhibit functional activity similar to 
their in vivo counterparts, these studies performed calcium activity-, phagocytosis-, migration or 
inflammatory response assays. RNA sequencing revealed that hIPSC-derived iMG more closely 
resemble human fetal than adult microglia or monocytes (Abud et al. 2017; Douvaras et al. 2017; 
Konttinen et al. 2019; McQuade et al. 2018). 

1.4.3. Generation of hPSC-derived brain organoids  

Beyond the differentiation of individual cell types, hPSCs including hESC and hIPSC can also 
generate self-organizing three-dimensional structures known as organoids. They typically consist 
of multiple cell types, which mimic certain aspects of the development, the anatomical 
arrangement and function of the respective organ (Bagley et al., 2017; Camp et al., 2015; Renner 
et al., 2017; Sloan et al., 2018; Zhong et al., 2014). 3D-organoids provide a better representation 
of cell-cell interactions and tissue architecture observed in vivo compared to 2D models, in which 
cells are grown as a flat monolayer (Cowan et al. 2020; Lancaster et al. 2013).  

Unguided/ minimally guided brain organoid approaches 

Unguided or minimally guided protocols rely on intrinsic signaling and self-patterning capacities 
resulting in the parallel formation of a heterogenous mixture of various brain regions including 
fore-, mid- and hindbrain, retina, choroid plexus and mesodermal cells (Qian et al. 2019). Typical 
minimally guided approaches include protocols to generate cerebral- (Lancaster et al. 2013; 
Renner et al. 2017) and retinal organoids (Zhong et al. 2014). While these protocols mimic tissue 
interactions between different brain regions and rely on minimal interference, the disadvantage 
of this strategy is the unpredictable heterogeneous mix of tissue identities and a higher degree 
of variability.  

Guided brain organoid approaches 

Alternatively, guided differentiation protocols rely on the timed application of small molecules 
and growth factors to direct cell fate towards a desired tissue (Qian et al. 2019) like cerebral 
cortex (Pasca et al. 2015), midbrain- (Kim et al. 2019; Smits et al. 2019), thalamic- (Xiang et al. 
2019) or choroid plexus organoids (Pellegrini et al. 2020). For these protocols, it is necessary to 
evaluate the optimal timing, concentration and combination of factors to induce the desired 
tissue fate (Amin et al. 2024). The advantage is the reproducibility of cell type proportions, while 
their cyto-architecture and cell-cell interactions are less representative compared to unguided 
approaches (Qian et al. 2019; Sloan et al. 2018).  
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Retinal organoids mimic structural and functional properties of the in vivo retina  

My thesis focuses on retinal organoids (3DRO), one of the first established brain organoid models 
(Eiraku et al. 2011). 3D-organoids recapitulate several key features compared to the in vivo tissue 
(Cowan et al. 2020; Zhong et al. 2014), concurrently their limitations need to be considered. 

First, 3DROs mimic retinal morphogenesis by forming optic-cup like structures and follow the 
developmental trajectories of ectodermal-derived retinal cell types in a specific and temporal 
order (Cowan et al. 2020; Hoshino et al. 2017; Sridhar et al. 2020): Initially, retinal ganglion cells 
are born, followed by amacrine cells, horizontal cells and cone photoreceptors. Later during 
development, bipolar cells, rod photoreceptors and Mueller glia cells emerge. Consequently, 

3DRO exhibit a comparable neuronal cellular composition that closely resembles that of the 
human fetal retina at equivalent developmental stages (Cowan et al. 2020; Hoshino et al. 2017; 
Sridhar et al. 2020). However, some cell types which are not derived from the ectoderm including 
blood vessels and immune cells are lacking (Collin et al. 2019; Cowan et al. 2020; S. Kim et al. 
2019). 

3DROs also mimic the retinal cyto-architecture. In early stages, the organoid consists of a 
neuroblastic layer (NbL) with retinal progenitors and a retinal ganglion cell layer (Hoshino et al. 
2017; Zhong et al. 2014). As development progresses, retinal cell bodies arrange in a five layered 
structure as described in Figure 1 (Cowan et al. 2020; Hoshino et al. 2017; Sridhar et al. 2020). 
Thus, they also represent certain cell-cell interactions. It has been shown that 3DRO develop 
ribbon synapses between photoreceptors and bipolar cells (Cora et al. 2019). In contrast, the 
retinal pigment epithelium which should grow adjacent to the developing photoreceptors is 
generated but misplaced (Kolb et al. 1995; Zhong et al. 2014). 

Finally, 3DROs show some functional properties of the respective organ: In late-stages, 3DRO, 
photoreceptors develop rudimentary outer segment-like structures facing the surface of the 
organoid (Wahlin et al. 2017). These specialized structures are involved in capturing light and 
initiating the visual transduction process (Gupta et al., 2016; Kolb et al., 1995). While some 
photoreceptors show a response to light flashes, 3DROs exhibit a limited functional maturation 
compared to in vivo (Cowan et al., 2020; Hallam et al., 2018; Saha et al., 2022; Zhong et al., 2014). 
Moreover, long term cultures result in the degeneration of ganglion cells and cells of the INL 
(Capowski et al. 2019; Cowan et al. 2020; Fligor et al. 2021; Wagstaff et al. 2021).  

Overall, 3DRO provide a powerful tool to study human development (Cowan et al. 2020; Hoshino 
et al. 2017; Sridhar et al. 2020), to model diseases (Ashworth et al. 2024), to screen potential 
drugs (Spirig et al. 2023) and to develop cell replacement therapies (Hirami et al. 2023)   



15 
 

1.5. Outline of the thesis and research question 

Viral infection-induced inflammation during pregnancy has been associated to malformations of 
the fetal brain (Auriti et al. 2021; Meyer 2019). Microglia respond to inflammatory signals (Bsibsi 
et al. 2002; Hickman et al. 2013) and at the same time actively modify neuronal development on 
the cellular- and synaptic level (Cunningham et al. 2013, 2013; Guizzetti et al. 2014; Schafer et al. 
2012; Squarzoni et al. 2014). We know surprisingly little about how microglia balance the 
different demands during human embryonic development and which functional consequences 
an inflammatory environment has on neuronal organization and connectivity.  

Brain organoids provide a unique opportunity to investigate this relationship. However, they 
commonly lack mesodermal-derived microglia (Camp et al. 2015; Collin et al. 2019; Cowan et al. 
2020; Ginhoux and Prinz 2015; S. Kim et al. 2019). Brain organoid protocols favor the formation 
of neuroectodermal-derived cell types, including neurons and astrocytes (Noctor et al. 2002), and 
dampen endo- and mesoderm formation (Lancaster et al. 2013; Renner et al. 2017). Interestingly, 
some unguided brain organoid protocols have reported the presence of innately developing 
microglia-like cells (Gabriel et al. 2021; Ormel et al. 2018; Shiraki et al. 2022). 

In my thesis, I aimed to assess human microglia-neuron interaction during embryonic 
development in a well-defined brain region, namely the retina. Due to their early presence in 
fetal brain tissue, including the retina (Hu et al., 2019; Mellough et al., 2019; Monier et al., 2006) 
and their reported neurodevelopmental role (Cunningham et al. 2013, 2013; Guizzetti et al. 2014; 
Schafer et al. 2012; Squarzoni et al. 2014), I propose that microglia presence impacts neuronal 
patterning and activity during retinal development.  

In rodent models, prenatal immune activation has been reported to modulate microglia 
properties (He et al. 2021; Loayza et al. 2022; Ozaki et al. 2020; Pratt et al. 2013; Squarzoni et al. 
2014) and to interfere with developmental processes, including neurogenesis, neuronal 
differentiation, axonal outgrowth, synaptogenesis, which are known to be influenced by 
microglia (Andoh et al. 2019; Ben-Reuven and Reiner 2019; Coiro et al. 2015; Cunningham et al. 
2013; Forrest et al. 2012; Giovanoli et al. 2016; Squarzoni et al. 2014). Thus, I postulate that 
microglia are involved in translating viral-mediated stimulation into neuronal consequences. 
Finally, I was interested if the application of the anti-inflammatory drug ibuprofen can modulate 
viral-mediated developmental abnormalities.  
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In my thesis I investigated the following questions and aims:  

1. Do microglia like-cells innately develop during retinal organoid differentiation and do 
they populate retinal structures? 
 

2. Characterizing the identity and function of hIPSC-derived microglia precursors. 
 

3. Assessing the neuro-developmental role of human microglia during retinal organoid 
development. 
 

4. Modeling prenatal immune activation to determine the immune-modulatory function of 
microglia and consequences on retinal development 

 

5. Does an anti-inflammatory treatment using ibuprofen rescue or ameliorate viral-
mediated developmental abnormalities? 
 

To address these questions, we applied an unguided differentiation protocol to generate retinal 
organoids (Cowan et al. 2020; Zhong et al. 2014) and characterized whether IBA1+-microglia 
innately develop within the differentiation. As microglia did not populate the retinal cup, instead 
occupied mesenchymal structures, we established a protocol to enrich for microglia precursors 
using a BMP4-guided protocol (chapter 1). 
Next, I integrated these microglia precursors into retinal structures to investigate microglia- 
neuron interaction during retinal development, upon viral stimulation and following anti-
inflammatory treatment (chapter 2).  

  



17 
 

2. CHAPTER 1 | A systematic characterization of microglia-like cell 
occurrence during retinal organoid differentiation.  

Chapter 1 is based on the following publication: 

Bartalska, K.*, Hübschmann, V.*, Korkut-Demirbaş, M.*, Cubero, R.J.A., Venturino, A., Rössler, 
K., Czech, T., and Siegert, S. (2022). A systematic characterization of microglia-like cell 
occurrence during retinal organoid differentiation. iScience 25, 104580. 
https://doi.org/10.1016/j.isci.2022.104580.  
* shared authorship 

2.1. Keywords 
Human induced pluripotent stem cells (hIPSC), microglia, IBA1, retinal organoids, BMP4, 
mesenchymal, CD163 

2.2. Introduction 
The human brain consists of billions of neurons, glial and endothelial cells that self-organize 
during development into cellular networks, which perform distinct functions (Barresi 2020). 
Microglia, the brain parenchymal immune cells, fine-tune neuronal circuits at the cellular and 
synaptic level (Cunningham et al. 2013; Guizzetti et al. 2014; Schafer et al. 2012; Squarzoni et al. 
2014). They derive from a primitive macrophage population, which develops within the yolk sac 
in both mouse (Ginhoux et al. 2010) and humans (Bian et al. 2020). Therefore, they represent a 
distinct macrophage population as they occur prior to the onset of hepatic and bone marrow 
hematopoiesis (Juul and Christensen 2018; Menassa and Gomez-Nicola 2018). Immunostaining 
of human embryonic brain tissue indicates that microglia enter the cerebral wall from the 
ventricular lumen and the leptomeninges at 4.5 gestation weeks and gradually colonize the 
cortex (Monier et al. 2007; Rezaie et al. 2005). The critical role of microglia in early human brain 
development has been further supported by hereditary mutations in macrophage-selective 
genes that cause numerous structural brain malformations in pediatric leukoencephalopathy 
(Oosterhof et al. 2019) A current bottleneck is the lack of accessible models that accurately 
recapitulate human microglia development, distribution and action during circuit formation. So 
far, our knowledge is mostly limited to observations from post-mortem fetal brain studies or non-
human model systems like mice. 

Human induced pluripotent stem cells (hIPSC) have revolutionized the field of tissue engineering 
and allow exploring aspects of embryonic brain (Bagley et al. 2017; Camp et al. 2015; Renner et 
al. 2017; Sloan et al. 2018). However, mesoderm-derived microglia are commonly lacking within 
cerebral organoids (Collin et al. 2019; Cowan et al. 2020; S. Kim et al. 2019). One likely explanation 
for this is that differentiation protocols often use supplements to direct hIPSC-formed embryoid 
bodies (EB) towards the neuroectodermal lineage to obtain cerebral organoids (Chambers et al. 
2009; Pasca et al. 2015). To obtain human microglia-like cells, several groups have established 
guided protocols with BMP4 as a common nominator (Abud et al. 2017; Douvaras et al. 2017; 
Guttikonda et al. 2021; Haenseler et al. 2017; Konttinen et al. 2019; McQuade et al. 2018; Muffat 
et al. 2016; Pandya et al. 2017; Takata et al. 2017). Thus, several groups have assembled the 

https://doi.org/10.1016/j.isci.2022.104580
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hIPSC-derived microglia-like cells with separately-derived cerebral organoids to analyze microglia 
function and interaction with neurons (Abud et al. 2017; Song et al. 2019; Xu et al. 2021) but this 
does not capture the natural progression of microglial appearance and distribution within brain 
tissue.  

Unguided cerebral organoid differentiation provides an alternative strategy to capture various 
cell types. Here, EBs are cultured with minimal external interference and self-organize to a variety 
of cell lineage identities from fore-, mid- and hindbrain (Qian et al. 2019). The hIPSC 
differentiation towards retinal organoids has been one of the first brain region-specific protocols 
(Eiraku et al. 2011; Nakano et al. 2012). This method reliably recapitulates the typical optical cup 
structure, expresses markers of well-defined cell types, and shows a light-sensitive response 
(Cowan et al. 2020; Zhong et al. 2014). In contrast, data are controversial regarding microglia 
occurrence in organoids. Whereas protocols report that microglia innately developed within 
cerebral organoids (Ormel et al. 2018), or single-cell RNA-sequencing identified a glial cluster 
expressing microglia-specific markers (Gabriel et al. 2021), other studies do not show, or the 
provided data do not support, their presence in retinal organoids (Collin et al. 2019; Cowan et al. 
2020; S. Kim et al. 2019). On the other hand, microglia appear early in human embryonic retinal 
tissue at gestation week 5 as indicated by a microglial transcriptional signature (Hu et al. 2019; 
Mellough et al. 2019), and their localization within the human retinal layers by gestation week 
10 (Diaz-Araya et al. 1995). To clarify whether microglia develop in unguided retinal organoid 
differentiation protocol (referred from now on as unguided protocol), we implemented the 
protocol from (Zhong et al. 2014) and stained with the pan-macrophage marker IBA1/AIF1 
(ionized calcium binding adaptor molecule 1/ allograft inflammatory factor 1), which identifies 
brain parenchymal- (microglia), blood-derived- (MΦ), and border-associated- (perivascular 
pvMΦ, leptomeningeal mMΦ, choroid plexus cpMΦ) macrophages (Imai et al. 1996; Ito et al. 
2001; Kierdorf et al. 2019; Prinz and Priller 2014). In 2.5D cultures, we consistently found IBA1+-
cells in parallel to developing retinal organoids by differentiation week 3 to 4. However, these 
IBA1+-cells rarely occupied the retinal or cerebral compartment and preferentially occurred in 
non-pigmented, cystic compartments that are commonly overlooked in organoid-focused 
studies.  

Such cystic structures have also been mentioned in other microglia differentiation protocols 
(Haenseler et al. 2017; Muffat et al. 2016; Vaughan-Jackson et al. 2021). One common factor that 
is frequently used to enhance for microglia is BMP4. Therefore, we applied a low-dosed BMP4 to 
the otherwise unchanged protocol to verify whether we can enrich for these 3D-cysts. We 
identified that these cysts highly express the mesenchymal and epithelial markers vimentin and 
E-Cadherin, respectively, and we confirmed a similar expression pattern in the cystic 
compartments in our unguided protocol. Finally, we found a strong overlap between IBA1 and 
CD163 expression, a marker for border-associated macrophages (BAMs) that reside either at 
perivascular structures, meninges, or choroid plexus, all of mesenchymal nature (Lun, Monuki, 
and Lehtinen 2015; MacCord 2012; Pill et al. 2015). The expression is turned on between week 5 
and 6 in 2.5D culture.  
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In summary, our results confirm that IBA1+-cells exist in our unguided protocol, and we map their 
presence to cystic mesenchymal-like compartments, which co-developed alongside to 3D-retinal 
organoids. This work offers a model for exploring microglia integration during early development, 
and provides a foundation for future studies to dissect the molecular signaling mechanisms that 
attract microglia and foster their incorporation into cerebral organoids.
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Materials and Methods 

Ethical approval 
The IST Austria Ethics Officer and Ethics Committee approved the use of human induced 
pluripotent stem cells (hIPSC). The use of human brain samples was approved by the Ethics 
Committee of the Medical University Vienna.  

Primary human tissue samples 
Human brain samples were explanted from the temporal cortex (T1) of patients undergoing 
temporal lobe surgery for epilepsy treatment. Immediately after the surgical explant, the samples 
were transferred into saline solution (0.9% (v/v) NaCl (Braun 3570160) in H2O). The tissue was 
immersed in 4% (w/v) PFA within 5 minutes and post-fixed on an orbital shaker at 4ºC overnight.  

Cell lines 

This study used two human induced pluripotent stem cell lines: SC 102A-1 GVO-SBI Human 
Fibroblast-derived (feeder-free) iPSC cell line (BioCat; male; hPSCreg.eu: SBLi006-A; in this study 
referred to SC102A). NCRM-5 (aka NL-5; human umbilical cord blood CD34+ cells derived; RUCDR 
Infinite Biologicals, Cell line ID: CR0000005, NHCDR ID: ND5003; male; hPSCreg.eu: CRMi001-A; 
in this study referred to CR05). For more details, see (Table 3).  

Table 3 – Overview of human induced pluripotent stem lines included in chapter 1.  
hPSCreg.eu, human pluripotent stem cell registry. MYC, MYC proto-oncogene. KLF4, kruppel like factor 4. Large T 
antigen, large tumor antigen. LIN28, zinc finger CCHC domain-containing protein. OCT4, octamer-binding protein 4. 
POU5F1, POU domain, class 5, transcription factor 1. SOX2, sex determining region Y-box 2. SV40, simian-virus 40.  

  

Cell line SC 102A-1 
CRMi001-A,  
CR0000005, NCRM-5, NL-5 

hPSCreg.eu SBLi006-A CRMi001-A 

Company BioCat RUCDR Infinite Biologics 

Generator SYSTEM BIOSCIENCES National Institutes of Health - Center for 
Regenerative Medicine 

Abbreviation within 
manuscript 

SC102A CR05 

Source Fibroblast (dermis) Umbilical cord blood CD34+ cells 

Vector Retrovirus (integrating) Episomal (non-integrating) 

Genes for 
reprogramming 

MYC, KLF4, SOX2, 
OCT4/POU5F1 

KLF4, MYC, SOX2, OCT4/POU5F1, LIN28, SV40, 
Large T antigen 

Health status Healthy  

Race Caucasian  

Sex Male Male 

Donor age 60-64 Fetal 



21 
 

Cell culture and unguided (retinal organoid differentiation) protocol 
Matrigel-coating. Matrigel (Corning® Matrigel® hESC-Qualified Matrix, *LDEV-Free, (Corning, 
#354277) was used according to the manufacturer instructions with the following modifications: 
Matrigel aliquots were dissolved in ice-cold X-Vivo 10 chemically defined, serum-free 
hematopoietic cell medium (Lonza, #BE04-380Q) prior coating the plates. 6-cm dishes (VWR, 
#734-0007) were coated for unguided retinal organoid or BMP4-guided differentiation protocols 
and 2-well chambered coverslips (Ibidi, #80286) for 2.5D culture. 
Maintenance of human induced pluripotent stem cells. hIPSCs were cultured at 37ºC and 5% 
CO2 in a humidified incubator (BINDER C150) in mTeSR1 medium (STEMCELL Technologies, 
#85850) on Matrigel (Corning, #354277) coated 6-well plates (Corning, #3516). Cells were 
passaged in small aggregates every 3-4 days and were dissociated before reaching 80% 
confluency using EDTA dissociation buffer (0.5M EDTA (ethylenediaminetetraacetic acid, K.D. 
Biomedical, #RGF 3130), 0.9 g (w/v) NaCl (Sigma, #5886) in PBS (phosphate buffered saline, 
calcium/magnesium-free, Invitrogen, #14190), sterile filtered, stored at 4ºC) according to (Chen 
2014). Cells were tested on regular basis for mycoplasma using MycoAlert Mycoplasma Detection 
Kit (Lonza, #LT07-518). For iPSC differentiation, two wells of a 6-well plate were used for SC102A 
and four wells for CR05 as starting material. 
Unguided (retinal organoid differentiation) protocol. 3D-retinal organoids were generated as 
described before (Zhong et al. 2014) with the following modifications: On day 0 of differentiation, 
iPSC colonies were dissociated into evenly sized aggregates using a cell-passaging tool (Thermo 
Fisher Scientific, #23181-010). After mechanical scraping, floating aggregates were transferred 
with a 1250µl wide orifice pipette (VWR, #613-0737) onto one 10 cm Petri dish (Sarstedt, 
#82.1473), and cultured in mTeSR1 medium supplemented with 10 µM blebbistatin (Sigma, 
#B0560-5MG). On day 1, 2 and 3, the medium was gradually replaced with ¼, ½, and 1, 
respectively, of NIM (neural induction medium: DMEM/F12 (Gibco, #31331- 028), 1x N2 
supplement (Gibco, #17502-48), 1% (v/v) NEAA Solution (Sigma, #M7145), 2 µg/ml heparin 
(Sigma, #H3149-50KU). From day 4 onwards, 10 ml medium was exchanged daily with NIM. On 
day 8, the floating embryoid bodies (EB) were collected, equally distributed onto 8 Matrigel-
coated 6-cm dishes (approximately 20-40 number of EBs/cm2) and cultured in 3 mL NIM. From 
day 16 onwards, NIM was exchanged daily for 3:1-DMEM/F12-medium (3 parts DMEM (Thermo 
Fisher Scientific, #31966047) and one-part F12 medium (Ham’s F-12 Nutrient Mix, Thermo Fisher 
Scientific, #31765-027), supplemented with 2% (v/v) B27 without vitamin A (Thermo Fisher 
Scientific, #121587-10), 1% (v/v) NEAA solution (Sigma, #M7145), 1% (v/v) penicillin-
streptomycin (Thermo Fisher Scientific, #15140122). On day 28-32, optic-cup structures were 
manually micro-dissected from the 6-cm plate and transferred into a 3.5-cm Petri dish (Corning, 
#351008) containing 2.5 mL 3:1-DMEM/F12-medium. 3:1-DMEM/F12-medium was exchanged 
twice per week. From day 42 onwards, 3:1-DMEM/F12-medium was supplemented with 10% 
(v/v) heat-inactivated FBS (Thermo Fisher Scientific, #10270-106) and 100 µM taurine (Sigma, 
#T0625- 25G). At week 10, the 3:1-DMEM/F12-medium was supplemented with 10 µM retinoic 
acid (Sigma, #R2625), and the medium was daily exchanged. At week 14, B27 supplement in the 
3:1-DMEM/F12-medium was replaced with 1x N2 supplement (Gibco, #17502-48), 10% (v/v) 
heat-inactivated FBS (Thermo Fisher Scientific, #10270-106), 100 µM taurine (Sigma, #T0625- 
25G) and the retinoic acid concentration was reduced to 5 µM. 
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Unguided (retinal organoid differentiation) protocol – Maintenance beyond day 28-32 in 2.5D 
culture. The differentiation protocol is identical to the “retinal organoid differentiation” section 
with the following modifications: On day 8, EBs within a volume of 1.5 mL were transferred on 
Matrigel-coated 2-well chambered coverslip. After the change to the 3:1-DMEM/F12-medium on 
day 16, 2.5D cultures were exclusively maintained in this media with daily media changes without 
any additional supplements that are typically added at later differentiation time points in the 
“retinal organoid differentiation”. 
BMP4-guided cystic compartment and microglial-like cell differentiation protocol. The 
differentiation protocol is identical to the “Unguided (retinal organoid differentiation) protocol – 
Maintenance beyond day 28-32 in 2.5D culture” section with the following differences: On day 
1, 12.5 ng/mL (final concentration) of recombinant human BMP4 (Peprotech, #120-05) was 
added as a single shot. From D8 onwards, medium was exchanged twice per week.  
Harvesting microglia-like cells after BMP4 application. From D40 onwards, microglia-like cells 
released into the supernatant were harvested. For this, the supernatant was collected and 
centrifuged (VWR, Mega Star 3.0R) at 200g for 4 minutes. Cells were resuspended in 3:1-
DMEM/F12-medium, and transferred into 8-well chambers (IBIDI, #80826) for immunostaining. 
Harvesting cystic structure after BMP4 application. At D18, D21, D28, D35 floating cystic 
structures were transferred into a new 3.5 cm petri dish (Corning, #351008) using a 1250µL wide 
orifice pipette tip and cultured in 2 mL 3:1-DMEM/F12-medium in parallel to not-transferred 
cysts, which were further cultured in the original differentiation dish until D45. The medium was 
exchanged twice per week until D45 when all time points were fixed as described in the result 
section.  
Culturing 3D-retinal organoids within BMP4-guided cystic compartments. At D118, eight retinal 
organoids were transferred into a dish containing BMP4-guided cystic compartment and 
microglia-like cells and cultured for 10 days. The medium was exchanged to 3:1-DMEM/F12-
medium supplemented with 1x N2 Supplement, 10% (v/v) heat-inactivated FBS, and 100 µM 
taurine (Sigma, #T0625- 25G). 3 mL medium was exchanged twice per week and 5 µM retinoic 
acid was added daily.  
Supplementing 3D-retinal organoids with microglia-like cells. At D118, eight retinal organoids 
were transferred into a 24 well plate. Microglia-like cells were harvested as described “Harvesting 
microglia-like cells after BMP4 application” from two 6 cm dishes and added to the organoids 
once. The medium was exchanged to 3:1-DMEM/F12-medium supplemented with 1x N2 
Supplement, 10% (v/v) heat-inactivated FBS, and 100 µM taurine (Sigma, #T0625- 25G). 3D-
retinal organoids and microglia-like cells were cultured for 10 days. 2 mL medium was exchanged 
twice per week and 5 µM retinoic acid was added daily.  

 

Functional assays for microglia-like cells 
Phagocytosis bead assay. Microglia-like cells were generated with the BMP4-guided protocol, 
harvested between D40 and D50 from the culture supernatant of a 6-cm dish, and transferred 
into one well of an 8-well chamber (IBIDI, #80826). Microglia-like cells were cultured in 3:1-
DMEM/F12-medium for 24 h. Before imaging, cells were washed once with 1x DPBS (Thermo 
Fisher Scientific, #14190-250) and stained with Tomato-Lectin (Szabo-Scandic, #VECDL-1174, 
1:1000 in 1x DPBS) for 20 minutes at 37°C. Then, cells were washed with 1x DBPS, and L15 
medium (Thermo Fisher Scientific, #21083027) was added. Images were acquired with a Zeiss 
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LSM880 inverted microscope and a Plan-Apochromat 20x/NA 0.8 Air objective in a temperature-
controlled chamber (37°C). Z-stacked images of the 488 and 568 channel were captured 
simultaneously every minute. After 20 minutes baseline recording, sonicated pH-sensitive 
fluorescent beads (Thermo Fisher Scientific, #P35361, 1:40) diluted in L15 medium were added, 
and cells were imaged for the following 60 minutes. For analysis, surface renderings were 
generated of z-stacks of the entire image using the surface rendering function in Imaris 9.3 with 
the surface detail setting of 0.2 µm. Next, the intensity mean of the 568 channel was determined 
within the microglia-like cell created surfaces. 
Real-time quantitative PCR (RT-qPCR) for inflammatory markers. Microglia-like cells were 
generated with the BMP4-guided protocol, harvested between D40 and D50 from the 
supernatant of eight 6-cm dishes, and seeded into a 24-well plate to reach a confluency of 60-
80% per well. Cells were incubated overnight at 37°C, 5% CO2. Microglia-like cells were treated 
with human IFN-γ (Sigma-Aldrich, #SRP3058-100UG) and IL1-β (Thermo Scientific, #RIL1BI) or 
both with a final concentration of 10ng/ml of each cytokine per well, with LPS (Sigma-Aldrich, 
#L5886-10MG) with a final concentration of 100ng/ml per well and with poly I:C (Tocris, #4287) 
with a final concentration of 50 µg/ml per well. Untreated controls received 3:1-DMEM/F12-
medium. After 6h of incubation (37°C, 5% CO2), RNA was isolated with innuPREP RNA Mini Kit 2.0 
(Analytik-Jena, #845-KS-2040050) as described in the manufacturer's instructions. cDNA 
synthesis was performed with LunaScript RT SuperMix Kit (New England Biolabs, #E3010L) with 
a total RNA amount of 200-800ng (same amount for each condition within experimental 
repetition) and stored at -20°C. RT-qPCR was performed according to (Schulz et al. 2021). For 
data visualization, ddCq values from log2-scale were calculated to describe fold changes between 
the treated and untreated group. 
Real-time quantitative PCR (RT-qPCR) for microglia markers. Microglia-like cells were harvested 
between D40 and D50 and cDNA synthesis was performed as described under “Real-time 
quantitative PCR (RT-qPCR) for inflammatory markers” with following adaptations: RNA was 
isolated 24h after microglia-like cells were seeded. PCR was performed using the following 
primers. IBA1: FW 5'-3': CAGGGATTTACAGGGAGGAA, REV 5'-3': CTCTTTGAAGCCTTCCAGTTTG. 
CX3CR1: FW 5'-3': GGCAGACTTGGATTTCAGGA, REV 5'-3': GCCTCAGCCAAATCATCGTA. P2RY12: 
FW 5'-3' AATACCAGATGCCACTCTGC, REV 5'-3': GCTTGCATTTCTTGTTGGTTAC. PU1: FW 5'-3': 
GTATTACCCCTATCTCAGCAGTG, REV 5'-3': AGCTCCGTGAAGTTGTTCTC. 
Ca2+ imaging. Microglia-like cells were generated with the BMP4-guided protocol, harvested 
between D40 and D50 from the supernatant of two 6-cm dishes, and were transferred into two 
wells of an 8-well chamber. Microglia-like cells were cultured in 3:1-DMEM/F12-medium for 24 
h. Cells were labeled with Fluo-4 (Invitrogen, F10471; reconstituted at 1X in supplied buffer) for 
30 minutes at 37°C and 5% CO2. Afterwards, cells were further incubated at room temperature 
(light-protected) and atmospheric CO2 for another 30 minutes. Labeling solution was aspirated 
and L15 medium was added. Single-plane 16-bit images were acquired with a frame rate of 500 
ms for a total duration of 360 seconds with LSM880 inverted microscope and a 20x air objective. 
After 180 seconds of baseline recording, 1 mM ATP (final concentration) or L15 medium was 
applied. Fluorescent intensity levels of Ca2+ events occurring in IBA1+-cells were recorded for the 
following 180 seconds minutes. The data was visualized by normalizing the intensity of each cell 
to its average intensity throughout the entire 360 seconds recording. Ca2+ events were detected 
with the software PeakCaller (Artimovich et al. 2017) as described in (Schulz et al. 2021).  
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Histology 
Histology - human brain samples. After PFA fixation, the samples were washed with PBS at least 
for 15 minutes three times. The samples were embedded in 3% (w/v) agarose (Sigma, #A9539) 
and sliced with a vibratome (Leica VT 1200) at a thickness of 100 µm. The vibratome slices were 
then cryoprotected with 30% (w/v) sucrose (Sigma, #84097, sterile filtered) until they sunk in the 
solution. The samples were stored at -80ºC until further use. 
Fixation of 3D-retinal organoids/cystic structures (=aggregates). Aggregates were fixed in 4% 
(w/v) PFA in PBS for 20 minutes at room temperature, then washed three times with PBS at room 
temperature and cryopreserved in 30% (w/v) sucrose in PBS overnight at 4 ºC. 
Cryostat sectioning. Cryopreserved aggregates were transferred to a cryomold (PolyScience, 
#18985) using a 1250µL wide orifice pipette tip and embedded in Tissue-Tek O.C.T. compound 
(TTEK, A. Hartenstein) on dry ice. Samples were stored at -80ºC until further use. Cryosections 
(20-30 µm) of aggregates were generated using a cryostat (MICROM, NX70 CRYOSTAR, Thermo 
Scientific). Sections were mounted onto Superfrost Plus glass slides (Lactan, #H867.1), dried at 
room temperature overnight and stored at -80ºC until further use. For immunostaining, slides 
were dried for 1 h at room temperature. Sections on glass slices were encircled with an engraving, 
hydrophobic pen (Sigma-Aldrich, #Z225568).  
Immunostaining of cryostat sections. Cryostat sections were incubated in “blocking solution” 
containing 1% (w/v) bovine serum albumin (Sigma, #A9418), 5% (v/v) Triton X-100 (Sigma, 
#T8787), 0.5% (w/v) sodium azide (VWR, #786-299), and 10% (v/v) serum (either goat, Millipore, 
#S26, or donkey, Millipore, #S30) for two hours in a humidified chamber protected from light at 
room temperature. Afterwards, the samples were immunostained with primary antibodies 
diluted in antibody solution containing 1% (w/v) bovine serum albumin, 5% (v/v) triton X-100, 
0.5% (v/v) sodium azide, 3% (v/v) goat or donkey serum, and incubated overnight in a humidified 
chamber at room temperature. For the list of primary antibodies: Table 4. The sections were 
washed three times with PBS and incubated in a light-protected humidified chamber for 2 hours 
at room temperature, with the secondary antibodies diluted in antibody solution. The secondary 
antibodies raised in goat or donkey were purchased from Thermo Fisher Scientific (Alexa Fluor 
488, Alexa Fluor 568, Alexa Fluor 647, 1:2000). The sections were washed three times with PBS. 
The nuclei were labeled with Hoechst 33342 (Thermo Fisher Scientific, Cat#H3570, 1:5000 diluted 
in PBS) for 8 minutes, and after a final two times PBS wash embedded using an antifade solution 
[10% (v/v) mowiol (Sigma, #81381), 26% (v/v) glycerol (Sigma, #G7757), 0.2M tris buffer pH 8, 
2.5% (w/v) Dabco (Sigma, #D27802)] with microscope cover glass slips (Menzel-Glaser #0). 
Samples were stored at 4 ºC until imaging.  
Immunostaining for human brain slices. The staining was performed as described under 
“Immunostaining for cryostat sections” with following adaptations: Floating brain slices were 
stained in a 24-well plate and the primary antibody was incubated for 48 hours on a shaker. After 
immunostaining, the slices were mounted on glass microscope slides (Assistant, #42406020) and 
embedded with antifade solution.  
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Table 4 – List of primary antibodies chapter 1. 

