
Structural Properties of Games on
Graphs

by

Jakub Svoboda

July, 2025

A thesis submitted to the
Graduate School

of the
Institute of Science and Technology Austria

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Committee in charge:

Francesco Locatello, Chair
Krishnendu Chatterjee

Matjaž Perc
Krzysztof Pietrzak





The thesis of Jakub Svoboda, titled Structural Properties of Games on Graphs, is approved by:

Supervisor: Krishnendu Chatterjee, ISTA, Klosterneuburg, Austria

Signature:

Committee Member: Matjaž Perc, University of Maribor, Maribor, Slovenia

Signature:

Committee Member: Krzysztof Pietrzak, ISTA, Klosterneuburg, Austria

Signature:

Defense Chair: Francesco Locatello, ISTA, Klosterneuburg, Austria

Signature:

Signed page is on file





© by Jakub Svoboda, July, 2025
CC BY-NC-SA 4.0 The copyright of this thesis rests with the author. The whole Thesis, except
chapters 6 and 4, is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International License. Under this license, you may copy and redistribute the material in
any medium or format. You may also create and distribute modified versions of the work. This
is on the condition that: you credit the author, do not use it for commercial purposes and
share any derivative works under the same license. Chapter 4 is copyrighted by CC BY-NC-ND
4.0, which prohibits derivatives. Chapter 6 is copyrighted: Copyright (2025) by the American
Physical Society. For a copy, redistribution, or modification needs to be permitted by the

American Physical Society.

ISTA Thesis, ISSN: 2663-337X

I hereby declare that this thesis is my own work and that it does not contain other people’s
work without this being so stated; this thesis does not contain my previous work without
this being stated, and the bibliography contains all the literature that I used in writing the
dissertation.

I accept full responsibility for the content and factual accuracy of this work, including the data
and their analysis and presentation, and the text and citation of other work.

I declare that this is a true copy of my thesis, including any final revisions, as approved by my
thesis committee, and that this thesis has not been submitted for a higher degree to any other
university or institution.

I certify that any republication of materials presented in this thesis has been approved by the
relevant publishers and co-authors.

Signature:

Jakub Svoboda
July, 2025

Signed page is on file

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/




Abstract

The evolution shapes the world around us. Not only in biology, where the fittest individuals
spread their genes but also in physics and social dynamics, the evolutionary forces determine
the development of a state of matter or public opinions. Many models describe these dynamics.
This thesis examines the role of the structure in the models of selection. The population
structure is represented as a graph or a network, and each vertex is occupied by one individual.
Every individual has a type and fitness that represents the reproductive potential and depends
on the type, occupied vertex, and the arrangement of the neighbors. The evolution is modeled
in discrete steps; in one step, one individual is replaced by a neighbor selected randomly with
the influence of fitness.

The role of the networks is widely examined in the literature. The structures that promote
the spread of the desired type compared to the structureless case are called amplifiers. The
existence of amplifiers in various settings is an intensively studied topic, and in some settings,
the amplifiers have been identified. Moreover, there are other important questions about
the number of steps until one type spreads over the whole network (fixation time), the
computational complexity, and the questions about the robustness of these processes.

This thesis explores the role of structure in evolution from many perspectives. First, it
introduces different models and various choices that can be made in the models of evolution.
It highlights the role of the structure in the real world and how this is reflected in these models.
Then, it describes the previous results and open problems. Second, the thesis describes an
amplifier for two variants of the Moran process: one with a constant birth rate and the
other with a constant death rate. This is an important contribution to the robustness of
the amplification. Third, the thesis determines the complexity of spatial games. These are
processes where the fitness comes from a game, and the strength of selection is high. It
shows that determining the fate of cooperation in these games is a PSPACE-complete problem.
Fourth, the thesis describes the amplifier of cooperation for spatial games. This is the first
amplifier in this setting. Fifth, the thesis examines the coexistence in the Moran process
with environmental heterogeneity. In this setting, the fitness depends not only on the type
of the individual but also on the occupied vertex. The chapter determines the relationship
between the interactions of vertices of different types and the coexistence time. Sixth, the
thesis examines the social balance on networks and proposes a stochastic dynamic partially
aware of the state of the graph, which reaches a balanced position quickly. Finally, the thesis
presents conclusions and outlines the directions for future work.
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CHAPTER 1
Introduction

The world is complex and ever-changing, and science aims to understand all the rules governing
it. Physics examines how particles change their states, how they create attachments, and how
systems settle into positions with minimal energy. Biology explores how cells form organs and
whole bodies, how bacteria spread in a beneficial environment, and how animals compete for
resources. Social sciences and game theory examine how humans interact with each other,
how they cooperate, and how they spread ideas.

For many behaviors in nature, the structure or spatial arrangement plays a crucial role. The
states of particles in physics are influenced by the particles nearby. The spread of infection
is determined by the population structure. The likelihood that the population consists of
altruistic individuals depends on the network of friendships among people in the population.

Another important force is randomness. In physics, the next state of a particle is influenced
by particles nearby, but they do not completely determine the next state; they only change
the probability. In biology, the success of a particular animal depends on its fitness. However,
even the most fit individual can perish in an unexpected event and not produce any offspring.
In social dynamics, the idea spreads not only if it is correct but also if it becomes fashionable,
and there, randomness plays a crucial role.

This thesis explores the fascinating topic of the role of structure and randomness in many
models from physics, biology, and computer science. This research direction is extremely
diverse. There are a plethora of questions to be asked. However, these models share many
commonalities, which means similar theoretical techniques and approaches can be applied to
answer these important questions.

1.1 Evolutionary dynamics in many fields

1.1.1 Biology

The field of evolutionary biology examines the emergence and the spread of a mutation. There
are many models in evolutionary biology, each fitting a particular reality. This work focuses on
models of selection. This means that at the beginning of the process, all different types of
individuals are already present, and the process continues until one of the types spreads over
the whole population. These models suppose that mutation is rare and the population spends
most of the time in the homogenous state.
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Many important choices reflect particular realities of given models. First, one choice in the
models is the size of the population. The size of the population can be either finite or infinite.
Variable population size describes the introduction of a new species into an environment. The
constant population size describes the fact that a new mutation competes against relatively
well-adapted opponents.

Second, in the models, the individuals can be treated as discrete or continuous. The models
can either describe the population as consisting of different discrete individuals or they can
treat the composition of the population as ratios between different types. In a continuous
population, the more fit individuals surely proliferate, and the question is, what is the ratio
between the mutant and the wild-type or resident? In the discrete population, usually, only
one individual is the carrier of a gene or a mutation. In this stochastic process, it can die and
be replaced by another, while the mutation dies with the individual.

Third, another aspect of the models is how they treat generations of individuals. The new
offspring can be either incorporated into the population one by one (overlapping generations)
or the new offspring form separate generations. In the models with separate generations, all
individuals create a pool of offspring, and then from this pool, a new generation is selected.
With overlapping generations, only a subset of the population reproduces and potentially
replaces another subset of the population.

Fourth, the decision also lies in how to treat time. Time is either discrete or continuous. In
discrete time, every reproduction happens individually at one time point, and reproduction
happens step-by-step. Continuous time is usually combined with an infinite continuous
population. There, the equations based on time describe the composition of the population.

These are only simple choices for basic models. There are various possible extensions, such as
considering mutation or sexual reproduction. The choices are used in various models, some of
the most famous and widely used are introduced below.

Moran process. The Moran process, developed by Patric Moran [Mor58], describes a
finite population of discrete individuals with overlapping generations in a discrete time. The
population consists of n individuals, one of them is a mutant with reproductive fitness r
(usually r > 1), the rest of the individuals are called residents with reproductive fitness 1. In
one step of the process, one random individual is selected according to its fitness, and its copy
reproduces a random individual from the population.

The population consists of n individuals, and the composition of the population is described by
the number of mutants (a) and the number of residents (n−a). This means a one-dimensional
Markov Chain with n + 1 states can describe the whole dynamic. The Markov Chain has two
absorbing states for a = 0 and a = n, and the transitions connect only states that represent
configurations where the number of mutants differs by 1. In one state of the Markov Chain,
the probability of increasing the number of mutants by 1 is r times the probability of decreasing
the number of mutants. The process starts in the state with only one mutant, and mutants
spread over the whole network if they reach a state with a = n. This event is called fixation.
Since the fate is described by a one-dimensional Markov Chain, the fixation probability of
mutants can be computed in a closed form as:

1 − 1
r

1 − 1
rn−1

.
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Wright-Fisher model. Wright-Fisher model [Wri31, Fis99] describes the evolution in a finite
population with discrete individuals and separate generations in discrete time. The population
consists of n individuals of different types. In one generation, n individuals are selected with
replacement from the previous generation. The number of selections of one individual denotes
the number of offspring in the next generation. Compared to the Moran process, there are no
beneficial mutations; all individuals have the same fitness, which represents the genetic drift.
This means that the fixation probability of one individual is

1

n
.

Lotka–Volterra equations. Lotka-Volterra equations [Lot25, Lot27, HS98] describe the
dynamics of two types of individuals, usually denoted by predator and prey. Individuals as
well as time are continuous. The evolution of the population is described by two first-order
nonlinear differential equations.

Replicator dynamics. A more general version of the Lotka-Volterra equations is replicator
dynamics [TJ78, HS98, HS88]. They usually consider an infinite population with continuous
individuals in continuous time. The population state is given by a vector of frequencies of
different types, and the dynamics is given by a differential equation that determines the
frequencies of individuals after time t.

1.1.2 Physics

Physics also studies models similar to evolutionary biology. However, these models try to explain
a different reality. Usually, they describe an inner state of charged particles. Configurations of
the population of particles have different energies. The process then describes the evolution of
the population towards the state with the lowest energy or towards the local minima.

There are a lot of similarities: population can be finite or infinite; the particles can be
represented by the number or the proportion; the generations can be either overlapping or
non-overlapping; and the time can be treated either discretely or continuously. However, there
are some differences: the most important difference is that during the process, new types (or
charges) can stochastically appear.

Ising model. The Ising model [Isi25, Ons44, Yeo92] represents ferromagnetism. The
population consists of particles that can have a spin or a charge, either +1 or −1. The
particles are arranged on a lattice, possibly of a higher dimension. Two neighboring particles
with the same spin have lower energy than two particles with different spins. The particles
randomly switch their spins to minimize the energy, however, heat (or an incoming energy)
can disturb this process. The most interesting questions in these models are phase transitions
based on the amount of incoming energy.

Game of life. The Game of Life [BCG04] and, in general, cellular automata [WGeH03] are
a general model in physics and computer science. The individuals are arranged on a grid, and
they have two states. In one generation, every individual changes its state based on the states
that it sees in the neighborhood. The model exhibits very complex behavior, and problems are
hard to solve [CIJS20] even for simple rules.
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1.1.3 Social Dynamics

Social dynamics models the spread of strategies, opinions, or infection in a society. The
individuals represent people, and their state is the strategy, opinion, or health status. The
choices that can be made in these models are very similar to those in biology, however, the
individuals can be more complicated. For instance, the individual can deterministically change
its state when at least half of the population is in a particular state.

Voter model. The voter model [CS73, Lig13, PJR+17, Per16] describes the population of
individuals, each holding a binary opinion. One individual is randomly selected to potentially
update their opinion. Based on the neighbors that represent friends or people the individual
interacts with, the new opinion is selected.

Contact Process. The contact process [Har74, Lig12] describes the spread of disease in
the population. Individuals represent people, and the state represents health status. Infected
individuals become healthy at a constant rate, however, the infected individuals can spread
the disease to their neighbors.

1.2 The role of the networks

Some of the models, mainly from physics and social dynamics, suppose that there is some
population structure, usually a grid. In general, the population structure influences the
trajectory in all evolutionary dynamics [Now06a, SF07, PJR+17]. Some of the models are
better suited to consider the population structure. The models that consider the population
structure should consider a finite population, and the individuals should be treated discretely,
such that their neighbors can be identified. This section first defines graphs, which formally
describe the structure, and then introduces ways to add the population structure to the two
models examined later.

Graphs. Graph G = (V, E) consists of a set of vertices (or nodes) V and a set E of
unordered pairs of vertices. Two vertices connected by an edge are called neighbors. A
weighted graph consits of a triple G = (V, E, w) where w is a weight function that for every
edge e ∈ E returns a (positive) number denoting the weight. The weight of an edge signifies
the strength of the connection. The graph can be directed, in that case E consits of ordered
pairs of vertices. The orientation of an edge means that only one vertex can influence another,
not the other way around. A complete graph is a graph where E contains all pairs of vertices
and is denoted by Kn. A graph is d-regular if every vertex is contained exactly in d edges.

1.2.1 Moran process

In the Moran process, the structure was first considered in [LHN05]. The structure is
represented by a graph with n vertices, and every vertex is occupied by one individual. With
structure, we recover two different update rules that nearly coincide in the structureless case.
They are Birth-death and death-Birth updating. The name signifies the order of events, the
Birth is capitalized to highlight that fitness plays a role in this step.
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Birth-death. In the Birth-death process, first, an individual v from the population is selected
proportionally to its fitness. Second, a random neighbor u is selected proportionally to the
weight of the edge coming from v. Then, the copy v replaces the individual occupying vertex u.

death-Birth. In the death-Birth process, death precedes birth. First, an individual v is
selected to die. Second, among its neighbors, u is selected proportionally to the fitness times
the weight of an edge coming to v. Then, v is replaced by a copy of u.

1.2.2 Replicator dynamic

Replicator dynamics are used in physics and social dynamics [SF07, PS10a, NM92a, SP05]
and also consider a population structure expressed as a network. As opposed to the Moran
process, in replicator dynamics, one edge between u and v is selected randomly. Then, either
u replaces v or v replaces u. With higher probability individual with a higher fitness replaces
an individual with a lower fitness. This parameter can be tuned and is known as the strength
of selection. The strength of selection can be weak, where the fitness plays a very small role in
the replacement, to the limit of strong selection, where the more fit individual surely replaces
the less fit one.

1.3 Constant and Frequency Dependent Selection

This section discusses the fitness of individuals. In general, the fitness can depend on the
whole configuration of the network and the spatial arrangement of the types. However, this is
untractable and some simplifications have to be made. In general, models consider into the
fitness the following:

• the type of an individual;

• the inhabited vertex; and

• the number, types, and arrangement of the neighbors.

Considering these parameters, for the computation of the fitness, the knowledge of the local
neighborhood is needed.

1.3.1 Constant Selection

In the constant selection, the fitness of the individual depends only on the type of the individual
and potentially the vertex it inhabits. This represents a simple beneficial mutation that provides
a higher fitness compared to the original type. In these settings, the more fit type has fitness
r > 1 and is called a (beneficial) mutant, and the less fit type with fitness 1 is called a resident.
Usually, the dynamic starts with only one mutant in a graph inhabited by residents. The
constant selection is usually examined in the context of the Moran process, either Birth-death
or death-Birth. The most studied question about the process is: What is the probability that
the mutant spreads over the whole population (fixation probability)?

Potentially, not only the type, but also the inhabited vertex and type can be considered
for the computation of the fitness. If one type has always higher or equal fitness than
the other type, for instance, in the case where the fitness advantage is felt only in some
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vertices [BKP+22, EDS07], the advantageous type is still called mutant, and the question still
regards the fixation probability of a mutant. However, in general, there might exist vertices
where one type has a fitness advantage, together with vertices where the other type has a
fitness advantage. In this setting, the main question changes. The main interest is in the
number of steps until one of the types fixates.

1.3.2 Frequency dependent selection

The frequency-dependent selection considers the type of the individual together with the
arrangement of the neighborhood. In general, any arrangement of the neighbors can translate
to any fitness. However, in practice, the games are used for determining fitness.

Games. Game theory [VNM47, OR94] is an important field that studies optimal decision
making. Two players independently and simultaneously can choose an action (strategy), and
then they receive a payoff based on the actions selected. The payoff is determined by a payoff
matrix. In evolutionary dynamics on graphs, the type is usually equated with a pure strategy
(an individual selects the same action every time). All individuals play the game with all of
their neighbors and collect the payoff. The payoff can be either summed from all interactions
or averaged.

Fitness from games. The payoff is then translated to the fitness (or, in the replicator
dynamics, the payoffs of two selected individuals are compared by a function that corresponds
to the fitness). In the weak selection, the fitness is multiplied by a small constant and then
added to 1. In medium and strong selection, the fitness is an exponential function of the
payoff [MRH21].

Important games. Any matrix can represent a game. However, in practice, the most
interesting games are social dilemmas. Where either the global welfare is maximized by one
strategy, however, selfish individuals benefit from switching away from that strategy, or where
coordination is needed.

The game is described by the following general matrix of payoffs for the first player:
(

R S
T P

)

The first player chooses the row of the matrix, and the second player chooses the column of
the matrix. The first player receives the payoff equal to the selected cell of the matrix, and
the second player receives the payoff equal to the selected cell of the transposed matrix. In
many settings, the first action (first row or first column) is treated as a cooperation where
both players receive R, the reward for cooperation. The first player can change to the second
action (called defection) and then receives the reward T , the temptation for defection against
cooperation. If the first player cooperates and the second player defects, the first player
recieves the sucker’s payoff. When both players defect (play the second action), they receive
the punishment P .

Based on the ordering of the payoffs R, S, T , and P , we have different games and dilemmas.
If R g T, S g P , both players individually prefer to cooperate, there is no dilemma. If
T g R g S g P , the game is called the snowdrift game (or hawk-dove game) [HD04]. In the
game, both players are tempted to defect, however, it is better to cooperate against defection
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than to defect. If R g T g P g S, the game is called the stag hunt game [Cam11]. When
both players are cooperating, there is no incentive to change one’s strategy. However, it is
also impossible to escape mutual defection, since P is higher than S for unilateral cooperation.
Finally, T g R g P g S, gives the Prisoner’s dilemma [Nas51]. Any player in any situation is
tempted to defect to obtain a higher payoff: If the other player cooperates, defecting gives T ,
which is bigger than R. If the other player defects, defecting gives P , which is bigger than
S. The prisoner’s dilemma is one of the most widely studied games because it captures the
tension between cooperation and defection.

The matrix games are very general; some predator-prey dynamics can be expressed as a matrix
game (then T g P g R g S). The preference for the opposite type can be expressed by
R = 0, S = 1, T = 1, and P = 0, and the preference for the same type as R = P = 1 and
S = T = 0.

1.4 Previous results

1.4.1 Constant selection

The exploration of the constant selection mainly considers Birth-death updating, however,
there are also some results for the death-Birth updating.

Amplifiers. In the Moran process with constant selection, the well-mixed population is
considered a baseline. There, one mutant with fitness r > 1 spreads over the whole population
with probability 1 − 1

r
in the limit of a large population [Mor58]. In the presence of structure,

the fixation of one randomly placed mutant can increase. The graph that increases the fixation
probability for a randomly placed beneficial mutant is called an amplifier ; on the other hand,
the graph that decreases the fixation probability compared to the well-mixed case is called
suppressor. Moreover, with the structure, it matters whether the birth event is followed by
death or vice versa.

Isothermal theorem. Isothermal theorem [Now06a, ALN19] examines the fixation probability
of mutants on regular graphs, which are graphs where all vertices have the same degree and
contain, for instance, grids of any dimension. The theorem states that the fixation probability
on the regular graph is the same as in the complete graph. This means that the structure
alone is not enough, also, the imbalance between the number of neighbors and vertices is
needed to achieve amplification.

Amplification in Birth-death updating. The study of the Moran process starts with an
observation that the structure can increase the fixation probability of a beneficial mutant in
the Birth-death process. On the star, very simple graph, the fixation probability of a randomly
placed mutant with fitness r > 1 is 1 − 1

r2 , see [LHN05]. The structure has a similar effect as
increasing the fitness for the mutant from r to r2. The reason for amplification is that the
central vertex of the star is replaced very often; in essence, one vertex needs to be selected
twice in a row to reproduce. One resident reproduces twice with probability proportional to
1 · 1, however, one mutant reproduces with probability proportional to r · r.

In Birth-death updating, there exist even stronger amplifiers than the star. There are so-called
superamplifiers that for all r > 1 increase the fixation probability to 1 in the limit of large
population structure, see [Gia16, GLL+19, GGG+17, PTCN17, TPCN19]. This is the strongest
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possible amplification that guarantees almost sure fixation probability to any beneficial mutant.
The main idea for amplification is to have many vertices with a small incoming degree. There,
one mutant can stay and potentially spread to more connected vertices. Since the mutant has
a fitness advantage, it is more likely to spread further before it gets replaced.

There is also an interesting relationship between the fixation probability and fixation time [TPCN21].
Any superamplifier increases the number of steps until fixation. The reasoning behind this is
that in the process that is fast, the benefits of the mutation are harder to realize.

Besides the amplifiers, for Birth-death updating, there also exist suppressors, see [Gia16].
These graphs ensure that the mutant reproduces into a vertex that is soon replaced by a
resident.

Amplification in death-Birth updating. In the death-Birth updating, the amplification is
much harder to achieve. The best-known amplifier requires weighted edges or amplifies with
extremely low advantage, see [Ric21, Ric23]. Moreover, there are limits on amplification in
death-Birth updating, see [TPCN20]. Since death is followed by reproduction, for large fitness
r, the mutant cannot use large fitness if it dies first or its neighbor does not die. In graphs
that are not complete, this means the fitness advantage is used with smaller probability, and
these graphs are suppressors.

Approximating the fixation probability. Diaz et al. [DGRS16] shows that the process with
constant selection finishes in time that is polynomial with the size of the network. This means
that approximating the fixation probability of a given time can also be done in polynomial time.
The approach is to simulate the process many times until fixation. The empirical probability is
then a good approximation of the real fixation probability.

Heterogenous networks. The networks are heterogeneous in practice; a vertex of a graph
can have an influence on the fitness of an individual inhabiting the vertex [KMN19]. There are
many research directions in heterogeneous networks, for instance, how to select the vertices
where the mutant has an advantage to maximize the fixation probability [BKP+22].

1.4.2 Frequency dependent selection

Frequency-dependent selection is studied from more sides. It is studied not only from a
biological perspective, but also from the perspective of physics and social dynamics. The
literature is more extensive than in the constant selection. This means only selected results
are highlighted here. The works mostly focus on the prisoner’s dilemma, since this is a simple
game that nevertheless captures the essence of the most important question.

Supporting cooperation. Rational agents should never cooperate in one game of Prisoner’s
Dilemma. However, cooperation is not hard to find in the real world. There are many
mechanisms that support the cooperation [Now06b], such as reciprocity, reputation, or the
population structure.

Updating rules. In the constant selection on graphs, there are some similarities between
Birth-death and death-Birth updating. In the frequency-dependent selection, the choice of
the updating rule is even more important. The work of Ohtsuki et al. [OHLN06] shows that
in the death-Birth updating, the cooperation has a chance to spread in the donation games
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if the benefit b divided by cost c (also parametrized as benefit-to-cost ratio ´) is above the
degree d. On the other hand, the cooperation never spreads in the Birth-death updating.

Weak selection. Moreover, [OHLN06] introduces an important technique for computing
the fixation probability in evolutionary games with weak selection. This technique is then used
to discover graphs that promote cooperation for the benefit-to-cost ratio ´ > 1.5 [ALC+17,
FMAN18].

Payoff-to-fitness function. The techniques for the weak selection consider a linear payoff-
to-fitness function. In the weak selection, this is a sensible choice, since the effect of the
payoff on fitness is small. McAvoy et al. [MRH21] show that the only function that satisfies
all natural requirements to translate the payoff to fitness in games with medium or strong
selection is the exponential function.

Hardness of computation. An important theoretical question in computer science is the
computational complexity of a problem. For the frequency-dependent selection, the problem
can be formulated as: given a configuration of different types on the graph, compute the
probability that one given type spreads over the whole network. Ibsen-Jensen [IJCN15] shows
the hardness of the problem for a specific frequency-dependent selection.

Scale-free networks. In the evolutionary games, any analytical result is hard to obtain.
This gives rise to many empirical approaches that simulate the process for different graphs
and different settings [WSP13a, WSP13b, JP13, PS10a, SP05]. The main result is that the
scale-free networks that mimic the social networks are better conducive to cooperation than
other graphs.

1.5 Open questions

Evolutionary dynamics on graphs is a wide research topic. There are many questions and
open problems. This section highlights some of the problems that answer natural questions
about the evolutionary dynamics. Moreover, these questions deal with various aspects of these
dynamics, not only amplification and the fixation times, but also robustness and computational
complexity.

1. Amplification for Birth-death and death-Birth updating. In the constant selection,
the existence of amplifiers, graphs that increase the fixation probability of a randomly
placed advantageous mutant, is a widely studied topic. There are known amplifiers
for both the Birth-death and death-Birth processes. However, these amplifiers are not
robust with respect to the updating rule. An important question is: Do there exist
graphs that are amplifiers for both Birth-death and death-Birth processes?

2. Complexity of spatial games. The work of [IJCN15] shows the computational hardness
of a version of frequency-dependent selection. However, the case of spatial games on the
graphs is not covered by the proof. The main question is: What is the computational
complexity of approximating the fixation probability of cooperators?

3. Existence of general amplifiers for spatial games. The notion of amplifiers is
well established in the Moran process and the constant selection regime. For some
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range of parameters, there exist graphs that promote cooperation, such as graphs
from [ALC+17, FMAN18]. However, these graphs promote the cooperation in regimes
where the cooperation is comparably a good choice against defection (high benefit-to-
cost ratio). In the games, where the temptation for defection T is high compared to
the payoff for mutual cooperation P , the existence of any graphs that can promote
cooperation is an open question of great importance.

4. Heterogenous networks. In the heterogeneous networks, the fitness of one type also
depends on the vertex it occupies. The amplification is not the only question, it is also
important to know what graphs can maintain a diversity of the population. Or in other
words, how long can multiple types coexist, and what are the necessary parameters
for that coexistence? Note that in this setting, the bounds on the number of steps
from [DGM+13] no longer hold.

5. Changing the population structure. In most of the literature, the underlying
population structure is fixed. However, this is not the case in practice, where the
individuals can break friendships or the structure can change over time. The questions
about the dynamic structure are underexplored.

1.6 Thesis Outline and Contributions

The thesis presents five scientific peer-reviewed articles [SJTC24, CIJS22, SC24, STKC23,
CSŽ+22] dealing with the questions relating to the role of networks in evolutionary processes.

Amplification for Birth-death and death-Birth updating. Chapter 2 presents the first
amplifier for both processes: Birth-death and death-Birth, and by this solves Problem 1. This
is the first such graph that amplifies the advantage of mutants. The graph is an amplifier only
for small mutant advantage r, however, it is known that no graph exists that can amplify the
advantage for mutants in death-Birth updating.

Complexity of spatial games. Chapter 3 examines the spatial games with synchronous
updating. In spatial games with synchronous updating, which represent the limit of strong
selection, in one time step, every individual adopts the strategy of the neighbor with the highest
payoff. The chapter presents a proof that the problem of approximating the fixation probability
of cooperators is PSPACE-complete, which solves Problem 2. The main contribution is
the construction of a graph and configuration of cooperators and defectors such that the
cooperators fixate only if a given Turing machine and configuration of the Turing machine
that is accepted. Moreover, the construction is a very simple graph. It is a subset of a grid,
which means that the complexity result holds for many restricted classes of graphs.

Amplifiers for spatial games. The spatial games with synchronous or asynchronous updat-
ing are important models of the spread of cooperation. Chapter 4 presents the construction of
the first structure that is an amplifier, that means: first, one randomply placed cooperator
in a graph full of defectors is more likely to spread over the whole graph; and second, the
cooperators initialized with some positive density in the graph full of defectors spread over
the whole graph with high probability. The most important contribution of the chapter is the
construction of such a graph, which is the first graph that amplifies the advantage for small
differences between the temptation T and payoff P . This chapter answers Problem 3 in the
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affirmative. Moreover, the work also presents the theoretical analysis that can be used to
argue about the amplification property for other graphs.

Coexistence in heterogeneous networks. Chapter 5 examines the fixation times (or
coexistence times) for a Birth-death process on a complete graph where in one half of the
vertices, one of the types has an advantage and in the other half, the other type has an
advantage. The work finds the threshold for the interaction between two halves of the graph,
such that the fixation time is either polynomial or exponential. The main contribution is
the analytical results for the process on heterogeneous networks. This chapter describes the
parameters for the coexistence and thus solves Problem 4 Moreover, the work also contains an
important lemma about so-called potent Markov chains. These are Markov chains where a
special potential can express their change. The lemma bounds the number of steps in these
Markov chains until the absorbing state.

Signed graphs. Chapter 6 examines the dynamic inspired by physics and social dynamics,
where triads of individuals are trying to minimize the energy between them by creating balanced
triangles. The dynamic happens on a complete graph where every edge has a label + or −,
and a triangle is balanced when it contains an even number of − signs. The bounds on the
convergence of local dynamics, where one random unbalanced triangle is selected and a sign
of one edge is flipped, are an open question. The main contribution of the work is the new
dynamic, together with the bounds on the number of steps, which is the foundation to answer
Problem 5.
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CHAPTER 2
Amplifiers for both Birth-death and

death-Birth updating

This chapter appears in full in [SJTC24].

Abstract

Populations evolve by accumulating advantageous mutations. Every population has some
spatial structure that can be modeled by an underlying network. The network then influences
the probability that new advantageous mutations fixate. Amplifiers of selection are networks
that increase the fixation probability of advantageous mutants, as compared to the unstructured
fully-connected network. Whether or not a network is an amplifier depends on the choice of
the random process that governs the evolutionary dynamics. Two popular choices are Moran
process with Birth-death updating and Moran process with death-Birth updating. Interestingly,
while some networks are amplifiers under Birth-death updating and other networks are amplifiers
under death-Birth updating, so far no spatial structures have been found that function as an
amplifier under both types of updating simultaneously. In this work, we identify networks that
act as amplifiers of selection under both versions of the Moran process. The amplifiers are
robust, modular, and increase fixation probability for any mutant fitness advantage in a range
r ∈ (1, 1.2). To complement this positive result, we also prove that for certain quantities
closely related to fixation probability, it is impossible to improve them simultaneously for both
versions of the Moran process. Together, our results highlight how the two versions of the
Moran process differ and what they have in common.

Author summary

The long-term fate of an evolving population depends on its spatial structure. Amplifiers of
selection are spatial structures that enhance the probability that a new advantageous mutation
propagates through the whole population, as opposed to going extinct. Many amplifiers of
selection are known when the population evolves according to the Moran Birth-death updating,
and several amplifiers are known for the Moran death-Birth updating. Interestingly, none of
the spatial structures that work for one updating seem to work for the other one. Nevertheless,
in this work we identify spatial structures that function as amplifiers of selection for both types
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of updating. We also prove two negative results that suggest that stumbling upon such spatial
structures by pure chance is unlikely.

2.1 Introduction

Moran process is a classic stochastic process that models natural selection in populations of
asexually reproducing individuals, especially when new mutations are rare [Mor58, Ewe04]. It
is commonly used to understand the fate of a single new mutant, as it attempts to invade a
population of indistinguishable residents. Eventually, the new mutation will either fixate on
the whole population, or it will go extinct. It is known that when the invading mutant has
relative fitness advantage r > 1 as compared to the residents, this fixation probability tends
to a positive constant 1 − 1/r as the population size N grows large.

On spatially structured populations, fixation probability of an invading mutant can both
increase or decrease. In the framework of evolutionary graph theory [LHN05, Now06a], the
spatial structure is represented by a graph (network) in which nodes (vertices) correspond
to individual sites, and edges (connections) correspond to possible migration patterns. Each
edge is assigned a weight that represents the strength of the connection. Such network-based
spatial structures can represent island models, metapopulations, lattices, as well as other
arbitrarily complex structures [YT21, MLB21, STKC23, YST23, TKCN23]. Spatial structures
that increase the fixation probability of a randomly occurring advantageous mutant beyond
the constant 1 − 1/r are called amplifiers of selection [ACN15]. The logic behind the name is
that living on such a structure effectively amplifies the fitness advantage that the mutants
has, as compared to living on the unstructured (well-mixed) population. Identifying amplifiers
is desirable, since they could potentially serve as tools in accelerating the evolutionary search,
especially when new mutations are rare [FRT13, TPCN19].

When run on a spatial structure, Moran process can be implemented in two distinct versions.
They are called Moran Birth-death process and Moran death-Birth process. In the Moran
Birth-death process, first an individual is selected for reproduction with probability proportional
to its fitness, and the offspring then replaces a random neighbor. In contrast, in the Moran
death-Birth process, first a random individual dies and then its neighbors compete to fill up
the vacant site (see Figure 2.1). Both the Moran Bd-updating [Mor58, LHN05, BKP+22]
and the Moran dB-updating [CS73, Kom06, ALC+17, Ric21] have been studied extensively.
While essentially identical on the unstructured population, the two versions of the process
yield different results when run on most spatial structures [ARS06, BR08, KKK15].

In the world of the Bd-updating, amplifiers are ubiquitous [HT15, PTCN18, TPCN19, MHT19,
PTCN17]. Almost all small spatial structures function as amplifiers of selection [HT15]. A
prime example of an amplifier under the Bd-updating is the Star graph, which improves the
mutant fixation probability to roughly 1 − 1/r2 [BR08, HBR11, MGP14, Cha14]. In particular,
when r = 1 + ε, this is approximately a two-fold increase over the baseline value 1 − 1/r given
by the unstructured population. Moreover, certain large spatial structures function as so-called
superamplifiers, that is, they increase the mutant fixation probability arbitrarily close to 1,
even when the mutant has only negligible fitness advantage r = 1 + ε [GGG+17]. Many other
superamplifiers are known, including Incubators [GLL+19], or Selection Reactors [TPCN21].

In contrast, in the world of dB-updating, only a handful of amplifiers are known [Ric23].
Perhaps the most prominent examples are the Fan graphs (see Fig. 2.2) that increase the
fixation probability of near-neutral mutants by a factor of up to 1.5 [ASJ+20]. Interestingly,
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Figure 2.1: Moran Birth-death and death-Birth processes on a population structure. a,
Each node is occupied by a resident with fitness 1 (blue), or a mutant with fitness r g 1 (red).
Thicker edges denote higher edge weights (stronger interactions). b, In Moran Birth-death
process, a random individual reproduces, and the produced offspring migrates along a random
edge. c, In Moran death-Birth process, a random individual dies, and the vacancy is filled
by a random neighbor. In both cases, edges with higher weight are selected more often, and
fitness plays a role in the Birth step but not in the death step.

all dB-amplifiers are necessarily transient, meaning that the provided amplification effect
disappears when the mutant fitness advantage exceeds a certain threshold [TPCN20]. In
particular, large Fan graphs increase the fixation probability of the invading mutants for
r ∈ (1, φ), where φ ≈ 1.618 is the golden ratio, but decrease it when r > φ [ASJ+20].

Unfortunately, the Fan graphs do not function as amplifiers when we instead consider them
under Bd-updating (see Fig. 2.2). This is unexpected, since amplification in the Bd-world is so
pervasive. And it begs a question. Do there exist spatial structures that function as amplifiers
both under the Bd-updating and under the dB-updating? That is, do there exist structures for
which the amplification effect is robust with respect to the seemingly arbitrary choice of which
version of the Moran process we decide to run?

In this work, we first show three negative results that indicate that the requirements for Bd-
amplification and dB-amplification are often conflicting. First, we show that known amplifiers
of selection under the Bd-updating are suppressors of selection for the dB-updating and vice
versa. Second, we prove that simultaneous Bd- and dB-amplification is impossible under
neutral drift (r = 1) when the initial mutant location is fixed to a specific starting node.
Third, we define a quantity that corresponds to the probability of “mutants going extinct
immediately”. We then prove that, roughly speaking, no graph improves this quantity as
compared to the complete graph under both Bd- and dB-updating. Thus, improving fixation
probability under both Bd- and dB-udpating as compared to the complete graph might seem
unlikely.

Despite those negative results, we identify a class of population structures that function as
amplifiers of selection under both Birth-death and death-Birth updating, for any mutation
that grants a relative fitness advantage r ∈ (1, 1.2). We also present numerical computation
that illustrates that the amplification strength is substantial.

2.2 Model

Here we formally introduce the terms and notation that we use later, such as the evolutionary
dynamics of Moran Birth-death and Moran death-Birth process, the fixation probability, and
the notion of an amplifier.
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2.2.1 Population structure

The spatial structure of the population is represented as a graph (network), denoted GN =
(V, E), where V is a set of N nodes (vertices) of GN that represent individual sites, and E is
a set of edges (connections) that represent possible migration patterns for the offspring. The
edges are undirected (two-way) and may be weighted to distinguish stronger interactions from
the weaker ones, see Fig. 2.1a. The weight of an edge between nodes u and v is denoted
w(u, v). If all edge weights are equal to 1 we say that the graph is unweighted. At any given
time, each site is occupied by a single individual, who is either a resident with fitness 1, or a
mutant with fitness r g 1. The fitness of an individual at node u is denoted f(u).

2.2.2 Moran process

Moran process is a classic discrete-time stochastic process that models the evolutionary
dynamics of selection in a population of asexually reproducing individuals. Initially, each node
is occupied either by a resident or by a mutant. As long as both mutants and residents co-exist
in the population, we perform discrete time steps that change the state of (at most) one node
at a time.

There are two versions of the Moran process (see Fig. 2.1). In the Moran Birth-death process,
we first select an individual to reproduce (randomly, proportionally to the fitness of the
individual), and then the offspring migrates along one adjacent edge (randomly, proportionally
to the weight of that edge) to replace the neighbor. Formally, denoting by F =

∑

u f(u) the
total fitness of the population, node u gets selected for reproduction with probability f(u)/F ,
and then it replaces a neighbor v with probability pu→v = w(u, v)/

∑

v′ w(u, v′).

