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A B S T R A C T

A key step in protein structure prediction involves the detection of co-evolving pairs of residues, a signal for 
spatial proximity. This information is gleaned from multiple sequence alignment and underscores Alphafold’s 
structure prediction for almost every known protein. A simple means to create proteins beyond those found in 
nature, is by unnaturally fusing together two known proteins or protein parts. Here we demonstrate that 
structured peptides are predicted with significantly reduced accuracy when added to the terminal ends of 
scaffold proteins. Appending the multiple sequence alignment for the individual peptide tags to that of the 
scaffold protein often restores prediction accuracy. This work suggests that this windowed multiple sequence 
alignment approach can be a useful tool for predicting the structure of fused, chimeric proteins.

1. Introduction

Proteins have evolved over billions of years, accumulating sequence 
variations over time. Recognizing that coevolution of positions distant in 
the protein sequence is indicative of proximity in the protein structure 
revolutionized attempts to predict structure from sequence [12,3,5,9]. 
This fundamental discovery has remained a cornerstone of state of the 
art, deep learning, prediction methods where the same key information 
is extracted as subtle signals from alignments of large numbers of se-
quences, and it is referred to as the multiple sequence alignment (MSA) 
step [6].

The critical importance of the MSA step in structure prediction raises 
questions about the reliability of predictions for non-natural proteins. In 
this work we consider chimeric proteins and show that contemporary 
protein structure prediction methods including AlphaFold-2 [6] and 3 
[1] and ESMFold (Hayes et al., 2024) consistently mispredict the 
experimentally determined structure of small, folded peptide targets 
when presented as N or C terminus sequence fusions with common 
scaffold proteins. We find that for peptide targets and scaffold proteins 
predicted with high accuracy when presented as individual sequences, 
the accuracy of prediction for the target peptide deteriorates when 
presented as a fusion sequence with the scaffold protein. These pervasive 
errors point to a broader limitation in the ability of current models to 

inductively generalize beyond their training sets.
Investigating the origins of these inaccuracies, we identify the con-

struction of the multiple sequence alignment (MSA) as the primary 
source of error. Specifically, the MSA based structural signals for the 
target protein are lost in the fused sequence form when using default 
MSA parameters. To address this shortcoming, we develop a Windowed 
MSA approach, which entails independently computing MSAs for the 
target and the scaffold that are then merged into a single alignment for 
structure prediction. This strategy avoids the artifacts introduced by 
attempting to align the entire chimeric sequence at once, while still 
retaining the essential evolutionary information for both the target 
peptide and scaffold.

Empirical validation of the windowed MSA procedure, conducted 
using AlphaFold-3 on a set of 408 fusion constructs, demonstrates a 
marked improvement in predictive accuracy. Specifically, windowed 
MSA produces strictly lower RMSD values than standard MSA in 65 % of 
these cases, without compromising the structural integrity of the scaf-
fold. In the remaining cases, any increase in RMSD values is marginal 
and does not result in a visibly worse structural model, underscoring the 
robustness of the windowed MSA approach for chimeric protein 
modeling.
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2. Methods

2.1. Dataset creation

To remove redundancy among the peptide sequences from McDo-
nald et al. [10], we clustered them using a 50 % sequence similarity 
threshold and an 80 % bidirectional coverage threshold, where coverage 
is defined as the minimum of the query and target lengths. This process 
reduced the original set of 593 sequences (reported in McDonald et al. 
[10]) to 394 non-redundant sequences. Out of this non redundant set we 
selected only peptides predicted with high accuracy, namely an overall 
RMSD of (<1 Å) between the prediction and the experimentally deter-
mined structure. Peptide sequence having less than 2 MSA hits were 
removed. This process resulted in 51 peptide targets for in silico fusion 
to scaffold proteins. All combinations of the 4 scaffolds with 51 target 
peptides, attached once at N and C terminus, were generated resulting in 
total 408 unique sequences. We note that the scaffold sequences used 
correspond to that found in the crystal structures, 2IYD:B, 1PKW, 2B3P 
and 1MPB respectively, meaning that the SUMO and MBP proteins were 
truncated at the N terminus with respect to the native protein. Chimeric 
proteins were created by the addition of peptide tag sequences to the C 
and N terminus, individually, of the scaffold proteins. A small and 
flexible GLY-SER linker was inserted between the protein parts to 

alleviate any potential steric constraints in the concatenated sequences.

