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ABSTRACT
A major goal of speciation research is identifying loci that underpin barriers to gene flow. Population genomics takes a ‘bot-
tom-up’ approach, scanning the genome for molecular signatures of processes that drive or maintain divergence. However, inter-
preting the ‘genomic landscape’ of speciation is complicated, because genome scans conflate multiple processes, most of which 
are not informative about gene flow. However, studying replicated population contrasts, including multiple incidences of second-
ary contact, can strengthen inferences. In this paper, we use linked-read sequencing (haplotagging), FST scans and genealogical 
methods to characterise the genomic landscape associated with replicate hybrid zone formation. We studied two flower colour 
varieties of the common snapdragon, Antirrhinum majus subspecies majus, that form secondary hybrid zones in multiple inde-
pendent valleys in the Pyrenees. Consistent with past work, we found very low differentiation at one well-studied zone (Planoles). 
However, at a second zone (Avellanet), we found stronger differentiation and greater heterogeneity, which we argue is due to 
differences in the amount of introgression following secondary contact. Topology weighting of genealogical trees identified loci 
where haplotype diversity was associated with the two snapdragon varieties. Two of the strongest associations were at previously 
identified flower colour loci: Flavia, that affects yellow pigmentation, and Rosea/Eluta, two linked loci that affect magenta pig-
mentation. Preliminary analysis of coalescence times provides additional evidence for selective sweeps at these loci and barriers 
to gene flow. Our study highlights the impact of demographic history on the differentiation landscape, emphasising the need to 
distinguish between historical divergence and recent introgression.
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1   |   Introduction

A major goal of speciation research is to identify loci under-
lying barriers to gene flow. Population genomic studies usu-
ally take a ‘bottom-up’ approach by scanning the genome for 
patterns of within- and between-population variation that 
indicate selection driving or maintaining divergence (Ravinet 
et al. 2017; Wolf and Ellegren 2017). For example, during spe-
ciation with gene flow, genomic regions associated with local 
adaptation or genetic incompatibilities are expected to show 
elevated genetic differentiation (usually measured by FST), 
with the rest of the genome homogenised through genetic 
exchange (Feder et  al.  2012; Wu  2001). Indeed, numerous 
studies of the ‘genomic landscape’ have found highly heterog-
enous patterns of genetic differentiation and, in some cases, 
have shown that regions with high FST house genes under-
pinning adaptive traits that also act as reproductive barriers 
(Hooper et  al.  2024; Martin et  al.  2013; Poelstra et  al.  2014; 
Todesco et al.  2020). However, we now know that interpret-
ing the differentiation landscape is more challenging than 
some researchers once hoped (Ravinet et  al.  2017; Wolf and 
Ellegren 2017).

The main challenge is that genome scans can conflate multi-
ple processes, some of which are not directly relevant to cur-
rent heterogenous gene flow (Ravinet et al. 2017). Consider a 
simple model of secondary contact, where divergence builds 
up over a long period (which may involve intermittent iso-
lation), and erodes following recent contact. Genome-wide 
divergence builds up relatively slowly, due to both drift and 
selection. Divergence will inevitably be heterogenous along 
the genome both by chance and due to intrinsic properties of 
the genome, such as the local density of functional elements 
and local recombination rate (Burri 2017). After contact, in-
trogression will erode divergence where the populations meet, 
potentially revealing the location of barrier loci (Duranton 
et al. 2018). While relatively fast compared with the build-up 
of divergence, this erosion takes some time and will be de-
layed if interbreeding is geographically localised (Barton and 
Gale  1993). Thus, genome scans reflect both initial diver-
gence and postcontact introgression, and these may be hard 
to disentangle.

Inclusion of replicate hybrid zones aids the interpretation of 
genome scans, allowing comparison of divergence across mul-
tiple contacts (Nadeau et al. 2014; Rancilhac et al. 2024; Vijay 
et  al.  2016; Wilding et  al.  2001). Overall divergence may re-
flect differences in the timing of contact or rates of gene flow. 
Nevertheless, parallel contacts should ultimately lead to simi-
lar differentiation landscapes if large-effect outlier loci reflect 
barriers to gene flow that have resisted introgression in each 
location. In contrast, outliers found in a single zone might re-
flect local demographic processes (e.g., bottlenecks), evolu-
tionary noise, sampling effects or population-specific barriers 
(Westram et  al.  2021). Several studies have used this logic to 
identify loci that underpin local adaptation and speciation. The 
most compelling studies combine traditional site-based genome 
scans with tree-based methods, which make it possible to anal-
yse more than two populations within a single framework that 

acknowledges their recent shared history (Poelstra et al. 2014; 
Rancilhac et al. 2024).

In this paper, we study genome-wide variation associated 
with replicate hybrid zones in the common snapdragon, 
Antirrhinum majus, a classic model for understanding pheno-
typic variation both in the laboratory and in nature (Hudson 
et al. 2008). We focus on two varieties of A. majus subspecies 
majus—A.m.m var. pseudomajus and A.m.m var. striatum 
(hereafter, var. pseudomajus and var. striatum for brevi-
ty)—that are native to France and Spain (Whibley et al. 2006). 
These varieties have largely nonoverlapping geographic dis-
tributions, occupy similar habitats and are pollinated by the 
same bee species (Tavares et al. 2018). The major difference 
between them is their contrasting flower colour: var. pseudo-
majus has magenta flowers with a small patch of yellow pig-
ment on the face of the flower below the bee entry point, while 
var. striatum has yellow with restricted veins of magenta 
coloration above the bee entry point (Figure  1A). These dif-
ferences in colour, which are thought to be alternative adapta-
tions to attract the same bee pollinators, are caused by a small 
number of loci that control the production of two flavonoid 
pigments in floral tissue, anthocyanin (magenta) and aurone 
(yellow). Rosea (Schwinn et  al.  2006; Whibley et  al.  2006), 
Eluta (Tavares et al. 2018) and Rubia (Field et al. 2025) affect 
anthocyanin production, while Sulfurea (Bradley et al. 2017), 
Flavia, Aurina (Bradley et al. 2025) and Cremosa (Richardson 
et al. 2025) affect aurone production.

During the last ice age, var. pseudomajus and var. striatum 
are thought to have been restricted to areas of low elevation, 
but subsequently expanded into the Spanish Pyrenees (Vargas 
et al. 2004; Whibley et al. 2006). As a result, at least three sep-
arate hybrid zones have formed in separate valleys below the 
altitudinal limit of A. majus (Figure 1A). In one such zone near 
the town of Planoles, a transition from yellow to magenta flow-
ers occurs over a few kilometres (Whibley et  al.  2006). Scans 
of genome-wide sequence variation have revealed strong allele 
frequency differentiation and sharp geographic clines around 
previously identified colour loci (Field et  al.  2025; Tavares 
et al. 2018; Surendranadh et al. 2025). In contrast, most of the 
surrounding genome shows low genetic differentiation, proba-
bly owing to the homogenising effects of dispersal and recombi-
nation (Ringbauer et al. 2018; Tavares et al. 2018).