In contrast, in the Moran death-Birth process, we first select an individual to die (uniformly at
random), and then the neighbors compete to fill in the vacancy (randomly, proportionally to
the edge weight and the fitness of the neighbor). Formally, node v dies with probability 1/N
and it gets replaced by a node u with probability pu→v = f(u) · w(u, v)/(

∑

u′ f(u′) · w(u′, v)).
We note that in both versions we capitalize the word “Birth” to signify that fitness plays a
role in the birth step (and not in the death step).

2.2.3 Fixation probability and Amplifiers

If the graph GN that represents the population structure is connected then the Moran process
eventually reaches a “homogeneous state”, where either all nodes are occupied by mutants
(we say that mutants fixated), or all nodes are occupied by residents (we say that mutants
went extinct). Given a graph GN , a mutant fitness advantage r g 1, and a set S ¦ V of
nodes initially occupied by mutants, we denote by ÄBd

r (GN , S) the fixation probability, that is,
the probability that mutants eventually reach fixation, under Moran Birth-death process. We
are particularly interested in the fixation probability of a single mutant who appears at a node
selected uniformly at random. We denote this fixation probability under uniform initialization
by ÄBd

r (GN) = 1
N

∑

v∈V ÄBd
r (GN , {v}). We define ÄdB

r (GN , S) and ÄdB
r (GN) analogously.

In this work we focus on population structures that increase the fixation probability of invading
mutants. The base case is given by an unweighted complete graph KN that includes all edges
and represents an unstructured, well-mixed population. It is known [Now06a, HT15, KKK15]
that

ÄBd
r (KN) =

1 − 1
r

1 − 1
rN

and ÄdB
r (KN) =

N − 1

N
· 1 − 1

r

1 − 1
rN−1

.
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Given a graph GN and a mutant fitness advantage r g 1, we say that GN is a Bdr-amplifier
if ÄBd

r (GN) > ÄBd
r (KN). We define dBr amplifiers analogously, that is, as those graphs GN

that satisfy ÄdB
r (GN ) > ÄdB

r (KN ). Similarly, suppressors are graphs that decrease the fixation
probability as compared to the complete graph.

2.3 Results

First, we present three negative results that illustrate that the two worlds of Birth-death and
death-Birth updating often present contradictory requirements when it comes to enhancing the
fixation probability of a single newly occurring mutant. Nevertheless, as our main contribution
in the positive direction, we then present population structures that are both Bdr-amplifiers
and dBr-amplifiers for a range of mutant fitness advantages r ∈ (1, 1.2).

2.3.1 Negative results

In this section, we present results that suggest that finding simultaneous Bdr- and dBr-
amplifiers is not easy. First, we show empirically that known amplifiers for one process are
suppressors for the other process. Second, we show that in the neutral regime (r = 1), any
fixed vertex is a “good” starting vertex for the mutant in at most one of the two processes.
Finally, we show that for any starting vertex, the chance of not dying immediately can be
enhanced in at most one of the two processes (see below for details).

Known amplifiers for one process

In this section we examine spatial structures that are known to amplify under one of the two
versions of the Moran process, in order to see whether they amplify under the other version of
the Moran process.

First, we consider the smallest known unweighted dB-amplifier [Ric21], which is a certain
graph on N = 11 nodes (see Fig. 2.2). We call the graph D11. The graph D11 is an extremely
weak dBr-amplifier in a range of approximately r ∈ (1, 1.00075), where it increases the
fixation probability by a factor less than 1.0000001× (see [Ric21, Fig 1]). For r ∈ (1.01, 1.1)
the graph D11 appears to function as a very slight suppressor under both dB-updating
and Bd-updating. In particular, at r = 1.1 we obtain ÄBd

r (D11)/ÄBd
r (K11)

.
= 0.996 and

ÄdB
r (D11)/ÄdB

r (K11)
.
= 0.997.

Next, we examine the star graph S11 on 11 vertices which, to our knowledge, is the strongest
unweighted amplifier for Bd-updating at this population size. The Star graph is a clear
Bdr-amplifier for r ∈ (1.01, 1.1), but an equally clear dBr-suppressor in that range.

The situation is reversed for the Fan graph F11 [ASJ+20]. While the Fan graph clearly functions
as an amplifier under the dB-updating when r ∈ (1.01, 1.1), it lags behind the baseline given
by the complete graph under the Bd-updating.

Neutral regime (r = 1)

The second negative result pertains to the case of neutral mutations (r = 1). Recall that
ÄBd

r (GN , v) and ÄdB
r (GN , v) denote the fixation probabilities when the initial mutant appears

at node v. The following theorem states that for neutral mutations (r = 1), no initial mutant
node increases the fixation probability both for Birth-death and death-Birth updating.
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Complete graph K 11

Star graph S11 Fan graph F11

Graph D11

a b c

Figure 2.2: Known amplifiers are suppressors for the other process. a, We consider four
graphs on N = 11 nodes, namely the Complete graph K11, the star graph S11, the Fan graph
F11, and the smallest known undirected amplifier D11 (see [Ric21]). b, Under Bd-updating,
the only amplifier for r ∈ {1.01, . . . , 1.1} is the Star graph S11. c, Under dB-updating, the
only amplifier for r ∈ {1.01, . . . , 1.1} is the Fan graph F11. Values computed by numerically
solving the underlying Markov chains.

Theorem 1. Let GN be a graph and v an initial mutant node. Then at least one of the
following is true:

1. ÄBd
r=1(GN , v) < ÄBd

r=1(KN); or

2. ÄdB
r=1(GN , v) < ÄdB

r=1(KN); or

3. ÄBd
r=1(GN , v) = ÄBd

r=1(KN) and ÄdB
r=1(GN , v) = ÄdB

r=1(KN).

The idea behind the proof is that for neutral evolution there are explicit formulas for fixation
probabilities ÄBd

r (GN , v) and ÄdB
r (GN , v) on any undirected graph GN [BHRS10, Mac14]. The

result then follows by applying Cauchy-Schwarz inequality. See Section 2.5 for details. In
Section 2.5, we also note that Theorem 1 does not generalize to the case when instead of
having one initial mutant node we start with an initial subset S of k g 2 nodes occupied by
mutants.

Immediate extinction and forward bias

In order to present our third and final negative result, we need to introduce additional notions
and notation. When tracking the evolutionary dynamics on a given graph GN with a given
mutant fitness advantage r g 1, it is often useful to disregard the exact configuration of which
nodes are currently occupied by mutants, and only look at how many nodes are occupied by
mutants.

One example of this is the celebrated Isothermal theorem [LHN05] which states that once N
and r are fixed, the fixation probability under the Moran Birth-death process on any regular
graph is the same. Here, a graph is regular if each node has the same total weight of adjacent
edges. Examples of regular graphs include the complete graph, the cycle graph, or any grid
graph with periodic boundary condition.

The intuition behind the proof of the Isothermal theorem is that for any regular graph RN , the
Moran Birth-death process can be mapped to a random walk that tracks just the number of
mutants, instead of their exact positions on the graph. It can be shown that this random walk
has a constant forward bias, that is, the probabilities p+ (resp. p−) that the size of the mutant
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subpopulation increases (resp. decreases) satisfy p+/p− = r, for any number of mutants in
any particular mutant-resident configuration. A natural approach to construct amplifiers is
thus to construct graphs for which this forward bias satisfies an inequality p+/p− g r for the
Moran Birth-death process and an analogous inequality for the Moran death-Birth process.
Our final negative result shows that this goal can not be achieved already in the first step.

Formally, consider the Moran Birth-death process on a graph GN with a single initial mutant
placed at node u. Let µBd

r (GN , u) be the probability that the first reproduction event that
changes the size of the mutant subpopulation is the initial mutant reproducing (as opposed
to the initial mutant being replaced by one of its neighbors). In other words, µBd

r (GN , u) is
the probability that the first step that changes the configuration of the mutants does not
eliminate the initial mutant, leaving the options of later mutant extinction or mutant fixation.

For the complete graph KN (and any single mutant node) it is not hard to show that
µBd

r (KN) = µBd
r (KN , u) = r/(r + 1) for any node u. Moreover, by a slight extension of the

Isothermal theorem, we have µBd
r (RN , u) = r/(r+1) for any regular graph RN and any node u.

For Moran death-Birth process, we define µdB
r (GN , u) and µdB

r (KN ) analogously. To construct
a graph that is both a Bd- and a dB-amplifier, a natural approach is to look for a graph
and an initial mutant node u such that µBd

r (GN , u) > µBd
r (KN ) and µdB

r (GN , u) > µdB
r (KN ).

However, the following theorem states that no such graphs exist.

Theorem 2. Let GN be a graph, u an initial mutant node, and r g 1. Then at least one of
the following is true:

1. µBd
r (GN , u) < µBd

r (KN); or

2. µdB
r (GN , u) < µdB

r (KN); or

3. µBd
r (GN , u) = µBd

r (KN) and µdB
r (GN , u) = µdB

r (KN).

The proof relies on the notion of the temperature of a node. Formally, given a graph
GN = (V, E) we first define a (weighted) degree of a node v as deg(v) =

∑

v′:(v,v′)∈E w(v, v′).
Then, given a node u, we define its temperature T (u) as

T (u) =
∑

v : (v,u)∈E

w(v, u)

deg(v)
.

The temperature of a node represents the rate at which the node is being replaced by its
neighbors in the Moran Birth-death process when r = 1. Nodes with high temperature are
replaced often, whereas nodes with low temperature are replaced less frequently. Building
on this, it is straightforward to show that if a node u has above-average temperature, then
µBd

r (GN , u) < µBd
r (KN), that is, in Moran Birth-death process with a single mutant at u the

forward bias is lower than the forward bias on a complete graph. To complete the proof, we then
show that for any node u with below-average temperature, we have µdB

r (GN , u) < µdB
r (KN).

Our proof of the latter claim uses Jensen’s inequality for a certain concave function. See
Section 2.5 for details.

2.3.2 Positive result

Despite the above negative results, in this section we identify population structures AN that
substantially amplify the fixation probability under both Birth-death updating and death-Birth
updating when the number N of nodes is sufficiently large.
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2. Amplifiers for both Birth-death and death-Birth updating

The structures AN are composed of two large chunks ABd and AdB that are connected by a
single edge, see Fig. 2.3a for an illustration. The chunk AdB is a Fan graph [ASJ+20], which is
to our knowledge the strongest currently known dB-amplifier. The chunk ABd could be any of
the many strong Bd-amplifiers. For definiteness, in Fig. 2.3a we use a Fan-like structure with
a nodes in a central hub and b blades of two nodes each surrounding it. The single connecting
edge has a very low edge weight so that the two chunks interact only rarely. For population
size N = 1001, the resulting weighted graph is both a Bdr-amplifier and a dBr-amplifier for
any r ∈ (1, 1.09), see Fig. 2.3b.

ABd AdB

ba

u v

Figure 2.3: Simultaneous Bd- and dB-amplifier AN . a, The graph AN is composed of
two large chunks ABd and AdB that are connected by a single edge. The chunk AdB is a Fan
graph with f nodes. The chunk ABd is a fan-like graph with a vertices in a central hub and
b blades of two nodes each. The total population size is N = a + 2b + f (here a = b = 5,
f = 11, and N = 26). The edge weights are defined such that different circled units within
the chunks interact only rarely, and the chunks themselves interact even more rarely. b, Here
we consider graph AN with population size N = 1001 and (a, b, f) = (30, 85, 801). The
fixation probabilities under Bd- and dB-updating are computed by numerically solving the
underlying Markov chain. We find that the inequality ÄBd

r (AN) > ÄBd
r (KN) is satisfied for

r ∈ (1, 1.09) and the inequality ÄdB
r (AN ) > ÄdB

r (KN ) is satisfied for r ∈ (1, 1.2). In particular,
at r = 1.05 the ratios satisfy ÄBd

r (AN)/ÄBd
r (KN) > 1.44 and ÄdB

r (AN)/ÄdB
r (KN) > 1.14.

Similarly, we identify large population structures that serve as both Bdr-amplifiers and dBr-
amplifiers for any r ∈ (1, 1.2).

Theorem 3 (Simultaneous Bd- and dB-amplifier). For every large enough population size N
there exists a graph AN such that for all r ∈ (1, 1.2) we have

ÄBd
r (AN) > ÄBd

r (KN) and ÄdB
r (AN) > ÄdB

r (KN).

In what follows we provide intuition about the proof of Theorem 3.The fully rigorous proof is
relegated to Section 2.5. Let e be the edge connecting the two chunks, u its endpoint in ABd,
and v its endpoint in AdB.

First, observe that since e has a low weight, the two chunks evolve mostly independently. This
means that, with high probability, each chunk resolves to a homogeneous state in between any
two interactions across the chunks. In particular, if the initial mutant appears in the chunk
where it is favored (e.g. if it appears in the chunk ABd when Bd-updating is run), the mutants
fixate on that chunk with reasonable probability. If that occurs, we say that mutants are “half
done”.

Once the mutants are half done, the next relevant step occurs when the two chunks interact.
There are two cases. Either a mutant at u reproduces and the offspring migrates along e to v,
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or a r esi d e nt at v r e pr o d u c es a n d t h e o ffs pri n g mi gr at es al o n g e t o r e pl a c e t h e m ut a nt at u . I n
b ot h c as es, t h e i n di vi d u al ( m ut a nt or r esi d e nt) w h o “i n v a d es ” t h e ot h er h alf e v e nt u all y eit h er
s u c c e e ds i n s pr e a di n g t hr o u g h t h at h alf, or t h e y f ail at d oi n g t h at. If t h e l att er o c c urs, w e ar e
b a c k at t h e sit u ati o n i n w hi c h m ut a nts ar e h alf d o n e a n d t h e sit u ati o n r e p e ats. B y b o u n di n g
all t h e r el e v a nt pr o b a biliti es, w e s h o w t h at o n c e h alf d o n e, m ut a nts ar e o v er w h el mi n gl y li k el y
t o fi x at e, as o p p os e d t o g oi n g e xti n ct.

W e hi g hli g ht a n i nt er esti n g p h e n o m e n o n t h at o c c urs i n o ur pr o of. As w e r u n t h e e v ol uti o n ar y
d y n a mi cs, w e c a n l o o k at t h e fl o w al o n g t h e c o n n e cti n g e d g e e . T h a n ks t o t h e e d g e w ei g hts, it
t ur ns o ut t h at t h e dir e cti o n of t h e fl o w al o n g e fli ps d e p e n di n g o n w h et h er w e r u n t h e M or a n
Birt h- d e at h pr o c ess or t h e M or a n d e at h- Birt h pr o c ess. I n p arti c ul ar, u n d er t h e B d- u p d ati n g
t h e e d g e e is us e d m ostl y i n t h e dir e cti o n fr o m u t o v . T h at is, m a n y i n di vi d u als mi gr at e
fr o m u t o v , w h er e as f e w i n di vi d u als mi gr at e fr o m v t o u . U n d er d B- u p d ati n g t h e sit u ati o n
r e v ers es. T h at is, m a n y i n di vi d u als mi gr at e fr o m v t o u , w h er e as f e w of t h e m mi gr at e fr o m u
t o v . T h us, u n d er t h e B d- u p d ati n g t h e A B d c h u n k is e ff e cti v el y u pstr e a m of t h e c h u n k A d B ,
w h er e as u n d er t h e d B- u p d ati n g t h e A d B c h u n k is e ff e cti v el y u pstr e a m of t h e c h u n k A B d . T his
as y m m etr y is a k e y f a ct or t h at c o ntri b ut es t o t h e f a ct t h at o n c e t h e m ut a nts ar e h alf d o n e,
t h e y ar e li k el y t o fi x at e o n t h e w h ol e gr a p h (s e e Fi g. 2. 4).

A d B

A B d A d B

b

1

A B d A d B

1
t 3

1
t

Birt h- d e at h ✁ 1 / t2 ✁ 1 / t3

d e at h- Birt h ✁ 1 / t3 ✁ 1 / t2

u v

p u ³ v p v ³ ur e gi m e

a

v

v

Birt h- d e at h

d e at h- Birt hc

...
...

u

A B d

u

Fi g ur e 2. 4: I n t er a c ti o n s b e t w e e n A B d a n d A d B . a, T h e e d g e w ei g hts i n t h e c h u n ks A B d

(r e d) a n d A d B ( bl u e) ar e s h o w n as a f u n cti o n of t ( h er e t k 1 is l ar g e). T h e c o n n e cti n g e d g e
h as w ei g ht 1 /t 3 , all ot h er e d g es wit h e n d p oi nt u h a v e t ot al w ei g ht 1 /t a n d all ot h er e d g es
wit h e n d p oi nt v h a v e t ot al w ei g ht 1. F or e a c h of t w o v ersi o ns of t h e M or a n pr o c ess, t h e r at es
at w hi c h t h e o ffs pri n g mi gr at e fr o m u t o v a n d fr o m v t o u c a n b e c al c ul at e d a n d ar e list e d i n
t h e t a bl e. b, U n d er Birt h- d e at h u p d ati n g, t h e mi gr ati o n r at e p u → v fr o m u t o v is r o u g hl y t×
l ar g er t h a n t h e mi gr ati o n r at e p v → u fr o m v t o u , s o t h e c h u n k A B d is u pstr e a m of t h e c h u n k
A d B , a n d a m ut a nt w h o h as fi x at e d o v er A d B is li k el y t o fi x at e o v er A B d t o o. c, I n c o ntr ast,
u n d er d e at h- Birt h u p d ati n g w e h a v e p v → u ≈ t · p u → v , h e n c e t h e c h u n k A d B is u pstr e a m of
A B d .

W h at r e m ai ns i n t h e pr o of is t o b al a n c e o ut t h e si z es of t h e t w o c h u n ks. F or s m all r > 1 , t h e
str o n g est k n o w n d B- a m pli fi ers ar e r o u g hl y 3

2
× str o n g er t h a n t h e C o m pl et e gr a p h (i n t er ms

of t h e fi x ati o n pr o b a bilit y). T h us, i n or d er t o a c hi e v e a m pli fi c ati o n u n d er d B- u p d ati n g, w e
n e e d t h e c h u n k A d B t o t a k e u p at l e ast 2 / 3 of t h e t ot al p o p ul ati o n si z e. T h e c h u n k A B d

t h e n t a k es u p at m ost 1 / 3 of t h e t ot al p o p ul ati o n si z e. I n or d er t o a c hi e v e B d- a m pli fi c ati o n,
fi x ati o n pr o b a bilit y o n A B d u n d er B d- u p d ati n g m ust t h er ef or e b e at l e ast 3 × l ar g er t h a n t h at
o n t h e C o m pl et e gr a p h. I nt er esti n gl y, a St ar gr a p h is n ot str o n g e n o u g h t o d o t h at (f or r ≈ 1

2 1



2. Amplifiers for both Birth-death and death-Birth updating

and large population size N it is only roughly 2× stronger than the Complete graph), but
sufficiently strong Bd-amplifiers do exist (e.g. any superamplifier).

2.4 Discussion

Population structure has a profound impact on the outcomes of evolutionary processes and,
in particular, on the probability that a novel mutation achieves fixation [DL94a, LHN05].
Population structures that increase the fixation probability of beneficial mutants, when
compared to the case of a well-mixed population, are known as amplifiers of selection.

Somewhat surprisingly, to tell whether a specific spatial structure is an amplifier or not, one
needs to specify seemingly minor details of the evolutionary dynamics. The well-studied Moran
process comes in two versions, namely Moran process with Birth-death updating and Moran
process with death-Birth updating. While many spatial structures are amplifiers under the
Bd-updating [HT15], only a handful of amplifiers under the dB-updating are known [Ric23].
Moreover, none of the dB-amplifiers that we checked amplify under the Bd-updating.

In this work we help explain this phenomenon by proving mathematical results which illustrate
that the two objectives of amplifying under the Bd-updating and amplifying under the dB-
updating are often contradictory. Thus, one might be tempted to conclude that perhaps there
are no population structures that amplify in both worlds, that is, regardless of the choice of the
underlying dynamics (Bd or dB). Nevertheless, we proceed to identify population structures
that serve as amplifiers of selection under both Bd-updating and dB-updating.

The amplifiers we identify in this work have several interesting features. First, they are robust
in the sense that they amplify selection under both the Bd-updating and the dB-updating.
Second, they provide amplification for any mutant fitness advantage r in a range r ∈ (1, 1.2),
which covers many realistic values of the mutant fitness advantage, and the amplification is
non-negligible (for instance, for r = 1.05 the fixation probability increases by 14% and 44%,
respectively. see Fig. 2.3). Third, the amplifiers are modular. That is, they consist of two
large chunks that serve as building blocks and that interact rarely. For definiteness, in this
work we specified the two chunks and their relative sizes, but each chunk can be replaced
by an alternative building block and the relative sizes can be altered. For example, the best
currently known dB-amplifiers amplify by a factor of 1.5× for r ≈ 1 and continue to amplify
for r in a range r ∈ (1, φ), where φ = 1

2
(
√

5 + 1) ≈ 1.618 is the golden ratio [ASJ+20]. If
better dB-amplifiers are found, they can be used as a building block in place of one of the
chunks to improve the range r ∈ (1, 1.2) for which the resulting structure amplifies in both
worlds.

In this work, our objective was to increase the fixation probability of an invading mutant in
both worlds (Bd-updating and dB-updating). An interesting direction for future work is to
optimize other quantities in both worlds.

One such quantity is the duration of the process until fixation occurs [DGRS16, MvS20, MvS21].
For example, achieving short fixation times in combination with increasing the fixation
probability does not appear to be easy. Our proofs rely on the existence of small edge weights
to separate the time scales at which different stages of the process happen. While using more
uniform edge weights might still lead to the same outcome, the proofs would need to become
more delicate. A possible approach to identify structures that serve as fast amplifiers in both
worlds would be to find unweighted amplifiers, because then the time would be guaranteed
to be at most polynomial [DGM+14, DKPT22]. The first step in this direction would be to
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2.5. Additional proofs

identify large and substantially strong unweighted dB-amplifiers. There are promising recent
results in this direction [Ric23].

Looking beyond fixation time, there are other relevant quantities such as the recently introduced
rate at which beneficial mutations accumulate [ST22]. Existing research suggests that the two
versions of the Moran process behave quite differently in terms of the fixation probability [HT15],
but quite similarly in terms of the fixation time [DGM+14, DKPT22]. Which of those two
cases occurs for other relevant quantities remains to be seen.

Data and code availability

Code for the figures and the computational experiments is available from the Figshare repository:
https://figshare.com/s/4e08d78c892749f84201.

2.5 Additional proofs

2.5.1 Preliminaries

Given an undirected graph GN = (V, E) on N nodes, the degree of a node u, denoted
deg(u), is the number of neighbors of u in GN . When the edges are weighted, we define the
degree deg(u) =

∑

v:(u,v)∈E w(u, v) as the sum of the weights of all the adjacent edges. As a
direct extension of [ARS06, BHRS10, Mac14] and as noted in [AM19] we obtain the following
formula for fixation probability under neutral drift (r = 1). For completeness, we include a
proof.

Lemma 1 (Fixation probability on edge-weighted undirected graphs when r = 1). Let
GN = (V, E) be an edge-weighted undirected graph on N nodes and S ¢ V any set of
vertices occupied by mutants. Then

ÄBd
r=1(GN , S) =

∑

u∈S 1/ deg(u)
∑

v∈V 1/ deg(v)
and ÄdB

r=1(GN , S) =

∑

u∈S deg(u)
∑

v∈V deg(v)
.

Proof. Let pu→v be the probability that, in a single step, an individual at node u produces an
offspring that replaces an individual at node v. For Birth-death updating, it suffices to check
that for any subset S ¢ V of mutant nodes and any edge (u, v) connecting a mutant node
u ∈ S and a non-mutant node v ̸∈ S we have

pu→v · 1/ deg(v)
∑

v′∈V 1/ deg(v′)
= pv→u · 1/ deg(u)

∑

v′∈V 1/ deg(v′)
.

Since for Birth-death updating and r = 1 we have pu→v = 1
N

· w(u,v)
deg(u)

, both sides rewrite as

1
N

· w(u,v)
deg(u) deg(v)

∑

v′∈V 1/ deg(v′)
,

and so the claim is proved. Likewise, for death-Birth updating it suffices to check that

pu→v · deg(v)
∑

v′∈V deg(v′)
= pv→u · deg(u)

∑

v′∈V deg(v′)
.
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2. Amplifiers for both Birth-death and death-Birth updating

Since for death-Birth updating and r = 1 we have pu→v = 1
N

· w(u,v)
deg(v)

, this time both sides
rewrite as

pu→v ·
w(u,v)

N
∑

v′∈V deg(v′)
.

The proof of our positive result relies on three existing results. For convenience, we list them
here. First, there exist unweighted graphs called Incubators that are strong amplifiers under
Birth-death updating [GLL+19, Theorem 2].

Lemma 2. There exists a family of graphs ABd
N such that for all r > 1, we have

ÄBd
r (ABd

N ) g 1 − O(N−1/3).

Second, there exist edge-weighted graphs called Separated Hubs that are substantial amplifiers
under death-Birth updating [ASJ+20, Theorem 3].

Lemma 3. There exists a family of graphs AdB
N such that for all r > 1, we have

ÄdB
r (GN) =

N

2N + 1
· 1 − 1

r3

1 − 1
r3N

.

Third, the evolutionary dynamics terminates polynomially quickly in terms of the population
size N , under both the Birth-death updating [DGM+14, Theorem 9] and the death-Birth
updating [DKPT22, Theorem 1].

Lemma 4. Fix r > 1. For Bd and dB process on an undirected graph with N vertices with
the highest ratio between edge weights 1

ε
, the expected fixation time is in O(N4

ε
).

2.5.2 Negative result 2

In this section, we show that one fixed neutral mutant cannot have a better fixation probability
in both processes than on a complete graph. This means that even if we can choose the
starting position, we are not guaranteed to increase the fixation probability for both processes.

Theorem 4. Let GN be a graph and v an initial mutant node. Then at least one of the
following is true:

1. ÄBd
r=1(GN , v) < ÄBd

r=1(KN);

2. ÄdB
r=1(GN , v) < ÄdB

r=1(KN);

3. ÄBd
r=1(GN , v) = ÄBd

r=1(KN) and ÄdB
r=1(GN , v) = ÄdB

r=1(KN).

Proof. First, note that ÄBd
r=1(KN) = ÄdB

r=1(KN) = 1/N . Next, recall the known formulas for
the fixation probability on undirected graphs under neutral drift (see Lemma 1 and [BHRS10,
Mac14]], namely:

ÄBd
r=1(GN , v) =

1/ deg(v)
∑

u∈V 1/ deg(u)
and ÄdB

r=1(GN , v) =
deg(v)

∑

u∈V deg(u)
.
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As the final ingredient, note that for any N non-negative numbers x1, . . . , xN we have a bound
(

1

x1

+
1

x2

+ · · · +
1

xN

)

· (x1 + x2 + · · · + xN) g N2.

This follows e.g. from the inequality between the arithmetic and harmonic mean of numbers
x1, . . . , xN (called AM-HM), or from Cauchy-Schwarz inequality. Moreover, the equality
occurs if and only if x1 = x2 = · · · = xN . Applying this bound to xi = deg(vi) we obtain

ÄBd
r=1(GN , v)·ÄdB

r=1(GN , v) =
1/ deg(v)

∑

u∈V 1/ deg(u)
· deg(v)
∑

u∈V deg(u)
=

1

(
∑

u∈V 1/ deg(u)) · (
∑

u∈V deg(u))
f 1

N2
.

If equalities occur everywhere then deg(v1) = · · · = deg(vN ), thus ÄBd
r=1(GN , v) = ÄdB

r=1(GN , v) =
1/N . Otherwise, the product is strictly less than 1/N2, thus at least one of ÄBd

r=1(GN , v) and
ÄdB

r=1(GN , v) is strictly less than 1/N .

The following example illustrates that there exists a graph and a subset S = {u, v} of k = 2
nodes, such that the fixation probability starting from mutants at both u and v is strictly
greater than fixation probability starting from k = 2 mutant nodes on a well-mixed population,
both for the Birth-death and for the death-Birth updating.

ρBd
r=1(D5, S) = 15

31
> 2

5

ρdB
r=1(D5, S) = 5

12
> 2

5

b Dart graph D5

u v

S

ca Complete graph K5

ρBd
r=1(K5, S) = 2

5

u

v
S

ρdB
r=1(K5, S) = 2

5

Figure 2.5: Mutant subset that amplifies for both Bd and dB. a, With two neutral
mutants (r = 1) on a complete graph KN , the fixation probability is equal to 2/N under both
Birth-death and death-Birth updating. b, When two neutral mutants initially occupy vertices
u and v of the so-called dart graph D5, the fixation probability under both Birth-death and
death-Birth updating is increased. c, As r increases above roughly r ≈ 1.24, the fixation
probability on the Dart graph under death-Birth updating drops below the reference value of
two mutants on a complete graph K5. Under Birth-death updating, the effect persists for
r g 1. (Data obtained by numerically solving the underlying Markov chains.)

The intuition behind the result is that node u is a really good initial mutant node for Birth-death
updating, and node v is a really good initial mutant node for death-Birth updating. Together,
they form an above-average set of two mutant nodes, even when compared to a complete
graph with two initial mutants.

2.5.3 Negative result 3

In this section, we prove that for any fixed vertex, in the first step, the ratio between increasing
and decreasing the number of mutants cannot be better than in the complete graph in both
processes. This means we cannot find a vertex from which both processes spread better than in
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2. Amplifiers for both Birth-death and death-Birth updating

the complete graph. To achieve amplification for both processes, we know that some vertices
will be better for Bd and some for dB amplification.

Recall that given Moran Birth-death process run on graph GN with an initial mutant node
u, the quantity µBd

r (GN , u) is the probability that the first reproduction event that changes
the size of the mutant subpopulation is the initial mutant reproducing (as opposed to the
initial mutant being replaced by one of its neighbors). Similarly, we define µdB

r (GN , u) for the
death-Birth process.

Theorem 5. Let GN be a graph, u an initial mutant node, and r g 1. Then at least one of
the following is true:

1. µBd
r (GN , u) < µBd

r (KN);

2. µdB
r (GN , u) < µdB

r (KN);

3. µBd
r (GN , u) = µBd

r (KN) and µdB
r (GN , u) = µdB

r (KN).

Proof. Denote by T (u) =
∑

v : (u,v)∈E
w(u,v)
deg v

the so-called temperature of node u, that is, the
rate at which node u is replaced by its neighbors in the neutral case.

Denote by p+
Bd,r = p+

Bd,r(GN , u) the probability that in a single step of the Moran Birth-death
process the mutant reproduces, and by p−

Bd,r = p−

Bd,r(GN , u) the probability that it gets
replaced by a resident. Denoting the total fitness by F = N + (r − 1) we have

p+
Bd,r =

r

F
and p−

Bd,r =
∑

v : (u,v)∈E

1

F
· w(u, v)

deg v
,

and thus

µBd
r (GN , u) =

p+
Bd,r

p+
Bd,r + p−

Bd,r

=
r

r +
∑

v : (u,v)∈E
w(u,v)
deg v

=
r

r + T (u)
.

In particular, in the complete graph KN each node has temperature 1, and thus

µBd
r (KN) =

r

r + 1
.

If T (u) g 1 then r/(r + T (u)) f r/(r + 1) and hence µBd
r (GN , u) f µBd

r (KN ) with equality
if and only if T (u) = 1. From now on, suppose T (u) f 1.

Consider Moran death-Birth process and define the quantities p+
dB,r = p+

dB,r(GN , u) and
p−

dB,r = p−

dB,r(GN , u) as above. Then

p+
dB,r =

∑

v : (u,v)∈E

1

N
· r · w(u, v)

(r − 1)w(u, v) + deg(v)
and p−

dB,r =
1

N
,

therefore

µdB
r (GN , u) =

∑

v : (u,v)∈E
r·w(u,v)

(r−1)w(u,v)+deg(v)

1 +
∑

v : (u,v)∈E
r·w(u,v)

(r−1)w(u,v)+deg(v)

.

In particular, for the complete graph KN and any its node u we have

∑

v : (u,v)∈E

r · w(u, v)

(r − 1)w(u, v) + deg(v)
= (N − 1) · r

(r − 1) + (N − 1)
.
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Hence in order to prove µdB
r (GN , u) f µdB

r (KN), it suffices to prove

∑

v : (u,v)∈E

r · w(u, v)

(r − 1)w(u, v) + deg(v)
f (N − 1)r

(r − 1) + (N − 1)
.

We rearrange
∑

v : (u,v)∈E

w(u,v)
deg(v)

(r − 1)w(u,v)
deg(v)

+ 1
f 1

r−1
N−1

+ 1
.

When r = 1, the desired claim reduces precisely to T (u) f 1. Suppose r > 1, that is r−1 > 0,
and consider a function f : (0, ∞) → (0, ∞) defined by f(x) = x

(r−1)x+1
. Then f is concave

and increasing, therefore by Jensen’s inequality we have

∑

v : (u,v)∈E

w(u,v)
deg(v)

(r − 1)w(u,v)
deg(v)

+ 1
f |N(u)| ·

1
|N(u)|

∑

v : (u,v)∈E
w(u,v)
deg(v)

(r − 1) 1
|N(u)|

∑

v : (u,v)∈E
w(u,v)
deg(v)

+ 1
=

T (u)
r−1

|N(u)|
· T (u) + 1

,

where |N(u)| = |{v : (u, v) ∈ E}| is the number of neighbors of u in G.

Finally, since the function f is increasing, using bounds T (u) f 1 and |N(u)| f N − 1, the
right-hand side is at most

T (u)
r−1

|N(u)|
· T (u) + 1

f 1
r−1

|N(u)|
+ 1

f 1
r−1
N−1

+ 1

as desired. For the equality to occur in the first step, we must in particular have T (u) = 1, in
which case the other equality µBd

r (GN , u) = µBd
r (KN) holds too.

2.5.4 Positive result

In this section, we prove the main positive result which states that there exists an undirected,
edge-weighted graph that is simultaneously an amplifier of selection for Birth-death Moran
process and for death-Birth Moran process (under uniform mutant initialization). We first
bound the number of steps until fixation or extinction for both processes (Bd and dB) and any
graph. Second, we show that for any graph, there is a good starting vertex where a mutant
has fixation probability at least 1

N
. Then we construct the graph and we prove that it is indeed

an amplifier for both processes.

Auxiliary statements

Lemma 5. For Bd and dB process for any r on an undirected graph with N vertices with the
ratio between edge weights at most 1

ε
, the probability that the process is not completed after

O(N5/ε) steps is in O( 1
2N ).

Proof. From Lemma 4, we can take constant c such that for both processes and all graphs
with N vertices, the expected time is at most cN4/ε. From Markov’s inequality [Lin10], the
probability that the process takes more than 2cN4/ε steps is at most 1

2
. If the process does

not finish, the expected time is again cN4/ε. That means we can take N epochs of size
2cN4/ε each, and the probability that the process does not finish in any epoch is at most

1
2N .
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2. Amplifiers for both Birth-death and death-Birth updating

Lemma 6. For any graph GN with N vertices any r g 1, and a process p ∈ {Bd, dB} there
exists a vertex v such that Äp

r (GN , v) g 1
N

.

Proof. It suffices to prove the statement for r = 1, since increasing the mutant fitness
advantage r increases its fixation probability [DGRS16, Theorem 6].

In the neutral case (r = 1), we have
∑

v∈V Är=1(GN , v) = 1, thus there exists at least one
vertex with fixation probability at least 1

N
.

Note that in some cases, no starting vertex v satisfies both ÄBd
r (GN , v) g 1/N and

ÄdB
r (GN , v) g 1/N simultaneously. An example is a Star graph S3 on N = 3 vertices

with center c and leaves l1, l2 when r = 1. Then ÄBd
r (S3, c) = 1/5 < 1/3 and ÄdB

r (S3, l1) =
ÄdB

r (S3, l2) = 1/4 < 1/3.

Construction

For given N and µ ∈ (0, 1), we describe how to construct graph AN,µ . We show that for some
µ, this graph is an amplifier for both processes for r ∈ (1, 1.2). The graph AN,µ has two parts.
The first part is a graph ABd

(1−µ)N (from Lemma 2) on (1 − µ)N vertices, the second part is a
graph AdB

µN (from Lemma 3) on µN vertices. Let ε be the smallest weight among edges when
both graphs are independently scaled such that the largest edge weight is 1.

We will connect the two parts by a single edge. To that end, we select a vertex v from ABd
(1−µ)N

such that the fixation probability starting from v in ABd
(1−µ)N in dB-process is at least 1

N
, (such

vertex exists from Lemma 6). Similarly, we select a vertex v′ from AdB
µN such that the fixation

probability starting from v′ in the graph under Bd-process is at least 1
N

, (existence follows
from Lemma 6). Then, we connect v and v′ by an edge of weight w = ε3

N9 .

Finally, we scale all edges in the first part ABd
(1−µ)N by a factor of ε

N3 . That is, the heaviest
edge in AdB

µN has weight 1, and the heaviest edge in ABd
(1−µ)N has weight ε

N3 . Observe that the
scaling of edges in ABd

(1−µ)N does not influence the fixation time.

Before we turn to the main proof, we show several properties of the graph we AN,µ we have
just constructed. The first property is that the two parts ABd

(1−µ)N and AdB
µN interact so rarely

that most of the time they interact, the population on either part is already homogeneous (all
mutants or all residents). Then we show Lemma 8 and Lemma 9. The lemmas show that in
both processes, the probability of an individual reproducing over the edge between v and v′ is
unbalanced and in both processes, the individual in the respective amplifier is more likely to
spread to the other graph.

