
RESEARCH

Received: 4 December 2024 / Accepted: 21 July 2025
© The Author(s) 2025

Tzu-Han Hsu, Ana Oliveira da Costa and Andrew Wintenberg have contributed equally to this work.

	
 Tzu-Han Hsu
tzuhan@msu.edu

	
 Ana Oliveira da Costa
ana.costa@ist.ac.at

Andrew Wintenberg
awintenb@umich.edu

Ezio Bartocci
ezio.bartocci@tuwien.ac.at

Borzoo Bonakdarpour
borzoo@msu.edu

1	 Department of Computer Science and Engineering, Michigan State University,
East Lansing 48824, MI, USA

2	 IST Austria, Klosterneuburg, Austria
3	 Department of Electrical and Computer Engineering, University of Michigan,

Ann Arbor 48109, MI, USA
4	 TU Wien, Vienna, Austria
5	 Present address: ICTEAM, UCLouvain, Louvain-la-Neuve, Belgium

Gray-box runtime enforcement of hyperproperties

Tzu-Han Hsu1 · Ana Oliveira da Costa2 · Andrew Wintenberg3,5 · Ezio Bartocci4 ·
Borzoo Bonakdarpour1

Acta Informatica (2025) 62:30
https://doi.org/10.1007/s00236-025-00502-1

Abstract
Enforcement of information-flow policies has been extensively studied by language-based
approaches over the past few decades. In this paper, we propose an alternative, novel,
general, and effective approach using enforcement of hyperproperties– a powerful formal-
ism for expressing and reasoning about a wide range of information-flow security policies.
We study black- vs. gray- vs. white-box enforcement of hyperproperties expressed by
nondeterministic finite-word hyperautomata (NFH), where the enforcer has null, some,
or complete information about the implementation of the system under scrutiny. Given
an NFH, in order to generate a runtime enforcer, we reduce the problem to controller
synthesis for hyperproperties and subsequently to the satisfiability problem for quantified
Boolean formulas (QBFs). The resulting enforcers are transferable with low-overhead. We
conduct a rich set of case studies, including information-flow control for JavaScript code,
as well as synthesizing obfuscators for control plants.

1 3

https://doi.org/10.1007/s00236-025-00502-1
http://crossmark.crossref.org/dialog/?doi=10.1007/s00236-025-00502-1&domain=pdf&date_stamp=2025-8-9

T.-H. Hsu et al.

1  Introduction

Runtime enforcement (RE) is a technique to ensure the correctness of systems at runtime,
especially in corner cases that static analysis and testing fail to identify. In RE, an enforcer
monitors and actively ensures that the system’s executions satisfy a formal specification.
Monitoring can be agnostic (black-box), partially aware (gray-box), or fully aware (white-
box) of the system implementation under scrutiny. RE can perform operations (e.g., insertion
or suppression of events) to correct the system’s observable behavior. Ideally, an enforcer
changes the system’s behavior only when strictly necessary (precision) while ensuring the
desired property satisfaction (soundness).

RE is especially useful in systems that cannot tolerate even a small or transient viola-
tion of their specification. Another benefit of using RE is to provide formal assurance for
systems that need to be kept alive while also fulfilling critical properties. This is vital for
policies where a system shutdown to avoid violations is not an adequate course of action.
For example, policies such as privacy and termination-sensitive non-interference [3] cannot
be dealt with by simply shutting down the system, as halting operations may leak informa-
tion to an attacker. Instead, RE ensures that the composition of the enforcer with the system
fulfills the intended specification. Then, with well-specified requirements, it guarantees that
the enforcing mechanism does not add additional information leakage that is forbidden by
the specification.

In this work, we tackle the challenge of enforcing information-flow policies where the
enforcer may not have complete access to the implementation of the system under monitor-
ing. Information flow control (IFC) requires reasoning over multiple executions. For exam-
ple, an attacker may infer secret information by comparing the system’s observable behavior
across different runs for the same public input. For this reason, from a language-theoretic
standpoint, information-flow policies define hyperproperties [18]– i.e., they define broad,
system-wide requirements– rather than trace properties (which only specify requirements
on individual executions). The shift from trace to system-level requirements introduces sig-
nificant challenges in synthesizing effective policy enforcers. To address these challenges,
we propose an approach that leverages knowledge about the systems to be monitored to
synthesize sound and effective enforcers for hyperproperties.

1.1  Motivating example

Consider the JavaScript program in Fig. 1, which implements login functionality for a web
page (lines 1–12) with dynamic advertisement loading from a remote script (lines 14–16),
that we will use throughout the paper as a running example. Our goal is to guarantee at
runtime that (1) the user’s secret information does not leak to an untrusted agent (confiden-
tiality) and (2) secure communication channels are not misused (integrity). The JavaScript
program is exposed to the following attacks:

Attack 1 (confidentiality): In this example, the attacker uses a DOM update to expose
the user credentials to an external server. In particular, the attacker attaches the user creden-
tials cred to the source of DOM attribute imgSrc (see Attack 1 in Fig.1), triggering a request
to the insecure “evil.com” which includes the credentials. Here, the password Pwd in the

1 3

 30   Page 2 of 33

Gray-box runtime enforcement of hyperproperties

user credentials has a high confidentiality level (i.e., it is a secret variable), while both the
user name User and the DOM attribute imgSrc has low confidentiality level (i.e., they are
public variables). Attaching the user password, Pwd, to imgSrc violates a non-interference
property: secret values should not interfere with publicly observable behavior of a system.
In this example, we can specify non-interference as observational determinism (OD) [66]:
all pairs of executions with the same public input must also produce the same public out-
put. OD is a 2-safety property; i.e., we need at most two finite executions of the system to
witness its violation. In the context of hyperproperties, we may refer to it as a universal
hyperproperty (and, in particular, as a ∀∀ hyperproperty), because it only requires universal
quantification over the system’s executions.

Attack 2 (integrity): An attacker may target the integrity of the system by redirecting
the user post request in settings to an untrusted server “evil.com” (see Attack 2 in Fig 1).
That is, the baseURL no longer points to a secure communication channel. In this example,
we assume that the specification of secure URLs (trusted channels) is unavailable offline.
However, secure URLs can be inferred at runtime by observing the system behavior when
no advertisement is loaded (i.e. when the system operates without interference from a mali-
cious agent). We observe that OD is inadequate for specifying the integrity requirement we
want to enforce because baseURL may take on different values (i.e., non-determinism). In
this scenario, we express the integrity requirement as non-inference (NI) [44, 64]: That is,
for all executions, the link assigned to baseUrl must be in at least one of the system execu-
tions without advertisements. Non-inference requires a trace quantifier-alternation (∀∃);
thus, it is not a safety hyperproperty, which poses real challenges for its enforcement.

Fig. 1  Confidentiality (attack 1) and integrity (attack 2) vulnerabilities in a simple login web page written
in JavaScript with dynamic advertisement loading.

1 3

Page 3 of 33  30

T.-H. Hsu et al.

1.2  What is missing?

Type-theoretic solutions [47] and taint-tracking information-flow control would halt the
program execution at line 3 in Fig. 1 (baseUrl = s), because this is a flow from an untrusted
source (s) to trusted sink (baseUrl). Such an enforcing technique, while effective at prevent-
ing the attack, has undesired side effects: (1) terminating a program is not always an ideal
strategy, and (2) a program where s matches the correct URL, is actually safe, but will be
forcefully terminated.

Secure multi-execution (SME) [22, 38, 65] primarily deals with secrecy. An SME
approach executes the monitored program multiple times: one execution for each security
level with special rules for I/O interaction between the levels. Outputs can only be produced
within the context of their security label. At the same time, a default value replaces input
values in all executions except those labeled with the same level or higher. For the simple
case where there are only two security levels– High and Low (or secret and public), the
High-labeled execution sees all input values and only changes secret outputs, while the
Low-labeled execution receives secret inputs set to a default value and it can affect only
public outputs. In our example, if we consider only two security levels and label the baseUrl
as public, then the advertisement can change the baseUrl value and affect future logins. We
remark that while baseUrl is public, it has high integrity (i.e., it is trusted). One could aug-
ment SME to consider both secrecy and integrity and add the trusted and untrusted labels.
This will require four copies of the program executing, resulting in significant runtime over-
head. Moreover, SME as well as more recent approaches such as multi-faceted execution [7,
42] would treat our ∀∃ policy as a ∀∀ which is overly conservative.

Finally, existing techniques are typically designed only for specific policies and sys-
tems and hence, lack the generality of a framework that can deal with a rich set of security
requirements. Logic-based approaches (as our approach in this paper) offer such generality
and furthermore are transferable, meaning that an enforcer for a policy can be used in dif-
ferent systems.

1.3  Our approach

Objectives
We aim to develop an RE technique for information-flow policies such as confidentiality and integrity.
Our goal is to develop an approach that is:
(1) transferable: independent of the enforcing system,
(2) general: logic-based, and capable of handling a wide range of information-flow security policies,
(3) low-overhead: imposing only light-weight runtime operations, and
(4) sound and precise: introduce no undesired behaviors, and does not modify secure systems.
These objectives clearly distinguish our objectives from the prior work on enforcement of information-
flow policies.

 With this motivation, we propose a novel RE technique for information-flow (IF) policies
expressed by hyperproperties. A hyperproperty [18] is a set of sets of traces, where each
set describes a system that satisfies the policy expressed by the hyperproperty. Enforcing
of hyperproperties enables us to deal with a wide range of IF polices beyond traditional
non-interference. While there has been significant progress on developing logic-based RE

1 3

 30   Page 4 of 33

Gray-box runtime enforcement of hyperproperties

methods for trace properties (those that prescribe the behavior of individual executions)
[8, 24, 25, 33, 45, 63], to the best of our knowledge, the work on RE for hyperproperties is
limited to [20], where the authors propose a black-box enforcement approach that ensures
soundness but makes no guarantees on precision. Furthermore, the work in [20] is limited
to alternation-free hyperproperties which leaves out many important policies such as non-
inference [40], generalized non-interference [39], or non-interference for concurrent pro-
grams, etc. In this work, we propose a solution for RE that can handle hyperproperties with
quantifier alternations. Enforcing such general hyperproperties is challenging as it requires
integrating system knowledge both during enforcer synthesis and operation.

1.4  Contributions

Our first contribution is formalizing a general notion of RE parameterized by some knowl-
edge of the system that covers black-, gray-, and white-box RE, where the enforcer has null,
some, or complete information about the system implementation under scrutiny, respec-
tively. Hyperproperties for both terminating and non-terminating programs are represented
using nondeterministic finite-word hyperautomata (NFH) [15]. We show that, in the context
of hyperproperties: (1) black-box RE may lead to a sound but not a precise solution, where
correct executions are unnecessarily altered, and (2) having certain a-priori knowledge about
the system (i.e., gray-box) effectively assists in developing sound and precise enforcers.

Our second contribution is a reduction from the RE problem to the controller synthesis
problem for hyperproperties [16]. Controller synthesis problem aims at identifying a con-
troller that steers the execution of a plant, modeled by a finite transition system, ensuring
the controlled plant satisfies a requirement. The choice of reduction to controller synthesis
is motivated by the fact that in RE, we are often faced by constraints over what the enforcer
is allowed to take action (i.e., insert or suppress). Subsequently, we solve the controller syn-
thesis problem by mapping it to the satisfiability problem for quantified Boolean formulas
(QBF). To the best of our knowledge, this is the first implementation of controller synthesis
for hyperproperty specifications.

Our technique is fully implemented end-to-end, meaning from code to a concrete
enforcer for the code.1 We present experiments over a rich set of case studies, including
JavaScript runtime security enforcement, and privacy enforcement for obfuscation-aware
eavesdroppers. Our implementation integrates existing tools such as ExpoSE [36], Jalangi
[53], and QuAbS [58]. We also experiment with various policies and hyperproperties includ-
ing declassification, non-interference, non-inference, privacy, etc. Our experimental results
demonstrate the effectiveness of our approach in synthesizing enforcers with minimal over-
head, from as low as 3.5% to at most 28%.

1.4.1  Organization

Preliminaries and our running example are introduced in Sec. 2. Section 3 presents our defi-
nition of RE and formalizes white/gray/black enforcers. Reductions from RE to controller
synthesis and subsequently to the satisfiability for QBF are presented in Sections 4 and 5,
respectively. Implementation, evaluation, and experimental results are in Section 6. Related

1 Available at: https://github.com/hyperenforce/artifact

1 3

Page 5 of 33  30

https://github.com/hyperenforce/artifact

T.-H. Hsu et al.

work is discussed in Section 7. Finally, we make concluding remarks and discuss future
work in Section 8.