Antibody Host Vendor Catalogue # Lot # 
Dilution 
factor 

RRID number 

BRN3 Goat 
Santa Cruz 
Biotechnology 

sc-6026 K0215 100 AB_673441 

CD31 Rabbit Abcam ab28364 
GR3247742-
26 

50 AB_726362 

CD45 Rabbit 
Cell Signaling 
Technology 

13917P 1 200 AB_2750898 

CD163 Mouse 
Bio-Rad AbD 
Serotec GmbH 

MCA1853 157288 100 AB_2074540 

CHAT Goat EMD Millipore AB144P 3182642 400 AB_2079751 

CRALBP Mouse Abcam ab15051 GR229880-2 200 AB_2269474 

CtBP2 Mouse BD Biosciences 612044 5301880 200 AB_399431 

CTIP2 Rat Abcam ab18465 GR3272266-5 100  AB_2064130 

CX3CR1 Mouse BioLegend B355702 B194773 50 AB_2561726 

E-
Cadherin 

Mouse BD Biosciences 610182 9315423 100 AB_397581 

IBA1 Rabbit GeneTex GTX100042 44200 750 AB_1240434 

IBA1 Goat Abcam ab5076 GR3374909-1 250 AB_2224402 

KI67 Mouse BD Biosciences 550609 5267542 100 AB_393778 

myb Rabbit Acris 
AP31223PU-
N 

27931 100 AB_10976997 

OTX2 Goat R&D Sysytems AF1979 KNO0920111 150 AB_2157172 

P2RY12 Rabbit Sigma-Aldrich HPA014518 F119293 100 AB_2669027 

PAX6 Mouse 
Acris 
Antibodies/ 
EuBIO Koeck 

AM50305PU-
N 

5080-
1P160119 

400 AB_2895216 

PHOSPHO 
HISTONE 
H3 (PHH3) 

Rabbit Merck 06-570 3256620 300 AB_310177 

PU.1 Rabbit 
Cell Signaling 
Technology 

2266S 1 500 AB_10692379 

RECVN Rabbit EMD Millipore AB5585 2691407 400 AB_2253622 

RUNX.1 Mouse BioLegend 659302 B276756 50 AB_2563194 

VIMENTIN Mouse 
Santa Cruz 
Biotechnology 

sc-6260 A1521 100 AB_628437 
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Immunostaining for whole mount aggregates. The staining was performed as described under 
“Immunostaining for cryostat sections” with the following adaptations: The primary antibody 
was incubated for 48 hours on a shaker at room temperature, and washed at least for two hours.  
Immunostaining for whole mount organoids. The staining was performed as described under 
“Immunostaining for cryostat sections” with the following adaptations: Organoids were 
incubated in blocking solution for 2 days on a shaker at 4 ºC. The primary antibody concentration 
was doubled and organoids were incubated for 10 days on a shaker at 4 ºC, and washed three 
times in PBS at least for one day. Then the organoids were incubated with secondary antibodies 
(1:500) and Hoechst (1:1000) diluted in antibody solution simultaneously for 3 days on a shaker 
at 4ºC. After washing the organoids three times in PBS for one day, organoids were mounted 
with low gelling agarose followed by a glycerol gradient as described in “Immunostaining for 
whole mount aggregates”.  
Mounting of whole mount aggregates. For whole mount aggregates, the tissue was mounted 
on 8-well chambers (IBIDI, #80826) using 3% (w/v) low gelling temperature agarose (Sigma-
Aldrich, #A9414-25G). Then a glycerol gradient was performed starting with 50% (v/v) glycerol 
(Sigma-Aldrich, G7757-1L) in H2O followed by 75% (v/v) glycerol in H2O. Afterwards, the whole 
mount aggregate was imaged.  
 

Imaging 
Brightfield. Differentiation was monitored with a bright-field microscope (Olympus CKX41) with 
5x, 10x and 20x objectives (Olympus) and a lens marker (Nikon), and an EVOS microscope 
(Thermo Fisher Scientific) with 2x, 4x, 10x, 20x, 40x objectives (Thermo Fisher Scientific). 
Confocal microscopy. Images were acquired with a Zeiss LSM880 Airyscan upright or inverted or 
with a Zeiss LSM800 upright. Ibidi plates were exclusively imaged using an inverted microscope. 
For overview images Plan-Apochromat 10x air objective NA 0.45 (WD=2.1mm) or Plan-
Apochromat 20x Air objective NA 0.8 were used and tile-scan z-stacks were acquired. For detailed 
images Plan-Apochromat 40x oil immersion objective NA 1.3 was used.  
Image analysis. Confocal images were converted to .ims files using the Imaris converter and 
imported to Imaris 9.3 (Bitplane Imaris 3/4D Image Visualization and Analysis Software).  
Surface rendering were generated using the surface rendering module with the surface detail set 
to 0.2 µm.  
Determining the volume of organoids. The Hoechst channel was processed using the normalize 
layer function of Imaris. Then, a surface rendering was performed and the total volume of the 
Hoechst channel was determined.  
Determining the number of IBA1+-cells. The spot function of Imaris was used to analyze the 
number of IBA1+-cells. The estimated XY diameter was set to 15 µm.  
Quantification of types of aggregates. Bright field images of aggregates were acquired and then 
classified into the four types as outlined in Figure 2a (retinal cup only, retinal cup with cerebral 
compartment, retinal cup with cystic compartment, cyst only). Then the percent ratio of each of 
the four types was determined.  
Graphics. All graphics were generated using R (version 4.1.0). Excel files were loaded into R via 
the xlsx package (version 0.6.1) (Dragulescu 2014). Plots were made using ggplot2 (version 3.0.0) 
(Wickham 2016). Linear regression was performed using the lme4 package (version 1.1-17) (Bates 
et al. 2015). 
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Mass spectrometry 
10 cystic structures were harvested at D28 and D45, washed once in DPBS (Thermo Fisher 
Scientific, # 14190-250) and snap frozen in liquid nitrogen. Samples were stored at -80°C until 
further analysis. For Liquid chromatography - mass spectrometry (LCMS) analysis, pelleted cystic 
structures were denatured, reduced, alkylated with iodoacetamide and trypsin-digested into 
peptides using a commercial in-Stage Tips kit (P.O.00001, Preomics), following exactly the 
manufacturer's instructions. Cleaned-up, reconstituted peptides were then analyzed by Liquid 

chromatography – tandem mass spectrometry (LC-MS/MS) on an Ultimate High-performance liquid 
chromatography (HPLC) (ThermoFisher Scientific) coupled to a Q-Exactive HF (ThermoFisher 
Scientific). Each sample was concentrated over an Acclaim PepMap C18 pre-column (5 µm 
particle size, 0.3 mm ID x 5 mm length, ThermoFisher Scientific) then bound to a 50 cm EasySpray 
C18 analytical column (2 µm particle size, 75 μm ID x 500 mm length, ThermoFisher Scientific) 
and eluted over the following 180 min gradient: solvent A, water + 0.1% formic acid; solvent B, 
80% acetonitrile in water + 0.08% formic acid; constant 300 nL/min flow; B percentage: start, 2%; 
155 min, 31%; 180 min, 44%. Mass spectra were acquired in positive mode with a Data 
Dependent Acquisition method: FWHM 20s, lock mass 445.12003 m/z; MS1: profile mode, 
120,000 resolving power, AGC target 3e6, 50 ms maximum IT, 380 to 1,500 m/z; MS2: top 20, 
centroid mode, 1.4 m/z isolation window (no offset), 1 microscan, 15,000 resolving power, AGC 
target 1e5 (minimum 1e3), 20 ms maximum IT, 200 to 2,000 m/z scan range, NCE 28, excluding 
charges 1 and 8 or higher, 60s dynamic exclusion. 
Raw files were searched in MaxQuant 1.6.5.0 against the reference Homo sapiens proteome 
downloaded from UniProtKB. Fixed cysteine modification was set to Carbamidomethyl. Variable 
modifications were Oxidation (M), Acetyl (Protein N-term), Deamidation (NQ), Gln->pyro-Glu and 
Phospho (STY). Match between runs, dependent peptides and second peptides were active. All 
FDRs were set to 1%. 
 
Tissue enrichment analysis. To determine human tissues that resemble the highly expressed 
protein profile in the cystic structure, we performed a tissue enrichment analysis similar to 
previous approaches (Angeles-Albores et al. 2016; Jain and Tuteja 2019). Proteins specific to a given 
tissue (or tissue-specific proteins) were downloaded from the Human Protein Atlas (HPA, 
http://www.proteinatlas.org) (Uhlén et al. 2015) which has curated the expression profiles of 
human genes both on the mRNA and protein level in 44 normal human tissue types 
(corresponding to 62 tissue samples). In particular, tissue-specific proteins were defined as 
proteins that were highly detected, i.e., a strong immunohistochemical staining intensity in 25-
75% of cells as annotated in HPA. Cystic-specific proteins in either D28 or D45, on the other hand, 
were obtained by taking proteins whose expressions are within the 98th percentile of the protein 
expression distribution in the mass spectroscopy data. The overlap between the 3D-cyst specific 
proteins and the tissue-specific proteins were calculated and the hypergeometric test was used 
to calculate the enrichment of this overlap as 

 

http://www.proteinatlas.org/
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with n as the number of 3D-cyst specific proteins from the N total number of detected proteins 
with mass spectrometry, M as the number of tissue-specific proteins and k is the size of their 
overlap. The obtained p-values were Bonferroni-corrected for multiple comparisons 
implemented through the multitest function of statsmodels (Seabold and Perktold 2010). For the 
peptide sequence data please refer to Supplementary Table 1 published in (Bartalska et al., 2022). 
A similar analysis was conducted for proteins found in previous mass spectrometry analyses of 
human iris, ciliary body, RPE/choroid (Zhang, Kirby, et al., 2016), optic nerve, sclera (Zhang, 
Karani, et al., 2016), retina (Zhang et al., 2015) and meninges (Dunn et al. 2019). Tissue-specific 
protein profiles were defined as the proteins that are present in the 80th percentile of the protein 
expression distribution. Tissue-specific proteins that are in at most two tissues were discarded to 
account for possible non-specific expression. Note that while the tissue enrichment p-values 
change with the percentile cut-off, the qualitative results remain the same. For the peptide 
sequence data please refer to Supplementary Table 4 published in (Bartalska et al., 2022). 
Heatmap of mesenchymal stem cell markers. The list of markers of epithelial and mesenchymal 
markers was obtained from (Andrzejewska et al. 2019; Owusu-Akyaw et al. 2019; Scanlon et al. 
2013). Protein expression in 3D cysts for these markers was plotted as a heatmap for week 4 and 
7. Fold-change was determined by dividing the intensity at D45 with the intensity at D28. 
Upregulated proteins are those with fold-change greater than or equal to 2.0 while 
downregulated proteins are those with fold-change less than or equal to 0.5. For the raw data 
refer to Supplementary Table 2-3 published in (Bartalska et al., 2022). 
 

Statistical analysis 
All statistical tests were performed using R. Models were generated by changing the default 
contrast for unordered variables to “contr.sum” to apply type III ANOVA to the model to evaluate 
the overall contribution of the response variable. Post-hoc tests were performed via the  “dplyr” 
package (version 1.0.7) (Wickham et al. 2021) and the “multcomp” package and were corrected 
for multiple testing using the single-step method (Hothorn et al. 2008). Pearson correlation was 
performed using the “ggpubr” package (version 0.4.0) (Kassambara 2017).  
Inflammation assay. A one-sample t-test was performed to compare the stimulated condition 
with its untreated control (Figure 18).  
3D cyst occupation and isolation. We performed a Pearson correlation test to the correlation 
between IBA1+-cell density and age of differentiation (Figure 20b, d).  
Co-expression of IBA and CD163. We performed two-way ANOVA to examine changes in 
expression over time by using an interaction of these two predictors. A random effect (cyst ID) 
was included to account for the dependency of the data which results from repeated counting of 
the same sections. As a significant effect (p < 0.05) was observed for the interaction we 
performed a post-hoc analysis for pair-wise comparison using the Tukey-Test and p-values were 
adjusted using the method set to “BH” (Figure 23b).  
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Integration of IBA1+-cells into 3D-retinal organoids. A Shapiro-Wilk test determined that the 
data was not normally distributed. Therefore, we performed a Wilcoxon-test to test differences 
between experimental conditions (Figure 29b).  
Repetition. All experiments were performed by at least two experimentalists independently for 
both cell lines with exceptions of the mass spectrometry (Figure 22-23) and (Figure 28-29). In 
total, we performed for the hIPSC lines SC102A 18x and CR05 10x retinal organoid differentiations 
and for SC102A 10x and CR05 8x BMP4-guided differentiation.  
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2.3. Results 
IBA1+-microglia-like cells appear in the unguided protocol. 

To identify whether 3D-retinal organoids contain microglia-like cells, we applied an established 
unguided retinal organoid differentiation protocol (Zhong et al. 2014) to two hIPSC lines of 
different origins (Figure 5a-b) One hIPSC line was derived from a 60+-old skin fibroblast donor 
(SC102A) and the other from fetal umbilical cord blood cells (CR05, Table 3). Both hIPSC lines 
behaved similarly and formed typical optic cup structures within four weeks in 2.5D culture. They 
developed further into anatomically comparable 3D-retinal cups (Figure 5c) expressing cell type-
specific markers for photoreceptor-, bipolar-, amacrine-, ganglion and Müller glial cells by week 
18 (Figure 5d) (Hoshino et al. 2017; Luo et al. 2019; Zhang et al. 2019).  

 

 
 

 

 

Figure 5 – Figure legend on next page.  

. 
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We used IBA1 as a marker for microglia and confirmed the antibody 
functionality in human temporal lobe brain tissue, where IBA1 
labeled parenchymal microglia and pvMΦ (Figure 6).  
 
 
 
 
Figure 6 – Validation of antibody specificity in human brain tissue. 
Vibratome sections of adult human temporal lobe immunostained for IBA1 
(ionized calcium-binding adapter molecule 1, magenta). Scale bar: 20 µm. 

  

Figure 5 – Differentiation of hIPSC lines SC102A and CR05 into 3D-retinal organoids.  
a-b, Schematic of unguided (retinal organoid differentiation) protocol for 2.5D and 3D culture. After reaching 
80% confluency, human induced pluripotent stem cells (hIPSC) were cut into evenly sized aggregates to form 
embryoid bodies (EBs) (b, Scale bar: 100 µm). EBs were cultured in suspension and were seeded on D8 on 
Matrigel-coated plates. At D30-32, optic-cup structures were manually micro-dissected and cultured in 
suspension. D, days after induced differentiation. FCS, fetal calf serum. NEAA, Non-Essential Amino Acid. 
Pen/Strep, penicillin and streptomycin. c, Brightfield images at selected days and weeks after induced 
differentiation (D) for SC102A (top) and CR05 (bottom). Scale bar: 100 µm. d, Immunostaining of cryostat 
sections for selected retinal cell type marker (green) and the nuclear dye Hoechst (blue) with focus on the retinal-
cup for SC102A (top) and CR05 (bottom) between week 18-20 with exception of BRN3 for SC102A at week 9. 
CTBP2, C-Terminal-Binding Protein 2. CHAT, choline acetyltransferase. BRN3, brain-specific Homeobox/POU 
Domain Protein 3. CRALBP, cellular retinaldehyde-binding protein. Scale bar: 20 µm. 
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When we immunostained our 3D-retinal organoids, we commonly observed no cell-defined IBA1 
staining (Figure 7a). Occasionally, we found a few IBA1+-cells close to the retinal cup (Figure 7b) 
but the cells were not numerous or as deeply integrated as described for the human embryo 
retina at similar age (Diaz-Araya et al. 1995). 

 
Figure 7 – Retinal cups widely lack IBA1+-microglia.  
a-b, Immunostaining cryostat section of 3D-retinal organoids with focus on retinal cups for SC102A for IBA1 (ionized 
calcium-binding adapter molecule 1, magenta) with Hoechst to highlight nuclei (blue) a, at week 6, 10, 11, 14, and 
17. Note: IBA1 staining occasionally occurred as a layered or dotted structure, which did not resolve in distinct cell 
morphologies. We excluded such staining patterns from further interpretations. Scale bar: 50 µm. b, at week 9 with 
focus on retinal cup stained with PAX6 (Paired Box 6, green). White arrow, examples of overlap. Scale bar: 20 µm.  

Based on this rare microglia presence, we hypothesized that IBA1+-cells might be enriched in a 
compartment other than the retinal cup. Thus, we revisited the 2.5D culture prior to dissection 
of optic cups at week 4 (Figure 5a). Between week 3 and 4, we found clusters of IBA1+-cells 
(Figure 8a), which started to spread within the culture by week 4 and occupy distinct 
compartments by week 7 (Figure 4b). These compartments were commonly less nuclei-dense 
(Figure 8c). To investigate whether these compartments contained cortical cell types, we stained 
the 2.5D culture with CTIP2/BCL11b (BAF chromatin remodeling complex subunit), a marker 
expressed in the neocortex from early embryonic stages (Qian et al. 2016). Remarkably, the 
majority of IBA1+-cells were distinct from the CTIP2+-region (Figure 8d), and if they were present, 
they mostly localized to the surface of these structures.  
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Figure 8 – IBA1+-microglia-like cells develop during retinal organoid differentiation. 
a-d, Immunostaining for IBA1 (ionized calcium-binding adapter molecule 1, magenta) with Hoechst to highlight 
nuclei (blue, except white in e) of 2.5D culture. a, First occurrence of IBA1+-cells in SC102A (top) and CR05 (bottom) 
between week 3 and 4. Scale bar: 20 µm. b, SC102A at week 4 (top) and 7 (bottom). Scale bar: 100 µm. c, SC102A at 
week 9. Scale bar: 100 µm. d, SC102A at week 7. Green *, cell-dense area. Immunostaining for CTIP2 (COUP-TF-
Interacting-Protein 2, green). Scale bar: 150 µm.  

To confirm that IBA1+-cells were microglia-like, we immunostained the 2.5D cultures between 
week 4 and 5 for the hematopoietic lineage-specific markers RUNX1 (Ginhoux et al. 2010), PU.1 
(Kierdorf et al., 2013), and MYB (Schulz et al. 2012). As expected, all IBA1+-cells were positive for 
RUNX1 and PU.1 and negative for MYB (Figure 9a-c). The IBA1+-cells also expressed the 
mononucleate hematopoietic cell marker CD45 (Monier et al. 2007) (Figure 9d), the fractalkine 
receptor CX3CR1 (Hulshof et al. 2003) (Figure 9e), the purinergic receptor P2Y12 (Mildner et al. 
2017) (Figure 9f) and did not express the monocytic marker CD14 (Geissmann, Jung, and Littman 
2003) (Figure 9g).  
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Figure 9 – Marker expression of IBA1+-microglia-like cells. 
Immunostaining for IBA1 (ionized calcium-binding adapter molecule 1, magenta) with Hoechst to highlight nuclei 
(blue) and the macrophage/ microglia marker (green) in SC102A (left) and CR05 (right) at week 4-5 in 2.5D culture: 
a, RUNX1 (runt-related transcription factor 1). b, PU.1 (hematopoietic transcription factor PU.1) in CR05. c, MYB 
(MYB Proto-Oncogene). d, CD45 (cluster of differentiation 45/ protein tyrosine phosphatase receptor). e, CX3CR1 
(C-X3-C motif chemokine receptor 1). f, P2RY12 (purinergic receptor P2Y G-protein-coupled 12).  
g, CD14 (cluster of differentiation 14/ monocyte differentiation antigen CD14). Scale bar: 20 µm. 
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Importantly, all markers were cross-validated for their specificity in human brain tissue (Figure 
10).  

 
Figure 10 – Validation of antibody specificity in human brain tissue. 
Vibratome sections of adult human temporal lobe immunostained for IBA1 (ionized calcium-binding adapter 
molecule 1, magenta), nuclei dye Hoechst (blue), and antibodies used throughout this study (green): a, CD14, cluster 
of differentiation 14/ monocyte differentiation antigen CD14. b, CD31, platelet endothelial cell adhesion molecule 
(PECAM-1). c, CD45, cluster of differentiation 45/ protein tyrosine phosphatase receptor. d, CD163, cluster of 
differentiation 163/ scavenger receptor cysteine-rich type 1 protein M130. e, CX3CR1, Chemokine (C-X3-C) Receptor 
1. f, MYB, MYB Proto-Oncogene. g, P2Y12, Purinergic receptor P2Y G-protein-coupled 12. h, PU.1, Hematopoietic 
transcription factor PU.1. i, RUNX1, Runt-related transcription factor 1. j, VIMENTIN. Scale bar: 20 µm. 

The IBA1+-cells were morphologically branched and frequently presented phagocytic cups (Figure 
11a). 47.9 % +/- 5.7 % of the IBA1+-cells co-expressed KI67 indicating that they are in a 
proliferative state (Gerdes et al. 1984) (Figure 11b). The cells also expressed the mitotic marker 
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phosphorylated histone H3 (PHH3) (Hirata et al. 2004) (Figure 11c). This characterization suggests 
that IBA1+-cells represent microglia-like cells that emerge within the unguided protocol in 2.5D 
culture by week 4 and, notably, do not extensively populate retinal cups or cerebral 
compartments.  

 
Figure 11 – Characterization of IBA1+-microglia-like cells. 
Immunostaining for IBA1 (ionized calcium-binding adapter molecule 1, magenta) and the nuclei dye Hoechst (blue) 
in 2.5D culture. a, Examples of IBA1+-cell forming phagocytic cups (arrow) in aggregates from SC102A (left) and CR05 
(right) at week 8. Scale bar: 10 µm. b-c, Proliferation marker between in 2.5D cultures from SC102A (left) and CR05 
(right) at week 8-10 in green: KI67 (b) PHH3 (phosphohistone H3, c). White arrow indicates overlap. Scale bar: 20 
µm. 

 
IBA1+-cells enrich in cystic compartments of 3D-aggregates 

The presence of IBA1+-cells in less nuclear-dense structures in 2.5D culture inspired us to revisit 
our 3D culture. We found that the unguided protocol results in two groups of aggregates: either 
with or without retinal cups (Figure 12a). The aggregates with retinal cups, summarized as 3D-
retinal organoids, can represent either a retinal cup only (Figure 12a, i), a retinal cup with a 
cerebral compartment (Figure 12a, ii) that can be characterized with OTX2 (Orthodenticle 
Homeobox 2) and CTIP2 (Figure 12b), respectively (Hoshino et al. 2017; Qian et al. 2016), or a 
retinal cup with cystic compartment (Figure 12a, iii). We named an aggregate without a retinal 
cup a 3D-cyst (Figure 12a, iv). These cysts were semi-transparent, contained various-sized 
lumens, and occasionally developed pigmentation or a cuboidal-shaped epithelial surface. We 
found approximately 10% of the aggregates to be non-retinal (Figure 12c), which is in line with 
previously reported studies (Cowan et al. 2020; Zhong et al. 2014). IBA1+-cells enriched and 
distributed in the 3D-cysts (Figure 12d) and the cystic compartment of retinal organoids (Figure 
12e). Cystic compartments that were pigmented tended to lack IBA1+-cells (Figure 12f). This 
suggests that IBA1+-cells occurring with the unguided protocol preferentially occupy non-
pigmented cystic compartments. 
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Figure 12 – Figure legend on next page.  
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Figure 12 – IBA1+-cells occupy 3D-cystic compartments. 
a, Representative bright field images of typical aggregates generated within unguided (retinal organoid 
differentiation) protocol at week 5 for SC102A. RPE: retinal pigment epithelium. Scale bar: 1000 µm. b, 
Immunostaining of cryostat section of 3D-retinal cup with cerebral compartment (week 8-9) from SC102A stained 
for OTX2 (orthodenticle homeobox 2, orange) and CTIP2 (COUP-TF-Interacting-Protein 2, green) and nuclei stained 
with Hoechst (blue). Green *, retinal cup. Scale bar: 150 µm. c, Mean percentage of aggregate type proportions with 
standard error of the mean. Each dot represents one differentiation. d-f, Immunostaining of cryostat sections for 
IBA1 (ionized calcium-binding adapter molecule 1, magenta), nuclei stained with Hoechst (blue, except e in white). 
d, 3D-cyst from SC102A (week 8-9) with brightfield image. Dashed-line, cyst surrounding. White *, cystic lumen. 
Scale bar: 100 µm. Zoom-in to IBA1+-cells. Scale bar: 50 µm. e, 3D-retinal organoid with cystic compartment for 
SC102A (9-10 weeks). Scale bar: 100 µm. Zoom-in: Scale bar: 50 µm (i), 10 µm (ii). f, Pigmented 3D-cyst (week 8-9) 
from SC102A with bright field image. White *, cystic lumen. Scale bar: 100 µm, zoom-in: 50 µm. 

 

Low dosed BMP4 application enhances 3D-cysts and IBA1+-cells 

Recent hIPSC-derived microglia-like protocols have reported that bone morphogenetic protein 4 
(BMP4) promotes microglia generation in vitro (Abud et al. 2017; Douvaras et al. 2017; 
Guttikonda et al. 2021; Haenseler et al. 2017; Pandya et al. 2017; Takata et al. 2017) with some 
studies mentioning the development of cystic structures (Abud et al. 2017; Haenseler et al. 2017). 
Since we sought insight into the tissue identity of the IBA1+-cell enriched cystic compartments 
and we were confronted with the heterogeneity of our unguided protocol culture, we decided to 
enrich for the cystic compartments with a low-dosed BMP4 application one day after EB 
formation to the otherwise unchanged protocol (Figure 13a). After BMP4 exposure, EBs formed 
an irregular shape and developed non-pigmented 3D-cysts that started to float by week 3 (Figure 
13b). These 3D-cysts were the only aggregates formed by the BMP4-guided protocol in both 
hIPSC lines (Figure 13c).  