Here, we expand our analysis to include individuals from 
the Planoles hybrid zone and a second zone near the town of 
Avellanet, located over 50 km to the west (Figure 1A). By com-
paring their respective genomic landscapes and jointly ana-
lysing two independent hybrid zones, we hoped to disentangle 
ancestral divergence from the effects of recent introgression. 
We were especially interested in whether known flower colour 
loci act similarly in both localities and stand out from their ge-
nomic background. To address this, we used both traditional 
FST scans and genealogical methods for studying the genome-
wide distributions of tree topologies and coalescence times 
across the genome. As a secondary aim, we use this study as 
an opportunity to compare different methods for inferring 
genealogical trees along the genome. Several approaches are 
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now available for inferring genealogies from phased SNP 
datasets (Nielsen et  al.  2024). However, these methods have 
not yet been widely used to study adaptation and speciation. 
It is also unclear how they perform when applied to real data 
sets, and there has been limited discussion about when more 
sophisticated methods might be warranted over simpler ones. 
We hope that this study helps other researchers decide which 
method might be most appropriate for their data and spe-
cific goals.

2   |   Results and Discussion

2.1   |   Genome-Wide Analysis Reveals Different 
Histories of Postcontact Gene Flow Across the Two 
Hybrid Zones

We sampled 18 individuals of magenta-coloured var. pseudoma-
jus and 18 yellow-coloured var. striatum from Planoles (hereaf-
ter, PlaPm and PlaSy), as well as 19 of each variety from Avellanet 

FIGURE 1    |    Evolutionary relationship between A. majus subspecies majus populations from two hybrid zones. (A) Geographic distributions of 
magenta-coloured A.m.m. var. pseudomajus and yellow-coloured A.m.m. var. striatum. The map is based on sample locations in Whibley et al. (2006) 
and does not show the full distribution of either variant. Circles are coloured according to the population. Samples were collected from two hybrids 
zones: Avellanet (19 magenta and 19 yellow samples) and Planoles (18 magenta and 18 yellow samples). Points on the map represent the average 
location of each population. (B) Genetic structure, shown as admixture coefficient (Q) for K = 3 clusters inferred by Admixture from 1.7 million 
LD-thinned SNPs. Each vertical bar is one individual. (C) The first two principal components of the same dataset. (D) Phylogenetic network (neight-
bourNet) on the same data set. (E) Estimates of per-site Weir and Cockerham's FST, averaged over all 11.5 million SNPs. FST was calculated between 
varieties from the same hybrid zone (PlaPm vs. PlaSy, AvePm vs. AveSy), and between the hybrid zones (PlaPm vs. AvePm, PlaSy vs. AveSy, PlaSy vs. 
AvePm, PlaPm vs. AveSy). Pla: Planoles, Ave: Avellanet, Pm: magenta-coloured var. pseudomajus, Sy: yellow-coloured var. striatum.
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4 of 18 Molecular Ecology, 2025

(hereafter, AvePm and AveSy) (Table  S1). We sequenced them 
using haplotagging, a method of linked-read sequencing (Meier 
et al. 2021). An advantage of haplotagging over standard short-
read sequencing is the ability to track source haplotypes by 
means of molecular barcoding. After mapping sequence reads 
to the A. majus reference genome v. 3.5 (M. Li et al. 2019), we 
followed the variant calling and imputation pipeline outlined 
in Meier et al. (2021) that leverages linked-read information to 
identify 11,533,030 bi-allelic SNPs (22 SNPs/kbp) across all the 
samples. We then phased the SNPs using SHAPEIT5 (Hofmeister 
et al. 2023) and used information from a closely related outgroup 
(A. molle; Durán-Castillo et al. 2022) to polarise variants as an-
cestral or derived.

Based on previous work that showed low genome-wide 
differentiation between the varieties in Planoles (Tavares 
et  al.  2018), we expected to see similarly low differentiation 
at the previously unstudied hybrid zone at Avellanet. To test 
this hypothesis, we generated an LD-thinned dataset contain-
ing 1.71 million SNPs and performed Admixture (Figure 1B, 
and S1), principal component (Figure  1C) and phylogenetic 
(Figures 1D and S2) analysis to characterise the genetic struc-
ture. In contrast to our expectations, we found different pat-
terns of genetic structure at each hybrid zone. Specifically, 
PlaPm and PlaSy always formed a single group, rather than 
clustering by flower colour. In contrast, the AvePm and AveSy 
always formed two distinct groups. This result was also sup-
ported by the average genome-wide FST estimated from all 
11.5 million SNPs, which showed that genetic differentiation 
was much lower at Planoles (PlaPm vs. PlaSy: FST = 0.003) than 
it was at Avellanet (AvePm vs. AveSy: FST = 0.048) (Figure 1E). 
In fact, FST between AvePm and AveSy was higher than be-
tween AvePm and PlaPm (FST = 0.027), which are separated by 
more than 50 km, whilst AveSy and PlaSy showed the highest 
pairwise FST (= 0.066) of all.

The above results suggest a more substantial history of hy-
bridisation and gene flow at the Planoles hybrid zone than at 
Avellanet. To assess this more formally, we used the program 
δaδi (Gutenkunst et al. 2010) to fit a series of demographic mod-
els to the joint site frequency spectrum separately at each hybrid 
zone. We first compared the fit of a model of strict isolation (SI, 
where two populations diverge with no gene flow) to a model of 
secondary contact (SC, where populations diverge in allopatry 
followed by gene exchange after coming back into contact). For 
both hybrid zones, the SC model was a far better fit to the data 
than the SI model (ΔAIC > 2000 for both zones), providing evi-
dence of gene flow between the magenta and yellow populations 
at each zone (Figure S3, Table S2). It also suggested a more sub-
stantial history of gene flow at Planoles characterised by a much 
longer period since secondary contact than at Avellanet.

Together, these results suggest strikingly different histories of 
gene flow at each of the hybrid zones, which is largely consistent 
with observations made at these hybrid zones over more than 
a decade. At Planoles, plants are abundant every year, and hy-
brid individuals can be found over broad areas spanning more 
than 1 km (Whibley et al. 2006). In contrast, we do not always 
find a large number of plants at Avellanet (Stankowski, Barton 
& Field; personal observations). In some years, the plants are 
abundant, and in others, their distribution is patchy and hybrids 

are uncommon. Thus, the difference in genetic structure be-
tween the zones may reflect the demographic stability of the 
populations, which is what ultimately provides opportunities for 
hybridisation and subsequent gene flow across the zone.

2.2   |   Genome Scans Reveal Highly Heterogeneous 
Differentiation Landscapes With Varying Degrees 
of Parallelism

Although we observed a strong difference in the magnitude of 
FST at each hybrid zone, it is possible that the finer-scale pattern 
of differentiation along the genome is highly similar. Indeed, 
highly correlated FST landscapes have been observed in studies 
where multiple populations with varying levels of differentiation 
have been compared (Burri et al. 2015; Stankowski et al. 2019). 
The general explanation for observing correlated differentiation 
landscapes is that common evolutionary processes and intrin-
sic genomic properties have shaped variation across multiple 
incidences of divergence in isolation (Burri et  al.  2015), local 
adaptation (Jones et  al.  2012) or secondary contact (Nouhaud 
et al. 2022).

To test for correlated differentiation landscapes, we first calcu-
lated Hudson's FST in 10-kbp nonoverlapping genomic windows 
for each pair of populations. This revealed highly variable pat-
terns of differentiation among the comparisons, both in the level 
of FST and the pattern of heterogeneity. First, comparing the ge-
nome scans between var. pseudomajus and var. striatum at each 
of the hybrid zones, we found little heterogeneity in the pattern 
of differentiation at Planoles. FST was consistently low across 
most of the genome (median = 0.008, SD = 0.011) (Figure 2), with 
the exception of a small number of localised peaks of differen-
tiation rising above the background. In contrast, the FST land-
scape was highly heterogeneous at Avellanet (median = 0.028, 
SD = 0.064), with far greater variability across chromosomes 
and many areas with pronounced differentiation (Figure  2). 
The windowed FST estimates exhibited strong dissimilarity 
between the hybrid zones (Spearman's rho = 0.04; hereafter, ρ) 
(Figure S4A, Table S6).