2  Preliminaries

Since we reason about the runtime behavior of systems, which can only exhibit finite
observations, our approach focuses on finite-word hyperproperties. Let AP be a finite set
of atomic propositions and Σ = 2AP be the alphabet. We call the elements of Σ letters.
A (finite) word w over alphabet Σ is a finite sequence of letters w = w(0)w(1) · · · w(n),
for some n ∈N. We denote by w[i . . .] the sequence of letters of w from position i, i.e.,
w[i . . .] = w(i) · · · w(n). We denote the empty word by ε and the set of all finite words by
Σ∗. From the set theoretic point of view, a finite-word property W over a set of propositional
variables AP is a set of finite words (i.e., W ⊆ Σ∗). The restriction of a letter in l ∈ Σ by a
subset AP′ ⊆ AP is l|AP′ = l ∩ AP′. We extend naturally this notion to a restriction of a
word w and a set W of words to a subset AP′ ⊆ AP: w|AP′ = w(0)|AP′ · · · w(n)|AP′ and
W |AP′ ={w|AP′ | w ∈ W}.

A finite-word hyperproperty φ is a set of sets of finite words. i.e., φ ⊆ 2Σ∗
. Intuitively,

while a property prescribes the behavior of individual words, a hyperproperty can express
system-wide security requirements such as confidentiality and integrity. In the sequel, we
refer to finite-word hyperproperties just as hyperproperties and finite words as words. We
denote hyperproperties using φ, ψ, . . . and sets of words using W, U, A set of words
W ⊆ Σ∗ satisfies a hyperproperty φ ⊆ 2Σ∗

 iff W ∈ φ.

2.1  Nondeterministic finite hyperautomata

We specify hyperproperties with nondeterministic finite hyperautomata (NFH) [15]. Using
NFH is a design choice and one can also define the target hyperproperties in HyperLTL [19].

Definition 1  A nondeterministic finite-word automaton (NFA) is a tuple A =(Σ, Q, q̂, F, δ),
where Σ is the alphabet, Q is a nonempty finite set of states with q̂ ∈ Q being the initial state
and F ⊆ Q a set of accepting states; and δ ⊆ Q × Σ × Q is a transition relation.

A run of an NFA A = (Σ, Q, q̂, F, δ) on a word w ∈ Σ∗ is a finite sequence of states q0 · · · qn,
where q0 = q̂, and all steps 0 < i ≤ n, we have (qi−1, w(i), qi) ∈ δ. The run is accepting
if qn ∈ F . An NFA A accepts a word w if there exists an accepting run of A on w. The lan-
guage of A, denoted L(A), where L(A) ⊆ Σ∗ is the set of all words accepted by A.

We now lift NFAs to NFHs. A hyperword W over Σ is a set of words over Σ, W ⊆ Σ∗.
A nondeterministic finite hyperautomaton (NFH) (also referred to as a hyperautomaton)
reads hyperwords. Syntactically, a hyperautomaton is defined as an NFA that reads from
the alphabet Σn prefixed with a sequence of quantifiers over a finite set of word variables
Π ={π1, . . . , πn}.

Definition 2  A nondeterministic finite-word hyperautomaton (NFH) over alpha-
bet Σ and word variables Π ={π1, . . . , πn} is a tuple A=(Σ, Π, Q, q̂, F, δ, α), where

1 3

 30   Page 6 of 33

Gray-box runtime enforcement of hyperproperties

Ã=(Σn, Q, q̂, F, δ) defines the underlying NFA, and α =Q1π1 · · · Qnπn is a sequence of
word quantifiers, i.e., for all 1 ≤ i ≤ n, Qi ∈{∀, ∃}.

The zip function zip :(Σ∗)n →(Σn)∗ zips tuples of words over Σ into a word over
(Σ ∪ {#})n, where words are padded as needed with # to the same length. A hyper-
word W ⊆ Σ∗ is accepted by a hyperautomaton A=(Σ ∪{#}, Π, Q, q̂, F, δ, α), with
α =Q1π1 · · ·Qnπn, iff:

	 Q1π1 ∈ W, Q2π2 ∈ W, Q3π3 ∈ W, · · · , Qnπn ∈ W. zip(π1, · · · , πn) ∈ L(Ã).

Example 1  Consider the simple login page in Fig. 1. In our example, each trace represents
a distinct web session, with each login attempt initiating a new session. The values at each
point in the trace capture the state of the webpage at that moment. We observe that the
username used for the login attempt that initiates the session (which we will refer to simply
as user) is established at the beginning of the trace and remains unchanged. Under these
assumptions, we expresses non-interference requirement for Fig. 1 with the NFH in Fig. 2:
for each user, the DOM objects (e.g., imgsrc) should not change for login attempts with the
same username. Without loss of generality, we may annotate transitions by Boolean expres-
sions that express combinations of letters in Σn. Similarly, the NFH in Fig. 3 specifies non-
inference policy for Attack 2 in Fig 1: the absence of the advertisement should not affect the
URL. For simplicity, we only depict the accepting paths.

2.2  Plants

We represent systems under scrutiny as a transition system with transitions labeled either
controllable or uncontrollable, which we refer to as plants.

Definition 3  A plant over AP is a tuple P =(S, ŝ, c, u, L), where S is a finite set of states
with ŝ being the initial state; c, u⊆ S × S are respectively sets of controllable and uncon-
trollable transitions, where c ∩ u= ∅, and L : S → 2AP is a labeling function.

We define the set of all transitions in P as δc,u = c ∪ u and the set of all terminal states as
Term(P) ={s′ ∈ S | ∀s ∈ S (s′, s) /∈ δc,u}. A path of a plant P is a finite sequence of states
s0 · · · sn ∈ S+ such that s0 = ŝ and, for all steps 0 ≤ i < n, (si, si+1) ∈ δc,u. A path is ter-
minated if it ends in a terminal state, i.e. sn ∈ Term(P). The set of all reachable states in

Fig. 3  NFH for non-inference, ANI

Fig. 2  NFH for non-interference, AOD

1 3

Page 7 of 33  30

T.-H. Hsu et al.

P is defined as Reach(P) =
∪

{s0, . . . , sn | s0 · · · sn is a path in P}. A trace of a path
s0 · · · sk with respect to P , denoted L(s0 · · · sk), is the sequence L(s0) · · · L(sk), where L
is the labeling function in P . The trace set of a plant P is the set of traces of all of its paths,
denoted by Tr(P).

We say that P satisfies a hyperproperty φ, denoted P |= φ, if its set of traces Tr(P) as
a hyperword is accepted by A; formally, Tr(P) ∈ L(A). Without loss of generality, we will
assume that plants contain a sink state corresponding to runs padded with # to simplify
checking hyperproperty satisfaction. In this case, the following result states that we only
need to consider paths of the plant with a sufficiently long length.

Lemma 1  Given a plant P and hyperautomaton A, there exists d ∈N such that P satisfies
the hyperproperty encoded by A if and only if A accepts Trd(P) ={t ∈ Tr(P)∥∥t| = d}.

Proof  We begin by recalling that a transition system such as P satisfies a linear-time prop-
erty represented by an automaton A with α = ∀π1 or α = ∃π1, if and only if paths of P
with length at most d = |S||Q| satisfy the property. With the plant fixed, we can induc-
tively construct an equivalent hyperautomaton eliminating the last quantifier until only one
remains at which point previously stated fact can be applied to derive a sufficient d. Let
α = Q1π1 · · ·Qnπn denote the quantifiers of A, let Ã = (Σn, Q, q̂, F, δ) denote the under-
lying NFA of A, and let P = (S, ŝ, c, u, L) be the plant. We begin by assuming n > 1 and
Qn = ∃. Define Ã∃ = (Σn−1, Q × S, (q̂, ŝ), F × S, δ∃) where:

	

δ∃ = {((q, s), (σ1, · · · , σn−1), (q′, s′)) | ∃σn ∈ Σ.

(q, (σ1, · · · , σn), q′) ∈ δ ∧ (s, σn, s′) ∈ c ∪ u}.

By construction P satisfies A if and only if it satisfies the hyperautomaton corresponding to
Ã∃ which has at most |Q||S| many states. To handle universal quantifiers, we can perform
the same construction on the negation of the hyperproperty represented by the comple-
ment hyperautomaton with an exponential number of states. In this case the resulting Ã∀
will have at most 2|Q||S| many states. Iterating this procedure results in an hyperautomaton
equivalent to A over P with a single quantifier.� □

3  Enforcing hyperproperties

This section introduces a general definition of RE of hyperproperties. Additionally, sound-
ness and precision of enforcers are defined independently of the choice of the specification
language and monitored system.

3.1  Runtime enforcers for hyperproperties

We are interested in reasoning over finite observations of systems since the enforcer can
only observe finite behaviors at runtime. An observation is a finite set of finite traces, while
the set of all finite observations of the system S, denoted Obs(S), is the prefix-closed set of
all its finite and possibly non-terminating behaviors and, so, Obs(S) ⊆ Σ∗. From now on,
when we refer to a system, we mean its finite observation set.

1 3

 30   Page 8 of 33

Gray-box runtime enforcement of hyperproperties

An enforcer E of a hyperproperty φ (specified by a hyper language) modifies the traces
of a system S at runtime, generating as output a set of traces E(S).

Definition 4  An enforcer is a total function E that takes a system and produces a new sys-
tem. Formally:

	 E : 2Σ∗
→ 2Σ∗

.

Example 2  A strategy to enforce non-interference, as defined in Section 2 with the hyperau-
tomaton AOD (see Fig. 2), is to simply force the same valuation for DOM in all executions.
Enforcers E1 and E2, defined in Table 1, force DOM to be constantly 0 or 1, respectively.
Note that, for a time point i represented by the word ti, we say that DOM is 1 iff DOM ∈ ti.
Both E1 and E2 are examples of black-box enforcers, as the enforcer uses no knowledge of
the system.

3.2  Black- Vs. Gray-, Vs. White-box RE

In order to characterize black- vs. gray-, vs. white-box RE, we define the notion of system
class. A class of systems, denoted by ψ, defines a set of systems, i.e., it is a hyperproperty
ψ ⊆ 2Σ∗

. Then, a system S belongs to the class ψ iff S ∈ ψ. An enforcer that has full knowl-
edge of a system S is white-box, the one that has no knowledge of S is black-box, and is
gray-box, otherwise.

Definition 5  Given a system S, a system class ψ, and an enforcer E:

	● if ψ = {S}, then E is a white-box enforcer for S;
	● if ψ = true (i.e., the universal set of systems), then E is a black-box enforcer;
	● otherwise, E is a gray-box enforcer.

Example 3  To illustrate the benefit of incorporating system knowledge, we examine enforc-
ers E3 and E4 in Table 1. These enforcers are parameterized by a set of traces M used to
decide on how to enforce AOD at runtime. For systems where M is an adequate model (or
abstraction), E3 and E4 use M to effectively minimize their interference. Enforcers E3 and
E4 begin by checking whether M can be used decide the DOM value for the trace t. That
is, whether there is at least one trace in M agreeing with the user in t, by using the function

Table 1  Enforcer candidates for AOD, for a given set of traces M
E1(S) = {t′

0t′
1 · · · | t0t1 · · · ∈ S and ∀i ∈N : t′

i = (ti \ {DOM})};
E2(S) = {t′

0t′
1 · · · | t0t1 · · · ∈ S and ∀i ∈N : t′

i = (ti ∪ {DOM})};
E3(S) = {t′

0t′
1 · · · | t ∈ S, if badModel(t, M), then ∀i ∈N : t′

i = t(i), otherwise
firstUser(t, M) = i, ∀0 ≤ j ≤ i : t′(j) = t(j), and
∃m ∈ M : t(i)|user = m(i)|user and ∀i < k ≤ |t| : t′

k = update(t(k), m(k))}.

E4(S) = {t′
0t′

1 · · · | t ∈ S, if badModel(t, M), then ∀i ∈N : t′
i = ti \ {DOM}, otherwise

firstUser(t, M) = i, ∀0 ≤ j ≤ i : t′(j) = t(j), and
∃m ∈ M : t(i)|user = m(i)|user and ∀i < k ≤ |t| : t′

k = update(t(k), m(k))}

1 3

Page 9 of 33  30

T.-H. Hsu et al.

firstUser(t, M) returning the earliest position in all traces in M where one of them has the
same value of user as t and defined below:

	 firstUser(t, M) = min({i | m ∈ M and t(i)|user = m(i)|user} ∪ {∞}).