 
  

Figure 13 – Figure legend on next page.  
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Figure 13 – BMP4 induces 3D-cyst development.  
a, Schematic of guided differentiation protocol with a single BMP4 (bone morphogenetic protein 4) application on 
Day (D) 1 after induced differentiation. EB, embryoid bodies. b, Brightfield images of developing 3D-cysts generated 
with BMP4-guided differentiation for SC102A (top) and CR05 (bottom). Scale bar: 1000 µm. c, Mean percentage of 
aggregate type proportions generated using BMP4-guided protocol with standard error. Each dot represents one 
differentiation. 

They neither expressed Recoverin nor BRN3 for labeling photoreceptors and retinal ganglion 
cells, respectively (Figure 14a-b) nor the neuronal marker beta-III-tubulin (Figure 14c). OTX2 was 
expressed by week 9 but did not show an overlap with recoverin, both labeling photoreceptors 
(Figure 14a).  

 
Figure 14 – Retinal cell types in 3D-cysts from BMP4-guided protocol. 
Immunostaining of cryostat sections of 3D-cysts at week 9 (a, c) and week 17 (b) generated with BMP4-guided 
protocol from SC102A. Green: OTX2 (orthodenticle homeobox 2) for photoreceptors and bipolar cells. Recoverin for 
photoreceptors. BRN3 (brain-specific Homeobox/POU Domain Protein 3) for ganglion cells (a-b). Neuronal marker 
beta-III-tubulin (c). Blue: nuclei-dye Hoechst. BRN3, brain-specific Homeobox/POU Domain Protein 3 for ganglion 
cells. Orange frame, zoom in. *, lumen. Scale bar: 100 µm. 

This supports previous observation with BMP4 to induce mesoderm (Faial et al. 2015; Pengbo 
Zhang et al. 2008). The lack of neuroectoderm is already prevalent at Day 12, when the formation 
of neuronal filaments is absent upon BMP4 application (Figure 15a-b). These 3D-cysts gradually 
grew in diameter and expanded their inner wall thickness (Figure 15c-d).  
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Figure 15 – Comparison unguided versus guided protocol. 
a-b, Immunostaining of 2.5D culture from SC102A at day 12 from unguided protocol (a) and BMP4-guided protocol 
(b) for the neuronal marker beta-III-tubulin (green) and the nuclei dye Hoechst (blue). Scale bar: 100 µm. c, Cryostat 
sections of 3D-cysts generated with BMP4-guided protocol at four different time points counter-stained with nuclei-
dye Hoechst (blue). Scale bar: 100 µm. d, Scatter plot of wall thickness. Each symbol (a-e) represents a 3D-cyst with 
four data points for the measured wall thickness on opposing sides. 5 cysts per time point with trend curve and 95% 
confidence level interval.  

From week 4 onwards, small branched cells started to float in the supernatant (Figure12 a), which 
have previously been described as microglia-like cells (Haenseler et al. 2017). To verify this cell 
identity, we either collected and seeded these cells or directly labeled them on 2.5D culture 
plates. In both cases, the IBA1+-cells expressed RUNX1, PU.1, CD45, and P2Y12 but not CD14 
(Figure 12b-i). Moreover, we confirmed their mRNA expression for PU.1, IBA1, P2Y12, and 
CX3CR1 with real-time quantitative PCR (RT-qPCR, Figure 12j) suggesting that they are microglia-
like cells similar to the microglia obtained with the unguided protocol (Figure 9).  
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Figure 16 – Figure legend on next page. 

 

Figure 16 – Figure legend on next page.  
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Figure 16 – IBA1+-cells occur with BMP4-guided protocol. 
a, Brightfield images of branched cells in the supernatant for SC102A (left) and CR05 (right). Left, focus on floating 
cells in the original plate (week 6-7). Arrow, branching. Right, harvested supernatant and seeded on a new plate 
(week 5-6). Scale bar: 100 µm. b-i, Immunostaining for IBA1 (ionized calcium-binding adapter molecule 1, magenta) 
and nuclei dye Hoechst (blue) obtained from the BMP4-guided protocol either collected and seeded at week 6 from 
the supernatant of SC102A (b, d, f, h), or directly labeled on 2.5D culture plates of CR05 between week 4 and 6 (c, 
e, g, i). In green: Immunostaining for b-c, RUNX1 (runt-related transcription factor 1), PU1 (hematopoietic 
transcription factor PU.1), and MYB (MYB Proto-Oncogene). White arrow, examples of non-overlap. d-e, CD45 
(cluster of differentiation 45/ protein tyrosine phosphatase receptor). f-g, CD14 (cluster of differentiation 14/ 
monocyte Differentiation Antigen CD14). h-i, P2Y12 (purinergic receptor P2Y G-protein-coupled 12). Scale bar: 20 
µm. j, mRNA transcript expression of IBA1, PU1, CX3CR1 and P2Y12 relative to the housekeeping gene GAPDH with 
mean standard error of IBA1+-cells harvested from the supernatant of BMP4-guided protocol. Each dot represents 
an independent differentiation. 

To further validate a microglia-like activity, we first measured the capability of IBA1+-cells to 
phagocytose. We immunostained the IBA1+-cells with tomato-lectin and live imaged the uptake 
of pH-sensitive fluorescent beads. The beads accumulated overtime within the IBA1+-cells 
indicating phagocytic active cells (Figure 17a-b).  

 
Figure 17 – Phagocytosis assay.  
a-b, Left: Consecutive snapshots of live imaged tomato-lectin-labeled microglia-like cells (magenta) collected from 
the supernatant of the BMP4-guided protocol for a, SC102A and b, CR05 and their uptake of fluorescent beads 
(green) week 6-7. Scale bar: 100 µm. Mean intensity increase of beads within IBA1+-cells and 95% confidence interval 
band during 80 minutes of recording of three biological replications. Dark grey bar: bead application after 20 minutes 
of baseline recording. 
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Next, we investigated whether the IBA1+-cells trigger an upregulation of inflammatory signature 
genes IL6, TNF and IL1β (Smith et al. 2012) upon stimulation with either interferon γ (IFNγ), 
interleukin 1β (IL1β) or both, bacterial lipopolysaccharide (LPS) or POLY(I:C). For all stimulations, 
we confirmed the upregulation of these inflammatory genes in IBA1+-cells (Figure 18).  

 
Figure 18 – Inflammatory response.  
Real-time quantitative PCR (RT-qPCR) for interleukin 1β (IL1β, left), interleukin 6 (IL6, middle), and tumor necrosis 
factor (TNF, right). HIPSC-derived microglia from BMP4-guided protocol were treated with either recombinant 
interferon γ (IFNγ), IL1β, or both, bacterial lipopolysaccharide (LPS), or polyinosinic:polycytidylic acid (POLY(I:C)) at 
week 6-7. Bar chart: mRNA transcript log-2 fold changes compared to untreated control cells with standard error of 
the mean. Each dot represents an independent differentiation. One sample t-test. *p < 0.05, **p < 0.01, **p < 0.001 
and ****p < 0.0001. 

Finally, to test, whether hIPSC-derived IBA1+-cells display Ca2+-events upon extracellular ATP 
administration (Palomba et al. 2021), we labeled IBA1+-cells with the Ca2+-sensitive fluorescent 
dye Fluo-4 and imaged the fluorescent intensity after ATP administration. IBA1+-cells displayed 
rapid and synchronized accumulation of Ca2+-events (Figure19 – Figure legend on next page.  
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Figure 19a-b), which was not observed with medium-treated IBA1+-cell (Figure 15c-d).  

 
Figure19 – Figure legend on next page.  
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Figure 19 – Calcium events. 
ATP-evoked Ca2+ transients in IBA1+-cells derived from BMP4-guided protocol for SC102A week 6-7. a, Consecutive 
snapshots of live imaged cells exposed to Ca2+-sensitive fluorescent dye Fluo-4. Scale bar: 20μm. b-c, Graph shows 
Ca2+-dependent fluorescence intensity normalized to the mean intensity of the cells throughout 360 seconds of 
recording. After 180 seconds of baseline measurement (light grey area) b, ATP (1mM final concentration) was 
applied or c, L15 medium was applied and recording was continued up to 360 seconds (dark grey area). Ca2+-events 
are detected by PeakCaller software. Each curve shows the Ca2+-events of an individual cell. Thick line: Median of 
32 cells from three independent differentiations. d, Graph shows sum of software-detected Ca2+ events from all 
cells of ATP- and medium treated conditions across time in 10 second bins. Ca2+-dependent fluorescence is displayed 
through an intensity-based color code (blue-green-yellow). White vertical line indicates drug application time point. 

IBA1+-cells populate but do not originate in 3D-cysts in BMP4-guided protocol 

To identify whether IBA1+-cells, similarly to the unguided protocol, occupied 3D-cysts in BMP4-
guided protocol, we collected 3D-cysts at several time points after differentiation and performed 
wholemount immunostaining. Starting at week 5.5, IBA1+-cells populated the 3D-cysts and 
increased in number over time (Figure 16a-b). To identify whether 3D-cysts might be the source 
of IBA1+-cells, we collected 3D-cysts from a 2.5D culture plate at week 2.5, 3, 4, and 5 and 
cultured these separately, in parallel to the left-over 3D-cysts. These 3D-cyst cultures were 
developed until week 7.5 and then immunostained for IBA1 (Figure 16c). Unexpectedly, the 3D-
cysts isolated at week 2.5 to 4 contained only a few IBA1+-cells (Figure 16d).  
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Figure 20 – IBA1+- populate but do not originate in 3D-cysts in BMP4-guided culture.  
Immunostaining for IBA1 (ionized calcium-binding adapter molecule 1, magenta) and Hoechst (blue) in SC102A for 
BMP4-guided protocol. a, Timeline of the presence of IBA1+-cells in 3D-cysts from week 2.5 to week 9. Scale bar: 50 
µm. b, Scatter plot of IBA1+-cells occupying 3D-cyst with trend curve and 95% confidence level interval. Pearson 
correlation showing a significant correlation between age of differentiation and number of IBA1+-cells occupying the 
cyst (Pearson’s correlation = 0.738518 and p-value = 0.003937, R2 = 0.5454089). c, 3D-cysts collected and separated 
from the 2.5D culture at week 2.5, 3, 4, 5 and cultured until week 7.5, immunostained (wholemount) together with 
3D-cysts which were kept in the original 2.5D culture until week 7.5 (orange frame). Representative images of 3D 
volume rendering to visualize the 3D-cyst with IBA1+-cells. White arrow, IBA1+-cells. Scale bar: 100 µm. d, Scatter 
plot of IBA1+-cells occupying isolated 3D-cyst with trend curve and 95% confidence level interval. Pearson correlation 
showing a significant correlation between age when 3D cysts were isolated and IBA1+-cells density (R = 0.81707 and 
p-value = 0.0039, R2 = 0.6676). 

In contrast, 3D-cysts isolated at week 5 had a similarly high number of IBA1+-cells to the 3D-cysts 
cultured on the original plate excluding these structures as the source of IBA1+-cells. Indeed, we 
found IBA1+-cells already on the culture plate between week 2 and 3 (Figure 21) indicating that 
they are not derived from the 3D-cysts. 
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Figure 21 – First occurrence of IBA1+-cells in 2.5D culture by week 2.5D in BMP4-guided protocol.  
Immunostaining for IBA1 (ionized calcium-binding adapter molecule 1, magenta) and Hoechst (blue) in SC102A for 
BMP4-guided protocol. Orange frame, zoom-in with brightfield image. Scale bar: 100 µm. 

 

IBA1+-cells associate with the mesenchymal/vimentin+-region  

To obtain insights into the cyst composition, we performed mass spectrometry of 3D-cysts from 
the BMP4-guided protocol with either sparse or high IBA1+-cell population at week 4 and 7, 
respectively ( 

Figure 22a). We obtained the peptide sequence data and compared the highly expressed proteins 
with 44 tissues from the human proteome atlas that have previously been characterized (Uhlén 
et al. 2015). At week 4, highly abundant proteins suggest that cells in the 3D-cysts have various 
fate potentials. Interestingly, at week 7, the protein composition was specific to tissues of partial 
or full mesodermal origin such as soft tissue, bone marrow and smooth muscles, which is 
consistent with BMP4 application and indicates a mesenchymal identity (Figure 22b).  

 
 Figure 22 – Figure legend on next page.  
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Figure 22 – Tissue enrichment analysis. 
a, Schematic of experimental design. For mass spectrometry, ten 3D-cysts generated with BMP4-guided protocol 
were collected at week 4 and week 7. b, Tissue enrichment analysis shown as a network. Nodes, tissue. Edges, 
connecting the tissues that share highly expressed proteins in the 98th percentile. The node size reflects the 
enrichment p-value and the thickness of the edge reflects the size of the shared proteins. 

Similarly, when we performed tissue enrichment analysis of proteins related to human eye tissue 
(Dunn et al. 2019; Zhang et al. 2015; Zhang, Kirby, et al. 2016), we found a significant overlap of 
highly abundant proteins for meninges and sclera, both of which have mesenchymal origin. In 
contrast, proteins enriched in ectodermal retina and optic nerve were underrepresented (Figure 
23a).  
To validate whether the 3D-cysts are enriched for mesenchyme, we compared our mass 
spectrometry data with mesenchymal markers including transcription factors, cytoskeletal-, cell 
surface and extracellular matrix proteins (Andrzejewska et al. 2019; Owusu-Akyaw et al. 2019; 

Scanlon et al. 2013). We found that vimentin (VIM), laminin 1 (LAMB1), and fibronectin (FN1) 
were enriched with VIM among the most abundantly expressed mesenchymal proteins at week 
7 (Figure 23b). Since one characteristic of mesenchyme is close interaction with the epithelium 
(MacCord 2012), we also investigated the presence of epithelial proteins in our dataset and found 
several to be upregulated from week 4 to 7 (Figure 23c).  

 
Figure 23 – Tissue enrichment analysis of highest expressed proteins in the eye.  
a, Top: eye schematic. Bottom: tissue enrichment analysis of the week 7 dataset. RPE, retinal pigment epithelium. 
b-c, Heatmap of protein expression level in log10 (intensity) for week 4 and week 7 cystic compartments for b, 
mesenchymal marker; c, epithelial marker. 

One of these epithelial markers is E-Cadherin (CDH1), which is commonly described together with 
the mesenchymal marker VIM in the epithelial-mesenchymal transition during development and 
cancer (Hay 2005; Thiery et al. 2009; Yamashita et al. 2018). Therefore, we validated the 
expression of both markers in 3D-cysts derived with the BMP4-guided protocol. VIM expression 
was strong in the cell layers facing the surface of the 3D-cyst wall (Figure 24a). In contrast, E-
Cadherin marked a defined layer next to the cystic lumen and complemented VIM expression 
Figure 24b).  
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Figure 24 – Confirmation of mass spectrometry candidate proteins in 3D-cysts from BMP4-guided protocol. 
Immunostaining of sequential cryostat sections of 3D-cysts from BMP4-guided differentiation at week 7 for VIM 
(vimentin, green, a), E-Cadherin (yellow, b) and counter-stained with the nuclei-dye Hoechst (blue). *: lumen. Zoom-
in (red frame). Scale bar: 100 µm. 

When we investigated the location of IBA1+-cells, they mostly occupied the VIM+-region (Figure 
25a) and stayed distinct from the E-Cadherin+-layer (Figure 25b). Only occasionally IBA1+-cells 
intermingled with the E-Cadherin+-cells (Figure 25c).  

 
Figure 25 – IBA1+-cells localize within VIM+-region in cystic compartment. 
Immunostaining of cryostat sections of 3D-cysts from BMP4-guided differentiation for IBA1 (ionized calcium-binding 
adapter molecule 1, magenta) and counter-stained with the nuclei-dye Hoechst (blue). a, Co-staining with VIM 
(vimentin, green, week 12, red frame: zoom-in) or b-c, E-Cadherin (yellow, week 10, with 3D-surface rendering for 
CR05 cysts). White arrow: IBA1+-cells within E-Cadherin layer. *, lumen. Scale bar: 100 µm. 
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To verify whether the IBA1+-cells prefer the mesenchymal-like VIM+-region also in 3D-cysts 
obtained from the unguided protocol (Figure 5a), we repeated the above-described staining. VIM 
labeled a similar defined region in the 3D-cysts with E-Cadherin expression localized in a defined 
layer around the cystic lumen (Figure 26a-d).  

 
Figure 26 – Comparison of 3D-cysts from BMP4-guided or unguided protocols. 
Immunostaining of VIM (vimentin, green, a-b) and E-Cadherin (yellow, c-d) for SC102A at week 8 for 3D-cysts from 
BMP4-guided (a, c) and unguided (b, d) protocol, counter-stained with the nuclei-dye Hoechst (blue). *: lumen. Red 
frame: zoom-in. Scale bar: 200 µm. Zoom in, Scale bar: 50 µm. 

In addition, we found E-Cadherin+-expression at regions facing the surface (Figure 27a). IBA1+-
cells rarely intermingled with the E-Cadherin+-layer facing the lumen or the surface of the 3D-
cyst (Figure 27a-b) and mostly localized within the VIM+-region (Figure 27c) suggesting that 
IBA1+-cells prefer the mesenchymal region.  
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Figure 27 – IBA1+-cells preferentially localize within VIM+-regions in 3D-cysts. 
Immunostaining of cryostat sections of 3D-cysts from unguided protocol for IBA1 (ionized calcium-binding adapter 
molecule 1, magenta), E-Cadherin (yellow, a-b), VIM (vimentin, green, c), and the nuclei-dye Hoechst (blue) for 
SC102A at week 8. *, lumen within the cystic compartment. a, Arrow, E-Cadherin staining on 3D-cyst surface. Red 
frame, zoom-in with surface rendering in the middle. Scale bar: 100 µm. 

Mesenchymal stem cells can have immunomodulatory capabilities (Andrzejewska et al. 2019) 
and could sequester IBA1+-cells away from infiltrating into the retinal cups. To test this, we added 
17-week-old retinal organoids without a cystic compartment (Figure 12a, i/ii) from the unguided 
protocol to the culture of BMP4-guided protocol, which contains both floating IBA1+-cells and 
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3D-cysts in the supernatant (Figure 28a). IBA1+-cells did not integrate into the retinal cup or the 
cerebral compartment (Figure 28b).  

 
Figure 28 – Adding 3D-retinal organoids without cystic compartment to 2.5D culture of BMP4-guided protocol. 
a, Experimental schematic (condition 1). b, Whole mount 3D-retinal organoid without cystic compartment from 
SC102A immunostained for IBA1 (ionized calcium-binding adapter molecule 1, magenta), OTX2 (orthodenticle 
homeobox 2, yellow), the nuclei-dye Hoechst (blue) and brightfield image at week 18. Scale bar: 100 µm.  

In contrast, if we harvested IBA1+-cells from the BMP4-guided protocol and applied them to 3D-
retinal organoids without a cystic compartment (Figure 29a), IBA1+-cells successfully integrated 
into both retinal cup and cerebral compartment (Figure 29b-c). These data show that when there 
is no cystic compartment, IBA1+-cells start to occupy the retinal cup. Otherwise, they are 
preferentially enriched in the mesenchymal, cystic region.  
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Figure 29 – Adding IBA1+-cells from BMP4-guided protocol to 3D-retinal organoids without cystic compartment.  
a, Experimental schematic (condition 2). b, Bar chart of number of IBA1+-cells integrating into the structure and 
standard error at week 17 after 10 days of adding IBA1+-cells. Each dot represents a 3D-retinal organoid. Green, 
condition 1 related to Figure 22a-b. Magenta, condition 2 related to Figure 23a, c. Wilcox test p-value = 0.0436. *p 
< 0.05. c, Whole mount 3D-retinal organoid without cystic compartment from SC102A immunostained for IBA1 
(ionized calcium-binding adapter molecule 1, magenta), OTX2 (orthodenticle homeobox 2, yellow), the nuclei-dye 
Hoechst (blue) and brightfield image at week 18. Scale bar: 100 µm. 

 

IBA1+-cells adopt a BAM signature in the mesenchymal environment 

Border-associated macrophages (BAMs) are non-parenchymal macrophages that reside either at 
perivascular structures, meninges, or choroid plexus, all of mesenchymal nature (Lun et al. 2015; 
MacCord 2012; Pill et al. 2015). Transcriptional profiling of macrophage populations in embryonic 
mouse brain identified CD163 as a potential marker for BAMs (Utz et al. 2020), which also labels 
human perivascular macrophages (Fabriek et al. 2005), mononuclear phagocytes in the choroid 
plexus, and cells in the meningeal- and subpial granular layer (Rezaie and Male 2003). Indeed, we 
found that 99% of IBA1+-cells co-expressed CD163 by week 10 in the 3D-cyst (Figure 30a-b).  
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Figure 30 – IBA1+-cells express CD163, a marker for border-associated macrophages. 
a, Immunostaining of cryostat sections of SC102A 3D-cysts from unguided protocol week 8 for IBA1 (ionized calcium-
binding adapter molecule 1, magenta), CD163 (cluster of differentiation 163/ protein tyrosine phosphatase receptor 
type C, green) and the nuclei-dye Hoechst (blue). Orange frame: zoom-in. *: lumen within the cystic compartment. 
Scale bar: 100 µm. b, Bar chart of % of CD163+/IBA1+-cells and % of CD163-/IBA1+-cells per time point with standard 
error. Each dot represents one section of individual 3D-cyst. Two-way ANOVA p-value = < 2.2e-16 with selected post 
hoc-test. ***p < 0.001. 

Interestingly, the onset of CD163 expression occurs in a defined window. At week 5, IBA1+-cells 
were still negative for CD163 in the 2.5D culture (Figure 31a). Within one week, IBA1+-cells co-
expressed CD163, as they started to distribute within the 2.5D culture and occupy compartments 
that were sparse in nuclei (Figure 31b).  

 
Figure 31 – Onset of CD163 expression in unguided protocol. 
Immunostaining of 2.5D-culture from unguided protocol of CR05 for IBA1 (ionized calcium-binding adapter molecule 
1, magenta), CD163 (cluster of differentiation 163/ protein tyrosine phosphatase receptor type C, green) and the 
nuclei-dye Hoechst (blue) at week 5 (a) and week 6 (b). Open arrow: CD163-/IBA1+. Arrow: CD163+/IBA1+. Orange 
and red frame: zoom in. Scale bar: 100 µm.  
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To identify whether the 3D-cysts expressed a blood vessel endothelium, we stained for CD31. 
Only occasionally, we observed CD31 in the VIM+-region (Figure 32) suggesting that IBA1+-cells 
occupy the 3D-cyst even without blood vessel system. In contrast to mice that require the blood 
vessel system (Ginhoux et al. 2010), human microglia infiltrate the cortex from the ventricular 
lumen and the leptomeninges (Monier et al. 2007; Rezaie et al. 2005) thus, the strong preference 
of IBA1+-cells to the mesenchyme might explain the preferential location of IBA1+-cells to 
infiltrate the brain tissue.  

 

Figure 32 – CD31+-endothelial cells within VIM+-region. 
Immunostaining of cryostat-sections of 3D-cyst from unguided protocol for SC102A at week 8 for IBA1 (ionized 
calcium-binding adapter molecule 1, magenta), CD31 (platelet and endothelial cell adhesion molecule 1, green), VIM 
(vimentin, yellow) and counter-stained for the nuclei-dye Hoechst (blue). *: lumen within the cystic compartment. 
Scale bar: 100 µm. (i, ii) Zoom in and 3D-surface rendering. Scale bar: 20 µm. 

  



56 
 

2.4. Discussion 
IBA1+-cells innately develop within retinal organoid differentiation protocol 

In this study, we demonstrate that microglia-like cells emerge between week 3 to 4 in 2.5D 
culture (Figure 8a) in an unguided retinal organoid differentiation protocol (Zhong et al. 2014). 
At this time point, the 2.5D culture is highly heterogeneous and reflects an unperturbed self-
organized environment. The properties of EBs in our unguided protocol allow the formation of 
retinal cell types derived from the neuroectodermal lineage (Figure 5d) and mesenchymal cells 
that are mainly derived from the mesoderm (Figure 26b, d, Figure 27). This environment and the 
time frame is similar to when IBA1+-cells have been reported to appear in human embryonic 
development  (Bloom and Bartelmez 1940; Kelemen and Jánossa 1980; Monier et al. 2007; Rezaie 
et al. 2005). Our results also support a recent study that identified a cluster of microglial cells 
using RNA-sequencing of cerebral organoids with bilateral optic vesicles (Gabriel et al. 2021). 
However, in contrast to human embryonic retinal development (Hu et al. 2019; Mellough et al. 
2019) , we rarely observed microglia-like cells in the hIPSC-derived retinal cups at 5 weeks or later 
(Figure 7). Instead, IBA1+-cells strongly preferred the mesenchymal-like cystic- over the neuronal 
compartment (Figure 12b-f).  

The ambiguity of TMEM119 expression 

A recent study by Shiraki et al. reports the occurrence of PAX6-positive microglia-like cells 
evolved in hIPSC-derived ocular organoids (Shiraki et al. 2022). Their ‘SEAM’ (self-formed 
ectodermal autonomous multizone) protocol, which provides the potential to differentiate 
hiPSCs into anlages of different ocular lineages such as neuroectoderm (zone 1), neural crest 
(zone 2), ocular-surface ectoderm (zone 3), or non-ocular surface ectoderm (zone 4) (Hayashi et 
al. 2016, 2017). They found microglia-like cells between zone 2-3 as early as day 10 after the 
hIPSC differentiation (Shiraki et al. 2022).  

The authors have used TMEM119-staining to identify microglia-like cells. However, we are not 
convinced that the shown TMEM119-positive cells indeed reflect microglia due to their 
morphology, size, and the ambiguity of TMEM119 also having a role in osteoblast differentiation 
and bone development (Jiang et al. 2017; Kanamoto et al. 2009; Mizuhashi et al. 2012; Tanaka et 
al. 2014): When we compared the images of the TMEM119-positive microglia-like population to 
our IBA1+-cells, we were surprised about the size of more than 200 µm and their highly branched 
morphology at week 4. Both parameters are rather unusual: First, in the adult human brain tissue, 
the average size of TMEM119+/IBA1+-immunostained microglia is around 50 µm (Figure 33a). 
Second, in human embryonic brain tissue, the average size of microglia stained with either CD68, 
IBA1, or CD45 is around 20 µm (Monier et al. 2007; Rezaie and Male 2003). Similarly, our hIPSCs-
derived microglia cell diameter ranges from 20 to 100 µm (Figure 9, Figures 16), which is in line 
with previous studies (Abud et al. 2017; Douvaras et al. 2017; Haenseler et al. 2017; McQuade et 
al. 2018; Muffat et al. 2016; Ormel et al. 2018; Pandya et al. 2017; Takata et al. 2017). Finally, we 
and others identified microglia to typically reflect a more amoeboid or bipolar-shaped 
morphology during human embryonic development (Cunningham et al. 2013; Diaz-Araya et al. 
1995; Monier et al. 2007; Rezaie et al. 2005). We are not aware of another study that shows a 
similar highly branched microglia-like cell network starting from week 2 as described by Shiraki 
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et al. 2022. Even in adulthood, individual microglia rarely overlap with their processes (Figure 
10). 

 
Figure 33 – TMEM119 expression. 
Immunostaining for TMEM119 (Transmembrane Protein 119, green), IBA1 (ionized calcium-binding adapter 
molecule 1, magenta) and the nuclei dye Hoechst (blue). A, Two examples of vibratome sections of adult human 
temporal lobe. Left example with a blood vessel in a center that does not express TMEM119. Scale bar: 50 μm. B-E, 
2.5D culture of unguided protocol from SC102A at week 4.5 (B-D) and week 8.5 (E). White *, cell-dense area. Scale 
bar: 50 μm. Orange frame: zoom-in with scale bar: 10 μm. Arrows: IBA1+-cell embedded within TMEM119 side but 
not overlapping. 

Therefore, we decided to stain our 2.5D culture for TMEM119 at week 4 to compare the 
expression pattern with Shiraki et al. 2022. TMEM119 accumulated similarly around the retinal 
cup and the cells showed a radial distribution (Figure 33b). The approximate size of TMEM119+-
cells is around 200 µm as described in Shiraki et al. and rather be atypical for microglia. Moreover, 
we found that cell type-specific TMEM119 staining also occurred at the 3D-cyst (Figure 33c).  
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In contrast to Shiraki et al. 2022, we identified microglia-like cells with IBA1 which is a well-
established marker commonly used for hIPSC-derived microglia-like cells (Abud et al. 2017; 
Douvaras et al. 2017; Haenseler et al. 2017; McQuade et al. 2018; Muffat et al. 2016; Pandya et 
al. 2017) and has not been used for immunostaining by Shiraki et al. 2022. Furthermore, IBA1 has 
been shown to be highly specific in human embryonic tissue at gestation week 4.5 (Monier et al. 
2007). We found the earliest expression of IBA1+-cells between week 3-4 in our 2.5D culture 
(Figure 8c), which is in the line with observations from Ormel et al. 2018, who describes the first 
IBA1+-cells at day 24 (Ormel et al. 2018). Since we have shown that IBA1+-cells specifically enrich 
at the 3D-cyst, we stained for IBA1. Surprisingly, IBA1+-cells do not overlap with TMEM119 
neither at week 4.5 (Figure 33d) nor at week 8.5 (Figure 33e). Instead TMEM119 and IBA1 labeled 
distinct cells which were located next to each other. We validated two TMEM119 antibodies 
(Abcam, ab185333, poly-clonal, binding at the C-terminus, and Novus Biologicals, NBP2-30551, 
poly-clonal) with the Abcam antibody overlapping the antibody peptide sequence from the Sigma 
HPA051870 poly-clonal antibody used by Shiraki et al. 2022. For both antibodies, we observed 
the same picture.  

TMEM119 has been described as a selective marker for both human and mouse parenchymal 
microglia/IBA1+-cells (Bennett et al. 2016). However, this assumption has been recently 
challenged: For example, studies have shown that TMEM119 is neither exclusive to microglia nor 
does it label all microglia (Satoh et al. 2016; Vankriekelsvenne et al. 2022). Also, the specificity of 
TMEM119 to microglia-precursors during development is unclear. TMEM119 (type IA single-pass 
transmembrane protein) is also known as osteoblast induction factor Obif, which has a reported 
role in osteoblast differentiation and bone development (Jiang et al. 2017; Kanamoto et al. 2009; 
Mizuhashi et al. 2012; Tanaka et al. 2014). Thus, the observed TMEM119 staining might not 
necessarily reflect microglia. To validate their microglia-like cells, they represented CD11b 
(ITGAM) and CX3CR1 which are commonly used for labeling microglia, but both have been also 
associated to regulate bone homeostasis and osteoblasts (Hoshino et al. 2013; Koizumi et al. 
2009; Park-Min et al. 2013), which could potentially explain their TMEM119 co-expression.  

