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Abstract

Climate change is causing wildfires to become more frequent and intense. While predicting burned
areas using bioclimatic and anthropogenic factors is an active research area, few studies have
examined what drives the economic damages of wildfires. Our study aims to fill this gap by
analyzing key factors influencing global economic wildfire damages and projecting future damages
under three shared socioeconomic pathways (SSPs). We apply regression analyses to identify
significant predictors of economic wildfire damages at country levels and use the fitted model to
project future damages under SSP126, SSP245, and SSP370. Results show that the human
vulnerability index (HVI), reflecting socioeconomic conditions, is the strongest predictor of
historical wildfire damages, followed by water vapor pressure deficit during the fire season and
population density around forested areas. We found high population density to be associated with
lower damages. These findings contrast with studies of burned areas, where climate factors are
more dominant. Our model projects that by 2070, average global economic wildfire damages will
be three times higher under SSP370 than SSP126. Our model also shows that following SSP126 not
only reduces wildfire damages but also lessens the inequalities in damage distribution across
countries. This pathway’s dual focus on equitable socioeconomic progress and climate action
potentially enhances a country’s resilience that helps mitigate wildfire damages. Our analyses also
indicate that strong socioeconomic development can offset wildfire damages associated with
climate hazards, although this is less certain under SSP370. SSP126’s integrated approach improves
both socioeconomic conditions and limits global warming, providing substantial benefits to less
developed countries while still reducing damages in developed nations, despite their already low
HVI scores. Our work complements existing research on burned areas and underscores the
importance of sustainable development and international collaboration in reducing the economic
damages of wildfires.

1. Introduction

Wildfires are an integral component of the global ecosystem (Bowman et al 2009, Bond and Van Wilgen
2012). They occur both naturally and as a consequence of human activities, impacting vegetation,
biodiversity, infrastructures, human assets, the terrestrial carbon cycle, and atmospheric composition
(Lasslop er al 2020, Libonati ef al 2022). Climate change is causing fire weather—characterized by hot, dry,
and windy conditions—to become more frequent, intense, persistent, and widespread (IPCC 2021), directly
contributing to the increase of wildfires (Abatzoglou and Williams 2016, Sanderson and Fisher 2020, Turco
etal 2023).

© 2025 The Author(s). Published by IOP Publishing Ltd
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Despite challenges in disentangling the effects of the many bioclimatic and anthropogenic factors
affecting wildfires (Sanderson and Fisher 2020), state-of-the-art fire models are capable of capturing the
trends of fire emission and burned area when compared to satellite observations (Li et al 2019, Hantson et al
2020). However, projecting future economic damages of wildfires has received scant attention, and is the
focus of the present study. Globally, insured damages due to wildfires are estimated to have increased by up
to 12.4% between 2016 and 2020 (Swiss Re Institute 2021). The Australian wildfires of 2019/2020 incurred
around US$75 billion in economic damages, equivalent to 6% of the country’s gross domestic product
(GDP) (Read and Denniss 2020). The 2020 Californian wildfires resulted in an estimated damage of
US$140 billion, representing 1.5% of the state’s GDP (Wang et al 2021). The average annual economic
wildfire damage of the United States has been estimated to range between US$63-285 billion (Thomas et al
2017). Initial assessments indicate that the economic damages from the Los Angeles 2025 wildfires surpass
US$250 billion (Qiu et al 2025) and a 0.48% reduction in county-level GDP (Li and Yu 2025). Wildfires can
have both positive (e.g. increased demand for recovery and restoration services) and negative economic
impact, though the positive impacts are generally much smaller (Diaz 2012). They also incur both direct (e.g.
property damages, business interruption) and indirect (e.g. supply-chain disruption, healthcare costs)
damages (Stephenson et al 2013, Kim and Kwon 2023).

Four key processes govern wildfire occurrence: fuel production, fuel availability, fire-weather, and fuel
ignition (Archibald et al 2009). These processes are influenced by climatic, anthropogenic, and
socioeconomic factors. Climate-related factors have been found to be the most important drivers of burned
area (Jain et al 2022, Jones et al 2022, Burton et al 2024). The impact of climate on wildfires is mediated by
fuels: in arid ecosystems where climate conditions are conducive to fire occurrence, fire is limited by fuel
availability; while in wetter regions where fuel is more abundant, fire is constrained by humid conditions
(Krawchuk and Moritz 2011, Pausas and Ribeiro 2013, Bedia et al 2015). Water vapor pressure deficit (VPD)
has been found to be a robust predictor of burned areas (Williams et al 2019, de Dios et al 2021, Balch et al
2022), particularly when the fire season (typically summer months) VPD is used (Williams et al 2014, Bedia
et al 2015, Abatzoglou et al 2018, Mueller et al 2020, Brey et al 2021). It is an effective proxy for fuel
flammability (Williams et al 2014) and has been shown to be a stronger predictor of wildfires than
temperature, relative humidity or precipitation alone (Williams et al 2019, Graff et al 2020, Brey et al 2021,
Turco et al 2023). Precipitation is also often used to predict burned areas (Archibald et al 2009, Bistinas et al
2014, Abatzoglou et al 2018), although it is generally not as effective as VPD (Graff et al 2020, Mueller et al
2020, Jain et al 2022). Its unimodal relationship with burned area (Van der Werf et al 2008, Harrison et al
2010, Prentice et al 2011) means its applicability varies depending on whether the region is fuel-limited (arid,
where antecedent rainfall is used) (Westerling et al 2002, Crimmins and Comrie 2004, Littell et al 2009) or
moisture-limited (wetter, where concurrent precipitation is used) (Abatzoglou et al 2018, Holden et al 2018,
Burton ef al 2024). Compound indices are also employed to estimate wildfire occurrence. For instance, the
Canadian fire weather index (FWI) (Quilcaille et al 2023a)—which accounts for the effects of temperature,
humidity, precipitation, wind speed, and moisture contents of fuels—has been shown to significantly
correlate with burned areas (Bedia et al 2015, Grillakis et al 2022).