If firstUser returns a trace position (i.e., a natural number), they further check if there are
conflicting traces in M for that user. Formally:

	

badModel(t, M)def= (firstUser(t, M) = ∞) ∨
(
firstUser(t, M) = i ∧

∃m, m′ ∈ M : (m(i)|user =m′(i)|user ∧ m[i . . .]|DOM ̸=m′[i . . .]|DOM)
)

If the set M is deemed adequate for a given trace t, then both E3 and E4 pick a trace m ∈ M
and update DOM values in t with DOM values from m:

	
update(l, l′) =

{
l ∪ {DOM} if DOM ∈ l′

l \ {DOM} otherwise.

The only difference between E3 and E4 is that when M is not adequate for a trace t, then E3
does not change t while E4 updates all DOM values in t to 0.

3.3  The runtime enforcement problem

An enforcer for a hyperproperty φ must define a system that satisfies φ, i.e., it must be sound
for φ. For example, enforcers E1 and E2 defined above are sound, as they ensure satisfac-
tion of AOD. However, an enforcer should additionally achieve soundness by modifying the
input system S as little as possible and only when necessary. In the context of trace proper-
ties enforcers, this requirement is often referred as transparency [25], where modifications
to the current monitored execution t ∈ S, are performed as late as possible in t. The notion
of ‘past’ for trace properties (and consequently the idea of ‘as late as possible’) is straight-
forward because it only needs information from the current system execution. Transpar-
ency, however, is problematic for hyperproperties because we need to reason about multiple
executions with no presumption on the order we observe them.

With this motivation, we adopt the notion of precision [43]: an enforcer is precise for
a hyperproperty φ if it does not change the observable behavior of systems that satisfy φ.
This aligns with the standard meaning [13] where transparency refers to the ability not to
change secure executions (within a possibly insecure program), while precision is about not
changing secure programs. Obviously, enforcers E1 and E2 in Example 2 are not precise as
they unnecessarily change the behavior of correct systems. This is an inherent deficiency
in black-box enforcement of hyperproperties2. We are particularly interested in gray-box
enforcers, where the enforcer may use some knowledge about the system under scrutiny.

2 Although SME guarantees transparency for black-box under the language-based view, our black-box notion
is stricter. In our approach, the enforcer has no assumption about the monitored system regarding its runtime
behavior. In contrast, in SME, the enforcer runs multiple copies of the system, actively controlling their com-
munication and scheduling.

1 3

 30   Page 10 of 33

Gray-box runtime enforcement of hyperproperties

Definition 6  Let φ and ψ be hyperproperties. An enforcer E is an enforcer for a hyperprop-
erty φ and systems in class ψ iff for all systems S ∈ ψ, E(S) is:

	● Sound: E(S) ∈ φ; and
	● Precise: If S ∈ φ, then E(S) = S.

Enforcement decision problem
Let AP be a set of atomic propositions, and φ and ψ be two hyperproperties over AP expressing the
specification and a class of systems.
Does there exist a sound and precise enforcer E for φ and systems S in class ψ?

Example 4  We now examine the enforcers defined in Table 1 and discuss whether they are
sound and precise enforcers for AOD as defined in Sec. 2. Table 2 summarizes our discus-
sion below. Both E1 and E2 (Example 2) are black-box enforcers. They are both sound for
the language defined by AOD. They both trivially satisfy non-interference because, for all
systems S, then all traces in the set of traces defined by E1(S) and E2(S) have the same
value for DOM (0 or 1, respectively). However, they are not precise, because they force a
DOM value regardless of the system being monitored.

Recall that gray-box enforcers E3 and E4 (Example 3) use a set of traces M to decide on
how to change the DOM value in the traces of any given system S. Then, their soundness and
precision depends on how the set of traces M relates to the system under scrutiny. For the
white-box instances, i.e., the set of traces M is the same as the system (ψ = {S | S = M}),
both E3 and E4 define precise enforcers for AOD. White-box E3, however, does not define
a sound enforcer for AOD. Consider the case where S /∈ L(AOD). Then, there are two traces
t, t′ ∈ S, that have the same username, t(0)|user = t′(0)|user, with a different DOM, i.e.,
t(0)|DOM ̸= t′(0)|DOM. Hence, both badDom(t(0)|user, S) and badDom(t′(0)|user, S)
hold. By definition of E3(S), both t and t′ will not be changed by E3. As t and t′ witness a
violation of AOD, then E3(S) /∈ L(AOD). On the contrary, E4 is sound, as it updates DOM
to be always 0 on all traces that witness a violation of the hyperproperty specified by AOD.

Now, we look at a class systems ψ where the set of traces M is a strict under-approxi-
mation of all systems in ψ, i.e. M ⊂ S for all S ∈ ψ. E4 and E3 are sound and not sound,
respectively, for the same reason as for the white-box instance. However, for this class of
systems, E4 is not precise. Consider a system that satisfies the hyperproperty specified by

Table 2  Soundness and precision of E3 and E4, from Table 1 and defined over a set of traces M , for AOD.
System class E3(S) E4(S)
ψ Sound Precise Sound Precise
true ✗ ✓ ✓ ✗
{S∥ M ⊂ S} ✗ ✓ ✓ ✗
{S | S = M} ✗ ✓ ✓ ✓
{S | M ⊆ S and ∀t ∈ S
∃1m ∈ M : t(0)|user =

m(0)|user}(†)

✓ ✓ ✓ ✓

(†)∃1 stands for there exists at most one

1 3

Page 11 of 33  30

T.-H. Hsu et al.

AOD, S ∈ L(AOD), and has a trace, t ∈ S, such that: (i) there is no trace in the set M with
the same user as in t and (ii) DOM is not always 0 in t. By (i), noUser(t(0)|user, M) holds
and E4 forces DOM to be always 0 in t. Then, E4(S) ̸= S even though the system satisfies
non-interference, S ∈ L(AOD).

E4 is precise for the class of systems ψ where for each system S ∈ ψ the set of traces M
under-approximates it (M ⊆ S) and M has a trace for each user defined in S. E3 is sound, if
there exists at most one trace in M for each user value defined in a system S ∈ ψ.

4  Solving RE by controller synthesis

We reduce the enforcement decision problem, described in Section 3, to weighted controller
synthesis. We modify the controller synthesis problem for hyperproperties, as in [15], to sets
of finite traces and extend it with weighted transitions.

4.1  Weighted controller synthesis

Given a system represented by a plant P and a specification φ, the controller synthesis
problem is to find a controller, denoted P ′, that satisfies φ. A controller P ′ simply restricts
controllable transitions within P .

Definition 7  A controller of a plant P =(S, ŝ, c, u, L) is another plant P ′ =(S, ŝ, c′, u, L)
with c′ ⊆ c.

We use weighted controller synthesis to find an enforcer that satisfies a hyperproperty by
removing the minimum cost set of transitions from the input plant.
Weighted controller synthesis problem, breakable
Let AP be a set of atomic propositions, P =(S, ŝ, c, u, L) be a plant, and A be an NFH, both over AP.
Let W : c → Z ∪ {∞} be a weight function over the controllable transitions in P and Term(P) be the
set of terminal states in P .
Does there exist a controller P ′ =(S, ŝ, c′, u, L) of P s.t.:
(1) (Acceptance)P ′ is accepted by A;
(2) (No deadlocks) No change in terminal states, Term(P) = Term(P ′);
(3) (Minimum cost) For all plants P ′′ with controllable transitions c′′ that satisfy (1) and (2): ∑

e∈c\c′ W (e) ≤
∑

e∈c\c′′ W (e).

We denote by C(P,A, W) the set of all controllers solving the weighted controller syn-
thesis problem for a given plant P , NFH A and weights W .

4.2  Overall idea– sketch of the reduction

Figure 4 depicts our overall approach for synthesizing an runtime enforcer E and, if one is
found, applying it to a plant P , which represents the system. The knowledge given to the
enforcer about the set of target systems (i.e., our gray-box setting) is encoded by another
plant P0 (i.e., a partial view of the target plant P).

1 3

 30   Page 12 of 33

Gray-box runtime enforcement of hyperproperties

Example 5  We rewrite the JavaScript code introduced in Section 1.1, into the program in
Fig. 5. Then, one can apply some form of static analysis to generate P0. A branch of P0 is
shown in Fig. 6, where url0 is a shorthand for the initial empty value of baseURL.

Step 1 (Extend): In our formulation of controller synthesis in Section 4.1, a controller is
obtained by only removing a subset of controllable transitions. Although, removal of tran-
sitions mimics suppression of action, it may quickly result in deadlocks for deterministic
programs and is not likely to result in a powerful enforcer alone. To extend the possible
enforcement strategies, we allow the user to specify a set ̂cext of additional controllable tran-
sitions encoding different enforcement strategies which are integrated with P0 in the step
Extend in Fig. 4, which spits out an extended plant ext(P0, ĉext). Notice that this procedure
may add new behaviors to the plant and, hence, change the semantics of the monitored sys-
tem. This may, in turn, violate some other specification. If such other critical specification
exists, it has to be given as input to our enforcement algorithm.

Fig. 6  Plant for program in Fig. 5, where mi stands for the program line and urlj stands for url = strj

Fig. 5  Abstraction of Fig. 1, where
choose{e1; e2} runs e1 or e2
non-deterministically

Fig. 4  Overview of our approach

1 3

Page 13 of 33  30

T.-H. Hsu et al.

Example 6  Figure 7 depicts the branch from Fig. 6 extended with the possibility to suppress
the execution of steps in lines 6 and 7 in Fig. 5. Since we allow the user to add transitions,
states unreachable from the initial state may become reachable after the extension step.
Hence, unreachable states are as relevant as reachable states in this setting.

Step 2 (Restrict): The initial plant P0 is not necessarily a precise description of our
target systems. Hence, there may exist propositions that are not in the alphabet of both P0
and the target system P . In order to design an enforcer based upon P0 that will be applied
to some unknown P , we must identify a set of monitorable propositions M that are common
to P0 and P . For example, if we are enforcing non-interference φOD (as defined in Fig. 2),
then M ={user, DOM}. Thus, after the extension step we restrict the output plant to the
alphabet 2M.

Step 3 (Controller synthesis): The output of Restrict, denoted M and referred to as the
model, is an input to the controller synthesis algorithm together with a NFH φ and a weight
function W . If there exists a solution to the controller synthesis problem, we output it as the
controller M′. M′ enforces φ over target plants that are the same as M after we apply the
extension and the restriction to the alphabet 2M. This class of plants is specified by ψM.

Example 7  Figure 8 shows a partial view of the controller found by Enforcer Search in Fig.
4, where P0 is the extended plant in Fig. 7 and φ is the conjunction of φOD and φNI (see
Section 2.1). While monitoring the JavaScript program in Fig. 1, with an advertisement
loaded dynamically, the enforcer checks for each step whether it defines a transition in the
controller M′. For example, when the monitored JavaScript program reaches line 6 in the
abstract program in Fig. 5, then the controller is in a state labeled {m6, url2, ad}. The adver-
tisement changing baseUrl defines the transition from {m6, url2, ad} to {end, url3, ad},

Fig. 8  The controller found by Enforcer Search for the extended plant in Fig. 7 and hyperproperties φOD
and φNI

Fig. 7  Extension of plant in Fig. 6 with possibility to suppress execution of lines 6 and 7 in Fig. 5

1 3

 30   Page 14 of 33

Gray-box runtime enforcement of hyperproperties

which is not a transition in M′. Then, the enforcer forces the program to comply to the only
controllable transition available, i.e., to {end, url2, ad}, achieved by suppressing the execu-
tion of the baseUrl update by the advertisement script.

4.3  Detailed reduction to controller synthesis

We consider a set M of monitorable propositions that is common to both P0 and P . In a
white-box setting M = AP, whereas in a black-box setting M ={}. In our framework, we
use a gray-box setting, which considers the enforcer with partial knowledge of the system,
i.e., M ⊂ AP. Note that in a gray-box setting, the gray-box plant P0 may not be a full rep-
resentation of the target system P . Both the gray-box plant P0 and the target plant P will
have their alphabets restricted to 2M. We need to guarantee that the plant obtained after an
alphabet restriction to 2M is still a plant and all information related to propositions in M is
preserved. Plants that satisfy these requirements are called monitorable. All plants in our
reduction (i.e., both the gray-box and the target systems) must be monitorable with respect
to the given set M. For convenience, for a transition (s, s′) ∈ 2AP × 2AP, we define the
restriction (s, s′)|M = (s|M, s′|M). We also extend this notion to the restriction of sets by
T |M = {t|M | t ∈ T}.