2.2. Structure prediction

We obtain AlphaFold-2 predictions by running ColabFold Mirdita 
et al. [11] and AlphaFold-3 predictions by running the source code 
locally (recently released by Abramson et al. [1]), using the same MSAs 
provided for AlphaFold-2 to ensure a like-for-like comparison. For 
ESMFold3 predictions, we use the recently-released ESM3 language 
model Hayes et al. [4], and its structure prediction head. For ESMFold3, 
we considered both iterative and argmax decoding as recommended in 
Hayes et al. [4]; we set the iterative decoding version as the main 
baseline because of its better accuracy. Accuracy of prediction was 
measured by calculating the RMSD between the experimentally deter-
mined peptide structure (specifically, the first structure in the NMR 
ensemble) and the peptide sequence region of the fusion protein.

2.3. Windowed MSA

For each the scaffold and tag regions, we generated MSAs using the 
MMseqs2 server via the ColabFold API (api.colabfold.com), searching 
against UniRef30 (release 2302; PDB100 230517). The scaffold sub- 
alignment included homologs spanning the scaffold sequence and 

Fig. 1. The windowed MSA method restores the prediction accuracy of target proteins successfully predicted as an individual sequences and mispredicted 
as part of scaffold fused sequences using default MSA parameters. Shown left-to-right are the predicted structures of two fusion sequences (first row: GST with 
2LG4 fused to the C terminus; second row: SUMO with 1TSK fused to the N terminus+). AlphaFold-predicted structures are colored by the pLDDT confidence and 
ESMFold predictions are shown in green. Individual experimentally determined structures the scaffold and target peptides are superimposed in grey. Prediction 
accuracy is reported in terms of RMSD separately for the scaffold (left) and the target protein (right). While the scaffolds are invariably predicted accurately, target 
structures are mispredicted by the standard MSA-based AlphaFold (RMSD highlighted in red) and predicted very accurately with the proposed solution.
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explicitly incorporated the “GLY-SER” linker, while the peptide sub- 
alignment was built exclusively from peptide homologs. These sub- 
alignments were merged by concatenating scaffold and peptide MSAs 
with gap characters (-) inserted to fill non-homologous positions: 
peptide-derived sequences carry gaps across the scaffold region, and 
scaffold-derived sequences carry gaps across the peptide region, thus 
preserving the original alignment lengths and preventing spurious res-
idue pairing. These finalized windowed MSAs were used as inputs to 
AlphaFold-2 and AlphaFold-3.

2.4. Molecular dynamics simulations

The PDB2PQR server [7] that was used to add hydrogen atoms and 
prepare the files for input to GROMACS, version 2020.2 [8]. The Amber 
99sb-ildnp force field [2] was applied to normal amino acids and ions, 
and the SPC model was applied to water molecules. After solvation in a 
cubic box, the addition of Cl– and Na+ ions to balance the charge, en-
ergy minimization and heating to 300 K, the system was equilibrated 
under NVT and NPT conditions, each for 50 ps. Production runs of 50 ns 
were performed under NPT conditions, with a time step of 2fs. The 
temperature and pressure were maintained at 300 K and 1 bar.

3. Results

We created a large set of in silico fused proteins by adding the se-
quences of short, structured peptide targets at the N and C terminus of 
the following scaffold proteins, SUMO2, GST, GFP and MBP. The peptide 
targets were selected from a recent benchmark assessing the perfor-
mance of AlphaFold-2 on peptide structure prediction McDonald et al. 
[10]. These peptides all have NMR determined structures, an advantage 
for assessing Alphafold performance since these models were not trained 
on NMR structures, preventing bias.

The fusion of structured proteins, scaffolds, to target proteins is 
common in experimental biology, enabling applications ranging from 
visualization (e.g., GFP) and solubility enhancement (e.g., SUMO), to 
affinity purification (e.g., GST, MBP). Target proteins appended to the 
N- or C-termini of the scaffold protein typically fold independently, and 
with minimal structural perturbation to either the scaffold or the target 
proteins. Vymětal et al. [15] recently curated a set of fused proteins 
having experimentally obtained high resolution X-ray structures for 
both the individual protein components and the fusion construct. In all 

cases, including MBP and GFP fusions, the individual components had a 
high structural similarity to the respective domains in the fusion 
construct (Fig. 2). To further justify our assumption that the free and 
fused conformations of the target peptides should be similar we ran 
molecular dynamics simulations of the chimeras shown in Fig. 1 finding 
that indeed the overall conformation of the targets do not change over 
the course of the simulation (Fig. 2).