Humans influence wildfire in myriad ways. They can cause wildfires, either intentionally or by accident
(Russell-Smith et al 2007, Aldersley et al 2011, Ribeiro et al 2022), but human activities can also lower
wildfire risk. Increased urbanization and landscape fragmentation, for example, can reduce vegetation
flammability (Jolly et al 2015, Andela et al 2017). Controlled burning programs may also reduce burned
areas (Bradstock et al 2012, Hiers et al 2020). In dynamic global vegetation models, fire ignitions generally
increase with population density up to a certain threshold, beyond which they decline, while fire suppression
is generally modeled to increase as population density rises (Hantson et al 2016, Teckentrup et al 2019, Ford
et al 2021). Indeed, studies have revealed a unimodal relationship between population density and burned
area (Archibald et al 2009, Aldersley et al 2011, Bistinas et al 2013), with recent analyses highlighting a
predominant fire-suppression role of humans (Bistinas et al 2014, Knorr et al 2014, Parisien et al 2016,
Andela et al 2017, Forkel et al 2017). However, there are significant regional variations in the correlation
between human presence and burned areas, which often leads to weak global averages (Jones et al 2022).
Socioeconomic factors have also been applied for fire projections, such as GDP (Aldersley et al 2011, Bistinas
et al 2014), road density (Archibald et al 2009, Arndt et al 2013), and indices such as the night light
development index (Forkel et al 2017), youth index (as a proxy for urbanization, e.g. Koutsias et al 2010),
and human footprint index (Parisien et al 2016, Abatzoglou et al 2018).

Projecting future wildfires is challenging due to uncertainties in ecosystem changes and the dynamic
impact of human activities on fires. Many studies have been conducted to project future burned areas using
outputs of the Coupled Model Intercomparison Project (CMIP) under various warming scenarios (Williams
et al 2014, 2019, Bedia et al 2015, Brey et al 2021, Zhang et al 2024). However, research focusing on the
projection of the future economic damages of wildfires is limited and, when conducted, is often confined to
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regional scales (e.g. Stougiannidou and Zafeiriou 2021). This study aims to fill this gap. Specifically, the goals
are to (1) identify key drivers of global economic damages of wildfires, and (2) project and compare future
global wildfire damages under different climate and socioeconomic scenarios. Hereafter, ‘damages’ refers
specifically to the economic damages of wildfires.

2. Methods

Our methodology uses multiple regression analysis, a common approach in wildfire modeling (Williams et al
2019, Graff et al 2020, Brey et al 2021, Su et al 2021, Meier et al 2023). The response variable is wildfire
damages, driven by selected predictor variables to maximize the explained variance in these damages. A
statistically significant predictor indicates that the predictor is associated with wildfire damages beyond
random chance and after considering the effects of the other predictors. The method relies on a simple linear
regression analysis and does not explore nonlinear relationships between the variables to facilitate easier and
more intuitive interpretation of the model results, but also to avoid overfitting given the limited data size.
The second goal of our study is to use the fitted regression model to project future wildfire damages
under the ‘shared socioeconomic pathways—representative concentration pathway’ framework (Van Vuuren
et al 2014). Specifically, we focus on shared socioeconomic pathways (SSP) 1-2.6, SSP2-4.5, and SSP3-7.0,
henceforth referred to as SSP126, SSP245, and SSP370 for simplicity. The values 2.6, 4.5, and 3.7 represent
the projected radiative forcings in W m~2 by year 2100 under the different RCPs, corresponding to
comparatively low, medium, and high warming pathways from the CMIP6 ScenarioMIP project (O’Neill
et al 2016), with global mean temperature increases of around 1.5 °C-2.0 °C, 2.5 °C-3.0 °C, and
3.5 °C—4.0 °C, respectively, relative to the pre-industrial baseline (1850-1900). SSP126 emphasizes
sustainable development with high levels of international cooperation and strong environmental policies;
SSP245 represents a continuation of current trends with moderate levels of technological development and
policy actions; SSP370 is characterized by resurgent nationalism and stalled socioeconomic development.
Note that while our main analyses use a linear model, we have also conducted preliminary analyses
incorporating quadratic terms of the predictors. The cross-validation R? scores of these nonlinear models
confirm overfitting (table S1), thus limiting their applicability to unseen data. Further, SSP projections using
nonlinear predictors produce damage estimates similar to those of our linear model (figure S1). However,
due to concerns about the poor generalizability of these nonlinear models, we do not recommend using the
beta coefficients reported in table S1 for projections of future wildfire damages.

2.1. Wildfire damage data

The damage values of wildfires are obtained from the recorded wildfire data of the Emergency Events
Database (EM-DAT) from the Center for Research on the Epidemiology of Disasters (Delforge et al 2023).
EM-DAT compiles its data from multiple sources, including the United Nations, governmental and
non-governmental organizations, insurance companies, research institutes, and media coverage. The
database categorizes wildfires as forest fire, land fire (brush, bush, pasture, grassland, or other treeless natural
environment), and general wildfire (EM-DAT n.d.a).

From EM-DAT, we use the inflation-adjusted country-level total damage data from 1990-2022, which
includes direct and indirect damages (EM-DAT n.d.b). To address the well-known problem of missing data
in EM-DAT (Jones et al 2023), which can bias statistical analyses and affect model reliability, we apply a
regression-based imputation technique, where missing data is replaced with values predicted from a
regression analysis trained on available values of the missing variable regressed on some available predictors
(Jones et al 2023). Exploratory tests revealed that wildfire damages are correlated with the number of people
affected (a separate ‘affected’ column in EM-DAT') and GDP. Missing damage data is imputed using a fitted
regression model to predict the missing damage values based on available ‘affected’ and GDP values. This
method leverages the relationship between ‘damage’, ‘affected’, and GDP to fill in the missing values in a way
that preserves data integrity. The reliability and validity of imputed data is verified using robustness tests, by
comparing regression results using subsets of the imputed data and assessing models with and without
imputation.

For model fitting, we follow established methods for cross-country disaster loss comparisons (Coronese
et al 2019, Bodenstein and Scaramucci 2025) and use GDP-normalized wildfire damages as the outcome
variable, with wildfire damage values divided by each country’s GDP (World Bank n.d.) to account for
varying economic sizes across countries. By using GDP-normalized damages, our approach assesses relative
rather than absolute impacts, providing a more equitable measure of the economic burden of wildfires across
countries. This approach takes into account the possibility that lower-income countries—despite
experiencing smaller absolute damages (due to lower values of exposed assets)—may endure
disproportionately larger economic disruptions as a share of their GDP. In essence, our regression analyses
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aim to address the research question: if all countries had the same GDP, what factors would account for
higher relative wildfire damages in some countries compared to others?