Lemma 7. For any N , µ, both processes, and a randomly placed mutant in AN,µ, the
probability that mutants become extinct or fixate on their part of AN,µ before any reproduction
over edge v, v′ is at least

1 − O(1/N2).

Proof. First, we bound the probability that edge v, v′ is selected in both processes and then
we use the union bound.

For Bd, the edge v, v′ is used either by (i) selecting the individual at v and spreading over
v, v′, or (ii) selecting the individual at v′ and spreading over v′, v. Event (i) happens with
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probability at most r
N+(r−1)

· ε3/N9

ε3/N9+ε2/N3 < rε
N7 . Event (ii) happens with probability at most

r
N+(r−1)

· ε3/N9

ε3/N9+ε
< rε2

N10 . The sum of these probabilities is at most 2rε
N7 .

For dB, the edge v, v′ is used either if (i) individual at v dies and is replaced individual at v′, or
(ii) individual at v′ dies and is replaced by individual at v. Event (i) happens with probability
at most 1

N
· rε3/N9

ε3/N9+ε2/N3 < rε
N7 . Event (ii) happens with probability at most 1

N
· rε3/N9

ε3/N9+ε
< rε2

N10 .

The sum of these probabilities is at most 2rε
N7 .

From Lemma 5, we know that with high probability the process ends in O(N5/ε) steps. In
every step the probability of using edge v, v′ is at most 2rε

N7 , that gives probability of using
v, v′ at most O( 1

N2 ) at first N5/ε steps from union bound. Since the probability that the
process does not end during these steps is also in O( 1

N2 ), we have that the randomly placed
mutant resolves on one part of the graph before using edge v, v′ with a probability at least
1 − O( 1

N2 )

Lemma 8. In the graph AN,µ under the Bd process, if edge v, v′ is used, then with probability

at least 1 − r2

N2 occupant of v spreads to v′.

Proof. At one step, individual at v spreads to v′ with probability at least 1
rN

· ε3/N9

ε3/N9+(N−1)·ε/N3 >
ε2

rN8 . Individual at v′ spreads to v with probability at most r
N+(r−1)

· ε3/N9

ε3/N9+ε
< rε2

N10 . Conditioned
that the spread over v, v′ happens, it is from v′ to v with probability at most

rε2

N10

ε2

rN8 + rε2

N10

<
r2

N2
.

The opposite event, v spreading to v′ happens with probability at least 1 − r2

N2 .

Lemma 9. In the graph AN,µ under the dB process, if edge v, v′ is used, then with probability

at least 1 − r2

N2 occupant of v′ spreads to v.

Proof. At one step, individual at v′ spreads to v with probability at least 1
N

· ε3/N9

ε3/N9+r(N−1)·ε/N3 >
ε2

rN8 . Individual at v′ spreads to v with probability at most 1
N

· rε3/N9

rε3/N9+ε
< rε2

N10 . Conditioned
that the spread over v, v′ happens, it is from v to v′ with probability at most

rε2

N10

rε2

N8 + rε2

N10

<
r2

N2
.

The opposite event, v spreading to v′ happens with probability at least 1 − r2

N2 .

Proof of Amplification

Lemma 10 (Amplification under Bd). For every r and Bd updating, the fixation probability
on AN,µ is at least

1 − µ − O(N−1/3) .

Proof. For Bd, we first bound the probability that mutants conquer ABd
(1−µ)N . For this to

happen, it suffices if:
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2. Amplifiers for both Birth-death and death-Birth updating

1. The initial mutant appears at the correct part of the graph (that is, ABd
(1−µ)N).

2. In the next N5/ε steps, the process ends in ABd
(1−µ)N without edge v, v′ being used.

3. Mutants conquer ABd
(1−µ)N within N5/ε steps.

The first condition is fulfilled with probability 1 − µ since the initialization is uniformly random.
The process resolves on ABd

(1−µ)N without edges v, v′ interference with probability 1 − O( 1
N2 ),

from Lemma 7. If the process is finished, the mutants spread with probability at least
1 − O(N−1/3), from Lemma 2.

Putting these probabilities together gives a probability at least

(1 − µ) ·
(

1 − O
(

N−2
))

·
(

1 − O(N−1/3)
)

> 1 − µ − O(N−1/3)

that the mutants conquer ABd
(1−µ)N .

After the graph ABd
(1−µ)N is occupied by mutants, we bound from below the probability that the

mutants fixate in the rest of the graph. We wait until the edge (v, v′) is used for reproduction,
in one of its two directions. For fixation on the whole graph to occur, it suffices if:

1. The edge v, v′ was used in the right direction (from v to v′).

2. In the next N5/ε steps, edge v, v′ is not used for reproduction.

3. Mutants fixate on AdB
µN within N5/ε steps.

The first condition happens with probability at least 1 − r2

N2 , from Lemma 8. The edge v, v′ is
not used within N5/ε steps with probability at least 1 − O(N−2), again from Lemma 7. If
both of those occur, the mutants fixate with probability at least 1

N
, from Lemma 6 and since

the process finishes within N5/ε steps with probability at least 1 − 2−N , by Union Bound the
fixation probability is at least 1

N
− 2−N .

This gives the probability at least
(

1 − r2

N2

)

·
(

1 − O(N−2)
)

·
(

1

N
− 2−N

)

>
1

N
− 1

N2

that if the edge (v, v′) is used, the process finishes with mutant fixation on the whole graph
without edge (v, v′) being used again.

In contrast, if condition 1. fails, that is, the edge (v, v′) is instead used in the wrong direction
(from v′ to v), we declare a failure (even though some of those evolutionary trajectories might
eventually lead to mutant fixation). By Lemma 8, this happens with probability at most r2

N2 .
Similarly, we declare a failure if condition 2. fails, that is, when the edge (v, v′) is used (in
either direction) during the N5/ε steps, potentially interrupting the process. Note that when
condition 3. fails, that is, the mutants do not fixate in AdB

µN (but the edge v, v′ is not used), we
are in the same state as before, where we can compute the fixation versus failure probability.

The failure probability is in O(N−2), the immediate fixation probability is at least 1
N

− 1
N2 ,

otherwise, we can retry. This gives the fixation probability at least

1
N

− 1
N2

O(N−2) +
(

1
N

− 1
N2

) = 1 − O
(

1

N

)

.
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2.5. Additional proofs

Overall, the fixation probability of a randomly placed mutant on AN,µ is thus at least

(

1 − µ − O(N−1/3)
)

·
(

1 − O
(

1

N

))

g 1 − µ − O(N−1/3).

Lemma 11 (Amplification under dB). For every r and dB updating, the fixation probability
on AN,µ is at least

(

1

2
µ(1 − r−3) − O(N−1)

)

.

Proof. For dB, we proceed similarly as in the previous lemma. First, we again bound the
probability that mutants conquer AdB

µN . For this to happen, it suffices if:

1. The initial mutant appears at the correct part of the graph: AdB
µN .

2. In the next N5/ε steps, the process ends in AdB
µN without edge v, v′ being used.

3. Mutants conquer AdB
µN within N5/ε steps.

The first condition is fulfilled with probability µ since the initialization is uniformly random.
The process resolves on AdB

µN without edges v, v′ interference with probability 1 − O( 1
N2 ),

from Lemma 7. If the process has resolved on AdB
µN , the mutants conquer it with probability

at least N
2N+1

· 1−
1

r3

1−
1

r3N

− O(2−N), from Lemma 3 and Union Bound.

Putting these probabilities together gives a probability at least

µ ·
(

1 − O
(

N−2
))

·
(

N

2N + 1
· 1 − 1

r3

1 − 1
r3N

− O(2−N)

)

>
1

2
µ(1 − r−3) − O(N−1)

that the mutants conquer AdB
µN .

After the graph AdB
µN is occupied by mutants, we bound the probability that the mutants fixate

in the rest of the graph. Conditioned on the fact that the edge v, v′ is used, it happens when

1. The edge v, v′ was used in the right direction (from v′ to v).

2. In the next N5/ε steps, edge v, v′ is not used.

3. Mutants fixate on ABd
(1−µ)N within N5/ε steps.

If the edge v, v′ is used in the wrong direction, we call it a fail, this happens with probability
at most r2

N2 , from Lemma 9 (if the edge is used).

The first condition happens with probability at least 1 − r2

N2 , from Lemma 9. The edge v, v′ is
not used within N5/ε steps with probability at least 1 − O(N−2), again from Lemma 7. The
mutants fixate with probability at least 1

N
, from Lemma 6 and since process finishes within

N5/ε steps with probability at least 1 − 2−N , the fixation is at least 1
N

− 2−N .

This gives the probability at least
(

1 − r2

N2

)

·
(

1 − O(N−2)
)

·
(

1

N
− 2−N

)

>
1

N
− 1

N2
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that if the edge v, v′ is used, the process finishes without edge v, v′ being used again.

However, when the mutants do not fixate in ABd
(1−µ)N (but the edge v, v′ is not used), we are

in the same state as before, where we can compute the fixation versus fail probability.

The fail probability is in O(N−2), the immediate fixation probability is at least 1
N

− 1
N2 ,

otherwise, we can retry. This gives total fixation 1 − O( 1
N

).

Overall, the fixation probability of a randomly placed mutant on AN,r is at least

(

1

2
µ(1 − r−3) − O(N−1)

)

·
(

1 − O(
1

N
)
)

g
(

1

2
µ(1 − r−3) − O(N−1)

)

.

The following theorem shows that for a particular µ, our construction is an amplifier for both
processes for r ∈ (1, 1.2).

Theorem 6 (Simultaneous Bd- and dB-amplifier). For every large enough population size N ,
for graph AN,µ , where µ = 2·1.23

3·1.23−1
= 0.826004 we have

ÄBd
r (AN,µ) > ÄBd

r (KN) and ÄdB
r (AN,µ) > ÄdB

r (KN)

for every r ∈ (1, 1.2).

Proof. We know that ÄBd
r (KN) = 1−r−1

1−r−N and ÄdB
r (KN) = N−1

N
1−r−1

1−r−N+1 . Setting N so big
that 1

1−r−N+1 < 1.00001, we have that ÄBd
r (KN) < (1 − r−1) · 1.00001 < 0.16667 and

ÄdB
r (KN) < (1 − r−1) · 1.00001.

From Lemma 10, plugging µ, we have that the fixation probability is at least 1 − 0.826004 −
O(N−1/3) = 0.173996 − O(N−1/3) for the Birth-death process which is bigger than the
maximal fixation probability for KN (0.16667).

From Lemma 11, plugging µ, we have that the fixation probability is at least
(

1
2
0.826004(1 − r−3) − O(N−1)

)

for the death-Birth process. We have

(1 − r−1) · 1.00001 <
(

1

2
0.826004(1 − r−3) − O(N−1)

)

1.00001 <
(

1

2
0.826004(1 + r−1 + r−2)

)

− O(N−1)

1.00001 <
(

1

2
0.826004 · 2.52778

)

− O(N−1)

1.00001 < 1.04 − O(N−1) ,

which proves the theorem.

The following theorem shows how to choose µ to achieve the best amplification so that the
fixation probability of the amplifier is at least 1.04 times better than the complete graph for
both processes.
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Theorem 7 (Optimal Bd- and dB-amplifier). For any r ∈ (1, 1.2), and every large enough
population size N , for graph AN,µ, where µ = 2r3

3r3−1
we have

ÄBd
r (AN,µ) > X · ÄBd

r (KN) and ÄdB
r (AN,µ) > X · ÄdB

r (KN).

for X = 1.04.

Proof. Again, ÄBd
r (KN) = 1−r−1

1−r−N and ÄdB
r (KN) = N−1

N
1−r−1

1−r−N+1 . Setting N so big that
1

1−r−N+1 < 1.00001, we have that ÄBd
r (KN ) < (1 − r−1) · 1.00001 and ÄdB

r (KN ) < (1 − r−1) ·
1.00001.

From Lemma 10, plugging µ, we have that the fixation probability is at least r3
−1

3r3−1
−O(N−1/3)

for the Birth-death process. We have

(1 − r−1) · 1.00001 · X <
r3 − 1

3r3 − 1
− O(N−1/3)

1.00001 · X <
r(1 + r + r2)

3r3 − 1
− O(N−1/3)

1.00001 · X < 1.04398 − O(N−1/3) .

From Lemma 11, plugging µ, we have that the fixation probability is at least
(

1
2

2r3

3r3−1
(1 − r−3) − O(N−1)

)

for the death-Birth process. We have

(1 − r−1) · 1.00001 · X <

(

1

2

2r3

3r3 − 1
(1 − r−3) − O(N−1)

)

1.00001 · X <

(

1

2

2r3

3r3 − 1
(1 + r−1 + r−2) − O(N−1)

)

1.00001 · X <

(

r(1 + r + r2)

3r3 − 1
− O(N−1)

)

1.00001 · X < 1.04398 − O(N−1) .
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CHAPTER 3
Complexity of Spatial Games

This chapter appears in full in [CIJS22].

Abstract

Spatial games form a widely-studied class of games from biology and physics modeling the
evolution of social behavior. Formally, such a game is defined by a square (d by d) payoff
matrix M and an undirected graph G. Each vertex of G represents an individual, that initially
follows some strategy i ∈ {1, 2, . . . , d}. In each round of the game, every individual plays the
matrix game with each of its neighbors: An individual following strategy i meeting a neighbor
following strategy j receives a payoff equal to the entry (i, j) of M . Then, each individual
updates its strategy to its neighbors’ strategy with the highest sum of payoffs, and the next
round starts. The basic computational problems consist of reachability between configurations
and the average frequency of a strategy. For general spatial games and graphs, these problems
are in PSPACE. In this paper, we examine restricted setting: the game is a prisoner’s dilemma;
and G is a subgraph of grid. We prove that basic computational problems for spatial games
with prisoner’s dilemma on a subgraph of a grid are PSPACE-hard.

3.1 Introduction

Spatial evolutionary games is a classic and well-studied model of evolutionary dynamics on
graphs, which has been studied across fields, e.g., biology [OHLN06, NM92a], physics [ONP07,
RCS06], and computer science [DGP09, CDT09].

While computer science studies games with few players and a large number of actions,
evolutionary game theory studies games with few actions and strategies but with many players
(see the survey [SF07]). Specifically, each spatial evolutionary game consists of a square,
skew-symmetric, bimatrix game (i.e. the outcome in entry (i, j) for player 1 is the same as the
outcome for player 2 in (j, i) for all i, j) and a finite graph. The game is played over a number
of rounds. Each node of the graph corresponds to a player. Each node/player is associated
with a current row and corresponding column. In each round, each player plays the matrix
game against each of their neighbors, by playing their row against their neighbor’s column
(because of the skew-symmetry, who plays rows and who plays columns does not matter) and
gets a payoff assigned, which is the sum of outcomes of the games they played in that round.

35



3. Complexity of Spatial Games

Each player then switches to the row played by their neighbor that had the highest payoff
(or keeps their strategy). Since this is a deterministic dynamic, whenever we reach a round
such that there is a previous round in which each player had the same row as now, the game
“loops”. All spatial evolutionary games will therefore loop after at most dn rounds when the
bi-matrix is d by d and there are n nodes.

Most studied setup: Grids and prisoner’s dilemma. The standard study of spatial
evolutionary games focuses on small (2 by 2 or 3 by 3) bi-matrices and on grids. A good
understanding of the dynamics is known for a number of such setups (including all 2 by 2
bi-matrices on 2-dimensional grids). Grids are typically chosen since in biology they naturally
model how cells interact with nearby cells. In particular, the focus has been on prisoner’s
dilemma (PD) matrices: A prisoner’s dilemma bi-matrix is a 2 by 2 bi-matrix in which the two
rows are called cooperation and defection, such that it is an advantage to defect if the other
player cooperates, but it is better for both players if they both cooperate as compared to
the mutual defection. We study these games to better understand why cooperation develops
as we see in humans and many animal species. Indeed, this was the focus of the original
paper [NM92b] and later works extended this basic model in myriad ways:

1. What happens if you add in mobile agents [VTA07, HY09]?

2. What about age[PS08, WWZA12]?

3. What if nodes/players do not have the same objectives [SS07, PW10]?

4. What if there were different timescales [RCS06, WRH09]?

See also the survey [PS10b]. A common generalization considers more general graph types.
We mention a few examples of the papers pursuing this direction:

1. Kabir et al. showed how increasing the network reciprocity changes the likelihood of
cooperation in PD [KTW18].

2. Hassell et al. considered how multiple different species on models with islands influence
the outcome [HCM94].

3. Santos and Pacheco showed how scale-free networks (when generated following specific
paradigms) promote cooperation [SP05].

4. Yamauchi et al. showed how, if both the neighbors and strategies can change over time,
cooperation can evolve [SPL06a].

5. Ohtsuki et al. gave a simple heuristic for when cooperation can evolve on a variety of
different networks, including social networks [OHLN06].

Computational problems: The works mentioned previously usually examine how coopera-
tion spreads when the process is applied many times. The question they are trying to decide
is: Given a starting position, what is the average number of cooperators in the long run?
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Open questions: The general spatial games problem is in PSPACE. This is because a
configuration consists of a strategy for every vertex, which can be stored in polynomial space,
and the update of the configuration according to the rules can also be achieved in PSPACE.
The most well-studied problem for spatial games is the prisoner’s dilemma, which has only
two strategies, namely, cooperation and defection. Moreover, such games have been studied
for special classes of graphs. The main open question is whether efficient algorithms can be
obtained for prisoner’s dilemma on graphs like grids.

Our results: In this paper, we consider spatial evolutionary games with a prisoner’s dilemma
matrix on subsets1 of 2-dimensional grids. The subset models the situation when locations of
e.g. cells or connections between them have been destroyed or are otherwise inaccessible.

Our main result is that for subgraphs of a two-dimensional grid and prisoners dilemma the
reachability and average cooperation problems are PSPACE-hard. Additionally, we show that
induced subgraphs can loop in loops of exponential length. Subsets of grids are simpler than
scale-free or evolving networks, so our hardness result holds for more general graphs.

3.2 Model and definitions

Graphs and grids A graph G = (V, E) consists of a set of vertices V and a set of undirected
edges E. Every vertex is occupied by one individual. Edges determine pairs of individuals that
interact. Two-dimensional grids are specific graphs where each vertex is assigned a unique pair
of integers (i, j), and has (at most) 8 neighbors: vertices whose pairs differ by at most 1 in
both coordinates. In our construction, we use graphs derived from grids: Given a grid (V, E),
a induced subgraph of (V, E) is a graph (V ′, (V ′ × V ′) ∩ E) with V ′ ¦ V . An subgraph of
(V, E) is a graph (V ′, E ′) with V ′ ¦ V and E ′ ¦ (V ′ × V ′) ∩ E.

Games and individuals An individual occupying a vertex has one of two types: cooperator
if it plays C or defector if it plays D. In the figures, we use black for cooperators and white
for defectors. We call configuration of a graph an assignment of each vertex to a strategy
(cooperator or defector).

From all matrix games, we focus on prisoner’s dilemma. The game is denoted by a matrix

C D
C 1 0
D b 0

where b > 1. It means that C gets 1 for interacting with C, D gets b for interacting with C,
and everyone gets 0 for interacting with D. We denote this game M b.

Steps and updates The evolution is simulated in rounds. In one round, every individual
interacts with all neighbors and collects the total payoff. Then every individual compares the
received payoff with the payoffs of neighbors. The individual keeps the strategy if it is the
highest or changes the strategy to the strategy of a neighbor with the highest payoff (in a tie,
defection is preferred).

We denote the proccess starting from position S on graph G with a game matrix M b as
S(G, M b, S).

1Either subgraphs or induced subgraphs
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Figure 3.1: All configurations of the gadget
c3 initiated by the top left configuration.
These configurations (in rows) show period
6.

Figure 3.2: Extension of the gadget ck by
two cells. We extend the gadget to the
lower right, the gadget itself can be as
long as needed connected to the upper left
which increases period by 2.

Complexity problems We consider two complexity problems.

Reach : Given starting configuration, does the process reach a given configuration?

Avg : For a given starting configuration, what is the average number of cooperators (black
vertices) in all succeeding configurations?

Note that for one configuration, there is only one possible succeeding configuration. This
restricts the configuration graph. That means eventually the configuration graph creates a
loop (as was noted before [Vir08]).

Ranges of b There is a reasonable range for b in M b. If b < 1, then the game is not a
prisoner’s dilemma. If b is larger than the maximal degree in a graph, the dynamic is trivial, a
defector cannot become a cooperator. For our constructions in this paper, we suppose that
b ∈ (3

2
, 2). In Section 3.6, we show ideas explaining how our construction can be adapted to

other values of b.

3.3 Exponential cycle

In this section, we show that even on an induced subgraph of a square grid, we observe a
complex behavior. Namely, there exists a graph and a configuration that returns back to the
starting configuration only after an exponential number of steps, we use (̃Ω) and (̃O) which
hide logarithmic factors.

Theorem 8. For b ∈ (3
2
, 2), there exists a graph G, induced subgraph of a square grid, with

n vertices and a starting configuration S, such that it takes 2Ω̃(
√

n) steps until S(G, M b, S)
reaches S again.

Proof. We describe a family of gadgets and starting configurations with different periods,
where period is the number of steps the gadget needs to return to the starting position again.
Then we combine some of them to create a graph with a period equal to the lowest common
multiple of the periods of its components.

For k g 3, we construct inductively ck, a gadget that is a induced subgraph of a square grid
with size 9 + 2k and period 2k. The gadget c3 in its starting configuration is depicted on
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Figure 3.3: Sending signal through the wire with explicit payoffs with cooperators denoted by
gray. Thicker vertices are input vertices.
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Figure 3.4: Splitting the signal in two. Blue boxes denote a deleted edge with cooperators
denoted in black. Thicker vertices are input vertices.

Figure 3.1. By rearranging and adding two squares, we create the gadget ck+1 from ck, as
depicted on Figure 3.2.

For every integer g > 1, let us now define Gg as the disjoint union of the gadgets cp2
, cp3

,
. . . , cpg

where pi is the i-th prime number. By the Chinese remainder theorem, the number of
steps needed so that all gadgets are in the same state is the smallest common multiple of their
periods, which is the product of the first g primes. We know that this number is Θ(eg log g)
from [MR97] and the Prime Number Theorem. Moreover, the number of squares (vertices) of
Gg linear in the sum of the first g primes which is Õ(g2).

Therefore, by using a induced subgraph of the square grid of size n ∈ N, we can create a
union of gadgets that has a period of size 2Ω̃(

√

n).

3.4 Construction of a Turing machine

We show that both Reach and Avg are P-SPACE hard. For a polynomially bounded Turing
machine and its input, we create a graph of a polynomial-size that is a subgraph of the square
grid and an initial configuration of cooperators and defectors such that the process reaches a
predefined configuration if and only if the Turing machine accepts the given input.

Since both problems, Reach and Avg , can be easily solved in P-SPACE by a simulation,
that means these problems are P-SPACE complete.

Theorem 9. For b ∈ (3
2
, 2) holds:

For any Turing machine T polynomially bounded by n and its input, there exists a subgraph of
a square grid G with poly(n) vertices, a starting configuration S, and a target configuration
Q, such that S(G, M b, S) reaches Q if and only if T accepts the given input.

Moreover, for any Turing machine T and its input I, there exists a subgraph of an infinite
square grid G, a starting configuration S with poly(|I|) cooperators, and a target configuration
Q, such that S(G, M b, S) reaches Q if and only if T accepts the given input.
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3. Complexity of Spatial Games

Figure 3.5: NOT gate: the upper signal is
negated, the lower signal is a clock signal.

Figure 3.6: AND gate: both signals are
essential to tunnel through. There are two
deleted edges denoted by blue boxes.

We construct G as a white (defector) graph with a few black (cooperator) vertices that carry
signals and store data to simulate the behavior of T . On our figures, we use white for defectors,
black for cooperators, gray for deleted vertices, and blue for deleted edges : To visualize deleted
edges, we subdivide each square denoting some vertex v into 9 parts. The middle square
corresponds to v itself, and the other squares denote the neighbors in relative position to v
(upper-left, upper-middle, . . . ). To represent that an edge between two vertices v and w is
deleted, we color in blue the subsquare corresponding to w in v’s square and the subsquare
corresponding to v in w’s square.

First, we describe wires and basic logic gates. With that, we use a construction described
in [CIJS20]. We use Lemma 7 and 9 from the paper, but explain technicalities emerging from
more restrictive construction (the graph is a subgraph of a square grid). Both lemmas use
simple gadgets to create functions and then a whole Turing machine.

3.4.1 Basic gadgets

We describe the computational gadgets used in our construction. Every gadget g has one or
two inputs (I1, I2) and one or two outputs (O1, O2). We imagine the inputs being on the left
and bottom and the outputs on the right and top. Every gadget fits into a constantly sized
rectangle of the grid.

If at time t at least one input of g is true (input vertices are cooperators and other vertices
are defectors), then at time t + tg it outputs true or false based on a function g computes.

One input (or output) consists of two connected vertices. We say that the input is true if
both vertices are cooperators at time t and t + 1, and in the first step, they can convert all
neighbors to cooperators. The previous gadget (connected by its output to the given input) is
responsible for turning the input vertices back to defectors at time t + 2.

Here are the gadgets, some of the gadgets need to cross signals, we describe how to do it
later:

Wire: it transmits a signal (See Figure 3.3). The wire has one input, one output, and if I1 is
true at time t, then O1 is true at time t + 2.

Splitter: it splits one signal in two (See Figure 3.4). The splitter has one input and two
outputs. If I1 is true at time T , then O1 and O2 are true at time t + 4. An interesting
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3.4. Construction of a Turing machine

property of the splitter is that it does not matter if the signal arrives from I1 or O1.
From the graph perspective, these two are symmetric.

NOT gate: it computes the logical negation, but necessitates a clock signal (See Figure 3.5).
The NOT gate has two inputs and one output. Input I2 is a clock input: if I1 and I2

are true at time t, then O1 is false at time t + 8, if only I2 is true at time t, then O1 is
true at time t + 8. Note that the NOT gate actually computes the function ¬I1ANDI2,
also the gates I1 and O1 are interchangeable.

AND gate: it computes the logical conjunction (See Figure 3.6). The AND gate has two
inputs and one output. If both I1 and I2 are true at time t, then O1 is true at time
t + 8. Otherwise, O1 is false.

XOR gate: it computes logical exclusive disjunction. We can create it from other gadgets,
but it makes our construction easier.

We compute XOR using connection of splitter and NOT gates (see Figure 3.7). It has
two inputs I1 and I2 and one output O1. First every input is split to get I1,1, I1,2, I2,1

and I2,2, then I1,1 is sent to I1 of NOT gate and I2,1 is sent to O1 of a splitter S.
We already know that if only one signal equals true, then S splits the signal. If both
are positive, signals annihilate each other. So O2 of S has value I1XORI2. The only
problem is when I1 is true, and I2 is not (or symmetric). Then the signal travels back
from the splitter through wire I2,1, then we use the NOT gate with clock signal I2,1 and
signal I1,2 that stops it.

OR gate: it computes logical disjunction. It has two inputs I1 and I2, and the output O1

satisfies the function (I1ANDI2)XOR(I1XORI2), it consists of gadgets described above.
Note that we don’t need the NOT gate directly, so clock signal is not necessary for that
gadget.

Another gadget that the construction needs is a storage unit. It has an inner state S ∈ {0, 1},
two inputs and one output, see Figure 3.8. The storage unit consists of a big cyclic wire where
a signal loops if the stored value S is 1. If a signal is sent via I1, then the storage unit changes
state: S ′ = ¬S, this is ensured by a XOR gate. On the cycle, there is a splitter that splits
the signal towards an AND gate. If a signal is sent via I2, S does not change, but the signal
reaches AND and is sent to O2 if and only if S = 1. The storage unit requires synchronicity,
the signal from the input has to reach the splitter or XOR at the right time. But this is not
hard to ensure by longer wires.

3.4.2 Connecting the graph

To make the graph a subgraph of a square grid, we need to prove two things: we can cross
two signals, and we can ensure that the signals meet at the right place, at the right time.

Crossing We use the structure described in Figure 3.13. Crossing accepts only one signal at
a time and supposes that no other signal arrives for 10 steps afterward. Crossing ensures that
in a square subset of a grid, the signal can travel only from upper left to lower right corner
and from lower left to upper right without spreading or dying out. If a signal arrives, it is
spreading to the other input and all the outputs, but the wires close to the active input get
stopped, so only the wire that is not adjacent to the input wire continues to carry the signal.
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Figure 3.7: XOR gate: Combination of
previous gates. Signals I1,2 and I2,2 are
delayed such that they arrive at the NOT
gate when signal I1,1 or I2,1 from the cen-
tral splitter would.
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Figure 3.8: Storage unit

Figure 3.9: Two wires of different lengths connecting two points.

Making the construction on square grid On the Figure 3.9, we see that a signal starting
at position (0, 0) going to position (x, y) can take between max(x, y) and 1

8
· xy steps. The

signal also does not leave the rectangle dentoted by points (0, 0) and (x, y).

Every gadget that was described above can be padded by wires of different densities such that
the gadget fits into a rectangle with predetermined width and height. Moreover, all inputs are
in the same position (relative to the rectangle) and the time of evaluation is the same for all
(constant).

Then everything in the following construction can be viewed as placing a column of tiles
(gadgets) one after another, where columns are connected by short wires.

3.4.3 Function construction

Here we construct a function using previously described gadgets. We bound the number of
vertices and steps needed for the construction and the function evaluation.

We imagine a function as signals going from left to right. The input and output signals have
constant horizontal distance.

Definition 1. We say that a function f : {0, 1}k → {0, 1}l is computed by a graph G
(subgraph of a grid) in time g and space h if G has h vertices, k inputs I1, I2,. . . , Ik and l
outputs O1, O2, . . . , Ol spatially arranged, and such that for all (x1, x2, . . . , xk) ∈ {0, 1}k, if
at the time t we have Ij = xj for all 1 f j f l (and all the other vertices are defectors), then
at the time t + g we have Oj = yj for all 1 f j f l, where f(x1, x2, . . . , xk) = (y1, y2, . . . , yl).
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3.4. Construction of a Turing machine

Note that all our basic gadgets have a constant size. So, when analyzing the asymptotic space
complexity, we can consider these gadgets and single vertices interchangeably.

Lemma 12. Computing the function f(x1, x2, . . . , xc) = (x1, x2, . . . , xc, x1, x2, . . . , xc) takes
time O(c) and space O(c2).

Proof. We describe the gadget computing f . First, we split every signal and then cross every
copy of it with others to the right place. One signal needs to cross O(c) others, so that is the
number of steps and we have c signals going through a wire of length c, that makes O(c2)
gadgets.

Lemma 13. Let c ∈ N. Every function f : {0, 1}c → {0, 1} mapping to 0 every tuple whose
first component is 0 can be computed in space O(3c) and time O(c2).

Proof. We use an induction on the dimension c of the domain. If c = 1, since f satisfies
f(0) = 0 by supposition, either f is the identity, which is realised by a wire, or f is the zero
function, which is realised by simply disconnecting the input and output.

Now, suppose that c > 1, and we can realise any function f : {0, 1}c−1 → {0, 1} that satisfies
the condition. In particular, there exist two gadgets g0 and g1 computing

f0 : {0, 1}c−1 → {0, 1},
(x1, x2, . . . , xc−1) ↦→ f(x1, x2, . . . , xc−1, 0),

f1 : {0, 1}c−1 → {0, 1},
(x1, x2, . . . , xc−1) ↦→ f(x1, x2, . . . , xc−1, 1).

Having these values, the computation is straightforward as the value f(x1, x2, . . . , xc) is given
by the formula

(f0(x1, x2, . . . , xc−1) ' ¬xc) ( (f1(x1, x2, . . . , xc−1) ' xc).

To construct a gadget g that is a subgraph of a grid g and computes f , we proceed as follows.

Computing the function We apply the gadget described in Lemma 12 to the input,
and we use a splitter to get one more signal x1. At this point, we have the arranged
signals x1, x1, x2, x3, . . . , xc, x1, x2, x3, . . . , xc. We apply the gadgets computing
f0 and f1 to get the signals f0(x1, x2, . . . , xc) and f1(x1, x2, . . . , xc), now the signals are
arranged as x1, f0(x1, x2, . . . , xc−1), xc, f1(x1, x2, . . . , xc−1), xc. We cross the signals x1 and
f0(x1, x2, . . . , xc−1), and then we use x1 as clock signal towards a NOT gate with xc. By this,
we either get the signal ¬xc, or x1 is zero, then the result should be zero anyway.

Now we send f0(x1, x2, . . . , xc−1) and ¬xc towards an AND gate, similarly we send f1(x1, x2, . . . , xc−1)
and xc towards another AND gate, and finally we send both results towards an OR gate.

Size of the gadget Now, we show that the computation is fast and requires a reasonable
number of vertices. Let there be a recurrent formula Rs that maps any integer c to the
maximal number of gadgets needed to compute the function f . Using induction, we see that
it satisfies:

Rs(c) = O(c2) + 2Rs(c − 1) + O(1).

Therefore, R(c) ∈ O(3c). Similarly, we use recurrent formula for the time needed

Rt(c) = O(c) + Rt(c − 1) + O(1)

and the solution for this recurrence is O(c2).
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Lemma 14. Let c, d ∈ N. Every function f : {0, 1}c → {0, 1}d mapping to (0, 0, . . . ) every
tuple whose first component is 0 can be computed in space O(d3c) and time O(c2 + c log(d)).

Proof. The idea is easy, we split the inputs d times using Lemma 12 and then we use Lemma 13
for every copy.

Multiplying the inputs needs O(d) described in Lemma 12. We can arrange them in layers
where every layer doubles the input, so the whole multiplying takes time O(log(d) · c).

Then we use d gadgets described in Lemma 13 in parallel which gives time O(c2 + c log(d))
and space O(d3c).

3.4.4 Blob and connections

Lemma 15. Let T be a Turing machine. For every input u evaluated by T using C ∈ N cells
of the tape, there exists a subgraph of a grid G on O(C) vertices and an initial configuration
c0 of G such that T stops over the input u if and only if S(G, M b, c0) for b ∈ (3

2
, 2) eventually

reaches a configuration without cooperators.

Proof. We suppose that the Turing machine T has a single final state, which can only be
accessed after clearing the tape. We present the construction of the graph G simulating T
through the following steps. First, we encode the states of T , the tape alphabet, and the
transition function in binary. Then, we introduce the notion of a blob, the building block of
G, and we show that blobs accurately simulate the transition function of T . Afterward, we
approximate the size of a blob, and finally, we define G as a composition of blobs.

Binary encoding Let Ts ∈ N be the number of states of T , and Ta ∈ N be the size of
its tape alphabet. We pick two small integers s and n satisfying Ts f 2s−1 and Ta f 2n−1.
We encode the states of T as elements of {0, 1}s, and the alphabet symbols as elements of
{0, 1}n, while respecting the following three conditions: the blank symbol maps to 0n, the
final state of T maps to 0s, and all the others map to strings starting with 1. Then, for these
mappings, we modify the transition function of T to:

F : {0, 1}s × {0, 1}n → {0, 1}s × {0, 1}s × {0, 1}n.

Instead of using one bit to denote if the head is going left or right, we use 2s bits to store the
state and signify the movement: if the first s bits are zero, the head is moving right; if the
second s bits are zero, it is moving left; if the first 2s bits are zero, the computation ended.
Moreover, the last n bits of the image of F do not encode the new symbol, but the symmetric
difference between the previous and the next symbol: if the i-th bit of the tape symbol goes
from yi to zi, then F outputs di = yi · zi (XOR of these two).

Constructing blobs We construct the graph G by simulating each cell of the tape with a
blob. Blob stores a tape symbol, and after receiving a signal corresponding to a state of T it
computes the transition function. The main components of a blob are as follows.

• Memory: n storage units (s1, s2, . . . , sn) are used to keep in memory a tape symbol
a ∈ {0, 1}n of T .
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3.4. Construction of a Turing machine

• Receptor: 2s inputs (I1, I2, . . . , I2s) are used to receive states q ∈ {0, 1}s of T either
from the left or from the right.

• Transmitter: 2s outputs (O1, O2, . . . , O2s) are used to send states q ∈ {0, 1}s of T
either to the right or to the left.

• Transition gadget: We use gadget from Lemma 14, it needs O((n + s)3n+s) space and
O((n + s)2) time.

Blobs are connected in a row to act as a tape: for every 1 f i f s, the output Oi of each blob
connects to the input Ii of the blob to its right, and the output Os+i of each blob connects to
the input Is+i of the blob to its left. When receiving a signal, the blob transmits the received
state and the tape symbol stored in memory to the transition gadget gF , which computes
the corresponding transition, and then apply its results. We now detail this inner behavior.
Note that when a gadget is supposed to receive simultaneously a set of signals coming from
different sources, it is always possible to add wires of adapted length to ensure that all of
them end up synchronized.

Simulating the transition function To simulate the transition function of T , a blob acts
according to the three following steps:

1. Transmission of the state. A blob can receive a state either from the left (through inputs
I1, I2, . . . , Is) or from the right (through inputs Is+1, Is+2, . . . , I2s), but not from both sides
at the same time, since at every point in time there is at most one active state. Therefore,
if for every 1 f i f s we denote by xi the disjunction of the signals received by Ii and Is+i,
then the resulting tuple (x1, x2, . . . , xs) is equal to the state received as signal (either from
the left or the right), which can be fed to the gadget gF . Formally, the blob connects, for all
1 f i f s, the pair Ii, Is+i to an OR gate whose output is linked to the input Ii of gF .