Definition 8  A plant P =(S, ŝ, c, u, L) over AP is monitorable for the set M ⊆ AP iff:

1.	 It has unique states that are all the possible values of the propositions AP:

	 S = 2AP and ∀s ∈ S. L(s) = s,

2.	 Restriction over M preserves transitions:

	∀(s, s′) ∈ c ∪ u. ∀s̃ ∈ S. ∃s̃′ ∈ S. (s|M = s̃|M) ⇒ (s′|M = s̃′|M ∧ (s̃, s̃′) ∈ c ∪ u) ;

3.	 Restriction over M preserves controllability:

	 ∀(s, s′), (s̃, s̃′) ∈ c ∪ u. ((s, s′)|M = (s̃, s̃′)|M) ⇒ ((s, s′) ∈ c ⇔ (s̃, s̃′) ∈ c) .

When a plant over AP is monitorable for its own alphabet, we refer to it just as a monitor-
able plant over AP. We define below the notion of restricting the alphabet of a monitorable
plant P over AP to a subset of propositions M ⊆ AP. This is the operation performed at
Restrict in Fig. 4. We prove that if the plant P is monitorable for M, then the restriction
defines a monitorable plant as well.

Definition 9  Given a plant P = (S, ŝ, c, u, L), where ∀s ∈ S.L(s) = s, the restriction of P
to M ⊆ AP defines the plant P|M = (SM, ŝM, cM, uM, LM) where SM = 2M, ŝM = ŝ|M,
∀s ∈ SM. LM(s) = s, cM = c|M and uM = u|M.

Lemma 2  Let P = (S , ŝ, c, u, L) be a plant over AP monitorable for M ⊆ AP , then
P|M = (SM , ŝM , cM , uM , LM) is a monitorable plant over M .

1 3

Page 15 of 33  30

T.-H. Hsu et al.

Proof  Consider arbitrary plant P =(S, ŝ, c, u, L) over AP monitorable for M ⊆ AP. We
prove that P|M defines a plant. In particular, we show that cM and uM are disjoint sets.
Assume towards a contradiction that there exists a transition (s, s′) ∈ cM ∩ uM. Then, by P
being a plant, it follows that there exists (sc, s′

c) ∈ c and (su, s′
u) ∈ u that are the same when

projected over M: (sc, s′
c) |M =(su, s′

u) |M= (s, s′). This contradicts our assumption that
P is a monitorable for M (c.f. condition 3 in Def. 8). P|M being monitorable for M follows
directly from P being monitorable for M. � □

We prove next that the restriction of a plant P monitorable for M to the alphabet 2M pre-
serves all information related to propositions in M. Formally, the restriction P|M defines
the same traces as restricting to M the set of traces defined by P , i.e. Tr(P)|M = Tr(P|M).

Lemma 3  Let P =(S , ŝ, c, u, L) be a plant monitorable for M ⊆ AP . Then,
Tr(P)|M = Tr(P|M).

Proof  We prove that Tr(P)|M ⊆ Tr(P|M). By condition 1 in Def. 8, every trace s0 · · · sn
in Tr(P) defines the path s0 · · · sn in P . Then, s0|M · · · sn|M is a path in P|M and
s0|M · · · sn|M is a trace in P|M. Now, we prove that Tr(P)|M ⊇ Tr(P|M). Consider an
arbitrary path s0 · · · sn in P|M. We want to prove that there exists a path s′

0 · · · s′
n in P such

that si = s′
i|M, for all 0 ≤ i < n. By definition of restriction s0|M = ŝ|M. Now consider

(sj , sj+1), for arbitrary 0 ≤ j < n. Pick an arbitrary s′
j s.t. s′

j |M = sj . Then, by condition
2 in Def. 8, there exists s′

j+1 s.t. s′
j+1|M = sj+1 and (sj , sj+1) ∈ c ∪ u. � □

While the controllable transitions of the input plant P represent non-deter-
minism that can be removed, we allow the user to provide a set of transitions
ĉext ⊆< spanclass =′ crossLinkCiteEqu′ > 2 < /span >AP ×2AP that specify other
possible strategies available to the enforcer. We define below the extension of a plant P with
ĉext, represented as Extend in Fig. 4. We need to be careful to avoid turning uncontrollable
transitions into controllable during the extension.

Definition 10  Given a plant P =(S, ŝ, c, u, L) over AP and an extension
ĉext ⊆ 2AP × 2AP, P extended with ĉext defines the plant ext(P, ĉext) =(S, ŝ, cext, u, L)
where cext = c ∪ (ĉext \ u).

The enforcement problem introduced in Section 3 is parameterized by a formula ψ that
describes a class of systems. Here, we concretely define ψ with respect to a model, denoted
M, that provides some knowledge about the target plants. For a given plant P0 and extension
ĉext such that ext(P0, ĉext) is a monitorable plant, the model M is defined as ext(P0, ĉext)|M,
which is the restriction to the alphabet 2M of the extension of P0. The class denoted ψM
consists of all monitorable plants with model M, i.e., ψM = {P | M = ext(P, ĉext)|M} .
Our enforcers are controllers M′ of a given plant M. Applying an enforcer M′ to a plant
P ∈ ψM, amounts to restricting the controllable transitions in P to those in M′.

Definition 11  Let M ⊆ AP be a set of monitorable propositions. Let P0 be a plant over AP and
ĉext be an extension so that ext(P0, ĉext) is monitorable over M. Let M = ext(P0, ĉext)|M
be the model and P a plant in ψM. Let M′ =(S, ŝ, c′, u, L) be a controller of M. For

1 3

 30   Page 16 of 33

Gray-box runtime enforcement of hyperproperties

a plant P , the output of the enforcer parameterized by M′ and applied to P , denoted
EM′ (P), is a controller of ext(P, ĉext) = (S, ŝ, cext, u, L) with controllable transitions:
c′
ext = {(s, s′) ∈ cext | (s, s′)|M ∈ c′} .

For a given specification φ and weight function W , such controllers M′ can be found as
solutions to the controller synthesis problem. Here, the specification must be represented
as an NFH A over the observable propositions M. Formally, we consider the hyperproperty
φA,M that is satisfied by exactly the monitorable plants P such that Tr(P)|M is accepted by
A. In this case we find solutions M′ ∈ C(M,A, W). We next prove that enforcers obtained
with controller synthesis are sound.

Theorem 1  Let P0 be a plant over AP and ̂cext an extension so that ext(P0 , ĉext) is moni-
torable for M ⊆ AP . Let M = ext(P0 , ĉext)|M be the resulting model of P0 . Let M′ be a
solution to the controller synthesis problem for M and NFH A, defining the enforcer EM′ .
Then, for every P ∈ ψM, the output EM′ (P) satisfies φA,M .

Proof  Recall EM′ (P) is a controller of ext(P, cext), so we can write EM′ (P) = (S, ŝ, c′, u, L).
Thus to show that EM′ (P)|M = M′, it suffices to show that c′|M = c′

M . By construction
c′|M = cext|M ∩ c′

M . Additionally as P ∈ ψM, cext|M is exactly the set cM of controlla-
ble transitions of M as P ∈ ψM. Thus c′|M = c′

M and EM′ (P)|M = M′, so by definition
Tr(P ′)|M = Tr(M′). As M′ is accepted by A, then by definition EM′ (P) |= ψA,M. � □

If precision is required, we can solve the more general weighted controller synthesis
problem for an appropriate weighting function. To guarantee that original transitions from
P are only removed if necessary, we require that they are given a positive non-zero weight
while extensions to P are given a negative weight.

Theorem 2  Let P0 = (S0 , ŝ0 , c0 , u0 , L0) be a monitorable plant inducing model
M = ext(P0)|M . Let W be a weight function for M such that W (e) < 0 for added tran-
sitions e ∈ cext \ c0 |M and W (e) > 0 otherwise for original transitions. Let M′ be a
solution to the weighted controller synthesis problem for M, W , and NFH A defining the
enforcer EM′ . If P0 |= φA,M then EM′ (P0) = P0 .

Proof  As P0 is monitorable and P0 |= φA,M, then P0|M is a solution to the weighted con-
troller synthesis problem. As all transitions added in cext have negative cost to remove and
all original transitions have positive cost, the total cost is uniquely minimized by removing
all added transitions and including all original transitions, i.e, for the solution P0|M. Hence
M′ = P0|M is the unique minimal solution. Then, EM′ (P0) = P0. � □

4.3.1  From controllers to trace sets

The reduction explained above is for the enforcement problem over monitorable plants.
However, we are interested in the enforcement problem for sets of traces that describe moni-
torable plants. To extend to such sets, we need to define a bijective mapping from sets of
traces to plants. Then, the results in Section 4.3 transfer naturally to trace sets.

1 3

Page 17 of 33  30

T.-H. Hsu et al.

We start by defining how to go from a plant to an appropriate set of traces. The translation
needs to include enough information to allow rebuilding the plant and successfully apply an
enforcer (as defined in Section 4) to the derived plant. In particular, the set of traces must
include traces representing the unreachable part of the plant (as they may become reach-
able after the extension step) and, for each step, whether it was defined by a controllable or
uncontrollable transition. For a given set of propositions AP, we extend it with proposition
unreach to distinguish reachable from unreachable traces, and the proposition control to
mark controllable steps in a trace.

Let P =(S, ŝ, c, u, L) be a plant over AP monitorable for M ⊆ AP. For any two states
s, s′ ∈ S, then its control labeling is defined as Lc

s′ (s) = L(s) ∪{control} if (s, s′) ∈ c, and
Lc

s′ (s) = L(s) otherwise. The set of all (reachable) traces with control annotations is defined
as Trc(P) ={Lc

s1
(s0)Lc

s2
(s1) · · · L(sn) | s0 · · · sn is a terminated path of P}. We now define

the set of unreachable traces. The set of all starting states (states without incoming transi-
tions) is defined as Start(P) ={s′ ∈ S | ∀s ∈ S : (s, s′) /∈ c∪ u}. An unreachable path of a
plant P is a finite sequence of states s0 · · · sn ∈ S+ such that s0 is a starting state different
from the initial state (i.e. s0 ∈ Start(P) \ {ŝ}); for all steps 0 ≤ i < n, (si, si+1) ∈ c∪ u; and
it ends in a terminated state (i.e. sn ∈ Term(P)). The set of unreachable paths is defined over
AP ∪{unreach, control}, as Trun ={Lc

s1
(s0) ∪{unreach} · · · L(sn) ∪{unreach} | s0 · · · sn

is an unreachable path of P}.

Definition 12  Let P = (S, ŝ, c, u, L) be a monitorable plant. The complete set of traces of P
is: AllTr(P) = Trc(P) ∪ Trc

un(P).

A complete set of traces T over AP satisfies the following conditions: (i) for each trace in
T either unreach is always true or it is always false; (ii) all traces where unreach is false
start with the same letter ŝT ∈ 2AP, i.e. for all traces t ∈ T with unreach /∈ t(i), for all
0 ≤ i < |t|, then t(0) = ŝT . We define now the plant induced by a complete set of traces.

Definition 13  Let T be a complete set of traces. The plant PT induced by T is defined as:

	● S = 2AP and ∀s ∈ S : L(s) = s;
	● ŝ = ŝT ;
	● c={(s, s′) | s0 · · · sn ∈ T and ∃0 ≤ j < n such that s = sj , s′ = sj+1 and control ∈ s};
	● u={(s, s′) | s0 · · · sn ∈ T and ∃0 ≤ j < n such that s = sj , s′ = sj+1 and control /∈ s};

We say that a set of traces is monitorable iff AllTr(PT) = T .

4.4  Discussion

In order to enforce hyperproperties over plants with potentially infinite state-space, such as
JavaScript programs, in our approach we apply controller synthesis to a model M, which
is an abstraction or approximation of the extended plant. For simplicity, in this work, the
model is the restriction of the extension of some base plant to a user-specified set of moni-
torable propositions. We establish the notion of the extended plant being monitorable (in
Definition 8), which is a sufficient condition to guarantee the soundness of our control-
ler synthesizes approach. However, this condition must be imposed carefully; otherwise, it

1 3

 30   Page 18 of 33

Gray-box runtime enforcement of hyperproperties

might raise limitations in some instances. We now discuss this limitation in detail using the
example in Fig. 9.

