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Abstract. Certification was made mandatory for the first time in the 
latest hardware model checking competition. In this case study, we inves-
tigate the trade-offs of requiring certificates for both passing and failing 
properties in the competition. Our evaluation shows that participating 
model checkers were able to produce compact, correct certificates that 
could be verified with minimal overhead. Furthermore, the certifying win-
ner of the competition outperforms the previous non-certifying state-of-
the-art model checker, demonstrating that certification can be adopted 
without compromising model checking efficiency. 

1 Introduction 

Competitions have played a key role in advancing the state of the art in auto-
mated reasoning tools by enabling direct performance comparisons across a wide 
range of solvers, offering challenging benchmarks, and fostering new research. 
However, many of these tools operate as black boxes by providing only true or 
false as an output. Certification addresses this limitation by requiring a coun-
terexample when verification fails and a proof when it succeeds. Since certificates 
can be independently validated, they significantly enhance confidence in the cor-
rectness of verification results, thereby improving the reliability of solvers. 

One goal of using certificates in hardware model checking is to repeat the 
success story of proof certificates in SAT for this automated reasoning domain 
with a large industrial user base. Besides increasing trust in verification results, 
certificates enable more complex design optimizations, allow to continue using 
legacy code and can streamline and improve efficiency of tool development in 
both verification and synthesis. The simple proof certificate format used in SAT 
still allows to capture a wide range of solving optimizations at industrial scale. 
In this case study, we investigate whether the simple model checking certificate 
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format employed in the recent hardware model checking competition has the 
potential to achieve the same in the field of hardware model checking. 

The Hardware Model Checking Competition (HWMCC) has its roots in a 
rather lively discussion at the 2nd Alpine Verification Meeting (AVM) in 2006 
among Daniel Kröning, Dirk Beyer and Armin Biere. The debated question was 
if and how model checking research as well as industrial applications can benefit 
from competitions in the same way the SAT competitions were instrumental in 
advancing SAT. Daniel Kröning and Armin Biere argued to focus on hardware 
gate-level models with simple and clear semantics. 1

This argument prompted the development of the AIGER format [ 3] used in  
the first (hardware) model checking competition, affiliated to CAV’07. This first 
version of AIGER (20071012) came with a library for parsing and other essential 
tools, including a translator from SMV and BLIF to AIGER. The challenge of 
the first competitions in 2007, 2008 and 2010 was to collect benchmarks. 

For the 2011 competition the first major revision of the AIGER 1.9 for-
mat [ 6] included liveness properties and constraints. The following competitions 
from 2012–2015 [ 8] and in 2017 [ 4] included a deep bound track to emphasize the 
common industrial practice of relying on incomplete but deep bounded model 
checking. In 2019 a word-level track was established based on the BTOR 2.0 
format [ 22] proposed at CAV’18. After focusing on word-level in 2020 the orga-
nizers decided in 2024 [ 5] to reintroduce a bit-level track but take the chance to 
force all participating model checkers to produce certificates. 

The introduction of mandatory certification in HWMCC’24 significantly 
impacted participation and competition dynamics. The 2024 competition saw a 
record nine participants, up from three in the previous edition, reflecting grow-
ing interest and accessibility. Discussions with participants revealed that new 
rules, particularly the requirement for certification, leveled the playing field by 
encouraging the development of verifiable solvers. Feedback indicated that par-
ticipants successfully implemented certificate generation based on our published 
results [ 14,29– 31]. It was also noted that implementing correct model checking 
algorithms demanded substantially more effort than generating certificates. 

The certificate format itself has undergone several iterations with the ulti-
mate aim of its use in the competition. In HWMCC’24, all participating model 
checkers were required to produce proofs alongside the model checking results 
for both safe and unsafe instances. For unsafe instances, the certificate is a trace 
serving as a counterexample, which can be validated via simulation; as for safe 
instances, it is a proof witness circuit. For the competition we use an extended 
version of the witness format defined in [ 14], that supports constraints, an essen-
tial feature of AIGER 1.9. 