2. Transmission of the tape symbol. Since the first component of any state apart from the
final state is always 1, whenever a blob receives a state, the component x1 defined in the
previous paragraph has value 1. The tape symbol (y1, y2, . . . , yn) currently stored in the blob
can be obtained by sending, for every 1 f i f n, a copy of x1 to the input I2 of the storage
unit si, causing it to broadcast its stored state yi. The tuple continues to the gadget gF .
Formally, the blob uses n splitters to transmit the result of the OR gate between I1 and Is+1

to the input I1 of each storage unit. Then, for every 1 f i f n, the output O1 of the storage
unit si is connected to the input Is+i of gF .

3. Application of the transition. Upon receiving a state and a tape symbol, gF computes the
result of the transition function, yielding a tuple (r1, r2, . . . , rs+n). The blob now needs to do
two things: send a state to the successor blob and update the element of the tape.

Connecting the output Oi of gF to the output Oi of the blob for every 1 f i f 2s ensures that
the state is sent to the correct neighbor: the values (r1, r2, . . . , rs) are nonzero if the head is
supposed to move to the next block on the right (outputs O1, O2, . . . , Os are connected that
blob). Conversely, (rs+1, rs+2, . . . , r2s) are nonzero if the head is supposed to move to the
left, (outputs Os+1, Os+2, . . . , O2s are connected to the left blob).

Finally, connecting the output O2s+i of gF to the input I1 of si for all 1 f i f n ensures that
the state is correctly updated: this sends the signal di to the input I1 of the storage unit si.
Since di is the difference between the current bit and the next, the state of si will change if it
has to.
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3. Complexity of Spatial Games

The size of blob The size of the blob is determined by the size of the transition gadget gF :
one blob is composed of O(3n+s) vertices, and evaluating a transition requires O((n + s)2)
steps by Lemma 14. Since n and s are constants (they depend on T , and not on the input
u), the blob has constant size. Crossing wires to get them to the right place also takes space
O((n + s)2).

Constructing G Now that we have blobs that accurately simulate the transition function of
T , constructing the graph G mimicking the behavior of T over the input u is straightforward:
we take a row of C blobs (remember that C ∈ N is the number of tape cells used by T to
process u). Since the size of a blob is constant, the size of G is polynomial in C. We define
the initial configuration of G by setting the states of the |u| blobs on the left of the row to the
letters of u, and setting the inputs I1 to Is of the leftmost blob to the signal corresponding to
the initial state of T as if it was already in the process. As explained earlier, the blobs then
evolve by following the run of T . If the Turing machine stops, then its tape is empty, the final
state is encoded by 0s, and the blank symbol is encoded by 0n. So G reaches the configuration
where all vertices are defectors. Conversely, if T runs forever starting from the input u, there
will always be some cooperators vertices in G to transmit the signal corresponding to the state
of T .

Proof of Theorem 9,part 1. By Lemma 15, we can reduce any problem solvable by a polyno-
mially bounded Turing machine into Reach , asking whether we reach the configuration with
only defectors. or into Avg , asking whether the long-run average is strictly above 0.

Proof of Theorem 9,part 2. Again, by Lemma 15, we can create an infinite chain of blobs
and then we can reduce any problem solvable by any Turing machine into Reach , asking
whether we reach the configuration with only defectors, or into Avg , asking whether the
long-run average is strictly above 0.

3.5 Conclusion

Our result shows that going beyond the basic grid model even slightly makes spatial games
PSPACE-hard. It ensures that there is no efficient (polynomial-time) algorithm for Reach or
Avg , even for the simplest game of prisoner’s dilemma.

We studied games with synchronous and deterministic updating. It poses a question: does
lifting any restriction permit an efficient algorithm? Moreover, we can ask whether it is possible
to construct graphs on which the game has certain properties, such as: are there graphs where
the cooperative behavior is favored?

3.6 Construction for a more general b

We can make a similar construction for different b’s than those from the range (3
2
, 2). By

selecting different b, the construction is not a subgraph of a square grid.

We can interpret the wire from Figure 3.3 as a path (lower row of vertices) with auxiliary
vertices (upper row) that empower the tip of the cooperator signal and also help the first
defector behind it. For different b’s, we can add more auxiliary vertices. Details are on
Figure 3.10.
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Figure 3.10: Schematic wire construction for general b with the slices of size k. The numbers
are payoffs of important vertices.
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Figure 3.11: Sending signal throught the wire with explicit payoffs.

For setting b ∈ (3
2
, 2), the path and auxiliary vertices interchangeable, it’s not the case for

different bs. Our construction uses this, but only to preserve the topology properties. When
we add k auxiliary vertices, we need to ensure that kb > k − 1 and k − 1 > b. For small b, we
change the signal that it does not span two consecutive slices, but one (as on Figure 3.10.

3.7 More gadgets

In this section, we provide more detailed figures for some gadgets. On Figure 3.11 and
Figure 3.12 we see explicit graph shown on Figure 3.3 and Figure 3.4.
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Figure 3.12: Splitting the signal in two. Note that the splitter does not have a direction (a
signal from any input/output is split and sent by the other two inputs/outputs).

Figure 3.13: Crossing of two wires. Signal coming from left leaves the gadget by the right
wire and signal coming from bottom leaves the gadget by the top wire.
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CHAPTER 4
Amplifiers of Cooperation for Spatial

Games

This chapter appears in full in [SC24] and is copyrighted by Creative Commons CC BY-NC-ND
license.

Abstract

Spatial games provide a simple and elegant mathematical model to study the evolution of
cooperation in networks. In spatial games, individuals reside in vertices, adopt simple strategies,
and interact with neighbors to receive a payoff. Depending on their own and neighbors’ payoffs,
individuals can change their strategy. The payoff is determined by the Prisoners’ Dilemma, a
classical matrix game, where players cooperate or defect. While cooperation is the desired
behavior, defection provides a higher payoff for a selfish individual. There are many theoretical
and empirical studies related to the role of the network in the evolution of cooperation. However,
the fundamental question of whether there exist networks that for low initial cooperation
rate ensure a high chance of fixation, i.e., cooperation spreads across the whole population,
has remained elusive for spatial games with strong selection. In this work, we answer this
fundamental question in the affirmative by presenting the first network structures that ensure
high fixation probability for cooperators in the strong selection regime. Besides, our structures
have many desirable properties: (a) they ensure the spread of cooperation even for a low initial
density of cooperation and high temptation of defection, (b) they have constant degrees, and
(c) the number of steps, until cooperation spreads, is at most quadratic in the size of the
network.

Significance statement

Spatial games provide a broad framework to study the spread of strategies over networks.
Individuals residing in vertices play a matrix game with neighbors and update strategies based
on the payoff. We address a long-standing problem: Do there exist networks that promote the
spread of cooperation for Prisoners’ dilemma? We present the first networks that ensure the
spread of cooperation with high probability. We also establish several robustness properties
of our networks: they promote cooperation even with a low initial cooperation rate and high
temptation and ensure that cooperation spreads quickly. Due to the broad connection of
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4. Amplifiers of Cooperation for Spatial Games

spatial games in several applications ranging from biology to physics, our new structures are
significant and relevant in all these domains.

4.1 Introduction

Game theory is a broad field that provides the mathematical foundations related to decision-
making, which has many applications in economics [Owe13, KMR93], computer science and
artificial intelligence [NRTV07], evolutionary dynamics [Smi82, Now07, BR22, TK97, Ewe04],
and physics [PJR+17, CFL09, JHK+22]. For example: one-shot or matrix games have been
studied in [VNM47, Nas51]; their generalization as normal and extensive form games have
wide applications in economics [Owe13, FM99]; and evolutionary games study competitive
and collaborative behavior in biology [HS98, AFC15, GYVO09, KSW+14, JMG+13, Tar17,
NDF16, IS01, Dug97, HG04].

An important class of games that arise in many different contexts is games on graphs. The
graph represents a network or a population structure. Individuals reside in vertices, and
the interactions happen over the edges of the graph. Well-known examples of games over
graphs are: game of life [BCG04], games with cellular automata [Wol83]; evolutionary games
on graphs [LHN05, ARS06, SAR08]; and spatial games [NM92a, ANT09, TOA+09, DHD14,
HD04, MRH21].

One of the classical examples in game theory to represent social tension by a matrix game
is Prisoners’ Dilemma (PD) [Nas51], which has been studied both theoretically [NRTV07]
as well as experimentally [AH81, Axe97]. In PD, individuals can choose to cooperate or
defect. If they mutually cooperate, they both receive payoff R. If they mutually defect, they
receive payoff P . A cooperator facing a defector obtains payoff S, while a defector facing
a cooperator gets T . The payoffs follow inequality T > R > P > S, which represents
the dilemma between altruistic behavior and self-interest. Mutual cooperation is the desired
behavior; however, defection is the dominant strategy, which achieves the best payoff for a
selfish individual no matter the strategy of the other player. Hence mutual defection is the
only Nash equilibrium. The population structure can help the cooperation to overcome this
trap [NSTF04, May87, FF03, PWAT16, SSP08, SAP22, SMMP22].

Spatial games provide the framework to study PD games over structured populations (graphs)
played over multiple rounds. Individuals residing in vertices can adopt only simple strategies,
always cooperate C, or always defect D in every round. In one round, the payoff of an
individual is obtained by interacting with all neighbors by playing pairwise PD. Based on
the individual’s payoff and the payoffs of neighbors, the strategy is updated by a variant of
a replicator dynamic [NM92a, HS98, Now07]. The strategy can be updated synchronously,
where every individual can update its strategy; or asynchronously, where only one individual
from a random pair of neighbors can update its strategy. The strategy update can be either
deterministic: the individual with a lower payoff adopts the strategy of a more successful
individual; or randomized: with some probability (given by the Fermi function) even the strategy
with a lower payoff can replace a higher payoff strategy. This represents the specific regime of
spatial games with strong selection, i.e., in the deterministic setting we have the best-response
dynamics, and in the randomized setting replacement probability depends exponentially on
payoff difference.

The study of spatial games was initiated in the seminal work of Nowak and May [NM92a]
and since then, it received a lot of attention from several research perspectives. Oht-
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suki et al. [OHLN06] theoretically examine the graphs conducive to cooperation. Traulsen
et al. [TSS+10] examine how humans update their strategies in the real world. Many
works [SPL06b, SP05, GGCFM07] simulate the process on grids or natural graphs that approx-
imate the social networks (scale-free graphs). On scale-free graphs, cooperation is promoted in
comparison to highly regular graphs. The reason is that scale-free graphs have large differences
between the degrees of the vertices. Highly connected cooperators can tolerate a lot of
defection in the neighborhood while spreading cooperation.

A fundamental question in spatial games is the role of the graph structure in boosting or
amplifying the desired cooperative behavior. There are two notions of cooperation amplification:
(1) an increase of cooperation in the stationary state during coexistence; and (2) an increase
in the probability that the cooperators replace all defectors, this event is called cooperator
fixation. Most works on spatial games [PJR+17, CFL09, JHK+22] study mainly the aspect
that cooperation increases in the stationary state with results on scale-free networks [SPL06b,
SP05, GGCFM07]. Moreover, these works focus on empirical results and do not provide
theoretical guarantees with analytical results. Our work is distinguished in two aspects.
First, as compared to increasing cooperation in the stationary state, we consider fixation,
which is more desirable as it ensures complete cooperation in the stationary state. However,
note that ensuring fixation is more challenging and usually takes a long time to achieve in
simulations. Second, our goal is to establish analytical results that can provide theoretical
guarantees on fixation probability. By amplifying cooperation, we mean increasing the fixation
probability. This type of amplifying has been studied in many contexts: such as amplification
for Moran processes [LHN05, TPCN21, ACN15] where the mutant has constant advantage,
or amplification for evolutionary games for weak selection regimes [ALC+17]. Despite the
importance of amplifying cooperation, in the context of spatial games in strong selection, the
existence of graphs that amplify cooperation has remained elusive even after two decades of
active research, which is the question we address.

In this work, we present a classification of density amplifiers in spatial games. A weak density
amplifier ensures fixation with a positive probability for a low initial cooperation rate. A strong
density amplifier guarantees the fixation probability close to 1 for a low initial cooperation
rate. We show that previously studied structures, such as grids and regular graphs are not
even weak density amplifiers. In contrast, we present graph structures that are not only
weak but even strong density amplifiers. We demonstrate this amplifying effect across three
replicator dynamics: deterministic synchronous, deterministic asynchronous, and randomized
asynchronous. Thus, our construction answers the open question in the affirmative for the
existence of density amplifiers in spatial games.

Besides answering the open question, we present several other results related to our construction.
First, we present two robustness results: our structure ensures high fixation probability even
with: (a) a low rate of initial cooperation; and (b) high temptation-reward ratio T/R above
2. Previous literature in the context of spatial games [NSTF04, ALC+17, SP05, GGCFM07]
requires a very low temptation-reward ratio T/R and shows that with a high initial cooperation
rate (around 50%) structures can ensure a steady-state of cooperation rate (around 50%).
These results neither start with a low cooperation rate (e.g., 5%) and ensure a steady-state
cooperation rate of 50%, nor start with a high initial cooperation rate and ensure fixation. In
contrast, our structures with a low initial cooperation rate of 5% ensure fixation, which is a
significant advancement in the study of spatial games. Second, we show that our structure
ensures the fixation quickly. In contrast to many structures in the literature where fixation
requires exponentially many steps, see [NM92a, CIJS22], we show that for our structures

51



4. Amplifiers of Cooperation for Spatial Games

the fixation happens within quadratic steps. Third, our construction has degree variations
between neighbors, similar to scale-free networks, however, we ensure that the maximal degree
is constant (proportional to T/R). Finally, we supplement our theoretical guarantees for large
population limit by simulation results to show the effectiveness of our structures even for
small population sizes. The simulation results consider small population sizes with various
ratios of T/R and show that the fixation probability is high even for a small initial density of
cooperation and large T/R.

The framework of spatial games is quite general, with several regimes, e.g., weak and strong
selection and deterministic and stochastic dynamics. Our work provides density amplification
in the strong selection regime. The extension of the density amplification for all selection
regimes and dynamics are an interesting direction for future work.

4.2 Results

4.2.1 Model

As in the classical literature [NM92a, SP05], we focus on PD with normalized payoffs, where
R = 1, P = ε, S = 0 and T = b > 1. The individuals follow the replicator dynamics. The
detailed explanation is in Figure 4.1. The individuals play PD with all neighbors and collect the
payoff, then change their strategies based on their and the neighbor’s payoffs. We examine the
three main variants in replicator dynamics: (1) Synchronous deterministic : Every individual
that has a neighbor with a higher payoff adopts a strategy of the neighbor with the highest
payoff; (2) Asynchronous deterministic : One edge is selected randomly, and the individual
with a smaller payoff adopts its neighbor’s strategy; and (3) Asynchronous randomized : One
edge is selected randomly. Let x and y be the selected neighbors. If the payoffs are Px and Py

then y changes its strategy to x’s strategy with probability 1
1+e(Py−Px)/K , where K (selection

intensity) is the noise parameter, otherwise y adopts x’s strategy. See Figure 4.1 (panels d,e,f)
for details on replicator dynamics.

The dynamic starts with some cooperators already present in a graph, we denote the initial
density of cooperation by p. Usually, simulation studies start with large p (around 1

2
). However,

ensuring initial configurations with such a large fraction of cooperators is unrealistic. Here,
we consider p to be small, which goes to zero in the limit of a large population. This
requires the spread of cooperation even from a disadvantageous initial position. Spatial games
have rich and complex dynamics. Deciding whether the cooperation survives on a general
graph is computationally hard [CIJS22]. They give rise to beautiful patterns even for grids,
see Figure 4.2. Given these complicated dynamics, analytical results are challenging to achieve.
The landscape of results is dominated by simulations and case studies. The main challenge is
to establish results with provable guarantees, which have been elusive.

We say that cooperators fixate if they replace all defectors and the probability of this event
is called the fixation probability. Traditionally, previous works on spatial games consider the
density of cooperators in the steady-state of coexistence of cooperators and defectors. The
fixation probability is much more desirable as it ensures only cooperators in the steady state.

Now, we define the notion of density amplifiers. Given temptation b > 1, the initial density
of cooperators p > 0 and number of vertices n, we call a family of graphs: (a) weak density
amplifiers if the fixation probability for all graphs in the family is above 0, even in the limit of
large n; (b) mild density amplifiers if the fixation probability for all graphs in the family is

52



4.2. Results

2

1

1 b

b2b 0

2

1

1 1

1

b

b2b

b

b

b 00
0 0 0

0
0

b

0

1

01

0

0

1C
C

D

D

b

0

0( )
a

b

c

d e f

2 b 2 b

Figure 4.1: The description of the Prisoner’s dilemma on graphs. a The payoff matrix
of Prisoner’s dilemma, we have b > 1 and ε = 0. b The initial configuration on a graph, with
cooperators being (pale) blue and defectors (dark) red. c Payoffs of all players in one turn.
The payoff of every cooperator is equal to the number of cooperating neighbors, and the payoff
of every defector is b times the number of cooperating neighbors. d Synchronous deterministic
updating: every individual updates its strategy to the strategy of a neighbor with the highest
payoff. The arrows denote the spread of cooperation/defection. e Asynchronous deterministic
updating: One random edge is selected (highlighted in the figure), and the individual with a
higher payoff replaces the individual with a lower payoff. f Asynchronous randomized updating:
One random edge is selected, and one individual replaces the other with the probability given
the Fermi function of the payoffs. In the example, the defector replaces the cooperator with
probability 1

1+e2−b .
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higher than the probability that cooperators will become extinct; (c) strong density amplifiers
if the fixation probability tends to 1 in the limit of large n.

Note that complete graphs (unstructured populations) are not even weak density amplifiers.
By design of the Prisoner’s dilemma, every defector in the population has a bigger payoff than
any cooperator. Moreover, results of [OHLN06] imply that regular graphs are also not even
weak density amplifiers for all b. Some graphs, for example, stars, are weak density amplifiers:
if the central vertex of the star starts as a cooperator, then the cooperation has a chance to
replace all defectors. However, if the central vertex starts as a defector, then cooperation
disappears. Hence stars are not mild density amplifiers for p f 1

2
. The two fundamental open

questions are: (a) The existence of mild density amplifiers; and (b) the existence of strong
density amplifiers.

4.2.2 Analytical Results

To answer positively to both questions about the existence of density amplifiers, we describe
two graph families parametrized by n, the number of nodes, and b, the temptation. Later,
we show that graphs Ad are strong density amplifiers for deterministic (synchronous and
asynchronous) settings and graphs Ar are strong density amplifiers for randomized settings.
To simplify the construction we first increase the defectors’ payoff against the cooperator
by the highest degree times ε and then round up the payoff to the nearest higher integer.
It allows us to treat the payoff of a defector interacting with a defector as 0. This change
gives the defector an advantage by giving them a higher payoff. Finally, if there is a tie in the
accumulated payoff, then cooperators win ties. However, note that since we have increased
the defectors’ payoff, a tie implies a higher payoff for cooperators in the original setting. Thus
this procedure still only provides an advantage to defectors.

The structure of Ad(n, b) is as follows: There are four types of vertices: big, small, bridge,
and leaf. The graph consists of a path on which big and small vertices alternate. Between two
neighboring big and small vertices there are b − 1 bridge vertices connected to both of them.
Moreover, to every small vertex, b leaf vertices connect, and to every big vertex, 10b2 − 2b leaf
vertices connect. The number n bounds the number of big vertices that can be in the graph
(around n

10b2 ). Figure 4.3 shows the structure of Ad together with the spread of cooperation.

The structure Ar(n, b) is similar. The graph contains big, small, and leaf vertices. Again, big
and small vertices alternate on a path. Every big vertex connects to 10b2 − 2 leaf vertices.
This time, small vertices neighbor only two big vertices.

We describe the spread of cooperation on Ad in a deterministic (synchronous or asynchronous)
setting. We suppose that b is arbitrary and n sufficiently large. Since the initial density p is
above 0, we know that in the graph, there are a lot of seeded vertices. Seeded vertices are big
vertices that are cooperators and have at least b cooperating neighbors. Seeded vertices can
convert other leaf vertices to cooperation, see Figure 4.3 (panel e,f,g) for a detailed description
of the neighborhood of the seeded vertex. With substantial probability, the seeded vertex
converts at least 3b2 of leaf vertices to cooperators. This cooperator cannot be converted: no
neighbor can have a higher payoff than 3b2 since no neighbor has more than 3b neighbors. We
call such a vertex invincible. After an invincible vertex appears, the cooperation cannot die
out. Moreover, from every position, the probability that the cooperation fixates is nonzero
and happens quickly.

Observe that the probability that a big vertex becomes invincible depends only on the
neighborhood of the big vertex and is also independent from all events happening at higher
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a b

c d

Figure 4.2: Simulations of the spatial games on the lattice with unchaengable boundary
and size 100 × 120. Cooperators are denoted blue, and defectors are red. The initial density of
cooperators is p = 1

2
, and the position is recorded after reaching equilibria. a Process for b = 1.3

and synchronous deterministic updating. b Process for b = 1.99 and synchronous deterministic
updating. Synchronicity and determinism ensure that the cooperators create stable structures
that are impossible to invade. c Process for 1.03 and deterministic asynchronous updating. d
Process for b = 1.03 and randomized asynchronous updating. In the randomized updating,
cooperators cannot create structures, therefore defectors slowly erode the cooperation.
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Figure 4.3: The spread of cooperation in Ad. a Big and small vertices alternate on a
line. One bridge vertex is connected to neighboring small and big vertex, leaf vertices only
connect to small and big vertices. More leaf vertices connect to the big vertex. A big vertex
that started as a cooperator with a lot of cooperating neighbors spreads the cooperation while
the cooperation recedes everywhere else. b The cooperating big vertex becomes invincible.
Cooperation still recedes everywhere else. c The invincible vertex spreads the cooperation
to a small vertex, which in turn starts spreading cooperation among the bridge neighbors.
d The small vertex can convert the big neighbor, and the spread of cooperation continues.
e The neighborhood of a seeded vertex for b = 3. The seeded vertex can convert only leaf
neighbors, bridge and small vertices can have a higher payoff. f After a big vertex has more
than 2b cooperating neighbors, it can convert bridge vertices. g Invincible vertex has at least
3b2 neighbors and can spread the cooperation to any neighbor.

distances in the graph. That means increasing the size of the graph from n vertices to 2n
vertices increases the probability of invincible vertex appearing (and thus fixation probability)
roughly from Ä to 1 − (1 − Ä)(1 − Ä) = 2Ä − Ä2. Also, for setting p = 1

2
, the expected

number of cooperating neighbors of a big vertex is around 5b2, which means that a big vertex
initialized as a cooperator is invincible from the start, so the probability of an invincible vertex
not appearing is exponentially small.

Similar reasoning holds for randomized asynchronous settings. Some big vertices have a
cooperator in a neighborhood. This cooperator has a small but positive chance to spread
to the big vertex and then convert all leaf vertices to cooperators. This vertex, so-called
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stronghold, is more likely to convert another neighboring vertex to a stronghold than to turn
to a defector. The spread of cooperators is a walk on a biased Markov Chain. Since the bias
is significant, the cooperators spread over the whole graph with a large probability.

In summary, we show that the family of graphs Ad(n, b) ensures high fixation probability for
synchronous deterministic and asynchronous deterministic processes, and family of graphs
Ar(n, b) ensures the same for asynchronous randomized setting, see Section 4.4 for details.
In other words, we establish the existence of strong density amplifiers for all three replicator
dynamics. Along with the main result proving the existence of strong density amplifiers, our
construction has several other desirable properties. First, (a) in contrast to existing simulation
studies that consider high p = 1/2 [SF07, JHK+22, SP05], our structure ensures high fixation

probability even for low p, for instance, for p of order of n−
1

3(b+1) , that goes to 0 as n goes

to ∞, the fixation probability is at least 1 − e−0.2n
1

3 in both density amplifier families; (b) in
contrast to previous studies that consider low b, our structure ensures high fixation probability
for high b, for instance for b that is of order of

√
log n that goes to ∞ as n goes to ∞, the

fixation probability is again at least 1 − e−0.2n
1

3 in both density amplifier families. It shows the
robustness of our result with respect to low initial cooperation and high temptation. Second,
the number of steps to achieve fixation is asymptotically quadratic in the size of the graph for
both Ad and Ar (see Section 4.4 for details). It means that the fixation is achieved quickly
with respect to the network size. Third, our graph structures have constant degree, i.e., the
degree is bounded by 10b2 even when the population size increases to ∞. The constant-degree
property is desirable as it ensures that every individual finishes all interactions in constant time
in every round.

Significance of results. We further emphasize the strength and significance of our results
in the following ways:

Initial cooperation rate. First, while previous literature for constant or weak selection,
considers the probability that a single cooperator fixates, we show in Section 4.4 that
for spatial games a lower bound on the initial cooperation rate that is required for the
deterministic setting. This complements our initial cooperation density requirement.

Extinction of defectors. Our strong density amplifiers ensure a high fixation probability of
cooperation even with a low initial cooperation rate. This also ensures that even if there
is a relatively high initial density of defectors (say 1

2
) still the defectors become extinct.

In other words, our strong density amplifiers ensure high fixation for cooperators and
low fixation for defectors.

Payoff matrix. While we focus our results on the classic matrix from [Now07, NM92a], we
also show the condition under which we obtain strong density amplifiers for the general
Prisoners’ dilemma payoff matrix. We show that our results about the existence of
strong density amplifiers hold in the randomized update for all parameters, and for the
deterministic update when R2 > T · P .

Initialization. We focus on the randomized initialization of cooperators as this is one of the
most difficult conditions where cooperators are not clustered. We argue (in Section 4.4)
that our results hold for other initialization, e.g., temperature and correlated initialization.

Mutation rate. We present simulation results that consider the cooperation rate over time
for various mutation rates, and our structure significantly outperforms star and grid.

Fixation probability bounds for single mutant. As mentioned above, in the deterministic
setting we show that the initial density of cooperators is required. We also consider the bounds
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on fixation probability of a single mutant: a single cooperator among defectors (fixation
probability denoted as Än

C in population of size n) and a single defector among cooperators
(fixation probability of defector denoted as Än

D). For Ar we show that Än
C is constant and Än

D

is exponentially small in n. In contrast, for complete graph and grid, Än
C is exponentially small

in n whereas Än
D is constant, and for star both Än

C and Än
D are proportional to 1/n. The results

are summarized in Table 4.1.

Än
C Än

D Än
C ▷◁ Än

D An =
Än

C

Än
D

lim
n→∞

An Bn =
Än

C

Än

lim
n→∞

Bn

Complete Graph 2−c1n c2 << 2−c1n/c2 0 n2−c1n 0
Grid 2−c3n c4 << 2−c3n/c4 0 n2−c3n 0
Star c5n

−1 c6n
−1 ≈ c5/c6 c5/c6 c5 c5

Ar c7 2−c8n >> c72
c8n ∞ c7n ∞

Table 4.1: Fixation probabilities for a single random mutant in graph occupied by individuals
of the other type: The first column describes the graph type, the second and third column
represents the fixation probability of a single cooperator and defector, respectively. In the
third column, we compare the two fixation probabilities where ▷◁ is the comparison operator,
which can be very small <<, comparable ≈, or very large >>. The fourth and fifth columns
consider the ratio An of the two fixation probabilities and the respective large-population limit.
The sixth and seventh columns consider the ratio Bn of the fixation probability of a cooperator
to the fixation probability of a neutral mutant, denoted Än, which is 1/n, and the respective
large-population limit. In the table, c1, c2, . . . , c8 denote constants that are independent of n.
The table summarizes the following: (a) for complete graph and grid, the fixation probability
of cooperators is exponentially small in n whereas for defectors it is constant; (b) for star,
the fixation probabilities are proportional to 1/n; and (c) for Ar the fixation probability of
cooperators is constant, whereas for defectors it is exponentially small. The large-population
limit of the desired comparison ratios vanishes for the complete graph and grid, is constant for
the star, and goes to ∞ for Ar. Observe that only Ar yields that the desired ratio goes to ∞
in the large-population limit.

4.2.3 Simulation results

Finally, we supplement our theoretical findings with simulation results. While the theory provides
guarantees for large population sizes, the simulation results demonstrate the effectiveness of
our structure even for small population sizes. We examine three baselines: complete graph,
grid, and star. No matter the process and the temptation (b), the fixation probability on
these graphs does not change much. On a complete graph, every defector has a higher
payoff than every cooperator, which means the fixation probability tends to 0. Similarly, on a
grid, the last defector has a higher payoff than all neighbors, so it cannot be converted in a
deterministic setting. In a randomized setting, the fixation probability is also 0. On a star, the
probability that the center is a cooperator is proportional to p. If at the same time p g b

n−1
,

the central cooperator has a higher payoff than neighbors and can spread. This means the
fixation probability is proportional to p.

We run the asynchronous deterministic setting for three temptations and graphs: Ad(104, 2),
Ad(104, 4), and Ad(104, 6). We examine how the initial cooperator density p influences the
fixation of cooperation in Ad against the baseline graphs. For every graph and value of p, we
report the fixation probability by averaging over 5 ·104 runs. Every run is simulated until one of
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Figure 4.4: Simulation results. We examine the fixation probability (y-axis) with respect to
the starting density of cooperation p (x-axis) for four graphs: a density amplifier, a star, a
grid, and a complete graph. The rows examine asynchronous deterministic and asynchronous
randomized setting, the collums examine different temptation b ∈ {2, 4, 6}. All graphs have
104 vertices and the results are averaged over 5 · 104 runs. Cooperators on the grid and
complete graph have fixation probability 0. On star, the fixation probability is proportional p.
The fixation probability on both density amplifiers quickly reaches 1 for p = 0.04 already.

the two things happens: cooperators become extinct, or cooperators create an invincible vertex
(this is a big vertex with 3b2 cooperating neighbors). Since the invincible vertex cannot be
converted and cooperators eventually fixate, these two conditions are equivalent to simulating
until cooperators or defectors spread over the whole graph. The first row of Figure 4.4 shows
the results. We see that for all settings, the fixation probability increases with increasing
initial probability. At p = 0.04, the fixation probability on Ad(104, 2) is already almost 1. The
fixation probability for other graphs rises more slowly since the temptation to defect is larger,
and the graphs Ad(104, 4) and Ad(104, 6) have fewer big vertices than the graph Ad(104, 2).

For the asynchronous randomized setting, we again examine three graphs: Ar(104, 2),
Ar(104, 4), and Ar(104, 6). We examine how the initial cooperator density p influences
the fixation of cooperation in Ar against the baseline graphs. We run the process for every
combination of parameters 5 · 104 times until either cooperation or defection fixate and report
the fixation probability. In the second row of Figure 4.4, as our result suggests, we see that
cooperation increases even more steeply than in the deterministic setting. At p = 0.02, the
fixation probability on Ar(104, 2) is already almost 1.

4.3 Discussion

In this work, we present Ad and Ar, the first graph families that increase the fixation probability
of cooperation in spatial games with Prisoners’ dilemma with strong selection. Moreover, the
graph families ensure the fixation with several desirable properties: (a) they are robust with
respect to a low initial density of cooperation and high temptation; (b) they have a constant
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degree; and (c) they ensure a fast spread of cooperation within quadratic steps in the size of
the network.

First, the study of evolutionary graph theory for constant (or frequency-independent) fitness
has been widely studied in the context of the Moran process [LHN05]. The role of graphs
that can amplify the fixation probability has been a key topic of interest [GGG+17, PTCN18].
Moreover, the time to fixation is another important aspect [FRT13], and there is a very
interesting tradeoff [TPCN19]. The existence of strong density amplifiers with fast fixation
time has been established in [TPCN21]. However, the techniques of these works do not extend
to evolutionary games, which represent frequency-dependent selection.

Second, the study of evolutionary games on graphs, which represent frequency-dependent
selection, also received broad attention [OHLN06, NM92a]. The computational hardness
of such games has been established in [IJCN15, CIJS22]. In the regime of weak selection,
the role of graphs that help in increasing cooperative behavior has been considered by Allen
et al. [ALC+17], and by Fotouhi et al. [FMAN18]. While Allen et al. give the theoretical
algorithms and guarantee, Fotouhi et al. present natural graphs and empirical results. However,
these results do not extend to strong selection, where the existence of density amplifiers is
an interesting open question. Spatial games intuitively represent the strong selection limit,
and our results complement the existing results in the literature establishing the existence of
strong density amplifiers in this regime.

Finally, we believe that the structures we present have wider applicability. The reasoning in
our proof can be extended to other two-player matrix games (dilemmas), such as snowdrift
and stag-hunt games. Even in these cases, pro-social behavior creates invincible parts of the
graph. Our structures will be useful in problems where there is a hard-to-reach absorbing state
that is desired. Exploring the role of our structures in specific applications is an interesting
direction for future work.

In this section, we describe the main ingredients for both proofs.

4.3.1 Proof sketch for asynchronous deterministic updating

The graph family Ad are strong density amplifiers. The proof has three main ingredients. First,
we show that with substantial probability there are at least n

1

3 big vertices that are cooperators
and have at least b cooperating neighbors (we call them seeded vertices). Second, we prove
that one seeded vertex becomes invincible with a large probability. Third, we describe how
one invincible vertex can convert the whole graph to cooperation.

A vertex starts as a cooperator with probability p and we suppose that

p g 1

n1/(3b+3)
. (4.1)

Let us examine the probability that a big vertex is a cooperator and has at least b cooperating
leaf neighbors. With probability p, the big vertex is a cooperator. It has 10b2 − 2b leaf
neighbors and the number of cooperating neighbors follows a binomial distribution, which
gives the probability

p ·
∑

xgb

px(1 − p)10b2
−2b−x

(

10b2 − 2b

x

)

. (4.2)
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4.3. Discussion

We split the graph to n
1

3 parts. In one part, using b g 2, Equation (4.1), and Equation (4.2),
we have that there is no seeded vertex with probability at most

(

1 − 10b2 + b + 2

n1/3

)
n2/3

10b2+b+2

< e−2n1/3

. (4.3)

From union bound and Equation (4.3), we get that in every part of the graph, there is at
least one seeded vertex (that means at least n1/3 seeded vertices in the whole graph) with
probability at least

1 − e−n1/3

. (4.4)

The seeded vertex has a payoff big enough to convert any leaf to cooperation. In the worst
case, the neighboring small and bridge vertices can revert the seeded vertex to defection. In one
active step, the probability of the big vertex being turned into defection is at most 2b

10b2−4b
< 1

4b
.

When the seeded vertex has at least 2b cooperating leaf neighbors, the bridge vertices stop
being threatening. The failure probability in one active step decreases to 2

9b2−2(b−1)
< 1

4b2

until the big vertex has b2 cooperating neighbors. Finally, the failure probability is at most
2

7b2−2(b−1)
f 1

3b2 in one step until the big vertex has at least 3b2 cooperating neighbors. At that
point, it becomes invincible, no neighbor can have a higher payoff, so it cannot be converted.
From union bound, the seeded vertex becomes invincible with probability at least

(

1 − b · 1

4b

) (

1 − b2 · 1

4b2

) (

1 − 2b2 · 1

3b2

)

g 3

4
· 3

4
· 1

3
g 3

16
. (4.5)

One invincible vertex can convert the rest of the graph to cooperation. It first converts all
bridge vertices and neighboring small vertex. This small vertex converts its leaf neighbors, then
the neighboring big vertex and remaining bridge vertices. By this, the big vertex has at least b
cooperating neighbors and can start converting other vertices and becomes invincible. The
probability of everything happening is nonzero and the invincible vertex cannot be converted,
which means it happens eventually. To increase the number of invincible vertices by one, we
need the number of steps around the newly invincible vertex to be around O((20b)2b). This
means the number of steps until all vertices are converted to cooperators is

O
(

(20b)2bn2
)

. (4.6)

That means, for initial rate of cooperation at least p g 1
n1/(3b+3)

(Equation (4.1)), from
Equation (4.4) and Equation (4.5), the fixation probability is at least

(

1 − e−n1/3
)

·


1 −
(

3

16

)n1/3



 g 1 − e−0.2n1/3

. (4.7)

Note that for b around
√

log n (which is unbounded if n grows), the initial density of cooperation
is around e−

√

log n, which tends to 0 as n grows. However, the theorem still holds and guarantees
fixation probability that goes to 1 with growing n.

4.3.2 Proof sketch for asynchronous randomized updating

The graph family Ar are strong density amplifiers. The proof consists of two important steps.
First, we show that a big vertex that is seeded (has one cooperator in the neighborhood)
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4. Amplifiers of Cooperation for Spatial Games

becomes a stronghold (all its leaf neighbors are cooperators) with a large probability. Second,
we estimate the probability that a stronghold vertex converts the rest of the graph.

We split the spread of cooperation into several stages. In the first stage, the big vertex v
becomes a cooperator. Let i denote the number of cooperating neighbors of v. In the second
stage, we have i f b, in the third b < i f 3b, and in the fourth 3b < i.