The performed qRT-PCR for other microglia markers by Shiraki et al. 2022 shows a high standard 
deviation in the first 2-3 weeks and an overall low expression value suggesting low abundance. 
Only by week 4, they start to see a stronger signal, which is also the time point where they enrich 
for CD11b+/CD45+-cells for single-cell RNA sequencing. The switch to enrich for CD11b+/CD45+ 
and not TMEM119+-cells at week 4 will likely explain their success to find microglia-like 
transcriptional signature. Week 4 is also the time point when we reliably observed IBA1+-cells 
(Figure 8) and Ormel et al. 2018 showed that their microglia express CD11b and CD45.  

Thus, we are convinced that the TMEM119 staining in Shiraki et al. 2022 does not represent 
microglia-like cells based on the above outlined discrepancy about the microglia phenotypes, our 
independently performed TMEM119 staining, and a potential alternative explanation of the role 
of TMEM119 during development, that might have been overshadowed by the preferential 
association of TMEM119 being a microglia-selective marker. Future studies will have to 
investigate whether TMEM119 reflects a human developmental signature gene for early 
microglia precursor cells.  
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IBA1+-cells express BAM signature and are enriched in mesenchymal structures 

In humans, microglia first enter the embryonic cortical regions via the ventricular lumen, choroid 
plexus, and leptomeninges (David A. Menassa and Gomez-Nicola 2018; Rezaie and Male 2003) 
all tissues originating from the mesenchyme (Catala 2019; Lopes 2009; O’Rahilly and Müller 
1986). As mesenchymal structures develop in vivo around the neuronal retina with the choroid 
close to the photoreceptors and meninges wrapping the optic nerve (Forrester et al. 2010; 
Sturrock 1987), the preferential location of our IBA1+-cells in the mesenchymal region potentially 
recapitulates how microglia enter the retina. The CD163 expression of IBA1+-cells further 
supports a perivascular-associated role. Initially, parenchymal microglia and border-associated 
macrophages are derived in vivo from the same primitive macrophage (Goldmann, Wieghofer, 
Prutek, et al. 2016) and then adapt their transcriptional landscape to their local environment at 
early developmental stages (Gosselin et al. 2017; Masuda et al. 2019; Utz et al. 2020). CD163 is 
one example of a human border-associated- (perivascular, leptomeningeal, choroid plexus) 
macrophage marker (Fabriek et al. 2005; Rezaie and Male 2003), and its expression is 
upregulated during mouse embryonic development (Utz et al. 2020). Indeed, our IBA1+-cells in 
the 2.5D culture arose as CD163 negative and express CD163 after one week (Figure 30).  

However, it remains unclear why IBA1+-cells do not further infiltrate the neuronal compartment 
especially when 3D-aggregates contain both retinal cups and cystic compartments (Figure 12a/iii, 
12e). Even if we transferred 3D-retinal organoids to 2.5D cultures of BMP4-guided protocol, 
IBA1+-cells favor the cystic- over the neuronal compartment (Figure 28-29). It is possible that the 
cystic compartment releases guidance signals that attract IBA1+-cells. These cues are likely to be 
similar to those that recruit macrophages to the epithelial-mesenchymal transition sides in 
glioma (Song et al. 2017). There is limited knowledge about developmental guidance cues that 
attract microglia to the neuronal compartment and more specifically to the retina. Further 
investigation will be required to answer these questions.  
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2.5. Conclusion 
In summary, our study confirms that microglia-like cells occur within the unguided retinal 
organoid differentiation protocol and preferentially occupy mesenchymal region. These findings 
will allow future analysis of microglial migration in complex tissue environments and facilitate 
identification of mechanistic cues that attract microglia in complex tissue structures. 

2.6. Limitation 
A possible limitation in our study is that we employed two hIPSC lines from different origins and 
both resulted in a similar phenotype. We cannot exclude that the qualitative outcome could be 
different for other hIPSC lines due to properties related to genetic origin, epigenetic landscape, 
or transcriptional state at the time of the differentiation (Kilpinen et al. 2017; Ortmann and Vallier 
2017). Such factors might prevent the generation of cystic compartments and therefore the 
appearance of microglia-like cells.  
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3. CHAPTER 2 | Microglia determine an immune-challenged 
environment and facilitate ibuprofen action in human retinal 
organoids. 

Chapter 2 is based on the following publication: 

Schmied, V., Korkut-Demirbaş, M., Venturino, A., Maya-Arteaga, J.P., and Siegert, S. (2025). 
Microglia determine an immune-challenged environment and facilitate ibuprofen action in 
human retinal organoids. J Neuroinflammation 22, 98. https://doi.org/10.1186/s12974-025-
03366-x. 

3.1. Keywords 

Human induced pluripotent stem cells, retinal organoid, microglia, prenatal, neuro-immune 
challenge, POLY(I:C), ibuprofen, prostaglandin, COX1, PTGS1, TORCH 

3.2. Introduction 

Prenatal exposure to infections can be detrimental to human embryonic development (Auriti et 
al. 2021; Meyer 2019). Certain infectious diseases like rubella belonging to the TORCH complex 
(Toxoplasmosis, Others, Rubella, Cytomegalovirus, Herpes) can be vertically transmitted from 
pregnant women to their fetus, resulting in malformations of the fetal brain and eye (Campos et 
al. 2020; Dudgeon 1967; Thompson et al. 2016; Töndury and Smith 1966). Medication is 
recommended to a certain degree to treat inflammatory symptoms during pregnancy, but there 
are significant knowledge gaps on the effects of anti-inflammatory drugs on embryonic 
development (Stock and Norman 2019).  

Brain organoids derived from human induced pluripotent stem cells (hIPSCs) provide a unique 
strategy to investigate the consequences of prenatal inflammation, which we refer to as neuro-
immune challenge, and drug exposure to this environment. Specifically, retinal organoids are one 
of the first established brain region-specific models (Eiraku et al. 2011). Their developmental 
trajectories and cytoarchitecture are well-defined (Cowan et al. 2020; Zhong et al. 2014) and 
match anatomical observations in human fetal retinal development, like the formation of the 
ganglion cell layer and the outer plexiform layer (OPL) (Gupta et al. 2016). At the same time, 
neuroectodermal-derived organoids commonly lack mesodermal-derived brain-resident 
macrophages (Bian et al. 2020), which colonize the human fetal brain and eye between gestation 
week (GW) 4.5 and 5 (Hu et al. 2019; Monier et al. 2007). Once in the neuronal environment, 
these microglia have multifunctional developmental tasks demonstrated in the rodent nervous 
system. They regulate, amongst others, the number of neural precursor cells (Cunningham et al. 
2013; Loayza et al. 2022), axonal outgrowth and neuronal wiring (Squarzoni et al. 2014), as well 
as synaptogenesis and pruning (Paolicelli et al. 2011; Schafer et al. 2012) across various brain 
regions (Anderson et al. 2019; Burger et al. 2020; Kuse et al. 2018; Miyamoto et al. 2016). 
Microglia maintenance and survival depend on the colony-stimulating factor 1 receptor (CSF1R) 
(Elmore et al. 2014; Greter et al. 2012; Wang et al. 2012) , which, when inhibited, affects the total 
number of neurons and the macroglia cell populations consisting of astrocytes, oligodendrocytes 
and also their migration, distribution, and the functional connectivity (Anderson et al. 2019; Arnò 
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et al. 2014; Erblich et al. 2011; Marsters et al. 2020; Rosin et al. 2021; Squarzoni et al. 2014). 
Embryonic death and brain malformation have been reported in humans harboring homozygous 
mutations within the CSF1R genome (Guo et al. 2019; Oosterhof et al. 2019). 

In recent years, protocols have been developed to generate hIPSC-derived microglia precursor 
cells (preMG), which acquire microglia-like cell (iMG) properties once integrated into 
neuroectodermal tissue and exposed to the environmental cues (Abud et al. 2017; Bartalska et 
al. 2022; Guttikonda et al. 2021; Haenseler et al. 2017; Park et al. 2023; Takata et al. 2017). Recent 
studies demonstrate that iMG promote brain organoid maturation (Park et al. 2023) and fine-
tune their neuronal environment at the cellular and synaptic levels (Chichagova et al. 2023; Gao 
et al. 2022; Usui-Ouchi et al. 2023) Thus, microglia integration seems relevant to mimic in vivo 
human brain development. 

Human cerebral organoids have been used to model the consequences of TORCH viruses such as 
Zika, and a reduction in neuronal progenitor numbers (Dang et al. 2016; Garcez et al. 2016; Krenn 
et al. 2021; Su et al. 2021; Xu et al. 2019). However, due to the lack of microglia in these studies, 
our insights into the inflammatory response and its consequences on human embryonic 
development are limited. Microglia are susceptible to environmental cues beyond pathogens 
(Bsibsi et al. 2002), including inflammatory mediators such as cytokines and chemokines (Chhor 
et al. 2013; Hanisch and Kettenmann 2007; Lively and Schlichter 2018). In rodent models, 
prenatal neuro-immune challenges induce microglia to express receptors to sense pathogens and 
inflammatory mediators (Ostrem et al. 2024) and affect microglia properties such as morphology, 
motility, and their actual number (He et al. 2021; Loayza et al. 2022; Ozaki et al. 2020; Pratt et al. 
2013; Squarzoni et al. 2014). In parallel, these immune challenges also affect neurogenesis 
(Cunningham et al. 2013; Kuse et al. 2018; Loayza et al. 2022), neuronal differentiation (Ben-
Reuven and Reiner 2019), synaptogenesis (Forrest et al. 2012; Giovanoli et al. 2016), and synaptic 
pruning (Andoh et al. 2019; Coiro et al. 2015), to which microglia regularly contribute. Although 
microglia are critical to sense and adopt a response against infectious agents (Hanisch & 
Kettenmann, 2007) their impact on the neuronal organization and connectivity in an 
inflammatory environment and the consequences of an anti-inflammatory treatment are poorly 
understood.  

Here, we mimicked a prenatal neuro-immune challenged environment and subsequent 
treatment with the non-steroidal anti-inflammatory drug (NSAID) ibuprofen in microglia-
assembled retinal organoids (iMG-3DRO). After we identified the optimal time-point to investigate 
microglia-neuron interaction in the hIPSC-derived 3D-retinal organoid (3DRO) [60], we developed 
a 2D-model system (dissRO) that mimics the retinal development the closest (Diaz-Araya et al. 
1995) and counteracts the previously reported ganglion cell loss in 3DRO (Cowan et al. 2020; Fligor 
et al. 2021; Wagstaff et al. 2021). This model also circumvents known challenges of organoid-to-
organoid variability in size, shape, and cell type composition (Capowski et al. 2019; Cowan et al. 
2020; Hallam et al. 2018), as well as diffusion biases of drugs. In this iMG-dissRO model, iMG 
actively interact with and phagocytose retinal ganglion cells as anticipated (Cowan et al. 2020; 
Fligor et al. 2021; Wagstaff et al. 2021).  

We then modeled a prenatal neuro-immune challenge by exposing the culture to the 
immunostimulant polyinosinic: polycytidylic acid (POLY(I:C)), which mimics a viral-mediated 
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response and activates the toll-like receptor 3 (TLR3) (Alexopoulou et al. 2001). TLR3 stimulation 
induces a downstream signaling cascade involving NFkB- and interferon pathways, resulting in 
cytokines and chemokines release (Bsibsi et al. 2002; Kawai and Akira 2010; Matsumoto and Seya 
2008).  

Furthermore, POLY(I:C) directly acts on microglia as they upregulate TLR3 mRNA expression 
(Town et al. 2006). We investigated the consequences of POLY(I:C)-mediated immune challenge 
in our iMG-dissRO model and identified a microglia-dependent inflammatory signature and 
increased retinal cell proliferation. To evaluate the effects of anti-inflammatory drugs on the 
identified consequences, we focused on the NSAID ibuprofen, which can be taken cautiously 
during the first half of the pregnancy (Schaefer et al. 2012). Ibuprofen targets cyclooxygenase 1 
and 2 (PTGS1/COX1, PTGS2/COX2, respectively) and prevents arachidonic acid conversion into 
prostaglandins like PGE2 (Griswold and Adams 1996; Kato et al. 2010). In the presence of 
ibuprofen, POLY(I:C)-mediated effects on microglia were dampened, and the neuronal 
phenotypes were restored. Yet, this beneficial effect depended on PTGS1 expressed by iMG since 
ibuprofen did not show this rescue in cultures without iMG.  

Our study highlights the interplay of human microglia with neurons during normal development, 
under prenatal neuro-immune challenges, and after anti-inflammatory drug exposure. Across all 
three conditions, we identified microglia-dependent phenotypes, emphasizing their significance. 
In light of future clinical drug tests in organoid models and known species-specific differences in 
microglial gene signature associated with immune response and neurodegenerative diseases 
(Geirsdottir et al. 2019; Sabogal-Guáqueta et al. 2023), microglia contribution cannot be excluded 
from experiments.   
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3.3. Material and Methods 

Ethical approval 
The ISTA Ethics Officer and Ethics Committee approved the usage of human induced pluripotent 
stem cells (hIPSC).  

Cell lines 
We used two human induced pluripotent stem cell lines (hIPSC): SC 102A-1 GVO-SBI Human 
Fibroblast-derived (feeder-free) IPSC line (BioCat; hPSCreg.eu: SBLi006-A; in this study referred 
to SC102A) and the human fibroblast-derived IPSC line 01F49i-N-B7 (Renner lab (Cowan et al. 
2020), in this study referred to F49B7). For more details, see (Table 5). 

Table 5 – Overview of human induced pluripotent stem lines included in chapter 2. 
hPSCreg.eu, human pluripotent stem cell registry. MYC, MYC proto-oncogene. KLF4, kruppel-like factor 4. Large T 
antigen, large tumor antigen. LIN28, zinc finger CCHC domain-containing protein. OCT4 (octamer-Binding Protein 4)/ 
POU5F1 (POU domain, class 5, transcription factor 1). SOX2, sex-determining region Y-box 2. SV40, simian-virus 40. 

Cell culture and human induced pluripotent stem cells 
Matrigel coating. Matrigel (Corning® Matrigel® hESC-Qualified Matrix, *LDEV-Free, Corning, 
#354277) was used according to the manufacturer protocol with the following modifications: 
Matrigel aliquots were dissolved in ice-cold X-Vivo 10 chemically defined, serum-free 
hematopoietic cell medium (Lonza, #BE04-380Q). Dishes were coated for 1 hour at room 
temperature.  
Maintenance of human induced pluripotent stem cells (hIPSCs). hIPSCs were maintained in 
mTeSR1 medium (STEMCELL Technologies, #85850) on Matrigel-(Corning, #354277) coated 6-
well plates (Corning, #3516) cultured at 37ºC and 5% CO2 in a humidified incubator (BINDER 
C150). Before reaching 80% confluency, hIPSCs were passaged as small aggregates every 3-4 days 
using EDTA dissociation buffer composed of 0.5M EDTA (ethylenediaminetetraacetic acid, K.D. 
Biomedical, #RGF 3130), 0.9 g (w/v) NaCl (Sigma, #5886) in PBS (phosphate buffered saline, 
calcium/magnesium-free, Invitrogen, #14190), sterile filtered and stored at 4ºC according to 

Cell line SC 102A-1 01F49i-N-B7 

hPSCreg.eu SBLi006-A  

Company BioCat  

Generator SYSTEM BIOSCIENCES 
Institute of Molecular and Clinical 
Ophthalmology Basel; Cowan et al 
2020, Cell 

Abbreviation within 
manuscript 

SC102A F49B7 

Source Fibroblast (dermis) Fibroblast 

Vector Retrovirus (integrating) Sendai virus 

Genes for reprogramming 
MYC, KLF4, SOX2, 
OCT4/POU5F1 

Oct3/4, Sox2, Klf4, and cMyc 

Health status Healthy unknown 

Race Caucasian unknown 

Sex Male Female 

Donor age 60-64  
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(Chen 2014). The ISTA Molecular Biology Facility regularly tested hIPSCs for mycoplasma using 
the Multiplex qPCR assay – 16S DNA according to (Janetzko et al. 2014).  
Freezing and thawing of hIPSCs. For freezing, hIPSCs were washed once with DPBS (Thermo 
Fisher Scientific, #14190250), incubated in EDTA dissociation buffer for 2.5 minutes, detached as 
small aggregates using mFReezer (STEMCELL Technologies, #05854), and frozen at -80°C. For 
long-term storage, hIPSCs aliquots were transferred to liquid nitrogen. For thawing, hIPSCs were 
removed from liquid nitrogen and quickly thawed in a bead bath at 37°C. hIPSCs were transferred 
into a falcon tube containing mTesR1 medium. The cells were centrifuged (VWR, Mega Star 3.0R) 
at 200×g for 3 minutes, then resuspended in mTesR1 medium and transferred into one well of a 
Matrigel-coated 6-well plate.  
Generation of tdTomato expressing hIPSC lines. To generate ubiquitous tdTomato expressing 
hIPSC lines, a reporter construct encoding tdTomato under the constitutive enhancer/β-actin 
(CAG) promoter (2xCHS4-CAG-tdTomato-SV40-2xCHS4, gift from the Knoblich lab (Bagley et al. 
2017) was inserted into the safe-harbor AAVS1 locus. A CRISPR/CAS9 approach was used, as 
previously described (Oceguera-Yanez et al. 2016). For nucleofection, 80% confluent hIPSCs were 
dissociated into single-cell suspension using Accutase (Merck, #SCR005) treatment for 4 minutes. 
Cells were collected, centrifuged (VWR, Mega Star 3.0R) at 200×g for 3 minutes, and resuspended 
in mTeSR1 medium supplemented with 10 µM ROCK inhibitor (Y-27632, STEMCELL Technologies 
#72307). The Human Stem Cell NucleofectorTM Kit 1 (Lonza, #VPH-5012) was applied using 1 
million hIPSCs, 3 µg donor plasmid DNA, and 1 ug CRISPR/CAS9 guideRNA (pXAT2 plasmid, 
Addgene: #80494). After nucleofection, hIPSCs were distributed on six wells of a Matrigel-coated 
6-well plate. Colonies from single cells were grown for 5-6 days in mTeSR1 medium. Then, 
tdTomato expressing hIPSCs were isolated using fluorescent activated cell sorting (FACS, Sony, 
SH800SFP). Therefore, transfected hIPSCs were collected using Accutase treatment for 4 
minutes, centrifuged at 200g for 3 minutes, and resuspended in mTesR1 medium supplemented 
with 10 µM ROCK inhibitor. Using a 100 µm nozzle, 10.000 hIPSCs were sorted and distributed 
on three wells of a Matrigel-coated 6-well plate. After 4-5 days, 20 to 30 colonies, which were 
well separated from one another and evenly expressed tdTomato, were identified using an EVOS 
imaging system (Thermo Fisher Scientific). Identified colonies were manually picked with a 200 
µL tip, transferred into a Matrigel-coated 96-well plate, and cultured in mTesR1 medium. The 
colonies were expanded into 24- (Corning, #3527), 12- (Corning, #3512), and 6-well plates 
(Corning, #3516). For passaging, refer to “Maintenance of human induced pluripotent stem cells 
(hIPSCs)”.  

Validation of tdTomato expressing hIPSC lines. Half of the hIPSCs were collected for genotyping 
when splitting colonies from a 24-well plate to a 12-well plate. DNA was extracted using the 
DNeasy Blood and Tissue kit (QIAGEN, #69504). All reactions were performed using Q5 Hot Start 
High Fidelity 2x Master Mix (NEB, #M0494S) with 50 -100 ng of template DNA per reaction. PCR 
was performed using the following primers to identify whether the insertion was heterozygous 
or homozygous: AAVS1_FWD: 5’-TCGACTTCCCCTCTTCCGATG-3’, AAVS1_WT_REV 5’-
CTCAGGTTCTGGGAGAGGGTAG-3’ and AAVS1_Insert_REV 5’-GAGCCTAGGGCCGGGATTCTC -3’as 
described previously (Oceguera-Yanez et al. 2016). The size of PCR products was analyzed by gel 
electrophoresis (wildtype allele 1.4 kbp and target allele 1.2 kbp). Clones with correctly targeted 
homozygous insertions were expanded.  
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Differentiation of retinal organoids, astrocytes, and microglia precursor cells 
Retinal organoid differentiation. 3D-retinal organoids were generated as described with the 
following modifications (Cowan et al. 2020; Zhong et al. 2014): On day 0 of the differentiation, 
colonies of the hIPSC line F49B7 from two wells of a 6-well plate were cut into evenly sized 
aggregates using a cell-passaging tool (Thermo Fisher Scientific, #23181-010). After detaching, 
floating aggregates were transferred with a 1250 µL wide orifice pipette (VWR, #613-0737) into 
one 9-cm Petri dish (Sarstedt, #82.1473), and cultured in mTeSR1 medium supplemented with 
10 µM blebbistatin (Sigma, #B0560-5MG). On day 1, 2, and 3, the medium was gradually 
exchanged with ¼, ½, and 1, respectively, to NIM (neural induction medium: DMEM/F12 (Gibco, 
#31331-028), 1×N2-supplement (Gibco, #17502-48), 1% (v/v) NEAA Solution (Sigma, #M7145), 2 
µg/mL heparin (Sigma, #H3149-50KU)). From day 4 onwards, 10 mL NIM was changed daily. On 
day 8, embryoid bodies (EB) were equally distributed onto 8 Matrigel-coated 6-cm dish plates 
(Corning, #3516) (approximately 20-40 number of EBs/cm2) and cultured in 3 mL NIM. From day 
16 onwards, NIM was replaced to 3:1-medium consisting of 3 parts DMEM (Thermo Fisher 
Scientific, #31966047) and one-part F12 medium (Ham’s F-12 Nutrient Mix, Thermo Fisher 
Scientific, #31765-027) supplemented with 2% (v/v) B27 without vitamin A (Thermo Fisher 
Scientific, #121587-10), 1% (v/v) NEAA solution (Sigma, #M7145), 1% (v/v) penicillin-
streptomycin (Thermo Fisher Scientific, #15140122). Media was changed daily. On day 30, optic-
cup structures were detached from the 6-cm plate by checkerboard scraping using a 200 µL 
pipette tip and transferred into a 9-cm Petri dish containing 10 mL 3:1-medium. The medium was 
changed twice per week. Between D36 and D42, retinal structures displaying a bright stratified 
neuroepithelium were manually picked using an EVOS imaging system (Thermo Fisher Scientific). 
3D-retinal organoids were not dissected to remove non-retinal tissue. From day 42 onwards, 3:1-
medium was supplemented with 10% (v/v) heat-inactivated FBS (Thermo Fisher Scientific, 
#10270-106) and 100 µM taurine (Sigma, #T0625- 25G). The medium was changed twice per 
week. From week 10, 1 µM retinoic acid was added daily (Sigma, #R2625) while the medium was 
changed twice per week. From week 14, 3D-retinal organoids were cultured in N2-medium 
consisting of 3 parts DMEM (Thermo Fisher Scientific, #31966047) and one-part F12 medium 
(Ham’s F-12 Nutrient Mix, Thermo Fisher Scientific, #31765-027) supplemented with 1×N2 
supplement (Gibco, #17502-48), 1% (v/v) NEAA solution (Sigma, #M7145), 1% (v/v) penicillin-
streptomycin (Thermo Fisher Scientific, #15140122), 10% (v/v) heat-inactivated FBS (Thermo 
Fisher Scientific, #10270-106), and 100 µM taurine (Sigma, #T0625- 25G). The retinoic acid 
concentration was reduced to 0.5 µM and added daily. Organoids were cultured at 37ºC and 5% 
CO2 in a humidified incubator (BINDER C150). 
Microglia precursor cell differentiation. The differentiation protocol is identical to the “Retinal 
organoid differentiation” section with the following modifications: 2 wells of the hIPSC line 
tdTomato-SC102A were used to start the differentiation. On day 1, a final concentration of 12.5 
ng/mL recombinant human BMP4 (Bone Morphogenetic Protein 4, Peprotech, #120-05) was 
added to the medium. From day 8 onwards, NIM was changed twice per week. From day 16 until 
the termination of the differentiation, cultures were maintained in 3:1-medium, with the 
medium changed twice per week.  
Harvesting microglia precursor cells (preMG). From day 36 onwards, preMG were harvested 
from the supernatant. For this, the supernatant was passed through a 100 µm cell strainer 
(Corning, ##352360) and collected in a falcon. After centrifugation (VWR, Mega Star 3.0R) at 200g 
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for 3 minutes, the medium was aspirated, and preMG were resuspended in 3:1-medium 
supplemented with 50 ng/mL recombinant human MCSF (Macrophage Colony Stimulating 
Factor, BioLegend, #574804). Cells were counted using an automated cell counter (Bio-Rad, 
#1450102).  
Neural Progenitor cell (NPC) differentiation. According to the manufacturer’s instructions, 
neuronal progenitor cells (NPCs) were generated using the STEMdiffTM SMADi Neural Induction 
Kit (STEMCELL Technologies, #08581). NPCs were expanded in STEMdiffTM Neural Progenitor 
Medium (STEMCELL Technologies, #05833) and frozen in STEMdiffTM Neural Progenitor Freezing 
Medium (STEMCELL Technologies, #05838). NPCs were passaged at 1.25×105 cells/cm2 weekly 
with AccutaseTM (STEMCELL Technologies, #07920).  
Astrocyte differentiation. Astrocytes were differentiated as described previously (TCW et al. 
2017) with minor modifications. For astrocyte differentiation, NPCs were dissociated into single 
cells using AccutaseTM (STEMCELL Technologies, #07920) treatment for 5-10 minutes. Cells were 
centrifuged at 400×g for 5 minutes (VWR, Mega Star 3.0R), and the medium was aspirated. Cells 
were resuspended in complete astrocyte-medium composed of astrocyte medium (Sciencell, 
#1801-b), 2% (v/v) heat-inactivated FBS (Thermo Fisher Scientific, #10270-106), 1% (v/v) 
astrocyte growth supplement (Sciencell, #1852) and 1% (v/v) penicillin-streptomycin (Thermo 
Fisher Scientific, #15140122). 1.5×105 cells were seeded per well of Matrigel-coated 6-well plates 
(Corning, #3516). Cells were cultured for 30 days for astrocyte maturation, and the medium was 
changed every second day. Cells were passaged before reaching 80-90% confluency once per 
week. Following the initial 30-day differentiation period, astrocytes were maintained in serum-
free astrocytes-medium. Before stimulation, the astrocyte medium was changed gradually to N2-
medium over four days.  
Generating microglia-assembled retinal organoids (iMG-3DRO). 3D-retinal organoids (3DRO) 
were individually placed into 1.5 mL tubes (Roth, #1KP0.1), each containing 500 µL medium 
(either supplemented 3:1-medium or N2-medium depending on the age of the differentiation). 
preMG were collected as described in “Harvesting microglia precursor cells (preMG),” and 6×104 
cells were added to each organoid. After 72 hours, 6-8 organoids were pooled into one well of a 
24-well plate (Corning, #3527) and cultured in the respective medium supplemented with 50 
ng/mL MCSF for three weeks. Media was exchanged twice per week, and retinoic acid was added 
daily. Cultures were maintained at 37ºC and 5% CO2 in a humidified incubator (BINDER C150). 
 

Generation of dissociated retinal organoid cultures 
Retinal cup dissociation and 2D plating. At day 105, four 3D-retinal organoids were dissected to 
remove non-retinal tissue using a scalpel (Fisher Scientific, #11798343), transferred into a 1.5 mL 
tube, and washed twice in DPBS (Thermo Fisher Scientific, #14190250) (Table 6). Organoids were 
incubated in Accutase (STEMCELL Technologies, #07920) for 30 minutes at 37°C. Then, an equal 
volume of HBSS (Thermo Fisher Scientific, #14175-129) supplemented with 10% (v/v) heat-
inactivated FBS (Thermo Fisher Scientific #10270106) was added, and organoids were dissociated 
by pipetting up and down ten times using a 200 µL tip. Cells were centrifuged at 3.2×g (VWR, 
Micro Star 17) for 2 minutes, the medium aspirated, and cells resuspended in N2-medium. 
Following another centrifugation at 3.2×g for 2 minutes, cells were resuspended in N2-medium 
supplemented with 20 ng/mL BDNF (Brain-Derived Neurotrophic Factor, Biolegend, #788904), 
passed through a 70 µm cell strainer (Corning, #352350), and distributed in 6 wells of a Matrigel-
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coated 8-well chamber (IBIDI, #80826). N2-medium supplemented with 20 ng/mL BDNF was 
changed every 3-4 days. 0.5 µM retinoic acid was added daily.  
Integrating microglia precursor cells into dissociated retinal organoids. At day 130, preMG were 
harvested as described in “Harvesting microglia precursor cells (preMG),” and 6×104 cells were 
added per well of an 8-well chamber (Table 6). Cultures with and without microglia were 
maintained in N2-medium supplemented with 20 ng/mL BDNF and 50 ng/mL MCSF. Medium was 
exchanged every 3-4 days, and 0.5 µM retinoic acid was added daily.  
 
Table 6 – Important numbers depending on plate-format.  