To address potential confounding between GDP and vulnerability, we conduct a supplementary analysis
using absolute (un-normalized) damages with GDP included as an independent predictor. Multicollinearity
diagnostics confirm no redundancy between GDP and our independent variables (variance inflation factors,
VIFs < 2; table S2). We emphasize that the main focus of this manuscript remains on the analyses of relative
wildfire economic impact using normalized damages, with wildfire damages expressed as a percentage of
GDP (%GDP) hereafter, unless otherwise specified.

The wildfire damages are averaged across available years for each country, resulting in a single damage
value per country. We use cross-sectional instead of panel data due to inconsistent data availability in
EM-DAT that led to highly imbalanced country-year combinations across different countries, particularly
among poorer countries. While panel regression would allow us to leverage all available country-year
observations and control for unobserved heterogeneity (e.g. time-invariant country-specific characteristics
and temporal trends) via fixed effects, this approach is undermined by substantial missing wildfire damage
data in lower-income countries. Such missingness likely violates the missing-at-random assumption required
for valid panel regression. Hence, we opt for cross-sectional analysis to examine between-country variation
in wildfire damages but acknowledge that this approach reduces the number of observations and limits our
ability to capture the full relationship between damages and explanatory variables. A comparison between
panel and cross-sectional regression results is provided in table S3 of the supplementary information. The
panel model shows low explanatory power (R* = 0.29) and large standard errors relative to coefficient
magnitudes, indicating insufficient within-country variation in wildfire damage data and underscoring the
limitations of a panel-based approach for our study. To assess the validity of averaging damage data across
years in our cross-sectional analysis, we conduct autocorrelation and Durbin—Watson tests to confirm the
independence of damages across years for each country. The final dataset consists of 62 data points, with
damage values closely aligning with wildfire damages reported in Liithi et al (2021).

2.2. Predictor variables
We select the predictor variables based on the following criteria: (1) minimal correlation among the
predictors to avoid multicollinearity, (2) representation of the Intergovernmental Panel on Climate Change
(IPCC) impact assessment framework components (hazard, exposure, and vulnerability) (Reisinger et al
2020), (3) availability of projection data for the SSPs considered, and (4) ability to explain high variance in
wildfire damages, as evaluated by the R? scores of initial regression models (table S4 in the supplementary
information). The final predictors chosen are the mean fire season VPD (VPDy), population density around
forested areas (PDgyrest), and the human vulnerability index (HVI), corresponding to hazard, exposure, and
vulnerability, respectively.

VPDy; is calculated from the gridded daily maximum temperature (fasmax) and near-surface relative
humidity (hurs) outputs of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP3a) (Frieler
et al 2024). We use the obsclim dataset, which has a 0.5° spatial resolution. The dataset is derived from
bias-adjusted ERAS5 reanalysis data and uses the GSWP3-W5E5 climate forcing data (Lange et al 2023). For
tropical and subtropical countries, VPDy is averaged annually, while for temperate countries, it is averaged
over the summer months (June—August for northern hemisphere; December—February for southern
hemisphere). While this definition of the fire season is a simplification, it enables a globally consistent and
interpretable metric suitable for country-level analysis, and is supported by studies showing strong
correlations between summer fire weather and burned areas (Williams et al 2014, Brey et al 2018, 2021,
Mueller et al 2020). Alternative metrics using annual mean, maximum, or winter months VPD yielded lower
R? scores and weaker significance for VPD (table S4). While the EM-DAT database does not consistently
record the dates of wildfire events across all entries, a manual inspection of available wildfire dates revealed
that most events in temperate regions occurred during the hemispheric summer months. A potential
solution could be the use of 90 days running average to assess the fire season. Nevertheless, we caution that
such simple definitions may not capture the complex fire seasonality observed in many regions, where fire
activity can be bimodal or follow irregular patterns (Boschetti and Roy 2008, Le Page et al 2010, Benali et al
2017). Our fixed fire season approach may therefore introduce bias in the calculation of VPDy for regions
with such complex fire regimes. The gridded VPDg, values are weighted based on the national land area (LA)
fraction of each grid cell and then aggregated to the country level following equation (1):

LA,

VPDfS,C,t = ZVPDﬁ’ltﬁ (1)
iec

iec
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where the subscript ¢ denotes the national scale, i the grid point, and ¢ the year. We exclude precipitation data
as including either antecedent (prior year) or concurrent precipitation does not improve model performance
and sometimes worsens it.

For the anthropogenic factor, we introduce a new predictor (PDgyest), which estimates population
density around forested areas. It is calculated by dividing gridded population data by gridded forest area (FA)
(both with 0.5° spatial resolutions). A higher population value and/or lower forest cover in a given grid point
indicate greater human presence around forested areas. Only grid points with at least 5% forested areas are
selected to prevent unreasonably large PDyes values (results are not sensitive to the chosen threshold). The
population data used for PDyqyeq is obtained from Werning (2024), which scales the gridded population
projections from the original SSP (Jones and O’Neill 2016, KC and Lutz 2017) to align with the most recent
SSP population projections (KC et al 2024). This population dataset is consistent with population data
reported in previous studies (e.g. Liu and Chen 2022). For model fitting, we use the baseline population data
from 2020, which has been calibrated to reflect recent observed population changes (KC et al 2024). We select
data from SSP245, as it is closest to observed data (KC et al 2024). The gridded FA data is obtained from the
Global Biosphere Management Model (GLOBIOM) (Havlik et al 2014, IBF-ITASA 2023, Frank et al 2024).
The GLOBIOM database includes eleven land cover types (IBF-IIASA 2023), from which we select six that
most closely align with the land cover categories used in the EM-DAT wildfire damage data (as exact matches
between the two databases are not available): primary forest, protected primary forest, plantation forest,
managed forest, natural land, and grass land. We select the FA data from 2020 and SSP245 to ensure
consistency with the population data. Results are not sensitive to the choice of baseline year or SSP, with only
slight differences in coefficient values while maintaining consistent signs and statistical significance. To
obtain country-level PDyyq data, the gridded PDyyes values are weighted by the FA fraction of each grid cell
and then aggregated to the country level:

FA;

ZiecFAi ' (2)

PDforest,c,t: E PDforest,i,t

iec

We also evaluate an alternative predictor for the anthropogenic factor by aggregating the population only
within forested grid points (applying the same 5% forest cover threshold) to approximate population around
wildland urban interface (WUI). We note that this approximation is a pragmatic solution necessitated by the
coarse spatial resolution (~50 km) of our population and forest cover datasets, and does not fully align with
conventional WUI framework, which typically aggregates populations within a buffer zone (~1-2 km)
around forested areas (Schug et al 2023, Gonzalez and Ghermandi 2024, Guo et al 2024). As a result, it may
underestimate WUI populations by excluding non-forested grid points that fall within the WUT interface.
The model using this predictor (popwui) yields almost identical results to the model using PDyoyes, but
slightly lower R? score and beta coefficients with reduced statistical significance. Therefore, we select the
PDforest as the predictor for all further analyses and SSP projections. Comparisons of results using PDyoeqt
and popyy; are presented in sections 3.1 and 3.3.2. We decided to use the ISIMIP and GLOBIOM model data
for the computation of VPDg, and PDyyes to ensure consistency with the computation of SSP projection data
(where only model data are available), described in section 2.4. The GLOBIOM forest cover model data is
calibrated using the Food and Agriculture Organization Global Forest Resources Assessments and uses SSP
scenarios and their associated drivers (e.g. policy assumptions) to project future land use and forest cover
(IBE-TIASA 2023).

For HVI, we use the complement of the Human Development Index (HDI) of the United Nations
Development Programme (UNDP 2024) by calculating HVI as (1—HDI). This adjustment maintains the
index on a scale from 0 to 1 while ensuring that larger HVI values are associated with greater levels of
vulnerability. We also test other indices related to governance, corruption control, rule of law, gender and
income inequality but do not include them because they are either highly correlated with HVI, or result in
poorer model performance (table $4). To obtain cross-sectional country-level data (i.e. a single value for each
predictor per country), we average the country-level VPDg, PDgyrest and HVI values over the years for which
damage data is available. Figure 1 shows a map of the response and predictor variables used for model fitting.
Wildfire damages are expressed as percentages of GDP (%GDP) throughout this manuscript.

The predictors may also interact in influencing wildfire damages. For example, countries with higher
HVI may suffer greater wildfire damages under the same increase in VPDg; countries with lower HVI
(reflecting more advanced socioeconomic development) and higher population density near forested areas
may be better equipped to mitigate wildfire damages due to more robust infrastructure and effective
emergency response. To explore these potential interactions, we conduct supplementary analyses
incorporating interaction terms between HVI and VPDg, (HVI x VPDy,), and between HVI and PDgyest
(HVI X PDgorest)- Results show that neither interaction term is statistically significant, and their inclusion
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Figure 1. Maps of historical wildfire damage (EM-DAT) and predictors used to fit the regression model in this study.

does not improve overall model fit (table S5). Additionally, SSP projections with and without these
interaction terms yield very similar results (figure S2). Consequently, we retain the main-effects-only model
for ease of result interpretability. While our results suggest that the three predictors act additively rather than
interactively in influencing wildfire damages, we acknowledge that finer-resolution data (e.g. subnational
vulnerability metrics) might reveal context-specific interactions that our analyses do not capture.

2.3. Multiple linear regression

The response and predictor variables are converted from skewed to Gaussian distribution using a natural log
transformation, which helps minimize the impact of outliers. To facilitate comparison of variables with
different units and ranges, we standardize them by subtracting their means and then dividing by their
standard deviations (SDs).

We use a generalized linear model (GLM) with a Gaussian family and an identity link function, which is
equivalent to ordinary least squares regression but offers more flexibility in handling high levels of variability
and uses maximum likelihood estimation instead of least squares to estimate the coefficients (McCullagh
2019). We implement the regression model using the GLM module from the Python statsmodel package
(Seabold and Perktold 2010). The equation of the regression model in mathematical form is as follows:

Ziog(damage) = Bo + B1Z10g(veDy) T B2Zlog(PDire) T B3Z10g(1v1) + € (3)

where Zjog(damage)> Zlog(VPDy)> Zlog(PDires ) A0 Ziog(rvr) are the standardized log-transformed variables for
wildfire damage, VPDg, PDgoest, and HVI, respectively, S, the intercept term, 31, 35, and (33 the beta
(standardized) coefficients, and ¢ the error term. The derivation of the unstandardized form of equation (3)
is outlined in appendix. Since the response and predictor variables are standardized, the coefficients measure
the change in the standardized log-transformed wildfire damage for one SD change in the standardized
log-transformed predictors. To ease readability, the standardized log-transformed predictors are henceforth
denoted as log(VPDg)*, 10g(PDsorest)* and log(HVI)*. Note that the log transformation applied here does
not introduce nonlinearity, as both the outcome (Y) and predictor (X) variables are log-transformed. The
standardization does not alter the underlying assumption of a linear relationship between Y and Xs; it
simply makes the beta coefficients comparable by scaling the variables to the same SD.

Our wildfire damage training data exhibit an imbalanced regional representation—a well-documented
limitation of the EM-DAT and other global disaster loss and damage databases (Osuteye et al 2017, Mazhin
et al 2021, Jones et al 2023)—which may affect the generalizability of our model. Among the 62 data points,
21 are from developed countries, 30 from developing countries, and 11 from least-developed countries,
based on the IPCC Sixth Assessment Report (AR6) developmental classification. To address this imbalance,
we apply sample weights when fitting the GLM model: each region group is weighted inversely proportional
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to its sample size, and the weights are normalized so that their total equals the number of observations. This
approach helps prevent overrepresented regions from dominating the coefficient estimates, giving more
balanced influence across development regions. To validate the model, we evaluate the residuals for
normality using the Shapiro—Wilk test (Shapiro and Wilk 1965) and for heteroscedasticity using the
Breusch—Pagan test (Breusch and Pagan 1979). We apply 5-fold cross-validation to ensure no overfitting
occurs and the model generalizes well to unseen data.