In this case study, we first describe the certificate format used in the com-
petition, then present experimental findings. We investigate the overhead intro-
duced by certificate checking in model checking and results show that it accounts 
for only a fraction of the total verification time. Moreover, we compare the

1 Dirk Beyer proposed to use C as input language, which is much harder to master, 
due to its complex semantics. Accordingly the first SV-COMP took place in 2012. 
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certifying winner of HWMCC’24, ric3, against the state-of-the-art model 
checker abc which does not support certificate generation. Results show that 
ric3 outperforms abc even when including the time required for witness vali-
dation. 

2 Related Work 

Certification in other Competitions. Certification has been an essential 
part in many other competitions. In SAT competitions [ 13], certification has 
been mandatory for almost a decade, as a fundamental requirement. Solvers 
must produce certificates for both SAT and UNSAT instances: a satisfying truth 
assignment for SAT and a proof in the DRAT [ 28] format for UNSAT. A solver 
is disqualified from the main track if a singe certificate is found invalid. The soft-
ware verification community is following suit. At SV-COMP’24, it is the second 
year of having a dedicated track for witness validation, with a range of partici-
pating witness validators [ 2]. The MaxSAT Evaluation [ 1] has also taken a step 
forward in 2024 by requesting proofs for the first time. In QBF Evaluations [ 25], 
there used to be a dedicated Evaluate & Certify track, where solvers are required 
to produce proofs that are easier to check than the solving task; however, as 
the organizers pointed out, only a few QBF solvers support certificate gener-
ation. SMT competitions (SMT-COMP) [ 27] and ATP System Competitions 
(CASC) [ 26] feature a wide variety of theories and have yet to adopt a universal 
certification standard. Classical Planning is similar to verification, but usually 
more focused on finding solutions (plans). Nevertheless, a deductive certificate 
format [ 11] has been introduced, and extended to support UNSAT certificates 
produced by an underlying SAT solver [ 10]. 

Related Work in Model Checking Certification. Deductive proof systems 
have been used for generating proofs of model checking. For example, the author 
of [ 21] addresses µ-calculus, while the authors of [ 15] focus on liveness and sev-
eral pre-processing techniques. These approaches require model checkers to pro-
vide deductive proofs. The works in [ 7,16] explore the use of inductive invari-
ants as certificates for k-induction. Notably, the certificate format employed in 
HWMCC’24 is also compatible with these inductive invariants. The authors 
of [ 18] use liveness-to-safety reduction techniques to certify liveness properties. 
The problem of certifying model checking has also been addressed in infinite-
state systems [ 9,19] where SMT solvers are leveraged for unbounded state spaces. 
An alternative approach to providing certificates, is to formally verify the model 
checker itself, as demonstrate in [ 12]. 

3 Certificate Format 

We assume the standard notions and terminology of Boolean logic. In the fol-
lowing, we consider hardware designs modeled as Boolean circuits encoded as 
sequential and-inverter graphs (AIGs) [ 3, 6,17,20]. Such a Boolean circuit is given
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as a tuple M = (I,  L,  R,  F,  P,  C) where I is an ordered set of inputs, L is an 
ordered set of latches, R defines the set of reset states, represented as a reset 
predicate that holds when every latch l ∈ L equals its reset function rl; F is the 
transition predicate that refers to two consecutive states, and encodes that each 
latch in one state is equal to its corresponding transition function fl applied to 
the previous state; P and C are predicates that define the set of good states and 
the set of states valid under the constraint, respectively. These predicates, along 
with the reset and transition functions, are encoded in the circuits as binary 
AND-gates with possible negation at the incoming gates. 

We use the notion of a reset predicate R being stratified; for space reasons 
we refer to [ 30] for formal definitions. In essence, it means that the dependencies 
that the reset functions introduce among the latches are acyclic. For K ⊆ L, 
R{K} and F{K} restrict these predicates so only the latches in K are required 
to be equal to their reset or transition. When referencing a sequence of states, we 
use indices on the predicates to represent the corresponding copy of the predicate 
at a certain state in the sequence. 

A trace of length n is a sequence of n + 1 states, where the first state needs 
to satisfy R, every pair of consecutive states satisfies F (written Fi,i+1 for the 
i-th and its successor state) and all states satisfy the constraint C. If the last 
state violates P , the trace is bad. Thus a satisfying assignment to the following 
formula certifies that a circuit is unsafe: 

R0 ∧
∧

i∈[0,n) 

Fi,i+1 ∧
∧

i∈[0,n] 

Ci ∧ ¬Pn. 