Plate Surface area Retinal cups/ well preMG/ well 

8 well IBIDI 1 cm2 0.75 60.000 

24 well 1.9 cm2 1.5 125.000 

12 well 3.5 cm2 3 250.000 

 
 

Stimulation paradigms 
POLY(I:C) (Tocris, #4287) was diluted in fresh medium with a final concentration of 50 µg/mL and 
then applied to the cells as indicated in the experiments. For POLY(I:C), POLY(I:C)+IBU, or 
POLY(I:C) and SC-560, 50 µg/mL POLY(I:C) was mixed with 400 µM of the active enantiomere S(+)-
ibuprofen (Sigma-Aldrich, #375160-1G) or with 20nM SC-560 (Abcam, # ab120649) in fresh 
medium and applied to the cells.  
For microglia precursor cells to assay gene expression. preMG were harvested as described 
“Harvesting microglia precursor cells (preMG),” and 2×105 cells were transferred into one well of 
a 24-well (Corning, #3527) containing 3:1-medium supplemented with 50 ng/mL MCSF. After 24h, 
the medium was replaced, and preMG were treated as described above. Untreated controls 
received 3:1-medium supplemented with 50 ng/mL MCSF. preMG were incubated for 24 hours 
at 37°C and 5% CO2. Four distinct cultures of independent differentiations were analyzed per 
condition. 
For differentiated astrocytes. 80% confluent astrocyte cultures were stimulated as described 
above. Three distinct cultures of independent differentiations were analyzed per condition. 
For assembled dissociated retinal organoids (dissRO) with and without microglia. At week 20 
(D139), N2-medium supplemented with 50 ng/mL MCSF was changed. We omitted the BDNF 
application because it has been shown to have anti-inflammatory effects 17,18. The withdrawal 
did not significantly alter ganglion cell survival (data not shown).  
For each condition, one well of dissRO and iMG-dissRO were treated for 24 hours as described 
above. Untreated controls received medium supplemented with 50 ng/mL MCSF. Five distinct 
cultures of independent differentiations were analyzed per condition. 
For retinal organoids. At week 20 (D139), three 3D-retinal organoids were transferred into one 
well of a 24-well plate per condition and cultured in N2-medium supplemented with 50 ng/mL 
MCSF. 3DROs in parallel to iMG-3DROs were treated as described above.  Untreated controls 
received N2-medium supplemented with 50 ng/mL MCSF. Organoids were incubated for 24 hours 
at 37°C and 5% CO2. Five distinct cultures of independent differentiations were analyzed per 
condition. 
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For CCL2 stimulation. At week 20 (D139), N2-medium supplemented with 50 ng/mL MCSF was 
changed, and BDNF was withdrawn from the medium. For each condition, one well of dissRO and 
iMG-dissRO were treated with recombinant human CCL2 (C-C Motif Chemokine Ligand 2, 
Peprotech, #300-04) at a final concentration of 10 ng/mL, 20 ng/mL, or 50 ng/mL. Untreated 
controls received N2-medium supplemented with 50 ng/mL MCSF. Five distinct cultures of 
independent differentiations were analyzed per condition. 

Gene expression profile of microglia marker and inflammatory cytokines 
Cultures to determine iMG marker. Cultures were prepared as described in the sections “Retinal 
cup dissociation and 2D plating” and “Integrating microglia precursor cells into dissociated retinal 
organoids” with the following modification: Samples were grown in 24-well plates. The number 
of integrated iMG was constant between 1 and 10 days of co-culture (data not shown). 
RNA isolation. Samples were washed with DPBS (Thermo Fisher Scientific, #14190250) before 
RNA isolation using the innuPREP RNA Mini Kit 2.0 (Analytik-Jena, #845-KS-2040050) as described 
in the manufacturer's instructions. cDNA synthesis was performed with LunaScript RT SuperMix 
Kit (New England Biolabs, #E3010L) with a total RNA amount of 200-800 ng (same amount for 
each condition within experimental repetition) and stored at -20°C.  
Gene expression analysis. RT-qPCR (Luna Universal qPCR Master Mix, New England BioLabs, 
#M3003L) was performed in 384-well plates (Bio-Rad; HSR4805) using the Roche Lightcycler 480 
applying the device’s “Second Derivative Maximum Method.” The total reaction volume was 
10 µL containing 1 µL of 1:10 diluted cDNA. The final concentration for each primer was 0.25 µM. 
The primer pairs are listed in Table 7. Cycle conditions were 60 s at 95 °C for initial denaturation, 
followed by 40 cycles of denaturation (15 s; 95 °C) and annealing/extension (30 s; 60 °C). Each 
run was completed with a melting curve analysis to confirm the amplification of only one 
amplicon. Each PCR reaction was run in triplicates, from which a mean Cq value was calculated 
and used for further analysis. dCq values were obtained by normalizing mean Cq values to the 
geometric mean of four reference genes (GAPDH, ACTB, OAZ1, RPL27) measured within the same 
sample [equation 1]. ddCq values were then calculated by normalizing dCq values to the 
respective control condition (untreated cells/organoids) within each experimental repetition 
[equation2]. Fold changes were obtained by transforming ddCq values from log2 to linear scale 
[equation 3]. 
Equations for consecutive RT-qPCR normalization: 

dCq = geometric mean reference genes - Cq (1) 

ddCq =dCq - dCqcontrol (2) 
Fold change = 2ddCq (3) 

To analyze the mRNA expression relative to GAPDH, dCq values were normalized to GAPDH dCq 
values in the respective conditions.  
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Table 7 – Primer sequences used for chapter 2. 

 
  

Target Gene  Primer pair Primer sequence 5'-3' 

 

 

 

House 
keeping 
genes 

OAZ1 Forward AGGACAGCTTTGCAGTTCTC 

Reverse CGGTTCTTGTGGAAGCAAATG 

GAPDH Forward GTCTCCTCTGACTTCAACAGCG 

Reverse ACCACCCTGTTGCTGTAGCCAA 

ACTB Forward CACCATTGGCAATGAGCGGTTC 

Reverse AGGTCTTTGCGGATGTCCACGT 

RPL27 Forward ATCGCCAAGAGATCAAAGATAA 

Reverse TCTGAAGACATCCTTATTGACG 

 

 

 

 

 

 

 

 

 

Gene of 
interest 

PTGS1 Forward GATGAGCAGCTTTTCCAGACGAC 

Reverse AACTGGACACCGAACAGCAGCT 

PTGS2 Forward CCCTTCTGCCTGACACCTTT 

Reverse TTCTGTACTGCGGGTGGAAC 

TLR3 Forward CCTTTTGCCCTTTGGGATGC 

Reverse TGAAGTTGGCGGCTGGTAAT 

C1Qa Forward GTGACACATGCTCTAAGAAG 

Reverse GACTCTTAAGCACTGGATTG 

CX3CR1 Forward CTTACGATGGCACCCAGTGA 

Reverse CAAGGCAGTCCAGGAGAGTT 

HEXB Forward TTAGCTCGGCTCCTCGCTTC 

Reverse TCGGGAGCTTCGACTAGAGG 

MERTK Forward AGGACTTCCTCACTTTACTAAG 

Reverse TGAACCCAGAAAATGTTGAC 

P2RY12 Forward GATGCCACTCTGCAGGTTG 

Reverse GTGCACAGACTGGTGTTACC 

SALL1 Forward ACCTTCTCCTCATCGAGTGC 

Reverse GCTATTCCACATGTGAGTGCC 

TMEM119 Forward CACGGACTCTCTCTTCCAG 

Reverse GCAGCAACAGAAGGATGAGG 
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Proteome profiler array 
Cultures were prepared as described in the sections “Retinal cup dissociation and 2D plating” and 
“Integrating microglia precursor cells into dissociated retinal organoids” with the following 
modification: Since samples were grown in 12-well plates, three retinal cups were dissociated 
per well, and 2.5×105 preMG were added per well. Cultures were stimulated as described in 
“Stimulating microglia assembled dissociated retinal organoids”. 
Human cytokine array. After two, four, or 24h of stimulation, the supernatant was harvested, 
snap-frozen on dry ice, and stored at -80°C. The Proteome Profiler Human Cytokine Array Kit 
(R&D Systems, #ARY005B) was performed following the manufacturer’s instructions. The 
membranes were imaged using the luminescent image analyzer Amersham Imager 600 (GE 
Healthcare Bio-Science). For the 24-hour time point, the supernatant from three distinct cultures 
of independent differentiations was assayed. Only one supernatant from one differentiation was 
screened for the two and four-hour time points.  
Analysis of proteome profiler array. Pixel densities for positive signals were extracted using the 
ImageJ plugin ‘Protein Array Analyzer’ 
(https://imagej.nih.gov/ij/macros/toolsets/Protein%20Array%20Analyzer.txt). For each 
experimental condition, the average signals were determined per protein-of-interest, 
background signal subtracted, and signals normalized to the mean of six reference spots per 
membrane. Hierarchical clustering of the median (24h time point) of normalized pixel values was 
carried out using the pheatmap package (version 1.0.12, RRID: SCR_016418) in R (version version 
4.2.2). Fold changes were obtained by normalizing relative pixel values to the control condition. 
 

ELISA 
Cultures were stimulated as described in “Stimulating microglia assembled dissociated retinal 
organoids” or “Stimulating retinal organoids.” After 24 hours of stimulation, the supernatant was 
harvested, snap-frozen on dry ice, and stored at -80°C. PGE2 ELISA (Enzo Life Sciences, #ADI-900-
001) was performed according to the manufacturer’s instructions. Samples were analyzed in 
duplicates, and PGE2 concentration was determined based on the standard curve. The 
supernatant from three distinct cultures of independent differentiations was assayed. 
  

https://imagej.nih.gov/ij/macros/toolsets/Protein%20Array%20Analyzer.txt
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Histology 
Fixation of 3D-retinal organoids. 3D-retinal organoids were fixed in 4% (w/v) PFA 
(Paraformaldehyde, Thermo Fisher Scientific, #28908) in PBS for 25 minutes at room temperature 
on an orbital shaker in the dark. Then, organoids were washed three times with PBS at room 
temperature and cryopreserved in 30% (w/v) sucrose (Sigma-Aldrich, #84097) in PBS overnight 
at 4ºC or stored in PBS at 4ºC until further use.  
Fixation of microglia precursor cells and dissociated retinal organoids. Cells were fixed in 4% 
(w/v) PFA in PBS for 20 minutes at room temperature in the dark, then washed three times with 
PBS at room temperature and stored in PBS at 4ºC. 
Cryostat sectioning. Cryopreserved 3D-retinal organoids were transferred to a cryomold 
(PolyScience, #18985) using a 1250 µL wide orifice pipette tip and embedded in Tissue-Tek O.C.T. 
compound (TTEK, A. Hartenstein) on dry ice. Samples were stored at -80ºC until further use. 
Organoids were cut into 50 µm sections using a cryostat (MICROM, NX70 CRYOSTAR, Thermo 
Scientific). Sections were mounted onto glass slides Superfrost Plus (Lactan, #H867.1), dried at 
room temperature overnight, and stored at -80ºC until further use. For immunostainings, slides 
were thawed and dried for 1 hour at room temperature. Sections on glass slices were encircled 
with an engraving, hydrophobic pen (Sigma-Aldrich, #Z225568).  
Immunostaining of cryostat sections, microglia precursor cells, and dissociated retinal organoid 
cultures. Samples were incubated in a “blocking solution” containing 1% (w/v) bovine serum 
albumin (Sigma, #A9418), 5% (v/v) Triton X-100 (Sigma, #T8787), 0.5% (w/v) sodium azide (VWR, 
#786-299), and 10% (v/v) serum (either goat, Millipore, #S26, or donkey, Millipore, #S30) for two 
hours in a humidified chamber protected from light at room temperature. Afterward, the 
samples were immunostained with primary antibodies diluted in antibody solution containing 1% 
(w/v) bovine serum albumin, 5% (v/v) triton X-100, 0.5% (v/v) sodium azide, 3% (v/v) goat or 
donkey serum. They incubated overnight in a humidified chamber at room temperature. For the 
list of primary antibodies, see Table 7. After washing the samples three times with PBS, the 
samples were incubated light-protected in a humidified chamber for 2 hours at room 
temperature, with the secondary antibodies diluted in antibody solution. The secondary 
antibodies raised in goat or donkey were purchased from Thermo Fisher Scientific (Alexa Fluor 
488, Alexa Fluor 568, Alexa Fluor 647, 1:2000). The sections were washed three times with PBS. 
The nuclei were labeled with Hoechst 33342 (Thermo Fisher Scientific, Cat#H3570, 1:5000 diluted 
in PBS) for 15 minutes and then washed two times in PBS. After immunostaining, antifade 
solution [10% (v/v) mowiol (Sigma, #81381), 26% (v/v) glycerol (Sigma, #G7757), 0.2M tris buffer 
pH 8, 2.5% (w/v) Dabco (Sigma, #D27802)] was dropped on the cryostat sections and covered 
with microscope coverslips (Menzel-Glaser #0). Slides were dried at room temperature 
overnight. 8-well chambers were maintained in PBS. Samples were kept at 4ºC for long-term 
storage.  
Immunostaining of entire 3D-retinal organoids. The staining was performed as described under 
“Immunostaining of cryostat sections, microglia precursor cells and dissociated retinal organoid 
cultures” with the following adaptations: 3D-organoids were incubated in blocking for 24 hours 
on an orbital shaker at 4ºC in the dark. The primary antibody concentration was doubled (Table 
8), and organoids were incubated for ten days on an orbital shaker at 4ºC in the dark. After 
washing the organoids three times in PBS for 30 minutes each, secondary antibodies (Thermo 
Fisher Scientific, Alexa Fluor 488, and Alexa Fluor 647, 1:500) and Hoechst 33342 (1:1000) diluted 
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in antibody solution were added for three days on an orbital shaker at 4ºC in the dark. Finally, 
the organoids were washed three times in PBS for 30 minutes each. 4-5 3D-organoids were 
placed into one well of an 8-well chamber (IBIDI, #80826) and covered with 3% (w/v) low gelling 
temperature agarose (Sigma-Aldrich, #A9414-25G). The samples were stored in glycerol (Sigma-
Aldrich, G7757) overnight at 4ºC in the dark.  
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Table 8  – List of antibodies used for chapter 2. 

Antibody Host Vendor Catalogue # Lot # 
Dilution 
factor 

RRID number 

BRN3B Goat 
Santa Cruz 
Biotechnology 

sc-6026 K0215 100 AB_673441 

Cleaved 
Caspase3 

Rabbit 
Cell Signaling 
Technology 

9661 47 100 AB_2341188 

CALB2 Mouse Swant 6B3  100 AB_10000320 

CALB1 
Guinea 
pig 

Synaptic Systems 214 004 1-15 200 AB_10550535 

CD45 Rabbit 
Cell Signaling 
Technology 

13917P 1 200 AB_2750898 

ChAT Goat EMD Millipore AB144P 3182642 400 AB_2079751 

CX3CR1 Mouse BioLegend B355702 B194773 50 AB_2561726 

GFAP Rat 
STEMCELL 
Technologies 

60048.1 1000079097 100 AB_3095092 

IBA1 Rabbit GeneTex GTX100042 44200 750 AB_1240434 

IBA1 Goat Abcam ab5076 GR3374909-1 250 AB_2224402 

ITGAM Chicken Acris Antibodies AP31807PU-N MAC7967984 100 AB_11146887 

KI67 Mouse BD Biosciences 550609 5267542 100 AB_393778 

MAP2 Chicken EMD Millipore AB5543 4045792 250 AB_571049 

myb Rabbit Acris AP31223PU-N 27931 100 AB_10976997 

NANOG Rabbit 
Proteintech/ THP 
medical product 

#14295-1-AP 00019675 200 AB_1607719 

OCT3/4 Mouse BD Biosciences #611202 4052889 100 AB_398736 

OTX2 Goat R&D Systems AF1979 KNO0920111 150 AB_2157172 

P2Y12 Rabbit Sigma-Aldrich HPA014518 F119293 100 AB_2669027 

PRKCA Mouse BD Biosciences 610107 K1315 100 AB_397513 

PSD95 Rabbit 
Cell Signaling 
Technology 

3450 5 200 AB_2292883 

PU.1 Rabbit 
Cell Signaling 
Technology 

2266S 1 500 AB_10692379 

RCRVN Rabbit EMD Millipore AB5585 2691407 400 AB_2253622 

RIBEYE Mouse EMD Millipore MABN804 Q2583290 100 AB_3271577 

RLBP1 Mouse Abcam ab15051 GR229880-2 200 AB_2269474 

RUNX.1 Mouse BioLegend 659302 B276756 50 AB_2563194 

TREM2 Goat R&D Systems AF1828 JWF0719111 100 AB_2208689 

VGLUT1 
Guinea 
pig 

Synaptic Systems 135304 4-73 100 AB_887878 
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Imaging and image analysis 
Brightfield. The differentiation was monitored using a bright-field microscope (Olympus CKX41) 
with 5×, 10× and 20× objectives (Olympus) and a lens marker (Nikon), and an EVOS imaging 
system (Thermo Fisher Scientific) with 2×, 4×, 10×, 20×, 40× objectives (Thermo Fisher Scientific). 
Confocal microscopy. Images were acquired with a Zeiss LSM880 Airyscan or LSM800 inverted. 
For overview images, Plan-Apochromat 10× air objective NA 0.45 (WD=2.1mm) or Plan-
Apochromat 20× Air objective NA 0.8 were used, and z-stacks were acquired. For detailed images, 
Plan-Apochromat 40× oil immersion objective NA 1.3 was used. For synaptic puncta analysis, 
images were acquired on Zeiss LSM900 microscope using a Plan-Apochromat 40X objective NA 
1.4 using ‘confocal’ mode. 
Imaging of dissociated retinal organoids. Three regions-of-interests were acquired per condition 
and biological replicate using the Plan-Apochromat 20× Air objective NA 0.8 with a zoom of 0.8.  
Imaging of 3D retinal organoid sections. Based on the nuclei staining, one cryostat section per 
3D retinal organoid displaying a retinal cup with a lumen was identified and imaged using the 
Plan-Apochromat 20×Air objective per condition and biological replicate.  
Imaging of entire 3D-retinal organoids. The embedded organoids were imaged using Plan-
Apochromat 10×Air objective NA 0.45 (WD=2.1mm).  
Live cell imaging of dissociated microglia assembled retinal organoids. Microglia-assembled 
dissociated retinal organoids were generated as described in “Incorporating microglia-like cells 
into dissociated retinal organoids”. The cells were stimulated as described in “Stimulating 
microglia assembled dissociated retinal organoids”. Images were acquired with a Zeiss LSM880 
inverted microscope and a Plan-Apochromat 20×/NA 0.8 Air objective in a temperature-
controlled chamber (37°C). Z-stacked images of the Alexa 568 channel were captured every 
minute for 20 minutes.  
 
Image analysis. Confocal images were converted to .ims files using the Imaris File Converter 9.9.1 
and imported to Imaris 9.9 (Bitplane Imaris 3/4D Image Visualization and Analysis Software). 
Images were cropped and processed using background subtraction.  
iMG positioning within layers. Cryostat sections with a focus on retinal cups were used for the 
analysis. Since we focused on retinal cups displaying a laminated structure, Hoechst-staining was 
used to identify the formation of layers. Microglia positioning was based on the location of the 
microglial cell soma. Each data point represents the percentage of microglia within a respective 
layer relative to the total number per section.  
Determining the number of microglia in entire 3D-retinal organoids. Z-stack images of entire 
organoids were cropped to focus on the retinal cup. The number of microglia-like cells (iMG) 
were determined using the spot function of Imaris. The estimated XY diameter was set to 15 µm. 
Determining cell numbers: The spot function of Imaris was used to analyze cells of interest and 
Hoechst+-cells. For nuclear stainings such as Hoechst, OTX2, BRN3, and KI67, the estimated XY 
diameter was set to 7 µm. For CALB2, CALB1, and RCVRN-labeling, the estimated XY diameter 
was set to 10 µm. To analyze the number of tdTomato+-iMG, the estimated XY diameter was set 
to 15 µm. The spots were manually edited. For cryostat sections of retinal organoids, we focused 
on the retinal cup.  
For analysis, each data point represents the percentage of the respective marker relative to the 
total number of Hoechst+-cells, or the total number of microglia was determined for each region 
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of interest. To calculate the proliferation rate of retinal cell types, the number of KI67+/iMG was 
subtracted from the total number of KI67+-cells, and the number of iMG were subtracted from 
the total number of Hoechst+-cells.  
Fold change was determined by normalizing the median of three regions of interest per biological 
replicate to the respective control condition (untreated cells).  
Determining Hoechst+-fragments: Hoechst+-fragments with a 2-5 µm diameter were manually 
counted using Imaris software. In the plot, each data point represents the number of Hoechst+-
fragments per mm2.  
Microglia surveillance. Time-lapse videos were binarized in ImageJ using the method ‘Li.’ The 
Matlab script determined the surveillance index (Madry et al. 2018), normalized to the total 
number of microglia imaged per video. Fold changes were calculated by normalizing to untreated 
control within each experimental repetition.  
Microglia morphology. To determine the area, we generated the microglia surface with the 
surface rendering module with the surface detail set to 0.2 µm in Imaris. Incomplete iMG 
morphologies at the image border were manually removed and not included in the analysis. We 
excluded surfaces if multiple microglia were summarized as one surface. The exported Imaris file 
shows the surface area for each detected surface. To extract the number of end points and the 
total branch length, images were preprocessed using a Python script. The iMG channel was 
extracted and the image converted to an 8-bit format. After equalizing the images, a ‘Top-hat 
filter’ (disk size = 15) and ‘unsharp mask’ (sigma = 3) were applied. The mean threshold function 
was used to generate binary images. Individual cells were identified, and the morphometric 
features were calculated from the skeletonized representation using a Python script as described 
in (Maya-Arteaga, Martínez-Orozco, and Diaz-Cintra 2024).  
Microglia engulfing BRN3+-cells. Surface rendering was performed for iMG and BRN3+-cells with 
the surface detail set to 0.2 µm. The surface-surface co-localization function in Imaris was used 
to visualize co-localization. The total number of iMG and the number of iMG engulfing BRN3+-
cells were determined using the spot function. In the plot, each data point represents the 
percentage of iMG engulfing a BRN3+-cell relative to the total number of microglia per field of 
view.  
Distance from spot to surface. First, all BRN3+-cells were determined using the spot function of 
Imaris (XY diameter = 7 µm). Second, the iMG surface was generated using the surface rendering 
module with the surface detail set to 0.2µm. Finally, the function ‘spot to surface’ with a distance 
of 5 µm was used to determine the number of BRN3+-cells close to the iMG surface. In the plot, 
each data point represents the percentage of BRN3+-cells close to iMG relative to the total 
number of BRN3+-cells per field of view.  
Synaptic puncta quantification. Images were processed using background subtraction and 
median filter. MAP2 (405/420nm), VGLUT1 (488/520 nm), and PSD95 (633/650 nm) channels 
were deconvolved in Imaris using the default parameter settings for oil objectives. For the 
analysis, we focused on MAP2+-cells, cropped one branch (25-35µm) close to the soma, and 
measured its length. Then, the MAP2 surface was generated using the surface rendering module 
with the surface detail set to 0.2µm. With the Spot function in Imaris, we detected all VGLUT1+ 
(XY diameter = 0.19µm) and all PSD95+ puncta (XY diameter = 0.18µm) in the field of view. Using 
the function ‘spot to surface’ with a distance of 0.3 µm, we determined VGLUT+-spots or PSD95+-
spots close to the rendered MAP2-surface and extracted the statistics. Finally, we analyzed the 
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number of active synapses. Therefore, we focused on the puncta close to the MAP2 surface. 
Using the function ‘colocalization’ with a distance of 0.3 µm, we determined VGLUT+-puncta in 
close proximity to PSD95+-puncta. We analyzed three cells per field of view. In the plot, each data 
point represents the number of VGLUT1+/PSD95 +-puncta per 10µm MAP2+-process. 
Graphics: All graphics were generated using R (version 4.2.2). Excel files were loaded into R via 
the xlsx package (version 0.6.5) (Dragulescu 2014). Plots were made using ggplot2 (version 3.4.1) 
(Wickham 2016).  
 

Calcium imaging of dissociated cultures 
AAV production and titration.  
The ISTA Molecular Biology Facility generated the virus. Human embryonic kidney (HEK) 293T 
cells were maintained at 37°C in 5% (v/v) CO2 in complete medium (DMEM medium (Thermo 
Fisher Scientific, #31966047), 10% (v/v) fetal bovine serum (Thermo Fisher Scientific, 
#10270106], 1% (v/v) penicillin/streptomycin (Thermo Fisher Scientific, #15140122), 1% (v/v) 
non-essential amino acids (Sigma-Aldrich, #M7145-100ML). Ten 15-cm culture dishes with 80% 
confluency were transfected using 6.8 μM polyethyleneimine (Polysciences, #24765-1), 70 µg 
AAV transgene plasmid (pAAV-EF1a-GCaMP6s-WPRE-pGHpA, Addgene, #67526), 70 µg 7M8 Cap-
encoding plasmid (7M8, Addgene, #64839), 200 µg pHGT1-Adeno1 helper plasmid. Sixty hours 
post-transfection, cells were harvested with a cell scraper and pelleted at 4000 rpm for 15 
minutes at 4°C. The pellet was resuspended in lysis buffer (200 mM NaCl, PBS, 0.001% pluronic 
F68, sterile filtered). Cell-lysis was obtained by three rounds of freezing-thawing cycles between 
dry ice/ethanol and a 37°C water bath, followed by sonication for 1 minute at 37kHz. Next, 
Benzonase (50 U/mL, Sigma Aldrich, #E1014-25KU) was added, and the solution was incubated 
at 37°C for 45 minutes. Afterward, the solution was centrifuged at 2415×g for 10 minutes at 4°C. 
The AAV particles in the supernatant were purified by discontinuous iodixanol gradient 
ultracentrifugation. Optiseal tubes (Beckman Coulter, 361625) were filled with a density gradient 
of 60%, 40%, 25%, and 17% iodixanol solutions (Optiprep Iodixanol, Progen Biotechnik, 1114542). 
The virus lysate was loaded on the top layer, and the tubes were centrifuged at 350000 g 
(Beckman Optima XPN-100 ultracentrifuge Sorvall T-850 rotor) for 90 minutes at 10°C. The AAV 
particles were harvested from the intersection of 60% and 40% gradients and concentrated using 
100kDa Vivaspin 20 Centrifugal Concentrator. Aliquots were stored at -80°C.  
For titration by qPCR, AAV particles were denatured with DNase I (Fisher Scientific, #10103533) 
and the viral DNA quantification was performed with Universal SYBR Master Mix 2X (Thermo 
Fisher Scientific, #4309155) using the following primers: forward primer: 5'-
GGAACCCCTAGTGATGGAGTT; reverse primer: 5'-CGGCCTCAGTGAGCGA. The final titer measured 
1.1×1013 viral genome copy number per milliliter (GC/mL).  
AAV infection of dissociated cultures. At week 17 (D120), dissociated retinal organoid cultures 
were infected with 5×1010 GC of AAV2/7m8- EF1α- GCAMP6s (Cowan et al. 2020; Garita-
Hernandez et al. 2020) cultured in 100 µL 3:1-medium. After 24 hours, 100 µL fresh 3:1-medium 
was added. The next day, the medium was changed to N2-medium supplemented with 20 ng/mL 
BDNF. The medium was changed every 3 to 4 days, and 0.5 µM retinoic acid was added daily.  
Calcium imaging. Four days before calcium imaging at day 138, dissociated retinal organoids 
were gradually transferred to BrainPhys medium (StemCell Technologies, #05791) supplemented 
with 1×N2 supplement, 100 μM taurine supplemented with 20 ng/mL BDNF, 50 ng/mL MCSF and 
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0.5 µM retinoic acid. Twenty-four hours before imaging, the medium was changed, and BDNF 
was withdrawn. Cultures were treated as described in “Stimulating microglia assembled 
dissociated retinal organoids”, except that the samples were cultured in a supplemented 
BrainPhys medium. Live imaging was performed using the Dragonfly microscope (Andor 
Dragonfly 505, Oxford Instruments) equipped with a heated chamber at 37°C and CFI P 
Apochromat 20× NA 0.95/ WD 0.95 mm water objective (Nikon, MRD77200). The Andor iXon 
Ultra 888Ultra EMCCD camera (13 μm pixel size) was used to acquire the 488 nm channel using 
a pinhole size of 25 µm. The following parameters were used for acquisition: exposure time of 40 
ms, EM gain of 100, Laser 7.0%, and an AOI of 1024×1024. Baseline activity was acquired for five 
minutes using a time series at 12.16 Hz. Baseline calcium dynamics were recorded for 5 minutes 
from five distinct cultures of independent differentiations. 
Pharmacological manipulation. First, baseline calcium activity was recorded for 2.5 minutes. For 
pharmacological manipulation, either 1 µM Tetrodotoxin (Abcam, # ab120054) to block voltage-
gated sodium channels was applied or a mixture of 10 μM NBQX (2,3-dioxo-6-nitro-7-sulfamoyl-
benzo[f]quinoxaline; Tocris Bioscience, #1044), 10 μM DL-AP4 (DL-2-amino-4-phosphonobutyric 
acid, Tocris Bioscience, #0101), 10 μM (±)-CPP (3-[(R)-2-carboxypiperazin-4-yl]-propyl-1-
phosphonic acid; Abcam, #ab144495) to inhibit glutamatergic synaptic transmission was applied. 
After 5 minutes of incubation, calcium activity was recorded for another 2.5 minutes. 
To chelate extracellular calcium, 5mM EGTA (ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-
tetraacetic acid) was applied and recording immediately continued for another 2 minutes.  
Pharmacological manipulation following POLY(I:C) stimulation. For the stimulation of iMG-

dissRO, see ‘Stimulating microglia assembled dissociated retinal organoids’. Otherwise, following 
24h stimulation, calcium activity was recorded for 5 minutes. Then, a mixture of 10 μM NBQX 
(2,3-dioxo-6-nitro-7-sulfamoyl-benzo[f]quinoxaline; Tocris Bioscience, #1044), 10 μM DL-AP4 
(DL-2-amino-4-phosphonobutyric acid, Tocris Bioscience, #0101), and 10 μM (±)-CPP (3-[(R)-2-
carboxypiperazin-4-yl]-propyl-1-phosphonic acid; Abcam, #ab144495) was applied to inhibit 
glutamatergic synaptic transmission. After 5 minutes of incubation, calcium activity was recorded 
for another 5 minutes. 
Calcium imaging analysis. Cells showing calcium transients were identified manually as regions 
of interest using ImageJ, and mean grey values were extracted. We focused on cells where the 
cell soma and the primary branches were clearly visible. Transients in the background were not 
included in the analysis. Fluorescent signal time series (F/ΔF: change in fluorescence divided by 
the mean baseline fluorescence) were calculated for each region of interest. Calcium events were 
detected in Matlab 2017 using the script ‘PeakCaller’ (Artimovich et al. 2017) using the following 
parameters: required rise = 9% absolute; max. lookback =100 pts; required fall = 5% absolute; 
max. lookahead = 100 pts; no trend control; trend smoothness = 100; interpolate across closed 
shutters = true. For each cell, waveform parameters such as number of events and peak 
amplitude were extracted and plotted.  
 