2.4. Projection of future wildfire damage

For the projection of future wildfire damages using our fitted regression model, we use national GDP
projections for the SSP scenarios from Koch and Leimbach (2023) and population projections from Werning
(2024). Climate data projections for tasmax and hurs are obtained from the ISIMIP3b project (Lange 2019,
2021, Lange and Biichner 2022), including simulations from five Earth System Models (ESMs): the
Geophysical Fluid Dynamics Laboratory ESM (GFDL-ESM4), Institut Pierre-Simon Laplace Climate Model
(IPSL-CM6A-LR), Max Planck Institute for Meteorology ESM (MPI-ESM1-2-HR), Meteorological Research
Institute ESM (MRI-ESM2-0), and the UK ESM (UKESM1-0-LL). The ESMs have the same 0.5° spatial
resolution as the ISIMIP3a data used for fitting the regression model. To facilitate an assessment of the
uncertainty in future wildfire damage projections, we use the VPDg, values derived from individual ESM
outputs rather than multi-model means. Forest cover projections from the same five ESMs of the GLOBIOM
project are employed for the PDgyes calculation. The HDI projections are obtained from Cuaresma and Lutz
(2015). The same data processing procedures outlined in section 2.2 are applied. Countries with less than 5%
forest coverage are excluded from the projections. The resulting SSP dataset contains 129 countries.

3. Results and discussion

3.1. Regression model results

We obtain an R? score of 0.85 with our GLM regression model (cross-validation Rigv =0.84, 0., = 0.04).
Figure 2 shows the residual plot of the overall fitted model and the partial residual plots, depicting the
contribution of the individual predictors to the response variable after accounting for the effects of other
predictors.

All three predictors are statistically significant at the 95% confidence level (figure 3(a)). Model-estimated
damages are shown against reported damages in figures 3(b) and (c) (results of the alternative model using
POPwui are shown in figure S3 in the supplementary information). We assess the robustness of the coefficient
estimates using bootstrap methods, resampling the data with replacement 1000 times and fitting a regression
model to each sample. The VIF values of the predictors are all close to 1, indicating a very low level of
multicollinearity among the predictors. The final model results and bootstrap estimates are shown in table 1.

3.2. Important drivers of historical wildfire damage

The beta (standardized) coefficients of the regression model are used to quantify the importance of the
predictors, with larger coefficients indicating a stronger relationship with wildfire damages. Results show that
HVTI is the most important predictor, followed by VPDg, and PDsgpest-

The dominant importance of HVI points to the possibility that strong socioeconomic development could
counteract wildfire damages. This suggests that a country’s adaptive capacity to cope with wildfires plays a
crucial role in reducing wildfire damages. This may include factors such as improved response and
management strategies, better infrastructure, effective resource assignment, and efficient containment
measures to mitigate wildfire damage. Notably, the higher significance of socioeconomic factors compared to
climate-related factors in predicting wildfire damage is distinctly different from findings on burned area
predictions, where climate-related factors have been shown to be more important (Kelley et al 2019, Jain et al
2022, Burton et al 2024).

Our results demonstrate that VPD is not only an effective predictor of burned areas but also of wildfire
damages. Initial experiments using precipitation, FWI, and temperature led to lower R? scores (table S4).
High VPD is often associated with hot and dry conditions. These conditions increase the dryness of
vegetations, making them more flammable and susceptible to ignition and more likely to burn intensely.
Managing and suppressing large, intense wildfires requires substantial resources, including personnel and
equipment. Larger fires also inflict more severe damages on infrastructures and ecosystems, leading to
increased damages.

PDorest 1s found to be the least important, albeit still statistically significant, predictor. The negative value
of Bpprorest indicates an inverse relationship between PDg,s; and wildfire damage (higher PDgqey is
associated with lower damages). This finding is consistent with the prevalent conclusions of recent studies on
burned areas. People can directly intervene to extinguish fires. Human activities like wood removal and road
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Figure 2. (a) Residual and (b)—(d) partial residual plots of the fitted regression model.

construction can also indirectly suppress fires by creating barriers that limit fire spread (Bistinas et al 2013,
Knorr ef al 2014, Andela et al 2017). However, burned area and wildfire damages are conceptually distinct,
and our result requires a more nuanced interpretation. We propose two contrasting effects of human activity
on wildfire damages, reflecting its dual role in forested regions. On one hand, higher population density
increases potential damages due to greater asset exposure. On the other hand, human presence often
correlates with improved fire management capacity (e.g. firefighting resources, land-use regulation, early
warning systems) and more resilient infrastructure (e.g. fire-resistant buildings, defensible space). The
negative coefficient of PDyyest Observed in our regression model suggests that the latter effect predominates
in our dataset: in densely populated forested areas, the benefits of risk mitigation and economic resilience
outweigh the risks associated with higher asset exposure, leading to proportionally lower wildfire damages.
This negative relationship extends the known association between human presence and reduced burned area
to economic outcomes, indicating that proactive governance and robust infrastructure can substantially
reduce losses despite greater exposure. Nevertheless, our model does not explicitly separate the effects of
exposure from those of mitigation and resilience. Future research could address this by incorporating direct
measures of governance quality or infrastructure robustness to better clarify the mechanisms underlying this
relationship.

Our supplementary analyses using absolute damage as the outcome variable confirms GDP as the
strongest predictor of wildfire absolute damages (table S2), while the above analyses of normalized damages
highlight HVT’s role in amplifying proportional damages. Notably, in the absolute-damage model, once GDP
is accounted for, the relative importance of the remaining predictors—HVI, VPDg,, and PDgyyee—mirrors
the ranking observed in our main normalized-damage model. Further, our panel regression analyses produce
the same ranking and direction (sign) of predictor importance as our main results (table S3)—albeit with
none of the predictors reaching statistical significance at the 95% confidence level—demonstrating the
robustness of our findings regarding the key drivers of wildfire damages. However, caution must be applied
when interpreting causality in regression analyses. While the selected predictors are strongly associated with
wildfire damages, this does not necessarily imply a direct causal relationship. For example, although drier
conditions (high VPD) are associated with higher wildfire damages, it is also possible that these regions tend
to have sparse populations, which may result in reduced human capacity to manage wildfires.
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Figure 3. (a) Standardized beta coefficients of the fitted linear regression model using GDP-normalized wildfire damages
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Table 1. GLM and bootstrap coefficient estimates.