4.4.1  Imposing restriction after extension

It is worth noting that it is advantageous to impose monitorability after extending the origi-
nal plant. Consider the simple JavaScript function and its corresponding plant in Fig. 9a,
where l is initialized to 0. The program has low-security ℓ and high-security h variables.
For the set of monitorable propositions M = {ℓ}, the plant in Fig. 9a (before any extension)
is not monitorable (condition 2 in Definition 8 is not satisfied). However, the plant may
become monitorable after extension. For example, consider the extension that adds the pos-
sibility of negating the assignment (i.e., var l =!h) in line 2, presented as the extended plant
in Fig. 9b. In this case, the extension added the behavior missing from the restriction to sat-
isfy the monitorability conditions (i.e., the extended plant is now monitorable for M = {ℓ}).
Our approach requires monitorability on the extended plant to avoid this potential limitation
(see Def. 11 and Theorem 1).

4.4.2  Targeting specific class of hyperproperties

In practice, it may be challenging to identify an appropriate set of monitorable propositions
M. The set M must be large enough to ensure monitorability while not being too large to
result in a model too complex for synthesis. Alternatively, it may be possible to apply our
approach to more easily computed under- or over-approximations of the plant while main-
taining soundness for a reduced class of hyperproperties. Indeed, this is the case for under-
approximations and existential hyperproperties. Formally, given a base plant P0, the set of
plants under-approximated by P0 is:

	 ψP0,under = {P | ext(P0, ĉext) ⊑ ext(P, ĉext)} ,

where ⊑ indicates a subplant relation (i.e., the left side plant is defined by a subset of states
and transitions of the right side plant). It is readily shown that a controller synthesized

Fig. 9  A Javascript function, the corresponding plant, and two possible extended plants. Dotted edges de-
note controllable transitions added in the extension while dashed edges denote uncontrollable transitions

1 3

Page 19 of 33  30

T.-H. Hsu et al.

for ext(P0, ĉext) and applied to plants in ψP0,under is sound for existential hyperproper-
ties. However, the dual of this statement is not valid for over-approximations and universal
hyperproperties. Formally, given a base plant P0, the set of plants over-approximated by
P0 is:

	 ψP0,over = {P | ext(P0, ĉext) ⊒ ext(P, ĉext)} .

A controller synthesized for ext(P0, ĉext) may result in deadlocks when applied to a plant
P ∈ ψP0,over. For example, consider enforcement for the function and plant P in Fig. 9a
that allows the enforcer to suppress line 2. This enforcement strategy defines an extension
that adds only one transition: from a state with h = 1 and ℓ = 0 (q′

1 in Fig. 9c), to the state
that does not change these values (q′

3 in Fig. 9c). Now consider that as a base plant for our
approach (i.e., P0), we are given the plant in Fig. 9b. Note that the above extension does
not add new transitions to Fig. 9b, and the plant in Fig. 9c is over-approximated by it. If
we apply controller synthesis to enforce noninterference to ext(P0, ĉext) (i.e., plant in Fig.
9b), one possible solution is to disable transitions to states with ℓ = 0 in the final step (i.e.,
removing transitions (q1, q3) and (q2, q5)). However, applying this controller to the plant in
Fig. 9c (i.e., removing transitions (q′

1, q′
3) and (q′

2, q′
5)) results in a deadlocked state q′

2. In
this example, this means that the program is terminated before the return statement. Hence
the synthesized controller is not a valid controller for the plant in Fig. 9c. We remark that
this stems from the requirement of liveness (i.e. avoiding deadlocks) being an existential
property which cannot be enforced using an over-approximation.

5  QBF encoding

While the controller synthesis problem for hyperproperties has Nonelementary complexity
in general, for plants given by directed acyclic graphs the complexity is PSPACE-complete
[16] (the optimization objective in our problem does not change this complexity, since opti-
mization itself is a hyperproperty). Solutions to the minimal controller synthesis problem
can then be extracted from certificates for QBF satisfaction and be used in the implementa-
tion of enforcers.

5.1  Encoding inputs and outputs

Given a plant P = (S, ŝ, c, u, L), a controller P ′ is uniquely determined by the choices of
controllable transitions c′ ⊆ c. Thus, we define a set of Boolean variables vcs,s′ for every
(s, s′) ∈ c, which the value of vcs,s′ indicates if (s, s′) ∈ c′.

While the values of these controller variables serve as the output of synthesis, the user
must provide QBFs describing the plant P and NFH A as inputs. These formulas are defined
with respect to a fixed encoding of the states, defined as vs, of P and A in a logarithmic
number of bits. The plant is described by two formulas: IP(vs) satisfied when vs encodes
the initial state, and ∆P(vc, vs, vs

′) satisfied when the transition from vs to vs
′ is present

in the controller encoded by vc. For example, if [[s]]S denotes the encoding of state s such a
∆P is depicted in Table 3. Additionally, for simplicity we will assume that the encoding of
a state s is given by the values of its label L(s). Likewise the hyperautomaton is described

1 3

 30   Page 20 of 33

Gray-box runtime enforcement of hyperproperties

by three formulas: IA(vq) and FA(vq) satisfied when vq encodes an initial or accepting state,
respectively, and ∆A(vq, vs

1, · · · , vs
n, vq

′) satisfied when there is a transition from vq to
vq

′ labeled by the tuple encoded by (vs
1, · · · , vs

n).

5.2  Feasibility

We now construct a QBF spec which is satisfied by feasible solutions (i.e., no deadlocks and
acceptance by the NFH) to the controller synthesis problem:

	 spec(vc) = ¬deadlock(vc) ∧ accept(vc) .� (1)

Recall that a deadlocked state s is one that is not terminal in the plant, i.e., s ̸∈ Term(P), but
has no outgoing transition in the controller P ′. That is,

	

deadlock(vc) =
∨

s∈S\Term(P)

∧

s′ ∈ S
s.t.(s, s′) ∈ c

¬vcs,s′ .
� (2)

Next, we define accept. This requirement can be expressed directly with a QBF with paths
encoded as sequences vs of state variables of length d, the length of maximal paths in P if it
is acyclic, or the value from Lemma 1 in general. To restrict quantification to only paths of
the controller, we use the formula reachP(vc, vs) in Table 3 which is satisfied by sequences
vs which are paths of the controller encoded by vc. As in [23, 30], this formula takes advan-
tage of quantification to avoid unrolling transitions like:

	 IP(vs1) ∧ ∆P(vs1, vs2) ∧ ∆P(vs2, vs3) · · ·� (3)

Likewise, we express acceptance of a path of the NFH with formula reachA in Table 3.
In detail, reachA(vs

1, · · · , vs
n, vq) is satisfied when vq encodes an accepting sequence

of states of the underlying NFA Ã over the zip of the labels by the paths encoded by
vs

1, · · · , vs
n. Finally, recall that the word formed vs

1, · · · , vs
n by these labels is accepted

if there exists some accepting path vq . Together, these formulas allow us to express that the
traces of a controller encoded by vc satisfy condition (2.1) iff it satisfies:

Table 3  Formulas for the QBF encoding of the controller synthesis problem

∆P (vc, vs, vs
′) =

(∨
s,s′∈u

[[s]]S = vs ∧ [[s′]]S = vs
′
)

∨
(∨

s,s′∈c
[[s]]S = vs ∧ [[s′]]S = vs

′ ∧ vcs,s′

)

reachP (vc, vs) = IP (vs0) ∧ ∀zs, zs
′.(∨d

i=1 zs = vsi ∧ zs
′ = vsi+1

)
→ ∆P (vc, zs, zs

′)

reachA(vs
1, · · · , vs

n, vq) = IA(vq0) ∧ FA(vqd) ∧ ∀zs
1, · · · , zs

n, zq , zq
′.(∨d

i=1 zq = vqi ∧ zq
′ = vqi+1 ∧

∧n

j=1 zs
j = vs

j
i

)
→ ∆A(zq , zs

1, · · · , zs
n, zq

′)

1 3

Page 21 of 33  30

T.-H. Hsu et al.

	

accept(vc) =Q1vs
1. reachP(vc, vs

1) ◦1 . . .

Qnvs
n. reachP(vc, vs

n) ◦n ∃vq. reachA(vs
1, · · · , vs

n, vq) ,

where ◦i = ∧ if Qi = ∃, and ◦i = → if Qi = ∀ for all i ≤ n in the sequence of quantifiers
in the input NFH. So in total the variables vc encode a feasible solution to the controller
synthesis problem if they satisfy spec.

5.3  Minimality

We first express the comparison of the costs of two controllers encoded by vc and vc
′:

	

∑
e∈c

W (e)vce ≤
∑
e∈c

W (e)vc
′
e .� (4)

Such binary linear inequalities and related cardinality constraints can be encoded into a
Boolean formula in a variety of ways [60]. Thus, we use the totalizer encoding [10] to cre-
ate a unary representation of each sum as a sequence of variables. The comparison of the
unary representations is straightforward and we construct the QBF less cost(vc, vc

′) which
is satisfied when the cost of the controller encoded by vc is no more than that encoded by
vc

′. Then given the QBF spec encoding feasibility, the controller encoded by vc is a solution
to the minimal controller synthesis if it satisfies:

	 minspec(vc) = ∀vc
′. spec(vc) ∧ spec(vc

′) → less cost(vc, vc
′) .� (5)

While existing QBF solvers check the truth of formulas without free variables, they can also
return a certificate consisting of a satisfying variable assignment to the outermost quantifier
if it is existential similar to SAT. As such, we check the truth of the QBF ∃vc. minspec(vc)
from which the controller can be extracted from the certificate for vc as follows. Since vc
are variables that encode the controllable transitions (i.e., controllers actions), so the cer-
tificate for vc indicates how the program should proceed at run time from the current state,
which gives us the controller. We can further use this controller information to build the
enforcer by monitoring-and-enforce the runtime value of the program (e.g., to conduct the
suppressing action or not) accordingly.

6  Case studies and experimental evaluation

We have implemented our algorithm into a proof-of-concept tool3. Our QBF translation
to solve weighted controller synthesis (implemented in Python) generates QCIR formulas
and is integrated with the QBF solver QuAbS [58]. The output is a plant, i.e., a transi-
tion system describing the controller for enforcement. The detailed proof of soundness of
our tool-chain is presented in Section 4.3. We now introduce two applications and their
empirical evaluations: (1) JavaScript runtime security enforcement, and (2) privacy enforce-
ment for obfuscation-aware eavesdroppers. Our security policies range over a diverse set of

3 Available at: https://github.com/hyperenforce/artifact

1 3

 30   Page 22 of 33

https://github.com/hyperenforce/artifact

Gray-box runtime enforcement of hyperproperties

hyperproperties including alternation-free and alternating quantifiers, which are generally
not possible using SME or taint-tracking.

6.1  JavaScript runtime security enforcement

We evaluate our implementation with a rich set of JavaScript programs including some
benchmarks from [55]. Our case study selection criteria primarily focus on choosing appli-
cations with requirements expressed by hyperproperties, particularly those involving quan-
tifier alternations. Additionally, we aim to include a diverse set of cases to demonstrate the
generality of our approach. We use two existing tools to work with JavaScript programs: (1)
ExpoSE [36], a dynamic symbolic execution engine, to explore the state space of the pro-
gram and output its traces; and (2) Jalangi [53], a dynamic analysis framework for JavaS-
cript, to instrument the programs.

We begin by manually extending the target program with user-specified set of control-
lable transitions and extensions for enforcement. In our use cases, we extend the programs
with the possibility to suppress assignments to controllable variables. We then employ
ExpoSE to explore the resulting behaviors and construct the extended plant. Note that the
extended plant generated by ExpoSE is a gray-box representation of the extended program,
since ExpoSE provides an approximation of the program’s behavior. The script to syn-
thesize the enforcer has the extended plant and the NFH (specifying the hyperproperty to
enforce) as input. Specifying the NFH is a manual step; however, one could define the target
hyperproperties as HyperLTL and use standard translations of LTL to NFA to generate the
NFH. If the script finds an enforcer, the respective controller is outputted. Finally, we trans-
late the output controller into a Jalangi analysis class to enforce the input hyperproperty. As
ExpoSE is built on top of Jalangi, the translation from the output controller to a Jalangi class
is seamless. We now introduce the policies for the investigated cases:

Information-flow Security. Confidentiality policies forbid the flow of secret sources
(high confidentiality - hc) to public sinks (low confidentiality - lc); while integrity states
that no information from untrusted sources (low integrity - li) should flow to a trusted sink
(high integrity - hi). In addition to the confidentiality and integrity examples described in
earlier sections, we adapted a use-case of social media fingerprinting, as reported in [35].
In this attack, an attacker can bypass Same Origin Policy (SOP) restrictions and obtain
a list of the social networks a user is logged in by observing how different images are
loaded. To enforce no leakage of login information, we require that for all pair of execu-
tions (denoted π and π′), as soon as the image source refers to the same social network (i.e.,
socialπ ↔ socialπ′), the webpage observable behavior for these images should be the same
(i.e., imgloadπ ↔ imgloadπ′).