Statistical analysis 
All statistics were performed using R (version 4.2.2). The linear regression model was calculated 
using the “lme4”-package. First, groups for comparison were tested for normal distribution and 
equal variances using the Shapiro-Wilk and Levene tests, respectively. No data was excluded for 
analysis. If the data was normally distributed and the groups had equal variances, Student’s t-
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test was used to compare the two groups. For multiple comparisons, the default contrast for 
unordered variables was set to ‘contr.sum’ to perform one-way ANOVA, followed by Tukey’s 
post-hoc comparison. Welch’s test was performed to compare normally distributed groups with 
unequal variances. A two-sided one-sample T-test was used to analyze if a normally distributed 
condition significantly differs from a value of 1 or 0.  
If groups were not normally distributed, the Wilcoxon rank-sum test or Kruskal-Wallis test, 
followed by Dunn’s test, was used to compare two or multiple groups, respectively. For multiple 
comparisons, p-values were adjusted using the “p.adjust” function, and the method was set to 
‘BH.’ The following packages were used to perform the analysis: “FSA”-package (dunn-test); 
“multcomp”-package (Tukey’-test); “psych”-package (t-test, kruskal-wallis test); “stats”-package 
(wilcox-test, shapiro-wilk test), “dplyr”-package (levene-test).  
Significance levels are indicated using the following notation: n.s.p > 0.05; ∗p < 0.05; ∗∗p < 0.01; 
∗∗∗p < 0.001. Please refer to (Schmied et al. 2025) for details about the statistical analysis which 
are summarized in the publication’s Supplementary Table 4, and the respective raw data in the 
publication’s Supplementary Table 5.  
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3.4. Results 
OPL formation aligns with successful iMG integration into retinal organoids. 

To generate retinal organoids (3DRO), we differentiated the human induced pluripotent stem cell 
(hIPSC) line F49B7, which has been recently analyzed for its transcriptional cell diversity across 
different time points of 3DRO differentiation (Cowan et al. 2020). We monitored the retinal cup 
formation under brightfield microscopy over 30 weeks (Figure 34a) and observed the formation 
of the outer plexiform layer (OPL) around week (WK) 20. When we performed immunostaining 
for the presynaptic markers VGLUT1 and the post-synaptic marker PSD95 at WK13, 17, and 20, 
the staining was confined to the OPL at WK20 (Figure 34b-c). By WK20, we also found the 
presynaptic marker RIBEYE limited to the OPL (Figure 34d).  

Figure 34 – Microglia colonize retinal layers after OPL 
formation.  
a, Representative brightfield images focusing on the retinal 
cup at selected 3DRO differentiation time points. Arrow and 
dashed line: outer plexiform layer formation, visible from 
WK20 onwards. Scale bar: 100 µm. 
b-d, Images of 3DRO cryostat sections counterstained with 
the nuclei-dye Hoechst (blue) and immunostained for b, d, 
the presynaptic marker VGLUT1 (vesicular glutamate 
transporter 1, magenta); c, d, the postsynaptic marker 
PSD95 (magenta) d, photoreceptors with RCVRN 
(Recoverin, green) and the ribbon synapse marker RIBEYE 
(magenta)at WK13, WK17 and WK20 (b-c) and WK20 (d). 
White arrow: outer plexiform layer forming between the 
outer- and inner nuclear layer (ONL, INL, respectively). 
Scale bar: 10 µm. 
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Furthermore, we confirmed the existence and the location of the different cell types within their 
expected nuclear layer at WK20, such as RCVRN+-/ OTX2+-/ CALB2+-photoreceptors in the outer 
nuclear layer and OTX2+/ CALB2+-bipolar cells, CALB2+-amacrine cells, CALB1+-horizontal- and 
amacrine cells, and CHAT+-amacrine cells in the inner nuclear layer (Figure 35). Few BRN3+-
ganglion cells localized close to the 3DRO lumen. RLBP1+-Müller glial cells expanded their 
processes across all layers. OPL formation and cell type expression patterns matched the 
anticipated timeline observed in human fetal tissue studies (Hendrickson 2016; Hoshino et al. 
2017; Nag and Wadhwa 2001).  

 
Figure 35 – Retinal cell types generated in 3DRO. 
Representative cryostat section images of 3DRO counterstained with the nuclei-dye Hoechst (blue) and 
immunostained for retinal cell type-specific markers (green) and at WK20: RCVRN (recoverin; photoreceptors). OTX2 
(orthodenticle homeobox 2; photoreceptors, bipolar cells). CALB2 (calretinin; photoreceptors, bipolar-, amacrine 
cells). CALB1 (calbindin; amacrine-, horizontal cells). CHAT (choline acetyltransferase; amacrine cells). BRN3 (brain-
specific homeobox/POU domain protein 3B; ganglion cells). RLBP1 (cellular retinaldehyde-binding protein; Müller 
glia). ONL: outer nuclear layer. INL: inner nuclear layer. White dashed line: outer plexiform layer. #: retinal cup 
lumen. White arrow: BRN3+-cells close to lumen. Scale bar: 50 µm. 

Human microglia have been shown to accumulate at the optic disc between GW10-13 and then 
populate the OPL between GW20-25 (Diaz-Araya et al. 1995). When we stained 3DRO for the 
microglia-associated marker IBA1 (Ito et al. 1998), we did not find innately developing IBA1+-
microglia within the retinal cup at any collected time points (Figure 36a). This is in line with our 
previous observations (Bartalska et al. 2022) and confirms the sequencing data at weeks 30 and 
38 by Cowan et al., which failed to identify microglia signature gene transcripts like IBA1/AIF1, 
CX3CR1, PU.1/SPI1, and P2RY12 (Figure 36b) (Butovsky et al. 2014; Gosselin 2017; Kierdorf et al. 
2013; Matcovitch-Natan et al. 2016). 
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Figure 36 – 3DRO lack innately developing microglia-like cells.  
a, Images of 3DRO cryostat sections counterstained with the nuclei-dye Hoechst (blue) and immunostained for the 
microglia marker IBA1 (ionized Calcium-Binding Adapter Molecule 1, magenta) at WK4, WK8, WK12, and WK21. Scale 
bar: 100 µm.  
b, Expression of microglia transcript markers in USCS Cell Browser of Cowan et al., 2020: Dataset ID: ‘Developed 
human retinal organoid.’ Uniform manifold approximation and projection (UMAP) of transcript expression for AIF 
(also known as IBA1), CX3CR1 (C-X3-C motif chemokine receptor 1), SPI1 (also known as PU.1, Spi-1 proto-oncogene) 
and P2RY12 (purinergic receptor P2Y12) of 3D-retinal organoid at WK 32 and 38. AC: amacrine cell. BC: bipolar cell. 
Cone: cone photoreceptors. HC: horizontal cell. MC: Müller glia. RPE: retinal pigment epithelium. Rod: rod 
photoreceptors. Blue dot: not detected. 

Therefore, we focused on a microglia-assembled retinal organoid (iMG-3DRO) model, for which 
we developed a hIPSC line expressing the red fluorescent protein from the AAVS1 locus (Figure 
37a-c) (Oceguera-Yanez et al. 2016). First, we confirmed that the hIPSC line remained pluripotent 
(Figure 37d) and successfully differentiated into tdTomato+/IBA1+-microglia precursors (preMG) 
expressing the previously described and expected preMG-markers (Bartalska et al. 2022) (Figures 
37e-k).  
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Figure 37 – Figure legend on next page.  
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Figure 37 – Generation of tdTomato+-hIPSC cell line and characterization of differentiated tdTomato+-microglia 
precursors (preMG). 
a, Integration strategy into the adeno-associated virus integration site 1 (AAVS1) locus. DSB: double-strand break. 
CAG: CMV immediate enhancer/β-actin promoter. HA-L: homologous arm left. HA-R: homologous arm right. HR: 
homologous recombination. Puro: puromycin selection side. tdTom: tdTomato.  
b-c, Validation strategy. Reaction 1: wildtype allele: PCR product 1.4 kbp. Reaction 2: tdTomato allele: PCR product 
1.2 kbp. PCR: polymerase chain reaction. 
c, PCR product size. Top: Reaction 1 - wildtype AAVS1 locus (1.4 kbp). Bottom: Reaction 2 - construct integrated into 
AAVS1 (1.2 kbp). Orange: wildtype clone. Red: clone with homozygous integration of the construct. NTC: non-
template control. Kbp: kilobase pair.  
d, Validating pluripotency for the wildtype human induced pluripotent stem cell (hIPSC) line SC102A (top) and the 
tdTomato+-hIPSC line SC102A (bottom). Immunostaining of hIPSC colonies for NANOG (nanog homeobox, green), 
OCT3/4 (octamer-binding protein 3, cyan), and counterstaining for the nuclei-dye Hoechst (blue). Intrinsic tdTomato 
expression (orange). Scale bar: 100 µm. 
e, Bar chart of tdTomato+/ IBA1+-preMG with standard error of the mean.  
f-k, Representative images of tdTomato-expressing microglia precursor cells (preMG, orange) harvested from the 
supernatant and plated on a new dish. Cells counterstained for the nuclei-dye Hoechst (blue, merged image), 
immunostained for IBA1 (ionized calcium-binding adapter molecule 1, green) and the microglia/macrophage 
markers in magenta for f, PU.1 (hematopoietic transcription factor PU.1); g, RUNX1 (runt-related transcription factor 
1); h, ITGAM (integrin subunit alpha m); i, CD45 (cluster of differentiation 45/ protein tyrosine phosphatase 
receptor); j, CX3CR1 (chemokine (C-X3-C) receptor 1); k, MYB (MYB proto-oncogene). Scale bar: 20µm. 

Then, we added tdTomato+-preMG to 3DROs at WK 6, 13, 16, or 17 of 3DRO differentiation and 
followed their integration (Figure 38a). Independent of the differentiation week of the organoid, 
tdTomato+-preMG attached to the developing outer nuclear layer within 24h (Figure 38b). After 
a few days, the initially roundly-shaped preMG infiltrated into the 3DRO and adapted their 
morphology into a bipolar profile, which spanned throughout the layers projecting towards the 

lumen of the retinal cup 
(Figure 38c).  

Differences in the preMG 
integration pattern correlated 

Figure 38 – Generation of microglia 
assembled 3D-retinal organoids. 
a, Experimental schematic to 
generate iMG-3DRO. 
b-c, Representative images of iMG-

3DRO. Left: fluorescence image, 
right: brightfield image. 4x 
magnification (top) and 10x 
magnification (bottom). Scale bar: 
20µm.  
b, tdTomato+-microglia precursor 
cells (preMG, white arrow) attach 
on WK 17 at the surface of 3DRO.  
c, tdTomato+- microglia-like cells 
(iMG) integrate into the 3DROs at WK 
20, showing a bipolar shape (white 
arrow). 
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with the OPL formation. Before WK20, iMG preferentially accumulated in the lumen close to 
BRN3+-ganglion cells and rarely interacted with the developing retinal cells (Figure 39a). After 
WK20, iMG integrated into the OPL (Figure 39b-c), or they extended their processes toward it 
(Figure 39a).  

 
Figure 39 – Microglia colonize outer plexiform layer (OPL).  
a, Maximum intensity projection image of entire iMG-3DRO counterstained with the nuclei-dye Hoechst (blue) at 
different time points of preMG (microglia precursor cells) application and collection of iMG-3DRO as outlined in the 
schematic (top). Immunostaining for IBA1 (ionized Calcium-Binding Adapter Molecule 1, orange), BRN3 (brain-
specific homeobox/POU domain protein 3B, green, for WK16), and OTX2 (orthodenticle homolog 2, green, for WK9 
and WK19). Scale bar: 100 µm. Zoom-in: 10 µm. 
b, Images of iMG-3DRO cryostat sections with tdTomato+-iMG (orange) at WK20 immunostained for the presynaptic 
marker VGLUT1 (vesicular glutamate transporter 1, magenta, top) or the postsynaptic marker PSD95 (postsynaptic 
density protein 95, magenta, bottom). Blue: nuclei-dye Hoechst. White arrowhead: iMG located in OPL. Scale bar: 
10 µm. 
c, Images of iMG-3DRO cryostat sections with tdTomato+-iMG (orange) counterstained with the nuclei-dye Hoechst 
(blue) and at WK20. Scale bar: 50 µm. 
White arrowhead: iMG positioned in the outer plexiform layer (OPL) forming between the outer- and inner nuclear 
layers (ONL, INL, respectively). White dashed line: OPL. #: retinal cup lumen. WK: weeks after differentiation started.  
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The position of the iMG soma indicated a spatial distribution across all retinal layers (Figure 40a), 
and the total number of iMG significantly increased from WK9 to WK20 (Figure 40b). Overall, we 
determined WK20 as the time point, which aligns with the microglia integration and spatial 
distribution pattern in human retinal development (Diaz-Araya et al. 1995).  

 
Figure 40 – Quantification.  
a-b, Boxplot. a, Percent of iMG in the ONL (outer 
nuclear layer), OPL (outer plexiform layer), INL (inner 
nuclear layer), GCL (ganglion cell layer), and within 
the retinal cup lumen (#) at WK20. Each dot: one 
cryostat section of an independent retinal cup.  
b, Total number of iMG integrated per retinal cup at 
WK9 and WK20. Each dot represents an entire 
retinal cup. Students’s t-test. *** p<0.001. 
iMG: microglia-like cells. WK: week after the start of 
the differentiation. 

 

iMG control ganglion cell number in 
adapted 2D-RO model with improved ganglion cell survival. 

In human fetal tissue, the ganglion cell layer fully forms by GW24 (Gupta et al. 2016), and its 
formation is accompanied by extensive cell loss peaking between GW16 and 21 (Provis 1987). 
Microglia have been shown to interact with newborn BRN3+-ganglion cells and reduce their 
density in the rodent retina (Anderson et al. 2019). To recapitulate this phenotype in human 3DRO 
is challenging due to the gradual loss of retinal ganglion cells with increasing maturation (Figure 
41a-b), a well-documented phenotype (Cowan et al. 2020; Fligor et al. 2021; Wagstaff et al. 
2021).  

 
Figure 41 – Figure legend on next page.   
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Figure 41 – Gradual ganglion cell loss with 3DRO maturation. 
a, Images of 3DRO cryostat sections counterstained with the nuclei-dye Hoechst (blue) collected at WK8, 12, 18, 21, 
29 and immunostaining for BRN3 (brain-specific homeobox/POU domain protein 3B, green). Scale bar: 50 µm.  
b, Scatterplot of BRN3+-cells relative to Hoechst+-cells per cryostat section with SEM and trend curve. Pearson 
correlation with a significant negative correlation between the differentiation age and the BRN3+-cells number.  

3DRO: 3D-retinal organoid. SEM: standard error of the mean. WK: week after the start of the differentiation. 

Therefore, we adapted recent protocols that dissociate 3D organoids, plated them as 2D cultures, 
and validated cortical network activity reestablishment (Sakaguchi et al. 2019; Victor et al. 2022). 
Dissociated retinal organoid culture (dissRO) will allow us to minimize diffusion biases and 
compare treatment paradigms directly because the wells derive from the same pool of 
dissociated WK15 3DROs, circumventing organoid-to-organoid variability. Until WK20, retinal cells 
will have had sufficient time to successfully reform their synaptic connections (Ludwig et al. 
2023). First, we compared the cell type composition and density to the age-matched 3DROs 
(Figure 42a-b). We found that the percentage of each cell type was similar between 3DRO and 

dissRO with the exceptions of CALB1 and BRN3, which both significantly increased in dissRO (Figure 
42b). Importantly, brain-derived neurotrophic factor (BDNF) in the culture medium supported 
BRN3+-ganglion cell survival in dissRO compared to 3DRO (Figure 42c).  

 
Figure 42 – Figure legend on next page.  
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Figure 42 – Retinal cell types in dissRO. 
a, Immunostaining for retinal markers (green) and nuclei-dye Hoechst (blue) at WK20. Scale bar: 50 µm. Retinal cell 
type markers: RCVRN (recoverin) for photoreceptors, OTX2 (orthodenticle homolog 2) for photoreceptors and 
bipolar cells, CALB2 (calretinin) for photoreceptors, bipolar- and amacrine cells, CALB1 (calbindin) for amacrine-, 
horizontal cells, PRKCA (protein kinase C alpha) for rod bipolar cells, and BRN3 (brain-specific homeobox/POU 
domain protein 3B) for ganglion cells. 
b, Bar chart with SEM of retinal cell types relative to Hoechst+-cells in 3DROs (black) and dissRO (blue). Each dot: 
cryostat section of individual 3DROs (black) or a field of view in dissRO (blue). Student’s t-test except for CALB1 
(Wilcoxon rank-sum test).  
c, Impact of brain-derived neurotrophic factor (BDNF) on ganglion cell survival. Bar chart of percentage of BRN3+-
cells relative to Hoechst+-cells with standard error of the mean in 3D-retinal organoids (3DRO, left) and dissociated 
retinal organoid culture (dissRO, right) cultured either in standard retinal organoid differentiation media without (-
BDNF, grey) or supplemented with BDNF (+BDNF, green) from WK 15 to 20. 3DRO: Each dot is one cryostat section of 
independent retinal cups. Welch's t-test. dissRO: Each dot is one region of interest. One-sample Wilcoxon signed rank 
test. ***p < 0.001. **p < 0.01. *p < 0.05. nsp > 0.05, not significant. 

3DRO: 3D-retinal organoid. SEM: standard error of the mean. 

Next, we added tdTomato+-preMG to dissRO at WK18.5 (iMG-dissRO, Figure 43a). After ten days in 
culture, iMG were distributed across the plate, representing 2.61% ±1.13 of the total Hoechst+-
nuclei number (Figure 43b).  

 
Figure 43 – Generation of microglia assembled dissociated retinal organoids (iMG-dissRO).  
a, Experimental timeline to generate iMG-dissRO. At WK15, retinal cups were dissociated and plated as dissRO. At 
WK18.5, independently differentiated tdTomato+-preMG were added. iMG-dissRO was analyzed ten days later at 
WK20. 
b, Image of tdTomatro+-iMG distribution within iMG-dissRO (orange) at WK20, counterstained with the nuclei-dye 
Hoechst (blue). Scale bar: 100 µm. 

3DRO: 3D-retinal organoid. preM: microglia precursor cells. WK: week after the start of the differentiation. 

To evaluate if the co-culture promotes iMG maturation (Figure 44a) (Butovsky et al. 2014; 
Guttikonda et al. 2021; Haenseler et al. 2017; Park et al. 2023, 2023; Schmid et al. 2002) we 
performed RT-qPCR of iMG-dissRO. On day one, we observed the mRNA expression of microglia-
associated markers such as C1QA, CX3CR1, P2RY12, and TMEM119 (Figure 44b) (Butovsky et al. 
2014; Gosselin, et al. 2017), which were not detected in the absence of iMG (Figure 36b). Except 
for TMEM119, their mRNA expression significantly increased over 9 days, indicating that co-
culturing with dissRO promoted microglia marker expression on the mRNA level. On day 10, iMG 
expressed the transcription factors for primitive macrophage development PU.1 and RUNX1, and 
MYB was not present (Figure 44c) (Buchrieser, James, and Moore 2017). iMG also expressed 
IBA1, CD45 as well as more mature microglia marker TREM2 and P2RY12 (Figure 44d-e). 
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Figure 44 – Figure legend on next page. 
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Figure 44 – Microglia marker expression in iMG-dissRO. 
a, Schematic timeline of microglia marker expression during development. 
b, RT-qPCR for the microglia marker C1QA (complement component C1q), CX3CR1 (C-X3-C motif chemokine receptor 
1), P2RY12 (purinergic receptor P2Y G-protein-coupled 12) and TMEM119 (transmembrane protein 119) in iMG-

dissRO after 1 and 10 days of coculture. Bar chart with SEM of mean mRNA transcript expression relative to GAPDH 
(glyceraldehyde 3-phosphate dehydrogenase). Each symbol is one biological replicate. Student’s t-test. ***p < 0.001. 
**p < 0.01. nsp > 0.05, not significant. 
c-e, Representative images of iMG-dissRO with tdTomato+-iMG (orange), counterstained for the nuclei-dye Hoechst 
(blue) and immunostained in magenta for c, early transcription factors PU.1 (hematopoietic transcription factor 
PU.1), RUNX1 (runt-related transcription factor 1) and MYB (MYB Proto-Oncogene); d, ‘early’ microglia marker IBA1 
(ionized calcium-binding adapter molecule 1) and CD45 (cluster of differentiation 45/ protein tyrosine phosphatase 
receptor); and e, ‘mature’ microglia marker P2RY12 and TREM2 (Triggering Receptor Expressed On Myeloid Cells 2). 
Scale bar: 10 µm. 
iMG-dissRO: microglia assembled dissociated retinal organoid. mRNA: messenger ribonucleic acid. RT-qPCR: real-time 
quantitative polymerase chain reaction. SEM: standard error of the mean. 

To understand the functional consequences of iMG integration, we investigated their phagocytic 
ability. Similar to rodent studies (Anderson et al. 2019), the number of BRN3+-ganglion cells 
significantly reduced in iMG-dissRO compared to dissRO (Figure 45a). Furthermore, 22.53% ± 7.13 

% of all BRN3+-ganglion cells positioned within a 5 m radius of iMG. An average of 1.72 ± 1.70 
iMG engulfed BRN3+-ganglion cell bodies (Figure 45b), indicating their role in regulating neuron 
number during development.  

 
Figure 45 – Microglia control ganglion cell number in iMG-dissRO.  
a, Image of dissRO (left) and iMG-dissRO (right) at WK20 counterstained with the nuclei-dye Hoechst (blue) and 
immunostained for BRN3 (brain-specific homeobox/POU domain protein 3B, green). Scale bar: 50 µm. Next, boxplot 
of BRN3+-ganglion cells relative to Hoechst+-cells in dissRO (grey) and iMG-dissRO (orange). Symbols: single ROI of three 
biological replicates from five independent differentiation. Wilcoxon rank-sum test. *p < 0.05. 
b, Representative images of BRN3+-ganglion cells (green), tdTomato+-iMG (orange) and  the nuclei-dye Hoechst 
(blue) of iMG-dissRO at WK20. Scale bar: 50 µm, zoom-in: 10 µm. Zoom-in: 3D-surface rendering of a region of 
interest. White arrowhead: iMG engulfing BRN3+-cell.  

dissRO: dissociated retinal organoid. iMG: microglia-like cell. iMG-dissRO: microglia assembled dissociated retinal 
organoid. 

To determine if these engulfed cells are apoptotic ganglion cells, we co-labeled the culture with 
the apoptotic marker cleaved caspase-3 (CCAS3). CCAS3+-cells were present (Figure 46a), but the 
total number was unaffected by iMG presence (Figure 46b). In line with previous observations in 
rodents (Anderson et al. 2019), iMG engulfed non-apoptotic ganglion cells (CCAS3-/BRN3+) 
(Figure 46a). At WK20, iMG selectively targeted ganglion cells as all phagocytosed Hoechst+-
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nuclei co-expressed BRN3+. On a note, the number of Hoechst+-cells or OTX2+-photoreceptor/ 
bipolar cells remained unaffected at WK20 (Figure 46c-d).  

 
Figure 46 – Microglia specifically engulf non-apoptotic ganglion cells.  
a, Representative images of BRN3+-ganglion cells (brain-specific homeobox/POU domain protein 3B, green), 
tdTomato+-iMG (orange), and the apoptotic marker CCAS3 (cleaved caspase-3, magenta) of iMG-dissRO at WK20. 
Scale bar: 50 µm, zoom-in: 10 µm. White arrowhead: iMG engulfing BRN3+/CCAS3--cell. 
b-d, Boxplot of percent of b, CCAS3+-cells per area; c, Hoechst+-cells per area and c, OTX2+-photoreceptor- and 
bipolar cells relative to Hoechst+-cells in dissRO (grey) and iMG-dissRO (orange). Symbols: single ROI of three biological 
replicates from five independent differentiations. b-c, Student’s t-test. d, Welch's t-test. nsp > 0.05, not significant. 

dissRO: dissociated retinal organoid. iMG: microglia-like cell. iMG-dissRO: microglia assembled dissociated retinal 
organoid. OTX2: orthodenticle homolog 2. WK: Week after the start of the differentiation.  

On a side note, the CCAS3 staining also highlighted that iMG removed cellular debris exemplified 
in their processes surrounding Hoechst+/ CCAS3+-nuclear fragments (Figure 47a). Consequently, 
iMG-dissRO contained fewer Hoechst+-nuclear fragments than cultures without iMG (Figure 47b-
c). Also, in 3DROs, iMG phagocytosed Hoechst+-nuclear fragments (Figure 47d), emphasizing their 
phagocytic role in both models [20]. 
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Figure 47 – Microglia remove Hoechst+-fragments. 
a, Representative images of iMG-dissRO for tdTomato expression (orange), counterstained for the nuclei-dye Hoechst 
(blue) and immunostained for the apoptotic marker CCAS3 (cleaved caspase3, green). White arrowhead: iMG 
engulfing CCAS3+-fragment. Scale bar: 50µm.  
b, Hoechst+-fragments (white) in dissRO (left) and iMG-dissRO (right). Scale bar: 50 µm. 
c, Boxplot of the percent of Hoechst+-fragments per area in dissRO (grey) and iMG-dissRO (orange). Symbols: single ROI 
of three biological replicates from five independent differentiations. Welch's t-test. ***p < 0.001. 
d, Representative images of iMG-3DRO cryostat sections counterstained with the nuclei-dye Hoechst (blue) and 
tdTomato+-iMG (orange) at WK20. Arrow: iMG engulfing Hoechst+-fragment. Scale bar: 50µm. Zoom in: Scale bar: 
10µm. 

dissRO: dissociated retinal organoid. iMG: microglia-like cell. iMG-dissRO: microglia assembled dissociated retinal 
organoid.  

 

POLY(I:C) affects iMG phenotype without interfering with the ganglion cell interaction. 

To mimic a prenatal neuro-immune challenge in our WK20 culture, we applied POLY(I:C) for 24h 
(Figure 48a). This immunostimulant activates a TLR3 response cascade, triggering downstream 
signaling pathways related to immune defense (Perales-Linares and Navas-Martin 2013; Sartorius 
et al. 2021). Indeed, TLR3 mRNA level significantly increased after POLY(I:C) stimulation in preMG 
culture (Figure 48b), supporting a direct effect of POLY(I:C) on iMG. Next, we monitored iMG 
activity for 20 minutes in iMG-dissRO. We found that iMG surveillance significantly increased 
compared to the control condition without POLY(I:C) (Figure 48c).  
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Figure 48 – Microglia respond to POLY(I:C) stimulation.  
a, Experimental timeline. At WK18.5, preMG are added to dissRO. After nine days, the culture medium was replaced 
with fresh medium either containing POLY(I:C) (magenta) or without as a control (CTRL, grey). Analysis was 
performed 24 hours later on day 10. 
b, RT-qPCR for TLR3 (toll-like receptor 3) of preMG after CTRL or POLY(I:C) stimulation. Bar chart with SEM: Mean 
mRNA transcript log2-fold changes compared to CTRL. Symbol: mean of technical triplicate from five independent 
differentiations. One sample t-test. 
c, iMG-dissRO live imaging for 20 minutes for CTRL or POLY(I:C) stimulation after 24 hours. iMG surveillance index 
normalized to the mean surveillance of the cells in CTRL with a 95% confidence interval. Four independent 
differentiations. Wilcoxon rank-sum test. ***p < 0.001. * p < 0.05.  
iMG: microglia-like cell. iMG-dissRO: microglia assembled dissociated retinal organoid. preMG: microglia precursors. 
POLY(I:C): polyinosinic:polycytidylic acid. WK: week after the start of the differentiation. 

Furthermore, iMG significantly enlarged their surface area at 24h post-stimulation (Figure 49a-
b), and they showed changes in other morphological features commonly found in reactive 
microglia (Fan et al. 2018; Montilla et al. 2020).  

 
Figure 49– Figure legend on next page.  
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Figure 49 – Microglia change their morphology upon POLY(I:C) stimulation. 
a, iMG surface rendering for CTRL (left) and POLY(I:C) (right) 4h and 24h following stimulation, color-coded based on 
surface area: blue = 1000 µm2 to red = 6000 µm2. Scale bar: 50 µm.  
b, Boxplot of individual iMG surface areas in iMG-dissRO for CTRL and POLY(I:C). iMG were collected from five 
independent differentiations. Kruskal-Wallis test with post-hoc Dunn’s test. ***p < 0.001. nsp > 0.05, not significant. 
H: Hour. iMG: microglia-like cell. iMG-dissRO: microglia assembled dissociated retinal organoid. POLY(I:C): 
polyinosinic:polycytidylic acid.  
 

Based on these iMG phenotypes, we revisited the previously observed iMG-ganglion cell 
interaction (Figure 45b). iMG engulfed a comparable number of ganglion cells to age-matched, 
untreated control conditions (Figure 50a). When we analyzed the number of BRN3+-ganglion 
cells, we observed a trend towards an increase in POLY(I:C)-treated culture, but this effect was 
insignificant (Figure 50b). We thus also investigated whether the iMG interaction with BRN3+-

ganglion cells is altered and determined the iMG position within a 5 m radius of BRN3+-labeling. 
The proximity measurement did not reveal an apparent difference between POLY(I:C) -stimulated 
and non-stimulated conditions (Figure 50c-d), suggesting that POLY(I:C) does not have an 
immediate effect on the iMG developmental task to regulate the ganglion cell number.  