GLM fitted model results

Bootstrap results (n = 1,000)

95% confidence interval

Predictor B-coef. Std. error  p-value VIF Mean (-coef. SD Lower Upper
log(VPDg)* 0.225 0.088 0.011 1.279 0.224 0.060 0.113 0.341
log(PDsorest) ™ —0.184 0.093 0.048 1.288 —0.196 0.094 —0.389 —0.037
log(HVI)* 0.685 0.071 0.000 1.024 0.687 0.048 0.584 0.775

3.3. Projection of future wildfire damage
3.3.1. Trends in predictor evolution

Future projections of the three predictors exhibit distinct variations between the SSP scenarios. Globally
averaged (figure 4), VPDy, generally increases, with only minor differences between the scenarios until 2040.
Beyond 2040, the trajectories diverge significantly, decreasing under SSP126 while increasing under SSP245
and SSP370. The differences between SSP126 and the two other scenarios (SSP245 and SSP370) become
statistically significant at the 95% confidence interval by 2070, indicating that the projected changes under a
sustainable pathway diverge significantly from those under more intermediate and high-emission scenarios.
This indicates the effectiveness of robust climate mitigation policies under SSP126, which successfully
maintain global warming at low levels. PDg,; generally grows until 2050 across all scenarios. After 2050,
PDforest growth declines under SSP126, decelerates under SSP245 and continues its growing trajectory under
SSP370. Given the negative association between PDy,yeqr and wildfire damage, higher populations under
SSP370 would have a beneficial—albeit minor, given its small coefficient—impact on reducing wildfire
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Figure 4. Time-series of the SSP projections (global means) of the predictors used in this study. Error bars represent the 95%
confidence intervals, accounting for inter-model variability in the projections across different ESMs. The narrow error bars for (b)
PDforest indicate that the uncertainty in this predictor arises primarily from SSP population changes, which have no inter-model
variation, rather than from differences in the forest cover projections across the ESMs. For (c) HVI, no error bars are shown
because the projections do not come from ESMs.

damages. HVI declines across all SSPs, indicating improving socioeconomic conditions globally. However,
the differences among SSPs become increasingly pronounced over time, resulting in a dramatic divergence in
future damage projections across the scenarios, given that HVI is the most important predictor.

Figure 5 illustrates regional variations of the three predictors across the three SSP scenarios. Across all
scenarios, VPDy, increases in all regions, with particularly strong rises in North America, the Mediterranean,
parts of Africa, and Australia, consistent with previous studies linking VPD increases to warming and drying
trends. The magnitude of VPDg, changes is generally consistent with findings of previous studies (Cook et al
2021, Chen et al 2024). VPDg rise intensifies with SSP370, especially in semi-arid and temperate regions,
aligning with projections that warmer temperatures and declining relative humidity drive higher VPD levels
under climate change (Ficklin and Novick 2017, Williams et al 2019). The trends in PDyyes¢ are more
nuanced, but generally align with the broader SSP population patterns in our dataset (figure S4). PDgypest
tends to increase in regions with high projected population growth, such as Africa and parts of Asia (with the
notable exception of China, where a population decline is expected). Under SSP370, high population growth
coupled with forest loss drives the increase in PDg, for large parts of the world, while under SSP126, slower
population growth and stronger forest conservation stabilize or reduce PDgyes, especially for Europe, North
America, and parts of South America. The trends in popi largely follow similar patterns (figure S5). For
HVI, most regions in the world—particularly in Africa, South America, and Asia—see a significant decrease
in the vulnerability under SSP126, reflecting improved socioeconomic conditions. In contrast, under
SSP370, socioeconomic improvements are slower across most regions, with the USA and parts of Africa even
experiencing a slight increase in vulnerability.

3.3.2. Future wildfire damages

Figure 6 shows the projected global mean damages and a regional breakdown of these damages under the
three SSPs (maps depicting the spatial distribution of these damages are shown in figure S6). Owing to
improving socioeconomic developments, projected global wildfire damages are expected to decrease from
2030 to 2070. Damages are generally higher under SSP370 compared to SSP126. Our model predicts a global
mean wildfire damage of 1.04%GDP under SSP126 and 1.75%GDP under SSP370 in 2030. This disparity
widens significantly by 2070, with projected mean damages of 0.53%GDP under SSP126 and 1.64%GDP
under SSP370, indicating that damages under SSP370 are three times greater than those under SSP126. The
alternative model using popy; instead of PDgyeq; vields similar results (figure S7).

Our analyses suggest that following a sustainable pathway (SSP126) not only reduces wildfire damages
but also ensures a more even distribution of damages globally (figures 6(a), (d) and (g)). This is primarily
due to the reduced disparity in HVI between countries under SSP126, driven mainly by improving
socioeconomic development amongst less developed countries (figure S8(c) in the supplementary
information). Together, the strong socioeconomic development HVI and reduced climate hazards (VPDyg,)
under SSP126 outweigh the increased wildfire damage associated with population decline (PDgyyest). The
focus of SSP126 on reducing inequality further results in a more equitable distribution of damages
worldwide. Greater inequality may undermine the adaptive capacities of vulnerable communities, which are
often located in rural forested areas (Commins 2004), potentially impairing their ability to effectively
manage and combat wildfires.

We note that the projected damages are likely underestimated because our model does not fully explain
the variability in historical wildfire damage nor does it sample the entire range of predictor values.
Additionally, studies have shown a nonlinear relationship between VPD and fire activity (Williams et al 2019,
Balch et al 2022). Given that both the mean and SD of VPD are projected to rise with climate change (Brey

10



10P Publishing

Environ. Res.: Climate 4 (2025) 035005 Y-L Hwong et al

SSP1l26 SSP245 SSP370
Fire season VPD
= (b) ,,i U1 7. i 5
> é " e (B)H 0 &
' P v » 3
Population density (forest)
(d) 50
3 0
a
=50
(9) (h) = . [ 0.2
. o G-
= A o >
> e G
z , iy . 0.0 5
& X
Z — 4 »
'3 == = -0.2
Figure 5. Maps showing changes in (a)—(c) VPDg, (d)—(f) PDforest and (g)—(i) HVI under the three SSPs. Changes are calculated
as the differences between historical and future means for each SSP, averaged across the five ESMs for VPDg and PDgyegt.
Historical periods are 1990-2000 for VPDg and HVI, 2010-2020 for PDyyest; future periods are 20602070 for all predictors.

et al 2021), the impact of climate on wildfires is expected to increase exponentially. However, Quilcaille et al
(2023b) shows that the Canadian FWI—a frequently used proxy for fire weather—can be parameterized with
a linear relationship to global mean temperature in most regions in the world, and the FWI has been shown
to correlate linearly with burned areas (Bedia et al 2015, Abatzoglou et al 2018). While these studies focused
on burned areas rather than wildfire damages, they highlight the complex relationship between climate and
wildfires. We recognize the importance of exploring both linear and nonlinear models to better capture the
true relationship between climate and wildfire damages. However, for the sake of simplicity and
interpretability, and limited by the availability of wildfire damage data, we have chosen to apply a linear
model. Nevertheless, preliminary results suggest that accounting for the nonlinear effects of VPDg would
likely lead to higher damages than our model predicts (figure S1).

