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Abstract	

Restriction-modification	 (RM)	 represents	 the	 simplest	 and	 possibly	 the	 most	 widespread	

mechanism	 of	 self/non-self	 discrimination	 in	 nature.	 In	 order	 to	 provide	 bacteria	 with	

immunity	against	bacteriophages	and	other	parasitic	genetic	elements,	RM	systems	rely	on	

a	 balance	 between	 two	 enzymes:	 the	 restriction	 enzyme,	 which	 cleaves	 non-self	 DNA	 at	

specific	restriction	sites,	and	the	modification	enzyme,	which	tags	the	host’s	DNA	as	self	and	

thus	 protects	 it	 from	 cleavage.	 In	 this	 thesis,	 I	 use	 population	 and	 single-cell	 level	

experiments	 in	combination	with	mathematical	modeling	to	study	different	aspects	of	 the	

interplay	between	RM	systems,	bacteria	and	bacteriophages.	First,	I	analyze	how	mutations	

in	phage	 restriction	sites	affect	 the	probability	of	phage	escape	–	an	 inherently	 stochastic	

process,	 during	 which	 phages	 accidently	 get	 modified	 instead	 of	 restricted.	 Next,	 I	 use	

single-cell	 experiments	 to	 show	 that	 RM	 systems	 can,	 with	 a	 low	 probability,	 attack	 the	

genome	 of	 their	 bacterial	 host	 and	 that	 this	 primitive	 form	 of	 autoimmunity	 leads	 to	 a	

tradeoff	between	the	evolutionary	cost	and	benefit	of	RM	systems.	Finally,	I	investigate	the	

nature	of	interactions	between	bacteria,	RM	systems	and	temperate	bacteriophages	to	find	

that,	as	a	consequence	of	phage	escape	and	its	impact	on	population	dynamics,	RM	systems	

can	 promote	 acquisition	 of	 symbiotic	 bacteriophages,	 rather	 than	 limit	 it.	 The	 results	

presented	here	uncover	new	fundamental	biological	properties	of	RM	systems	and	highlight	

their	 importance	 in	 the	 ecology	 and	 evolution	 of	 bacteria,	 bacteriophages	 and	 their	

interactions.	
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Preface	

“Le	rôle	de	l'infiniment	petit	est	infiniment	grand.”	

Louis	Pasteur	

Bacteria	represent	the	oldest	and	most	abundant	forms	of	life	on	Earth	and	the	importance	

of	understanding	them	cannot	be	overstated.	Discovery	of	the	microbial	world	and	the	early	

days	 of	microbiology	were	 closely	 intertwined	with	 the	 development	 of	 scientific	 though	

itself	 in	 a	 period	 of	 time,	 during	 which	microbes	 have	 been	 identified	 as	 the	 underlying	

cause	 of	 infectious	 diseases.	 Due	 to	 their	 relative	 simplicity,	 bacteria	 and	 their	 viruses	

(bacteriophages),	 later	took	the	role	of	ideal	model	systems,	where	one	could	tackle	some	

of	the	greatest	problems	in	biology,	such	as	uncovering	the	molecular	basis	of	heredity	and	

breaking	 the	 genetic	 code.	 However,	 not	 only	 are	 bacteria	 and	 bacteriophages	 the	most	

“primitive”	 form	 of	 life	 on	 our	 planet,	 they	 are	 also	 the	 most	 abundant.	 Only	 relatively	

recently	we	have	 learned	 to	 appreciate	 that	 the	 complexity	 of	 the	microbial	world	 is	 not	

bounded	 by	 the	 cell	 envelope,	 and	 that	 in	 natural	 environments,	 bacteria	 and	 phages	

interact	 to	 form	 complex	 communities	 with	 principles	 of	 their	 own.	 After	 decades	 of	

research	 invested	 into	 elucidating	 the	 molecular	 mechanisms	 underlying	 fundamental	

biological	 processes	 of	 these	 simple	 organisms,	 it	 would	 seem	 that	 we	 are	 in	 an	 ideal	

position	to	comprehend	their	interactions	as	well.	This	thesis	represents	a	humble	attempt	

towards	that	goal.	
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1 Introduction	

Restriction-Modification	 (RM)	 systems	 are	 an	 integral	 part	 of	 the	 prokaryotic	world.	 They	

are	present	 in	nearly	all	bacteria,	as	well	as	archaea,	with	multiple	RM	systems	frequently	

coexisting	 in	 a	 single	 genome	 (Oliveira,	 Touchon,	 &	 Rocha,	 2014).	 Although	 they	 were	

discovered	more	 than	six	decades	ago	and	 their	molecular	mechanism	of	action	has	been	

studied	 in	 great	 detail,	 the	 important	 question	 regarding	 their	 role	 in	 natural	 ecosystems	

remains	 unanswered.	 Typically,	 RM	 systems	 are	 thought	 to	 represent	 a	 primitive	 form	of	

innate	 immunity	 against	 infections	 by	 bacteriophages	 (phages)	 (Tock	 &	 Dryden,	 2005).	

Depending	on	the	environment,	phages	can	outnumber	bacteria	by	1-2	orders	of	magnitude	

(Wigington	et	al.,	2016)	and	represent	the	major	drivers	of	prokaryotic	evolution	(Koskella	&	

Brockhurst,	2014).	It	comes	as	no	surprise	that	bacteria	would	carry	mechanisms	to	increase	

their	chances	of	survival	in	the	face	of	constant	threat	of	phage	attack.	While	it	is	beyond	a	

doubt	 that	RM	systems	can	significantly	 lower	 the	 likelihood	of	phage	 infections,	whether	

this	 is	 their	 evolutionary	 raison	 d’être	 is	 a	 different	 question,	 the	 answer	 to	which	 is	 less	

clear	 and	more	 difficult	 to	 find	 (Murray,	 2002).	My	 aim	 in	 this	 introductory	 chapter	 is	 to	

briefly	summarize	our	understanding	of	the	biology	of	these	intriguing	genetic	elements	and	

outline	some	of	the	open	questions,	which	I	think	will	need	to	be	answered	before	we	can	

fully	appreciate	the	role	that	RM	systems	play	in	the	ecology	and	evolution	of	bacteria	and	

phages.	

1.1 Molecular	mechanism	and	types	of	RM	systems	

Most	RM	systems	are	composed	of	two	components	encoded	by	a	pair	of	genetically	linked	

genes.	 The	 first	 component	 is	 the	 restriction	 endonuclease	 (R),	 which	 recognizes	 well-

defined	DNA	sequences	called	restriction	sites	and	cleaves	the	DNA	either	within	these	sites,	

or	 in	 their	proximity.	The	second	component	 is	 the	methyltransferase	 (M),	also	called	 the	

modification	 enzyme,	 which	 recognizes	 the	 same	 sequences	 as	 R	 and	 modifies	 them	 by	

covalently	 attaching	 a	 methyl	 group	 to	 one	 of	 the	 nucleotides	 (Arber	 &	 Linn,	 1969).	

According	 to	 the	 traditional	 view,	 the	 role	 of	 R	 is	 to	 recognize	 and	 cleave	 heterologous	

unmodified	DNA,	such	as	that	injected	into	the	bacterium	during	phage	infection.	The	role	
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3	

which	 recognize	 identical	 palindromic	 sequences.	 The	 best-studied	 RM	 systems	 (EcoRI,	

EcoRII,	EcoRV)	are	type	IIP.	R	and	M	of	type	IIG	RM	systems,	while	functionally	independent,	

are	 fused	 together	 into	 a	 single	 structural	 unit	 (Liang	&	 Blumenthal,	 2013).	 Although	 not	

well	studied,	Type	IIG	systems	are	very	abundant	in	bacterial	genomes	(Oliveira	et	al.,	2014).	

Type	 III	 RM	 systems	 are	 structurally	 similar	 to	 type	 I,	 although	 they	 do	 not	 encode	 a	

separate	 specificity	 subunit.	R	and	M	of	 type	 III	RM	systems	 form	multi-subunit	enzymes,	

which	 act	 on	 two	 recognition	 sequences	 facing	 the	opposite	 orientation.	DNA	 cleavage	 is	

ATP-dependent.	RM	systems	carried	by	phage	P1	(EcoP1I,	EcoP15I)	are	type	III	(Rao,	Dryden,	

&	Bheemanaik,	2014).	

Type	IV	RM	systems	have	been	added	to	the	portfolio	only	recently.	They	typically	consist	of	

only	R,	which	recognizes	and	cleaves	methylated	sequences.	McrBC	from	Escherichia	coli	is	a	

well-studied	example	of	a	type	IV	RM	(Loenen	&	Raleigh,	2014).	

1.2 Abundance	and	mobility	of	RM	systems	in	bacteria	

More	than	10,000	RM	systems	have	been	found	so	far,	with	the	number	growing	rapidly	as	

more	 bacterial	 genomes	 are	 sequenced	 (R.	 Roberts,	 Vincze,	 Posfai,	 &	 Macelis,	 2015).	

Naturally	 competent	 bacteria	 like	 Helicobacter	 pylori,	 Haemophilus	 influenzae,	 Neisseria	

gonorrhoeae,	Neisseria	 meningitidis	 and	Methanococcus	 jannaschii	 typically	 carry	 a	 large	

number	of	different	RM	systems.	On	the	other	hand,	no	RM	system	has	yet	been	described	

in	obligatory	intracellular	parasites	such	as	Ricketsia,	Chlamydia	and	Coxiella	(Blumenthal	&	

Cheng,	2002).	The	reasons	for	such	enormous	variability	in	RM	systems	and	the	factors	that	

determine	the	optimal	number	of	RM	systems	per	genome	are	not	understood.	