Fig. 2. Scaffold-peptide fusions are not expected to alter the structure of the isolated peptide. (A) Molecular dynamics simulations show that although the 
peptide tag can move independent of the scaffold via the GS linker, the tag maintains the same structure as in the isolated state. Predicted structures are shown in 
pink (scaffold) and orange (tag) and structures from across the MD trajectory are shown in gray (scaffold) and green (tag). On the bottom row, alignment between the 
prediction and the MD derived structures is shown for the tag region of the fusion only. (B) Alignment between the experimentally determined fusion constructs and 
the experimentally determined structure of one of the protein components shows no alteration to the structure or interaction between the fused components. Shown 
on the left is the isolated structure of human NLRP1 CARD (PDB code:3KAT, shown in pink) aligned to the human NLRP1 CARD – MBP fusion structure (PDB code: 
4IFP, shown in gray) and shown on the right is a isolated structure of ubiquitin (PDB code: 1UBQ, shown in pink) aligned to the ubiquitin – GFP fusion (PDB code: 
3AI5, shown in gray). The RMSD values of the alignment are shown.

Fig. 3. Comparison of the accuracy of AlphaFold-3, AlphaFold-2 and 
ESMFold3 predictions on the peptide structure prediction benchmark. 
AlphaFold-3 shows systematically higher accuracy compared to AlphaFold2 
and ESMFold3; it achieves RMSD accuracy of < 1 Å for 90 out of 394 targets, 
when compared to AlphaFold-2 and ESMFold which produced 34 and 18 
peptides that have lower than 1 Å RMSD, respectively.
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3.1. Alphafold3 shows the highest accuracy in predicting the structure of 
peptide targets

Fig. 3 compares the performance of AlphaFold-2, AlphaFold-3, and 
ESMFold3 on the peptide structure prediction benchmark introduced in 
McDonald et al. [10]. Notably, AlphaFold-3 yields substantially more 
accurate predictions than both AlphaFold-2 and ESMFold, achieving an 
RMSD of less than 1 Å for 90 of the 394 targets. In comparison, 
AlphaFold-2 attains RMSD below 1 Å on only 34 targets, while 
ESMFold-argmax and ESMFolditerative reach this level of accuracy for 
just 18 and 21 targets, respectively. As ESMFold-iterative resulted in 
better performance, we choose this as the main ESMFold baseline.

3.2. All structure predictors lose accuracy in peptide prediction when this 
sequence is augmented to that of a scaffold protein

Considering only target peptides well predicted (RMSD <1 Å) by 
AlphaFold3, we measure how the accuracy of prediction changes in the 
context of a scaffold by augmenting the target peptide sequence to the 
scaffold termini. Representative results are presented in Fig. 1, and they 
demonstrate that AlphaFold-3, AlphaFold-2, and ESMFold predictions 
are worsened in the context of a scaffold protein, as observed by the 
largely increased RMSD between prediction and experiment at the 
peptide sequence region Fig. 4 presents a target-level breakdown of the 
ratio of the RMSD of the targets when predicted in scaffold context with 
respect to the RMSD when predicted in isolation. We notice that pre-
diction accuracy of the peptide targets is worse when attached to the N 
terminus as compared to C terminus attachment. Using the windowed 
MSA approach the prediction accuracy of peptide targets is comparable 
for N and C termini attachment. Testing on a small number of peptide 
tag scaffold fusions we find that linker length does not affect prediction 
accuracy of the tag (Sup. Fig. 1) and neither does the addition of peptide 
tags to both termini of the scaffold (Sup. Fig. 2)