Declassification. In practice, we may need to relax non-interference, which does not
allow revealing anything about a secret, to declassification [48], revealing only specific
pieces of sensitive information (e.g., the last four digits of credit card number). We for-
mulate this requirement with the NFH ADOD in Tab. 4 requiring for any two executions
with the same low confidentiality inputs (Inlc) and declassified information (Decl), the low
confidentiality outputs (Outlc) should agree as well. All declassification policies in our use
cases are examples of delimited release [48, 52], but one can also express other types of
declassification such as robust declassification [59] and gradual release [4] using an NFH.

1 3

Page 23 of 33  30

T.-H. Hsu et al.

Ta
bl

e
4 

Su
m

m
ar

y
of

 e
xp

er
im

en
ts

 fo
r J

av
aS

cr
ip

t c
as

e
st

ud
ie

s,
w

he
re

 L
oC

 is
 th

e
lin

es
 o

f c
od

e
in

 th
e

or
ig

in
al

 p
ro

gr
am

, #
V

/E
 a

re
 th

e
nu

m
be

rs
 o

f v
er

tic
es

 a
nd

 e
dg

es
 o

f t
he

 sy
nt

he
-

si
ze

d
co

nt
ro

lle
r,

sy
n

is
 th

e
sy

nt
he

si
s t

im
e,

 e
nf

. a
nd

 u
ne

nf
. (

in
 m

ill
is

ec
on

ds
) i

nd
ic

at
e

th
e

ex
ec

ut
io

n
tim

e
of

 th
e

pr
og

ra
m

 w
ith

 a
nd

 w
ith

ou
t t

he
 e

nf
or

ce
r

Pr
op

.
M

od
el

H
yp

er
au

to
m

at
on

Lo
C

#V
/E

sy
n[

s]
en

f.
un

en
f.

O
ve

rh
ea

d
1

O
D

lo
gi

n
Fi

gu
re

 2
27

20
/2

3
21

7.
36

22
97

17
65

23
.1

6
%

2
N

I
lo

gi
n

Fi
gu

re
 3

27
20

/2
3

15
5.

85
22

20
15

84
28

.6
4

%
3

O
D

im
pl

1
11

4/
3

2.
05

17
98

14
92

17
.0

 %

im
pl

2
12

8/
8

8.
81

18
36

14
96

18
.5

1
%

4
O

D
so

cl
ea

k1
50

12
/1

2
12

0.
98

23
40

19
04

18
.6

0
%

so
cl

ea
k2

58
23

/2
4

51
4.

73
23

11
16

49
28

.6
4

%
5

O
D

to
m

l
50

12
/1

1
11

.8
2

15
83

11
99

24
.2

5
%

6
D

N
I

gp
s

48
21

/2
5

64
.4

2
23

04
18

58
19

.3
5

%

7
D

O
D

gp
s

48
21

/2
5

38
.7

7
21

41
18

35
14

.2
 %

8
C

I
pr

in
te

r
64

19
/1

8
29

0.
32

21
04

0
20

29
2

3.
5

%

m
-lo

g
72

18
/1

7
87

.7
2

10
96

99
8

8.
9

%
9

D
en

w
al

le
t

35
11

/1
1

3.
82

20
26

16
40

19
.0

5
%

C
as

es
 im

pl
1

 a
nd

 im
pl

2
 a

re
 fr

om
 [7

],
so

cl
ea

k1
 a

nd
 so

cl
ea

k2
 a

re
 fr

om
 [3

5]
, t

om
l i

s f
ro

m
 [1

4]
, p

ri
nt

er
 a

nd
 m

-lo
g

ar
e

fr
om

 [5
5]

, w
al

le
t i

s f
ro

m
 [9

] a
nd

 th
e

re
st

 a
re

 h
om

e-
gr

ow
n

1 3

 30   Page 24 of 33

Gray-box runtime enforcement of hyperproperties

Conditional declassification. We also investigate conditional declassification, revealing
declassified information only when certain conditions are fulfilled. We combine it with non-
inference to specify conditional partial declassification by identifying a subset of trusted
executions that describe what information can be released. For example, in a GPS applica-
tion, which reveals the user location only after the cookies are confirmed (i.e., GPS tracking
is enabled). Revealing location should, however, be partial (i.e., coordinates are round up)
to protect the user’s privacy. Then, the cookie being enabled is the condition for declassi-
fication and the allowed coordinates can be described by a set of trusted executions. As in
Tab. 4, we depict an NFH ADNI specifying conditional partial declassification.

Code injection. Code injection attacks affect the integrity of a web page and are widely
considered as an important aspect of JavaScript security [17, 31, 55]. The enforcement goal
here is to prevent untrusted data from flowing into a trusted sink [55]. The automaton in Fig.
3 and case #8 in Tab. 4, are instances of this policy.

Deniability. Deniability [12, 50] is a confidentiality policy that that has recently gained
interest. Unlike non-inference which requires that observations do not reveal if a trace was
secret, deniability limits the information that observations reveal about the value of a secret.
Formally, this requires for every such observation, there exists a number of traces (in our
example, we require two distinct traces) producing the same observation, each possessing
a different secret value.

6.2  Enforcing privacy for obfuscation-aware eavesdroppers

Many cyber-physical systems rely on communication of sensitive information for control
and monitoring. In many cases, the enforcement of privacy from passive eavesdroppers is
critical. For example, users of location-based services (LBS) for navigation may desire to
hide their exact location from the service. Privacy has been studied in the area of discrete-
event systems (DES) using the information flow-property of opacity which is similar to
non-inference. There, one proposed mechanism for enforcement over automata models is
supervisory control, where behaviors that reveal sensitive information are restricted [57].
However, for many systems it is infeasible to impose such restrictions, e.g., restricting the
movement of LBS users. In this case, obfuscation of communications [62] has been pro-
posed to enforce privacy by editing the output stream of the system in a way that is undetect-
able by eavesdroppers: the obfuscated outputs must mimic the original system.

However when using obfuscation, we must maintain utility ensuring that sensitive infor-
mation is available to the intended users of the system. To this end, [61] proposed the use
of an inference function designed alongside the obfuscator using distributed synthesis for
LTL properties [26]. The inference function acts as a key, as in cryptography, that is shared
only with intended users at initialization which enable them to interpret obfuscated outputs.
However, this approach only guarantees privacy under the assumption that eavesdroppers
are unaware of the goals of the obfuscation. This is in conflict with the typical requirement
that security should be maintained when everything about the system is known, except the
key. To address this, we consider a set of obfuscators and inference functions acting as key
pairs as depicted in Fig. 10. In this case, privacy from obfuscation-aware eavesdroppers and
the distributed structure obfuscator and inference function can be formulated as hyperprop-
erties. In this way, privacy enforcement with obfuscation can be formulated as an instance
of the enforcement problem considered in this work.

1 3

Page 25 of 33  30

T.-H. Hsu et al.

As an example, we consider the enforcement of location privacy for a user on the map
depicted in Fig. 11 as they move from the start location to the end location in three discrete
steps. For navigational purposes they must report their approximate location to LBS, but
wish to hide or cloak visits to secret locations such as a hospital or bank, depicted on the
map as Secret. At the same time, they want to make this secret information available to
another trusted service, for example sharing their location with friends, using the LBS as a
proxy. To this end we consider obfuscation with replacement functions, reporting an altered
location each step, while securely providing the trusted service an inference function to
recover visits to the secret location. Critically, the obfuscated locations must correspond
to a feasible path over the map. To formulate this as a white-box enforcement problem, we
construct a plant over propositions encompassing user locations loc, the secret sec ∈ loc,
key selection key, and obfuscated locations obf. The obfuscator must react to the user move-
ment, modeled in the plant by alternation between uncontrollable user movement and con-
trollable obfuscation outputs. This input plant simply reports true user locations, while the
extension adds obfuscated outputs consistent with the map.

Over this plant, we consider hyperproperties for enforcement modeled by the NFH. Opac-
ity/privacy is modeled by the NFH Apriv (depicted in Fig. 12, (up)). Next, the requirement
that the obfuscator outputs depend only on the observed user locations and key is modeled
by the NFH Aloc∪key→obf. Likewise the requirement that the secret can be inferred from
the obfuscator outputs can be expressed by the NFH Aobf∪key→{sec}. Acceptance of the

Fig. 11  User visits to the secret locations hidden
by obfuscation

Fig. 10  Privacy-enforcing obfuscation

1 3

 30   Page 26 of 33

Gray-box runtime enforcement of hyperproperties

controller by these NFHs guarantees for each key, we can extract a corresponding replace-
ment function and inference function (both can be depicted as AI→O in Fig. 12, (down)).

6.3  Evaluation and analysis

All cases studies shown in Table 4 are run on a MacBook Pro with Apple M1 Max chip and
64 GB of memory. The table summarizes the results of enforcing different hyperproperties
on a set of JavaScript code from [7, 55].

We run each case 1 million times to ensure robustness of measurement using Jalangi and
calculate the overhead in the last column. The input JavaScript code is originally exposed
to an attack (i.e., does not satisfy the given property) and our goal is to build enforcers for
each program to satisfy the target property. We were able to successfully build enforcers for
a variety of hyperproperties, including the ones that are not 2-safety. Our implementation is
also efficient when synthesizing an enforcer for non-trivial programs and complex hyperau-
tomata (synthesis time within at most a few minutes). Note that the size of controllers (i.e.,
numbers of vertices and edges) are small because we only consider the controllable parts in
a program and do not do line-by-line tracking.

To measure the runtime overhead after applying our synthesized enforcer to the original
program, we use a simple driver script to execute each program both with and without
enforcers, using randomly generated inputs. The overhead of our benchmarks ranges from
3.5% to 28.64%, depending on the ratios of the original program versus the parts that we
actually enforce. For example, in the login program, every assignment of baseUrl needs
to always be monitored, hence, a higher overhead. However, in cases such as the printer
program, many operations and variable updates are not affecting the given property, that
is, the enforcer is triggered less often, hence; a lower overhead. Our experiments do not
show obvious differences on overheads between violating and satisfying runs. The reason
is that our implementation in Jalangi only evaluates monitorable parts when a controllable
variables is about to update. In other words, for both violating or satisfying runs, the same
evaluation are done similarly.

We are able to synthesize enforcers for all our benchmarks. Unfortunately, we were
unsuccessful in replicating implementations of SME and Faceted SME for comparison and
contrast, but we believe the overhead incurred by our approach is well below SME since it
has to run multiple copies of the same program. We also synthesized a solution for obfus-
cation of the LBS system over the map depicted in Fig. 11. The constructed plant used as
input contained 39 vertices and 54 transitions. Our solver for controller synthesis was able
to find a feasible controller in 16 seconds, representing two obfuscator and inference func-
tion pairs (one for each key) enforcing privacy and utility. Our empirical evaluation covers
both gray-box (JavaScript cases), and white-box (obfuscation cases) enforcement. That is,
we are able to synthesize effective enforcers with either partial or full knowledge about the

Fig. 12  NFH for opacity/privacy requirement Apriv (up) and variable dependence AI→O (down)

1 3

Page 27 of 33  30

T.-H. Hsu et al.

programs. Our selected benchmarks in this paper serve as instances for our proof-of-concept
implementation.

7  Related work

In this section, we present the related work on the enforcement of security properties. To
better compare with existing enforcing techniques from different research fields, we distin-
guish between language-based approaches (taking advantage of programming language
features and working at the application level), and logic-based approach (focusing on gen-
eral solutions independent of the system to be enforced).

Security Automata Schneider [51] was first to explore enforceability of security poli-
cies by studying the class of execution monitoring (EM) enforcers and defining security
automata as an EM. EMs are enforcement mechanisms that monitor a system and terminate
the current execution when a violation of the policy is detected. Ligatti et al. introduced edit
automata [34], which extends security automata with the ability to change executions that
are not compliant with the policy they enforce (instead of just terminating them). Martinell
and Matteucci [37] propose a synthesis technique for EM from a µ-calculus specification.
As proved in [2], there are hyperproperties that cannot be expressed by µ-calculus. A survey
on enforceable security policies can be found in [32], while [25] presents a classification of
properties that can be enforced at runtime.