RM	 systems	 are	 highly	 mobile	 genetic	 elements.	 They	 often	 reside	 on	 plasmids,	 phages,	

transposons	 or	 integrons,	 suggesting	 their	 tendency	 to	 undergo	 horizontal	 gene	 transfer	

(Furuta	 &	 Kobayashi,	 2012).	 Homologous	 RM	 systems	 were	 found	 in	 distantly	 related	

organisms	 such	 as	Methanobacterium	 thermoformicicum	 and	N.	 gonorhoeaae	 (Nölling	 &	

Vos,	 1992)	 and	 intra-genomic	 movement	 of	 an	 IS-linked	 RM	 system	 has	 been	 directly	

observed	in	laboratory	experiments	(Takahashi,	Ohashi,	Sadykov,	Mizutani-Ui,	&	Kobayashi,	

2011).	However,	the	evolutionary	relationships	between	different	RM	systems	are	typically	
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difficult	to	disentangle	(Blumenthal	&	Cheng,	2002).	Sequences	of	different	RM	systems	are	

typically	 very	 diverse	 and	 indicate	 that	 RM	 systems	 have	 evolved	 multiple	 times	

independently	 (Wilson	 &	 Murray,	 1991).	 Since	 cognate	 methyltransferases	 and	

endonucleases	 recognize	 the	 same	 nucleotide	 sequences,	 one	 would	 expect	 at	 least	 the	

target	recognition	domains	of	cognate	R	and	M	pairs	to	be	homologous.	Interestingly,	this	is	

not	 the	 case	 (Chandrasegaran	 &	 Smith,	 1988;	 Wilson	 &	 Murray,	 1991).	 Moreover,	

methyltransferases	are	typically	more	conserved	than	endonucleases,	whose	sequences	are	

highly	divergent	(Pingoud	et	al.,	2002).	There	is	currently	no	satisfactory	explanation	for	the	

seemingly	different	rates	of	evolution	of	the	two	enzymes.	

1.3 Possible	roles	of	RM	systems	

RM	systems	were	originally	discovered	due	to	 their	ability	 to	protect	bacteria	 from	phage	

infections	 (Bertani	 &	 Weigle,	 1953)	 and	 they	 were	 subsequently	 labeled	 as	 a	 type	 of	

prokaryotic	 immunity.	 However,	 there	 has	 so	 far	 been	 only	 one	 attempt	 to	 directly	 test	

whether	RM	systems	could	have	evolved	and	be	maintained	in	nature	due	to	their	ability	to	

protect	 bacteria	 from	 phages	 (Korona	 &	 Levin,	 1993).	 In	 these	 experiments,	 the	 authors	

directly	competed	E.	coli	 strains	with	and	without	an	RM	system	 in	 the	presence	of	 three	

different	phage	species,	and	observed	that	carrying	an	RM	system	was	of	little	benefit	to	the	

bacteria.	Instead	of	relying	on	the	RM	system	as	a	general	mechanism	of	defense,	both	RM+	

and	 RM-	 populations	 evolved	 three	 distinct	 phage	 receptor	mutations,	 each	 to	 protect	 it	

from	 a	 specific	 phage	 (Korona	 &	 Levin,	 1993).	 Rather	 than	 rejecting	 the	 hypothesis	

according	to	which	RM	systems	evolved	and	are	maintained	as	a	resistance	mechanism,	this	

intriguing	 result	 opened	 up	 a	 number	 of	 new	 questions.	 To	 what	 extent	 is	 this	 result	

dependent	 on	 the	 environment	 and	 to	 what	 extent	 can	 it	 be	 generalized	 to	 other	 RM	

systems	 and	 other	 phages?	 What	 are	 the	 advantages	 of	 receptor	 resistance	 versus	 RM-

based	 immunity?	Why	have	bacteria	evolved	various	mechanisms	of	 immunity	 if	 receptor	

resistance	 is	 a	 readily	 available	 and	 efficient	method	 of	 phage	 resistance?	Unfortunately,	

these	questions	have	received	 little	attention	and	whether	or	not	RM	systems	could	have	

evolved	as	an	immune	system	is	still	unknown.	

An	 alternative	 hypothesis	 for	 the	 potential	 role	 of	 RM	 systems	 states	 that,	 instead	 of	
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protecting	bacteria	from	parasites,	RM	systems	themselves	are	parasitic	pieces	of	“selfish”	

DNA.	According	to	this	hypothesis,	RM	systems	confer	no	benefit	to	the	host	bacterium	and	

persist	solely	because,	once	acquired,	they	cannot	be	lost	without	death	of	the	former	host	

bacterium	(Naito,	Kusano,	&	Kobayashi,	1995).	Such	“genetic	addiction”	behavior	has	been	

demonstrated	in	laboratory	conditions	for	several	type	II	RM	systems	(Kobayashi,	2001).	In	

these	 experiments,	 induced	 loss	 of	 a	 plasmid	 carrying	 an	 RM	 system	 resulted	 in	 post-

segregational	 killing,	 similar	 to	 that	 caused	 by	 toxin-antitoxin	 (TA)	 systems	 (Hayes,	 2003),	

albeit	 caused	 by	 a	 different	 mechanism	 (Handa	 &	 Kobayashi,	 1999).	 It	 has	 to	 be	 noted	

though	that	post-segregational	killing	can	only	operate	in	the	context	of	type	II	RM	systems	

and	 that	 type	 I,	 III	 and	 IV	 RM	 systems	 do	 not	 and	 cannot,	 based	 on	 their	mechanism	 of	

action,	behave	selfishly	(O’Neill,	Chen,	&	Murray,	1997).	Moreover,	similarly	to	the	“phage	

immunity”	 hypothesis,	 it	 has	 not	 been	 convincingly	 shown	 that	 RM	 systems	 can	 increase	

their	 frequency	 in	 a	 population	 solely	 due	 to	 their	 selfish	 behavior.	 Finally,	 while	 post-

segregational	 killing	 is	 an	 efficient	mechanism	 of	 preventing	 loss	 of	 RM	 systems	 en	 bloc,	

costly	RM	systems	could	still	be	lost	in	two	steps	if	R	is	lost	first	and	M	second.	Selfishness	of	

RM	systems	alone	is	thus	unlikely	to	fully	explain	the	high	abundance	of	RM	systems.	

Several	alternative	hypotheses	for	the	possible	evolutionary	roles	of	RM	systems	have	been	

proposed	and	recently	reviewed	in	detail	(Vasu	&	Nagaraja,	2013).	In	addition	to	the	above	

mentioned,	 RM	 systems	 could	 regulate	 gene	 flux	 (Oliveira,	 Touchon,	 &	 Rocha,	 2016),	

maintain	 species	 identity	 (Jeltsch,	 2003),	 promote	 recombination	 (Chang	 &	 Cohen,	 1977)	

and	stabilize	genomic	islands	(Kusano,	Naito,	Handa,	&	Kobayashi,	1995).	It	is	important	to	

note	that	these	hypotheses	are	not	mutually	exclusive	and	it	is	possible	that	the	widespread	

occurrence	of	RM	system	is	caused	by	more	than	one	factor.	

1.4 RM	systems	as	a	stochastic	molecular	mechanism	

In	the	very	early	experiments	that	 lead	to	the	discovery	of	RM	systems	(Bertani	&	Weigle,	

1953;	Luria	&	Human,	1952),	 it	has	been	observed	 that	although	RM	systems	significantly	

reduce	the	likelihood	of	phage	infections,	they	are	not	impermeable	and	that	there	is	a	non-

zero	 probability	 that	 an	 infecting	 phage	 escapes	 restriction	 and	 produces	 methylated	

progeny.	 In	 other	 words,	 while	 the	 majority	 of	 genetically	 identical	 phages	 infecting	
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genetically	 identical	 bacteria	 in	 an	 identical	 environment	 gets	 cleaved	 and	 the	 infection	

aborted,	in	a	small	subpopulation	of	infected	bacteria,	phages	will	get	methylated	instead	of	

restricted,	 seemingly	 at	 random.	 RM	 systems	 thus	 represent	 an	 intrinsically	 stochastic	

molecular	 system.	 It	 is	 intriguing	 that	 stochasticity	 as	 a	 property	 of	 RM	 systems	has	 over	

decades	 of	 research	 been	 overlooked,	 and	 its	 causes	 and	 consequences	 are	 unknown.	

Moreover,	the	importance	of	understanding	the	consequences	of	stochasticity	on	ecological	

and	evolutionary	dynamics	goes	beyond	the	context	of	RM	systems.	Recently,	a	great	deal	

of	 scientific	 interest	 has	 been	 focused	 on	 the	 effects	 of	 “molecular	 noise”	 (McAdams	 &	

Arkin,	 1999)	 at	 the	 level	 of	 single	 cells	 and	 how	 it	 can	 lead	 to	 heterogeneity	 in	 clonal	

microbial	populations	(Elowitz,	Levine,	Siggia,	&	Swain,	2002).	Many	mechanisms	capable	of	

generating	heterogeneity	were	identified	(Avery,	2006),	but	the	question	of	to	what	extent	

do	stochastic	events	affect	dynamics	of	populations	has	remained	unanswered.	