The remaining comparisons showed that differentiation pat-
terns depended heavily on the populations included. Most no-
tably, AveSy showed highly parallel patterns (ρ ranging from 
0.63 to 0.86) between comparisons that included it (Figure S4B, 
Table S6). This shows that the highly heterogeneous differenti-
ation landscape at the Avellanet hybrid zone is driven more by 
the history of the AveSy population than by gene flow between 
AvePm and AveSy.

At both hybrid zones, elevated FST windows tended to coincide 
with reduced genetic diversity (π) in one of the two populations, 
and/or elevated between-population sequence divergence (dxy) 
(Figure  S5). At Planoles, the diversity landscapes were highly 
similar (ρ = 0.89), with outlier regions tending to show lower π 
in PlaSy (Figure S6A, Table S6). The diversity landscapes were 
less similar at Avellanet (ρ = 0.47), with the population that 
showed lower π varying among the genomic regions (Table S6). 
For example, in the most pronounced FST island on Chr 2, AveSy 
had lower π, whereas AvePm had lower π in the outlier regions 
on Chr 1 (Figures S6B and S7). At Avellanet, we found a clear 
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negative relationship between the local recombination rate and 
FST (ρ = −0.30), indicating that highly differentiated regions at 
Avellanet tended to show lower recombination rates (Figure S5, 
Table S6). Coupled with the low diversity and strongly elevated 
dxy in highly differentiated regions (Figure  S5), this suggests 
that FST has been shaped primarily by widespread linked selec-
tion acting independently in the two populations. At Planoles, 
the relationship between recombination rate and FST is less pro-
nounced (ρ = 0.08), with outlier regions showing variable rates 
of recombination and modest reductions in π (Figure S5).

We next examined patterns of differentiation at known colour loci 
to determine whether they would be detected in outlier scans, since 
flower colour is expected to have evolved before the hybrid zone 
formations (Tavares et al. 2018). At Planoles, two of the known 
colour regions were identified as FST outliers using both 95th and 
99th percentile thresholds (Figures 2 and S4A). This included re-
gions containing the Flavia locus (hereafter, FLA) on Chr 2 that 
controls the intensity of yellow pigmentation, and the two tightly 
linked loci Rosea and Eluta on Chr 6 (hereafter, ROS/EL) that have 
large effects on magenta colouration. At Avellanet, the FLA locus 

FIGURE 2    |    Genome scans show heterogenous FST landscapes with varying degrees of parallelism. FST is estimated in 10 kbp nonoverlapping 
windows (n = 50,881) for each chromosome. Dotted blue and red lines show the 95th and 99th percentile of genome-wide FST estimates. Top panel 
(Within zones and between varieties): Comparison between varieties at each hybrid zone (PlaPm vs. PlaSy, AvePm vs. AveSy). Middle panel (Between 
zones and within varieties): Comparison between hybrid zones for magenta and yellow population (PlaPm vs. AvePm, PlaSy vs. AveSy). Bottom panel 
(Between zones and varieties): Comparison between varieties from different hybrid zones (PlaSy vs. AvePm, PlaPm vs. AveSy). Grey shading delimits 
chromosomal boundaries. Pla: Planoles, Ave: Avellanet, Pm: magenta-coloured var. pseudomajus, Sy: yellow-coloured var. striatum.
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was identified at the 99th percentile threshold, while ROS/EL was 
only detected at the 95th percentile threshold (Figures 2 and S4A)

Overall, we found that the FST landscapes at the two hybrid zones 
are quite different, which is not unexpected given their different 
demographic histories and patterns of hybridisation. Although 
samples of var. pseudomajus and var. striatum from Avellanet are 
more physically distant than in Planoles (Figure 1, Table S1), simi-
larly distant samples at Planoles show a very similar FST landscape 
to the one presented here (compare top panel in Figure 2–5E in 
Field et al. 2025). While we were able to detect two of the major-
effect colour loci at Planoles, we failed to detect the other known 
loci at either Planoles or Avellanet. This may be due to several 
factors. First, this data set consists of low-coverage sequencing, so 
SNPs are sparser than previously analysed high-coverage pool-seq 
data sets (Tavares et al. 2018). Second, previous work at Planoles 
has shown that the detection of smaller effect loci (e.g., Rubia and 
Aurina) depends on the proximity of sampling to the hybrid zone 
(Field et al. 2025). Our samples were collected very close to the 
point of contact, meaning that differentiation at small effect loci 
may have been swamped by gene flow. Finally, the large-effect 
locus Sulfurea is a deletion polymorphism, which has made it dif-
ficult to identify with SNP markers in previous FST scans (Bradley 
et al. 2017; Field et al. 2025).

2.3   |   Different Genealogical Inference Methods 
Produce Vastly Different Numbers of Trees Yet Infer 
Similar Genealogical Landscapes

Given the challenges of interpreting multiple pairwise FST 
scans, we next shifted to genealogical tools that allowed us to 
jointly analyse relationships among all four populations. Among 
the variety of tools available, we selected and compared four that 
were broadly representative of the main approaches in method-
ological implementation: (i) Neighbour-joining trees in arbitrary 
windows (Martin and Van Belleghem 2017); (ii) tsinfer (Kelleher 
et al. 2019); (iii) Relate (Speidel et al. 2019); and (iv) Singer (Deng 
et al. 2024). We restricted our comparison to a 2 Mbp region (45–
65 Mbp in Chr 2) with ~462k SNPs that showed highly hetero-
geneous patterns of FST (Figure 2) and contains the FLA locus 
(Bradley et al. 2025).

The first method divides the genome into nonoverlapping win-
dows containing the same number of SNPs (50 SNPs in our anal-
ysis) and infers a phylogenetic tree for each region separately. 
We inferred neighbour-joining trees, though other methods 
such as maximum-likelihood have also been applied (Fontaine 
et  al.  2015). While simple and widely used, this approach has 

a significant limitation. Arbitrarily defined genomic segments 
often span historical recombination events, where relation-
ships between haplotypes cannot (and ideally should not) be 
accurately represented by a single bifurcating tree (Shipilina 
et al. 2023). As a result, important genealogical signals may be 
dampened by the clumping of unique trees into one.

Unlike NJ trees, tsinfer, Relate and Singer infer a sequence of 
trees, consistent with how historical recombination events 
have altered genealogical relationships across the genome. 
They all do this by allowing topologies to vary locally to recon-
cile neighbouring site patterns that cannot be represented as a 
single bifurcating tree, but their approaches vary significantly. 
Tsinfer reconstructs plausible ancestral sequences from sampled 
chromosomes and then infers the relationship between those 
sequences, preserving the correlation between consecutive ge-
nealogical trees. Therefore, neighbouring trees inevitably share 
many of the same nodes and branches. Relate, on the other hand, 
infers a completely new tree upon encountering an incompati-
ble SNP. Therefore, consecutive trees do not share homologous 
nodes or branches, although this can be partly addressed by 
assigning the same age to nodes with identical descendant sets 
across adjacent trees.