Language-based Type systems can enforce non-interference properties at compile time
by enforcing a stronger safety property to rule out potentially dangerous programs [47].
Dynamic monitoring approaches typically do not need a programmer to add types to the
source code, which place less burden on the developers, and usually allow more safe pro-
grams to execute [5, 8, 21, 28, 49, 56]. These two approaches can be combined into a hybrid
solution where the runtime monitor works together with static analysis [6, 27, 29, 41, 46,
54]. Both static and dynamic approaches for information-flow control mentioned before
suffer from high numbers of false alarms on real-world programs.

In secure multiple execution (SME) [22, 65] and multi-facets (MF) [7, 42], a program
is executed multiple times with a changed semantics to enforce non-interference and the
output of the program is secure without changing programs that were correct to start with.
SME defines black-box enforcers and inherently incurs high runtime overhead [1], which
our approach does not. MF defines white-box enforcers: it uses the source code of program
to enforce non-interference, but it lacks the generality of our approach.

Language-based enforcement mechanisms are typically tailored for their target security
condition. By employing hyperproperties, our approach develops a uniform framework for
enforcing a variety of confidentiality and integrity policies. Finally, our notion of black-box
RE is stricter than SME. For example, while SME does not have access to the code of a
program (black-box in the language-based view), it does influence the program runs, par-
ticularly how the different security run contexts are scheduled and interact. In the black-box
definition we introduce here, we require enforcers to be transferable, i.e., they need to be
sound and precise for all systems in all contexts, regardless of the programming language.
Additionally, many hyperproperties cannot be addressed by language-based approaches
because they require reasoning about relationships across an unbounded number of execu-
tions. For instance, enforcing opacity requirements, typically expressed as a ∀∃ hyperprop-

1 3

 30   Page 28 of 33

Gray-box runtime enforcement of hyperproperties

erty, requires comparing each observed execution against all possible system behaviors
simultaneously. Since the set of possible behaviors is often infinite, this comparison goes
beyond the capabilities of standard trace-language frameworks.

Logic-based While there is extensive work on logic-based enforcement of standard
safety properties [8, 24, 25, 33, 45, 63], To the best of our knowledge, [20] is the only on
enforcement of hyperproperties. However, [20]. It is restricted to: (1) black-box systems,
which as we showed earlier cannot always ensure precision; (2) the universal fragment of
HyperLTL [20], and (3) the following classes of input systems: parallel, with a finite number
of traces progressing synchronously; and sequential with terminated history where only one
execution progresses and all executions observed before are terminated.

Gray-box enforcement Lower and upper bounds for the class of policies that are enforce-
able by black-box mechanisms are studied in [43]. They show that any policy that is black-
box enforceable must be hypersafety. With a gray-box approach, we are able to enforce
policies outside of the hypersafety class. In [11], Ligatti et al. study security automata in
non-uniform runtime contexts. A non-uniform context is a restriction on the set of possible
executions an edit automaton may encounter while running.

8  Conclusion and future work

In this paper, we focused on RE of hyperproperties, expressed by nondeterministic finite-
word hyperautomata (NFH), as a means to ensure the continued satisfaction of information-
flow security properties. Since our approach is logic-based, it is transferable and general,
and exhibits low-overhead at run time. We characterized different types of runtime enforc-
ers, namely, black-, gray-, and white-box for hyperproperties, where the enforcement moni-
tor has null, some, or complete information about the implementation of the system under
scrutiny. Our approach is based on a sound and precise reduction of the enforcement prob-
lem to controller synthesis and subsequently to QBF solving. We demonstrated the power,
low-overhead, and generality of our technique by conducting case studies on enforcing
information-flow control such as non-interference and declassification on JavaScript code
as well as privacy enforcement for communication using obfuscation.

As for future work, the first important step is to extend our work to automata extended
with expressions over satisfiability modulo theories (SMT) to cover more programs with
infinite behavior. Another important extension is to concurrent programs that make no
assumption about the behavior of the scheduler. Generating runtime probabilistic enforcers
is also intriguing in the context of designing safety nets for AI-enabled systems.

9  Supplementary information

The implementation of this paper (as a proof-of-concept tool), including code w.r.t. model
translation using ExpoSE, QBF encoding use home-grown python code, and sources of
all cases presented in Tab. 4, are public available on GitHub4 as a preliminary artifact for
enforcing hyperproperties.

4 Available at: https://github.com/hyperenforce/artifact

1 3

Page 29 of 33  30

https://github.com/hyperenforce/artifact

T.-H. Hsu et al.

Acknowledgements  This project was funded in part by the Austrian Science Fund (FWF) SFB project Spy-
CoDe F8502, Vienna Science and Technology Fund (WWTF) [10.47379/ICT19018] (ProbInG) and WWTF
project ICT22-023 (TAIGER), National Science Foundation (NSF) CPS Award 1837680, NSF award ECCS-
2144416 and NSF SaTC Award 2245114.

Author Contributions  All authors contributed to the conceptualization and writing of the main manuscript,
with Tzu-Han Hsu (TH), Ana Oliveira da Costa (AOC), and Andrew Wintenberg (AW) making equal contri-
butions. AOC, BB, and AW led the development of the theoretical framework, while TH and AW designed the
tool and conducted the experiments. Ezio Bartocci provided valuable oversight and reviewed the manuscript.

Funding  Open access funding provided by Institute of Science and Technology (IST Austria).

Data Availability  No datasets were generated or analysed during the current study.

Declarations

Competing interests  This project was funded in part by the Austrian Science Fund (FWF) SFB project Spy-
CoDe F8502, Vienna Science and Technology Fund (WWTF) [10.47379/ICT19018] (ProbInG) and WWTF
project ICT22-023 (TAIGER), NSF CPS Award 1837680, NSF award ECCS-2144416 and NSF SaTC Award
2245114.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material.
If material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1.	 Algehed, M., Flanagan, C.: Transparent IFC enforcement: Possibility and (in)efficiency results. In:
2020 IEEE 33rd Computer Security Foundations Symposium (CSF), pp. 65–78 (2020). doi:10.1109/
CSF49147.2020.00013

2.	 Alur, R., Cerný, P., Zdancewic, S.: Preserving secrecy under refinement. In: Proceedings of the 33rd
Automata, Languages and Programming, International Colloquium (ICALP), pp. 107–118 (2006)

3.	 Askarov, A., Hunt, S., Sabelfeld, A., Sands, D.: Termination-insensitive noninterference leaks more
than just a bit. In: Proceedings of 13th European Symposium on Research in Computer Security Com-
puter Security (ESORICS), pp. 333–348 (2008)

4.	 Askarov, A., Sabelfeld, A.: Gradual release: Unifying declassification, encryption and key release poli-
cies. In: 2007 IEEE Symposium on Security and Privacy (SP’07), pp. 207–221 (2007). IEEE

5.	 Askarov, A., Sabelfeld, A.: Tight enforcement of information-release policies for dynamic languages.
In: 2009 22nd IEEE Computer Security Foundations Symposium, pp. 43–59 (2009)

6.	 Askarov, A., Chong, S., Mantel, H.: Hybrid monitors for concurrent noninterference. In: 2015 IEEE
28th Computer Security Foundations Symposium, pp. 137–151 (2015)

7.	 Austin, T.H., Flanagan, C.: Multiple facets for dynamic information flow. In: Proceedings of the 39th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), pp.
165–178 (2012). https://doi.org/10.1145/2103656.2103677

8.	 Austin, T.H., Flanagan, C.: Efficient purely-dynamic information flow analysis. In: ACM Transactions
on Programming Languages and Systems, pp. 113–124 (2009)

9.	 Backes, M., Kopf, B., Rybalchenko, A.: Automatic discovery and quantification of information leaks.
In: Proceedings of the 2009 30th IEEE Symposium on Security and Privacy, pp. 141–153. IEEE Com-
puter Society, USA (2009). https://doi.org/10.1109/SP.2009.18

1 3

 30   Page 30 of 33

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/2103656.2103677
https://doi.org/10.1109/SP.2009.18

Gray-box runtime enforcement of hyperproperties

10.	 Bailleux, O., Boufkhad, Y.: Efficient cnf encoding of boolean cardinality constraints. In: Rossi, F. (ed.)
Principles and Practice of Constraint Programming - CP 2003, pp. 108–122. Springer, Berlin, Heidel-
berg (2003)

11.	 Bauer, L., Ligatti, J., Walker, D.: More enforceable security policies. In: Proceedings of the Workshop
on Foundations of Computer Security (FCS’02), Copenhagen, Denmark (2002)

12.	 Bindschaedler, V., Shokri, R., Gunter, C.A.: Plausible deniability for privacy-preserving data synthesis
10(5), 481–492 https://doi.org/10.14778/3055540.3055542

13.	 Bielova, N., Rezk, T.: Spot the difference: Secure multi-execution and multiple facets. In: Askoxylakis,
I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) 21st European Symposium on Research in Computer
Security (ESORICS), pp. 501–519 (2016). https://doi.org/10.1007/978-3-319-45744-4_25

14.	 Bhuiyan, M.H.M., Parthasarathy, A.S., Vasilakis, N., Pradel, M., Staicu, C.-A.: Secbench.js: An execut-
able security benchmark suite for server-side javascript. In: 2023 IEEE/ACM 45th International Confer-
ence on Software Engineering (ICSE), pp. 1059–1070 (2023). ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​I​C​S​E​4​8​6​1​9​.​2​0​2​
3​.​0​0​0​9​6​​​​​​​

15.	 Bonakdarpour, B., Sheinvald, S.: Finite-word hyperlanguages. In: Proceedings of the 15th International
Conference on Language and Automata Theory and Applications (LATA), pp. 173–186 (2021)

16.	 Bonakdarpour, B., Finkbeiner, B.: Controller synthesis for hyperproperties. In: Proceedings of the 33rd
IEEE Computer Security Foundations Symposium (CSF), pp. 366–379 (2020)

17.	 Bugliesi, M., Calzavara, S., Focardi, R.: Formal methods for web security. Journal of Logical and Alge-
braic Methods in Programming 87, 110–126 (2017)

18.	 Clarkson, M.R., Schneider, F.B.: Hyperproperties. Journal of Computer Security 18(6), 1157–1210
(2010)

19.	 Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez, C.: Temporal logics
for hyperproperties. In: Proceedings of the 3rd Conference on Principles of Security and Trust POST,
pp. 265–284 (2014)

20.	 Coenen, N., Finkbeiner, B., Hahn, C., Hofmann, J., Schillo, Y.: Runtime enforcement of hyperproper-
ties. In: Proceedings of the 19th International Symposium on Automated Technology for Verification
and Analysis (ATVA), pp. 283–299 (2021)

21.	 De Groef, W., Devriese, D., Nikiforakis, N., Piessens, F.: Flowfox: A web browser with flexible and
precise information flow control. In: Proceedings of the 2012 ACM Conference on Computer and Com-
munications Security. CCS ’12 (2012)

22.	 D, D., Piessens, F.: Noninterference through secure multi-execution. In: Proceedings of the 31st IEEE
Symposium on Security and Privacy, S &P, pp. 109–124 (2010)

23.	 Dershowitz, N., Hanna, Z., Katz, J.: Bounded model checking with QBF. In: Bacchus, F., Walsh, T.
(eds.) Theory and Applications of Satisfiability Testing, pp. 408–414. Springer, Berlin, Heidelberg
(2005)

24.	 Falcone, Y., Mounier, L., Fernandez, J.-C., Richier, J.-U.: Runtime enforcement monitors: composition,
synthesis, and enforcement abilities. Formal Methods in System Design 38(3), 223–262 (2011)

25.	 Falcone, Y., Fernandez, J., Mounier, L.: What can you verify and enforce at runtime? Int. J. Softw. Tools
Technol. Transfer (STTT) 14(3), 349–382 (2012)

26.	 Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: 20th Annual IEEE Symposium on Logic
in Computer Science (LICS’ 05), pp. 321–330 (2005). https://doi.org/10.1109/LICS.2005.53

27.	 Guernic, G.L.: Automaton-based confidentiality monitoring of concurrent programs. In: 20th IEEE
Computer Security Foundations Symposium (CSF’07), pp. 218–232 (2007)

28.	 Hedin, D., Birgisson, A., Bello, L., Sabelfeld, A.: Jsflow: Tracking information flow in javascript and its
apis. In: Proceedings of the 29th Annual ACM Symposium on Applied Computing. SAC ’14 (2014)

29.	 Hedin, D., Bello, L., Sabelfeld, A.: Value-sensitive hybrid information flow control for a javascript-like
language. In: 2015 IEEE 28th Computer Security Foundations Symposium, pp. 351–365 (2015)

30.	 Hsu, T.-H., Sánchez, C., Bonakdarpour, B.: Bounded model checking for hyperproperties. In: Proceed-
ings of the 27th International Conference on Tools and Algorithms for Construction and Analysis of
Systems (TACAS) (2021). To appear

31.	 Jang, D., Jhala, R., Lerner, S., Shacham, H.: An empirical study of privacy-violating information flows
in javascript web applications. In: Proceedings of the 17th ACM Conference on Computer and Com-
munications Security, pp. 270–283 (2010)

32.	 Khoury, R., Tawbi, N.: Which security policies are enforceable by runtime monitors? A survey. Com-
puter Science Review 6(1), 27–45 (2012). https://doi.org/10.1016/j.cosrev.2012.01.001

33.	 Könighofer, B., Alshiekh, M., Bloem, R., Humphrey, L.R., Könighofer, R., Topcu, U., Wang, C.: Shield
synthesis. Formal Methods in System Design 51(2), 332–361 (2017)

34.	 Ligatti, J., Bauer, L., Walker, D.: Edit automata: Enforcement mechanisms for run-time security poli-
cies. Int. J. Inf. Secur. 4(1), 2–16 (2005)

1 3

Page 31 of 33  30

https://doi.org/10.14778/3055540.3055542
https://doi.org/10.1007/978-3-319-45744-4_25
https://doi.org/10.1109/ICSE48619.2023.00096
https://doi.org/10.1109/ICSE48619.2023.00096
https://doi.org/10.1109/LICS.2005.53
https://doi.org/10.1016/j.cosrev.2012.01.001

T.-H. Hsu et al.