Is	 it	 possible	 that	 random	 events	 occurring	 at	 the	 level	 of	 individuals	 could	 affect	 the	

ecological	 and	 evolutionary	 dynamics	 of	 bacteria	 and	 phages	 and	 leave	 a	 detectable	

footprint	 in	 their	 genomes?	 It	 is	 known	 that	 restriction	 sites	 of	 many	 RM	 systems	 are	

significantly	underrepresented	in	phage	genomes	(Karlin,	Burge,	&	Campbell,	1992;	Rocha,	

Danchin,	 &	 Viari,	 2001).	 This	 phenomenon,	 also	 called	 restriction	 site	 avoidance,	 is	 often	

thought	 to	 result	 from	 selection	 for	 phages	 with	 fewer	 restriction	 sites	 due	 to	 their	

increased	probability	of	escape	and	 this	explanation	 is	used	as	an	argument	 in	 support	of	

the	hypothesis	that	the	primary	role	of	RM	systems	is	to	prevent	phage	infections	(Tock	&	

Dryden,	 2005).	 However,	 at	 present	 we	 do	 not	 understand	 why	 some	 phages	 escape	

restriction	while	others	get	cleaved,	nor	do	we	know	how	the	probability	of	escape	depends	

on	 the	 number	 of	 phage	 restriction	 sites.	 Any	 connections	 between	 phage	 escape	 as	 a	

stochastic	 process	 and	 restriction	 site	 avoidance	 in	 phage	 genomes	 are	 thus	 difficult	 to	

establish.	

Interestingly,	it	has	been	shown	that	bacteria	avoid	using	restrictions	sites	in	their	genomes	

to	a	similar,	or	greater,	extent	than	phages	(Rocha	et	al.,	2001).	The	causes	of	restriction	site	

avoidance	 in	 bacterial	 genomes	 are	 unknown.	 It	 has	 been	 hypothesized	 that,	 as	 a	

consequence	of	the	stochastic	nature	of	the	underlying	molecular	mechanism,	RM	systems	

occasionally	 attack	 chromosomal	 DNA	 of	 their	 own	 hosts	 and	 that	 this	 leads	 to	 natural	

selection	 for	 bacteria	 with	 fewer	 restriction	 sites	 due	 to	 their	 reduced	 likelihood	 of	 self-
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evolved,	why	it	is	maintained	and	what	mechanisms	are	optimal	under	what	environmental	

conditions	(Houte,	Buckling,	&	Westra,	2016).	

Most	 phages	 infect	 bacteria	 through	 specific	 receptors	 located	 at	 the	 surface	 of	 the	 host	

bacterium.	For	example,	the	classic	phage	λ	interacts	with	the	maltose	transporter	LamB.	

Laboratory	experiments	in	which	bacteria	grow	in	presence	of	phages	typically	lead	to	

appearance	and	 increase	 in	 frequency	of	receptor	 resistance	mutants.	 Such	mutants	

can	 prevent	 phage	 adsorption	 either	 by	 lowering	 the	 expression,	 or	 complete	

inactivation	of	the	phage	receptor.	Loss	of	receptors	is	often	associated	with	significant	

fitness	 costs	 in	 the absence of phage,	 which	 leads	 to	 a	 tradeoff	 between	 growth	 and	

resistance	(Westra	et	al.,	2015).	In	addition	to	mutations	directly	affecting	expression	or	

structure	 of	 phage	 receptors,	 bacteria	 can	 respond	 to	 phages	 by	 overproduction	 of	

extracellular	polysaccharide,	which	masks	 the	 receptors,	 lowers	 the	phage	adsorption	

and	 causes	 the	 typical	mucoid	 phenotype	 (Ohshima,	 Schumacher-Perdreau,	 Peters,	 &	

Pulverer,	1988).	

Similarly	to	RM	systems,	genomes	of	many	bacteria	and	archaea	carry	systems	composed	of	

clustered,	 regularly	interspaced,	short	palindromic	repeats	 (CRISPR),	 together	 with	 the	

CRISPR-	associated	(Cas)	proteins.	CRISPR/Cas	systems	provide	bacteria	and	archaea	with	a	

mechanism	 of	 adaptive	 immunity	 to	 phages	 (Barrangou	 et	 al.,	 2007).	 In	 contrast	 to	 RM	

systems,	which	 cleave	 phage	DNA	 at	 defined	 sequences	 regardless	 of	whether	 they	 have	

been	 previously	 exposed	 to	 the	 targeted	 phage,	 CRISPR/Cas	 can	 acquire	 sequences	 from	

infecting	phage	and	use	these	sequences	(referred	to	as	protospacers)	for	recognition	and	

specific	 cleavage	 of	 phage	 genomes.	 CRISPR/Cas	 are	 a	 highly	 diverse	 class	 of	 genetic	

elements	 and	 are	 divided	 into	 a	 number	 of	 types	 and	 subtypes	 (Makarova	 et	 al.,	 2015).	

Furthermore,	 just	 like	RM	systems,	CRISPR/Cas	are	useful	tools	of	genetic	engineering	and	

while	 a	 lot	 of	 research	 has	 been	 devoted	 to	 the	 function	 of	 CRISPR/Cas	 and	 their	

applications,	 the	 role	 they	 play	 in	 the	 ecology	 and	 evolution	 of	 bacteria	 and	 phages	 has	

received	significantly	less	attention.	

Abortive	 infection	 systems	provide	bacteria	with	protection	 from	phages	by	 limiting	 their	

spread	 in	 bacterial	 populations	 (Chopin,	 Chopin,	 &	 Bidnenko,	 2005).	 When	 a	 bacterium	

carrying	 an	 abortive	 infection	 system	 is	 infected	 by	 a	 phage	 sensitive	 to	 its	 effects,	 the	

system	 will	 trigger	 a	 response	 in	 the	 form	 of	 a	 programmed	 cell	 death.	 As	 a	 result,	 the	
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infecting	 phage	 will	 not	 complete	 its	 life	 cycle	 and	 spread	 of	 infection	 will	 be	 halted.	

Interestingly,	 abortive	 infection	 systems	 are	 frequently	 carried	 by	 prophages	 (temperate	

phages	persisting	 in	bacteria	as	parts	of	 their	genome)	 (Houte,	Buckling,	et	al.,	2016).	The	

best	studied	abortive	infection	system	is	the	rII	exclusion	system	carried	by	phage	λ	(Parma	

et	al.,	1992).	

Superinfection	 exclusion	 systems,	 also	 frequently	 carried	 by	 prophages,	 provide	 bacteria	

with	 immunity	 to	 co-infecting	 phages	 by	 directly	 interfering	 with	 phage	 replication	 via	

mechanisms	other	than	programed	cell	death	(Bondy-Denomy	et	al.,	2016).	Superinfection	

exclusion	 allows	 prophages	 to	 prevent	 secondary	 infections	 by	 phages	 of	 the	 same	 or	

different	type.	Perhaps	the	best-studied	example	of	a	superinfection	exclusion	system	is	the	

one	mediated	 by	 the	 λ	 CI	 repressor,	 which	 prevents	 replication	 of	 λ	 phages	 infecting	 λ	

lysogens	(Fogg,	Allison,	Saunders,	&	McCarthy,	2010).	

1.6 Questions	addressed	in	this	thesis	

In	 this	 thesis,	 I	 adopt	 the	 framework	 of	 RM	 systems	 functioning	 as	 a	 mechanism	 of	

prokaryotic	immunity	and	explore	its	implications	in	various	scenarios.	In	all	experiments,	I	

use	two	model	RM	systems	originally	isolated	from	E.	coli,	EcoRI	and	EcoRV,	as	well	as	the	

classic	phage	λ.	While,	 the	 two	RM	systems	and	 the	phage	are	very	well	 studied	at	 the	

molecular	level,	we	know	very	little	about	the	nature	and	dynamics	of	their	interactions.	

Throughout	 the	 thesis,	 I	 focus	on	stochasticity	as	a	basic	property	of	RM	systems	and	

ask	how	it	affects	interactions	between	RM	systems,	bacteria	and	phages.	

In	 Chapter	 2,	 I	 study	 the	 process	 of	 phage	 escape	 and	 its	 implications	 for	 evolution	 of	

restriction	 site	 avoidance.	 The	 chapter	 addresses	 the	 following	 set	 of	 questions:	 Do	

mutations	 in	 restriction	 sites	 increase	 the	 likelihood	 of	 phage	 escape?	 What	 are	 the	

underlying	 molecular	 events	 that	 lead	 to	 phage	 escape?	 What	 factors	 determine	 the	

probability	of	 phage	escape	as	 a	 key	parameter	of	 interactions	between	RM	systems	and	

phages?	

In	 Chapter	 3,	 I	 study	 interactions	 between	RM	 systems	 and	 bacteria.	 The	main	 questions	

addressed	 are:	Why	 are	 restriction	 sites	 underrepresented	 in	 bacterial	 genomes?	 Do	 RM	
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system	 exert	 a	 fitness	 cost	 on	 their	 host	 and	 if	 so,	 is	 the	 cost	 related	 to	 function	 of	 RM	

systems	 as	 a	 mechanism	 of	 phage	 resistance?	 How	 do	 bacteria	 deal	 with	 the	 inherent	

stochasticity	of	RM	systems?	