3.3.3. Predictor contributions to projected wildfire damages

To quantify the risk arising from individual predictors, we compare projected wildfire damages under
scenarios where only one predictor changes while the others remain fixed at their historical values (figure 7).
Under all three SSPs, damage trajectories with all predictors included closely follow those where only HVI
changes, showing a downward trend. This again highlights the importance of socioeconomic development,
which, under SSP126 and SSP245, is sufficient to offset the impact of worsening climate (VPDg). The
VPDg-only projected damages (green curves) vary across the three scenarios: they stabilize under SSP126,
grow slowly under SSP245, and increase more rapidly under SSP370. These results echo findings of projected
burned areas under various SSP scenarios (e.g. Zhang et al 2024). Notably, the highest damage projections
for all three SSPs occur when only VPDg, changes (green curves), indicating that climate hazard will have an
outsized impact if socioeconomic development stagnates. Under SSP370, trends differ markedly from
SSP126 and SSP245. Until 2040, the ability of socioeconomic developments (red curve) to offset the negative
climate impact remains uncertain, owing to the sluggish pace of HVI reduction. Although the improvement
in HVI after 2040 overcomes the negative climate impact, the difference between VPDg-only and HVI-only
scenarios (red and green curves in figure 7(c)), while statistically significant at the 95% confidence interval, is
much smaller than in SSP126 and SSP245. SSP370 is also the only pathway where PDg s growth alone
results in the lowest damages (due to the negative association between PDg,.s and wildfire damage)
compared to the VPDg-only and HVI-only scenarios (blue curve in figure 7(c)). This result underscores not
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Figure 6. Mean projected wildfire damages under three SSP scenarios and for the six IPCC ARG6 regions. Error bars represent the
95% confidence intervals of the mean damage projections, accounting for uncertainties in the estimates due to inter-model
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Figure 7. Comparison of global mean projected wildfire damage with all predictors changing (All), and only one predictor
changing (VPDgs, PDgyrest, or HVI) while the other two remain at their historical mean values. Error bars represent the 95%

confidence interval of the mean damage projections, accounting for uncertainties from the spread in projections across the ESMs.
Since ESM projection uncertainty primarily affects the VPDyg, predictor, error bars are not shown for the HVI and PDyye curves.
Note that the mean values differ slightly from those in section 3.3.2 because this analysis is limited to countries in the training
(historical) dataset.

the benefits of population growth under SSP370 but rather the risks posed by inadequate socioeconomic

growth combined with worsening climate in a fragmented world.

3.3.4. What do countries stand to gain by following a sustainable pathway?
To assess what countries can gain from pursuing a sustainable path, we present the damage difference
between SSP370 and SSP126 in figure 8, shown both as percentage of GDP (%GDP, top row) and as a
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Figure 8. Mean avoided wildfire damages under SSP126 compared to SSP370. Top row shows projected damages (%GDP) in
SSP370 minus those in SSP126. Bottom row shows relative avoided damages, calculated as absolute damages in SSP370 minus
those in SSP126 and expressed as a percentage of SSP370 absolute damages. Absolute damages (US$) are calculated by
multiplying projected %GDP by projected GDP. Results are shown for (a) and (d) all, (b) and (e) developed, and (c) and (f)
least-developed countries (LDCs), based on IPCC AR6 developmental classifications. Each panel shows contributions from all
predictors combined (dotted black line) and from individual predictors (VPDg, PDsorest, HVI). Error bars represent the 95%
confidence intervals across ESMs. As ESM projection uncertainty primarily affects the VPDg, predictor, error bars are not shown
for the HVI and PDgy s curves.

percentage of absolute damages under SSP370 (bottom row). The latter metric directly answers the question:
what percentage of SSP370 damages are avoided under SSP126? Globally, following SSP126 generally leads to
reduced damages (figures 8(a) and (d)), except in the PDy st -0nly scenario (blue curves) where higher
population growth under SSP370 is advantageous due to the negative correlation between population and
wildfire damages. However, this trend is less pronounced for developed countries, where population growth
is weak or declining. Our analysis hence indicates that adopting a sustainable pathway may attenuate wildfire
risks by (1) fostering stronger and more equitable socioeconomic development (red curves) and (2) enacting
environmental policies that improve climate conditions (green curves).

For developed countries, SSP126 offers modest damage reductions of approximately 0.2%GDP by 2070
(figure 8(b)), though this represents a substantial relative reduction of about 40% compared to SSP370
damages (figure 8(e)). Though HVI remains the primary contributor of avoided damages, the increasing
impact of climate hazard could potentially become the dominant driver of wildfire damages by century’s end
if socioeconomic conditions (red curve) remain stable at their current high levels while climate conditions
continue to worsen (growing green curve in figure 8(e)). Least-developed countries (LDCs)—which face
disproportionate exposure to anthropogenic climate change (Schleussner et al 2016, King and Harrington
2018, IPCC 2022)—stand to gain significantly more from following a sustainable development pathway by
2070. In relative GDP terms, their potential avoided damages exceed those of developed countries by more
than a factor of ten, reaching over 2%GDP compared to just 0.2%GDP in developed nations (figure 8(c)).
Similarly, relative avoided damages amount to approximately 73% of SSP370 damages in LDCs, compared to
40% in developed countries (figure 8(f)). Socioeconomic conditions again represent the primary driver of
these avoided damages, which—unlike the relatively stable trends in developed countries—continue to
improve in LDCs (red curves in figures 8(c) and (f)).