The first stage succeeds with probability

1

1 + eb−0
. (4.8)

During the second and third stages, we suppose that the edge between the small and big
vertex was not selected. This happens with probability at most

(

1 − 2

10b2 − 3b

)3b

> 1 − 6b

10b2 − 3b
> 1 − 1

17
12

b
. (4.9)

With probability 1
1+eb−i after selecting the edge between leaf and big vertex, the cooperation

spreads, that means the second phase succeeds with the probability

b
∏

i=0

1

1 + eb−i
. (4.10)

By the same reasoning, the third phase succeeds with probability

3b
∏

i=b+1

1

1 + eb−i
>

2b
∏

i=1

1

1 + e−i
, (4.11)

and fourth with
10b2

∏

i=3b+1

1

1 + e2b−i
=

10b2

∏

i=0

1

1 + e−b−1−i
>

∞
∏

i=0

eb+1+i

1 + eb+1+i
. (4.12)

Combining Equation (4.9), Equation (4.10), Equation (4.11), and Equation (4.12), we get the
success probability

2−5e−b2

. (4.13)

Having a stronghold in the graph and selecting an edge between the stronghold and neighboring
small vertex means that either stronghold becomes a defector (with probability roughly 1

1+e10b2
−2

)
or the neighboring big vertex becomes seeded and it might become a stronghold with probability
2−5e−b2

. If we observe the number of strongholds, their expansion creates a Markov Chain
with the ratio between increasing and decreasing cooperation is above

e6b2

. (4.14)

Suppose that p g eb2

23
·10b2

n23
, then a big vertex is seeded with probability at least 25p and from

Equation (4.13), we have that a big vertex becomes a stronghold with probability at least
e−b2

p. With probability at least 1 − e
49

16
n1/3

, at least n1/3 seeded vertices turns into stronghold.
In the Markov Chain tracking the number of strongholds (with the ratio Equation (4.14)), the
strongholds disappear with probability at most e−6b2n1/3

. Therefore the fixation probability is
at least

1 − e−3n1/3

. (4.15)

Again, note that we can set b = (log n)1/3 which grows with n, and then p tends to 0 with
large n and the fixation probability tends to 1.
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4.4. Additional proofs

4.4 Additional proofs

This is supporting information to manuscript Density Amplifiers of Cooperation for Spatial
Games. The organization of the text is as follows: Section 4.4.1 introduces the model of spatial
games of social dilemma. Section 4.4.2 describes the structure of strong density amplifiers
for deterministic and randomized settings. Section 4.4.3 proves that Ad is a family of strong
density amplifiers for the deterministic setting. Section 4.4.4 shows that Ar is a family of
strong density amplifiers for the randomized setting. Section 4.4.5 discusses the smallest viable
initial density of cooperators in the deterministic setting. Section 4.4.6 determine the range of
parameters of Prisoners’ dilemma for which our structures support cooperation. Section 4.4.7
discusses changes of fixation probabilities with different initializations. Section 4.4.8 examines
the fixation probability of one mutant (cooperator or defector) inside a graph occupied by the
other type. Section 4.4.9 explores the model with mutation.

4.4.1 Model of Spatial Games of Social Dilemma

In this section, we introduce the model of spatial games of social dilemmas. The deterministic
update follows definitions introduced by Nowak [NM92a]. The asynchronous updates are
similar to ones introduced in [Now07, HS98].

Preliminaries

Spatial Games. Spatial games track the spread of strategies in a structured population.
Individuals are arranged on a graph. Two individuals are connected by an edge if they interact
with each other. In one step of the process, every individual plays a game with all neighbors
and receives a payoff based on his and the neighbor’s strategy. Based on the payoff, some
individuals update their strategies.

Prisoners dilemma. The game that introduces tension between selfishness and global
optimality is The Prisoner’s Dilemma. There are two strategies: cooperation (C) and defection
(D). The game is given by the following matrix:

C D
C 1 0
D b ε

The parameter b (b > 1) can be arbitrarily large, and we call it temptation. We suppose that
ε is a small positive constant.

The payoff of a cooperator equals the number of cooperating neighbors, and the payoff of a
defector is b times the number of cooperating neighbors plus ε times the number of neighboring
defectors (this corresponds to pp-goods from [MRH21]).

Initialization. The process is parametrized by p: initial density of cooperators. At the
beginning of the process, every individual is a cooperator with probability p and a defector
with probability 1 − p.
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4. Amplifiers of Cooperation for Spatial Games

Update Notions. There are various notions [SF07, HS98] of how an individual can update
its strategy in one step of the process.

• Synchronous deterministic : Every individual who has a neighbor with a higher payoff
updates its strategy to the strategy of the highest neighbor.

• Asynchronous deterministic : One edge is selected randomly, and the individual with a
smaller payoff adopts a strategy of its neighbor.

• Asynchronous randomized : One edge is selected randomly. Let it be between individuals
x and y. Let the edge be between x and y where individuals have payoffs Px and
Py respectively. Then, the individual at y changes its strategy to x’s strategy with
probability

1

1 + e
Py−Px

K

,

where K is the noise parameter (with probability 1

1+e
Px−Py

K

, x changes its strategy to

y’s strategy)

Note that when K → 0, the asynchronous random model changes to deterministic. For ease
of notation, we use K = 1 in our computations, different values of K do not change our
result significantly.

Fixation probability. We say a type fixates if it replaces all types (i.e., eventually all
individuals are of the type). Given a graph G, strength of defection b and initial cooperator
density p, we denote ÄC(G, b, p) the fixation probability i.e. the probability that the cooperators
fixate. Similarly, we denote ÄD(G, b, p), the probability that defectors fixate. We call it
extinction probability of cooperators. We can view ÄC(G, b, p) (resp., ÄD(G, b, p)) as the final
expected density of cooperators (resp., defectors) given the initial density of cooperators is p.

Density amplifiers. Given b > 1 and p > 0, we call a family of graphs G parametrized by
n, number of vertices

• Weak density amplifiers if the fixation probability for all graphs in G is higher than 0
even for large n, i.e., for all Gn ∈ G holds limn→∞ ÄC(Gn, b, p) > 0.

• Mild density amplifiers if for all graphs in G the fixation probability of cooperation is higher
than the extinction probability, i.e., for all Gn ∈ G holds ÄC(Gn, b, p) > ÄD(Gn, b, p).

• Strong density amplifiers if the fixation probability of graphs in G tends to 1 with
increasing n, i.e., for all Gn ∈ G holds limn→∞ ÄC(Gn, b, p) = 1.

Note that for weak density amplifiers, we can have two baseline comparisons for density
amplification: fixation probability at least 1/N , which is the neutral drift, or exponentially
small in N , which is the fixation probability for complete graphs in games. Our definition is
stronger in the sense that it requires the fixation to be higher (i.e., constant) in the limit of a
large population.
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4.4. Additional proofs

Existence of Density Amplifiers and Open Questions

In this section, we state some negative results and open questions about the existence of
density amplifiers.

Complete and regular graphs. We discuss the amplifying properties of complete and
regular graphs.

Complete graphs: Complete graphs are not weak density amplifiers for all b > 1, p < 1, and
any process. A defector has a higher payoff than all the cooperators. In a deterministic
setting, this defector cannot be converted. In a randomized setting spreading defection is
always more probable than spreading cooperation. That means limn→∞ ÄC(Kn, b, p) = 0.

Regular graphs: Regular graphs are not weak density amplifiers for b > 1 and p < 1 for the
asynchronous deterministic process. For the sake of contradiction, suppose that the
cooperators fixate, that means the last defector is replaced in the graph. In the d-regular
graph, this defector has a payoff d · b, and all neighboring cooperators have a payoff
d − 1. The payoff of the defector is bigger, hence it cannot be converted, which means
ÄC(G, b, p) = 0.

Discussion on a star. Stars are graphs with one central vertex connected to all other
vertices called leaves. Leaves are connected just to the central vertex. Proposition 1 shows
that stars are weak density amplifiers, but not mild density amplifiers.

Proposition 1. For synchronous and asynchronous deterministic updating, stars are weak
density amplifiers for all b > 1 and p > 0, but not mild density amplifiers for p < 1

2
.

Proof. On average, at the start, pn cooperators are initialized. If the center is occupied by a
cooperator and the number of cooperators overall is at least b + 1, then the central cooperator
has a bigger payoff than defectors in the leaves. In the deterministic setting, this means this
cooperator eventually converts all defectors. In the randomized setting, after selecting an edge
between the center and a defector, the failure probability is 1/(1 + ei−b) where i is the number
of the cooperator neighbors. That means the probability that the cooperators lose the center
is

n
∑

j=i

1

1 + ei−b
< 1 − e−i+b .

Here i is the number of initialized cooperators in the leaves. The center is initialized as a
cooperator with probability p, if pn = i > b + 1, then the fixation probability is p, which
makes stars weak density amplifiers.

On the other hand, if p < 1
2
, with probability 1 − p, the central vertex is a defector. All

cooperators have payoff 0, they reside in leaves and neighbor only a defector. From the
same argument as above, the center is hard to replace. That means the defector converts all
cooperators, therefore ÄC(G, b, p) < ÄD(G, b, p) for G star, any b (even b > 0) and p < 1

2
.

In a randomized setting, one can show similar results.
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4. Amplifiers of Cooperation for Spatial Games

Open questions. We know that there are weak density amplifiers, which are not mild density
amplifiers. The remaining questions are:

• Does there exist a family of mild density amplifiers for all b > 1 and p > 0?

• Does there exist a family of strong density amplifiers for all b > 1 and p > 0?

Organization. In Section 4.4.2, we show two families of strong density amplifiers for
asynchronous deterministic and randomized updating. In Section 4.4.3 and Section 4.4.4, we
prove that these graphs are indeed strong density amplifiers.

4.4.2 Construction of Strong Density Amplifiers

In this section, we construct strong density amplifiers. We use some properties of stars. In
Section 4.4.2, we describe strong density amplifiers for synchronous deterministic updating. In
Section 4.4.2, we describe strong density amplifiers for asynchronous deterministic updating.

Note on temptation. To simplify the construction and deal with ε > 0, we increase the
defector’s payoff against cooperators by dε, where d is the highest degree and then round up
the number to the nearest higher integer. This gives the defector an advantage by giving them
a higher payoff and allows us to treat ε, the payoff of the defector against the defector as 0.
Finally, if there is a tie in the accumulated payoff, then cooperators win ties. However, note
that since we have increased the defectors’ payoff, a tie implies a higher payoff for cooperators
in the original games. Thus this procedure still only provides an advantage to defectors. In
other words, we show that our structures ensure strong density amplification even giving
further advantage to defectors, and this further emphasizes the robustness of our construction.

Strong Density Amplifiers for Deterministic Setting

We construct a family of graphs Ad(n, b) with parameters: n, number of vertices; and b,
the temptation, see Figure 4.5. The construction consists of multiple stars of alternating
sizes connected in a path. Moreover, special bridge vertices ensure that cooperation spreads
between the centers of stars.

We have four types of vertices in Ad(n, b). They can be classified by the number of neighbors.

Big vertices: They have 10b2 neighbors and are the basic building block in the spread
cooperation.

Small vertices: They have 3b neighbors and create a buffer between two big vertices while
being able to spread cooperation.

Bridge vertices: They have 2 neighbors, they are one big and one small vertex that are
neighbors. They ensure that a new cooperator in these vertices can start converting its
neighbors.

Leaves: They have one neighbor and support the cooperators in big or small vertices.

We call big and small vertices central to refer to them in a group.
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b b b10b2 − 2b 10b2 − 2b

b − 1 b − 1 b − 1 b − 1

Figure 4.5: The structure of Ad, the density amplifier for the deterministic setting.

We construct the graph as follows: There is a path of alternating big and small vertices. There
are b − 1 bridge vertices connected to every two neighboring central vertices. Leaves are added
to the central vertices to ensure the degree constraints (10b2 for big and 3b for small).

Theorem 10. For synchronous and asynchronous deterministic updating, all b > 1, and p > 0,
graphs Ad(n, b) are strong density amplifiers.

Section 4.4.3 is dedicated to prove Theorem 10.

Strong Density Amplifiers for Randomized Setting

We construct a family of graphs Ar(n, b) with parameters: n, number of vertices; and b, the
temptation, see Figure 4.6. Density amplifier Ar(n, b) has three types of vertices classified by
the number of neighbors. Since some terminology translates from deterministic updating, we
name them similarly.

Big vertices: They have 10b2 neighbors and are the basic building block in the spread the
cooperation.

Small vertices: They have 2 neighbours, both of them are big vertices. They allow the
spread of cooperation between big vertices.

Leaves: They are connected only to a big vertex and support the cooperator.

We construct the graph as follows: There is a path of alternating big and small vertices.
Leaves are added to the big vertices to ensure degree 10b2.

Theorem 11. For asynchronous randomized updating, all b > 1, and p > 0, graphs Ar(n, b)
are strong density amplifiers.

Section 4.4.4 is dedicated to prove Theorem 11.
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10b2 − 2 10b2 − 2 10b2 − 2

Figure 4.6: The structure of Ar, the density amplifier in the randomized setting.

4.4.3 Proof of Theorem 10

Seeded and invincible vertex. Given a graph Ad(n, b), we say that a big vertex is seeded
if it is a cooperator and has at least b cooperating neighbors among leaves. We say that a big
vertex is invincible if it is a cooperator and at least 3b2 leaves are cooperators.

Observe that an invincible vertex v cannot become a defector. All neighbors of v have a smaller
degree than 3b, so no matter the arrangement of cooperators and defectors, no neighbor of v
has a higher payoff than 3b2.

Spread of cooperators. Here, we describe the spread of cooperation in Ad(n, b) on a high
level. Later, we compute the exact probabilities.

1. With a substantial probability, many big vertices are seeded (Lemma 16).

2. These seeded vertices convert leaves until at least one seeded vertex becomes invincible.
One seeded vertex becomes invincible with high probability (Lemma 17).

3. Since the invincible vertex cannot convert to defection and construction of Ad(n, b), the
cooperation spreads over the whole graph quickly (Lemma 18).

The lemmas connect in Lemma 19, which is used to prove Theorem 10.

Lemma 16. For graph Ad(n, b) and p g 1

( n
t2 )

1

b+1

where t g 1, the probability that at least t

big vertices are seeded is at least

1 − e−t .

Proof. First, we split the graph into t equal parts and bound the probability that no vertex in
a given part is seeded.

A big vertex is seeded if it is a cooperator (probability p), and among its leaf neighbors, there
are at least b cooperators. The overall probability is:

p ·
∑

xgb

px(1 − p)10b2
−2b−x

(

10b2 − 2b

x

)

Rearranging and forgetting summands with x > b, we have

pb+1 ·
(

10b2 − 2b

b

)

· (1 − p)10b2
−3b > pb+1 · (1 − p)10b2

−3b ·
(

10b2 − 2b

b

)b
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Since b g 2 and p is small relative to b, we can bound (1 − p)10b2
−3b ·

(

10b2
−2b

b

)b
< 2(10b2 +

b + 2).

There are at least n
t(10b2+b+2)

big vertices in one part. The probability that no big vertex is
seeded is at least

(

1 − pb+1 · 2(10b2 + b + 2)
)

n
t(10b2+b+2) .

After plugging in p g 1

( n
t2 )

1

b+1

, we have a lower bound on the probability that no big vertex is

seeded. It is at most
(

1 − t2 · (10b2 + b + 2)

n

)
n

t(10b2+b+2)

< e−2t .

The probability that no big vertex in one part is seeded is e−2t. From union bound, we know
that there is one part where no big vertex is seeded with probability at most te−2t. Since
t g 1, we have te−2t < e−t. That means in every part there is at least one seeded big vertex
with probability at least 1 − e−t.

Lemma 17. For graph Ad(n, b) and any position that contains a seeded vertex v, the
probability that v becomes invincible is at least 3

16
.

Proof. At the beginning, the seeded vertex can be replaced by a defector in a bridge vertex
or a small vertex. After the seeded vertex has at least 2b cooperating leaf neighbors, it can
be replaced only by a defector in a small vertex. We split the proof into two parts. First, we
bound the probability that v is replaced by a bridge or small vertex before it has 2b cooperating
leaf neighbors. Second, we bound the probability that v is replaced by a small vertex before
it becomes invincible. During the process, we focus on events around v. In every step, we
suppose the worst configuration in the neighborhood of v.

Before v has 2b cooperator leaf neighbors, the success is choosing an edge between a defector
leaf and v. This happens with probability at least 10b2

−2b−2b
10b2 . The failure is to select an edge

between the bridge or small vertex and v. This happens with probability 2b
10b2 . (With probability

at most 2b
10b2 edge between two cooperators is selected and nothing changes.) In one active

step, the probability of failure is at most 2b
10b2−4b

= 1
5b−2

< 1
4b

since b g 2. The probability of
failure in b active steps is at most 1

4
from the union bound.

In the next steps, the success is selecting an edge between the defector leaf and v. The failure
is to select an edge between a small vertex and v. If v has i cooperating neighbors, the success
happens with probability 10b2

−2b−i
10b2−2(b−1)−i

, the failure with probability 2
10b2−2(b−1)−i

.

While 2b < i f b2, in one step, the failure happens with probability at most 2
9b2−2(b−1)

< 1
4b2

since b g 2. There are b2 steps, and the probability of failure is at most 1
4

from union bound.

While b2 < i f 3b2, the failure probability in one step is at most

2

7b2 − 2(b − 1)
<

1

3b2
.

Again, from the union bound, the probability of failure in 2b2 steps is at most 2
3
.

That means the probability that a seeded vertex is converted to the invincible vertex is at least

3

4
· 3

4
· 1

3
=

3

16
.
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Lemma 18. In a graph Ad(n, b), for any configuration where at least one vertex is invincible,
the cooperators spread over the whole graph and the spread happens in the expected time
O((20b)2bn2).

Proof. We already know that the invincible vertex cannot be converted. We show that from
any position, the fixation has a positive probability and we bound the expected time for
fixation.

In any configuration, we show the number of invincible vertices increases with positive
probability. When all big vertices are invincible, we show that the number of small vertices
that are cooperators and have at least 2b cooperating neighbors increases with positive
probability. Moreover, such cooperators cannot be converted. When all big and small vertices
are cooperators with at least 2b cooperating neighbors, no cooperator can be converted. Any
defector can be converted with positive probability.

Let D be a constant, approximately double the maximal degree of the graph. Every step
that we examine is local (the changes are happening in distance at most 4 from an invincible
neighbor). The value D is the number of edges in the neighborhood that matter.

In any configuration, if a big vertex is seeded, Lemma 17 shows that the probability that the
seeded vertex becomes invincible is positive. Moreover, any big vertex that has at least b
cooperating neighbors can become seeded with probability at least 1

Db (it converts b leaves
before its other cooperating neighbors are converted). Now, we consider that no big cooperator
has b cooperating neighbors.

In any configuration, we fix an invincible vertex v and its small neighbor u and its big neighbor
w (that has less than b cooperating neighbors). First, w has to be convertible to a cooperator.
This happens when w becomes the defector and all its neighbors become defectors (probability

1
Db+1 ). Then, u is converted to cooperator and all bridge vertices between u and v too
(probability 1

Db ). Then, all leaves of u are converted (probability 1
Db ). Finally, all bridge

vertices between u and w and w itself are converted to cooperators (probability 1
Db ). After

converting b leaves to cooperation (probability 1
Db ), w is seeded and we can use Lemma 17.

This means the big vertex w, a neighbor of v, becomes invincible with probability at least 1
3D5b

from any position in at most 4b2 steps. That means the expected number of steps around w
is O((20b)5b) to make w invincible.

Now, when all big vertices are invincible, we can look at small vertex u between v and w. The
vertex u itself and all bridge vertices can be converted by v or w, this happens with probability
at least 1

D2b . The number of steps around u needed is O((20b)2b).

After all big vertices are invincible and all bridge vertices and small vertices are cooperators,
selecting any edge leads to the spread of cooperation. There are less than 2n edges in the
graph, the time until all of them are selected at least once is O(n log n).

To make s steps around one vertex, the process needs to make s · n
10b2 steps in the whole

graph on average. To spread the cooperation over all big vertices, we need to increase the
number of vertices O(n) times. That means the number of steps to convert all big vertices to
invincible is O((20b)2bn2).
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Lemma 19. For p g 1

( n
t2 )

1

b+1

where t g 1, on the graph Ad(n, b), the probability that

cooperators fixate is at least
1 − e−0.2t ,

and the expected time to fixate is O((20b)2bn2).

Proof. From Lemma 16, with probability 1 − e−t, there are at least t seeded vertices. No
matter the neighborhood, from Lemma 17, a seeded vertex becomes invincible with probability
at least 3

16
. So the vertex fails to become invincible with probability at most 13

16
. The probability

that among t seeded vertices no one turns invincible is
(

13
16

)t
. That means the probability that

no vertex became invincible is at most e−t +
(

13
16

)t
< e−0.2t for t g 1, therefore some vertex

becomes invincible with probability at least 1 − e−0.2t.

From Lemma 18, we know that with probability 1, one invincible vertex converts all defectors.

The seeded vertex becomes invincible in O(n · 10b2) steps in expectation. All the steps have
to spread cooperation. From Lemma 18, we know that the expected number of steps for
cooperation to fixate is O((20b)2bn2).

Proof of Theorem 10. For b > 1, we have Lemma 19, setting t to
√

npb+1, yields ÄC(Ad(n, b), b, p) =

1 − e−0.2
√

npb+1 , therefore
lim

n→∞

ÄC(Ad(n, b), b, p) = 1 .

4.4.4 Proof of Theorem 11

This section follows a similar outline as Section 4.4.3. We use similar terminology because a
lot of concepts in the spread of cooperation are the same.

Seeded and stronghold vertex. In Ar(n, b), we say that a big vertex is seeded if it is a
cooperator or has at least one cooperating neighbor. We call a big vertex a stronghold if all
its leaves are cooperators.

Spread of cooperators. Here, we describe the spread of cooperation in Ar(n, b) on the
high level. Later, we compute the exact probabilities.

1. Every seeded vertex has a substantial probability of turning into a stronghold (Lemma 20).

2. The stronghold vertex is more likely to make neighboring big vertex seeded and eventually
stronghold than to convert to defection. The ratio between these two events is substantial
(Lemma 21).

The lemmas connect in Lemma 22, which is used to prove Theorem 11.

Lemma 20. For graph Ar(n, b) and any position that contains a seeded vertex v, the
probability that v becomes stronghold is at least

2−5e−b2

.
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Proof. We estimate the probability that the seeded vertex v turns into a stronghold. First, the
vertex v needs to become a cooperator. Then, it needs to spread cooperation to its neighbors.
Until the number of cooperating neighbors is below b, the spread is unlikely: any defector has
a higher payoff than v. Until the number of cooperators is below 2b, the edge between v and
a small vertex is dangerous. This defector can have two cooperating neighbors. Afterwards,
the spread of cooperation is likely.

We split the spread of cooperation into several phases. Let i be the number of cooperating
neighbors of v.

In the first phase, the vertex v becomes a cooperator. The second phase is for i f b. The
third phase is for b < i f 3b. The fourth phase is for 3b < i.

First phase. If the big vertex v is a defector and it has more than b cooperating neighbors,
we wait until one happens: v becomes cooperator, or the number of cooperating neighbors is
at most 1. One or the other happens with probability 1, and we focus on the more pessimistic
case where v is a defector.

If an edge is selected between v and a cooperator, the spread of cooperation is successful with
the probability of at least

1

1 + eb−0
.

It is since v’s payoff is at most b and the payoff of a lonely cooperator is 0.

Avoiding edges to small vertex. To simplify computation, we bound the probability that
an edge between a small vertex and v is selected in the second or third phase. We call it a bad
edge, and if a bad edge is selected, we suppose that v did not turn into a stronghold. Having
i cooperating neighbors and if v is a cooperator, there are 10b2 − i edges that can be selected
and v or its neighbor change. Two edges from this are bad, so with probability 1 − 2

10b2−i
bad

edge is not selected. There are at most 3b steps in the second and third phases (until the
number of cooperators is at least 3b). That means we can bound the probability that no bad
edge is selected by

(

1 − 2

10b2 − 3b

)3b

> 1 − 6b

10b2 − 3b
> 1 − 1

17
12

b
.

Second phase. When v is a cooperator with i f b cooperating leaves, the probability that
the number of cooperating leaves increases conditioned on the fact that v or its neighbors
change is at least

1

1 + eb−i
.

because we know that no bad edge is selected.

The probability that the second phase succeeds is

b
∏

i=0

1

1 + eb−i
.

Now, we show that the probability of success in the first and second phases is at least

2−4e−b2

.
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The probability of success is 1
1+eb · ∏b

i=0
1

1+eb−i . Since b is an integer, we use the induction
over b, for b = 2, we have 1

1+e2 · ∏2
i=0

1
1+e2−i > 2−4e−4. Increasing b from k to k + 1 multiplies

the left side by 1+ek

1+ek+1 · 1
1+ek+1 . The right side is multiplied by e−2(k+1)−1, which is smaller.

Therefore, the inequality holds.

Third phase. In the third phase, the probabilities are the same as in the second phase. Now,
every step succeeds with high probability. The success probability of the third phase is

3b
∏

i=b+1

1

1 + eb−i
>

2b
∏

i=1

1

1 + e−i
.

Fourth phase. In the fourth phase, an edge between a small vertex and v can be selected,
the defector can have a payoff of 2b. It gives the probability of success of the fourth phase:

10b2

∏

i=3b+1

1

1 + e2b−i
=

10b2

∏

i=0

1

1 + e−b−1−i
>

∞
∏

i=0

eb+1+i

1 + eb+1+i
.

Even for the smallest b = 2, we have the success probability of the third and fourth phases
together with the probability of avoiding small vertex is at least 1

2
. So, the probability that

one seeded vertex turns into a stronghold is at least

2−5e−b2

.

Lemma 21. In a graph Ar(n, b), for any configuration where at least one vertex is a stronghold,
the ratio between increasing and decreasing the number of strongholds is at least

e6b2

,

and the expected time until the number of strongholds changes is O(e6b2

n).

Proof. Let v be a stronghold vertex and u its neighbor, and let w be its big neighbor. If
the edge between u and v is selected, then with probability at least 1

1+e−10b2+2+2b
, vertex w

is seeded (u becomes cooperator). From Lemma 20, we know that with probability 2−5e−b2

,
vertex w turns into a stronghold. Note that during the whole process of turning w into a
stronghold, vertex u is a cooperator, so it cannot turn v into a defector.

With probability 1

1+e10b2
−2−2b

, vertex v changes into defector, which means the number of
strongholds decreases.

That means the ratio between increasing and decreasing the number of strongholds is

2−5e−b2 · 1

1+e−10b2+2+2b

1

1+e10b2
−2−2b

> 2−5e−b2 · e10b2
−2−2b > e10b2

−2−2b−6−b2 g e6b2

.

At worst, there is only one pair v, w, where v is the stronghold and w is the neighboring big
vertex. For one step to happen around w, there need to be O(n) steps in the whole graph. If w
is seeded the expected time (around w) until it becomes stronghold is O(30b2 log 30b2) (which
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4. Amplifiers of Cooperation for Spatial Games

is smaller than e6b3

) by that time all edges are selected at least three times on average. That
means the expected number of steps around w required to change the number of strongholds
is at most O(e6b2

+ 30b2 log 30b2). Which gives O(e6b2

n) steps overall.

Lemma 22. For p g t · eb2

23
·10b2

n
, on the graph Ar(n, b), the probability that cooperators

fixate is at least
1 − e−3t ,

and the expected time to fixation is O(e6b2

n2).

Proof. At the start of the process, the probability that one big vertex is not seeded is (1 − p)10b2

,
which for b = 2 is at most 1 − 25 · p. So, the probability that a big vertex is seeded is at least
25 · p. The probability that one seeded vertex turns into a stronghold is 2−5e−b2

, therefore
from the start, we have that a big vertex becomes a stronghold with probability e−b2

p.

Let Xi be the random variable that for big vertex i is one if it becomes seeded at the beginning
and then turns to the stronghold and is zero otherwise. For every big vertex (there are n

10b2 of
them), the probabilities are independent. (Strictly speaking, they are not independent but the
lower bounds expect the worst position, which is independent.) Now, we use Chernoff bound
for X =

∑

Xi (note that µ = e−b2

p · n
10b2 ), which gives:

P[X f (1 − ¶)µ] f e
δ2µ

2

P[X f
(

1 − 7

8

)

e−b2

p · n

10b2
] f e

7
2e−b2

p·n

2·10·82
·b2

P[X f t] f e
49t
16

after setting p = t · eb2

23
·10b2

n
. That means with probability at least 1 − e

49

16
t, there are at least

t stronghold vertices.

We know that stronghold vertices have spread ratio e6b2

, they form a dimensional Markov
Chain with constant bias and two absorbing ends. The probability that we reach the end with
all big vertices being strongholds while starting with t strongholds is at least

1 − e−6b2t .

So the probability that the cooperators fixate is at least 1 − e−3t.

Since the Markov Chain is biased, the expected number of steps (changes in the number
of strongholds) is O(n). One change requires O(e6b2

n) steps, therefore we have the total
expected number of steps O(e6b2

n2).

Proof of Theorem 11. For all b > 1, we have Lemma 22, setting t to
√

n, we have that
ÄC(Ar(n, b), b, p) = 1 − e−3

√

n, therefore

lim
n→∞

ÄC(Ar(n, b), b, p) = 1 .
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Remark 1 (Extension to general K). In the proof, we used K = 1. All the proofs can be
easily extended to general K which we discuss below. (a) Lemma 20: In the case of general
K, Lemma 20 shows the ratio 2−5/Ke−b2/K . In the proof of the lemma, it is straightforward
to add K in all desired inequalities. The only change needs to be done for Avoiding edges to
small vertex for large K. If K is large, we need to consider that the small vertex was converted
to cooperation if the edge between the small and big vertex was selected. (b) Lemma 21: This
lemma gives the ratio e6b2/K by straightforward calculation. (c) Lemma 19: Finally, having
the previous lemmas, in Lemma 22 we replace factor eb2

by eb2/K and the time decreases from
O(e6b2

n) to O(e6b2/Kn).

In summary, we have that for large K, the process is faster and requires a slightly smaller
initial rate of cooperation. For small K, we still have the strong density amplifier property,
but the process is slower and requires a higher initial rate of cooperation.

4.4.5 Lower Bound on Initial Cooperation Density in Deterministic
Setting

In several previous settings with constant fitness or weak selection, previous literature considers
the fixation probability of a single mutant [OHLN06, LHN05], or of some cooperator den-
sity [PJR+17, ARS06, HD04, SAP22]. However, note that for spatial games with deterministic
update, which are the limit of strong selection, if there are less than b + 1 cooperators initially,
then no graph can achieve fixation. Hence in the setting of spatial games with deterministic
update, a single initial cooperator would lead to extinction for every graph. Below we present
an even stronger requirement (i.e., lower bound required) for fixation for the initial cooperation
density parametrized by the highest degree. We determine a value that is a function of
the maximal degree of the graph such that if p is smaller than the value, then with a high
probability no cooperator has b or more neighbors, which implies extinction.

Theorem 12. For all graphs with n vertices and highest degree d, for

p f 1
(

(ed)bn
)

1

b+1

,

the extinction probability of cooperators is at least 1
2
.

Proof. In the deterministic setting, if a cooperator has fewer than b cooperating neighbors,
then it cannot spread. We show that if p f 1

((ed)bn)
1

b+1

, then the probability that no cooperator

has b or more cooperating neighbors is at most 1
2
, which ensures extinction probability is at

least 1
2
.

For one given vertex, the probability that this vertex is a cooperator and has at least b
cooperating neighbors can be bounded by the following

p ·
∑

xgb

px(1 − p)x

(

d

x

)

f
∑

xgb

px+1

(

de

x

)x

.

Since de
b

· p f 1
2
, we know that the previous summand is at least twice as high as the next.

That means it sums to at most

2pb+1

(

de

b

)b

f 2b−bn−1 .
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There are at most n vertices, from the union bound, the probability that no cooperator has b
or more neighbors is at most

n · 2b−bn−1 .

For b g 2, this gives 1
2
. This completes the desired proof.

Note that our construction from Lemma 19 requires a bound of p which is close to the above
lower bound.

4.4.6 Parameters of Prisoners’ dilemma

In the main article, we consider the classic parametrization of the payoff for spatial games
from [NM92a, Now07]. The payoff matrix allows defectors to be as strong as possible while
all possible payoffs are nonnegative. In this section, we examine the range of parameters of
the Prisoners’ dilemma for which our result holds. In general Prisoner’s dilemma is given by
the following matrix:

C D
C R S
D T P

and the payoffs follow inequality T > R > P > S. If S < 0, we add |S| to all entries of the
payoff matrix to avoid the possibility of negative fitness. Then we have T > R > P > S g 0.

We argue two aspects: (a) for the deterministic setting we present the range of parameters for
which our graph structures are strong density amplifiers; and (b) for the randomized setting
we show that for all parameters our graph structures are strong density amplifiers.

Generalization for deterministic setting

We show that our results hold in the deterministic setting if the following inequality holds:
R2 > T · P . We parametrize our construction as follows: (a) instead of b − 1 bridge vertices,
there are nb bridge vertices; (b) the number of support vertices next to the small vertex is
ss; and (c) the number of support vertices next to a big vertex is sb. In the proof for strong
density amplifiers, we require the following three aspects:

1. notion of invincibility,

2. initial probability such that one big vertex becomes invincible,

3. possibility to spread from the small vertex to the big vertex and make it invincible.

We argue about each item below:

1. For the notion of invincibility, we need the big vertex to have enough neighbors (that
are cooperators) such that no neighbor (small vertex) can have a higher payoff:

sb · R > (2nb + ss) · T . (4.16)
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2. We want to have sb significantly bigger than nb, such that the seeded vertex turns
invincible easily. We need to be able to convert a small vertex from a bigger one, but
this condition is weaker than Equation (4.16).

3. We need the small vertex to be able to convert its support vertices if it has only nb

cooperating neighbors, therefore nb · R > T . Moreover, for the possibility of the spread
from small to big vertex, a small vertex needs to have enough neighbors to overweight
the advantage of a defector in a big vertex getting P from all neighbors:

(nb + ss) · R > (sb + 2nb) · P . (4.17)

Except for nb · R > T , we do not have any condition that forces nb to be large. In other
conditions, we want nb to be small. So in the following computations, we consider that nb is
small compared to ss and sb. Multiplying Equation (4.16) and Equation (4.17), we get

R2 >
ss + 2nb

ss + nb

· sb + 2nb

sb

· T · P . (4.18)

Since we consider nb to be small, we have

R2 > T · P .

If we have the inequality, we can construct the graph with parameters nb, ss, and sb. Moreover,
since R2 > T · P + ε, we have that nb

sb
is proportional to ε. We justify our result:

• Seeded and invincible vertex. Vertex is seeded if it is a cooperator with enough
cooperator neighbors to be able to convert defector leaves. Vertex is invincible if it
satisfies Equation (4.16).

• Lemma 16 uses combinatorial reasoning and does not consider T or S, so the arguments
direclty translate for b = T

R
.

• Lemma 17 is also about combinatorial reasoning. In the proof, we use the fact that it is
enough to have 3b2 cooperator neighbors out of 10b2 to become invincible. Now, the
big vertex needs a higher proportion of neighbors to be cooperators to become invincible.
It is more likely that the edge between the big and small vertex is selected before the big
vertex is invincible. However, we can track the payoff of the small vertex to show that
the big vertex is not converted. In expectation, the defector in a small vertex converts
at least half of its neighbors to defection until the edge between the big and small vertex
is selected.

• Lemma 18 describes how the cooperation spreads from the invincible vertex to the next
small and next big vertex, the spread works the same.

The above arguments imply that our structures are strong density amplifiers for R2 > T · P .

Generalization for randomized setting

We now argue that in the randomized setting the only requirement is S g 0. For the graph,
we just need one parameter, the number of support vertices of a big vertex, sb. In the
initialization, we consider a vertex seeded only when the big vertex is cooperator itself (this
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requires increasing p, but not too much). Then, the proof of Lemma 20 works the same. We
call the big vertex a stronghold if it has x cooperating neighbors and the following holds:

1

1 + ex·R
<

1

1 + eP ·sb
·

(

1

1 + eT

)+T/R,

,

which means that the stronghold is more likely to convert a neighboring vertex to a stronghold
than to be converted itself, similarly as Lemma 21. Note that since sb is the only parameter
and R > P , there is a large enough sb that satisfies the condition. This means the argument
similar to the proof of Lemma 21 also applies for the general setting of Prisoners’ dilemma
with S g 0.

Donation games

We consider parametrization from [SP13, OHLN06, ALC+17] called donation games. There
are two parameters b and c with b > c > 0, and we have

C D
C b − c −c
D b 0

To ensure non-negativity adding c to all entries, we obtain

b 0
b + c c

Let ´ = b
c

be the benefit-to-cost ratio. From Section 4.4.6, in the deterministic setting, we

have that our construction is a strong amplifier for ´2 > ´ + 1, which gives ´ > 1+
√

5
2

≈ 1.62.
The ratio we require ´ > 1.62, is in contrast to other works [ALC+17] that in graphs for
survival of cooperation require ´ to be at least average degree (e.g., ´ > 4 for grids and
´ > 2 for all connected graphs). From Section 4.4.6, in the randomized setting, our results
hold for all ´ > 1.

4.4.7 Other Initializations

Our main theorems consider the random initialization where every vertex is independently a
cooperator with probability p. This corresponds to cooperators arising spontaneously. In this
section, we discuss the influence of other natural initializations on the fixation probability. We
consider mainly deterministic setting, since Section 4.4.9 show that even one cooperator in
the randomized updating fixates with a substantial probability. A key property for the strong
density amplification property of our graph structures is the requirement that a seeded vertices
appear in the initialization. We argue about this seeded property for other initializations.

Temperature initization

Along with random initialization (that corresponds to spontaneously arising mutation) another
natural initialization is proportional to the in-degree (or temperature), which corresponds to
mutations arising during reproduction. First, our main result shows that our graph structures
are strong density amplifiers as n goes to ∞ and p goes to 0. Second, if for random
initialization a vertex is a cooperator with probability p, then under temperature initialization,
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it is a cooperator with probability at least p
d2 , where d is the maximum degree. Third, the

above implies that if we consider an initialization probability p ·d2 for temperature initialization,
then the seeded property is satisfied. Finally, from the third and first item above we conclude
that since we have a constant-degree graph family with initialization probability multiplied
by d2, we still obtain strong density amplifiers where p still goes to 0 as n goes to ∞ for
temperature initialization.