 
Figure 50 – Microglia still interact with ganglion cells following POLY(I:C) stimulation. 
a, Boxplot quantifying the number of iMG engulfing BRN3+-cells (brain-specific homeobox/POU domain protein 3B) 
in iMG-dissRO for CTRL and POLY(I:C). Symbols: single ROI of three biological replicates from five independent 
differentiations. Wilcoxon rank-sum test.  
b, Boxplot determines ganglion cell density based on BRN3+-cells relative to Hoechst+-cells in iMG-dissRO for CTRL and 
POLY(I:C). Symbols: single ROI of three biological replicates from five independent differentiations. Wilcoxon rank-
sum test.  
c-d, Ganglion cell-iMG proximity in iMG-dissRO. c, Surface rendering of iMG for CTRL (top) and POLY(I:C) (bottom). 
BRN3+-spots color-coded based on the proximity to the iMG surface with spots < 5 µm (magenta) and spots > 5 µm 
(cyan). Scale bar: 10 µm. d, Boxplot of percent of magenta BRN3+-spots. Symbols: single ROI of three biological 
replicates from five independent differentiations. Wilcoxon rank-sum test. 
nsp > 0.05, not significant. 
iMG: microglia-like cell. iMG-dissRO: microglia assembled dissociated retinal organoid. POLY(I:C): 
polyinosinic:polycytidylic acid. ROI: region of interest. 
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iMG presence influences POLY(I:C)-mediated inflammatory secretome signature and cell 
proliferation. 

To obtain insights into how iMG presence affects the POLY(I:C)-mediated neuro-immune 
response, we analyzed the supernatant of dissRO and iMG-dissRO after 24h of POLY(I:C) stimulation 
and compared it to the untreated control (Figure 48a).  
At baseline without POLY(I:C) stimulation, dissRO with or without iMG were comparable, showing 
a similar set of secreted mediators, including MIF, CCL2, CXCL12, IL18, and SerpinE1 (Figure 51a-
b).  

dissRO exposed to POLY(I:C) formed a separate cluster with only moderate differences from the 
controls. The additional detected cytokines CXCL10, CXCL11, CXCL1, and IL8 belong to the CXC 
family and are known to be secreted by astrocytes (Kim et al. 2022; Michael et al. 2020; Phares 
et al. 2013). Indeed, we verified the presence of GFAP+-glia cells in dissRO (Figure 51c).  

 
Figure 51 – Microglia dependent inflammatory response.  
a, Release of inflammatory cytokines and chemokines into the supernatant based on the experimental paradigm 
described in Figure 48a for control (CTRL, grey) and POLY(I:C) (magenta) after 24-hour stimulation. Heatmap with 
color-coded mean pixel intensity relative to the reference of three independent differentiations. White: n.d. Side-
bar: condition with iMG (iMG-dissRO, orange) or without (dissRO, white) or CTRL versus POLY(I:C). 
b, Representative membranes for each condition. Numbers refer to the legend on the right. 
c, Example images of dissRO counterstained with the nuclei-dye Hoechst (blue) and immunostained for the glial 
marker GFAP (glial fibrillary acidic protein, green). Scale bar: 20 µm. 
iMG-dissRO: microglia assembled dissociated retinal organoid. POLY(I:C): polyinosinic:polycytidylic acid.  
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The most robust inflammatory secretome signature occurred when we stimulated iMG-dissRO 
with POLY(I:C). The previous four factors were significantly higher released, and we detected an 
additional eight secreted inflammatory mediators such as TNFα, IL6, and MIP (Figure 51a, Figure 
52a). Since those factors have already been partially upregulated in dissRO, iMG seemed to amplify 
the signal. On a note, approximately half of the inflammatory mediators assayed were not 
secreted in any condition (Figure 52b). 

 
Figure 52 – POLY(I:C) mediated response. 
a, Release of inflammatory cytokines and chemokines into the supernatant after 24-hour stimulation in iMG-dissRO. 
Bar chart with SEM: Fold change of pixel intensity upon POLY(I:C) stimulation(magenta) relative to CTRL (grey). Each 
dot is an independent differentiation (n=3). Shapiro-Wilk normality test <0.05, Wilcoxon rank-sum test. Shapiro-Wilk 
normality test > 0.05, one sample t-test. ***p < 0.001. **p < 0.01. *p < 0.05. nsp > 0.05, not significant. 
b, List of proteins assayed on the membrane but not detected in the supernatant of any condition. 
iMG-dissRO: microglia assembled dissociated retinal organoid. POLY(I:C): polyinosinic:polycytidylic acid. SEM: 
standard error of the mean. 

These mediators were also not detected after only 2- or 4 hours of POLY(I:C) exposure in iMG-

dissRO (Figure 53a). In contrast, iMG morphology started already to adapt 4h post-stimulation 
(Figure 49a-b, Figure 53b), suggesting that iMG activation occurs before the release of 
inflammatory mediators.  
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Figure 53 – Timeline POLY(I:C)-mediated response. (to be continued on next page) 
a, Same assay as for in Figure 51a with additional measurement of cytokine and chemokine release after two and 
four hours compared to 24h in iMG-dissRO with annotated example membranes. 
b, Boxplot of the total branch length (left) and the number of endpoints (right) per iMG for CTRL (grey) and POLY(I:C) 
(magenta) following 4h and 24h stimulation in iMG-dissRO. iMG-dissRO were collected from five independent 
differentiations. Kruskal-Wallis test with post-hoc Dunn’s test. ***p < 0.001. 
H: hour. iMG: microglia-like cell. iMG-dissRO: microglia assembled dissociated retinal organoid. POLY(I:C): 
polyinosinic:polycytidylic acid.  

CCL2 (C-C Motif Chemokine Ligand 2) has been one of the strongest upregulated factors upon 
POLY(I:C) stimulation in iMG-dissRO (Figure 52a). Besides being involved in the homing of 
monocytes and T-cells from the periphery (Bose and Cho 2013; Chen et al. 2003), CCL2 also 
contributes to neuronal proliferation in concert with the other upregulated secreted factors 
CXCL12, MIF, MIP, TNFα, CXCL1, and CXCL10 (Bernardino et al. 2008; Marsters et al. 2020; Rosin 
et al. 2021; Shang et al. 2019; Wu et al. 2009; Zhang et al. 2013) (Figure 51a, Figure 52a). To 
investigate the consequences on the number of proliferating cells, we immunostained for the 
proliferation marker KI67 (Figure 54a-i). In iMG-dissRO, POLY(I:C) stimulation significantly reduced 
the number of KI67+/iMG-cells compared to the control (Figure 54a-b), which supports data in 
rodents (Ben-Yehuda et al. 2019). Yet, the overall iMG density remained similar (Figure 54c), 
suggesting that iMG are less proliferative. In contrast, the overall number of proliferating retinal 
cells excluding iMG significantly increased upon POLY(I:C) stimulation in iMG-dissRO (Figure 54d-
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e). We observed the same effect in iMG-3DROs (Figure 54f-g) emphasizing that this effect is 
independent from dissRO versus 3DRO. Overall, this consequence aligns with rodent studies after 
prenatal immune challenges (Baines et al. 2020; Kuse et al. 2018; Loayza et al. 2022). Since the 
secretion of proliferation-associated factors was only upregulated in the presence of iMG (Figure 
51a), we determined the number of KI67+/Hoechst+-cell in dissRO and 3DROs lacking iMG. POLY(I:C) 
failed to increase KI67+-cells in both conditions (Figure 54h-i), emphasizing an iMG-dependent 
effect on cell proliferation upon POLY(I:C) exposure.  

 
  

Figure 54 – Figure legend on next page.  
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Figure 54 – POLY(I:C)-mediated microglia-dependent consequences on the retinal environment. 
a-c, iMG proliferation rate in iMG-dissRO for CTRL (left) and POLY(I:C) (right). a, Example ROI image of tdTomato+-iMG 
(orange) and immunostained for the proliferation marker KI67 (proliferation marker protein Ki-67, magenta). White 
arrow: KI67+-expressing iMG. Scale bar: 50µm. Zoom-in: Scale bar: 10 µm. b, Boxplot of KI67+/iMG percentage. 
Wilcoxon rank-sum test. c, Boxplot of iMG per area. Students’ t-test. b-c, Symbols: single ROI of three biological 
replicates from five independent differentiations.  
d-i, Proliferation of retinal cells. d, f, Example ROI images counterstained for the nuclei-dye Hoechst (blue) and 
immunostained for the proliferation marker KI67 (green) for CTRL (left) and POLY(I:C) stimulation (right) for iMG-

dissRO (d) and cryostat section with a focus on the retinal cup of iMG-3DRO (f). Scale bar: 50 µm. e, g-i, Boxplot 
percent of KI67+-cells relative to Hoechst+-cells, excluding KI67+/iMG, for CTRL (grey) and POLY(I:C) (magenta) in iMG-

dissRO (e), iMG-3DRO (g), dissRO (h), and 3DRO (i). Symbols: single ROI of three biological replicates from five 
independent differentiations. Students’ t-test. ***p < 0.001. **p < 0.01. *p < 0.05. nsp > 0.05, not significant. 
CTRL: control. iMG: microglia-like cell. iMG-dissRO: microglia assembled dissociated retinal organoid. POLY(I:C): 
polyinosinic:polycytidylic acid. ROI: region of interest.  

 

Next, to identify whether CCL2 is the primary mediator of this effect, we applied 10 ng/ml CCL2 
to iMG-dissRO cultures at WK20 and analyzed the consequences 24h later (Figure 55a). In contrast 
to POLY(I:C) stimulation (Figure 54d-e), CCL2 exposure did not increase the overall proliferation 
rate (Figure 55b). Even if we applied higher CCL2 concentrations, the ratio of KI67+/Hoechst+-cells 
remained the same. Unexpectedly, the ratio of KI67+/iMG rose with 10 ng/ml CCL2 (Figure 55c), 
which is in contrast to the POLY(I:C) condition (Figure 54a-b). This suggests that CCL2 alone 
cannot drive the observed phenotypes and that the interplay with additional proliferation-
associated factors is critical. 

 
  

Figure 55 – Figure legend on next page.  
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Figure 55 – The POLY(I:C)-mediated proliferation rate increase cannot be replicated with CCL2 alone. 
a, Experimental timeline. At WK18.5, preMG are added to dissRO. After nine days, iMG-dissRO received fresh medium 
for control or CCL2 (C-C motif chemokine ligand 2) stimulation for 24 hours.  
b, Effect of CCL2 on retinal cell proliferation excluding iMG. Boxplot of percent KI67+-cells relative to Hoechst+-cells 
in iMG-dissRO for CTRL (grey) and CCL2 stimulation at a final concentration of 10 ng/mL (yellow), 20 ng/mL (orange), 
and 50 ng/mL (red). Magenta line: Median proliferation rate in POLY(I:C) stimulation of iMG-dissRO (Figure 53e). 
Symbols: three biological replicates from five independent differentiations. One-way ANOVA.  
c, Effect of CCL2 on iMG proliferation. Boxplot of percent KI67+/iMG for CTRL (grey) and CCL2 stimulation at a final 
concentration of 10 ng/mL (yellow), 20 ng/mL (orange), and 50 ng/mL (red). Magenta line: Median iMG-proliferation 
rate in POLY(I:C) stimulation of iMG-dissRO (Figure 53b). Symbols: three biological replicates from five independent 
differentiations. Kruskal-Wallis test. nsp > 0.05, not significant. 
CTRL: control. preMG: microglia precursor. iMG: microglia-like cell. iMG-dissRO: microglia assembled dissociated 
retinal organoid. POLY(I:C): polyinosinic:polycytidylic acid. WK: week after the start of the differentiation. 

Ibuprofen dampens POLY(I:C)-induced iMG phenotypes and reduces cell proliferation. 

Besides cytokines and chemokines, another hallmark of inflammation is the secretion of 
prostaglandins such as PGE2, which mediate classic symptoms of inflammation (Lima et al. 2012; 
Pecchi et al. 2009). Indeed, we found that iMG-dissRO stimulated with POLY(I:C) for 24h showed 
increased PGE2 levels in the supernatant (Figure 56a-b). NSAIDs like ibuprofen target the 
enzymes cyclooxygenase 1 and 2 (PTGS1/COX1, PTGS2/COX2, respectively) and prevent 
arachidonic acid conversion into prostaglandins (Griswold and Adams 1996; Kato et al. 2010). 
Simultaneous exposure of POLY(I:C) with the active enantiomer S(+)-ibuprofen dampened PGE2 
upregulation in iMG-dissRO (Figure 56b) as well as in iMG-3DRO (Figure 56c). 

 

 

  

Figure 56 – Ibuprofen dampens PGE2 release.  
a, Experimental timeline. At WK18.5, preMG are 
added to dissRO. After nine days, cultures received 
fresh medium for untreated control (CTRL), 
POLY(I:C) or POLY(I:C) and S(+)-ibuprofen 
(POLY(I:C)+IBU) for 24 hours before analysis.  
b-c, PGE2 (prostaglandin E2) is released into the 
supernatant of iMG-dissRO (b) and iMG-3DRO (c). 
Boxplot of PGE2 concentration [pg/ml] after CTRL 
(grey), POLY(I:C) (magenta), and POLY(I:C)+IBU 
(blue). Each symbol: an independent 
differentiation (n=5).  
b, One-way ANOVA with post-hoc Tukey’s test. c, 
Kruskal-Wallis test with post-hoc Dunn’s test. 
CTRL: control. preMG: microglia precursor. IBU: 
S(+)-ibuprofen. iMG-dissRO: microglia assembled 
dissociated retinal organoid. POLY(I:C): 
polyinosinic:polycytidylic acid. WK: week after 
the start of the differentiation. 
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Next, we investigate the release of cytokine and chemokine into the supernatant during the 
POLY(I:C)-mediated neuro-immune challenge when we simultaneously applied S(+)-ibuprofen. 
Most inflammatory mediators remained unaffected upon exposure to S(+)-ibuprofen (Figure 57). 
Only TNF secretion increased, which aligns with a previous study identifying that PGE2 inhibits 
TNF expression in macrophage cell lines in vitro (Stafford and Marnett 2008).  

 
Figure 57 – Comparison of individual secreted inflammatory mediators after ibuprofen exposure. 
a, Release of inflammatory cytokines and chemokines into the supernatant based on the experimental paradigm 
described in Figure 51a for untreated control (CTRL, grey), POLY(I:C) (magenta), and POLY(I:C) and S(+)-ibuprofen 
(POLY(I:C)+IBU, blue) stimulation in iMG-dissRO. Bar chart of pixel intensity normalized to reference with standard 
error of the mean. Each symbol is an independent differentiation (n=3). One-way ANOVA with post-hoc Tukey’s test, 
except IL13, IL18, IL21 Kruskal-Wallis test. ***p < 0.001. **p < 0.01. *p < 0.05. nsp > 0.05, not significant.  
CTRL: control. IBU: S(+)-ibuprofen. POLY(I:C): polyinosinic:polycytidylic acid.  
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Since microglia have been shown to constitutively express PTGS1/COX1 (Deininger and 
Schluesener 1999) and ibuprofen targets PTGS1/COX1, we revisited iMG surveillance and 
monitored their activity. 24h following exposure of S(+)-ibuprofen simultaneously with POLY(I:C), 
iMG surveillance significantly reduced compared to just POLY(I:C) and even below the control 
level in dissRO (Figure 58a). Morphologically, iMG remained confined, exhibiting less cell surface 
area than just POLY(I:C) exposure (Figure 58b-c), indicating a dampened activity and underlining 
a direct ibuprofen-mediated effect on iMG.  

 
Figure 58 – Ibuprofen impacts POLY(I:C)-mediated consequences on iMG. 
a, iMG-dissRO live imaging for 20 minutes after 24h stimulation. iMG surveillance index normalized to the mean 
surveillance of the cells in CTRL with a 95% confidence interval. Data from five independent differentiations. Kruskal-
Wallis test with post-hoc Dunn’s test.  
b-c, iMG surface area in iMG-dissRO. b, iMG surface rendering for CTRL (left), POLY(I:C) (middle), and POLY(I:C)+IBU 
(right), color-coded based on surface area: blue = 1000 µm2 to red = 6000 µm2. Scale bar: 50 µm. c, Boxplot of 
individual iMG surface areas. iMG from five independent differentiations. Kruskal-Wallis test with post-hoc Dunn’s 
test. 
***p < 0.001. nsp > 0.05, not significant.  
CTRL: control. IBU: S(+)-ibuprofen. iMG-dissRO: microglia assembled dissociated retinal organoid. POLY(I:C): 
polyinosinic:polycytidylic acid.  

To further examine whether ibuprofen improves the consequences of the prenatal neuro-
immune challenge, we revisited the increased proliferation phenotype upon POLY(I:C) exposure. 
Following simultaneous treatment with S(+)-ibuprofen, the ratio of KI67+/Hoechst+-cells reduced 
for four out of five differentiation in iMG-dissRO compared to POLY(I:C) stimulation alone (Figure 
59a-c). In iMG-3DRO, we observed a similar beneficial effect (Figure 59d-e). 

Since ibuprofen has been associated with anti-proliferative effects in cancer cell lines (Janssen et 
al. 2006; Yao et al. 2005), we evaluated S(+)-ibuprofen without POLY(I:C) exposure in iMG-dissRO. 
The number of proliferating cells remained similar (Figure 59f).  
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Figure 59 – Ibuprofen partially reverses POLY(I:C)-mediated consequences on retinal cell proliferation. 
a and d, Example image of iMG-dissRO (a) and cryostat sections focusing on retinal cup iMG-3DRO (d) at WK20 
counterstained with the nuclei-dye Hoechst (blue) and immunostained for KI67 (proliferation marker protein Ki-67, 
green) for CTRL (left) and POLY(I:C) +IBU (right). Scale bar: 50 µm.  
b-c and e-f, Quantification proliferation rate of retinal cells in iMG-dissRO (b-c, f) and iMG-3DRO (e). Each symbol is an 
independent differentiation (n=5). Single ROI of three biological replicates. (b, e) Boxplot percent of KI67+-cells 
relative to Hoechst+-cells for CTRL (grey), POLY(I:C) (magenta), and POLY(I:C) +IBU (blue) excluding KI67+/iMG.. b, 
One-way ANOVA with post-hoc Tukey’s test. e, Kruskal-Wallis test. c, Fold change of median percent of KI67+-cells 
relative to Hoechst+-cells compared to CTRL. One sample t-test and Student’s t-test. f, Boxplot percent of KI67+-cells 
relative to Hoechst+-cells for CTRL (grey) and only IBU exposure (light-blue) for 24 hours. Students’s t-test. 
*p < 0.05. nsp > 0.05, not significant.   
CTRL: control. IBU: S(+)-ibuprofen. iMG-dissRO: microglia assembled dissociated retinal organoid. POLY(I:C): 
polyinosinic:polycytidylic acid.  

Ibuprofen depends on iMG to reverse POLY(I:C)-mediated effects on neuronal activity.  

Initially, we described that the OPL formation aligned with iMG integration. Once the OPL is 
formed, spontaneous glutamatergic activity shapes neuronal circuits in vivo (Morgan and Wong 
2007). Since iMG-dissRO expressed synaptic markers (Figure 60a), we investigated the number of 
presynaptic VGLUT1+-puncta and postsynaptic PSD95+-puncta on MAP2+-neurons, and their 
proximity as an indicator for functional synapses (VGLUT1+/PSD95+-puncta) in dissRO and iMG-

dissRO. iMG presence affected neither of those parameters at WK20 (Figure 60b-d). 
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Next, we visualized spontaneous calcium transients as a correlate for neuronal activity. First, we 
transduced dissRO with adeno-associated virus (AAV), which is independent of TLR3-signaling (Cao 
and Herzog 2008). The AAV encoded for the calcium sensor GCAMP6s under the control of the 
ubiquitous EF1α promoter (Cowan et al. 2020; Garita-Hernandez et al. 2020), resulting in a broad 
expression across retinal cell types (Figure 61a-e).  

Figure 60 – Microglia do not influence 
the number of synaptic puncta. 
a, Example image of iMG-dissRO 
immunostained for the neuronal marker 
MAP2 (microtubule-associated protein 
2, grey), the presynaptic marker VGLUT1 
(vesicular glutamate transporter 1, 
green), and the postsynaptic marker 
PSD95 (postsynaptic density protein 95, 
magenta) with zoom-in. Scale bar: 10 
µm.  
b-d, Boxplots of synaptic puncta 
quantification in dissRO (grey) and iMG-

dissRO (orange) for VGLUT1+-puncta per 
10µm MAP2 (b), PSD95+-puncta per 
10µm MAP2 (c) and VGLUT1+/PSD95+-
puncta per 10µm MAP2 (d). Each dot 
represents one process close to the 
soma of a single cell. Five independent 
dissociations from three differentiations. 
Wilcox-test. 
nsp > 0.05, not significant. iMG-dissRO: 
microglia assembled dissociated retinal 
organoid.  
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Importantly, to exclude any AAV-mediated microglia activation, we applied the virus to dissRO at 
WK17 and 1.5 weeks before adding preMG (Figure 62a). At WK20, we analyzed the spontaneous 
calcium transients (Figure 62b-c). The calcium peak amplitude and the mean frequency remained 
similar in dissRO and iMG-dissRO (Figure 62d).  

The calcium transients were either abolished after application of the voltage-gated sodium 
channel blocker tetrodotoxin (TTX) (Figure 62e) or significantly reduced after pharmacological 
blocking of glutamatergic synaptic transmission using a combination of CPP, NBQX, and APB 
(Figure 62f). Furthermore, the spontaneous calcium activity depended on extracellular calcium 
because the transients stopped when we applied the Ca2+-chelator EGTA into the media (Figure 
62g).  

Figure 61 – GCAMP6s 
expression across retinal cell 
types. 
a-e, Example ROI images of 

dissRO infected with AAV2-
GCAMP6s at WK17, analyzed at 
WK20, counterstained for the 
nuclei-dye Hoechst (blue) and 
the calcium sensor GCAMP6s 
(green), and immunostaining 
for retinal cell types (magenta): 
a, RCVRN (recoverin; 
photoreceptors). b, OTX2 
(orthodenticle homeobox 2; 
photoreceptors, bipolar cells). c, 
CALB2 (calretinin; 
photoreceptors, bipolar-, 
amacrine cells). d, CALB1 
(calbindin; amacrine-, 
horizontal cells). e, BRN3 (brain-
specific homeobox/POU 
domain protein 3B; ganglion 
cells). Arrow: Co-expression of 
calcium sensor and retinal 
marker. Scale bar: 50µm. 
ROI: region of interest. WK: 
Week after the start of the 
differentiation.  
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Figure 62 – Calcium dynamics of retinal cell types.  
a, Experimental timeline. At WK17, dissRO transduced with AAV2-GCAMP6s. preMG added at WK18.5. Four days 
before calcium imaging, gradual transition to Brain-Phys (BP) medium until WK20.  
b, Three example traces of spontaneous calcium transients in iMG-dissRO.  
c, Example ROI image of iMG-dissRO expression of the calcium sensor GCAMP6s (green) and tdTomato+-iMG (orange). 
Scale bar: 50µm.  
d, Spontaneous calcium dynamics during five minutes recording in dissRO (grey) and iMG-dissRO (orange). Boxplot of 
the mean peak amplitude [F/F0] (left) and the mean frequency [Hz] (right). Wilcoxon rank-sum test.  
e, TTX (Tetrodotoxin) abolishes calcium transients in dissRO (left) and iMG-dissRO (right). Boxplot of mean frequency 
[Hz] during 150-sec baseline recording (baseline) and following TTX application for another 150 sec (+TTX). One-
sample Wilcoxon signed rank test.  
f, Boxplot of mean frequency [Hz] during 150-sec baseline recording (baseline) and following exposure to 
glutamatergic blockers CPP (4-(3-phosphonopropyl)piperazine-2-carboxylic acid), APB (2-aminoethoxydiphenyl 
borate), and NBQX (2,3-dioxo-6-nitro-7-sulfamoyl-benzo[f]quinoxaline) for 150 sec in dissRO (left) and iMG-dissRO 
(right). Wilcoxon rank-sum test.  
g, Boxplot of mean frequency [Hz] during 150-sec baseline recording (baseline) and following Ca2+-chelator EGTA 
(ethylene glycol tetraacetic acid) application for another 150 sec in iMG-dissRO. One-sample Wilcoxon signed rank 
test. 
***p < 0.001. **p < 0.01. nsp > 0.05, not significant. 
Ca2+: calcium. dissRO: dissociated retinal organoid. Hz: Hertz. iMG-dissRO: microglia assembled dissociated retinal 
organoid. preMG: microglia precursor. Sec: seconds. WK: week after the start of the differentiation. 

Inflammatory factors have been shown to modulate neuronal activity (Clarkson et al. 2017; Hayes 
et al. 2022; Vezzani and Viviani 2015; Zhu et al. 2006). Indeed, we found that POLY(I:C) exposure 
in both iMG-dissRO and dissRO significantly increased the calcium peak amplitude of individual cells 
(Figure 63a-b) and had no effect on the mean frequency (Figure 63c-d). To obtain insights into 
whether the increased calcium peak amplitude is mediated via glutamatergic synaptic 
transmission, we applied CPP, NBQX, and APB following 24h POLY(I:C) stimulation. Similar to the 
untreated control (Figure 62f), the frequency significantly decreased (Figure 63e). We found that 
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the amplitude was unaffected, suggesting that the increase in the calcium amplitude peak is 
independent of glutamatergic signaling and instead mediated through microglia-neuron 
signaling.  

 

 

 

 

Finally, when we simultaneously applied POLY(I:C) and S(+)-ibuprofen, strikingly, the peak 
amplitude was only restored to the control condition in iMG-dissRO (Figure 63a). In dissRO, the 
peak amplitude remained elevated compared to the control (Figure 63b), and the frequency was 
unaltered (Figure 63c-d). This data suggests that iMG presence is critical for the effect of 
ibuprofen on restoring POLY(I:C)-induced changes in the calcium dynamics.  

Figure 63 – Calcium dynamics are affected 
upon POLY(I:C), yet ibuprofen needs iMG to 
reverse the phenotype. 
a-d, Spontaneous calcium dynamics during five 
minutes recording after 24 hours of either fresh 
medium for control (CTRL, grey), POLY(I:C) 
(magenta), or POLY(I:C) and S(+)-ibuprofen 
(POLY(I:C)+IBU, blue) exposure in iMG-dissRO (a, 
c) and dissRO (b, d). (a-b) Boxplot of the mean 
peak amplitude [F/F0]. (c-d) Boxplot of the 
mean frequency [Hz]. Kruskal-Wallis test with 
post-hoc Dunn’s test.  

 

e, Spontaneous calcium dynamics in iMG-dissRO after 24 hours POLY(I:C) stimulation and following exposure to 
glutamatergic blockers CPP, APB, and NBQX. Boxplot of the mean frequency [Hz] (left) and the mean peak 
amplitude [F/F0] (right). Wilcoxon rank-sum test.  
Each dot represents an active cell. Recordings from five independent differentiations. ***p < 0.001. nsp > 0.05, 
not significant. 
CTRL: control. dissRO: dissociated retinal organoid. IBU: S(+)-ibuprofen. iMG-dissRO: microglia assembled 

dissociated retinal organoid. POLY(I:C): polyinosinic:polycytidylic acid.  
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Both ibuprofen targets, PTGS1 in microglia and PTGS2, are required to rescue calcium 
dynamics. 

To identify the mechanism behind the iMG-dependent response upon ibuprofen exposure, we 
revisited the two main targets of ibuprofen, PTGS1 and PTGS2, at the transcriptional level. In the 

3DRO sequencing data (Cowan et al. 2020), PTGS2 transcripts occurred in Müller glial and 
horizontal cells, whereas PTGS1 transcripts were absent (Figure 64a). Since this dataset lacks 
iMG, we collected 3DRO with and without iMG around WK20 and analyzed the mRNA transcript 
levels of both enzymes. PTGS1 relative to GAPDH was significantly increased in iMG-3DRO 
compared to 3DRO (Figure 64b), whereas the PTGS2 levels remained similar (Figure 64c).  

Microglia have been shown to express PTGS1 constitutively (Deininger and Schluesener 1999), 
and a common assumption is that PTGS2 is upregulated during inflammatory conditions (Font-
Nieves et al. 2012). To validate these assumptions, we investigated the transcript level in preMG 
cultures. Indeed, the absolute expression of PTGS1 compared to GAPDH was significantly higher 
than that of PTGS2 (Figure 64d). Yet, neither PTGS1 nor PTGS2 levels increased upon POLY(I:C) 
exposure of preMG (Figure 64e). At the same time, we observed a trend for PTGS1 and PTGS2 
increase in iMG-3DRO follwoing POLY(I:C) stimulation (Figure 64f) which is absent in 3DRO (Figure 
64g).  
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Figure 64 – Cell type-dependent transcriptional differences in PTGS1 and PTGS2.  
a, Expression of PTGS1 and PTGS2 (prostaglandin-endoperoxide synthase 1 and 2) in USCS Cell Browser of Cowan et 
al., 2020. Cell Browser dataset ID: ‘Developed human retinal organoid.’ Uniform manifold approximation and 
projection (UMAP) of transcript expression. AC: amacrine cell. BC: bipolar cell. Cone: cone photoreceptors. HC: 
horizontal cell. MC: Müller glia. RPE: retinal pigment epithelium. Rod: rod photoreceptors. Red arrow: positive 
transcript expression. Blue dot: not detected. 
b-g, Real-time quantitative polymerase chain reaction (RT-qPCR). Bar chart with SEM of mean mRNA transcript 
expression relative to GAPDH (glyceraldehyde 3-phosphate dehydrogenase) for PTGS1 (b, d-g) and PTGS2 (b-g) 
across untreated (b-d) and CTRL versus POLY(I:C) (magenta) or POLY(I:C) and S(+)-ibuprofen (POLY(I:C)+IBU, blue) 
(e-g) for 3DRO versus iMG-3DRO (b-c), preMG (d-e), iMG-3DRO (f), 3DRO (g). Students t-test (b-d). One-way ANOVA (e-
g). 
***p < 0.001. *p < 0.05. nsp > 0.05, not significant. 
CTRL: control. 3DRO: 3D-retinal organoid. IBU: S(+)-ibuprofen. iMG-3DRO: microglia assembled 3D-retinal organoid. 