In	 Chapter	 4	 I	 explore	 the	 nature	 and	 dynamics	 of	 interactions	 between	 RM	 systems,	

bacteria	 and	 phages	 all	 together.	 Specifically,	 I	 focus	 on	 interactions	 between	 bacteria	

carrying	 RM	 systems	 and	 temperate	 phages,	which	 can	 both	 kill	 the	 infected	 bacteria,	 as	

well	 as	provide	 them	with	potentially	beneficial	 genes.	 In	 this	 chapter,	 I	 ask	 the	 following	

questions:	Are	RM	systems	an	efficient	mechanism	of	immunity	to	temperate	phages?	Does	

protection	 from	 lethal	 infections	 necessarily	 reduce	 the	 probability	 of	 acquisition	 of	

potentially	beneficial	 prophages?	Can	RM	systems	distinguish	between	 lytic	 and	 lysogenic	

infections?	
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2 Effects	of	mutations	in	phage	restriction	sites	during	

escape	from	restriction-modification	

This	chapter	was	originally	published	in:	Pleška	M	and	Guet	CC	(2017)	Effects	of	mutations	in	

phage	 restriction	 sites	 during	 escape	 from	 restriction–modification.	 Biology	 Letters.	 13,	

20170646.		

2.1 Summary	

Restriction-modification	 systems	 are	 widespread	 genetic	 elements	 that	 protect	 bacteria	

from	bacteriophage	infections	by	recognizing	and	cleaving	heterologous	DNA	at	short,	well-

defined	 sequences	 called	 restriction	 sites.	 Bioinformatic	 evidence	 shows	 that	 restriction	

sites	 are	 significantly	 underrepresented	 in	 bacteriophage	 genomes,	 presumably	 because	

bacteriophages	with	fewer	restriction	sites	are	more	likely	to	escape	cleavage	by	restriction-

modification	 systems.	However,	 how	mutations	 in	 restriction	 sites	 affect	 the	 likelihood	of	

bacteriophage	 escape	 is	 unknown.	 Using	 the	 bacteriophage	 λ	 and	 the	 restriction-

modification	system	EcoRI,	we	show	that	while	mutation	effects	at	different	restriction	sites	

are	 unequal,	 they	 are	 independent.	 As	 a	 result,	 the	 probability	 of	 bacteriophage	 escape	

increases	 with	 each	 mutated	 restriction	 site.	 Our	 results	 provide	 direct	 experimental	

support	 for	 restriction	 site	 avoidance	 as	 an	 effective	 response	 to	 selection	 imposed	 by	

restriction-modification	systems	and	offer	an	insight	into	the	events	underlying	the	process	

of	bacteriophage	escape.	
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2.2 Introduction	

Bacterial	 viruses,	 also	 called	 bacteriophages	 (phages)	 are	 the	 most	 abundant	 biological	

entities	 on	 Earth	 and	 as	 such,	 they	 represent	 a	major	 driving	 force	 of	 bacterial	 evolution	

(Koskella	&	Brockhurst,	2014).	While	temperate	phages	can,	with	a	small	probability,	enter	

genomes	 of	 their	 hosts	 and	 potentially	 contribute	 genes	 that	 increase	 bacterial	 fitness	

(Canchaya,	Fournous,	&	Brüssow,	2004),	the	vast	majority	of	 infections	by	both	temperate	

and	virulent	phages	are	 lethal	 for	 infected	bacteria.	To	protect	 themselves,	many	bacteria	

utilize	 a	wide	 variety	 of	 phage	 resistance	mechanisms	 a	 large	 group	which	 are	 based	 on	

recognizing	 and	 destroying	 heterologous	 phage	 DNA	 (Houte,	 Buckling,	 et	 al.,	 2016).	

Restriction-modification	(RM)	systems	represent	the	first	discovered	(Luria	&	Human,	1952),	

the	simplest	and	one	of	the	most	prevalent	(Oliveira	et	al.,	2014)	of	such	mechanisms.	

Most	 RM	 systems	 are	 composed	 of	 two	 enzymatic	 activities:	 the	 restriction	 activity	 of	 a	

restriction	endonuclease	(R)	and	the	modification	activity	of	a	methytransferase	(M).	Both	R	

and	M	 typically	 recognize	 and	 act	 on	well-defined,	 short	 (4-8	bp)	DNA	 sequences	 termed	

restriction	sites.	Upon	infection,	R	recognizes	the	restriction	sites	on	the	phage	DNA	as	non-

self	 and	 cleaves	 it,	 thus	 aborting	 the	 infection.	 However,	 there	 is	 a	 non-zero	 probability	

(typically	at	 the	order	of	10-5)	 that	 instead	of	 restricted,	 the	phage	restriction	sites	will	be	

erroneously	modified	by	M,	whose	primary	role	is	to	methylate	restriction	sites	contained	in	

the	bacterium’s	own	DNA	and	prevent	self-restriction	(Bickle	&	Krüger,	1993).	What	causes	

a	 fraction	 of	 phages	 to	 escape	 restriction	 is	 not	 understood,	 as	 are	 not	 the	 factors	

determining	the	size	of	this	fraction	itself.	

Interestingly,	 Genomes	 of	 many	 phages	 display	 a	 significant	 underrepresentation	 of	

restriction	 sites	 (Karlin	 et	 al.,	 1992;	 Krüger	 &	 Bickle,	 1983;	 Rocha	 et	 al.,	 2001).	 This	

underrepresentation,	 also	 termed	 restriction	 site	 avoidance,	 is	 thought	 to	 result	 from	

natural	selection	favoring	phages	with	mutations	 in	restriction	sites	due	to	their	 increased	

probability	 of	 escape.	 In	 our	 work,	 we	 study	 the	 relationship	 between	 mutations	 in	

restriction	sites	and	the	probability	of	phage	escape.	
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2-2B).	Namely,	the	eop	of	phages	including	a	mutation	at	site	2	was	lower	as	compared	to	

other	mutants.	We	 tested	whether	 interactions	 alter	 the	 effect	 of	mutations	 occurring	 in	

combinations	by	fitting	a	linear	regression	model	with	interaction	terms	to	data	obtained	for	

both	 single	 and	 double	 mutants.	 The	 effects	 of	 all	 five	 individual	 mutations	 were	 highly	

significant,	with	the	effect	at	site	2	being	the	smallest	(Table	2-1).	In	contrast,	all	interaction	

terms	were	 below	 the	 significance	 threshold	 (α=0.05),	 implying	 that	mutation	 effects	 are	

independent.	

 Effects	of	mutations	in	restriction	sites	are	multiplicative	2.3.3

To	 elucidate	 the	 dependence	 the	 phage	 escape	 probability	 on	 the	 number	 of	 restriction	

sites,	we	created	a	third	set	of	mutants	by	introducing	mutations	consecutively.	As	shown	in	

Figure	 2-2C,	 each	 additional	mutated	 restriction	 site	 considerably	 increased	 the	 eop.	 The	

mutant	carrying	all	five	mutations	formed	plaques	on	bacteria	carrying	EcoRI	with	the	same	

probability	as	on	bacteria	devoid	of	the	RM	system	(eop=1).	This	result	indicated	that	point	

mutations	in	restriction	sites	were	sufficient	to	completely	abolish	cleavage.	We	compared	

the	measured	eop	values	 to	 the	 expected	 values	 calculated	based	on	 individual	mutation	

effects	estimated	 in	Table	 2-1,	assuming	complete	 independence	of	mutation	effects.	The	

measured	and	the	expected	eop	values	were	 in	a	good	agreement,	 further	supporting	the	

independence	of	mutation	effects	in	phage	restriction	sites.	
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	Table	2-1:	Estimates	of	mutation	effects	and	their	interactions	

	

Est.	effect	 St.	Error	 p-Value	

Main	effects:	

	 	Intercept		

(wt	eop)	
9.45E-06	 1.05	 <0.001	

RS1	 12.43	 1.11	 <0.001	

RS2	 3.56	 1.11	 <0.001	

RS3	 13.87	 1.11	 <0.001	

RS4	 12.81	 1.11	 <0.001	

RS5	 12.81	 1.11	 <0.001	

	
	 	Interaction	effects:	

RS1:RS2	 0.84	 1.16	 0.234	

RS1:RS3	 0.84	 1.16	 0.27	

RS1:RS4	 0.97	 1.16	 0.856	

RS1:RS5	 1.06	 1.16	 0.704	

RS2:RS3	 0.90	 1.16	 0.455	

RS2:RS4	 0.84	 1.16	 0.235	

RS2:RS5	 0.78	 1.16	 0.108	

RS3:RS4	 0.99	 1.16	 0.945	

RS3:RS5	 0.91	 1.16	 0.541	

RS4:RS5	 1.00	 1.16	 0.983	
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2.4 Discussion	

Our	 results	 demonstrate	 that	 point	mutations	 in	 phage	 restriction	 sites	 can	 substantially	

increase	 the	probability	of	phages	escaping	 restriction,	 thus	providing	direct	experimental	

support	for	restriction	site	avoidance	as	an	adaptive	response	to	selection	imposed	by	RM	

systems.	Phages	with	complete	avoidance	of	restriction	sites	are	frequently	found	in	nature	

(Korona,	 Korona,	 &	 Levin,	 1993).	 Some	 of	 the	 most	 avoided	 sequences	 are	 recognition	

sequences	of	type	IIP	RM	systems,	such	as	EcoRI	studied	here,	which	recognize	and	cleave	

DNA	 at	 individual	 restriction	 sites.	 However,	 more	 complex	 patterns	 of	 selection	 can	 be	

observed	in	the	case	of	RM	systems	requiring	two	recognition	sequences	for	cleavage.	For	

example,	EcoRII,	a	type	IIE	RM	system,	cleaves	the	DNA	only	if	it	recognizes	two	proximate	

recognition	 sequences	 (Krüger,	 Kupper,	 Meisel,	 Reuter,	 &	 Schroeder,	 1995),	 whereas	

EcoP1I,	a	type	III	RM	system,	cleaves	the	DNA	upon	recognition	of	two	opposing	asymmetric	

recognition	 sequences	 (Meisel,	 Bickle,	 Kriiger,	 &	 Schroeder,	 1992).	 Accordingly,	 in	 the	

genome	of	phage	T7,	recognition	sequences	of	EcoRII	are	distantly	apart,	whereas	those	of	

EcoP1	are	all	facing	the	same	direction	(Tock	&	Dryden,	2005).	