For safe instances, the certificate format employed in HWMCC’24 takes the form 
of witness circuits, defined as follows. 

Definition 1 (Witness Circuit). The circuit W = (I ′, L′, R′, F ′, P ′, C ′) is a 
witness circuit of M = (I,  L,  R,  F,  P,  C), if  R′ is stratified and for K = L ∩ L′: 

1. Reset: R{K} ∧  C ⇒ R′{K} ∧  C ′; 
2. Transition: F0,1{K} ∧  C0 ∧ C1 ∧ C ′

0 ⇒ F ′
0,1{K} ∧  C ′

1; 
3. Property: (C ∧ C ′) ⇒ (P ′ ⇒ P ); 
4. Base: R′{L′} ∧  C ′ ⇒ P ′; 
5. Step: P ′

0 ∧ F ′
0,1{L′} ∧  C ′

0 ∧ C ′
1 ⇒ P ′

1. 

The five conditions described above are simple SAT checks. An additional 
polynomial-time check is required to verify that R′ is stratified. If all checks 
pass, M ′ is a valid certificate for M , certifying its safety property. The first three 
conditions in Definition 1 establish a simulation relation between two circuits, 
such that if M ′ is safe, M is also safe. The intuition is that an initial state in 
the original circuit M corresponds to an initial state in the witness circuit, and 
each valid transition in M corresponds to a transition in M ′. 

Property P ′ is a strengthening of P . Consequently, safety of M ′ implies safety 
of M . In summary, a bad trace in M corresponds to a bad trace in M ′. A sketch  
of the traces for both M and M ′ is provided in Fig. 1. The latter two checks
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(Definition 1.4 and Definition 1.5) prove  P ′ to be an inductive invariant, entailing 
the safety of M ′. We provide a high-level intuitive illustration of Definition 1 in 
Fig. 1. 

This is a slight extension to the format in [ 14], as it supports constraints and 
now covers all AIGER 1.9 [ 6] features except liveness. In HWMCC’24, witness 
circuits are also produced as AIGER files. The witness circuit validation is imple-
mented in the certificate checker certifaiger 2 used for the competition, but 
has not been described in detail before. For efficient certification, certifaiger 
leverages the SAT solver Kissat 4.0.0, winner of the SAT competition 2024. 

Fig. 1. An illustration for the correctness of Definition 1. Assuming that a circuit 
M with a valid witness M ′ has a bad trace leads to a contradiction. Depicted are 
the overlapping sets of variables and how conditions of the witness check are used to 
construct a bad trace in M ′, and arrive at a contradiction. For Transition and Step 
only one application is illustrated. 

3.1 Soundness of the Certificate Format 

We present a proof that the existence of a witness circuit as defined in Defini-
tion 1 indeed certifies the safety of a model. The proof extends what is presented 
in [ 14] by considering constraints. 

Theorem 1. Given two circuits M and M ′, with  M = (I,  L,  R,  F,  P,  C), and  
M ′ = (I ′, L′, R′, F ′, P ′, C ′). If  M ′ is a valid witness circuit for M , then M is safe. 

Before proving the main theorem, we first introduce some additional notation: 
An assignment maps a subset of the gates to true or false, and is always consistent 
with the valuation of the AND-gates. Extending an assignment means assigning 
more gates while leaving previously assigned gates unchanged. We refer to the 
reset gate associated with latch l as rl and the primed version r′

l, when referencing 
the reset gates used by R′.

2 https://github.com/Froleyks/certifaiger. 

https://github.com/Froleyks/certifaiger
https://github.com/Froleyks/certifaiger
https://github.com/Froleyks/certifaiger
https://github.com/Froleyks/certifaiger
https://github.com/Froleyks/certifaiger
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Every gate g refers to the Boolean function defined by its fan-in cone, and we 
write g(s) to denote that we consider the function under an assignment s, i.e., 
the variables in g which are assigned by s are replaced with the corresponding 
constants. A function g semantically depends on a variable v if an assignment 
exists under which g(sv) and  g(s¬v) evaluate to different truth values. 