Correlated initialization

Another natural initialization is a correlation between cooperators. In this setting a pair of
cooperating neighbors is more likely, e.g., the mutation comes as multiple offsprings from
the same parent. The correlated initialization increases the fixation probability. The vertex is
seeded with higher probability because if a big vertex is a cooperator, it is more likely that the
neighbors are also cooperators, i.e., if with initialization probability p at random, we satisfy
the seeded property, we also satisfy the property for correlated initialization. Hence our graph
structures are also strong density amplifiers for correlated initialization.

4.4.8 Fixation probability of Single Mutant in Randomized Setting

In this section, we study the fixation probability of a single mutant (i.e., a single cooperator
among all defectors, or a single defector among all cooperators). Theorem 12 shows that in
the deterministic setting a single cooperator always goes extinct, and hence we focus only on
the randomized setting for fixation of a single mutant.

Notation. We denote by ÄC(G, b) (resp., ÄD(G, b)) the fixation probability of one randomly
placed cooperator (resp., defector) in a graph G where all other individuals are defectors (resp.,
cooperators).

Bounds on ÄC(G, b) and ÄD(G, b) for Ar

We present bounds on the fixation probability of a single mutant for Ar in the following two
results.

Theorem 13. For asynchronous randomized updating and all b, n, and graph G = Ar(n, b)
the following assertion holds

ÄC(G, b) g 2−5e−b2
(

1 − e−6b2
)

.

Proof. If there is one cooperator in the graph, at least one big vertex is seeded. From
Lemma 20, with probability 2−5e−b2

it turns into a stronghold.

From Lemma 21, we have that the ratio between increasing the number of strongholds and
decreasing it is at least e6b2

. That means the probability that one stronghold turns all other
big vertices into strongholds is at least

1 − e6b2

.

So the overall fixation probability is 2−5e−b2
(

1 − e−6b2
)

.

Theorem 14. For asynchronous randomized updating and all b, n, and graph G = Ar(n, b)
the following assertion holds

ÄD(G, b) f 2−c·n

for some constant c > 0.
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Proof. One randomly dropped defector might make at most one stronghold to cease to be a
stronghold. Then, cooperators still occupy at least n

10b2 − 1 strongholds.

From Lemma 21, the ratio between increasing the number of strongholds and decreasing it is
e6b2

. That means the cooperators fixate with probability at least

1 −
(

e6b2
)

n
10b2

−1
,

which gives the fixation probability to defectors at most

(

e6b2
)

n
10b2

−1
= 2−cn ,

for some constant c > 0. The desired result follows.

Remark 2. The above two results for Ar establish that the fixation probability of a single
cooperator among defectors is constant (independent of the population size n), whereas
the fixation probability of a single defector among cooperators is exponentially small in the
population size n. This establishes the last row of Table 1 in the main article.

Bounds on ÄC(G, b) and ÄD(G, b) for other graphs

We now discuss the relevant bounds for other classical graphs, i.e., complete graph, grid,
and star. Before we reason about the graphs, we recall a simple property from the literature
on constant selection. If a random mutant is introduced in a population of residents and
the relative fitness advantage is r, then the fixation probability is constant for r > 1 and is
exponentially small for r < 1 (see [Now07], Equation 6.13).

Complete graph. In the complete graph, at any configuration, every defector has a higher
payoff than every cooperator, and the relative fitness advantage of defectors over cooperators
is always at least r > 1, which implies the relative fitness advantage of cooperators over
defectors is at most 1/r < 1. The simple property above implies that the fixation probability
of a single defector is constant, whereas the fixation probability of a single cooperator is
exponentially small. This establishes the first row of Table 1 in the main article.

Grid. The grid is a regular graph (i.e., an isothermal graph) that has similar properties in
the constant selection regime as the complete graph. For b g 3, the same arguments as in
the case of the complete graph apply for the relative fitness advantage and we have the same
conclusion related to the fixation probability bounds for a single mutant. This establishes the
second row of Table 1 in the main article.

Star. For a star, one randomly placed defector into the star spreads with probability close
to 1 only if it is placed in the center of the star. Hence the fixation probability of a single
defector is proportional to 1

n
. For a single cooperator, there are two cases: (a) When the

initial cooperator is in the center, which happens with probability 1/n, the fixation probability
is at most a constant (upper bound 1); and (b) When the initial cooperator is placed on a
leaf of the star, we need to consider ε, which is a small constant that does not matter in
graphs with constant degrees, but here, the payoff of the central defector is (n − 2)ε + b.
That means the cooperator in the leaf spreads with probability at most 1

1+e(n−2)ε+b . Combining
the above two cases, we have that the fixation probability of a randomly placed cooperator is
again proportional to 1

n
. This establishes the third row of Table 1 in the main article.
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4.4.9 Mutation

In this section, we examine the robustness of our construction against mutation in the
randomized setting. We consider a graph initially inhabited only by defectors and a small
mutation rate µ. During the replacement, one of the two individuals that participated in the
replacement has a probability µ of changing to the other type. This represents a mutation of
offspring where the offspring or parent moved to a new location.

In Figure 4.7, we see that for our strong density amplifiers, the cooperator density increases
with time until it reaches 1. After any mutation event, there is a high probability that a
big vertex is seeded, as Lemma 20 shows the seeded vertex becomes stronghold with high
probability. In a grid, we do not see any cooperation evolving, the spread of cooperation is
limited to the neighborhood. The star can support some cooperation. We see the cooperation
density hovering below 0.2, but the star is very unstable. One cooperator can spread, but it is
prone to being conquered by one defector, so the star alternates between full cooperation and
full defection.

The simulation results for Ar(104, 1.5) in Figure 4.7 show the two following facts: (a) the
ratio between one random cooperator fixating inside the population of defectors is significantly
higher than the probability of one defector fixating among the cooperators, because the
cooperator density increases above 1

2
; and (b) the fixation probability of one cooperator among

defectors is above 1
N

. We can observe this as follows: if the probability of one cooperator
fixating is around 1/N , then this requires in expectation N ·1/µ rounds for substantial increase
in fixation, which is 1011 rounds. Instead, we see the increase of cooperation by orders of
magnitude faster than 1011.
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Figure 4.7: The density of cooperation as a function of the number of steps with small
mutation rate µ ∈ {10−5, 10−6, 10−7} in the randomized setting with K = 1. The density is
an average over 100 runs. The graph size is N = 104 and the graphs Ar(104, 2), star, and
grid are considered. The value of b is set to 1.5.
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CHAPTER 5
Coexistence times in Moran process

with environmental heterogeneity

This chapter appears in full in [STKC23].

Abstract

Populations evolve in spatially heterogeneous environments. While a certain trait might bring
a fitness advantage in some patch of the environment, a different trait might be advantageous
in another patch. Here we study Moran Birth-death process with two types of individuals in a
population stretched across two patches of size N , each patch favoring one of the two types.
We show that the long-term fate of such populations crucially depends on the migration rate µ
between the patches. To classify the possible fates, we use the distinction between polynomial
(short) and exponential (long) timescale. We show that when µ is high then one of the two
types fixates on the whole population after a number of steps that is only polynomial in N .
In contrast, when µ is low then each type holds majority in the patch where it is favored
for a number of steps that is at least exponential in N . Moreover, we precisely identify the
threshold migration rate µ⋆ that separates those two scenarios, thereby exactly delineating the
situations that support long-term coexistence of the two types.

5.1 Introduction

Evolution is a stochastic process that acts on populations of reproducing individuals. Each
individual has a fitness that determines its reproductive rate. In the absence of mutation,
one individual eventually produces a lineage of offspring that takes over the whole population.
This event is called a fixation. The key quantities of the evolutionary process are the
fixation probabilities of the respective individuals and the (expected) time until the fixation
happens [Mor62, Ewe04, Now06a].

Population structure is known to substantially affect those quantities, thereby altering the
typical fate of a population [Sla81, DL94b, Whi03, HV11, FRT13]. The effects of various
population structures are conveniently studied within the framework of evolutionary graph
theory [LHN05, SF07]. The spatial structure of the population is described by a graph
(network) whose nodes correspond to sites. Each site is occupied by a single individual and the
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5. Coexistence times in Moran process with environmental heterogeneity

edges (possibly weighted) represent migration rates between pairs of sites. The population of
asexually reproducing individuals then evolves according to a discrete-time stochastic process
called Moran Birth-death process. [Mor58] In each step, first (“Birth”) an individual is selected
for reproduction with probability proportional to its fitness, and then (“death”) the offspring
migrates to a neighboring site and replaces its initial occupant. Thus the population size N
remains constant. The case of a perfectly well-mixed population consisting of N individuals is
recovered by taking a complete graph KN with all edges having unit weight.

Of special interest is the case of a single beneficial mutant with relative fitness advantage
r > 1 invading a background population of N − 1 indistinguishable residents, each with a
fitness 1. For the well-mixed population, the fixation probability Ä(KN , r) of the mutant is
equal [LHN05] to (1 − 1/r)/(1 − 1/rN ), which tends to 1 − 1/r as N → ∞ and, on average,
the process terminates after approximately (1 + 1/r) · N log N steps. [AT09, DGRS16] That
is, for fixed r > 1, the fixation time FT(KN , r) is proportional to N log N .

An important driving question in the field over the past decade has been the hunt for population
structures, so-called amplifiers of selection, that enhance the fixation probability of a single
beneficial mutant invading a background population of indistinguishable residents, as compared
to the well-mixed population. [ACN15, BRS11, HT15, ALC+17, PTCN17, TPCN20, ASJ+20]
A prime example of an amplifier is a Star graph SN consisting of N − 1 leaf nodes, all of
them connected to a single central node (but not to each other). It is known that, in the
limit N → ∞, we have [BR08, MGP14, Cha16] Ä(SN , r) → 1 − 1/r2. When r = 1 + s
for s small, this is roughly a two-fold increase compared to the baseline given by Ä(KN , r).
Even more strongly, there exist structures (so-called superamplifiers) that guarantee fixation
of the mutant in the limit N → ∞, no matter how small its fitness advantage r > 1
is [Gia16, GGG+17, PTCN18, GLL+19].

Regarding the timescale of the process, formal results concerning Moran Birth-death process
on structured populations are comparably scarcer and those that exist focus on identifying
population structure with short evolutionary timescales. The reason is that such structures,
especially when they amplify, could potentially speed up the rate of evolution. For example, it
is known that for Star graphs, the process terminates after roughly N2 log N steps. [BRS11]
More generally, when the underlying graph is undirected (that is, all edges are two-way) then
the process terminates after a number of steps that is polynomial in N . [DGM+14, AGLR20]
In contrast, there exist directed and weighted graphs for which the process takes exponentially
many steps. [DGRS16] Also, it has been empirically observed that structures that enhance the
fixation probability of a mutant tend to increase the fixation time. [TPCN19, MHT19, TPCN21]
However, an important limitation of fixation time as a quantity is that it relates only to the
overall duration of the process. In other words, it is oblivious to what is actually happening
during the process before one of the types fixates.

More recently, the framework of evolutionary graph theory has been enriched with environmental
heterogeneity. [MP14] This is done by partitioning the sites into patches. The fitness of each
individual is constant within each patch but it can vary across different patches (see Fig. 5.1b).
Concerning the fixation probability, analytical results are known for large well-mixed populations
and any number of patches [KMN19], and for certain special families of regular graphs and
two patches. [KMCN20] Concerning the duration of the process, to our knowledge no results
are known.

In this work, we study the timescale of the Moran Birth-death process in populations that are
spatially structured and environmentally heterogeneous. This differs from the earlier research
focus in four regards. First, for populations that are environmentally heterogeneous, to our
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knowledge no results on evolutionary timescales are known (the previous research focused on
fixation probabilities of the respective types). Second, for homogeneous populations, the past
work related to the duration of the process has focused on identifying population structures
with short fixation times (and high fixation probability), since such structures could potentially
be used to speed up the evolutionary process. In contrast, our goal here is to characterize
structures that support long-term coexistence of the two competing types. Such structures
are important in population genetics where they correspond to multiple-niche ecosystems with
protected polymorphism.[Lev53, Hed86]. As another application, consider a single-species
biofilms: Although very small in scale, biofilms typically consist of several microenvironments
and show substantial heterogeneity, both genetic and phenotypic.[DLL10, SF08]. Third, while
the past research used the notion of a fixation time, here we introduce a refined notion of
a coexistence time. Our results thus provide stronger guarantees about the state of the
population throughout the process. Fourth, we utilize a distinction between polynomial (short)
and exponential (long) timescales. As an illustration, consider a population of size N = 100,
a polynomial function N2 and an exponential function 2N . Then N2 = 104 steps correspond
to 100 generations, which is a moderate number. In contrast, 2N ≈ 1030 steps correspond
to 1028 generations which is effectively infinite for all practical purposes. As a consequence,
when evolutionary timescales are exponential, quantities such as fixation probability are largely
irrelevant.

In order to present our results, we define certain natural two-patch structures IslN,ε(µ) defined
by three numbers N , ε, µ as follows: Two types of individuals are spread over two well-mixed
patches of size N each, thus the total population size is 2 · N . Each type of individuals is
favored in one patch, by having relative fitness advantage 1 + ε rather than 1, for some fixed
ε > 0. Finally, whenever an individual reproduces, its offspring migrates to the other patch
with probability µ and replaces a random individual there (otherwise it replaces a random
individual within its patch). From the perspective of population genetics, the structure IslN,ε(µ)
thus corresponds to an island model [Wri31, Wri43] with two islands of equal size N and a
bi-directional migration rate µ.

Here we present two results on coexistence times of environmentally heterogeneous populations.
First, we show that on well-mixed populations, the process terminates after a number of steps
that is of the order of at least N2 and at most N3. When compared to the N log N steps
on homogeneous well-mixed populations, the process is thus slowed down but the expected
number of steps is still only polynomial. Second, we show that the long-term evolution of a
Moran Birth-death process on the two-island population structure IslN,ε(µ) crucially depends
on the migration rate µ between the two patches. Specifically, we show that when µ g 1/2
then, with high probability, the stochastic process terminates after a number of steps that is
only polynomial in N , regardless of ε > 0. In sharp contrast, when µ < 1/2 then, with high
probability, each type constitutes a majority in the patch where it is favored for a number of
steps that is at least exponential in N . When combined, those two results present a strong
dichotomy and precisely delineate the scenarios that support long-term coexistence of the two
types.

5.2 Model

We consider Moran Birth-death process acting on structured populations consisting of two
types of individuals T1 and T2. First we recall the general framework of evolutionary graph
theory [LHN05], including the environmental heterogeneity [MP14].
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5. Coexistence times in Moran process with environmental heterogeneity

Spatial structure. The spatial structure of a population is described by a connected graph
(network) G = (V, E) whose nodes u ∈ V correspond to sites. Each site is occupied by a
single individual and the edges (u, v) ∈ E (including self-loops) represent where an individual
can place an offspring. Moreover, each edge (u, v) ∈ E is assigned a weight wu,v ∈ (0, 1]
that represents the strength of the connection. The well-mixed population is represented by a
complete graph KN where all edges and self-loops have unit weight.

Environmental heterogeneity. On top of that, each node u is assigned a signature
sg(u) = (f(u)1, f(u)2), where f(u)i denotes the fitness of a type Ti individual when it
occupies the site u (for i ∈ {1, 2}). A set of nodes that all have the same signature is called
a patch. In this work, we consider populations formed by two patches P1, P2, each patch
favoring the corresponding type by the same margin ε. In other words, for u ∈ P1 we have
sg(u) = (1 + ε, 1), whereas for u ∈ P2 we have sg(u) = (1, 1 + ε), for some fixed ε > 0.
See Fig. 5.1a.

Moran process. The population evolves according to a Moran Birth-death process adapted
to a population structure. We assume that initially each node in a patch Pi is occupied by
an individual of type Ti. Moran Birth-death process is a stochastic (random) process that
proceeds in discrete time-steps as follows:

1. Birth: Select an individual randomly, with probability proportional to its fitness. (That is,
denoting the total fitness of the population by F , an individual with fitness f is selected
with probability f/F .) That individual, say at node u, produces an offspring which is a
copy of itself.

2. death: Select a node adjacent to u randomly, with probability proportional to the edge
weight wu,v. (That is, a node u′ is selected with probability wu,u′/

∑

v∈V wu,v.) The
offspring then migrates to site u′ and replaces its original inhabitant.

Note that throughout the process, the population size and structure remain constant. See Fig. 5.1b.

Fixation time and c-coexistence time. When the underlying graph G is connected, Moran
process eventually terminates with one type having spread over all nodes. This event is called
fixation. For i ∈ {1, 2} we denote by Äi(G) the fixation probability of type Ti and by FT(G)
the fixation time, that is, the (expected) number of steps until the process terminates. Note
that the fixation time ignores how the composition of the population fluctuates before the
process terminates. To capture those fluctuations, we define a quantity which we call the
coexistence time. Formally, given a constant c ∈ [0, 1], we denote by CTc(G) the c-coexistence
time, that is, the (expected) number of steps until one of the types ceases to occupy a c-portion
of the sites within the patch where it is favored. For instance, the 1/2-coexistence time is the
(expected) number of steps for which each type holds majority within its patch. By definition,
a c-coexistence time can never be longer than a fixation time (but it can be substantially
shorter).

Population structures IslN,ε(µ), Ralt
N,ε, Rsplit

N,ε . Our main results apply to certain two-patch
population structures IslN,ε(µ) characterized by three parameters N , ε > 0, µ ∈ (0, 1) as
follows: The population structure is a complete graph on 2N nodes split into two patches P1,
P2 of size N each. The edges within each patch all have unit weight, the edges connecting
nodes in opposite patches all have weight w = µ/(1 − µ). This choice of w guarantees
that an offspring of a reproducing individual migrates to the opposite patch with probability
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Nw/(Nw + N) = µ. Finally, each patch increases the fitness of one type from 1 to 1 + ε.
That is, for u ∈ P1 we have sg(u) = (1 + ε, 1), whereas for u ∈ P2 we have sg(u) = (1, 1 + ε).
Specifically, for migration rate µ = 1/2 we recover the case of a well-mixed population KN,ε.
See Fig. 5.1c.
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Figure 5.1: Moran process on a population structure. a, In the population structure, the
2N nodes (sites) are split into two patches of size N (boxes, circles), each patch giving a relative
fitness advantage 1+ε to one of two possible types of individuals (blue, red, respectively). b, In
each step of the Moran process, first an individual is selected for reproduction proportionally
to its fitness, and then the offspring replaces a random neighbor. c, In the two-island structure
IslN,ε(µ) each patch is a well-mixed population (island) and the offspring migrates to the
other island with probability µ. d, We also consider the 1-dimensional lattice, and two special
decompositions of its nodes into patches: The nodes either alternate (Ralt

N,ε), or they form two
large blocks of N consecutive nodes (Rsplit

N,ε ).

Later, we also study 1-dimensional lattices and we investigate how the coexistence time
depends on the relative layout of the two patches. The underlying graph is a cycle C2N where
the 2N nodes are arranged circularly and each node is connected to its two neighbors by an
edge with unit weight. We consider two ways to partition the nodes into patches P1, P2: In
Ralt

N,ε, the nodes alternately belong to P1 and P2. In Rsplit
N,ε , both P1 and P2 consist of a chunk

of N consecutive nodes. See Fig. 5.1d.

Asymptotic notation. In order to compare the relative growth rate of fixation and coexistence
times in the limit of large population size N → ∞, we briefly recall a standard mathematical
notation Θ(·), O(·) and Ω(·) for asymptotic tight bound, upper bound and lower bound,
respectively. For example, we write 1

2
N(N + 1) ∈ Θ(N2) and N2 ∈ O(N3) and 2N ∈ Ω(N3)

to denote that, up to constant factors, for large N we have 1
2
N(N + 1) ≈ N2 j N3 j 2N .

Moreover, we say that a function f(N) is (at most) polynomial if f(N) ∈ NO(1) and it is
(at least) exponential if f(N) ∈ 2Ω(N). For detailed treatment see [Cor09, Section 1.3]. We
note that the distinction between polynomial and exponential growth rate is fundamental. For
example, problems in computer science whose solution can be found in polynomial time are
considered tractable in practice, whereas problems requiring exponential time are considered
intractable.
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5. Coexistence times in Moran process with environmental heterogeneity

5.3 Results

Here we state our analytical results, give intuition about their proofs, and illustrate them with
numerical computations and computer simulations. The fully rigorous mathematical proofs
are deferred to Section 5.5.

Recall that in all instances, we consider populations of 2N individuals split into two patches
P1, P2 of size N each, each patch increasing the fitness of the respective type of individual
from 1 to 1 + ε, for some fixed ε > 0.

Our contribution is two-fold: First, we analyze the process on three different types of natural
population structures, namely the well-mixed populations, the two-island graphs, and different
one-dimensional lattices. Second, we prove a general upper bound on the timescale of
coexistence.

Complete graphs KN,ε. First, we consider the case of a well-mixed population KN,ε spanning
two different patches of size N each. Formally, KN,ε is recovered from the two-island population
structure IslN,ε(µ) by setting the migration rate equal to µ = 1/2.

Theorem 15 (Well-mixed populations). Fix ε > 0. Then

FT(KN,ε) ∈ Ω(N2) and FT(KN,ε) ∈ O(N3).

It is known that in the environmentally homogeneous regime where one type has fitness
advantage 1 + ε at all nodes, the fixation time on a well-mixed population is of the order
of Θ(N log N) steps. [AT09, DGRS16] The asymptotic lower bound FT(KN,ε) ∈ Ω(N2)
in Theorem 15 thus implies that with environmental heterogeneity, the fixation time is
increased. However, the asymptotic upper bound FT(KN,ε) ∈ O(N3) implies that the process
still terminates after a number of steps that is only polynomial in the population size, and
thus long-term coexistence is not supported. Numerical computation suggests that for any
ε > 0 the fixation time in fact scales as Θ(N2), see Fig. 5.2a.

The idea behind the proof is as follows: We represent the stochastic process as a Markov chain
that has a state for every possible configuration of mutants and residents. We then define a
carefully chosen “potential function” that assigns a real number to each possible configuration
and we prove that, in each step of the process, this potential function changes in a controlled
way, in expectation. Namely, we prove that it increases at most by c1 and at least by c2, where
c1 > c2 > 0 are two real constants. Since we can also compute the initial and the final value
of this potential function, this allows us to bound the expected number of steps that happen
until fixation occurs. See Section 5.5 for a full proof.

Two-island graphs IslN,ε(µ). Second, we show that for the two-island population structure
IslN,ε(µ), the migration rate µ⋆ = 1/2 which corresponds to the well-mixed population is
in fact a threshold value. Recall that for a given population structure GN , the quantity
CT1/2(GN ) is the (expected) number of steps until either of the types ceases to hold majority
in the patch where it is favored.

Theorem 16 (High migration rate). Fix ε > 0 and µ g 1/2. Then FT(IslN,ε(µ)) ∈ O(N3).

Theorem 17 (Low migration rate). Fix ε > 0 and µ < 1/2. Then CT1/2(IslN,ε(µ)) ∈ 2Ω(N).

Theorem 16 states that when the migration rate exceeds the threshold value µ⋆ = 1/2 or is
equal to it, then fixation time is still only polynomial in the population size, thus long-term
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Figure 5.2: Fixation time on a Complete graph KN,ε. a, Numerical computation shows
that for a fixed ε > 0 the fixation time FT(KN,ε) scales as cε · N2. Thus the lower bound
FT(KN,ε) ∈ Ω(N2) from Theorem 15 is tight. Specifically, we obtain c10

.
= 2.07, c0.1

.
= 2.62

and c0.01
.
= 2.76. b, In the regime without environmental heterogeneity (that is, when the

same type is favored in both patches), the fixation time is known to scale as Θ(N log N)
when ε > 0 and as Θ(N2) when ε = 0. Here N = 10, 20, . . . , 100.

coexistence is not supported. In contrast, Theorem 17 shows that for migration rates µ < µ⋆,
each type maintains a majority in the patch where it is favored for a number of generations
that is exponential in the population size, see Fig. 5.3.

a cHigh migration rate µ ≥ 1/2 Low migration rate µ < 1/2, log-scale
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b High migration rate µ ≥ 1/2

µ = 0.5

µ = 0.6

µ = 0.7

µ = 0.9
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Figure 5.3: Fixation time on a two-island graph IslN,ε(µ). a, When µ g 1/2, the
fixation time FT(IslN,ε(µ)) scales as N2 (when µ = 0.5 or µ = 1), or even slower than that
(when 0.5 < µ < 1). This is in agreement with the upper bound FT(IslN,ε(µ)) ∈ O(N3)

from Theorem 16. b, The coexistence time CT1/2(IslN,ε(µ)) is substantially shorter, scaling
roughly linearly with the population size N . c, In contrast, when µ < 1/2, the coexistence
time CT1/2(IslN,ε(µ)), and thus also the fixation time, is at least exponential in the population
size N (here the y-axis is log-scale). This is in agreement with Theorem 17. In all panels, we
consider ε = 1 and N = 10, 20, . . . , 200.

The proof of Theorem 16 is an extension of the argument used to derive Theorem 15. As
for the argument behind the proof of Theorem 17, intuitively the idea is to show that in
order for one type to lose majority in the patch where it is favored, the random evolutionary
trajectory would have to cross one of three “barriers”, each with a “thickness” that is linear
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in N . Using standard results on the absorption time of one-dimensional random walks with
constant forward bias, this allows us to conclude that for a number of steps that is exponential
in N , with high probability none of the three barriers will be crossed and thus coexistence will
be maintained. See Section 5.5 for a full proof.

General upper bound. Next we show that within a certain broad class of population
structures, a coexistence on a substantially longer than exponential timescale is impossible.
Thus the exponential coexistence that occurs for two-island structures with low migration
rates is close to optimal. Namely, given a real number wmin > 0 we denote by G(wmin) the
class of all connected graphs in which each edge is assigned a weight at least wmin.

Theorem 18 (General upper bound). Fix wmin > 0 and ε > 0. Then for any population
structure GN,ε ∈ G(wmin) on 2N nodes we have FT(GN,ε) ∈ 2O(N ·log N).

Note that Theorem 18 gives an upper bound on the fixation time, and thus also on the
c-coexistence time for any c > 0. The proof is based on a simple idea that if, from any
configuration of individuals, a fixation occurs with probability at least pfix within the next
s steps, then the fixation time is at most s/pfix. Moreover, the statement applies more
generally to any number of patches of arbitrary sizes and with arbitrary (but fixed) signatures.
See Section 5.5 for a full proof.

One-dimensional lattices. Finally, we show that even if we fix the underlying graph and the
effects of the patches on the fitness, the coexistence time critically depends on the relative
layout of the two patches. To that end, we consider large one-dimensional lattices Ralt(N, ε)
and Rsplit(N, ε) (see Fig. 5.1d).

Theorem 19 (One-dimensional lattices). Fix ε > 0. Then

FT(Ralt(N, ε)) ∈ O(N3) and CT1/2(Rsplit(N, ε)) ∈ 2Ω(N).

In other words, when the nodes of a long one-dimensional lattice alternately belong to patches
P1 and P2 then the process terminates in polynomial time. In contrast, when each patch
forms a contiguous block of N nodes, each type holds majority in its patch for a number of
steps that is exponential in N , see Fig. 5.4.

The argument behind the first claim makes use of the fact that the evolution on Ralt(N, ε)
can be efficiently mapped to an evolution on a well-mixed population. [MP14, KMCN20] The
idea behind the proof of the second claim is that each patch contains a “core” – a large set of
nodes in its middle which is well protected from the invasion by the other type, and which is
maintained over an exponential timescale. See Section 5.5 for a full proof.

5.4 Discussion

In this work, we used the framework of evolutionary graph theory to study the evolutionary
timescales of populations that are both spatially structured and environmentally heterogeneous.
To our knowledge, the previous research in this setting focused either on computing the fixation
probabilities, or on identifying population structures with short evolutionary timescales. In
contrast, our main focus here was to charaterize structures that support long-term coexistence
of two competing types.
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a cAlternating cycle: Fixation time Split cycle: Coexistence timeb Alternating cycle: Coexistence time
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Figure 5.4: Fixation time on one-dimensional lattices. a, Computer simulations (104

repetitions) show that on the Alternating cycle Ralt(N, ε) the fixation time FT(Ralt(N, ε))
scales as Θ(N3), for any ε > 0. This is in perfect agreement with the upper bound O(N3)
from Theorem 19. b, The coexistence time CT1/2(Ralt(N, ε)) is even shorter – it scales roughly
as Θ(N), for any ε > 0. c, In contrast, on the Split cycle Rsplit(N, ε), the 1

2
-coexistence time

CT1/2(Rsplit(N, ε)) is exponential in the population size N (note that the y-axis is log-scale).
In all panels, we consider ε ∈ {10, 1, 0.1} and N up to 100.

To that end, we considered the Moran Birth-death process acting on populations stretched
across two patches, where each of the two competing types has a fixed selective advantage in
one patch. To address the question of long-term coexistence of the two types, we refined the
classical notion of a fixation time and defined the coexistence time as the (expected) number
of steps during which each type constitutes a majority in the patch where it is favored. For
certain natural two-island population structures characterized by a migration rate µ, we then
showed that the long-term behavior of the system exhibits a threshold behavior in parameter
µ: When the migration rate is high (µ g 1/2), the process terminates with one type fixating
on the whole population after a number of steps that is only polynomial in the population size
N . In sharp contrast, when the migration rate is low (µ < 1/2), the two types coexist for a
number of steps that is (at least) exponential in N . We also showed that on a fixed population
structure given by a 1-dimensional lattice, the coexistence time can be both polynomial and
exponential, depending on the relative layout of the two patches.

Coexistence of multiple types of individuals in structured populations has been extensively
studied in various fields. Below we list some results for related models, highlighting the
differences to our setup. In the terminology of population genetics, the analogue of our
question is whether polymorphism is protected in a one-locus, two-allele population inhabiting
a two-niche ecosystem. Following the seminal work of Levene [Lev53], a now classical line
of research identified several necessary and sufficient conditions for the polymorphism to
be maintained [Dea66, LM66, MS70, KM72, Chr74, GS75, Gil75]. However, those results
are derived for deterministic models under the assumption of infinite population size, see
also [CF75, Fel76] for reviews. In contrast, our model accounts for stochasticity inherent to
the evolutionary process [DL94a], it deals with populations of finite (and arbitrarily large)
size, and it classifies the fate of the population in terms of the polynomial-exponential
dichotomy. In statistical physics, similar models are studied under the name of interacting
particle systems [Lig12]. Those models are stochastic and spatial but the spatial structure is
typically assumed to be an integer lattice. Again, conditions characterizing coexistence are
known [Dur02, D+09].
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The most closely related results to ours are those that study stochastic models on spatial
structures that correspond to island models of finite size. As with the simpler regime
without any environmental heterogeneity, fixation probability is a quantity that is relatively
approachable. [Ave78, TI91, GG02, WG05]. Regarding fixation time, building on the work
of Bulmer [Bul72], Yeaman and Otto [YO11] use computer simulations to observe that
polymorphism is maintained when the migration rate exceeds a certain critical threshold
and they approximate the threshold by splicing the predictions of the deterministic models
with a diffusion approximation for finite populations. While their results are qualitatively
similar to ours, there are important differences. First, we work with a purely stochastic
model and we directly analyze the underlying Markov chain which allows us to obtain exact
rigorous mathematical results without resorting to approximations. Second, we highlight the
fundamental distinction between polynomial and exponential timescale.

Within the field of evolutionary graph theory, the past research agenda related to evolutionary
timescale focused mostly on understanding which population structures lead to short timescales.
Here our objective is the exact opposite – we study population structures that lead to long
evolutionary timescales. Furthermore, using the refined notion of a coexistence time (rather
than simply a fixation time) we are able to guarantee that not only will the evolutionary
process run for exponentially many steps, but also that throughout that timeframe each type
will constitute a healthy portion of the population.

In this work we focus on the simple population structures, such as the well-mixed populations,
one-dimensional lattices, and two-island populations. This allows us to cleanly introduce the
key notions and derive exact analytical results. It is our hope that a subsequent work on more
complex population structures, possibly with multiple patches and with multiple competing
types, will lead towards a better understanding of the role of diversity and its maintenance in
populations at large.

5.5 Additional proofs

5.5.1 Preliminaries

Recall that we consider Moran Birth-death process adapted to a population structure, where
each node belongs to one of two patches P1, P2 and a patch Pi confers a fitness advantage
1 + ε onto an individual of type Ti. In other words, the nodes in P1 have signature (1 + ε, 1)
whereas the nodes in P2 have signature (1, 1 + ε). For details, see Section Model in the main
text.

Next we introduce several notions that repeatedly appear in the proofs of our theorems.

We denote by N the population size, by [N ] = {0, 1, . . . , N} the set of non-negative integers
up to N , and by [N+] = {1, . . . , N} the set of positive integers up to N . At any given time-
point, a configuration describes which vertices are occupied by which individuals. (Formally,
it is a mapping from the vertices to the types.) Given a current configuration X, the total
fitness of the population is denoted by F = F (X). Note that 2N f F (X) f 2N · (1 + ε),
thus F (X) ∈ Θ(N) for all configurations X.

We say that an individual is home (resp. not-home) if it occupies a vertex in a patch where it
is (resp. is not) favored. In the initial configuration, all individuals are home.

We say that an edge is active at a given time-point if its two endpoints are occupied by
individuals of different types. A single step of the process is active if the offspring migrates
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along an active edge. Note that steps that are not active do not change the configuration
(but they are counted when computing the fixation time).

5.5.2 General potential

In this section, we prove a lemma that bounds the absorption time for certain families of
two-dimensional Markov chains. We call such families of Markov chains potent. (Later, we
show that the Markov chains that describe the evolution on the complete graphs and on the
two-island population structure ISLN,ε(µ) are in fact potent.)

First we introduce some notation. We consider Markov chains MN parametrized by an
integer N such that the states form a set SN = {(a, b) | 0 f a, b f N}, the initial state is
(N, N), there are two absorbing states (0, N) and (N, 0), and any transition changes at most
one coordinate by at most one. (Later, state (a, b) ∈ SN will correspond to a configuration
with a home type-1 individuals and b home type-2 individuals in a population of 2N individuals
on a certain population structure.) Given a state (a, b) ∈ SN , we denote the transition
probabilities by

a+
N(a, b) = P[(a, b) → (a + 1, b)], a−

N(a, b) = P[(a, b) → (a − 1, b)],

b+
N(a, b) = P[(a, b) → (a, b + 1)], b−

N(a, b) = P[(a, b) → (a, b − 1)],

ploop
N (a, b) = P[(a, b) → (a, b)], pact

N (a, b) = 1 − ploop
N (a, b).

The quantity pact
N (a, b) is the probability that the Markov chain makes a step that changes

the state (this corresponds to the process making an active step that changes the current
configuration).

We note that the quantities such as a+
N(a, b) depend on both N and the pair (a, b). In

what we write below, the values of N and/or (a, b) are often fixed and understood from the
context. For ease of notation, in those cases we omit the explicit dependence and we write
e.g. a+ = a+

N(a, b) and so on.

Definition 2 (Potent Markov chains). Given c > 0, we say that a sequence (MN)Ng1 of
Markov chains of the above form is c-potent if the following conditions hold for each N g 1:

1. (Symmetry) For any (a, b) ∈ SN we have b+
N(a, b) = a+

N(b, a) and b−

N(a, b) = a−

N(b, a).

2. (Special form) There exist functions gN , hN : SN → R such that for all (a, b) ∈ SN we
have gN(a, b) = gN(b, a), hN(a, b) = hN(b, a) f 0, and

a+
N(a, b) − a−

N(a, b) = (N + c · a) · gN(a, b) + hN(a, b).

An example of a 1-potent family of Markov chains is a family, where a+
N (a, b) = N2+N+2a+b+2

N3 ,

a−

N (a, b) = (N2+a+1)(N2+b+1)
N5 , b+

N (a, b) = N2+N+2b+a+2
N3 , b−

N (a, b) = (N2+b+1)(N2+a+1)
N5 , for each

N g 1. Indeed, this is witnessed by functions gN (a, b) = 1
N3 , and hN (a, b) = −(a+1)(b+1)

N5 . For
other examples, see the Markov chains corresponding to the complete graph (Section 5.5.3)
and the two-island graph (Section 5.5.4).

The following lemma is our key technical contribution. It bounds the absorption time AT(MN )
of a c-potent family of Markov chains in terms of c and the bounds on the functions hN and
the probabilities pact

N of making an active step.
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Lemma 23. Fix c > 0 and suppose that (MN)Ng1 is a c-potent family of Markov chains
characterized by functions gN , hN : SN → R. Suppose that for each N g 1 and each
(a, b) ∈ SN we have bounds pmin

N f pact
N (a, b) f pmax

N and |hN(a, b)| f hmax
N . Then the

expected absorption time AT(MN) satisfies

AT(MN) ∈ O
(

N2

pmin
N

)

and AT(MN) ∈ Ω

(

min

{

N2

pmax
N

,
N

hmax
N

})

.

Proof. Fix N g 1 and denote by S = SN the state space of the Markov chain M = MN . Let
f(t) = N + c · t and consider a function φ : S → R defined by

φ(a, b) =
f(a)

f(b)
+

f(b)

f(a)
=

N + ca

N + cb
+

N + cb

N + ca
.

Below we show that the value φ(a, b) changes in a controlled way as we run the process.
Namely, we show that for any (a, b) ∈ S\{(0, N), (N, 0)}, the expected increase ∆φ(a, b) upon
performing a single step of the Moran process is sandwiched between two positive constants
∆min, ∆max. Since φ(a, b) > 0 for any (a, b) ∈ S, this allows us to bound the absorption
time AT(M) using a standard drift analysis and martingale machinery, see e.g. Theorem 1
in [Len19] and other references therein. Namely, denoting by φmax = max(a,b)∈S{φ(a, b)} the
maximum attainable potential value, we obtain

φmax

∆max

f AT(M) f φmax

∆min

.