In	 addition	 to	 evolution	 of	 restriction	 site	 avoidance,	 our	 results	 offer	 an	 insight	 into	 the	

molecular	events	underlying	phage	escape	as	a	probabilistic	process.	At	the	 level	of	single	

bacteria,	 reaction	events	 are	often	 stochastic	 as	 a	 result	 of	 various	mechanisms	 including	

“noise”	 in	 gene	expression	 (McAdams	&	Arkin,	 1997)	 and	 stochastic	 enzymatic	 kinetics	 in	

general.	Despite	being	known	for	decades,	the	molecular	events	underlying	phage	escape	as	

a	 stochastic	 reaction	 event	 are	 not	 well	 understood.	 Our	 results	 allow	 us	 to	 distinguish	

between	 two	hypotheses:	 If	 the	main	 factor	 responsible	 for	a	 fraction	of	phages	escaping	

restriction	was	preexisting	phenotypic	variability	in	a	bacterial	population,	the	probability	of	

phage	escape	should	reflect	the	size	of	the	susceptible	subpopulation	and	thus	be	relatively	

independent	of	the	number	of	phage	restriction	sites.	On	the	other	hand,	if	the	main	factor	

responsible	for	mixed	outcomes	was	competition	between	R	and	M	in	recognizing	the	newly	

appearing	restriction	sites,	the	probability	of	phage	escape	should	be	equal	to	the	product	

of	probabilities	with	each	 restriction	 sites	 gets	methylated	 instead	of	 cleaved.	Our	 results	

are	 in	 good	 agreement	with	 the	 latter	 hypothesis	 and	 thus	 emphasize	 the	 importance	 of	

molecular	noise	in	the	biology	of	RM	systems	(Pleška	et	al.,	2016).	 	
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2.5 Material	and	Methods	

 Experimental	system	2.5.1

As	a	model	system,	we	used	the	classic	RM	system	EcoRI	and	bacteriophage	λ	variant	cI857,	

which	 carries	 five	 EcoRI	 restriction	 sites	 (GAATTC)	 (Figure	 2-1).	 λ	 cI857	 is	 a	 temperature-

sensitive	mutant,	which	behaves	as	an	obligatory	 lytic	phage	at	 temperatures	above	30°C	

(Oppenheim	&	 Salomon,	 1972).	 All	 our	 experiments	were	 performed	 at	 37°C.	Escherichia	

coli	 strain	MG1655	 was	 used	 in	 all	 experiments.	 The	 EcoRI	 RM	 system	was	 carried	 on	 a	

plasmid	 pBR322ΔPtet	 EcoRI	 (R+M+)	 (Pleška	 et	 al.,	 2016).	 As	 a	 RM-	 reference	 ,	we	used	 a	

strain	carrying	the	pBR322ΔPtet	plasmid.	

 Culture	conditions	2.5.2

To	 provide	 a	 constant	 and	 well	 reproducible	 number	 of	 bacteria	 in	 a	 comparable	

physiological	state,	all	cultures	used	to	measure	eop	were	grown	from	fresh	colonies	for	24	

hours	in	M9	medium	with	maltose	(1x	M9	salts	(12.8	g/l	Na2HPO4·7H2O,	3	g/l	KH2PO4,	0.5	g/l	

NaCl,	1	g/l	NH4Cl),	0.4%	maltose,	2	mM	MgSO4,	0.1	mM	CaCl2)	to	increase	phage	adsorption.	

Ampicillin	 (100	μg/ml)	was	 added	 to	 the	media	 to	 select	 for	plasmid	maintenance.	 Phage	

plates	(1%	tryptone,	0.1%	yeast	extract,	0.8%	NaCl,	1%	agar,	0.01%	glucose,	0.2	mM	CaCl2)	

and	 Phage	 soft	 agar	 (the	 same	 as	 above,	 but	 with	 0.7%	 agar)	 were	 used	 for	 plaque	

enumeration.		

 Phage	mutagenesis	and	lysate	preparation	2.5.3

All	phage	 lysates	were	prepared	by	plate	 lysis.	Briefly,	 individual	plaques	were	picked	and	

resuspended	 in	3	ml	of	phage	soft	agar	 together	with	100	μl	of	overnight	E.	 coli	MG1655	

cultures	grown	 in	M9	medium	with	maltose.	After	8	hours,	 the	soft	agar	was	scraped	and	

resuspended	 in	 10	ml	 of	 SM	 buffer,	 centrifuged,	 filtered	 (0.2	 μm)	 and	 stored	 at	 4°C.	 All	

phage	 mutants	 originate	 from	 a	 single	 λ	 cI857	 plaque	 and	 were	 constructed	 by	

recombineering	 as	 described	 in	 (Oppenheim,	 Rattray,	 Bubunenko,	 Thomason,	 &	 Court,	

2004).	 The	 oligonucleotides	 used	 for	 mutagenesis	 are	 listed	 in	 Table	 2-2.	 The	
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oligonucleotides	 were	 designed	 such	 that	 a	 single	 point	 mutation	 is	 introduced	 into	 the	

EcoRI	restriction	site.	For	those	EcoRI	sites,	which	are	located	inside	a	coding	sequence	(1-

4),	 the	mutations	 introduced	were	picked	such	 that	 the	amino	acid	 sequence	of	 the	gene	

product	 is	 preserved.	Mutants	were	 identified	using	 a	 PCR	method:	 16	 individual	 plaques	

were	picked	and	resuspended	in	50	μl	of	water.	2	μl	were	then	used	as	a	template	in	a	PCR	

reaction	 together	 with	 primers	 designed	 to	 amplify	 500	 bp	 upstream	 and	 500	 bp	

downstream	of	the	restriction	site	into	which	the	mutation	was	introduced.	OneTaq®	Quick-

Load®	2X	Master	Mix	with	Standard	Buffer	(NEB)	was	used	for	all	reactions	according	to	the	

standard	 protocol.	 The	 primers	 used	 for	 verification	 are	 listed	 in	 Table	 2-3.	 Successful	

recombinants	 were	 identified	 by	 mixing	 4	 μl	 of	 the	 PCR	 product	 with	 EcoRI-HF®	 in	 a	

standard	digestion	reaction	(10	μl	total	volume).	Isolates	that	gave	PCR	products	which	were	

not	 digested	 were	 identified	 as	 recombinants	 and	 were	 plated	 first	 on	 a	 lawn	 of	 E.	 coli	

MG1655,	from	which	 individual	plaques	were	picked	and	used	to	prepare	working	 lysates.	

All	phage	 lysates	were	stored	and	diluted	 in	SM	buffer	 (100	mM	NaCl,	8	mM	MgSO4,	200	

mM	 Tris-Cl	 (pH	 7.5)).	 The	 titer	 of	 all	 lysates	 used	 was	 adjusted	 to	 approximately	2 ∙ 10!	

pfu/ml.	
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Table	2-2:	Primers	used	for	phage	mutagenesis	

Name	 Sequencea	

Lam_RI(21,226)_ko	 CCGTTGCAGATGTTCTTGAATACCTTGGGGCCGGTGAGAACTC

GGCCTTTCCGGCAGGTGCGCCGATCCCGTGGCCATCA	

Lam_RI(26,104)_ko	 CAGCAATAGTTTAAAATCACTAGGCGATCTCCGCTTAGAGTTCA

TTTCAGCATTTATTGGTTGTATGAGAGTAGATAGAA	

Lam_RI(31,747)_ko	 GGGAAAACAGTACGAGAACGACGCCAGAACCCTGTTTGAGTTC

ACTTCCGGCGTGAATGTTACTGAATCCCCGATCATCT	

Lam_RI(39,168)_ko	 CTATTACAAAAGAAAAAAGAAAAGATTATTCGTCAGAGAACTC

TGGCGAATCCTCTGACCAGCCAGAAAACGACCTTTCT	

Lam_RI(44,972)_ko	 GCACAACCCAAACTGAGCCGTAGCCACTGTCTGTCCTGAACTCA

TTAGTAATAGTTACGCTGCGGCCTTTTACACATGAC	

a			Restriction	site	sequences	are	shown	in	bold,	mutations	are	underlined	

	