We first show that a reset state in M corresponds to a reset state in M ′. 

Lemma 1. For circuits M = (I,  L,  R,  F,  P,  C) and M ′ = (I ′, L′, R′, F ′, P ′, C ′) 
satisfying the reset check (Definition 1.1) and  R′ stratified, any assignment to 
I ∪L satisfying R{K}∧C, where  K = L∩L′, can be extended to satisfy R′{L′}∧  
C ′. 

Proof. Assuming the reset check passes and R′ is stratified, let s be an arbitrary 
but fixed assignment to I ∪ L satisfying R{K} ∧  C. The assumptions of the 
Lemma further imply that s satisfies R′{K}∧C ′. To show that s can be extended 
to satisfy R′{L′}, we first prove for each latch l ∈ K, r′

l(s) has no semantic 
dependency outside (I ∪L)∩ (I ′ ∪ L′). Assume, for contradiction, there is a latch 
l ∈ K with r′

l(s) �⇔ r′
l(su) where su is the same as s except for the value of some 

gate u ∈ (I ′ ∪ L′)\(I ∪ L). We have l �⇔ r′
l(su) and therefore R′{K} does not 

hold under su. However, u is not in I ∪ L and R{K} ∧  C still evaluates to true 
under su, thus implying R′{K}, and leading to the desired contradiction. 

Since R′ is stratified, the semantic dependencies of the reset gates r′
l can be 

seen as a topologically sorted graph. Given the above result, when considering 
r′
l(s), the remaining dependency graph can be sorted topologically such that the 

variables in (I ∪ L) ∩ (I ′ ∪ L′) are at the bottom. Thus, s can be extended to 
satisfy R′{L′} by assigning the remaining latches in the reverse of that order. 
The extended assignment still satisfies R{K} ∧  C and thereby C ′. 

We can now move on to prove the correctness of the certificate format, i.e., 
the proof of the main Theorem 1. Refer to Fig. 1 for a visualization of the proof. 

Proof. Suppose, for contradiction, M is unsafe. Then there is a bad trace of some 
finite length n in the form of an assignment to n + 1 copies of I ∪ L satisfying: 

R0{L} ∧  C0 ∧ F0,1{L} ∧  C1 ∧  · · ·  ∧  Cn−1 ∧ Fn−1,n{L} ∧  Cn ∧ ¬Pn. 

We extend this assignment to each copy of the gates in I ′\I ∪ L′\L that satisfies: 

R′
0{L′} ∧  C ′

0 ∧ F ′
0,1{L′} ∧  C ′

1 ∧  · · ·  ∧  C ′
n−1 ∧ F ′

n−1,n{L′} ∧  C ′
n ∧ ¬P ′

n. 

Let X ′ = (I ′ ∪ L′) \ (I ∪ L). The assignment satisfying R0{K} ∧  C0 can by 
Lemma 1 can be extended to X ′

0 satisfying R′
0{L′} ∧  C ′. With that and the 

transition check F ′
0,1{K} ∧  C ′

1 is satisfied and the assignment can be extended 
to X ′

1 satisfying F ′
0,1{L′} ∧  C ′

1 by the definition of transition functions. 
Applying the same argument n times yields an assignment to (I ∪L∪I ′∪L′)n 

satisfying F ′
i,i+1{L} for i ∈ [0, n) and  Ci for i ∈ [0, n]. Lastly, the property check 

guarantees ¬P ′
n, giving us the desired assignment. However, the base and step 

check together ensure that the property P ′ holds on all reachable states of M ′, 
thus contradicting the initial assumption that a bad trace exists in M .
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4 Evaluation 

In this section, we present a comprehensive analysis of the competition results 3, 
focusing on the overhead of certificate generation and checking. Specifically, we 
address the following three questions: 

1. What is the runtime overhead associated with validating certificates? 
2. What is the space overhead associated with storing certificates? 
3. How do certifying model checkers compare to the state of the art? 

Experimental Setup. The 2024 competition ran on a cluster of 48 compute 
nodes equipped with an AMD Ryzen 9 7950X 16-core processor at 4.5 GHz 
and 128 GB or RAM, running Ubuntu 20.04 LTS. For fairness, the experiment 
described in Sect. 4.3 ran on the cluster used for the last competition in 2020. 
Each node has access to two Xeon E5-2620 v4 CPUs, for a total of 16 cores 
running at 2.1 GHz, and 128 GB of RAM. 