35.	 Linus, R.: Social Media Fingerprint. ​h​t​t​p​s​:​​/​/​r​o​b​​i​n​l​i​n​u​​s​.​g​i​​t​h​u​b​.​​i​o​/​s​o​​c​i​a​l​m​e​​d​i​a​-​​l​e​a​k​/ (2023 (accessed
August 3, 2023))

36.	 Loring, B., Mitchell, D., Kinder, J.: Expose: practical symbolic execution of standalone javascript. In:
Proceedings of the 24th ACM SIGSOFT International SPIN Symposium on Model Checking of Soft-
ware, pp. 196–199 (2017)

37.	 Martinell, F., Matteucci, I.: Through modeling to synthesis of security automata. Proceedings of the
Second International Workshop on Security and Trust Management (STM 2006) 179, 31–46 (2007).
https://doi.org/10.1016/j.entcs.2006.08.029

38.	 McCall, M., Bichhawat, A., Jia, L.: Compositional information flow monitoring for reactive programs.
In: 2022 IEEE 7th European Symposium on Security and Privacy (EuroS &P), pp. 467–486 (2022)

39.	 McCullough, D.: Noninterference and the composability of security properties. In: Proceedings of the
1988 IEEE Symposium on Security and Privacy, pp. 177–186 (1988)

40.	 McLean, J.: A general theory of composition for trace sets closed under selective interleaving functions.
In: Proc. IEEE Symposium on Security and Privacy, pp. 79–93 (1994)

41.	 Moore, S., Chong, S.: Static analysis for efficient hybrid information-flow control. In: 2011 IEEE 24th
Computer Security Foundations Symposium, pp. 146–160 (2011)

42.	 Ngo, M., Bielova, N., Flanagan, C., Rezk, T., Russo, A., Schmitz, T.: A better facet of dynamic infor-
mation flow control. In: Companion Proceedings of The Web Conference 2018, pp. 731–739 (2018).
https://doi.org/10.1145/3184558.3185979

43.	 Ngo, M., Massacci, F., Milushev, D., Piessens, F.: Runtime enforcement of security policies on black
box reactive programs. In: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL), pp. 43–54. Association for Computing Machinery
(2015). https://doi.org/10.1145/2676726.2676978

44.	 O’Halloran, C.: A calculus of information flow. Proceedings of the European Symposium on Research
in Computer Security (1990)

45.	 Pinisetty, S., Preoteasa, V., Tripakis, S., Jéron, T., Falcone, Y., Marchand, H.: Predictive runtime
enforcement. Formal Methods in System Design 51(1), 154–199 (2017)

46.	 Russo, A., Sabelfeld, A.: Dynamic vs. static flow-sensitive security analysis. In: 2010 23rd IEEE Com-
puter Security Foundations Symposium, pp. 186–199 (2010)

47.	 Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel. Areas Commun.
21(1), 5–19 (2006)

48.	 Sabelfeld, A., Sands, D.: Dimensions and principles of declassification. In: 18th IEEE Computer Secu-
rity Foundations Workshop (CSFW’05), pp. 255–269 (2005). https://doi.org/10.1109/CSFW.2005.15

49.	 Sabelfeld, A., Russo, A.: From dynamic to static and back: Riding the roller coaster of information-flow
control research. In: Pnueli, A., Virbitskaite, I., Voronkov, A. (eds.) Perspectives of Systems Informatics
(2010)

50.	 Sahai, S., Subramanyan, P., Sinha, R., Lahiri, S.K., Wang, C.: Verification of quantitative hyperproper-
ties using trace enumeration relations. In: Computer Aided Verification, pp. 201–224. Springer, Cham
(2020)

51.	 Schneider, F.B.: Enforceable security policies. ACM Transactions on Information and System Security
3, 30–50 (2000)

52.	 Sabelfeld, A., Myers, A.C.: A model for delimited information release. In: Futatsugi, K., Mizoguchi, F.,
Yonezaki, N. (eds.) Software Security - Theories and Systems, pp. 174–191. Springer (2004)

53.	 Sen, K., Kalasapur, S., Brutch, T., Gibbs, S.: Jalangi: A selective record-replay and dynamic analysis
framework for javascript. In: Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, pp. 488–498 (2013)

54.	 Shroff, P., Smith, S., Thober, M.: Dynamic dependency monitoring to secure information flow. In: 20th
IEEE Computer Security Foundations Symposium (CSF’07), pp. 203–217 (2007)

55.	 Staicu, C.-A., Schoepe, D., Balliu, M., Pradel, M., Sabelfeld, A.: An empirical study of information
flows in real-world javascript. In: Proceedings of the 14th ACM SIGSAC Workshop on Programming
Languages and Analysis for Security, pp. 45–59 (2019)

56.	 Stefan, D., Russo, A., Mitchell, J.C., Mazières, D.: Flexible dynamic information flow control in
haskell. In: Proceedings of the 4th ACM Symposium on Haskell. Haskell ’11 (2011)

57.	 Tong, Y., Ma, Z., Li, Z., Seatzu, C., Giua, A.: Supervisory enforcement of current-state opacity
with uncomparable observations. In: 2016 13th International Workshop on Discrete Event Systems
(WODES), pp. 313–318 (2016). https://doi.org/10.1109/WODES.2016.7497865

58.	 Tentrup, L.: CAQE and QuAbS: Abstraction based QBF solvers. Journal of Satisfiability Boolean Mod-
eling and Computation 11(1), 155–210 (2019)

59.	 Vanhoef, M., De Groef, W., Devriese, D., Piessens, F., Rezk, T.: Stateful declassification policies for
event-driven programs. In: 2014 IEEE 27th Computer Security Foundations Symposium, pp. 293–307
(2014). IEEE

1 3

 30   Page 32 of 33

https://robinlinus.github.io/socialmedia-leak/
https://doi.org/10.1016/j.entcs.2006.08.029
https://doi.org/10.1145/3184558.3185979
https://doi.org/10.1145/2676726.2676978
https://doi.org/10.1109/CSFW.2005.15
https://doi.org/10.1109/WODES.2016.7497865

Gray-box runtime enforcement of hyperproperties

60.	 Warners, J.P.: A linear-time transformation of linear inequalities into conjunctive normal form. Inf.
Process. Lett. 68(2), 63–69 (1998). ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​1​6​/​S​0​0​2​0​-​0​1​9​0​(​9​8​)​0​0​1​4​4​-​6

61.	 Wintenberg, A., Blischke, M., Lafortune, S., Ozay, N.: A dynamic obfuscation framework for security
and utility. In: 2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS),
pp. 236–246 (2022). ​h​t​t​p​s​:​​​/​​/​d​o​​i​.​o​r​​g​/​​1​0​.​​1​1​​0​9​/​​I​C​C​P​S​​5​4​​3​4​1​​.​2​​0​2​​2​.​0​0​0​2​8

62.	 Wu, Y.-C., Raman, V., Rawlings, B.C., Lafortune, S., Seshia, S.A.: Synthesis of obfuscation policies to
ensure privacy and utility. J. Autom. Reason. 60(1), 107–131 (2017). ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​0​7​/​s​1​0​8​1​7​-​0​
1​7​-​9​4​2​0​-​x​​​​​​​

63.	 Wu, M., Zeng, H., Wang, C., Yu, H.: Safety guard: Runtime enforcement for safety-critical cyber-
physical systems. In: Proceedings of the Design Automation Conference, pp. 84–1846 (2017)

64.	 Zakinthinos, A., Lee, E.S.: A general theory of security properties. In: Proceedings. 1997 IEEE Sympo-
sium on Security and Privacy, pp. 94–102 (1997). https://doi.org/10.1109/SECPRI.1997.601322

65.	 Zanarini, D., Jaskelioff, M., Russo, A.: Precise enforcement of confidentiality for reactive systems. In:
2013 IEEE 26th Computer Security Foundations Symposium, pp. 18–32 (2013). ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​0​
9​/​C​S​F​.​2​0​1​3​.​9​​​​​​​

66.	 Zdancewic, S., Myers, A.C.: Observational determinism for concurrent program security. In: Proceed-
ings of the 16th IEEE Computer Security Foundations Workshop (CSFW), pp. 29–43 (2003)

Publisher's Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

1 3

Page 33 of 33  30

https://doi.org/10.1016/S0020-0190(98)00144-6
https://doi.org/10.1109/ICCPS54341.2022.00028
https://doi.org/10.1007/s10817-017-9420-x
https://doi.org/10.1007/s10817-017-9420-x
https://doi.org/10.1109/SECPRI.1997.601322
https://doi.org/10.1109/CSF.2013.9
https://doi.org/10.1109/CSF.2013.9

	﻿Gray-box runtime enforcement of hyperproperties
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿﻿1.1﻿ ﻿Motivating example
	﻿1.2﻿ ﻿What is missing?
	﻿1.3﻿ ﻿Our approach
	﻿1.4﻿ ﻿Contributions
	﻿1.4.1﻿ ﻿Organization

	﻿﻿2﻿ ﻿Preliminaries
	﻿﻿2.1﻿ ﻿Nondeterministic finite hyperautomata
	﻿2.2﻿ ﻿Plants

	﻿﻿3﻿ ﻿Enforcing hyperproperties
	﻿3.1﻿ ﻿Runtime enforcers for hyperproperties
	﻿3.2﻿ ﻿Black- Vs. Gray-, Vs. White-box RE
	﻿3.3﻿ ﻿The runtime enforcement problem

	﻿﻿4﻿ ﻿Solving RE by controller synthesis
	﻿﻿4.1﻿ ﻿Weighted controller synthesis
	﻿4.2﻿ ﻿Overall idea– sketch of the reduction
	﻿﻿4.3﻿ ﻿Detailed reduction to controller synthesis
	﻿4.3.1﻿ ﻿From controllers to trace sets

	﻿4.4﻿ ﻿Discussion
	﻿4.4.1﻿ ﻿Imposing restriction after extension
	﻿4.4.2﻿ ﻿Targeting specific class of hyperproperties

	﻿﻿5﻿ ﻿QBF encoding
	﻿5.1﻿ ﻿Encoding inputs and outputs
	﻿5.2﻿ ﻿Feasibility
	﻿5.3﻿ ﻿Minimality

	﻿﻿6﻿ ﻿Case studies and experimental evaluation
	﻿6.1﻿ ﻿JavaScript runtime security enforcement
	﻿6.2﻿ ﻿Enforcing privacy for obfuscation-aware eavesdroppers
	﻿6.3﻿ ﻿Evaluation and analysis

	﻿﻿7﻿ ﻿Related work
	﻿﻿8﻿ ﻿Conclusion and future work
	﻿9﻿ ﻿Supplementary information
	﻿References