Table	2-3:	Primers	used	for	mutant	verification	

Name	 Sequence	

fw_Lam_RI(21,226)	 AAAGGGGATAGTGCAGCTCA	

rv_Lam_RI(21,226)	 CAATACCCTGTGTGCTGGTT	

fw_Lam_RI(26,104)	 TCAATATCCGGACGGATAAT	

rv_Lam_RI(26,104)	 TTGAAAATGAAAGCGTCCTT	

fw_Lam_RI(31,747)	 ATTTCGGATAACAGAAAGGC	

rv_Lam_RI(31,747)	 GCATACACTGCAGAACGTCA	

fw_Lam_RI(39,168)	 CCAGATGGAGTTCTGAGGTC	

rv_Lam_RI(39,168)	 TTTTCGTCGTACTGTTCCGG	

fw_Lam_RI(44,972)	 TCGCAGACAACATTTTGAAT	

rv_Lam_RI(44,972)	 AGCAGCGAAGCGTTTGATA	
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 Measurements	of	phage	escape	probability	2.5.4

As	 a	 measure	 of	 the	 probability	 of	 escape,	 we	 used	 the	 efficiency	 of	 plating	 defined	 as	

𝑒𝑜𝑝 =  !"#!"
!"#!"!#$

,	where	𝑝𝑓𝑢!"	is	the	number	of	plaque	forming	units	(pfu)	obtained	on	lawns	

of	bacteria	carrying	the	EcoRI	RM	system	and	𝑝𝑓𝑢!"!#$ 	is	the	total	number	of	pfu	obtained	

on	 the	 reference	 RM-	 strain.	 For	 each	measurement,	 10	 μl	 of	 serially	 diluted	 lysates	was	

mixed	with	0.1	ml	of	bacterial	cultures	in	3	ml	of	soft	agar	and	spread	on	phage	plates	such	

that	100-300	pfu	were	obtained	on	each	plate.	In	each	measurement,	𝑝𝑓𝑢!"!#$ 	was	at	least	

an	order	of	magnitude	 lower	 than	the	total	number	of	bacteria	plated	 (≈ 10!)	 so	 that	 the	

vast	 majority	 of	 infections	 correspond	 to	 a	 single	 phage	 infecting	 a	 single	 bacterium.	

Method	of	preparation	of	 lysates	and	bacterial	cultures	 is	described	 in	the	Supplementary	

material	and	Methods.		

 Statistical	analysis	2.5.5

The	 effects	 of	 mutations	 and	 their	 interactions	 were	 calculated	 by	 fitting	 a	 single	

multivariate	linear	regression	model	with	interaction	terms	to	the	data	shown	in	Figure	2-2A	

and	Figure	2-2B,	with	log(eop)	as	the	dependent	continuous	variable	and	presence/absence	

of	each	restriction	site	as	categorical	 independent	variables.	A	single	model	was	 fit	 to	 the	

data	 obtained	 from	 experiments	 with	 both	 individual	 mutations	 and	 their	 pairwise	

combinations.	Normal	distribution	of	errors	was	verified	by	residual	analysis.	
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3 	Bacterial	autoimmunity	due	to	a	restriction-

modification	system	

This	chapter	was	originally	published	in:	Pleška	M,	Qian	L,	Okura	R,	Bergmiller	T,	Wakamoto	

Y,	 Kussell	 E,	 &	 Guet	 CC	 (2016).	 Bacterial	 autoimmunity	 due	 to	 a	 restriction-modification	

system.	Current	Biology,	26(3),	404-409.	The	chapter	was	written	in	collaboration	with	Long	

Qian	 and	 Edo	 Kussell	 (New	 York	 University,	 NY,	 USA),	 who	 performed	 the	 bioinformatics	

analysis,	 and	Reiko	Okura	 and	Yuichi	Wakamoto	 (University	of	 Tokyo,	 Tokyo,	 Japan),	who	

performed	and	analyzed	the	microfluidic	experiments.	

3.1 Summary	

Restriction-modification	(RM)	systems	represent	a	minimal	and	ubiquitous	biological	system	

of	 self/non-self	 discrimination	 in	 prokaryotes	 (Oliveira	 et	 al.,	 2014),	 which	 protects	 hosts	

from	 exogenous	 DNA	 (Murray,	 2002).	 The	 mechanism	 is	 based	 on	 the	 balance	 between	

methyltransferase	 (M)	and	cognate	 restriction	endonuclease	 (R).	M	tags	endogenous	DNA	

as	 self	 by	 methylating	 short	 specific	 DNA	 sequences	 called	 restriction	 sites,	 while	 R	

recognizes	unmethylated	 restriction	 sites	 as	non-self	 and	 introduces	a	double-strand	DNA	

(dsDNA)	break	(Arber	&	Dussoix,	1962).	Restriction	sites	are	significantly	underrepresented	

in	prokaryotic	genomes	(Elhai,	2001;	Gelfand	&	Koonin,	1997;	Karlin	et	al.,	1992;	Rocha	et	

al.,	2001),	suggesting	that	the	discrimination	mechanism	is	imperfect	and	occasionally	leads	

to	 autoimmunity	 due	 to	 self	 DNA	 cleavage	 (self-restriction)	 (Qian	 &	 Kussell,	 2012).	

Furthermore,	 RM	 systems	 can	 promote	 DNA	 recombination	 (Chang	 &	 Cohen,	 1977)	 and	

contribute	to	genetic	variation	in	microbial	populations,	thus	facilitating	adaptive	evolution	

(Asakura,	 Kojima,	 &	 Kobayashi,	 2011).	 However,	 cleavage	 of	 self	 DNA	 by	 RM	 systems	 as	

elements	 shaping	 prokaryotic	 genomes	 has	 not	 been	 directly	 detected	 and	 its	 cause,	

frequency,	 and	 outcome	 are	 unknown.	 We	 quantify	 self-restriction	 caused	 by	 two	 RM	

systems	 of	 Escherichia	 coli	 and	 find	 that,	 in	 agreement	 with	 levels	 of	 restriction	 site	

avoidance,	EcoRI,	but	not	EcoRV,	cleaves	self	DNA	at	a	measurable	rate.	Self-restriction	is	a	

stochastic	process,	which	temporarily	induces	SOS	response,	and	is	followed	by	DNA	repair,	
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maintaining	cell	viability.	We	find	that	RM	systems	with	higher	restriction	efficiency	against	

bacteriophage	 infections	exhibit	 a	higher	 rate	of	 self-restriction,	 and	 that	 this	 rate	 can	be	

further	increased	by	stochastic	imbalance	between	R	and	M.	Our	results	identify	molecular	

noise	in	RM	systems	as	a	factor	shaping	prokaryotic	genomes.	
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3.2 Results	

 EcoRI,	but	not	EcoRV,	induces	DNA	damage	in	host	bacteria	3.2.1

We	hypothesized	 that	natively	occurring	RM	systems	 cause	occasional	 self-restriction	and	

that	 this	 is	 detrimental	 to	 their	 host	 bacteria.	 To	 test	 this	 hypothesis,	 we	 compared	

population	 doubling	 times	 of	 E.	 coli	 MG1655	 (wild-type)	 with	 plasmids	 carrying	 EcoRI	 or	

EcoRV	 RM	 systems	 (R+M+)	 expressed	 from	 their	 native	 promoters,	 respective	 control	

plasmids	 deficient	 in	 R	 activity	 (R-M+),	 and	 the	 plasmid	 backbone	 control	 (R-M-)	 (Figure	

3-1A).	Population	doubling	times	of	cells	carrying	EcoRI	and	EcoRV	(R+M+)	plasmids	did	not	

significantly	differ	from	the	controls	(Table	3-1),	indicating	that	self-restriction	is	either	rare,	

and/or	its	effect	is	small	due	to	the	ability	of	wild-type	cells	to	repair	DNA	damage	(Cromie	

&	Leach,	2001;	Heitman,	Ivanenko,	&	Kiss,	1999).	We	observed	no	measurable	fitness	effect	

in	 direct	 competitions	 between	 (R+M+)	 vs.	 (R-M+)	 strains	 of	 EcoRI	 and	 EcoRV	 in	 rich	

medium	 (M9,	 0.4%	 glucose,	 0.2%	 casamino	 acids)(Figure	 3-1B),	 but	 observed	 decreased	

fitness	 due	 to	 EcoRI	 (R+M+)	 in	minimal	medium	 (M9,	 0.4%	 glucose)	 (Figure	 3-1C).	 Earlier	

studies	have	shown	that	induced	chronic	dsDNA	breaks	occurring	once	per	replication	cycle	

have	 only	 a	 small	 effect	 (0.6%)	 on	 the	 proliferation	 rate	 of	 wild-type	 E.	 coli	 (Darmon,	

Eykelenboom,	Lopez-Vernaza,	White,	&	Leach,	2014),	and	 that	 the	capacity	 to	 repair	DNA	

damage	is	limited	by	resource	availability	(Sargentini,	Diver,	&	Smith,	1983).		