We focus on (all) the 319 bit-level benchmarks of HWMCC’24, which were 
translated from the word-level (BTOR/bit-vector) track of HWMCC’24. The 
majority of the benchmarks (250) are new benchmarks submitted in 2024 by 
three different groups, including benchmarks for checking safety properties of 
open source RISC-V cores, sequential equivalence checking, branch coverage 
problems, as well as software verification problems, which were translated from 
SV-COMP’24 [ 2]. The remaining 69 benchmarks were selected randomly from 
previous competition years (2019 and 2020). Each model checker had exclusive 
access to a node, with a 120 GB memory limit and a one-hour wall-clock limit. 
A separate limit of 10 h was imposed for certificate checking. 

Note that for precision and reliability of measurements, the competition clus-
ter uses runexec to measure resource consumption of the model checkers. We 
further rely on it to properly isolate the processes and to enforce both the time 
and memory resource limits. 

4.1 Certificate Checking Overhead 

We now evaluate the overhead introduced by certificate checking. For each solver, 
we consider the model checking time, tmc, the time required to validate the 
produced certificate, tcert, and the total time ttotal = tmc +tcert. The certificate 
checking overhead for a model checker refers to the additional time required to 
run all benchmarks when certification is enabled. Note that benchmarks unsolved 
by the model checker are excluded from this metric. The results are displayed in 
Fig. 2 where both safe and unsafe instances are considered. 

The clear winner of the competition is ric3, demonstrating superior perfor-
mance on both safe and unsafe benchmarks. When considering only safe bench-
marks, the ranking remains virtually unchanged, with fric3 narrowly outper-
forming supercar. As for unsafe instances, which constitute approximately 30%

3 https://hwmcc.github.io/2024. 

https://hwmcc.github.io/2024
https://hwmcc.github.io/2024
https://hwmcc.github.io/2024
https://hwmcc.github.io/2024
https://hwmcc.github.io/2024
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Fig. 2. HWMCC’24 results (319 benchmarks). The plots show the number of solved 
instances as a function of time. For each model checker, we present (1) the model 
checking time and (2) the total time for model checking and certificate validation. 
Diamonds represents the time taken to model check a circuit and validate the produced 
witness, while dots indicate model checking time only. Benchmarks whose certificates 
were especially time-consuming to verify are labeled. The Virtual Best Solver (VBS) 
indicates the top solver performance on each instance. The legend includes the overall 
certification overhead. The results clearly indicate, that certificate validation only adds 
minimal overhead. 

of solved benchmarks, supercar slightly outperforms pavy. In both scenarios, 
ric3 maintains its lead and performs impressively close to the virtual best solver. 

In Fig. 2, we also identify six outliers where the combined model checking 
and certification time exceeded the one-hour model checking timeout by more 
than 5%. The difficulty in their certification seems to be related to the witness 
circuit generation process within the model checker, as for each of these instances, 
another model checker found a witness circuit, which could be validated under 
100 s. An exception is the x-epic16-p057 benchmark, which was solved exclusively 
by ric3. Certificate checking never exceeded the 10-hour limit. 

As Fig. 2 shows, the overall certification overhead only gives rise to a small 
fraction of the model checking time, which is highly promising and highlights the 
effectiveness of the certificate format. For instance, when using ric3 to model 
check all 248 instances it solved, the total time is increased by only 34% when 
all produced certificates are validated. In general, validating certificates for safe 
instances is a more challenging task than validating simulation traces for unsafe 
ones, a trend similar as in SAT solving. In fact, simulation time accounts for 
only 2% of the overhead in ric3, and even less for all other solvers.
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Fig. 3. Size of produced witness circuits relative to their original model circuit. The 
x-axis represents the set of benchmarks, sorted alphabetically, whereas the y-axis indi-
cates the certificate size (gates) relative to the model. The legend also shows the geo-
metric mean of the relative certificate size for each model checker and all produced cer-
tificates combined. Dots stacked vertically correspond to the same benchmark. Since 
the x-axis is sorted by benchmark name, neighboring instances are likely to belong 
to the same family. For clarity and space reasons, only a select few benchmarks are 
explicitly labeled. We observe an overall relative certificate size of 1.74, which indicates 
the compactness of the certificates. 