Although tsinfer and Relate accommodate the effects of past 
recombination, they do not explicitly model recombination. In 
other words, incompatible SNP patterns only imply that histor-
ical recombination occurred somewhere between the boundary 
of neighbouring trees. Singer goes further and takes a Bayesian 
approach, attempting to infer the full ARG by fitting a model of 
coalescence and recombination to the SNP data. So, unlike the 
deterministic topology inference of tsinfer and Relate (i.e., mul-
tiple runs will always produce the same tree topologies, though 
inferred branch lengths may differ between runs), each MCMC 
iteration of Singer estimates a tree sequence that is drawn from 
the posterior distribution of possible trees. Thus, a region with 
no SNP may contain multiple inferred trees that are not sup-
ported by any data within that region but are a plausible out-
come of the estimated model.

Examination of the resulting tree sequences shows that methods 
produce vastly different results (Table  1). First, we found that 
the number of trees varied substantially across methods. The 
neighbour-joining method contained the lowest number of trees 
at 9237 (i.e., 1 tree for each 50 SNPs window). Relate and tsinfer 
inferred substantially more trees, with 198,375 and 406,135, re-
spectively. Singer inferred the most trees by far, with 1,950,778. 
The average span of an NJ tree was 2.1 kbp (SD = 2.3 kbp), com-
pared with 100 bp (SD = 322 bp) for Relate, 50 bp (SD = 222 bp) 

TABLE 1    |    Results of tree inference for four genealogical inference methods.

Inference method Number of trees Mean tree span (bp) Mean no. SNPs per tree

Neighbour-joining trees in 50 SNP windows 9237 2126.44 50

Relate 198,375 99.81 2.33

Tsinfer 406,135 49.24 1.14

Singer 1,950,778 9.25 0.24

Note: The methods were applied to the same 2 Mbp region (45–65 Mbp in Chr 2) that contained 461,864 SNPs. The total number of trees inferred by each method, the 
mean span of trees in bp and mean number of SNPs associated with each tree are provided.
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7 of 18Molecular Ecology, 2025

for tsinfer and 9 bp (SD = 24 bp) for Singer. Finally, we asked how 
many SNPs fell within the span of each marginal tree. Marginal 
trees in Relate contained an average of 2.3 SNP (SD = 1.7) com-
pared with 1.14 (SD = 0.47) for tsinfer. On average, trees for 
Singer contain less than 1 SNP (0.24, SD = 0.54), with 1,950,778 
(80.73%) trees containing no SNP.

Overall, the characteristics of each tree sequence align with 
their respective methodological approaches. The number of 
SNPs associated with each NJ tree is defined by the user and will 
ultimately reflect a trade-off between information content (i.e., 
number of SNPs) and tree span. In an ideal world, window size 
would be minimised such that trees span as few recombination 

events as possible. However, if we assume that the transitions 
between trees by tsinfer reflect real recombination events, this 
would imply that the average 50 SNP window spans 43 observ-
able recombination events. Although Relate and tsinfer define 
margins between trees based on incompatible SNP patterns, 
Relate produces half the number of trees. This may reflect dif-
ferent levels of tolerance for incompatibilities, and the number 
of trees may vary depending upon the parameters chosen by the 
user. Finally, because Singer models recombination explicitly, 
it inevitably produces far more trees than the other methods. 
Although many trees in the sequence are not supported by SNP 
data, allowing recombination to shape the sequence in the ab-
sence of polymorphism data is more consistent with reality and 

FIGURE 3    |    Topology weighting of trees sequences inferred by four different methods yield broadly similar genealogical landscapes. Topology 
weights of the three possible subtree topologies (Tgeo, Tvar, Talt) are plotted for each tree in the sequence along a small section of Chr 2. Each vertical 
bar shows the proportions of each topology in one genealogical tree. Therefore, topology weights add up to 1 except for trees inferred by tsinfer since 
it allows polytomies.
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8 of 18 Molecular Ecology, 2025

may provide additional information in some inference schemes. 
However, it seems reasonable to exercise caution when mak-
ing detailed inferences from trees that are not supported by 
SNP data.

Moving beyond the summaries of tree sequences, we next used 
topology weighting to compare how topologies change along the 
genome. Topology weighting iteratively subsamples one haplo-
type from each population and estimates the proportion of each 
subtree topology. In this data set of four populations: AvePm, 
AveSy, PlaPm and PlaSy, it weighs the contribution of each of the 
three possible topologies (Figure 3)—the geography tree (Tgeo), 
where samples cluster by hybrid zone ((AveSy, AvePm) (PlaSy, 
PlaPm)), the variety topology (Tvar), where samples cluster by 
the variety, ((AveSy, PlaSy) (AvePm, PlaPm)), and an alternative 
topology (Talt), where samples neither cluster by geography or 
variety ((AvePm, PlaSy) (AveSy, PlaPm)). By iteratively sampling 
many subtrees (in our case 10,000), we can obtain their relative 
frequencies (i.e., topology weights), which provide a measure of 
the weight (or bias) of the full tree to each group-level topology 
(Figure 3).

Although the characteristics of the tree sequences vary among 
the four methods, there is striking similarity in genomic distri-
butions of the topology weights inferred from them. Figure  3 
shows the weights for the three group-level topologies. From 
visual inspection alone, the topology weights are highly similar 
among the methods, increasing and decreasing in a coordinated 
way along the chromosome. Correlation analysis of the weights, 
performed on the topologies that coincide with SNP positions, 
shows the similarity is indeed quite strong among the methods 
(ρ value ranges for Tgeo: 0.57–0.77, Tvar: 0.57–0.66, Talt: 0.45–0.71; 
Figure S8, Table S7).

However, there are also some clear distinctions. First, the change 
in amplitude of the weights is not as extreme in the NJ method 
compared with the other methods. This is not surprising, as the 
50 SNP windows span many distinct marginal trees, which we 
would expect to have a smoothing effect. Another major differ-
ence is that topology weights from tsinfer do not add up to 1, im-
plying that some subtrees cannot be classified as one of the three 
possible topologies. The reason for this is that tsinfer infers poly-
tomies, while Relate and Singer force all branches to bifurcate.

FIGURE 4    |    Ternary plots showing the joint distribution of topology weights. Empirical distributions of weights for the 4,975,454 trees inferred 
using Relate (top right) and for each chromosome (bottom). Each tile in the distribution is coloured according to the density of genealogies falling in 
that area of the distribution, as indicated in the colour scale. The three topologies associated with each axis in the ternary plot are shown in the top 
left of the plot. The three corners of the ternary plot—[1,0,0], [0,1,0], [0,0,1]—correspond to trees that perfectly match the three possible group-level 
subtrees.
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9 of 18Molecular Ecology, 2025

FIGURE 5    |     Legend on next page.
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10 of 18 Molecular Ecology, 2025

In summary, the results of our comparisons show that the differ-
ent methods produce vastly different tree sequences, yet largely 
agree on how group-level relationships change along the genome 
for our snapdragon data set. It is good to know that the crudest and 
most sophisticated approaches give a similar picture, if only from 
a topological standpoint. Deciding which method to use will de-
pend on the size of the dataset and the goals of the study. However, 
we see little reason to use the window-based approach given that 
more computationally efficient and precise methods are now 
available. Tsinfer and Relate are far better options but have dif-
ferent strengths. For example, tsinfer retains nodes and branches 
among trees, meaning that they can be represented as an ARG and 
used in analysis that leverage homology of tree features (Shipilina 
et al. 2023). In contrast, Relate has been shown to be more accurate 
than tsinfer (+tsdate) when it comes to estimating deeper coales-
cence times (Brandt et al. 2022). Singer is far more computation-
ally demanding than the other methods, so it is difficult to scale to 
large data sets. However, for smaller data sets, and in more defined 
genomic regions of interest, Singer allows for extremely fine-scale 
genealogical inference along with estimates of uncertainty.