It remains to compute the asymptotics of φmax, ∆min, and ∆max. Regarding φmax, we clearly
have φmax g 1 + 1 = 2 and φmax f 2 · (N + cN)/N = 2(1 + c), thus φmax ∈ Θ(1) is a
constant. The computation for ∆min, and ∆max is conceptually straightforward, but technically
much more demanding. In particular, below we show that

∆min ∈ Ω

(

pmin
N

N2

)

and ∆max ∈ O
(

pmax
N

N2
+

hmax
N

N

)

from which the statement of the lemma follows.

Fix (a, b) ∈ S \ {(0, N), (N, 0)}. The expected change of the potential in a single step can
be expressed as

∆φ(a, b) = a+·(φ(a + 1, b) − φ(a, b)) + a− · (φ(a − 1, b) − φ(a, b))

+b+·(φ(a, b + 1) − φ(a, b)) + b− · (φ(a, b − 1) − φ(a, b)).

The potential φ(a, b) is itself a sum of two parts, f(a)
f(b)

and f(b)
f(a)

. First, we look at the first part
only, we substitute for the difference f(t + 1) − f(t) = c, and we collect terms with the same
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power of c. We get

∆1 = a+ f(a + 1) − f(a)

f(b)
+ a−

f(a − 1) − f(a)

f(b)
+

b+f(a)

(

1

f(b + 1)
− 1

f(b)

)

+ b−f(a)

(

1

f(b − 1)
− 1

f(b)

)

= a+ c

f(b)
− a−

c

f(b)
− b+f(a)

c

f(b + 1)f(b)
+ b−f(a)

c

f(b − 1)f(b)

=
c

f(b)

(

a+ − a− − b+f(a)

f(b) + c
+

b−f(a)

f(b) − c

)

=
c

f(b)

(

a+ − a− − f(a)f(b)(b+ − b−) − cf(a)(b+ + b−)

f(b)2 − ¶2

)

=
c

f(b)

(

a+ − a− − f(a)f(b)(b+ − b−)

f(b)2 − ¶2

)

+
c2f(a)(b+ + b−)

f(b) (f(b)2 − c2)

=
c

f(b) (f(b)2 − c2)

(

(a+ − a−)(f(b)2 − c2) − f(a)f(b)(b+ − b−)
)

+
c2f(a)(b+ + b−)

f(b) (f(b)2 − c2)

=
c

f(b) (f(b)2 − c2)

(

(a+ − a−)f(b)2 − f(a)f(b)(b+ − b−)
)

+
c2f(a)(b+ + b−)

f(b) (f(b)2 − c2)
− c3(a+ − a−)

f(b) (f(b)2 − c2)
. (5.1)

For now, we focus on the first term L1 which is linear in c (we get back to the quadratic and
the cubic terms later). We cancel f(b) and rewrite L1 further using the relation a+ − a− =
f(a)g(a, b) + h(a, b) as follows:

L1 =
c ((a+ − a−)f(b) − f(a)(b+ − b−))

f(b)2 − c2

=
c ((f(a)g(a, b) + h(a, b))f(b) − f(a)(f(b)g(b, a) + h(b, a)))

f(b)2 − c2

=
c (f(a)g(a, b)f(b) − f(a)f(b)g(b, a))

f(b)2 − c2
+

c (f(b)h(a, b) − f(a)h(b, a))

f(b)2 − c2

=
cf(a)f(b) (g(a, b) − g(b, a))

f(b)2 − c2
+

c (f(b)h(a, b) − f(a)h(b, a))

f(b)2 − c2
.

We know that g(a, b) = g(b, a), so the first term cf(a)f(b)(g(a,b)−g(b,a))
f(b)2−c2 disappears.

Next we use the fact that h(a, b) = h(b, a) and we sum whatever is left of L1 with the
corresponding term L2 coming from the part f(b)

f(a)
of the potential. (This is the same
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expression, just with exchanged a and b.). We get

L1 + L2 =
c (f(b)h(a, b) − f(a)h(b, a))

f(b)2 − c2
+

c · (f(a)h(b, a) − f(b)h(a, b))

f(a)2 − c2

=
c · h(a, b) (f(b) − f(a))

f(b)2 − c2
− c · h(a, b) (f(b) − f(a))

f(a)2 − c2

=
c · h(a, b) (f(b) − f(a)) (f(a)2 − f(b)2)

(f(b)2 − c2)(f(a)2 − c2)

= −c · h(a, b) (f(a) − f(b))2 (f(a) + f(b))

(f(b)2 − c2)(f(a)2 − c2)
.

Note that since f(t) g 0, h(a, b) f 0, and the inequality f(a), f(b) g N > c holds for all
large enough N , the combined linear term L1 + L2 is positive. On the other hand, since
f(t) ∈ Θ(N) and c ∈ Θ(1), we can bound it from above as

L1+L2 = −c · h(a, b) (f(a) − f(b))2 (f(a) + f(b))

(f(b)2 − c2)(f(a)2 − c2)
∈ O

(

maxa,b{|h(a, b)|} · N2 · N

N2 · N2

)

= O
(

hmax

N

)

.

Now we get back to the higher order (quadratic and cubic) terms from Eq. (5.1). We again
look at them together with the corresponding terms coming from the part f(b)

f(a)
of the potential.

We get

H =
c2f(a)(b+ + b−)

f(b) (f(b)2 − c2)
− c3(a+ − a−)

f(b) (f(b)2 − c2)
+

c2f(b)(a+ + a−)

f(a) (f(a)2 − c2)
− c3(b+ − b−)

f(a) (f(a)2 − c2)
.

Finally, it remains to show that H > 0 and H ∈ Θ(pact/N2). We rewrite H = A+ + B+ +
A− + B−, where A+ collects all the terms with a+ and likewise for b+, a−, and b−. We have

A+ = a+ ·
(

c2f(b)

f(a)(f(a)2 − c2)
− c3

f(b)(f(b)2 − c2)

)

and since f(t) ∈ Θ(N) and c ∈ Θ(1), we can further rewrite this as

A+ = a+ · Θ
(

N

N · N2
− 1

N · N2

)

= a+ · Θ
(

1

N2

)

.

Likewise, we get B+ = b+ · Θ(1/N2) by switching the roles of a and b. For A− we proceed
completely analogously (this time having a plus instead of a minus), again leading to

A− = a− ·
(

c2f(b)

f(a)(f(a)2 − c2)
+

c3

f(b)(f(b)2 − c2)

)

= a− · Θ
(

N

N3
+

1

N3

)

= a− · Θ
(

1

N2

)

.

Similarly, we get B− = b+ · Θ(1/N2). Therefore we have

H = A+ + B+ + A− + B− = (a+ + b+ + a− + b−) · Θ(1/N2) ∈ Θ

(

pact

N2

)

,

which finishes the proof.
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5.5.3 Complete graph

In this section, we prove Theorem 20 from the main text. Consider the complete graph KN,ε

spanning two patches of size N each. At any given time-point, the configuration can be
described by a pair (a, b) (with 0 f a, b f N) where a counts the type-1 individuals that are
home and b counts the type-2 individuals that are home. Thus the initial configuration is
(N, N) and fixation of types 1 and 2 occurs at configurations (N, 0), (0, N), respectively.

Theorem 20 (Well-mixed populations). Fix ε > 0. Then

FT(KN,ε) ∈ Ω(N2) and FT(KN,ε) ∈ O(N3).

Proof. We aim to use Lemma 23. We show that the Markov chain corresponding to the
process is ε-potent.

Consider any time-point and suppose the current configuration is (a, b), that is, a type-1
individuals and b type-2 individuals are home. Let

F = (1 + ε)a + N − a + (1 + ε)b + N − b = 2N + ε(a + b) = Θ(N)

be the total fitness of the population. Denote by a+, a−, b+, and b− the probabilities that,
after a single step of the process, the configuration becomes (a + 1, b), (a − 1, b), (a, b + 1)
and (a, b − 1), respectively. Then

a+ =
(1 + ε)a(N − a) + (N − b)(N − a)

F · (2N − 1)
,

a− =
(1 + ε)ba + (N − a)a

F · (2N − 1)
,

b+ =
(1 + ε)b(N − b) + (N − a)(N − b)

F · (2N − 1)
,

b− =
(1 + ε)ba + (N − b)b

F · (2N − 1)
.

This yields

a+ − a− = (N + εa) · N − a − b

F · (2N − 1)
,

thus by setting g(a, b) = N−a−b
F (N−1)

and h(a, b) = 0 we conclude that the Markov chain is indeed
ε-potent. Thus, Lemma 23 applies and since h(a, b) = 0, it remains to find bounds pmin, pmax

on pact = a+ + a− + b+ + b−.

We clearly have pact f 1, so we can set pmax = 1 and get

FT(KN,ε) ∈ Ω
(

N2/pmax
)

= Ω(N2).

For the upper bound, note that until fixation we have |a−b| f N −1, hence by using 1+ε g 1
we can bound

a++a−+b++b− g 2

F (2N − 1)
·(a+(N−b))(b+(N−a)) =

2

F (2N − 1)
·(N2−(a−b)2) g 2

F
∈ Ω(1/N).

Therefore
FT(KN,ε) ∈ O(N2/pmin) = O(N2/(1/N)) = O(N3)

as claimed.
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Figure 5.5: The surface of the potential φ from Lemma 23 in the special case of KN,ε with
N = 500, and ε = 1.1.

As an illustration, we plot the potential used in the proof of Lemma 23 in the special case of
a Markov chain arising from the complete graph, see Fig. 5.5.

5.5.4 Two-island graphs

In this section, we prove Theorems 21 and 22 from the main text. Consider the two-island
graphs ISLN,ε(µ), where each island constitutes one patch and the offspring migrates to the
other island with probability p. As before, the current configuration can be described by a pair
(a, b) (with 0 f a, b f N) where a counts the type T1 individuals that are home and b counts
the type T2 individuals that are home. Again we denote by a+ = a+

N(a, b), a−, b+, and b−

the probabilities that, after a single step of the process, the configuration becomes (a + 1, b),
(a − 1, b), (a, b + 1) and (a, b − 1), respectively, and by F = 2N + ε(a + b) ∈ Θ(N) the total
fitness of the population. Direct computation gives

a+ =
(1 − µ)(1 + ε)a(N − a) + µ(N − b)(N − a)

FN

a− =
µ(1 + ε)ab + (1 − µ)(N − a)a

FN

and b+ (resp. b−) is obtained from a+ (resp. a−) by swapping a and b.

High-migration regime

First we prove that when the migration rate is high, the fixation time is only polynomial,
namely at most cubic.

Theorem 21 (High migration rate). Fix ε > 0 and µ g 1/2. Then FT(ISLN,ε(µ)) ∈ O(N3).
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Figure 5.6: Two-island graph. Vertices have two types and are more strongly connected to
vertices with the same signature then to vertices with a different signature.

Proof. Again we plan to use Lemma 23. We have

a+ − a− =
(1 − µ)(1 + ε)a(N − a) + µ(N − b)(N − a)

FN
− µ(1 + ε)ab + (1 − µ)(N − a)a

FN

=
1

FN
((1 − µ)(1 + ε)a(N − a) + µ(N − b)(N − a) − µ(1 + ε)ab − (1 − µ)(N − a)a)

=
1

FN
((µN + ε(1 − µ)a)(N − a − b) + (1 − 2µ)εab)

=

(

N +
ε(1 − µ)

µ
a

)

· µ(N − a − b)

FN
+

(1 − 2µ)εab

FN
,

so we can set g = N−a−b
F N

and h = (1−2µ)εab
F N

. Then g and h are symmetric in a and b and
since µ g 1

2
, we know that h(a, b) f 0. Therefore the corresponding Markov chains are

ε(1−µ)
µ

-potent, so Lemma 23 applies and it remains to show that pmin
N ∈ Ω(1/N).

Using 1 − µ g 0 and 1 + ε g 1 we have

pact
N (a, b) g a+ + a− g 1

FN
(ab + (N − a)(N − b)) g 1

FN
· N ∈ Θ(1/N),

where the last inequality holds for all pairs (a, b) ∈ SN \ {(N, 0), (0, N)}: Indeed, if a = b ∈
{0, N} then ab + (N − a)(N − b) = N2 g N , otherwise without loss of generality a ̸∈ {0, N}.
Then a g 1 and N − a g 1, hence ab + (N − a)(N − b) g b + (N − b) g N .

Low-migration regime

Here we prove that when the migration rate is low, the coexistence time (and thus the fixation
time) is at least exponential.

Theorem 22 (Low migration rate). Fix ε > 0 and µ < 1/2. Then CT(ISLN,ε(µ)) ∈ 2Ω(N).

Proof. We use the same Markov chain as in the previous section. A state is determined by a, b.
We identify “obstacles” between the starting position and both end positions. The obstacles
will have thickness Ω(N), and we will show that it takes a long time to pass through them.
There are three obstacles. The first and the third obstacle are symmetric in a and b.

We set w = (1−2µ) min(ε,1)
8

, µ = w
4
, x1 = ε3(1−2µ)2

350(2+ε)
, and x2 = ε(1−2µ)

64(1+ε)
. Observe that w, µ, x1,

and x2 are constants (they do not depend on N). Using these values, the obstacles are created
as seen in Figure 5.7.
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First Obstacle For a ∈ [(1
2

+ w − µ)n, n] and b ∈ [−wn + a, (µ − w)n + a] we show that
a−+b+

a++b−
g 1 + x1.

We express the probabilities:

−a+ + a− + b+ − b− g x1(a
+ + b−)

−(1 − µ)ε(a − b)(n − a − b) g x1((1 − µ)((1 + ε)a(n − a) + b(n − b))

+ µ((n − b)(n − a) + (1 + ε)ba)).

Since for a, b in the given ranges, we have a + b > n and a > b. We plug extremal values of b
and a to the expression on the left side and using 4µ = w and µ < 1

2
, we get:

(1 − µ)ε(a − b)(a + b − n) g(1 − µ)ε(a − (a + (µ − w)n))(a + a − wn − n)

g(1 − µ)ε(w − µ)n2(1 + 2w − 2µ − w − 1)

g(1 − µ)ε(w − µ)n2(w − 2µ)

g(1 − µ)ε(4µ − µ)n2(4µ − 2µ)

g3εµ2n2

On the right side, using 0 f a, b f n, we have:

x1((1 − µ)((1 + ε)a(n − a) + b(n − b))+µ((n − b)(n − a) + (1 + ε)ba))

fx1((1 − µ)((1 + ε)n2 + n2) + µ(n2 + (1 + ε)n2))

fx1(2 + ε)n2

Using µ = min(1,ε)(1−2µ)
32

, we evaluate:

3εµ2n2 g x1(2 + ε)n2

3εc2

2 + ε
g x1

3ε3(1 − 2µ)2

1024(2 + ε)
g x1

ε3(1 − 2µ)2

350(2 + ε)
g x1

which proves the statement.

Second obstacle For a ∈ [1
2
N, (1

2
+ w)N ] and b ∈ [(1 + w)N − a, (1 + w + µ)N − a]

we show that a++b+

a−+b−
g 1 + x2. Since the statement is symmetric in a and b, it holds

also for obstacle defined by switching a and b. The second obstacle is defined as union of
a ∈ [1

2
n, (1

2
+ w)n] and b ∈ [(1 + w)n − a, (1 + w + µ)n − a] with b ∈ [1

2
n, (1

2
+ w)n] and

a ∈ [(1 + w)n − b, (1 + w + µ)n − b].
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We express the probabilities (for first part of the obstacle):

a+ − a− + b+ − b− g x2(a
− + b−)

(n − a − b)(ε(1 − µ)(a + b) + 2µn) + 2(1 − 2µ)εab

g x2(2µ(1 + ε)ab + (1 − µ)(n − a)a + (1 − µ)(n − b)b)

For the right side and 0 f a, b f n, we have:

x2(2µ(1 + ε)ab + (1 − µ)(n − a)a + (1 − µ)(n − b)b) fx2(2µ(1 + ε)n2 + (1 − µ)n2 + (1 − µ)n2)

fx2(1 + ε)(2µn2 + 2(1 − µ)n2)

fx22(1 + ε)n2

Again a + b > n, thus we have

(n − a − b)(ε(1 − µ)(a + b) + 2µn) + 2(1 − 2µ)εab g

(−w − µ)n(ε(1 − µ)(1 + w + µ)n + 2µn) + 2(1 − 2µ)ε
1

2
n((1 + w)n − a) g

(−w − µ)n2(ε(1 − µ)(1 + w + µ) + 2µ) + (1 − 2µ)εn2 1

2
g

− 5µn2(ε(1 − µ)(1 + 5µ) + 2µ) + (1 − 2µ)εn2 1

2
g

By the choice of µ, we know that ε(1 − µ)(1 + 5µ) < ε(1 + min(1, ε)) < 2ε, moreover
min(1, ε) · (2ε + 1) f 3ε, this gives

− 5µn2(ε(1 − µ)(1 + 5µ) + 2µ) + (1 − 2µ)εn2 1

2
g

− 5µn2(2ε + 1) + (1 − 2µ)εn2 1

2
g

− 5
(1 − 2µ)

32
n2 min(1, ε)(2ε + 1) + (1 − 2µ)εn2 1

2
g

− (1 − 2µ)15ε

32
n2 + (1 − 2µ)εn2 1

2
g

ε(1 − 2µ)n2(
1

2
− 15

32
) g

ε(1 − 2µ)n2

32

Comparing both sides gives

ε(1 − 2µ)n2

32
gx22(1 + ε)n2

ε(1 − 2µ)

64(1 + ε)
gx2
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5. Coexistence times in Moran process with environmental heterogeneity

xy

Figure 5.7: Obstacles: blue region highlights permissible values of (a, b). The first obstacle is
in red and the second is in pink (note that it is union of two obstacles).

Third obstacle For b ∈ [(1
2

+ w − µ)N, N ] and a ∈ [−wN + b, (µ − w)N + b] we know
that a−+b+

a++b−
g 1 + x1 since a and b are symmetric.

Passing through obstacle To get from the starting state (N, N) to one of the absorbing
states (0, N) or (N, 0), the process needs to pass through one entire obstacle.

Suppose that it is the first obstacle. The number of steps that increase a or decrease b needs to
be larger by at least cn than the number of steps that decrease a or increase b. If the process
is in the obstacle, we collapse the two dimensional Markov chain to one dimensional. The
position is denoted by a−b. The obstacle starts at position a−b = wn and if a−b < (w−µ)n
the obstacle is passed.

We know that inside the obstacle holds a−+b+

a++b−
g 1 + x1. This means the Markov chain has a

constant bias, by result It takes (1 + x1)
µn (which is 2O(n)) steps on average to get through

the obstacle.

The statement holds for the third obstacle symmetrically and for the second obstacle with
time ((1 + x2)

µn) by similar reasoning.

In the intersection of the first and the second obstacle, 1
n
n f a f b f n, which implies

a+ g b+ ((1 + ε)(n − a)a g (1 + ε)(n − b)b) and trivially a+ g b−. This means passing
through both obstacles takes also exponential time.

That means leaving the coexistence regime needs at least exponential time.

5.5.5 Cycles

In this section, we prove Theorem 23 from the main text. Among other implications, this
illustrates that even if we fix the underlying graph and the effects of the patches on the fitness,
the coexistence time critically depends on the relative layout of the two patches. In particular,
we show that when the nodes of a long one-dimensional lattice alternately belong to patches
P1 and P2 then the process terminates in polynomial time. In contrast, when each patch
forms a contiguous block of N nodes, each type holds majority in its patch for a number of
steps that is exponential in N .
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Figure 5.8: The simulation of the process for different µ. We see that the lower µ is the more
is spent near the beginning. Also the lower the µ is the number of steps is higher.

Theorem 23 (One-dimensional lattices). Fix ε > 0. Then

FT(Ralt(N, ε)) ∈ O(N3) and CT 1/2(Rsplit(N, ε)) ∈ 2Ω(N).

Proof. Regarding the first claim, we build on the fact that the process can be mapped to an
unbiased random walk, see Theorem 1 in [MP14].

Note that for any active edge, the individuals occupying its endpoints have the same fitness:
If they are both home then they both have fitness 1 + ε, otherwise they both have fitness 1.

Consider any time-point and any active edge. Since its endpoints both have degree 2, the
edge is equally likely to be used for a reproduction event in either direction. Summing over all
active edges we learn that, at each time-point, the probabilities p+ (resp. p−) that the number
of T1 individuals increases (resp. decreases) are equal. Tracking only steps that happen along
active edges, we thus obtain an unbiased random walk (xt)tg0 which:

1. starts at x0 = N ,
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5. Coexistence times in Moran process with environmental heterogeneity

2. when at xt, it jumps to either xt+1 = xt + 1 or xt+1 = xt − 1 with probability 1/2 each,
and

3. it terminates once it reaches xt ∈ {0, 2N}.

The absorption time of such a random walk is Ä = x0(2N − x0) = N2.

Finally, note that at each time-point until the process terminates, there exist at least 2 active
edges, hence the probability that the next reproduction event happens along an active edge is
at least pa g 2/F ∈ Ω(1/N), where F ∈ [2N, (1 + ε)2N ] ∈ Θ(N) is the total fitness of the
population. Since other reproduction events do not change the configuration of the individuals,
we obtain that the total fixation time is at most FT(Ralt(N, ε)) f T/pa ∈ O(N3) as desired.

Regarding the second claim, we again track only the active steps and we map the process to a
random walk with a constant backward bias.

Consider the set S ′ of 4 nodes that are the endpoints of the two edges that connect the
two patches. Define S = V \ S ′ to be the set of the remaining 2N − 4 nodes. Given any
fixed time-point and i ∈ {1, 2}, denote by ai the number of Ti individuals who are not home
and in S. Initially, we have a1 = a2 = 0 and for one type to lose majority in its patch we
must have ai g 1

2
N − 2 for some i ∈ {1, 2}. Also, if 1 f ai f 1

2
N − 2 then, in a single

step, ai is (1 + ε)-times more likely to decrease then to increase: Indeed, for ai to increase, a
not-home individual must replace a neighboring individual who is home. But any such edge
is (1 + ε)-times more likely to be used for reproduction in the opposite direction, since the
individual who is home has fitness 1 + ε, whereas the other individual has fitness 1 (and both
endpoints of the edge have the same degree 2). Thus the 1

2
-coexistence time is at least as

large as the absorption time of a biased random walk (xt)tg0 which:

1. starts at x0 = 0,

2. when xt = 0 then xt+1 = 1, otherwise it jumps to xt+1 = xt + 1 with probability
p+ = 1/(2 + ε) and to xt+1 = xt − 1 with probability p− = (1 + ε)/(1 + 2ε), and

3. it terminates once it reaches xt = 1
2
N − 2.

For fixed ε > 0 and N → ∞, the absorption time of such a random walk is Θ((p−/p+)
1

2
N−2) =

2Θ(N), thus CT 1/2(Rsplit(N, ε)) ∈ 2Ω(N) as claimed.

5.5.6 General upper bound

In this section, we prove Theorem 5 from the main text. That is, we show that within a certain
broad class of population structures, a coexistence on a substantially longer than exponential
timescale is impossible. Thus, the exponential coexistence that occurs for two-island structures
with low migration rates is close to optimal. Namely, given a real number wmin > 0 we denote
by G(wmin) the class of all connected graphs in which each edge is assigned a weight at least
wmin.

Theorem 5 (General upper bound). Fix wmin > 0 and ε > 0. Then for any population
structure GN,ε ∈ G(wmin) on 2N nodes we have FT(GN,ε) ∈ 2O(N ·log N).
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5.5. Additional proofs

Proof. Consider any time-point and an arbitrary (“focal”) individual. We bound from below
the probability p that in the next 2N − 1 steps this focal individual produces a lineage that
takes over the whole population. By summing up a geometric series, the fixation time is then
at most FT(GN,ε) f (2N − 1)/p.

Note that, at any time-point, the total fitness F of the population satisfies 2N f F f
2N · (1 + ε), hence F ∈ Θ(N). Also, until fixation occurs, there exists an edge connecting
a node a occupied by an offspring of the focal individual and a node b occupied by its
non-offspring. With probability pa g 1/F ∈ Ω(1/N) the individual at node a is selected for
reproduction and with probability pa→b g w/((N − 1) · 1) ∈ Ω(1/N) the produced offspring
migrates to node b. Thus we get p g (pa · pa→b)

2N−1 ∈ Ω(1/N4N−2) and then the desired

FT(GN,ε) f (2N − 1)/p ∈ O
(

(2N − 1) · N4N−2
)

= 2O(N log N).

Note that Theorem 5 gives an upper bound on the fixation time, and thus also on the
c-coexistence time for any c > 0. Also, the same proof clearly applies to populations consisting
of multiple patches and with multiple competing types, so long as the fitness of each type in
each patch is bounded between two constants 1 + εmin and 1 + εmax.
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CHAPTER 6
Social Balance on Networks: Local

Minima and Best Edge Dynamics

This chapter appears in full in [CSŽ+22]. Reprinted from Krishnendu Chatterjee, Jakub
Svoboda, Djordje Žikelić, Andreas Pavlogiannis, and Josef Tkadlec. Social balance on networks:
Local minima and best-edge dynamics. Physical Review E, 106(3):034321, 2022 with the
permission of American Physical Society. Copyright (2025) by the American Physical Society.

Abstract

Structural balance theory is an established framework for studying social relationships of
friendship and enmity. These relationships are modeled by a signed network whose energy
potential measures the level of imbalance, while stochastic dynamics drives the network towards
a state of minimum energy that captures social balance. It is known that this energy landscape
has local minima that can trap socially-aware dynamics, preventing it from reaching balance.
Here we first study the robustness and attractor properties of these local minima. We show
that a stochastic process can reach them from an abundance of initial states, and that some
local minima cannot be escaped by mild perturbations of the network. Motivated by these
anomalies, we introduce Best Edge Dynamics (BED), a new plausible stochastic process. We
prove that BED always reaches balance, and that it does so fast in various interesting settings.

6.1 Introduction

The formation of social relationships is a complex process that has long fascinated researchers.
It is well-understood that, besides pairwise interactions, friendships and rivalries are affected
by social context. The study of such phenomena dates back to Heider’s theory of social
balance [Hei44, Hei46, Hei58], which can be seen as a rigorous realization of the proverb “the
enemy of my enemy is my friend”. The theory classifies a social state as balanced whenever
every group of three entities (a triad) is balanced: it consists of either three mutual friendships,
or one friendship whose both parties have a mutual enemy. The other types of triads create
social unrest that eventually gets resolved by changing the relationship between two parties.
For example, a triad with three mutual enmities will eventually lead to two entities forming
an alliance against the common enemy. A triad with exactly one enmity will either see
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6. Social Balance on Networks: Local Minima and Best Edge Dynamics

a reconciliation to a friendship under the uniting influence of the common friend, or lead
to the break of one friendship following the social axiom “the friend of my enemy is my
enemy” [Sch10].

Cartwright and Harary developed a graph-theoretic model of Heider’s theory [CH56], and
showed that any balanced state is either a utopia without any enmities, or it consist of
two mutually antagonistic groups [H+53, Dav67]. This structural theory of social balance
has seen applications across various fields ranging from philosophy, sociology, or political
science [BGS+17, Tay70, FA21, She71, Moo79] all the way to fields such as neuroscience
or computer science [CCC+20, MPKHT20, LCWZ13, Alt12], It has also been supported by
empirical evidence [RF17, KCN19, ASBF20], see also [ZZW15] for a review. The setting is
attractive to physicists due to its intimate connection to the Ising model and spin glasses [FIA11],
and indeed tools and techniques from statistical physics have proved to be instrumental in
improving our understanding of such systems [BHR+17, SATJK17, MM21], see also [CFL09]
for a review.

It is natural to associate each network state with a potential energy that counts the difference
of imbalanced minus balanced triads; hence the perfectly balanced states are those that
minimize the energy of the network [MSK09]. Understanding how energy is minimized in a
system is a fundamental problem studied across different physics fields, and signed graphs
present a clean theoretical framework to study this problem in a setting with a population
structure. It is well known that the energy landscape over signed graphs has local minima
(also known as jammed states) [AKR05], that is, states from which all paths to social balance
must temporarily increase the number of imbalanced triads.

When the network state is imbalanced, we expect that a social process will perturb it until
balance is reached. The seminal work [AKR06] introduced a stochastic process known as
Local Triad Dynamics (LTD), according to which imbalanced triads are sampled at random,
and the sampled triad is balanced by flipping the relationship of two of its entities. This step
is called an edge flip. The same work also introduced Constrained Triad Dynamics (CTD), a
socially-aware variant of LTD under which an edge flip is only possible if it reduces the number
of imbalanced triads. Unfortunately, the existence of local minima in the energy landscape
implies that CTD can get stuck in jammed states and thus remain permanently imbalanced.

Although the existence of jammed states is well understood in terms of the energy landscape,
little is known about them from the perspective of the stochastic process, that is, about their
reachability properties. For example, from which initial states is it possible to reach a jammed
state? Moreover, if a jammed state is reached, can the process escape if we slightly perturb
the network? Finally, is there a plausible, socially-aware stochastic dynamics (like CTD) that
always reaches balance (unlike CTD)? We tackle these questions in this work.

First, we study the robustness and attractor properties of the local minima of the energy
landscape. We show that the number of jammed states is super-exponential, compared to
the previously known exponential lower-bound, and that jammed states are reachable from
any initial state that is not too friendship-dense. Moreover, we show that some of those
jammed states are strongly attracting: even when perturbing a constant portion of edges
adjacent to each vertex, the same jammed state is subsequently reached with probability 1.
As a byproduct, our results resolve an open problem from [MSK09].

Second, we propose a new plausible dynamics called Best Edge Dynamics (BED). Like CTD,
BED is a stochastic process in which edge flips are socially-aware, in the sense that they
maximize the number of newly balanced triads (see below for details). We prove that, unlike
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CTD, BED always reaches a balanced state from any initial state. Moreover, we show that
BED converges faster to a balanced state than CTD in various interesting settings, such as
when started from a state that is already close to being balanced.

Finally, we complement our analytical results with computer simulations in the cases when the
initial friendship edges form a random Erdős-Rényi network or a random scale-free networks.

6.2 Triad Dynamics in Social Networks

Balance on social networks is studied in terms of signed graphs. A signed graph G = (V, E, s)
consists of a finite complete graph (V, E) on |V | = n vertices together with an edge labeling

s : E → {−1, +1}.

The labeling s assigns to each edge one of the two signs; the edges labeled by +1 are friendships
and those labeled −1 are enmities. Thus each pair of individuals (modeled by vertices) has a
defined relationship: either they are friends, or they are enemies.

Given a signed graph G = (V, E, s), a triad is a subgraph of G defined by any three of its
vertices. A triad is of type ∆k for k = 0, 1, 2, 3 if it contains exactly k edges labeled −1. A
triad is balanced if its type is ∆0 or ∆2. Intuitively, a triad is balanced if it satisfies the known
proverb “the enemy of my enemy is my friend”. For an edge e in G, its rank re is the number
of imbalanced triads containing e. Finally, a signed graph G is balanced if each triad in G is
balanced, see Fig. 6.1.

Balanced triads Imbalanced triads

flip

flip

flip flip

re = 1

e

friends

friends

∆0

∆2

fr
ie
nd
s

fr
ie
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enemies
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ies

∆1

∆3

Triangle dynamics Edge rank

!

!

Figure 6.1: A triad of type ∆k contains k enmity edges. The imbalanced triads ∆1 and ∆3 can
be made balanced by flipping any one edge. A sequence of flips typically reaches a state where
all triads are balanced. The rank re of edge e is the number of imbalanced triads containing e.
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It is known that a signed graph is balanced if and only if its enmity edges form a complete
bipartite graph over the vertex set [CH56]. This means that we may partition the vertices of a
balanced signed graph into two vertex classes, such that all pairs of vertices from the same
class form friendship edges, and all pairs of vertices from different classes form enmity edges.
Moreover, every signed graph which admits such a partitioning is clearly balanced. In the
special case where one of the vertex classes in this partitioning is empty, each pair of vertices
forms a friendship edge and we refer to this balanced signed graph as utopia.

The main interest in the study of social networks modeled by signed graphs is the evolution
of the network according to some pre-specified dynamics, and the time until the balance is
reached. The goal is to understand which simple dynamics ensure fast convergence to balance.
Following the work of [AKR06], we focus on those dynamics that, at each time step, select
one edge e according to some rule and then flip its sign. We then say that “e is flipped”.
In [AKR06], two such dynamics on signed graphs were introduced: Local Triad Dynamics
(LTD), and Constrained Triad Dynamics (CTD). In the rest of this section, we define these
two dynamics and discuss their advantages and limitations.

6.2.1 Local Triad Dynamics

Let G be a signed graph modeling a social network with friendships and enmities.

The Local Triad Dynamics (LTD) with parameter p ∈ [0, 1] is a discrete-time random process
that starts in G and repeats the following procedure until there are no imbalanced triads in G:

1. Select an imbalanced triad ∆ uniformly at random.

2. If ∆ is of type ∆3, then an edge of T is chosen to be flipped uniformly at random. If ∆
is of type ∆1, then the unique edge with sign −1 is chosen to be flipped with probability
p and each of the two other edges is chosen with probability 1−p

2
.

We refer to distinct signed graphs as states.

LTD is socially oblivious in the sense that once an imbalanced triad is selected, the edge to
be flipped is chosen according to a (stochastic) rule that disregards the rest of the network.
Moreover, the guarantees of LTD on the expected time to reach a balanced state are not very
plausible: it was shown in [AKR06] that if p < 1

2
, then the expected time grows exponentially

with the size of the signed graph. On the other hand, if p > 1
2
, then the dynamics is more

likely to create rather than remove friendships and it reaches utopia with high probability. This
means that the eventual balanced state is essentially pre-determined.

6.2.2 Constrained Triad Dynamics

The Constrained Triad Dynamics (CTD) is another dynamics on signed graphs. Given a signed
graph G on n vertices, CTD is a random process that starts in G and repeats the following
procedure until there are no imbalanced triads in G:

1. Select an imbalanced triad ∆ uniformly at random.

2. Select an edge e of ∆ uniformly at random.
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3. Flip e if re g 1
2
n − 1, that is, if the number of imbalanced triads in G does not increase

upon the flip (in the case of equality, the flip happens with probability 1/2), otherwise
do nothing.

Note that CTD introduces a non-local, socially-aware rule: When deciding whether a selected
edge should be flipped, we take into account all triads that contain it. In [AKR06] it was
claimed that, starting from any initial signed graph G, CTD converges to a balanced state
and that balance is reached fast – in a time that scales logarithmically with the size n of the
signed graph. If true, this would imply that CTD overcomes the limitation of LTD in which
the expected convergence time could be exponential in n. However the claim, which was
supported by an informal argument, is not quite true, since the energy landscape is rugged:
There are states, called jammed states, that are not balanced but where CTD can not make a
move, since any flip would (temporarily) increase the number of imbalanced triads [AKR05].
Moreover, it is known that there are at least roughly 3n jammed states (compared to roughly
2n balanced states) and that some of the jammed states have zero energy [MSK09].

6.3 Reaching and Escaping the Jammed States

Even though there are exponentially many jammed states, computer simulations on small
populations were used to suggest that they can effectively be ignored [AKR05]. In contrast, in
this section we present three results which indicate that for large population sizes the jammed
states are important.

First (“counting”), we study the number of jammed states. It is known [AKR05], that there
are at least 3n jammed states, that is, at least exponentially many. Here we construct a family
of simple, previously unreported jammed states and we show that the total number of jammed
states on n labeled vertices is super-exponential, namely at least 2Ω(n log n). This shows that
even on the logarithmic scale, the jammed states are substantially more numerous than the
balanced states (of which there are “only” 2n−1).

Our second result (“reaching”) shows that, starting from any initial signed graph that is
not too friendship-dense, a specific jammed state J , which we construct below, is reached
with positive probability. In particular this implies that the expected time to balance in this
stochastic process is formally infinite, even for signed graphs that have a constant positive
density of friendship edges.

Our third result (“escaping”) shows that this specific jammed state J forms a deep well in the
energy landscape: Once it is reached, it can not be escaped even if we perturb a constant
portion of edges incident to each vertex.

In the rest of this section, we sketch the intuition behind these results. For the formal
statements and proofs, see Theorems 7 to 9 in Section 6.7.1, respectively.

Regarding the first result (“counting”), the new jammed states are defined in terms of an
integer parameter d. We partition the population into 4d + 2 clusters (4d + 1 or 4d + 3
would work too), arrange the clusters along a circle, and assign a sign +1 to those (and
only those) edges that connect individuals who live in clusters that are at most d steps
apart, see Fig. 6.2. We then show that, for each friendship or enmity edge (u, v), a strict
majority 2(d + 1) > 1

2
(4d + 3) of clusters have the property that any vertex w in that cluster

forms a balanced triad (u, v, w) with (u, v). Thus, flipping (u, v) would increase the number
of imbalanced triads. When all the clusters are roughly equal in size, which is the typical
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behavior for large population sizes, the state is thus jammed. Our construction also resolves
in affirmative an open question [MSK09] which asks whether there exist jammed states with
an even number of friendship cliques (here this number is 4d + 2).

d

d+ 1

d

X

X

X

X
d+ 1

Figure 6.2: A jammed state consisting of 4d + 2 roughly equal clusters, each connected by
friendships to the clusters at most d steps apart.