4.2 Certificate Size 

Next, we evaluate the size of witness circuits for safe instances, where circuit 
size is measured in terms of gates, which includes the number of inputs, latches, 
and AND-gates. The relative certificate size is defined as certificate size model size . Figure 3 
presents the relative certificate sizes for all solved instances. Note that appnote 
and x-epic families, comprising 52 and 13 benchmarks respectively, depicted in 
the plot, include several multi-property benchmarks. In these cases, the bench-
marks represent the same model, differing only in the property to be checked. 

We observe that pavy produces smallest witnesses, with a geometric mean 
ratio of 1.22, whereas supercar exhibits the highest ratio of 2.62. Overall, more 
than 80% of the produced witnesses are less than twice as large as the certified 
model, with a geometric mean ratio of 1.74 across all produced witness circuits. 

It further turns out that pavy consistently generates witnesses substantially 
smaller than their corresponding models. Notably, this was not possible in earlier 
versions of the certificate format [ 29– 31], which required the entire model to be 
embedded within the witness circuit. The original format was revised in [ 14]
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Fig. 4. Comparing ric3 (2024 winner) with abc (2020 winner). The same HWMCC’20 
hardware setup is used, for both benchmarks sets (2020 and 2024). ric3 is also run in 
a fully certified mode, where each result is confirmed by checking the certificate. Note 
that for these certified runs the shown run-time not only includes model checking time 
but also certificate production and certificate checking time. We observe that on both 
sets ric3 consistently outperforms abc, even when accounting for certificate validation 
time. 

and went through another update for the competition, which is described in 
Sect. 3. This version allows, beside constraints, optimized witnesses that focus 
on a subset of the certified model, enabling significant reduction in witness size. 

Witness size only correlates weakly with validation time. The biggest witness, 
produced by supercar for the largecounter benchmark, contains over 7 million 
gates for a model with fewer than 2 thousand gates, yet is verified within 900 s, 
which is 30% faster than model checking. Conversely, the two difficult-to-check 
eca witnesses produced by pavy are 20% smaller than the model. 

4.3 Comparison to State of the Art 

Since participating model checkers in HWMCC’24 generate certificates, i.e., are 
certifying model checkers, it remains to show data on how certificate generation 
affects solver speed. We thus compare ric3, the HWMCC’24 winner, with the 
state-of-the-art model checker abc, the winner of the previous HWMCC edition 
in 2020, where witness circuits were not yet introduced. It is worth noting that 
the industrial-strength model checker abc has dominated the bit-level track of 
the HWMCC since its debut in 2008. However, it could not participate in the 
2024 competition, as certificates are now mandatory.



Introducing Certificates to the Hardware Model Checking Competition 291

For our experiment, we use the version of abc, which was submitted to 
the HWMCC’20, and was tailored specifically for the competition thus distinct 
from its public releases. To ensure that abc is used with the same hardware 
specifications as expected by the participants in 2020 we run our experiment on 
the HWMCC’20 hardware. Note that this hardware is significantly older than 
the cluster used for HWMCC’24. 

Note that the benchmarks from HWMCC’20 and HWMCC’24 were both 
included (there was no competition in between). The two sets are mostly distinct 
with only 8 benchmarks in common. This is following the SAT competition 
practice: HWMCC uses mostly new benchmarks every year, adhering to the 
SAT Practitioner’s Manifesto. 

Figure 4 shows that ric3 convincingly outperforms abc on both benchmark 
sets. Notably, in 2020, ric3 solves 36 more benchmarks and is faster on 247 out 
of the 256 benchmarks solved by both model checkers. For ric3, we also include 
a certified version, which represents its performance if it did internal certificate 
validation, and every benchmark is only reported as solved after the certificate 
has been successfully validated. Even in its certified mode, ric3 still holds a clear 
lead, losing only one instance per year due to certificate validation exceeding the 
remaining time before the one-hour model checking timeout. 