2.4   |   Topology Weighting Reveals Regions 
Associated With Flower Colour

For our purpose, Relate seemed to be the ideal choice to infer 
genome-wide genealogies, due to its scalability, efficiency, res-
olution of polytomies and accuracy of inferring deeper coales-
cence times. Applying Relate to our genome-wide dataset yielded 
a sequence that contained 4,975,454 trees, with an average span 
of 101.2 bp (SD = 739.4 bp). We again used topology weighting to 
quantify bias towards the three group-level relationships (Tgeo, 
Tvar, Talt) for each marginal tree.

We first analysed the distribution of all topology weights in a 
ternary framework using the program TwisstNtern (Stankowski 
et al. 2024). The ternary plot is a natural framework for analys-
ing the joint distribution of weights in a tree with four groups be-
cause it is possible to graphically represent each tree as a single 
point in an equilateral triangle based on the three weights. The 
three corners of the ternary plot—[1, 0, 0], [0, 1, 0], [0, 0, 1]—cor-
respond to all trees where the sampled subtrees match only one 
of the three possible group-level subtrees. In contrast, the centre 
of the ternary plot—[1/3, 1/3, 1/3]—corresponds to trees where 
all three of the possible subtrees are found at equal frequency. 
Any other location in the ternary plot indicates an enrichment 
of one particular subtree topology. Previous simulations have 
shown that the ternary distribution of weights can be shaped 
by a range of factors, including population split times and ef-
fective population sizes, as well as processes that lead to hap-
lotype sharing between nonsister groups (e.g., introgression) 
(Stankowski et al. 2024).

In our analysis, we expected the ternary distribution of weights 
to be skewed toward the geography topology (Tgeo, top of the 

triangle in Figure 4), because this topology matches the genome-
wide relationships observed between the populations (i.e., to-
pology weighting of the genome-wide neighbour-joining tree 
(Figure S2) yields weights of Tgeo = 1.0, Tc = 0.0, Talt = 0.0). While 
we did observe this skew, the bias towards Tgeo was relatively 
weak (mean Tgeo = 0.367, Tvar = 0.317, Talt = 0.316), and similar 
across the 8 chromosomes. Although some of the trees showed 
high Tgeo weights (max Tgeo = 0.93 with 5% of trees show-
ing weights above 0.49), none of the 4,975,454 trees perfectly 
matched Tgeo. Rather, most of the genealogies clustered near the 
centre of the ternary plot (i.e., most weights were near 0.33 for all 
three topologies), indicating that haplotype diversity is broadly 
shared across the four groups.

Notably, we found striking left–right asymmetry in the distri-
bution of topology weights between the left and right halves of 
the ternary plot (Figure 4). Specifically, we observed a long tail 
of topology weights extending towards the right-hand corner of 
the plot, resulting in a 1% bias in the distribution towards the 
variety topology (Tvar). Such a bias is unexpected when sharing 
is due to the random sorting of ancestral polymorphism, as there 
is an equal chance that any given tree will be biased towards 
either one of the discordant topologies, leading to a symmetri-
cal distribution of weights (Stankowski et al. 2024). This asym-
metry is similar to what is measured by the site-based statistic 
Patterson's D.

Indeed, roughly symmetrical distributions were observed on 
several chromosomes, including Chr 1, 3 and 5 (Figure 4). The 
remaining chromosomes showed substantial asymmetry to-
wards the variety topology, driven by a relatively small number 
of genealogical trees (1490 or 0.03%) with Tvar weights that ex-
ceeded 0.55 (Figure S9). This indicates a bias of haplotype shar-
ing between populations of the same variety (Figure  S9). The 
most striking bias was observed on Chr 6, where weights ap-
proached 0.9.

To explore regions associated with the genetic differentiation of 
varieties, we plotted the genomic positions of detected Tvar out-
liers (Figure 5). Tvar outliers were spread across multiple points 
along each of the chromosomes rather than clustering at a single 
site. Most of the known colour genes were observed near Tvar 
outliers, but we also observed a bias toward Tvar in regions of the 
genome that have no known effect on flower colour, including 
regions of Chr 1, 5, 7 and 8.

2.5   |   Coalescence Times at Flavia and Rosea/Eluta 
Differ From Surrounding Background

The two genomic regions that showed the clearest association 
with the colour topology were on Chr 2 and Chr 6, together 
accounting for 66% of all Tvar outliers (or 84% using the 0.6 
cutoff). The outlier region on Chr 2 includes the recently dis-
covered Flavia (FLA) locus, which affects the patterning of 

FIGURE 5    |    Genealogical landscape of parallel hybrid zone formation revealed by topology weighting. Topology weights (loess smoothed, 
span = 50 kbp) for the 4,975,454 trees inferred by Relate plotted along each chromosome. 7 loci controlling flower colour are highlighted in yellow 
or magenta. White triangles indicate trees with raw Tvar weight between 0.55 and 0.6. Orange triangles indicate trees with raw Tvar weights ≥ 0.60.
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11 of 18Molecular Ecology, 2025

yellow colouration in the face of the flower (Bradley et al. 2025) 
(Figure 6). This signal of Tvar enrichment extends over roughly 2 
Mbp of the chromosome, interrupting bias towards Tgeo on either 
side of it. Within the FLA locus, weights for some genealogies 
exceed 0.7 (Figure 6). The other region, ROS/EL located on Chr 

6, contains the two linked colour loci, Rosea and Eluta. Rosea ac-
tivates anthocyanin biosynthesis across the corolla, while Eluta 
modifies its distribution (Tavares et al. 2018). Within the ROS/
EL region, Tvar weights are strongly elevated and characterised 
by local peaks and troughs spanning about 1 Mbp. On either side 

FIGURE 6    |    Fine-scale genealogical landscape at the FLAVIA and ROS/EL loci. (A) 5 Mbp genomic region centred around Flavia. Trees show 
relationships at various points along the sequence, with red circles indicating mutations associated with each tree. Vertical bars represent haplo-
types, coloured according to the populations (PlaSy, PlaPm, AveSy, AvePm). From left to right (1–5), trees 1 and 5 are chosen arbitrarily, but equally 
distant from the locus. Trees 3 and 4 are trees have the highest smoothed and raw Tvar weights, respectively. Bottom panel shows topology weights 
(Tgeo, blue; Tvar, red; Talt, black) through the region. Solid lines are loess smoothed weights (span = 50 kbp), while dots are raw weights. FLA locus 
(Chr2:52560000–54,050,000) is marked in a yellow bar, while the rest is considered as flank in TMRCA calculations. (B) Same as (A), but for ROS/
EL locus. From left to right, trees 1 and 5 are equally distant from the colour locus, while trees 2–4 are within in. Tree 2 and 4 have the highest raw 
Tvar weights at the ROS1 and EL loci. Tree 3 shows a low Tvar likely due to recombination between the two linked loci. ROS/EL locus (Chr6:52775000–
53,150,000) is marked in a magenta bar, while the rest is considered as flank in TMRCA calculations.
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12 of 18 Molecular Ecology, 2025

of ROS/EL, all three topology weights hover around 0.33, indi-
cating that haplotype variation is broadly distributed among the 
groups.