3.3. Appending the MSA of the peptide target to the scaffold restores 
prediction accuracy

We hypothesized that the inability of AlphaFold to accurately predict 
a peptide target when presented within a scaffold context – despite 

accurately predicting the tag in isolation – stems from inadequate rep-
resentation of the peptide target MSA when presented as a fused 
sequence. To address this, we propose a method that combines the MSA 
obtained for individual regions; here combine the MSA from the indi-
vidually queried scaffold with MSA from the individually queried pep-
tide target. We ran AlphaFold-2 and AlphaFold-3 with windowed MSA 
predictions for all scaffold-target combinations and compare the accu-
racy of the updated predictions to those obtained using standard MSA. 
The significant improvement in scaffold context prediction accuracy can 
be appreciated in Fig. 5, that also visualises the MSA coverage and 
demonstrates that the windowed MSA approach improves the pLDDT 
confidence score output, and Sup. Fig. 3. The violin plot in Fig. 6 shows 
that improvement is common across all the tested peptide targets 
although cases where windowed MSA lead to a worsened prediction can 
be found (Sup. Fig. 4) and also cases where improved accuracy of pep-
tide tag prediction is observed in one scaffold context but not another 
(Sup. Fig. 5).

4. Discussion

We compare the performance of three protein structure prediction 
algorithms, AlphaFold-2 Jumper et al. [6], AlphaFold-3 Abramson et al. 
[1], and ESMFold3 Hayes et al., [4] on in silico fusion sequences where 
each fusion partner is expected to fold independently and equivalently 
to the native form. Our main observation is that MSA dependent models 
such as AlphaFold-2 and Alphafold-3 commonly mispredict unnaturally 
fused sequences. This unnaturally fused sequence cannot be completely 
captured in a single MSA search and so prediction accuracy is lost for the 
region that loses coverage. We show that this limitation can be overcome 
by breaking down the MSA into windows and when the MSA for each of 
the fused components is provided to Alphafold, prediction accuracy is 
restored. We also show that whilst ESM approaches Rives et al. [14]; Rao 
et al. [13]; Hayes et al. (2024) do not generate explicit MSAs, they show 
the poorest prediction performance on these small and structured pep-
tide targets, even in their isolated form.

It is likely that the degree of performance degradation in the fused 
context will depend on the lengths and relative lengths of the compo-
nents being fused as well as their sequence depths, although this work 
did not address these parameters. However, this work demonstrates a 

Fig. 4. Scaffold context reduces target peptide prediction accuracy. The windowed MSA approach mitigates this effect and improves model confidence. 
Comparison of target peptide prediction accuracy (RMSD, top) and model confidence (pLDDT, bottom) across scaffold contexts. Results are presented as CI plots for 
both without scaffold (isolated targets, control) and with scaffold (targets fused to scaffold termini). Tags prediction accuracy drops sharply (RMSD increases) and 
pLDDT scores decline, indicating destabilized model confidence in the presence of a scaffold. The windowed MSA approach restores accuracy near control levels and 
elevates pLDDT scores, demonstrating improved structural modeling and confidence.
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clear benefit in segmenting the MSA into individually queried windows, 
when the window definitions were clear. Future work should explore 
how windows could be automatically defined for quick and effective 
prediction and this could find further usefulness in better predicting 

multidomain proteins. We also clarify that our work addresses only the 
task of accurately predicting the individual domain structures making 
the chimeric construct. A useful extension to this methodology would be 
implanting this step into the fuller pipeline that also addresses then the 

Fig. 5. AlphaFold-3 predicts exquisitely accurate structures for both the scaffolds and the tags individually, and fails to predict the tag region in the 
chimeric sequence when MSA coverage is lost. Depicted on the left are the predicted structures for the peptide targets fused to the scaffolds. To the right and far 
right individual predictions of the peptide target and scaffold are shown. Between these individual predictions, the prediction for the peptide target fused to the 
scaffold when using a windowed MSA approach is shown. In this approach the MSA of the peptide target (framed in red) and the MSA of the scaffold (framed in blue) 
are combined into a chimeric MSA and used in prediction. Predicted structures are colored by the pLDDT confidence and superimposed on the experimentally 
determined structures (transparent white). RMSD of the tag prediction is reported in red. Below each predicted structure the MSA coverage is shown sorted and 
colored by identity to the query sequence. 1TSK+SUMO and GST+ 2LG4 chimeras are shown.
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subsequent intradomain interactions however we defer this endeavor for 
future work.
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