To	 test	whether	DNA	damage	 occurs	 at	 elevated	 levels	 in	 populations	 carrying	 EcoRI,	we	

measured	the	population	doubling	time	of	the	recA	knockout	(ΔrecA)	strain	carrying	the	RM	

plasmids.	 RecA	 is	 an	 essential	 component	 of	 DNA	 repair	 and,	 unlike	wild-type	 cells,	 recA	

mutants	are	sensitive	to	self-restriction	provoked	by	artificially	induced	imbalance	between	

R	and	M	expression	(Figure	3-2A).	Deleting	recA	increased	the	population	doubling	time	of	

all	 strains	by	 approximately	 six	minutes	 (15%	of	 the	wild-type	doubling	 time)	 (Table	 3-1),	

reflecting	 the	 inability	 of	 ΔrecA	 cells	 to	 repair	 spontaneous	 DNA	 damage	 (Pennington	 &	

Rosenberg,	2007).	Presence	of	the	plasmid	expressing	EcoRI	(R+M+)	increased	the	doubling	

time	of	ΔrecA	cells	significantly	by	an	additional	three	minutes	as	compared	to	the	EcoRI	(R-

M+)	control.	In	contrast,	the	EcoRV	(R+M+)	plasmid	had	no	statistically	significant	effect	on	

growth	of	the	ΔrecA	strain.	The	results	suggested	that	EcoRI	increased	the	amount	of	DNA	
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damage	in	the	population	and	that	RecA	alleviated	most	of	the	negative	effect	on	growth.	

The	 mechanism	 of	 restriction	 alleviation,	 which	 prevents	 self-restriction	 by	 type	 I	 RM	

systems,	 is	 unlikely	 to	 affect	 our	 estimates,	 since	 both	 EcoRI	 and	 EcoRV	 are	 type	 II	 RM	

systems	 and	 therefore	 insensitive	 to	 restriction	 alleviation	 (Makovets,	 Powell,	 Titheradge,	

Blakely,	&	Murray,	2004).	

	

Table	3-1:	Population	doubling	times	of	strains	carrying	RM	systems	

Host	 Plasmid	 PDT	(min)a	 SD	(min)a	 P-valuea,	b	

wild-type	 Control	(R-M-)	 40.09	 1.49	 	

MG1655	 EcoRI	(R+M+)	 40.78	 0.68	 0.429	

	 EcoRI	(R-M+)	 40.68	 0.84	 0.492	

	 EcoRV	(R+M+)	 40.79	 0.57	 0.422	

	 EcoRV	(R-M+)	 40.19	 1.19	 0.908	

	 	 	 	 	

ΔrecA	 Control	(R-M-)	 46.06	 0.59	 	

	 EcoRI	(R+M+)	 48.98	 0.75	 0.003	

	 EcoRI	(R-M+)	 46.20	 0.99	 0.854	

	 EcoRV	(R+M+)	 46.84	 1.14	 0.327	

	 EcoRV	(R-M+)	 45.67	 1.08	 0.626	

a.	Calculated	from	three	independent	experiments,	each	with	six	biological	replicates.	PDT	-	
population	doubling	time,	SD	-	standard	deviation.	
b.	The	P-values	were	calculated	by	linear	regression,	with	the	population	doubling	time	as	a	
continuous	 dependent	 variable	 and	 strain	 identity	 as	 a	 categorical	 independent	 variable,	
comparing	individual	strains	to	the	control	(R-M-).	
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competition	experiment	(𝑠 =	-0.08	day-1	,	p<10-4).	The	effect	of	EcoRV	was	not	significant	(p	
=	0.118).	 Increased	cost	of	EcoRI	 (R+M+)	as	 compared	 to	 the	 control	was	observed	 (𝑠 = -
0.13	day-1,	p	<	10-5).	At	the	end	of	each	competition	experiment,	we	tested	two	colonies	of	
each	type	for	the	corresponding	restriction	phenotype	and	detected	no	mutations.	

 EcoRI,	but	not	EcoRV,	induces	SOS	response	in	a	subpopulation	of	host	3.2.2

bacteria	

We	next	 investigated	whether	 the	 increased	amount	of	DNA	damage	due	to	EcoRI	can	be	

explained	by	higher	frequency	of	self-restriction	as	compared	to	EcoRV.	We	quantified	the	

fraction	 of	 cells	 suffering	 from	DNA	damage	 in	 populations	 carrying	 the	 two	 RM	 systems	

using	flow	cytometry	and	a	reporter	strain	with	a	fast-maturing	yellow	fluorescent	protein	

(YFP)	 (Nagai	 et	 al.,	 2002)	 fused	 to	 the	 promoter	 of	 sulA	 (PsulA-yfp).	 SulA	 is	 strongly	

upregulated	as	a	part	of	the	SOS	response,	a	global	stress	response	to	DNA	damage	in	E.	coli	

(Friedberg,	 Walker,	 Siede,	 &	 Wood,	 2005).	 Similar	 PsulA	 –	 based	 reporters	 have	 been	

previously	 used	 to	 quantify	 the	 extent	 of	 DNA	 damage	 in	 bacteria	 (Darmon	 et	 al.,	 2014;	

Handa,	Ichige,	Kusano,	&	Kobayashi,	2000;	Pennington	&	Rosenberg,	2007).	Self-restriction	

provoked	 by	 artificially	 induced	 imbalance	 between	 R	 and	 M	 strongly	 increased	

fluorescence	of	 individual	 cells	 as	a	 result	of	 SOS	 response	 induction	 (Figure	 3-2B).	When	

EcoRI	 (R+M+)	 was	 expressed	 from	 its	 native	 promoters,	 the	 population	 contained	 more	

highly	 fluorescent	 cells	 as	 compared	 to	 the	 controls	 (Figure	 3-3A),	 showing	 that	 self-

restriction	 occurred	 in	 a	 subpopulation	 of	 cells	 and	 induced	 the	 SOS	 response	 in	 this	

subpopulation.	No	such	effect	was	observed	for	cells	carrying	EcoRV.		

We	quantified	the	fraction	of	cells	with	 induced	SOS	response	(SOS-ON)	for	each	strain	by	

first	quantifying	the	fraction	of	cells	with	fluorescence	above	a	threshold.	The	threshold	was	

chosen	 based	 on	 the	 location	 at	 which	 the	 cumulative	 tail	 probability	 distribution	 of	 the	

wild-type	population	changes	slope,	corresponding	to	the	point	at	which	SOS-OFF	and	SOS-

ON	subpopulations	begin	to	overlap	(Figure	3-3B).	Since	RecA	is	necessary	for	induction	of	

SOS	 response	 (Friedberg	 et	 al.,	 2005),	 ΔrecA	 populations	 did	 not	 show	 such	 a	 change	 in	

slope.	 The	 threshold	 value	was	 consistent	 across	 all	 samples	 (Figure	 3-3C).	 The	wild-type	

and	 ΔrecA	 control	 (R-M-)	 populations	 contained	 0.92%	 and	 0.35%	 cells	with	 fluorescence	

above	 the	 threshold,	 respectively	 (Figure	 3-3D,	 Table	 3-2).	 Subtracting	 the	 background	

fraction	of	cells	above	the	threshold	in	the	ΔrecA	control	from	the	fraction	of	cells	above	the	
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threshold	 in	 the	 wild-type	 gave	 an	 estimate	 of	 0.57%	 cells	 being	 genuinely	 SOS-ON	 as	 a	

result	 of	 spontaneous	 DNA	 damage.	 This	 is	 in	 rough	 agreement	 with	 the	 previously	

estimated	 fraction	 of	 0.9%	 cells	 being	 SOS–ON	 due	 to	 spontaneous	 DNA	 damage	 under	

slightly	 different	 growth	 conditions	 (Pennington	 &	 Rosenberg,	 2007).	 Using	 the	 same	

method	and	threshold	value,	the	EcoRI	(R+M+)	populations	contained	0.91%	genuine	SOS-

ON	cells,	which	corresponds	to	a	significant	1.6-fold	increase	as	compared	to	the	EcoRI	(R-

M+)	 population	 (Figure	 3-3D,	Table	 3-2).	 The	 effect	 of	 the	 EcoRV	 (R+M+)	 plasmid	 on	 the	

number	 of	 SOS-ON	 cells	 was	 not	 significant,	 which	 is	 consistent	 with	 our	 observation	 of	

EcoRI,	 but	 not	 EcoRV,	 inducing	 DNA	 damage	 in	 host	 bacteria.	 It	 is	 possible	 that	 the	

estimated	fraction	of	cells	suffering	from	self-restriction	by	EcoRI	is	an	underestimate,	since	

EcoRI,	 unlike	 EcoRV,	 generates	 cohesive	 ends	 that	 can	 be	 directly	 ligated	 by	 DNA	 ligase	

before	induction	of	SOS	response	takes	place	(Heitman,	Zinder,	&	Model,	1989).	
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Table	3-2:	Fractions	of	cells	above	the	threshold	in	populations	carrying	RM	systems	