Given existing evidence for selection on FLA (Bradley 
et al. 2025) and ROS/EL (Tavares et al. 2018), we next examined 
the coalescence times for genealogies in and around these colour 
loci. Since positive selection purges haplotype diversity from the 
population, we may expect to find shallower coalescence times 
within each variety (often measured using π) reflecting the his-
torical sweep of causal alleles (Hejase et al. 2020). In addition, 
these loci can also generate local barrier effects in the genome, 
which we would expect to increase coalescence times between 
the varieties (often measured using dxy) (Hejase et  al.  2020; 
Wakeley 2009).

To test for these patterns, we first compared the median time 
to the most recent common ancestor (TMRCA) for geneal-
ogies inside each locus to those in the flanking regions of 

the loci where there was no obvious association with colour 
(Figure 6). For FLA, the median TMRCAs for var. pseudoma-
jus (i.e., PlaPm + AvePm) were higher inside the locus than in 
the flanking regions; whereas, for ROS/EL, there was no obvi-
ous difference (Figure 7). For var. striatum (i.e., PlaSy + AveSy), 
we observed a similar result in FLA and ROS/EL, with median 
TMRCAs being lower in the loci than in the flanking regions. 
We also compared TMRCAs between the varieties, finding 
higher median TMRCAs inside FLA and ROS/EL loci in com-
parison to the flanking regions.

We also examined the relationship between the TMRCAs and 
Tvar weights inside each locus, as we expected signatures to be 
most pronounced for genealogies that more closely resembled 
the variety topology. In FLA, we found no relationship between 
the median TMRCA and Tvar weight within var. pseudomajus 
(ρ = 0.002, Figure  7). For ROS/EL, we only observed a weak 
negative relationship, with higher Tvar trees showing a broad 
range of median TMRCAs within var. pseudomajus (Figure 7). 

FIGURE 7    |    Coalescence times at FLAVIA and ROS/EL. Boxplots for (A) FLAVIA and (B) ROS/EL show the median time to most recent common 
ancestor (TMRCA) within var. pseudomajus (top row), within var. striatum (middle row), and between var. pseudomajus and var. striatum (bottom 
row), all on a log scale. The left boxes (‘Flank’) show the TMRCAs in the flanking regions around the locus, while the right boxes (‘Locus’) show the 
values inside the locus. The scatterplots and dashed black lines show the full distribution and the overall smoothed trend between the Tvar weight and 
median TMRCA within the locus, (rows are as indicated for the boxplots). ρ is the correlation coefficient from Spearman's rank correlation.
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13 of 18Molecular Ecology, 2025

In contrast, we found a very clear negative relationship between 
median TMRCA and Tvar weight within var. striatum for both 
loci, such that genealogies with high Tvar weights tended to have 
shallower median TMRCAs (ρ = −0.399 for FLA and −0.364 for 
ROS/EL, Figure 7). We also observed a clear positive relation-
ship between Tvar weights and median TMRCAs between the 
two varieties, such that genealogies with a high Tvar tended to 
have higher TMRCA or deeper coalescence times. Similar pat-
terns are observed when each hybrid zone was analysed sepa-
rately (Figures S10 and S11).

While preliminary, these results are consistent with (i) selection 
having acted on haplotypes associated with colour and (ii) sug-
gest that these loci have a local barrier effect. For FLA, evidence 
for selection mainly comes from sharp allele frequency clines at 
the Planoles hybrid zone (Bradley et al. 2025; Field et al. 2025, 
Surendranadh et al. 2025). Our results provide preliminary ev-
idence that a selective sweep has occurred on the background 
of var. striatum and the allele is present in both Avellanet and 
Planoles. The lack of a signature in var. pseudomajus is consis-
tent with the phenotypic effect of FLA, as it only affects yellow 
colouration. The ROS/EL locus is more complex, with previous 
evidence suggesting that there have been multiple independent 
sweeps at the two linked loci (Tavares et al. 2018). Here, we only 
found evidence for selection in the yellow group, while previ-
ous work has suggested sweeps on both the yellow and magenta 
backgrounds. Our results do not preclude such a sweep, as foot-
prints of selection are transient and fade with time. However, it 
might indicate a more recent sweep in the yellow population. 
Also, our analysis is coarse-grained and does not consider how 
fine-scale genealogical relationships change across the region. 
In future, we plan to use genealogical tools and a much larger 
dataset to dissect this region in fine detail.

2.6   |   Conclusion and Implications for Genomic 
Studies of Speciation

In this paper, we studied the genomic landscape associated with 
replicate hybrid zones in Antirrhinum majus. Our study high-
lights many of the known challenges in interpreting genome 
scans in the context of adaptation and speciation, as differentia-
tion landscapes can be shaped by a multitude of factors and pro-
cesses that have nothing to do with speciation per se (Ravinet 
et  al.  2017; Wolf and Ellegren  2017). Comparing two parallel 
hybrid zones, we show that genome scans can be dominated by 
signals of historical demography, a factor less widely discussed 
but that must be accounted for when interpreting patterns of 
genome-wide variation. At Planoles, var. pseudomajus and var. 
striatum show very little differentiation, as we would expect 
between taxa that were described as varieties based only on a 
difference in flower colour. At a second previously unstudied 
hybrid zone at Avallenet, differentiation was far more striking 
and characteristic of more divergent taxa (Bolnick et al. 2023; 
Stankowski and Ravinet 2021). This shows that differentiation 
landscapes can be extremely variable within species, highlight-
ing the dangers of generalising broader processes from a single 
pair of samples.

Our analyses suggest that different levels of divergence at the 
two hybrid zones are primarily due to variation in the timing 

and/or rate of gene flow following secondary contact. This 
raises important questions about what has caused this differ-
ence and, more broadly, the long-term dynamics of gene flow 
between Antirrhinum varieties in the Pyrenees. The strongest 
patterns of differentiation were always observed in compar-
isons that included var. striatum from Avellanet. This result 
can be explained in several ways. For example, varieties at 
Avellanet may exhibit historical divergence that was typical of 
allopatric var. striatum and var. pseudomajus. This divergence 
may have been maintained at Avellanet either by a lower rate 
of gene flow than at Planoles or by secondary contact being 
much more recent than at Planoles. The current spatial dis-
tribution of var. pseudomajus hints at the first possibility, as 
the continuous populations around Planoles contrast with 
the patchier distribution at Avellanet. Moreover, a slightly 
distant population of var. striatum, isolated from Planoles by 
a mountain pass, shows a similar pattern of differentiation 
when compared to populations at Planoles (Field et al. 2025). 
Another possibility is that the var. striatum population from 
Avellanet was historically isolated, causing its demographic 
history to be distinct from other populations. These questions 
are beyond the scope of our current dataset, and more detailed 
work is needed to understand the biogeographic and evolu-
tionary history of A. majus.

Topology weighting of marginal trees inferred from gene-
alogies allowed us to identify loci associated with the two 
snapdragon varieties. Flower colour is the only trait that con-
sistently differs between the varieties, suggesting that the Tvar 
outliers may underpin this variation. Two of the loci known to 
cause differences in pigmentation, Flavia (Bradley et al. 2025) 
and Rosea/Eluta (Schwinn et  al.  2006; Tavares et  al.  2018; 
Whibley et al. 2006), were identified as Tvar outliers; whilst oth-
ers, Cremosa (Richardson et al. 2025), Rubia (Field et al. 2025), 
Sufurea (Bradley et al. 2017) and Aurina (Bradley et al. 2025) did 
not show clear associations. This could be due to several rea-
sons, including proximity of samples to the core of the hybrid 
zones, effect size of the loci and sequencing coverage. The re-
maining Tvar outliers have not been previously associated with 
colour. It is possible that these outliers underpin some other trait 
(floral or nonfloral) that differs between the varieties, or they 
may simply be spurious associations reflecting the highly sto-
chastic nature of the coalescent process. This highlights a more 
general limitation of all genome scans: They detect regions of 
elevated differentiation between populations, and more detailed 
mapping studies and functional work are needed to demonstrate 
causality.