One minor exception is the performance on the 2024 benchmarks within 
the first 30 s, where the certificate checking adds a significant enough overhead 
for abc to catch up to the certified version. Nevertheless, certificate production 
introduces no measurable overhead to overall model checking performance. These 
results demonstrate that ric3, is a robust and efficient model checker, that 
presents superior performance while providing added benefits of certifying. 

Invalid Certificates. In HWMCC’24 and the experiments presented above, 
producing an invalid certificate causes the benchmark to count as unsolved. 
Out of the 1536 certificates generated during the competition, 44 were found 
to be incorrect. They were produced by four model checkers: supercar (20), 
ncip-minicraig (9), ncip-portfolio (8), fric3 (7). The incorrect certificates 
produced by supercar are all simulation traces, notably 8 of them are for 
benchmarks which have been proven safe by other model checkers. In addition 
to 3 more incorrect simulation traces from fric3, all other invalid certificates 
were witness circuits failing one of the checks outlined in Definition 1. 

Many of the invalid certificates stemmed from bugs uncovered by the orga-
nizers before the competition through extensive fuzz testing. The fuzzer and 
subsequent delta-debugging helped identify minimal failing circuits, shared sub-
sequently with the model checker developers for fixes. Initially, all model check-
ers produced invalid certificates. After extensive feedback, most solvers passed 
thousands of fuzzer-generated test cases with correct certificates. This process 
highlights the benefits of certifying model checkers to improve their robustness. 

Summary of Results. Our experimental evaluation entails the following key 
findings. (i) Minimal overhead: certification adds only a small runtime overhead, 
representing a fraction of the total model checking time. (ii) Compact certificates: 
optimized certificate formats reduced storage requirements, with over 80% of
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certificates being less than twice the size of the certified model. (iii) Impact on 
performance: ric3, the 2024 winner, outperformed the 2020 winner abc, even  
when all certificates are verified, demonstrating that certifying approaches can 
simultaneously provide correctness guarantees and strong performance. 

5 Conclusion 

HWMCC’24 marks the first time that the Hardware Model Checking Compe-
tition has mandated certification for all participating solvers. Our case study 
confirms that certification can be integrated with minimal overhead while sig-
nificantly improving confidence in verification results, illustrating the practical 
benefits of mandatory certification in hardware model checking. 

Looking ahead, we call on more participants and model checker developers— 
both in academia and industry—to adopt and support certification. Building on 
the success of HWMCC’24, we intend to extend certification to the word-level 
track, for which a certificate checker Cerbotor is already publicly available. 
However, challenges remain, including the need to develop techniques for gener-
ating certificates tailored to word-level-specific methods and addressing the use 
of trustworthy SMT solvers, which require SMT-based certificates. 

On the other hand, a certifying liveness track is under planning, although 
this endeavor requires certificate generation for liveness checking algorithms, 
which remains another open research challenge. Another direction concerns the 
degree of trust we can place in the certificate checker. Ultimately, achieving a 
fully verified certificate checker would ensure an end-to-end correctness in the 
verification process, further increasing confidence. 

Beyond increasing trust in model checkers, certificates have broader applica-
tions. An ongoing industry collaboration explores the integration of certifying 
model checkers as hammers in interactive theorem provers such as Isabelle [ 23] 
via Sledgehammer [ 24]. This entails, the theorem prover encoding an open proof 
as a model checking problem, invoking a model checker, and lifting the certificate 
back into the theorem prover. 

Acknowledgements. This work is supported in part by the ERC-2020-AdG 
101020093, the LIT AI Lab funded by the State of Upper Austria, the Research Council 
of Finland under the project 336092, and a gift from Intel Corporation. 

Furthermore we of course also owe a big thank-you to the submitters of model 
checkers and benchmarks to the competition over all these years. Without their enthu-
siasm and support neither the competition nor this study would exist. 

Disclosure of Interests. The authors have no competing interests to declare that 
are relevant to the content of this paper. 

References 

1. Bacchus, F., Berg, J., Järvisalo, M., Martins, R.: MaxSAT evaluation 2020: solver 
and benchmark descriptions (2020)



Introducing Certificates to the Hardware Model Checking Competition 293

2. Beyer, D.: State of the art in software verification and witness validation: SV-
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