Regarding the second result (“reaching”), we consider any initial state In on n vertices in
which each vertex is incident to at most n/12 − 1 edges labeled +1. We define a jammed
state Jn as follows: We partition the vertices into three clusters V1, V2, V3 of roughly equal
size, label all edges within each set +1 and all other edges −1. Then we exhibit a sequence of
flips that transforms In into Jn. This is done in two phases: First, one can verify that any
time we select an imbalanced triangle that contains an edge labeled −1 within one cluster Vi,
this edge can be flipped. Hence, we may flip all enmity edges within the three clusters to reach
a state in which all edges within each Vi are labeled +1. After that, one can similarly verify
that all edges labeled +1 that connect vertices in two different parts Vi, Vj can be flipped one
by one, thereby reaching the jammed state Jn, see Fig. 6.3.

J12I12

“−′′ → “+′′+-- “+′′ → “−′′+ --

!

!

Figure 6.3: A jammed state Jn (right) on n vertices can be reached from any not too
friendship-dense initial state In (left). Moreover, once it is reached, it can not be escaped,
even if a substantial portion of edges around each vertex are perturbed.

Regarding the third result (“escaping”), we consider any state Sn that can be obtained from
Jn by flipping a set E0 of edges such that each vertex is incident to at most n/12 − 1 edges
of E0. We then show that edges that do not belong to E0 can never be flipped. On the other
hand, each edge that does belong to E0 can be flipped. Thus all edges in E0 are eventually
flipped back and the jammed state Jn is reached again.
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6.4 Best Edge Dynamics

Our results in the previous section show that the jammed states are a profound feature of the
energy landscape: They are reachable from many conceivable initial states, and some of them
trap stochastic dynamics such as CTD forever even if we allow substantial perturbations.

This brings up a question of whether there exists a simple socially-aware dynamics with all the
desirable properties of CTD, but one that can not get stuck in a jammed state. To address
this question, we propose the Best Edge Dynamics (BED), a modification of CTD that, unlike
CTD, reaches a balanced state with probability 1 from every initial state. Moreover, we prove
that BED converges fast to a balanced state in several important cases (see Propositions 2
and 3), and our empirical evaluation of both BED and CTD in Section 6.5 shows that in
general the convergence times are comparable (after we exclude the runs where CTD does not
terminate).

Let G be a signed graph. Then the Best Edge Dynamics (BED) is a discrete-time random
process that starts in G and repeats the following procedure until there are no imbalanced
triads in G:

1. Select an imbalanced triad ∆ uniformly at random.

2. Select an edge e from ∆ with the highest rank re (in case of ties, pick one such edge
uniformly at random).

3. Flip e.

Note that, in contrast to CTD, we flip e even when its rank re satisfies re < 1
2
|V | − 1, that

is, when flipping the best edge creates more imbalanced triads than it removes. In particular,
whenever we reach a jammed state, we still make a flip. In principle, it could still happen that
BED remains trapped in a subset of imbalanced states, toggling edges back and forth unable
to escape it, but in fact we prove that this event occurs with probability 0.

Theorem 6. For any initial signed graph on n vertices, BED reaches a balanced state with
probability 1 and in finite expected time.

To prove Theorem 6, we will show that any signed graph on n vertices can become balanced
upon O(n3) flips. This suffices since BED induces a finite Markov chain over the set of all
states, and the absorbing states of the Markov chain are precisely the balanced signed graphs.

Fix an edge (v1, v2) in G of the lowest rank, and set B = {v1, v2}. Note that it is possible
to flip one edge in each imbalanced triad containing (v1, v2) without flipping (v1, v2) itself,
to make all triads containing (v1, v2) balanced: Indeed, if we consider an imbalanced triad
containing v1, v2 and some third vertex w, as BED flips an edge of the highest rank, it can
flip either (v1, w) or (v2, w). This makes the triad balanced and decreases r(v1,v2) by 1, while
decreasing the rank of any edge that hasn’t been flipped by at most 1. Hence, (v1, v2) will
still be of the lowest rank in all imbalanced triads containing it, so we can flip one edge in
each such triad until all triads containing (v1, v2) become balanced.

The rest of the construction proceeds inductively by adding a new vertex to B in each step
and making all triads which contain an edge with endpoints in B balanced. The process ends
when all vertices of G have been added to B. For the inductive step, suppose that every
triad containing at least two vertices in B is balanced. Let (v, w) be an edge in G which is
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of lowest rank among all edges with v ∈ B and w ̸∈ B. Each triad containing w and two
vertices in B is balanced. On the other hand, since (v, w) is an edge of lowest rank among
all edges with v ∈ B and w ̸∈ B, it follows that for each imbalanced triad ∆ containing v,
w and a third vertex u, BED can flip either (w, u) or each edge (v′, u) with v′ ∈ B to make
∆ and all other triads containing u and two vertices in B balanced. By doing this for each
imbalanced triad containing (v, w), we modify the signs in the graph in such a way that all
triads containing at least two vertices in B ∪ {w} become balanced. Thus we can add w to
B. By induction on the size of B, this way we eventually reach a balanced state.

Notice that in each iteration of the above construction, at most n · |B| edges are flipped.
Hence the total number of edge flips is at most n

∑n
i=1 i = O(n3) as claimed.

6.4.1 Fast convergence and red-black graphs

So far we have shown that, unlike CTD, BED ensures convergence to balance with probability
1 and in finite expected time. In the rest of this section we show that BED also provides
theoretical guarantees on fast convergence when started in certain states that are either “close”
to being balanced (Proposition 2) or jammed (Proposition 3), showing that this new dynamics
is robust.

We start by introducing the red-black graphs, a new concept that allows neat reasoning about
signed graphs that are close to being balanced. Given a signed graph G, let C be a balanced
signed graph on the same number of vertices which differs from G in the smallest number
of edge signs. We refer to C as a closest balanced state to G. Then the red-black graph R
associated to G and C is obtained from G by coloring each edge of G in black if the signs of
the edge in G and C agree, and in red otherwise. Thus, red edges are precisely those edges
whose signs in G and C are misaligned. Figure 6.4 shows an example of a signed graph and
the corresponding red-black graph.

Signed graph Red-black graph

Figure 6.4: An example of a signed graph (left) and the corresponding red-black graph (right).

The key property of red-black graphs is that red and black edges can be viewed as enmities
and friendships when reasoning about balanced triads in the following sense: A triad in G is
imbalanced if and only if exactly 1 or 3 of its edges are red in R. The proof of this claim is by
casework and is deferred to Section 6.7.2. This also implies that the rank of an edge in G is
equal to its rank in R if we treat red edges in R as enmities and black edges as friendships.
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6.4.2 Fast convergence around balanced states

We are now ready to study the convergence of BED when started in a signed graph which is
close to being balanced.

Proposition 2. Consider a signed graph G whose red-black graph R satisfies one of the
following two conditions:

1. Each vertex is incident to at most 1
4
n − 1 red edges.

2. There are at most 1
2
n vertices incident to a red edge.

Then BED reaches a balanced state in O(n2) steps in the worst case.

To prove the proposition, it suffices to show that BED flips only red edges: Since in total
there are O(n2) red edges, BED reaches a balanced state in O(n2) steps.

Consider the imbalanced triad (u, v, w) selected by BED. If the triad contains 3 red edges,
clearly BED flips a red edge. Otherwise, from the key property of red-black graphs (Lemma 24)
we know that the triad contains exactly 1 red edge. Without loss of generality suppose
e = (u, v) is the red edge. For each of the two conditions in Proposition 2 we argue separately:

1. Since (v, w) is a black edge, any triad containing (v, w) is imbalanced if it contains
precisely 1 red edge. There are at most 1

2
n − 2 such triads, since there are at most

1
4
n − 1 red edges incident to v and similarly at most 1

4
n − 1 to w. Thus, r(v,w) f 1

2
n − 2.

Analogously r(u,w) f 1
2
n−2. On the other hand, as (u, v) is red, a triad containing (u, v)

which is balanced has to contain exactly two red edges. So (u, v) is contained in at most
1
2
n−2 balanced triads by the same argument as above, and r(u,v) g n−2−(1

2
n−2) = 1

2
n.

Thus
r(u,v) > max{r(u,w), r(v,w)},

so BED will flip the red edge.

2. By assumption, we can partition the vertices of G into two sets V1 and V2 such that
|V1| g |V2| and all red edges have both endpoints in V2. Then any triad (u, v, w′) with
w′ ∈ V1 contains exactly 1 red edge and is imbalanced, so re g |V1|. On the other
hand, as (u, w) is black, for any third vertex contained in V1 the triad is balanced, so
r(u,w) f |V | − 2 − (|V1| − 1) = |V2| − 1 < |V1|. Analogously r(v,w) < |V1|, so e has the
highest rank in (u, v, w) and BED flips e.

6.4.3 Fast convergence from jammed states

Recall that a state is jammed if it is not balanced but CTD cannot flip an edge in any
imbalanced triad. Here we show that from certain jammed states, BED converges to a
balanced state after O(n2) edge flips, in expectation. Thus, BED ensures fast convergence
even when the convergence time of CTD is infinite. (For details, see Section 6.7.3 and
Proposition 3.)

As before, consider the jammed state Jn consisting of three large roughly equal clusters of
friends on n vertices in total. Fig. 6.5 illustrates that, started from Jn, BED converges to
balance in O(n2) time. Initially, BED keeps adding friendship edges connecting different
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clusters. Due to random fluctuations, the symmetry among the three clusters breaks and
one pair of clusters becomes more densely connected than the other pairs. This difference is
exaggerated over time and eventually that pair of clusters merges.
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Figure 6.5: Left: Started from Jn, BED reaches balance in O(n2) expected steps. Right:
Friendship densities in different portions of the signed graph J100, in a single run of BED.
Apart from possibly the very end, the friendships within clusters (aa, bb, cc) are never flipped.
Eventually, one pair of clusters (here a and b) merges.

Next, we consider a state J ′

n whose n vertices are split into 6 clusters arranged along a circle
with relative sizes roughly 2 : 1 : 1 : 2 : 1 : 1. Two vertices are connected by a friendship edge
if they belong to the same cluster or to adjacent clusters (see Fig. 6.6, left). The different
cluster sizes ensure that the symmetry is broken from the very beginning and allow for a
simpler formal argument.
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Figure 6.6: A jammed state J ′

n from which BED reaches a balanced state in O(n2) expected
steps.

It is straightforward to check that the state J ′

n is jammed and that the closest balanced state
C is the one depicted in the left figure. The corresponding red-black graph is shown on the
right. Let E0 be the set of edges that are initially red in the red-black graph. We show that the
process always flips an edge e ∈ E0 and that, at each point in time, we are a constant-factor
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Θ(n2)

Figure 6.7: Average number of steps until balance for CTD (excluding the runs that get
jammed) and BED, over 105 runs. The friendships in the initial signed graphs form the
Erdős-Rényi graph with edge probability p = 1

2
and size n f 400. Both quantities scale as

Θ(n2).

more likely to turn a red edge into a black one rather than the other way around. Thus the
stochastic process can be projected onto a random walk with a constant forward bias. Since
such a random walk terminates in the number of steps that is linear in its length, this proves
that the process finishes in O(|E0|) = O(n2) steps in expectation.

6.5 Computer Simulations

In this section, we compare the two dynamics CTD and BED by means of computer simulations.
In each simulation, we generate a network (possibly randomly) and assign “+” to each its
edge. All other edges are assigned “−”, so the underlying network is always a complete graph.
Then we simulate each dynamics to determine the quantities such as the typical outcome and
the number of steps until it reaches balance.

6.5.1 Erdős-Rényi graphs

First we consider random Erdős-Rényi graphs ER(n, p), where each two of the n vertices are
connected by a friendship edge with probability p, independently of each other.

Since CTD can get jammed, the average number of steps until it reaches balance is infinite
for many initial states. To have a meaningful comparison, we first exclude runs in which CTD
gets jammed (later we report their proportion). Upon this exclusion, the two dynamics are
comparable. First, the number of steps until balance for both dynamics scales as Θ(n2) with
the population size n, see Fig. 6.7.
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Figure 6.8: Distribution of the relative difference of the clique sizes once balance is reached,
for BED (left) and CTD (right) over 105 runs. Here n = 128.

Second, the final configuration does not depend on the choice of the dynamics but it is strongly
dependent on the parameter p. Namely, for p f 0.5 the two cliques are almost always roughly
equal in size, whereas for p g 0.6 the larger clique contains almost all the vertices, see Fig. 6.8.
(See also Section 6.7.4 for tables showing several network descriptors before and after the
network becomes balanced.)

Next we focus on the probability that CTD gets jammed. For fixed n, this probability exhibits
a threshold behavior as a function of the friendship density p, see Fig. 6.9. The intuition is as
follows: When the initial friendship density is large (here p g 0.6), then the initial state is
close to utopia (the balanced state that consists of only friendships). Utopia is then reached
quickly and with high probability (cf. Section 6.4.2). When the initial friendship density is
small (here p f 0.5), the jamming probability is nonzero (cf. Section 6.3). Most imbalanced
triads are of type ∆3 (all enmities). The dynamics thus keeps adding friendship edges and
the jamming probability is mostly independent of p. The same phenomenon occurs for other
sizes n, see Fig. 6.10.

6.5.2 Scale-free networks

Apart from Erdős-Rényi graphs we also consider the Barabási-Albert model BA(n, d) for
scale-free networks [BA99]. This model creates a scale-free graph with edge density d ∈ [0, 1].
In particular, we start with a path on 11 vertices and then process the remaining n − 11
vertices one by one. When processing a vertex v, we randomly connect it to a subset of
vertices already present in the network in such a way that the probability that a pair uv forms
a (friendship) edge is proportional to the degree of u (“preferential attachment”) and the
resulting (expected) edge density equals d.

Compared to Erdős-Rényi graphs, the degrees of the vertices are unequally distributed. Despite
this difference, the number of steps until balance for both CTD and BED still scales as Θ(n2)
with the size n, see Fig. 6.11. Moreover, the jamming probability for CTD still exhibits a
similar threshold behavior, see Figs. 6.12 and 6.13.
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Figure 6.9: The jamming probability for CTD, when friendships form an Erdős-Rényi graph
with size n = 250 and edge density p ∈ [0, 1] exhibits a threshold behavior.
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Figure 6.10: The jamming probability for CTD, when friendships form an Erdős-Rényi graph
with size n f 400 and edge density p ∈ {0, 0.5, 0.6, 0.75}. When p g 0.75 (or p g 0.6 and n
large), the dynamics typically reaches utopia, otherwise there is a non-negligible probability of
reaching a jammed state.
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Θ(n2)

Figure 6.11: Average number of steps until balance for CTD (excluding the runs that get
jammed) and BED, over 105 runs. The initial signed graphs are Barabási-Albert with degree
parameter d = 0.5 and size n f 400. Both quantities scale as Θ(n2).
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Figure 6.12: The jamming probability in CTD, for Barabási-Albert networks with size n = 250
and parameter d ∈ [0, 0.7] exhibits a threshold behavior comparable to Erdős-Rényi graphs,
but with significantly lower edge density.
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Figure 6.13: The jamming probability in CTD, for Barabási-Albert networks with size n f 400
and parameters d ∈ {0.0, 0.3, 0.5, 0.7}.

6.6 Summary and Discussion

The theory of structural balance provides a rigorous framework for the study of friendships
and enmities in a population. A central concept in this theory has been the energy landscape
of networks, and particularly the energy properties of its local minima. In this paper we have
taken a closer look at the properties of these local minima with respect to the stochastic
process, addressing questions regarding their reachability and attractor properties. We have
shown that there are super-exponentially many jammed states, as opposed to the exponentially
many balanced states, and that any initial state that is not too friendship-dense can reach a
jammed state. Moreover, such jammed states are attractors, and hence cannot be escaped
by random perturbations of the network. These findings have strong implications for the
socially-aware CTD process, which in fact gets stuck in such jammed states.

Motivated by these rich reachability and attractor properties of jammed states, we have
introduced the plausible socially-aware dynamics BED. We have shown that BED does not get
stuck in jammed states and that it always reaches balance. Moreover, we have seen that BED
converges fast from many interesting states, such as those that are not too far from balance.

The new BED dynamics spawns some natural questions regarding its asymptotic behavior.
Although we have shown that BED converges fast (in O(n2) time) to balance from any state
that is suitably close to balance, the general convergence rate remains open.

An assumption made throughout our work is that the underlying network is complete. That is,
at each point in time, every two individuals have a defined relationship (they are either friends
or enemies). It is natural to consider non-complete underlying networks U , where only those
pairs of individuals who are connected by an edge e ∈ U have a defined relationship. We
note that this generalized setting is considerably more complicated. First, one needs to adapt
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Figure 6.14: A blinker. Under both CTD and BED, the thick edge in the middle keeps toggling
between friendship (blue) and enmity (red) indefinitely. There is always only one imbalanced
triangle (shaded) and flipping any other its edge would create more imbalanced triangles.

the notion of balance accordingly. One way to do this is to say that a state is balanced if all
cycles are balanced, where a cycle in U is balanced if it contains an even number of edges
labeled “−”. While checking whether a current state is balanced can be done efficiently [HK80],
several fundamental problems remain. For instance, computing the distance to the closest
balanced state is known to be intractable [FIA11]. As another example, to our knowledge
the balanced states do not have any simple structure and even the complexity of computing
their number (for a given non-complete underlying network U) is open. As a final illustration,
we note that there exist “blinkers” [AKR05], that is, states where CTD and BED get stuck
repeating moves back and forth (rather than getting stuck being unable to make a move),
see Fig. 6.14. (Note that when the underlying network is complete, there are no blinkers for
BED due to Theorem 6.) Investigating the properties of BED adapted to such generalized
settings is thus left as an interesting direction for future research.

6.7 Additional proofs

6.7.1 Proofs for Reaching and Escaping the Jammed States

Here we formally state and prove our results on jammed states: We present a family of new
jammed states, we show that the jammed states vastly outnumber the balanced ones, and we
establish the reachability properties stated in the main text.

Definition 3 (Circular graph Sk(n0, . . . , nd−1)). Given an integer k g 0 and a partition
n = n0 + · · · + nd−1 of n into d parts, the circular graph Sk(n0, . . . , nd−1) is a signed graph
consisting of d clusters V0, . . . , Vd−1 of sizes n0, . . . , nd−1, respectively, arranged along a circle
in this order, such that the edge (u, v) with u ∈ Vi, v ∈ Vj is assigned a sign “+1” if and
only if Vi and Vj are at most k steps apart.

In particular, when n is divisible by 3 then the circular graph S0(n/3, n/3, n/3) corresponds
to the jammed state Jn from Section 6.3.

Theorem 7 (Counting jammed states). There are at least 2Ω(n log n) jammed states on n
labeled vertices.
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Proof. The proof proceeds in two steps: First, we show that for any signed graph Sd(n0, . . . , n4d+1)
and an edge (u, v) there are at least 2d + 2 clusters with the property that all the vertices
from those clusters form a balanced triad with (u, v). In particular, this immediately implies
that the signed graph S2

d with n0 = · · · = n4d+1 = 2 is jammed: Indeed, any edge (u, v) is
contained in at least 2(2d + 2) − 2 = 4d + 2 balanced triads (the −2 comes from omitting
the vertices u, v themselves) and in at most 2 · 2d = 4d imbalanced triads. Second, we show
that there are 2Ω(n log n) ways to draw the signed graph S2

d over the n labelled vertices, hence
at least 2Ω(n log n) jammed states.

For the first part, suppose that the vertices u, v belong to clusters that are i steps apart. We
distinguish two cases.

1. i f d (that is, (u, v) is labeled “+”): Then there are 2d + 1 − i “nearby” clusters whose
vertices w form triads (u, v, w) of type ∆0, and similarly 2d + 1 − i “far-away” clusters
whose vertices w form triads (u, v, w) of type ∆2. In total, this is 4d + 2 − 2i g 2d + 2
clusters with the desired property.

2. i > d (that is, (u, v) is labeled “−”): Then there are 2i g 2d + 2 clusters “nearby”
either u or v and “far” from the other vertex. All vertices w from those clusters form
triads (u, v, w) of type ∆2.

For the second part, we count only those jammed states in which each cluster has size 2.
Note that there are n − 1 ways to pick a vertex to join the cluster of vertex 0. Then there are
(

n−2
2

)

ways to select two vertices for the next (clockwise) cluster, then
(

n−4
2

)

ways for the
next cluster, and so on. Finally, we must divide by 2, since the same signed graph would be
obtained by selecting the vertices in the reverse order (or going counter-clockwise). In total,
using the Stirling approximation n! g (n/e)n and a trivial inequality e

√
2 < 4, we obtain that

the number of different jammed states is at least

(n − 1)!

2n/2
g 1

n

n!

(
√

2)n
g 1

n
(n/4)n

= 2n log
2

n−2n−log
2

n = 2Ω(n log n).

Note that in comparison there are 2n−1 balanced states, since each balanced state is character-
ized by a subset of vertices of {1, . . . , n − 1} which are connected to vertex 0 by a friendship

edge. On the other hand, the total number of signed graphs is 2(n

2
) = 2Θ(n2).

Also, note that each of the 4d + 2 clusters of the jammed state S2
d constitutes a balanced

clique, in the sense of [MSK09]. This answers in affirmative an open question posed there:
For any m ≡ 2 (mod 4) there exists a jammed state with m balanced cliques.

To prove the reachability properties, we define a specific jammed state Jn on n vertices labeled
1, . . . , n: The edges labeled “+” in J form three roughly equal clusters: One on vertices
labeled 1, . . . , +n/3,, one on vertices labeled +n/3,+1, . . . , 2+n/3,, and one on the remaining
vertices 2+n/3, + 1, . . . , n. It is easy to verify that for n g 11 the state Jn is jammed.

Theorem 8 (Reaching a jammed state). Let G be a signed graph on n g 11 vertices such
that each vertex is incident to at most n

12
− 1 friendship edges. Then CTD reaches Jn with

positive probability.
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Since Jn is jammed, as a corollary we obtain that for any such G the expected time to reach
a balanced state is infinite.

Proof. For brevity, assume n ≡ 0 (mod 3) (the other cases are completely analogous). We
describe a finite sequence of selected imbalanced triads and edge flips that results in Jn.
Denote the three clusters of Jn by V1, V2 and V3, respectively.

First, we show that one by one, all the enmity edges within each cluster may be flipped into
friendship edges. Fix an enmity edge e = (u, v) where u, v ∈ Vi. It suffices to show that,
throughout this phase, e belongs to at most n/2 − 2 balanced triads. Each balanced triad
must contain a friendship edge incident to u or to v. Initially, there were n

12
− 1 friendship

edges incident to u, and that many to v. Moreover, throughout this phase, friendship edges
to the other n/3 − 2 vertices within the cluster Vi might have been added. In total, this is at
most n/2 − 4 vertices w connected to one of u, v by a friendship edge, thus at most n/2 − 4
balanced triads containing e. Hence e can be flipped.

Second, we show that one by one, all friendship edges connecting vertices from different
clusters may be flipped into enmities. Suppose that e = (u, v) is such a friendship edge. It
suffices to find n/2 imbalanced triads containing (u, v). Consider the other vertices in the
cluster containing u. They are all friends with u, but at most n/12 − 1 of them are friends
with v (since we never add friendship edges leading across clusters). Thus there are at least
(n/3 − 1) − (n/12 − 1) = n/4 imbalanced triads (of type ∆1) containing e and another vertex
in the cluster of v. Similarly, there are at least n

4
triads of type ∆1 defined by e and another

vertex in the cluster of u. Hence re g 1
2
n, as claimed.

By flipping all friendship edges between different clusters to enmity edges, we reach a jammed
state Jn as claimed.

Theorem 9 (Escaping a jammed state). Let E0 be any set of edges such that each vertex is
incident to at most n/12 − 1 edges of E0. Let Sn be a state obtained from Jn by flipping the
edges of E0. Then the CTD run from Sn reaches Jn.

Proof. Again, without loss of generality, we assume that n ≡ 0 (mod 3). We first show that
no edge e = (u, v) ̸∈ E0 can ever be flipped. In Jn, any enmity edge belongs to 2n/3 − 2
balanced triads (and the friendship edges belong to even n − 2 balanced triads). Since Sn

differs from Jn by at most n/12 − 1 edges incident to each vertex, each edge e ̸∈ E0 belongs
to at least 2n/3 − 3 − 2(n/12 − 1) = n/2 balanced triads in Sn and thus can not be flipped.

On the other hand, any edge e ∈ E0 belonged to at least 2n/3 − 2 balanced triads in Jn,
thus it belongs to at least 2n/3 − 2 − 2(n/12 − 1) = n/2 imbalanced triads in Sn, and as
such can be flipped. Moreover, once such an edge has been flipped, by the above argument it
cannot be flipped again. Hence CTD will flip each edge in E0 once and return to the jammed
state Jn.

6.7.2 Red-black graphs

The following lemma formalizes the key property of the red-black graphs.

Lemma 24. Let G be a signed graph, let C be a balanced state closest to G, let R be the
red-black graph associated to G and C. Then a triad in G is imbalanced if and only if exactly
1 or 3 of its edges are red in R.

124



6.7. Additional proofs

Proof. To prove the lemma, we pick a triad in R and check each of the 4 possible cases:

• If a triad contains 0 red edges, then all edge signs in G agree with those in C thus the
triad is balanced in G as C is a balanced state.

• If a triad contains 1 red edge, we distinguish two cases. If both vertices of the red edge
are in the same vertex class of C (when treated as a bipartite graph w.r.t. the friendship
edges), then the triad is of type ∆1 in G. If vertices are in different vertex classes of C,
then the triad is again of type ∆1 in G. Thus the triad is imbalanced in G.

• If a triad contains 2 red edges, we distinguish two cases. If all 3 vertices of the triad are
in the same vertex class of C, then the triad is of type ∆2 in G. If 2 vertices are in one
class and the third vertex is in the other, then depending on which two edges are red
the triad is either of type ∆0 or ∆2 in G. Thus the triad is balanced in G.

• If a triad contains 3 red edges, we distinguish two cases. If all 3 vertices of the triad
are in the same vertex class of C, the triad is of type ∆3 in G. If 2 vertices are in one
class and the third vertex is in the other, the triad is of type ∆1 in G. Thus the triad is
balanced in G.

6.7.3 Fast convergence of BED from a jammed state

Proposition 3. There exists a family of jammed states of increasing size n such that BED
starting in those states reaches a balanced state in O(n2) expected steps.

Proof. Let n g 72 be a positive integer divisible by 8. Consider a circular graph J ′

n =
S1(x, y, y, x, y, y), where x = |V0| = |V3| = 1

4
n − 2 and y = |Vi| = 1

8
n + 1 for i ∈ {1, 2, 4, 5}

(see Definition 3).

First we show that J ′

n is jammed. Consider a balanced state Bn with parts V0 ∪ V1 ∪ V5 and
V2 ∪ V3 ∪ V4 and denote by E0 the set of red edges in the corresponding red-black graph. Note
that there are no triads with all edges red, hence the rank of an edge is the number of triads
that contain it and contain precisely one red edge. For any red edge (u, v) we have r(u,v) = 2x
due to V1 and V4. Similarly, for any black edge (u, v) such that |{u, v}∩(V1 ∪V2 ∪V4 ∪V5)| = 1
we have r(u,v) = 2y and for other black edges we have r(u,v) = 0. Since all ranks are less than
1
2
n, the state J ′

n is indeed jammed.

Next, denote by Et the set of red edges (with respect to the same balanced state Bn) after t
steps of BED. We will show that:

1. Et ¦ E0, and that

2. at each point t in time, P[|Et+1| < |Et|] g 2 · P[|Et+1| > |Et|].

Mapping the evolutionary dynamics to a one-dimensional random walk with a constant forward
bias and an absorbing barrier corresponding to |Et| = 0, we thus conclude that the expected
number of steps till balance is O(|E0|) = O(n2).

To prove Item 1, we proceed by induction. Consider Et ¦ E0. Note that, as before, there are
no triads with all edges red. Also:

125



6. Social Balance on Networks: Local Minima and Best Edge Dynamics

1. When (u, v) ∈ Et (that is, (u, v) is red) then as before r(u,v) g 2x due to triads (u, v, w)
with w ∈ V0 ∪ V3.

2. When (u, v) ̸∈ E0 then (u, v) is black and as before we have r(u,v) f 2y.

Now consider any imbalanced triad. It contains a red edge. Since 2x > 2y, we always flip
that red edge rather than any edge outside of E0, thus Et+1 ¦ E0 as desired. (Note that it is
possible that we flip a black edge in E0.)

To prove Item 2, consider any time point t and any red edge (u, v). We say that an imbalanced
triad is good if its red edge has a strictly higher rank than its other two edges, and bad
otherwise. It suffices to show that (u, v) belongs to twice as many good triads as bad triads.
Recall that for w ∈ V0 ∪ V3 the triad (u, v, w) is good, hence (u, v) belongs to at least
2x = 2 · (1

4
n − 2) g 32 good triads (here we use n g 72).

On the other hand, suppose that (u, v, w) is a bad triad and without loss of generality, (u, w)
is the (black) edge with rank at least 2x. Note that (u, w) belongs to E0 \ Et (other black
edges have rank at most 2y). Denote by di the red degree of vertex i, that is, the number of
red edges incident to i. Then 2x f r(u,w) = du + dw f du + 2y, thus du g 2x − 2y. Vertex u
is therefore connected to at most 2y − (2x − 2y) = 4y − 2x = 8 vertices in E0 by a black
edge. Each such edge gives rise to at most one bad triad and likewise for the edge (v, w), so
in total (u, v) belongs to at most 2 · 8 = 16 bad triads, concluding the proof.

6.7.4 Network descriptors for BED and CTD on Erdős-Rényi graphs

Here we present the network descriptors when BED and CTD are run on Erdős-Rényi graphs
with n = 128 and p ∈ {0, 0.4, 0.5, 0.6, 0.7}, both before the process starts and after it finishes.

Before
p d C E[S] Var[S]
0 0 0 - -

0.4 50.8 0.064 - -
0.5 63.5 0.125 - -
0.6 76.2 0.216 - -
0.7 88.9 0.343 - -

After BED
p d C E[S] Var[S]
0 63.160 0.246 61.468 3.820

0.4 68.294 0.307 45.818 8.244
0.5 78.144 0.423 32.990 7.596
0.6 103.317 0.720 13.264 6.127
0.7 125.260 0.979 0.883 0.815
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6.7. Additional proofs

After CTD
p d C E[S] Var[S]
0 63.179 0.246 61.321 4.279

0.4 68.274 0.306 45.866 8.716
0.5 78.116 0.423 33.025 7.967
0.6 103.185 0.719 13.348 6.236
0.7 125.144 0.978 0.942 0.867

As in the main text, we average over 105 runs and exclude the runs of CTD that got jammed.
Here d is the average degree, C is the clustering coefficient, S is the size of the smaller clique
once the process finishes, E[S] is its mean, and Var[S] its variance. The two dynamics match
almost perfectly.
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CHAPTER 7
Future directions and conclusion

This chapter first introduces related work. It consits of games on graphs, distributed computing,
and learning and optimization. The motivation for the work is different, the questions come
from theoretical computer science and financial cryptography. However, the techniques,
especially arguments about stochastic processes, are similar. Second, this chapter presents
future directions. The possible directions are: diversity in the models of selection, robust
amplification, and considering the mutation. These are underexplored topics in these models.
Finally, the chapter presents the conclusion that discusses the mathematical tools developed
in the previous chapters.

7.1 Related work

7.1.1 Games on graphs

Games on graphs model the behavior of a two-player stochastic system. A token is placed on
a graph, its movement is influenced by randomness, and two players try to satisfy competing
objectives. There are many variants of the problem. In turn-based stochastic games, the
vertices are divided between the maximizing player, the minimizing player, and the randomness.
If a token lands on a vertex, the owner decides the next edge used, or the randomness chooses
the edge according to a determined distribution. Chatterjee et al. [CMSS23] describe a
state-of-the-art algorithm for the reachability problem parametrized by treewidth. Asadi et
al. [ACSU24] present a novel algorithm for the discounted sum problem with unary weights. In
concurrent games, two players choose an action simultaneously, and the token moves according
to the pair of actions selected. This setting is explored in [ACSS24], which determines the
complexity of the problem.

The games on graphs are relevant to the research on evolutionary graph theory in two ways.
First, in both models, the stochasticity poses the biggest problem in finding the correct strategy
or the fixation probability. Second, Markov chains that describe the state of the graph in
evolution are a special case of the games on graphs.

7.1.2 Distributed computing

Distributed computing describes a network of computational units. This model is also general
and powerful. For instance, the computational units can represent voters who are allowed
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to delegate their votes. Chatterjee et al. [CGS+25] examine the structures for which good
delegating rules are possible.

Distributed computing also represents the computational nodes of a blockchain that want to
transact with each other. In works [BCM+23, SSY23, ABMA+24], the algorithms for problems
that arise in the payment channel networks (PCNs) are explored. In PCNs, participants (nodes)
can lock funds into a channel (edge) to facilitate transactions between other nodes of the
network and collect fees for enabling these transactions. This creates an online optimization
problem that can be approximated by randomized algorithms.

7.1.3 Learning and optimization

Learning and optimization can be represented as a movement in an unknown stochastic
environment and extracting information from that movement. The movement can be rep-
resented by Markov Chains or the generalized Markov decision processes. In [SBC24], a
learning algorithm is presented that describes the algorithm with guarantees for a reachability
problem parametrized by the length of the solution. Chatterjee et al. [CLSUS25] explore a
generalization of games on graphs and show the complexity of a natural extension of the
problem.

7.2 Future directions and open problems

7.2.1 Diversity in populations

A population with multiple genetic variants is more resistant to disease [KL12]. Genetic
diversity increases the long-term evolutionary potential [BS08] and makes the population
resilient towards change in the environment [HS11]. The structure of the population influences
the speed with which different variants disappear from the population. In diversity (or
coexistence), the goal is to maintain many different types for as long as possible.

The model for diversity follows the Moran process. The graph describes a population structure,
and initially, different types reside in every vertex. In general, the fitness of an individual
can depend on the type, the neighborhood arrangement, or the inhabited vertex. Then, the
process (Birth-death or death-Birth) is simulated on the network. Possibly, the process is
augmented by mutation, where, with a small probability, the offspring differs from the parent.
The diversity of a population can be measured as the time until all individuals have only one
type.

Work of Brewster et al. [BSR+25] provides the initial exploration of the diversity in the neutral
drift. However, there are many unexplored questions: what are the exact bounds for the time,
or what are the structures that maximize the number of edges with different endpoints in
time?

7.2.2 Robust amplification

The amplification is an important concept in both constant selection [TPCN21, GLL+19] and
frequency-dependent selection [SC24, FMAN18]. The graphs that promote the advantageous
mutation or cooperative behaviour usually do not promote the desired behavior in slightly
different settings.
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The work [SJTC24] introduces an amplifier for both processes, however, there are no guarantees
for the process when some Birth-death steps can be followed by a death-Birth step, for instance,
when the Birth-death step happens with probability ¶ and the death-Birth step happens with
the probability 1 − ¶. Then, there are no known amplifiers.

Moreover, the known amplifiers for cooperation give guarantees only for weak or very strong
selection. There are no amplifiers that promote cooperation in all strengths of selection, and
the known amplifiers are not very robust against the parameters of the game.

7.2.3 Mutation

The models of selection disregard mutation. This is a well-founded assumption in the evolution
of small populations; however, looking at populations of larger size, the mutation should be
considered. In the presence of mutation, there is a small probability µ such that the offspring
is of a different type than the parent.

The mutation poses many questions to consider. First, the mutation can produce individuals
with different fitnesses: what is the structure that maximizes the long-run average of fitnesses?
Second, the mutation introduces diversity: what structures increase the diversity the most in
the presence of mutation? Finally, different lineages of mutants can have different fitnesses.
For instance, a lineage has to pass through an intermediate state with lower fitness. What is
the best structure for these mutation lineages?

7.3 Conclusion

This thesis introduces important concepts related to the role of structure in the models of
evolution. It identifies problems inspired by multiple fields, such as biology, social dynamics,
and physics. The thesis develops new mathematical tools and solves the proposed problems.

The main problems are highlighted in the Chapter 1. This section is dedicated to the discussion
of the development of the mathematical tools used to solve the problems. Moreover, the
important concepts are also highlighted.

Chapter 2 presents the first structures that are amplifiers for the Birth-death and death-Birth
updating. One of the most important notions of the work is the question of robustness of the
Moran process with constant selection. The important tool to prove the amplification process
is the careful treatment of the weights of the graph. With carefully selecting the weights,
an edge between two vertices u and v can be created, such that in the Birth-death process,
the individuals are significantly more likely to reproduces from u to v and in the death-Birth
process, the individuals are significantly more likely to reproduce from v to u. This is an
important observation that can be used to argue about the combination of Birth-death and
death-Birth processes.

Chapter 3 presents the complexity proof for the spatial games on graphs for a very simple
graph. It adapts and extends the ideas from [CIJS20], which shows that if some logical gates
can be created in some process, then this process can simulate the Turing machine. This is an
important simplification for the complexity proofs in these processes.

Chapter 4 introduces the first amplifiers for spatial games. The main theoretical contribution
is the analysis of the process on the proposed graphs. The analysis computes the probability
of one cooperator spreading in a small subgraph of the proposed graph. The main techniques
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previously focused on the regime with weak selection, and this work complements this with a
focus on the strong selection.

Chapter 5 proves the exact bounds for the coexistence (diversity) time on heterogeneous
networks. The main theoretical contribution is Lemma 23 that bounds the absorption times for
potent Markov Chains. Potent Markov Chains are a special class of multidimensional Markov
Chains with symmetry between some states. The symmetry allows bounding the absorption
time.

Chapter 6 examines a dynamic of signed graphs and presents a rule with guarantees for the
convergence. An interesting theoretical tool in these dynamics is a red-black graph, which
describes the difference from the desired state. This notion simplifies many proofs and can
find wider applicability.

The work presented in the thesis not only solves important problems but also presents useful
mathematical tools that have wider application in the analysis of evolutionary or stochastic
processes.
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