Finally, we encourage others to explore and critically evaluate 
the utility of genealogical methods in their research. Several 
recent studies, mostly focusing on human populations, sug-
gest that genealogical tools can lead to more accurate infer-
ences about past evolutionary processes (Fan et  al.  2022, 
2023; Speidel et al. 2019; Stern et al. 2019; Wohns et al. 2022). 
However, relatively few studies have used genealogical meth-
ods to study adaptation and speciation (Campagna et al. 2017; 
Hejase et al. 2020, 2022; Hooper et al. 2024; Meyer et al. 2024; 
Rueda-M et  al.  2024; Stankowski et  al.  2024; Wang and 
Coop  2022). Our preliminary genealogical comparison of 
known adaptive loci with the surrounding genomic back-
ground further highlights the potential of these tools for 
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studying the interplay between selective sweeps and barriers 
to gene flow. ARGs and tree sequences are very rich struc-
tures that are complex and challenging to interpret (Shipilina 
et al. 2023). However, paired with new linked-read sequenc-
ing methods, we think there is tremendous scope for creativity 
around how we can best visualise local genealogical relation-
ships, account for uncertainty, and identify signatures that are 
associated with the speciation process.

3   |   Materials and Methods

3.1   |   Sample Collection, DNA Extraction 
and Sequencing

Leaf material was collected from individuals of A. majus at two 
hybrid zones near the towns of Planoles (42.3162° N, 2.1039° E) 
and Avellanet (42.3503° N, 1.3288° E) (Table S1). Several leaves 
were collected from each individual and refrigerated at 4°C 
before further processing. DNA was preserved by placing leaf 
tissue in a paper envelope, and the envelopes into an air-tight 
plastic bag with silica gel. DNA was extracted using a custom 
protocol optimised for isolating high molecular weight DNA 
(Methods S1).

3.2   |   Library Preparation and Sequencing

Sequencing libraries were constructed by mixing genomic DNA 
with a pool of haplotagging beads with a different set of A and 
C barcode oligos (see Supplementary Table 1 for oligonucleotide 
sequences). This modification shifts the barcode position for 
the A/C segment from the original i7 index position into Read 
2, followed by a mutated Tn5-17A/18G-MEmut sequence—
ACTTGTGTATAAGAGACAG (Steiniger-White et al. 2002). The 
mutated Tn5-MEmut sequence allows tagmentation but does 
not otherwise interfere with Illumina sequencing. An additional 
standard 8-bp i7 Illumina index barcode was added during the 
final PCR amplification to introduce a fifth barcode segment to 
allow multiplexing of more than 384 samples. Amplified librar-
ies were cleaned up and size-selected using Ampure magnetic 
beads (Beckman Coulter), Qubit quantified and adjusted with 
10 mM Tris, pH 8, 0.1 mM EDTA to 2.5 nM concentration for 
sequencing. Libraries were sequenced aiming for 2× coverage 
with Illumina paired-end sequencing (2 × 150 bp) across a lane 
of Novaseq 6000 S4 by Azenta Life Sciences (Leipzig Germany). 
The sequences were then demultiplexed by recognising and 
trimming away the Tn5-MEmut sequence from R2 and the re-
maining B/D and A/C along with the Plate barcodes. The re-
maining sequences were processed as previously described in 
Meier et al. (2021).

3.3   |   Processing of Raw Reads and Read Mapping

Raw reads were mapped to the A. majus reference genome v3.5 
(Li et al. 2019) using EMA v0.7.0 (Shajii et al. 2018), a BX-tag-
aware modification of BWA (Li 2013). First, haplotag barcodes 
with BX tags were converted to 16-basepair barcodes using 
16BaseBCGen (https://​tinyu​rl.​com/​SamHa​plotag). Reads with 

correct BX tags (98.14%) were then mapped with EMA, which 
favours alignments where reads with the same barcode group 
together. Reads with faulty BX tags (1.86%) were mapped to the 
genome using BWA v0.7.17. The resulting BAM files were com-
bined and checked for quality using the multi-bamqc command 
in qualimap v2.2.1 (Okonechnikov et al. 2016) (Table S1). PCR 
and optical duplicates were marked and removed using the 
markdup tool in sambamba (Tarasov et al. 2015).

3.4   |   Variant Discovery Imputation, Phasing 
and Allele Polarisation

We used the mpileup and call commands in bcftools v1.18 
(Danecek et al. 2021) to identify candidate sites that were then 
used for final genotype inference and imputation by STITCH 
v1.6.10 (Davies et al. 2016). Variant calling was performed with 
the bcftools multiallelic calling program using the flags -m and 
--annotate AD, ADF, ADR, DP, QS, SP. The resulting VCF was 
filtered to remove low-quality and potentially erroneous variant 
sites (Table S2). We first removed all INDELs (bcftools view -V 
indels), all SNPs within five basepairs of INDELs (bcftools fil-
ter –SnpGap 5), all monomorphic REF or ALT sites (bcftools 
view -m2 -e “AC==AN || AC==0”), and all sites with more than 
two alleles (bcftools view -M2). Next, we removed all sites with 
g 2.5 times the mean coverage across all samples (130×), sites 
with a genotype quality score < 20 and a mapping quality score 
< 30 (bcftools filter -e “INFO/DP> 130 | QUAL< 20 | MQ< 30”). 
Finally, bi-alleleic sites with > 0.8 of missing genotypes were 
removed (bcftools view -e ‘F_MISSING > 0.80’), producing a set 
11,574,426 candidate sites (Table S2).

We applied STITCH to impute variants for the 11 million sites 
described above. STITCH models each chromosome as a mosaic 
of K founding haplotypes using both the underlying sequence 
reads and the linked-read information encoded in the BX-tag. 
Unlike traditional callers, STITCH imputes genotypes in the 
presence of missing data based on haplotype information from 
all sequenced individuals. Following guidelines and informed by 
pilot STITCH runs, we used the following parameters: --K = 75,-
-nGen = 100,--niter = 40,--expRate = 0.5,--downsampleToCov 10 
--use_bx_tag TRUE. To optimise computational resources and 
runtime, we performed STITCH with the above parameters on 1 
Mbp regions with an overlap of 100 kb overhang allowing them 
to be combined afterwards. Out of the 11 million sites, 41,396 
(0.4%) sites were deemed invariant by STITCH (i.e., the bcftools 
and STITCH calls disagreed) and were removed, leaving a final 
set of 11,533,030 SNPs of which 93.9% had an INFO score ≥ 0.8, 
computed by STITCH as a proxy for imputation confidence 
(Table S3). Moreover, the observed and imputed allele frequen-
cies were highly correlated (R2 = 0.87).

Finally, we used the phase_common_static from SHAPEIT5 v 
5.1.1 (Hofmeister et  al.  2023) to statistically phase genotypes 
without a reference panel. We polarised alleles in A. majus as 
ancestral or derived using high-coverage PoolSeq sequence 
data (mean coverage = 89.97×) from multiple populations of 
the closely related outgroup species A. molle (Durán-Castillo 
et al. 2022). Detailed information on the logic used can be found 
in the supplementary methods.
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3.5   |   Genome-Wide Evolutionary Relationships 
and Demographic Inference

We used three methods to infer genome-wide evolutionary re-
lationships among the sequenced samples. First, we estimated 
principal components of the genotype matrix. Prior to anal-
ysis, we pruned the data set to reduce linkage disequilibrium 
(LD) between neighbouring SNPs (r2 threshold of 0.1, window 
size = 50 SNPs, step size = 10 SNPs). This was done using Plink 
v2.0 (Chang et al. 2015) using the command --indep-pairwise 50 
10 0.1, yielding 1,710,010 SNPs.