POLY(I:C): polyinosinic:polycytidylic acid. preMG: microglia precursor. SEM: standard error of the mean.   
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When we analyzed the cytokine assay (Figure 51a), we observed several secreted factors known 
to be released by astrocytes. In 3DRO, astrocytes/Mueller-glia show a low expression level of TLR3 
(Figure 65a). We confirmed this expression in hIPSC-derived astrocyte cultures (Bsibsi et al. 
2006), which further upregulate TLR3 transcripts upon POLY(I:C) exposure (Figure 65b). When 
we profiled PTGS1 and PTGS2, we found that hIPSC-derived astrocytes significantly increased 
PTGS2 transcripts (Figure 65c). This emphasizes that preMG and astrocytes differentially express 
the enzymes cyclooxygenase 1 and 2, respectively. 

 

Figure 65 – The effect of POLY(I:C) on hIPSC-derived astrocytes. 
a, Expression of TLR3 (toll-like receptor 3) in USCS Cell Browser of Cowan et al., 2020. Cell Browser dataset ID: 
‘Developed human retinal organoid.’ Uniform manifold approximation and projection (UMAP) of transcript 
expression. AC: amacrine cell. BC: bipolar cell. Cone: cone photoreceptors. HC: horizontal cell. MC: Müller glia. RPE: 
retinal pigment epithelium. Rod: rod photoreceptors. Red arrow: positive transcript expression. Blue dot: not 
detected.  
b-c, Real-time quantitative polymerase chain reaction (RT-qPCR) for (b) TLR3 as well as (c) PTGS1 and PTGS2 in hIPSC-
derived astrocytes for untreated control (CTRL, grey) and POLY(I:C) (magenta) exposure. (b) Mean mRNA transcript 
log2-fold changes compared to untreated control cells with standard error of the mean. (c) Bar chart with SEM of 
mean mRNA transcript expression relative to GAPDH. Each symbol is an independent differentiation (n=3). (b) One 
sample t-test. (c) Students t-test. 
*p < 0.05. nsp > 0.05, not significant. 
CTRL: control. 3DRO: 3D-retinal organoid. POLY(I:C): polyinosinic:polycytidylic acid. SEM: standard error of the mean. 

Since ibuprofen targets both enzymes, we were interested in whether applying POLY(I:C) in 
combination with S(+)-ibuprofen results in an iMG-dependent effect on PTGS1 and PTGS2 
expression. While the treatment reduced PTGS1 mRNA expression in preMG (Figure 64e), it 
indicates a reversal of the POLY(I:C)-mediated increase to control levels in iMG-3DRO (Figure 64f). 
In 3DROs, S(+)-ibuprofen showed no trend (Figure 64g), suggesting that iMG are involved in a 
beneficial ibuprofen effect.  

Ibuprofen did not rescue the calcium peak amplitude in the absence of iMG (Figure 53b), a 
condition in which PTGS1 is underrepresented (Figure 64b). Since S(+)-ibuprofen targets both 
enzymes simultaneously, we selectively blocked PTGS1 to understand if the beneficial effect 
depends on microglial PTGS1. To test this hypothesis, we took advantage of the inhibitor SC-560, 
which has a 700-fold selectivity for PTGS1 over PTGS2 (Hoozemans et al. 2002; Smith et al. 1998) 

and, therefore, will directly affect iMG in iMG-dissRO. When we applied SC-560 together with 
POLY(I:C) for 24 hours (Figure 66a) and measured the calcium dynamics in iMG-dissRO, the calcium 
peak amplitude was similarly upregulated as in dissRO following ibuprofen treatment (Figure 66b). 
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The frequency remained unaffected (Figure 66c). This suggests that inhibition of functional 
PTGS1 or the simple lack of iMG prevents the positive effect of ibuprofen from restoring the 
calcium peak amplitude, highlighting a critical interplay between PTGS1-expressing iMG and 
PTGS2-mediated POLY(I:C) upregulation in other cells.  

 
  
Figure 66 – PTGS1 selective inhibition.  
a, Experimental timeline similar to Figure 58a with POLY(I:C) and SC-560 exposure for 24h in iMG-dissRO at WK20. 
b-c, Spontaneous calcium dynamics in iMG-dissRO during 5 minutes recording after 24 hours of either fresh medium 
for control (CTRL, grey), POLY(I:C) (magenta), POLY(I:C) and S(+)-ibuprofen (POLY(I:C)+IBU, blue), or POLY(I:C) and SC-
560 (POLY(I:C)+SC-560, green) exposure. Boxplot of mean peak amplitude [F/F0, b] and mean frequency [Hz, c]. Each 
dot represents an active cell from five independent differentiations. Peak amplitude: reference lines for the median 
of the control and POLY(I:C) stimulation in dissRO from Figure 60b. Kruskal-Wallis test with post-hoc Dunn’s test. 
***p < 0.001. nsp > 0.05, not significant. 
CTRL: control. IBU: S(+)-ibuprofen. iMG-dissRO: microglia assembled dissociated retinal organoid. POLY(I:C): 
polyinosinic:polycytidylic acid. preMG: microglia precursor. WK: week after the start of the differentiation. 
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3.5. Discussion 

This study highlights the importance of including microglia in hIPSC-neuronal organoids to mimic 
fetal brain development and adequately model pathogen- and ibuprofen-mediated processes.  

Prenatal neuro-immune challenge. 

TORCH infection (Toxoplasmosis, Others, Rubella, Cytomegalovirus, Herpes) in a pregnant 
woman challenges her immune system and can severely threaten the fetus (Auriti et al. 2021; 
Campos et al. 2020). Through vertical transmission, TORCH can directly harm the developing 
fetus, inducing growth restrictions or birth defects such as blindness (Megli and Coyne 2021). For 
example, the Zika virus has been shown to target human fetal microglia (Lum et al. 2017) and to 
activate the innate immune receptor TLR3 (Dang et al. 2016; Plociennikowska et al. 2021). Thus, 
we mimicked the TLR3 signaling pathway using POLY(I:C) (Alexopoulou et al. 2001). In vivo, the 
receptor is expressed predominantly in microglia but also in astrocytes, endothelial cells, and 
pericytes, while only minimally in neurons and neuronal progenitors (Ostrem et al. 2024). We 
confirmed this expression pattern in preMG (Figure 48b) and hIPSC-derived astrocytes (Figure 
65b). Furthermore, we demonstrated that 24 hours of POLY(I:C) exposure resulted in a robust 
iMG-dependent cytokine release (Figure 51a), accompanied by enhanced iMG surveillance 
(Figure 48c), elevated calcium peak amplitude in retinal cells (Figure 63a-b), and increased retinal 
cell proliferation (Figure 54d-g). Our observations in dissRO lacking iMG showed a trend of reduced 
proliferation (Figure 54h). Overall, our observations align with rodent models. The proliferation 
rate remained unaffected if microglia were depleted and the pregnant females were exposed to 
an immune challenge during embryonic and early postnatal stages (Kuse et al. 2018). Contrarily, 
the proliferation increased in the presence of microglia (Baines et al. 2020; Kuse et al. 2018; 
Loayza et al. 2022), comparable to our data (Figure 54d-g). Microglia-dependent effects have also 
been reported on the transcriptional level after prenatal neuro-immune challenges, such as IFNɣ 
stimulation of brain organoids (Buonfiglioli et al. 2025) or three days of POLY(I:C) exposure on 
E15.5 rodent brain (Ostrem et al. 2024), emphasizing the microglia relevance in the inflammatory 
response and therefore, their integration into organoids should be standard procedure to 
capture developmental effects fully.  

The presence of iMG determines ibuprofen’s beneficial effect. 

The observed POLY(I:C)-mediated consequences raise the question of how to treat infectious 
diseases during pregnancy to avoid adverse pregnancy outcomes (Mor and Cardenas 2010). 
NSAIDs act on prostaglandin G/H synthase 1 and 2 (PTGS1/COX1 and PTGS2/ COX2), resulting in 
anti-inflammatory, antipyretic, and analgesic properties (Adams, McCullough, and Nicholson 
1969; Ajmone-Cat et al. 2010). We decided to use ibuprofen because Germany allows this 
medication during the first two trimesters of pregnancy (Schaefer et al. 2012). Ibuprofen crosses 
the placental barrier and accesses the developing fetus (X. Chen et al. 2024; Leverrier-Penna et 
al. 2018). We found that by applying ibuprofen simultaneously with POLY(I:C), we could 
ameliorate the increased cell proliferation (Figure 59a-e), restore the calcium peak amplitude 
(Figure 63a-b), and dampen the POLY(I:C)-mediated microglial response (Figure 58a-c). 
Surprisingly, ibuprofen did not reduce most of the secreted inflammatory mediators in iMG-dissRO 
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(Figure 57), possibly due to the lack of infiltrating immune cells to resolve the inflammatory 
response.  

iMG constitutively express PTGS1 over PTGS2 (Figure 64d) and the beneficial effect of ibuprofen 
depends on iMG. In iMG absence, ibuprofen mainly interferes with PTGS2 in dissRO, which was 
insufficient to rescue the calcium peak amplitude (Figure 63b). On the other hand, calcium 
dynamics also did not recover when we selectively inhibited PTGS1 with SC-560 (Figure 66a-b). 
Since PTGS2 seems to be preferentially expressed in astrocytes (Figure 65c) and iMG interact 
extensively with them, a potential astrocyte-microglia link exists and warrants follow-up studies. 

The effects of microglia in retinal organoids.  

Recently, three studies have been published focusing on iMG integration into retinal organoids 
(Chichagova et al. 2023; Gao et al. 2022; Usui-Ouchi et al. 2023).Both Usui-Ouchi et al. and 
Chichagova et al. performed their integration and investigation on a timeline similar to our study 
and compared 3DRO with and without iMG. Usui-Ouchi et al. confirmed iMG integration into the 
developing OPL (Figure 39) and shows that their presence temporarily increases the pro-
inflammatory factors IL1B, TNF, and IL6 using qRT-PCR. Our cytokine release assay did not detect 
differences in their secretion between dissRO and iMG-dissRO in untreated condition (Figure 51), 
instead only after POLY(I:C) stimulation, IL-6 and TNF were released in iMG-dissRO. We also 
performed qRT-PCR for these three factors and observed a similar mRNA upregulation as the 
authors describe. However, POLY(I:C) stimulation exceeded at least 500-fold (data not shown). 
This indicates that translation from mRNA to an actual release into the supernatant might be 
tightly controlled. Chichagova et al. mimicked bacterial infection with lipopolysaccharide (LPS) 
and confirmed an iMG-dependent secretome using a different assay. We can observe differences 
in the response to LPS and POLY(I:C) as they, e.g., don’t observe an effect on CCL2/MCP-1, one 
of our strongest affected chemokines (Figure 52a). Due to the lack of control conditions, they 
might have missed changes due to iMG integration, as reported before by Usui-Ouchi et al. 
Finally, the study by Gao et al. compares mostly macrophages not integrated into a neuronal 
environment, which we named in our study preMG, after either LPS and POLY(I:C) stimulation. 
We consider this comparison suboptimal due to the known effects of LPS and POLY(I:C) on 
neuronal populations (Baines et al. 2020; Kuse et al. 2018; Loayza et al. 2022), also exemplified 
in the impact on the calcium peak amplitude (Figure 63a-b). The authors suggest a similar 
reduction in BRN3+-cells in their D30-old iMG-3DRO, as we have seen (Figure 45a). Yet, they do 
not show iMG-BRN3+-interaction (Figure 45b) and only describe that they found a few microglia 
in the retina without insights into their positioning, making it challenging to derive further 
conclusions. In summary, the above studies are inconclusive regarding the ideal timing for 
studying microglia-neuron interaction, and our study closes this knowledge gap.  

3.6. Conclusion 
Our study provides a baseline for the neurodevelopmental role of microglia, the cross-talk with 
their neuron-glia environment, and how prenatal neuro-immune activation and anti-
inflammatory drug treatment are affected. In light of replacing in vivo models for drug screening 
and validation for FDA drug approval (Rumsey et al. 2022) with in vitro models (Spirig et al. 2023), 
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integrating all relevant cell types becomes critical to achieving drug efficiency in screenings. The 
limitation of these models to replicate adequately an inflammatory response will severely affect 
the information regarding the safety of medications during pregnancy for both the pregnant 
woman and the fetus and will raise serious public health concerns. Specifically, our model can 
serve as a platform for follow-up investigations on drug tests or the interplay between 
inflammation and microglia activation leading to neurological phenotypes in adulthood. For 
example, a rubella infection during pregnancy is one of the risk factors for developing 
schizophrenia (Sullivan 2005).  

3.7. Limitation 
This study focuses on the acute response to an early-life neuro-immune challenge and how 
microglia contribute to the observed consequences (Figure 48-66). We did not further investigate 
potential long-term effects caused by, e.g., the increased proliferation rate (Figure 54d-g), which 
could result in an imbalance of retinal cell type populations changing the cytoarchitecture, or the 
elevated calcium peak amplitude (Figure 63a) may lead to altered network activity. iMG might 
be able to sense and compensate for POLY(I:C)-mediated consequences over time. Also, a 
prolonged stimulation period might be interesting, as infections usually last longer than 24 hours. 
Furthermore, stimulation before WK20 or later could also result in different responses because 
the timing of an immune challenge contributes to differences in the outcomes (Meyer et al. 2006, 
2008). Finally, future models must expand on the possibility of including the blood-brain barrier 
into the system. Identified factors such as MIP, CCL5, CXCL1, and CCL2 (Figure 51a) are known 
candidates for homing monocytes and T-cells from the periphery (Chen et al. 2003; Fife et al. 
2001; Johnson et al. 2011; Romagnani and Crescioli 2012; Ubogu et al. 2006) and might be 
needed to downregulate the inflammatory signature once recruited.  
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4. Summary discussion 

In my thesis, I verified that IBA1+-cells develop parallel to retinal structures during retinal 
organoid differentiation and optimized a protocol to generate IBA1+-microglia precursors 
(chapter 1). By integrating these cells into retinal organoids, I established an hIPSC-derived model 
to examine microglia-neuron interaction in a retinal environment. Beside investigating human 
microglia colonization patterns into the developing retina, this model also allowed me to study 
microglia-mediated effects on retinal development, in response to viral stimulation and following 
an anti-inflammatory treatment (chapter 2).  

IBA1+-cells innately develop during retinal organoid differentiation and predominantly 
populate mesenchymal structures 

In chapter 1, we confirmed that IBA1+-cells innately develop during unguided retinal organoid 
differentiation, similar as previously reported in some unguided brain organoid protocols Table 
9 (Gabriel et al. 2021; Ormel et al. 2018; Shiraki et al. 2022). We further characterized their 
preferential location and observed that IBA1+-cells barely colonize retinal cups (Figure 7, Figure 
36). Instead, they populate mesenchymal regions (Figure 12, Figure 27), where they acquire the 
expression of CD163 (Figure 30), a marker characteristic for brain-border associated 
macrophages (BAMs) (Utz et al. 2020). This study was published in iScience in 2022.  

Characterization of hIPSC-derived microglia-precursors 

In our iScience publication, we also established a protocol to generate IBA1+-microglia precursors 
using a BMP4-guided differentiation protocol (Figure 13, Figure 16). First, we characterized their 
microglia-like identity (Figure 16). Next, we validated their functionality including their ability to 
phagocytose fluorescent beads as a proxy for their phagocytic capacity (Figure 17), their mRNA 
transcript upregulation to inflammatory stimuli using rt-qPCR to assess their immune-sensing 
properties (Figure 18), and their Ca2+-response to extracellular ATP to mimic their reaction to 
damage signals released by injured neurons (Figure 19). We were later invited to write a detailed 
protocol outlining the methodology to characterize hIPSC-derived microglia-like cells (iMG), 
which was published in Star-protocol in 2022.  

Microglia influence neuronal development in retinal organoids 

In chapter 2, we incorporated these IBA1+-microglia precursor cells into 3D-retinal organoids 
(Figure 38), since microglia properties, including morphology, function and transcriptional profile 
depend on their microenvironment (Bohlen et al. 2017; Butovsky et al. 2014; Gosselin et al. 
2017). In recent years, several approaches have been published to generate microglia-assembled 
brain organoids as summarized in Table 9. HIPSC-derived EMPs or microglia precursors have been 
added to various brain organoid models such as cortical (Abud et al. 2017; Bejoy et al. 2019; 
Fagerlund et al. 2021; Park et al. 2023; Schafer et al. 2023; Song et al. 2019; Xu et al. 2021), 
midbrain (Sabate‐Soler et al. 2022) or retinal organoids (Chichagova et al. 2023; Gao et al. 2022; 
Usui-Ouchi et al. 2023). Alternatively, iMG differentiation has been induced within brain 
organoids by overexpressing the microglial transcription factor PU1 in a subset of hIPSCs (Cakir 



116 
 

et al. 2022). Instead of integrating hIPSC-derived iMGs, early studies incorporated immortalized 
human microglia (Abreu et al. 2018; Ao et al. 2021) or human primary fetal microglia (Popova et 
al. 2021) into brain organoids  

In our model, the integrated iMG mimicked retinal colonization (Figure 39) which allowed us to 
identify week 20 as the optimal timepoint to investigate how microglia influence retinal 
development. To validate our model, we examined whether iMGs perform development tasks 
previously observed in rodent models (Li et al. 2019; Nag and Wadhwa 2001; Santos et al. 2008). 
Indeed, iMG phagocytosed BRN3+-ganglion cells (Figure 45) and engulfed apoptotic fragments 
(Figure 47).  

Across various brain organoid models, studies have demonstrated that integrated iMG 
recapitulate developmental tasks (Table 9). First, iMGs phagocytose newborn or apoptotic cells. 
(Gao et al. 2022; Popova et al. 2021; Xu et al. 2021) Second, integrated iMG have also been 
implicated in synaptic remodeling (Cakir et al. 2022; Fagerlund et al. 2021; Popova et al. 2021; 
Sabate‐Soler et al. 2022; Sun et al. 2022; Xu et al. 2021) and in promoting neuronal network 
activity and maturation within brain organoids (Chen et al. 2025; Fagerlund et al. 2021; Park et 
al. 2023; Sabate‐Soler et al. 2022; Sun et al. 2022). However, iMG-dependent neuronal 
maturation has been shown to be timepoint- (Fagerlund et al. 2021) and brain region-dependent 
(Chichagova et al. 2023). 

Modeling prenatal immune activation and assessing microglia-dependent effects 

To characterize the immune-sensing properties of integrated iMG, microglia-assembled brain 
organoids have been exposed to viral and bacterial stimulation, Aβ42 oligomers or injury (Table 
9) (Abreu et al. 2018; Abud et al. 2017; Ao et al. 2021; Buonfiglioli et al. 2025; Chichagova et al. 
2023; Schafer et al. 2023; Song et al. 2019; Sun et al. 2022; Xu et al. 2021). While most studies 
perform these assays to validate the functionality of integrated iMG, we aimed to understand 
the acute effects of neuroinflammation on retinal development following 24h POLY(I:C) 
stimulation (Figure 51, Figure 54, Figure 63).  

Human cerebral organoids lacking microglia have been used to model viral infections such as Zika 
virus (ZIKV), herpes simplex virus type 1 (HSV1), or SARS-CoV-2 to investigate viral tropism and 
identify anti-viral compounds (Jacob et al. 2020; McMahon et al. 2021; Song et al. 2021; Zhou et 
al. 2017). Some studies have also assessed neurodevelopmental consequences and found that 
ZIKV and HSV1 infections caused a reduction in neuronal progenitor numbers (Dang et al. 2016; 
Garcez et al. 2016; Krenn et al. 2021; Su et al. 2021; Xu et al. 2019) resulting in smaller organoids 
(Krenn et al. 2021).  

Krenn et al. demonstrated that ZIKV and HSV1 do not induce type I interferon response in brain 
organoids lacking microglia (Krenn et al. 2021). Indeed, our results emphasize the necessity to 
incorporate microglia to elict an inflammatory response in brain organoids (Figure 51) - an 
observation that has recently been confirmed by other studies (Buonfiglioli et al. 2025; 
Chichagova et al. 2023). While our study focused on POLY(I:C)-mediated neuronal consequences, 
Buonfiglioli et al. assessed microglia-dependent effects following IFN-γ stimulation (Buonfiglioli 
et al. 2025). Between organoids with and without microglia, they observed differences on the 
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transcriptional and protein level including the dysregulation of genes associated to autism. This 
is in line with our observations that microglia contribute to viral-mediated consequences (Figure 
51, Figure 54, Figure 63-64). Additionally, studies confirmed that ZIKV or SARS-CoV-2 influence 
microglia-neuron interaction in microglia-assembled brain organoids as they observed an 
increased phagocytosis of synapses by iMG (Table 9) (Samudyata et al. 2022; Xu et al. 2021). In 
general, it is essential to assess infections and neurodegenerative diseases in the presence of 
microglia, as inflammation is a hallmark of many neurological conditions (Adamu et al. 2024; 
Zhang et al. 2023). Thus, the impact of neuro-inflammation itself should be considered in brain 
organoid studies.  

Anti-inflammatory treatment modulates POLY(I:C)-mediated developmental abnormalities 

We still lack sufficient knowledge about the safe usage of drugs, including anti-inflammatory 
treatments, during pregnancy. The goal of medication during pregnancy is to minimize any harm 
to both the mother and the fetus while effectively managing health conditions.  

In our study, we decided to use ibuprofen, since it is considered acceptable for use during the 
first two trimesters of pregnancy in Germany (Schaefer et al. 2012). Because ibuprofen crosses 
the placental barrier it can reach the fetus (X. Chen et al. 2024; Leverrier-Penna et al. 2018). 
Therefore, it is crucial to study its effects on embryonic development. We observed that 
ibuprofen treatment ameliorated and even rescued POLY(I:C)-mediated effects on iMG 
surveillance (Figure 58a) as well as neuronal consequences including the proliferation rate 
(Figure 69a-e) and calcium signaling (Figure 63b). Again, we determined microglia-dependent 
effects by comparing cultures with and without iMG (Figure 63a-d, Figure 64f-g). Our study is the 
first to investigate drug-mediated effects in microglia-assembled retinal organoids (Table 9) and 
was published in Journal of Neuroinflammation in 2025.  
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Table 9 – Example studies using microglia assembled brain organoids. 
Aβ: beta-amyloid. ASD: autism spectrum disorder. Ca2+: calcium. D: days of differentiation. EMPs: erythro-myeloid 
progenitors. hIPSC: human induced pluripotent stem cells. IFNα: interferon alpha. IFNγ: interferon gamma. IL6: 
interleukin 6. iMG: microglia-like cells. LPS: lipopolysaccharide. NEUN: neuronal nuclei antigen. NPC: neuronal 
progenitor cell. OTX2: orthodenticle homolog 2. POLY(I:C): polyinosinic:polycytidylic acid. WK: week after the start 
of differentiation. Green background: studies integrated into this thesis. 

Study Microglia 
Organoid 

(timepoint of 
analysis) 

Microglia 
properties 

The effect of iMG on 
neuronal properties/ 

modelling 

Innately developing microglia 

Ormel et al. 
2018 

Innate 
Cerebral 
organoid 

*Transcriptional 
profile 

*Immune-sensing 
properties upon 
LPS stimulation 

- 

Gabriel et al. 
2021 

Innate 
Optic vesicle 
containing 
organoid 

- - 

Shiraki et al. 
2022 

Innate Ocular organoid iMG identity - 

Bartalska et al. 
2022 

Innate 
Retinal organoid 
differentiation 

iMG identity - 

Samudyata  
et al. 2022 

Innate 
(based on 
Ormel et al. 

2018) 

Cerebral 
Organoid 

Analysis: D56 
- 

SARS-CoV-2 infection: 
*Decreased post-synaptic 

density 
*Transcriptional profile: 

glia cells adopt 
neurodegenerative 

phenotype 

Integrating microglia precursor cells 

Abud et al. 
2017 

hIPSC derived 
microglia 
precursor 

Brain organoid 
Analysis: WK12 

*iMG morphology 
Response to injury 

(needle) 
- 

Song et al. 
2019 

hIPSC derived 
microglia 
precursor 

Dorsal/ ventral 
cortical 

organoids 
Analysis: D52 

*Intracellular Ca2+ 
transients 

*Transcriptional 
profile 2D vs 3D 

*Immune-sensing 
properties to Aβ42 

oligomers 

- 

Bejoy et al. 
2019 

hIPSC derived 
microglia 
precursor 

Dorsal cortical 
organoids 

Analysis: D30 
- 

Transcriptional profile of 
organoid: metabolic shift 

to aerobic glycolysis 

Sabate-Soler  
et al. 2022 

hIPSC derived 
microglia 
precursor 

Midbrain organoid 
Analysis: D35-85 

*Cytokine release 
 

*Transcriptional profile 
*Synaptic remodeling  
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*Increase neuronal 
excitability 

Gao et al.  
2022 

hIPSC derived 
microglia 
precursor 

Retinal organoid 
Analysis: D25-77 

Transcriptional 
profile 

*Reduced ganglion cell 
number 

*Increased number of 
OTX2+-cells 

Chichagova  
et al. 2023 

hIPSC derived 
microglia 
precursor 

Retinal organoid 
Analysis: WK15-22 

*Localization within 
organoid 

*Immune-sensing 
properties to LPS 

*Transcriptional profile 
*No difference in neuronal 

activity  

Wenzel et al. 
2024 

Innate versus 
microglia 
precursor  

Brain organoid 
Analysis: D90 

- 
*Promote Aβ 
oligomerization 

Chen et al. 
2025 

hIPSC derived 
microglia 
precursor 

Sliced and 
attached brain 

organoids 
Analysis: Long 
term co-culture 
(up to 1 year) 

- 

*Promote synapse 
formation 

*Enhanced neuronal 
activity (Ca2+) 

*Reduced p-Tau 
accumulation in neurons 
(sign of degeneration), 

apoptosis 

Schmied et al. 
2025 

hIPSC derived 
microglia 
precursor 

Retinal organoids 
Analysis: WK20 

*Localization within 
organoid 

*Phagocytosis of 
ganglion cells 

*Immune-sensing 
properties to 

POLY(I:C) 

POLY(I:C)-stimulation: 
*iMG-dependent increase 

in retinal proliferation 
rate 

Ibuprofen treatment: 
*iMG-dependent rescue of 

calcium activity 

Integrating EMPs/ primitive macrophages 

Xu et al.  
2021 

hIPSC derived 
primitive 

macrophages 

Dorsal and ventral 
forebrain 
organoids  

Analysis: D40-55 

*Phagocytosis of 
newborn and 

apoptotic cells 
*Synaptic pruning of 

postsynaptic 
material 

Zika virus infection: 
*Immune-sensing 

properties  
*Increase of synapse 

elimination upon  

Fagerlund et 
al. 2021 

hIPSC derived 
EMPs 

Cerebral organoid 
Analysis: D66-213 

Synaptic pruning of 
postsynaptic 

material 

iMG promote neuronal 
maturation  

Park et al.  
2023 

hIPSC derived 
primitive 

macrophages 

Cerebral organoid 
Analysis: D42-45 

Transcriptional 
profile 

*iMG promote neuronal 
maturation  

*Limited NPC 
proliferation *Promoted 

axonogenesis 
*Lipid cross-talk 

Schafer et al. 
2023 

hIPSC derived 
EMPs 

Brain organoid  
Analysis: WK15 

*Transcriptional 
profile 

Healthy versus  
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Table continued on next page 

  

*Response to laser 
injury, LPS injection 

ASD brain organoid: iMG 
acquire disease specific 

signature 

Usui-Ouchi  
et al. 2023 

hIPSC derived 
macrophage 
progenitors 

Retinal organoid 
Analysis: WK28-31 

*Transcriptional 
profile 

*Synaptic layer 
colonization 

*Enhanced inflammatory 
signature 

Buonfiglioli 
et al. 2025 

hIPSC-derived 
hematopoietic 

stem cells 

Cerebral 
organoids 

Analysis: D32-35 

*Transcriptional 
profile 

*Immune-sensing 
properties to LPS, 
IFNγ, IFNα and IL6 

*Decrease in cell density 
and OTX2+ and NEUN+ 

cells 
*Transcriptional profile 
and structural changes 
upon IFNγ-stimulation 

Alternative approach to induce microglia differentiation within organoids 

Cakir et al  
2022 

Forward 
programming 
of iMG by PU1 
overexpressio

n 

Cortical organoid 
Analysis: D30-75 

*Transcriptional 
profile 

*Synaptic pruning of 
postsynaptic 

material 

Alzheimer disease 
modeling using Aβ42 

oligomers 

Sun et al.  
2022 

Induced by 
fusion 

Fusion of vessel & 
brain organoid 

Analysis: D25-40 

*Immune-sensing 
properties to LPS 

*Synaptic pruning 

Enhanced neuronal 
maturation  
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5. Concluding remarks 

Beside mimicking important steps of early fetal brain development in a human aspect (Bagley et 
al. 2017; Camp et al. 2015; Renner et al. 2017; Sloan et al. 2018), brain organoids can be used for 
disease modelling and drug testing (H. Kim et al. 2019; Lin et al. 2018; Rumsey et al. 2022; Smits 
et al. 2019). Overall, our results emphasize that it is critical to integrate microglia as they fine-
tune neuronal development, and influence both viral- as well as drug-mediated consequences. 
In their absence, microglia-specific effect will be overlooked and results might be misinterpreted.  

  

Non hIPSC-derived microglia 

Abreu et al. 
2018 

Immortalized 
microglia 

(SV40) 

Brain spheroids 
Analysis: WK8 

Immune-sensing 
properties to LPS, 
Dengue- and Zika 
virus stimulation 

- 

Popova et al. 
2021 

Primary 
prenatal 
human 

microglia 
(from mid 
gestation 

cortex) 

Cortical organoid 
Analysis: WK7-10 

*Phagocytosis of 
newborn cells 

*Elimination of 
postsynaptic 

material 
*Transcriptional 

profile 

*Reduced type I 
interferon response 

*Reduced cell stress in 
radial glia 

Ao et al. 
2021 

Immortalized 
microglia 
(HMC3) 

Tubular forebrain 
organoids, 

generated in a 
hollow mesh 

(chip) 

Immune-sensing 
properties to LPS 

and opioids 
- 
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