Opverall, the picture that emerges attests to the significant advantages of adopting a sustainable pathway in
mitigating the economic impact of wildfires. Strong socioeconomic development under SSP126 (Cuaresma
and Lutz 2015) is envisioned to alleviate adaptation constraints to climate change, which the IPCC AR6
defines as ‘factors that make it harder to plan and implement adaptation actions’ (IPCC 2022). This is
reflected by the HVI factor, which represents the vulnerability component of wildfire risk evaluation in our
model and likely also captures the effects of institutional and regulatory mechanisms (HVTI is highly
correlated with other governance indices). Further, robust environmental policies under SSP126 improve
overall climate conditions, which also help reduce wildfire damages (indicated by VPDg,). For LDCs
especially, prioritizing development practices that balance economic growth with ecological conservation is
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crucial, as these countries stand to gain the most—both in absolute and relative terms—from the reduced
damages and enhanced resilience achieved under sustainable pathways.

4. Conclusions

We apply regression analyses to identify key factors influencing global (country-level) wildfire damages and
use the fitted model to project future damages under three SSP scenarios. Our findings lead to three main
conclusions.

First, our analyses indicate that the socioeconomic factor, measured by a HVI, is the strongest predictor
of historical wildfire damages, followed by the climate factor (fire season VPD), and population density
around forested areas (PDsores). This differs from predictions of burned areas, where climatological factors
have been found to be more important. Robust socioeconomic conditions may enable countries to develop
and deploy effective management and adaptation strategies, design innovative and damage-efficient
solutions to combat wildfires, which could ultimately reduce their damages. Conversely, stagnating
socioeconomic conditions potentially deepen vulnerability by impeding the flow of resources and human
capital needed to address wildfire damages.

Second, results suggest that following a sustainable pathway (SSP126) not only reduces wildfire damages
but also results in a more balanced damage distribution across countries. Our model projects that global
mean wildfire damages will be three times higher under SSP370 than SSP126 by 2070. By emphasizing
international cooperation over regional rivalry, countries following SSP126 could collectively achieve higher
socioeconomic development, which may help mitigate the damages of wildfires. Additionally, global
adherence to climate targets under SSP126 improves climate conditions and promotes equitable
socioeconomic development, possibly narrowing inequality that can heighten climate vulnerabilities. This
aligns with the fulfillment of the Sustainable Development Goal 10, which aims to reduce inequalities within
and among countries (UN General Assembly 2015).

Third, our results imply that robust socioeconomic development can offset wildfire damages attributable
to climate hazards, but this outcome is not guaranteed under a regional rivalry scenario (SSP370). Negative
climate impact can hinder socioeconomic progress, and vice versa (Hallegatte et al 2016, Thomas and
Benjamin 2018, Tol 2018). SSP126’s dual emphasis on societal welfare and environmental protection fosters a
virtuous cycle that improves both areas. Our findings indicate that sustainable development can enhance the
resilience of less developed countries—which often bear the brunt of climate change—leading to substantial
savings in wildfire damages. While developed countries may see limited damage reductions from
socioeconomic factors due to their already low HVI scores, they still benefit from SSP126’s positive climate
effects.

Our study has several limitations. Using a statistical model to predict future wildfire damages assumes
that relationships between damages and predictors remain constant, which may not hold true, especially as
adaptation strategies and climate conditions evolve (Higuera et al 2015, Littell et al 2016). Due to limited
data on wildfire damages, we did not account for possible nonlinear relationships between the predictors and
wildfire damages, apart from a preliminary exploration of nonlinear effects. This potentially limits the
reliability and predictive power of our model. Striking a balance between avoiding overfitting and ensuring a
robust representation of the factors influencing wildfire damages is a challenging task and should be a
priority of future studies. While weighting underrepresented regions during model fitting partially mitigates
representation bias, the generalizability of our fitted model remains constrained by the small sample sizes in
least-developed countries, which may yield less reliable coefficient estimates for these countries. Our use of
cross-sectional analyses helps mitigate data sparsity by averaging wildfire damage values across years, but it
introduces a risk of omitted variable bias—particularly from unobserved time-varying factors such as policy
changes—and prevents us from modeling within-country temporal trends, such as decadal shifts in climate.
As a result, the analysis may overemphasize differences between countries while overlooking important
dynamics over time. We also note that while our analysis based on the ISIMIP model ensemble provides
internally consistent projections, future work incorporating the full suite of CMIP6 models and
large-ensemble simulations would enable a more comprehensive assessment of the range of uncertainties
associated with wildfire damage projections. The exclusion of climate feedback in the SSP framework could
potentially also bias our estimations of future risks. For example, socioeconomic improvements are projected
even under SSP370 (figure 4(c)), when in reality worsening climate conditions could stall or even reverse this
trend. Therefore, our model projections should be viewed as useful benchmarks to assess comparative trends
rather than exact wildfire damage predictions. Nonetheless, our study offers a novel contribution by applying
well-established empirical methods to the relatively under-explored topic of the economic damage of
wildfires, providing new insights into wildfire risks beyond just burned areas.
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Appendix. Unstandardized regression equation

Here we outline the steps to convert the standardized form of the regression equation (equation (1)) into its
unstandardized form. Assuming fiiog(damage) a1d Tlog(damage) are the mean and SD of the log-transformed
wildfire damage, the unstandardized log-transformed damage is:

log (damage) = Olog(damage) (ﬁO + ﬁlzlog(VPDfs) + 62Zlog(PDfomt) + BSZlog(HVI) + 6) + Hlog(damage) - (Al)

Reverting from logarithmic to the original scale:

damage —e (Ulog(damage) : (Bo+51210g(vpnfs) +BZZIOE(PDfmst) + B3 Z1og(1v1) +6) Jrlllog(damage)) ) (A2)

atb — o

Since e a.eb equation (A2) can be rewritten as:

damage — e(ﬂlog(damagc)ﬁo) . e(Ul(vg(damagE)5lzlog(vmf5)) . e(Ulog(damage)ﬂlz]og(ppfms()) . e(glog(dumagc) B3Zlog(HVI)) .

e(mog(damage)ﬁ) . eltlog(damage) . (A3)
Given 3y ~ 0 when all predictors are standardized, the first term reduces to unity.
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