We used the model-based clustering program Admixture v1.3 
(Alexander et al. 2009) to assess the genetic structure. Plink v2.0 
was first used to produce BED files from the original VCF file. 
We ran Admixture on the LD-pruned dataset using the unsuper-
vised model for all values of K ranging from 2 to 6.

We also inferred a phylogenetic network using the R package 
phangorn v2.12 (Schliep 2011). The LD-pruned data set was con-
verted to PHYLIP format using the script vcf2phylip. We then 
calculated a distance matrix from all aligned SNPs using the 
dist.ml function with model = “JC69”. The phylogenetic network 
was then inferred using the neighborNet function and drawn 
with Splitstree v4.19.1 (Huson and Bryant 2006).

We calculated per-site FST between each pair of populations on 
the full SNP data set, using the approach described by Weir and 
Cockerham  (1984), implemented in vcftools v0.1.16 (Danecek 
et  al.  2011) using the --weir-fst-pop flag. Site-based estimates 
were averaged to obtain a genome-wide estimate.

We estimated gene flow between the two varieties inde-
pendently in each locality using diffusion approximation, 
implemented in the software program δaδi (Gutenkunst 
et  al.  2010). Since secondary contact is considered the most 
likely explanation for the current distribution of the two va-
rieties (Tavares et  al.  2018), we focused on comparing sec-
ondary contact models (SC) with strict isolation models (SI). 
All models included variation in the ancestral population's 
effective size prior to population split, following Momigliano 
et al. (2021). In their basic form, both SI and SC models rep-
resent a population split into two populations with specific ef-
fective population sizes (N1 and N2) that diverge for a period 
without gene flow (Ts). In the SC model, these populations 
then begin exchanging migrants during a secondary contact 
phase (Tsc), with potentially asymmetric migration (M1 and 
M2). We expanded these models to account for recent popu-
lation growth (p1 and p2) and/or Hill–Robertson interference 
by fitting a genome fraction (P) where the effective population 
is only a fraction (hrf) of what is found in the rest of the ge-
nome. In total, we tested eight distinct models, including four 
modifications of the SI and SC models: (1) standard model, (2) 
model with population growth in the daughter populations, 
(3) a standard model with Hill–Robertson interference and (4) 
a combined model that included both population growth and 
Hill–Robertson interference. Each model was fitted 30 times 
to the data to ensure convergence, and model comparison was 
performed using the Akaike information criterion (AIC). The 
importance of gene flow in each locality was then compared 
by calculating the ratio between Tsc/Ts.

3.6   |   Genome-Wide Differentiation, Diversity 
and Recombination Rate

We calculated FST in 10 kb windows for each pair of populations 
using the script popgenWindows.py (https://​github.​com/​simon​
hmart​in/​genom​ics_​general). Genetic diversity was measured 
for each site using the -site-pi function in vcftools.

We used LDhat v2.2 (Auton and McVean 2007) to calculate the 
population-scaled recombination rate (ρ) between each SNP, 
separately for each population. We first used the lkgen func-
tion in LDhat to generate a log-likelihood lookup table for the 
number of haplotypes in each population, with θ = 0.009 cal-
culated from average genome-wide π in 10 kb windows from a 
previously published study (Tavares et al. 2018). We then used 
the interval function with the parameters: -its 10,000,000 -samp 
5000 -bpen 5 to estimate variable recombination rates. Finally, 
we summarised results from the MCMC iterations to estimate 
mean ρ between each SNP using the stat function with the pa-
rameters: --burnin 1000. LDhat was performed on windows of 
2000 variants with an overlap of 100 variants at each end and 
combined afterwards.

3.7   |   Genealogical Inference

We used four methods to infer trees from our data. First, we in-
ferred neighbour-joining trees for 50 SNP nonoverlapping win-
dows using the script phyml_sliding_windows.py (https://​github.​
com/​simon​hmart​in/​genom​ics_​general) with –minPerInd = 15.

The second method used was tsinfer (Kelleher et al. 2019). We 
used a custom script to convert phased, polarised SNPs into the 
tskit.samples format, which was then used to infer tree topologies 
with the tsinfer.infer function in the tsinfer v0.3.2 library (https://​
github.​com/​tskit​-​dev/​tsinfer), followed by the TreeSequence.sim-
plify function in the tskit v0.5.8 library (https://​github.​com/​tskit​
-​dev/​tskit​) to remove unary nodes.

Third, we inferred a tree sequence using Relate v1.1.8 (Speidel 
et al. 2019). We assumed μ = 5.7 ✕ 10−9/bp/generation and a uni-
form recombination rate of 1 cM. We initially ran Relate sepa-
rately on each chromosome, setting the haploid Ne to 813,388, as 
derived earlier from π = 4Neμ where π = 0.009. We then used the 
EstimatePopulationSize.sh script to jointly infer a time-varying 
population size history and branch lengths under that history. For 
this step, we used a --threshold 0 to ensure that no trees were ex-
cluded in the joint-fitting and --num_iter = 10. We also included 
each population in the argument. Finally, we converted the ge-
nealogical trees stored in .anc and .mut format to .newick format 
with the RelateExtract –mode AncToNewick function. We focused 
our analysis on a five Mbp region around two flower colour loci: 
FLAVIA (locus—Chr2:52650000–54050000; region including 
locus and the flanking sequence on either side—Chr2:51100000–
56100000) and ROS/EL (locus—Chr6:52775000–53150000; 
region including locus and the flanking sequence on either side—
Chr2:50500000–55500000). Specific genealogical trees were plot-
ted using a custom script modified from Treeview.sh in the Relate 
library. Time to the most recent ancestor (TMRCA) is computed 
using a custom modified script from the tskit library for three sub-
sampled groups: Within all var. pseudomajus individuals, within 
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all var. striatum individuals, and between var. pseudomajus and 
var. striatum individuals. For each case, TMRCA is first computed 
for all pairwise combinations of individuals, followed by calculat-
ing the median.

Finally, we ran Singer v0.1.7 (Deng et al. 2024) on 500 kbp ge-
nomic windows. For each window, we calculated average π with 
VCFtools, which was then used to calculate Ne from π = 4Neμ. We 
ran singer_master with the parameters: -m = 5.7e-9,-ratio = 1,-
mcmc_iter = 100,-thin = 20,-polar = 0.9. We then used the func-
tion convert_to_tskit to convert the last MCMC iteration to tskit 
format and to extract trees in newick format.

3.8   |   Topology Weighting and Ternary Analysis

Topology weighting was performed on sequences of trees de-
rived from the various genealogical inference methods using 
Twisst (Martin and Van Belleghem  2017). Due to the large 
number of trees and haplotypes, we followed standard Twisst 
guidelines and limited the topology sampling to 10,000 subtrees 
using the flag --method fixed. Genome-wide topology weights 
were plotted with loess smoothing (span = 50 kbp). We used the 
TwisstNTern framework (Stankowski et  al.  2024) to visualise 
and calculate asymmetry in the distribution of topology weights 
for the whole genome and for each chromosome separately using 
the --superfine granularity.
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