Host	 Plasmid	
%	of	cells	above	

the	thresholda	

Standard	

deviationa	
P-valuea,	b	

wild-type	 Control	(R-M-)	 0.92	 0.08	 -	

(MG1655)	 EcoRI	(R+M+)	 1.39	 0.06	 <10-5	

	
EcoRI	(R-M+)	 0.93	 0.07	 0.744	

	
EcoRV	(R+M+)	 0.96	 0.06	 0.434	

	
EcoRV	(R-M+)	 0.86	 0.03	 0.279	

	 	 	 	 	ΔrecA	 Control	(R-M-)	 0.35	 0.07	 -	

	
EcoRI	(R+M+)	 0.48	 0.11	 0.126	

	
EcoRI	(R-M-)	 0.37	 0.11	 0.814	

	
EcoRV	(R+M+)	 0.46	 0.06	 0.206	

	
EcoRV	(R-M+)	 0.41	 0.11	 0.494	

a.	Calculated	from	three	independent	experiments,	each	with	three	biological	replicates.	
b.	The	 P-values	 were	 calculated	 by	 linear	 regression,	 with	 the	 number	 of	 cells	 above	 the	
threshold	 as	 a	 continuous	 dependent	 variable	 and	 strain	 identity	 as	 a	 categorical	
independent	variable,	comparing	individual	strains	to	the	control	(R-M-).	 	
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 SOS	response	is	stochastically	and	dynamically	turned	on	and	off	in	cells	3.2.3

suffering	from	self-restriction	

To	monitor	 the	 fate	 of	 cells	 undergoing	 self-restriction,	 we	 observed	 single	 cells	 carrying	

EcoRI	 in	 real	 time	using	 fluorescence	 long-term	 time-lapse	microscopy.	We	measured	 the	

levels	 of	 PsulA-yfp	 expression	 in	 single	 cells	 growing	 in	 steady	 state	 inside	 a	 microfluidic	

device	(Figure	3-4A).	Since	RecA	is	necessary	for	SOS	induction	(Friedberg	et	al.,	2005),	we	

first	determined	the	threshold	of	 fluorescence	above	which	cells	are	evaluated	as	SOS-ON	

using	a	ΔrecA	 control.	Cellular	 fluorescence	of	ΔrecA	 cells	 fluctuated	due	 to	noise,	but	no	

sharp	 increase	 was	 observed	 in	 contrast	 to	 wild-type	 cells	 (Figure	 3-5A).	 We	 set	 the	

threshold	accordingly	and	calculated	the	frequency	at	which	fluorescence	intensity	of	wild-

type	cells	carrying	the	EcoRI	RM	system	crossed	the	threshold	(Figure	3-4B,	Table	3-2).	At	

the	 threshold	 value	 of	 75	 (a.u.),	 the	wild-type	 restriction-deficient	 strains	 (control	 (R-M-)	

and	EcoRI	(R-M+))	displayed	nearly	identical	frequency	of	SOS	induction:	(2.7±0.4)×10-3	min-

1	and	(2.8±0.4)×10-3	min-1,	respectively,	as	a	result	of	spontaneous	DNA	damage.	The	EcoRI	

(R+M+)	strain	induced	SOS	response	at	the	rate	of	(4.7±0.4)×10-3	min-1,	which	corresponds	

to	a	1.7-fold	increase	(Figure	3-4C).	In	total,	we	observed	0.53%	and	0.94%	cells	being	SOS-

ON	in	the	control	(R-M-)	and	EcoRI	(R+M+)	populations	respectively	(Table	3-3),	which	is	in	

agreement	with	the	flow-cytometry	experiments.	Using	a	threshold	value	of	100	(a.u.)	did	

not	 affect	 the	 result	 qualitatively	 (1.4-fold	 increase	 in	 SOS	 induction	 frequency	 of	 EcoRI	

(R+M+)	cells).	

Interestingly,	the	SOS-ON	cells	in	the	EcoRI	(R+M+)	as	well	as	EcoRI	(R-M+)	and	control	(R-M-

)	 populations	 returned	 rapidly	 to	 the	 SOS-OFF	 state	 and	 continued	 to	 grow	 and	 divide	

normally	 (Figure	 3-4A).	 PsulA-yfp	 induction	 was	 not	 associated	 with	 filamentation	 or	 cell	

death	 and	 the	 level	 of	 SOS	 response	 induction	 did	 not	 correlate	 with	 the	 single-cell	

elongation	rate	(Figure	3-5B)	or	generation	time	(Figure	3-5C).	These	results	indicated	that	

under	our	experimental	conditions,	wild-type	cells	growing	 in	steady	state	repair	 the	DNA	

damage	caused	by	both	self-restriction	and	spontaneous	DNA	damage	with	high	efficiency	

and	 thus	 remain	 in	 the	 growing	 population.	 In	 our	 experiments,	 self-restriction	 occurs	

during	stable	maintenance	of	the	RM	system	and	induces	the	SOS	response	only	transiently,	

without	affecting	viability	of	individual	cells.	This	stands	in	sharp	contrast	to	the	previously	
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Table	3-3:	Induction	frequencies	of	SOS	response	inside	microfluidic	device.	
Threshold	=	75	(a.u.)	

	Plasmid	

Total	

time	

points	

(a)	

Induction	

time	 points	

(b)	

Induction	

frequency	

(b)/(a)	(%)	

Induction	

frequency	

(b)/(a)/Δt	

(10-3	min-1)a	

P-valueb	

Control	(R-M-)	 8,629	 46	 0.533	 2.67	 -	

EcoRI	(R+M+)	 15,533	 146	 0.940	 4.70	 <10-3	

EcoRI	(R-M-)	 7,735	 43	 0.556	 2.78	 0.927	

	

Threshold	=	100	(a.u.)	

	Pladmid	

Total	

time	

points	

(a)	

Induction	

time	 points	

(b)	

Induction	

frequency	

(b)/(a)	(%)	

Induction	

frequency	

(b)/(a)/	Δt	(10-

3	min-1)*	

P-value†	

Control	(R-M-)	 8,629	 22	 0.255	 1.27	 -	

EcoRI	(R+M+)	 15,533	 57	 0.367	 1.83	 0.179	

EcoRI	(R-M-)	 7,735	 17	 0.220	 1.10	 0.764	

	

a			Δt	is	the	time-lapse	interval,	which	is	2	min	in	all	the	microfluidic	measurements.	
b	 	P-values	are	 from	the	chi-square	test	with	the	control	 (R-M-)	based	on	the	contingency	
table	with	the	entries	of	(b)	and	(a)-(b).	
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 The	rate	of	self-restriction	is	higher	for	more	efficient	RM	systems	and	3.2.4

can	be	increased	by	stochastic	imbalance	between	R	and	M	

Our	experiments	show	that	the	probability	of	self-restriction	is	higher	for	EcoRI	than	EcoRV.	

Interestingly,	this	does	not	correspond	to	the	number	of	restriction	sites	that	are	potential	

targets	for	self-restriction	in	the	genome	of	E.	coli	MG1655	(599	GAATTC	for	EcoRI	and	1,888	

GATATC	 for	 EcoRV),	 but	 agrees	 with	 the	 estimated	 levels	 of	 restriction	 site	 avoidance	

(Figure	3-6A).	The	EcoRI	restriction	site	frequency	is	reduced	by	50%	from	its	expected	value,	

while	the	EcoRV	site	 is	slightly	enriched	compared	to	expectation.	This	difference	 in	EcoRI	

and	 EcoRV	 restriction	 site	 frequencies	 was	 previously	 noticed	 (Gelfand	 &	 Koonin,	 1997),	

although	not	explained.	We	hypothesized	that	the	difference	in	self-restriction	rate	between	

the	 two	RM	systems	 results	 from	an	 intrinsic	difference	 in	 restriction	efficiency	per	 single	

restriction	site	(probability	that	a	restriction	site	is	cleaved	before	methylation).	We	tested	

this	hypothesis	by	measuring	 the	efficiency	of	EcoRI	and	EcoRV	 in	preventing	 infection	by	

unmethylated	bacteriophage	λ	vir.	The	efficiency	of	plating	(𝑒𝑜𝑝),	reflecting	the	probability	

of	λ	vir	escaping	restriction,	was	1.6×10!!	and	2.7×10!!	for	EcoRI	and	EcoRV,	respectively	

(Figure	3-7A).	Assuming	that	a	phage	with	𝑛 restriction	sites	(5	for	EcoRI	and	22	for	EcoRV	in	

λ	vir	(R.	Roberts,	Vincze,	Posfai,	&	Macelis,	2015))	escapes	restriction	when	all	its	restriction	

sites	 are	 methylated	 before	 cleavage	 occurs	 (Enikeeva,	 Severinov,	 &	 Gelfand,	 2010),	 the	

restriction	 efficiency	 per	 restriction	 site	 is	 given	 by	1− 𝑒𝑜𝑝! .	 In	 agreement	 with	 our	

hypothesis,	 the	 restriction	 efficiency	 is	 significantly	 higher	 for	 EcoRI	 than	 EcoRV	 (Figure	

3-7B).	 Neither	 EcoRI,	 nor	 EcoRV	 restricted	 fully	methylated	 λ	 vir	 (Figure	 3-6B),	 indicating	

that	under	our	experimental	conditions,	EcoRI	and	EcoRV	do	not	cleave	DNA	at	methylated	

or	 non-cognate	 restriction	 sites	 (Vasu,	Nagamalleswari,	&	Nagaraja,	 2012).	 Their	 different	

restriction	efficiencies	thus	likely	reflect	a	difference	in	R	and	M	gene	expression	levels	and	

enzymatic	activities.	

These	results	suggest	that	RM	systems	with	higher	per	site	probability	of	cleavage	are	more	

likely	 to	 cause	 self-restriction	 and	 lead	 to	 stronger	 restriction	 site	 avoidance.	 Although	 a	

variety	of	gene	regulatory	mechanisms	are	known	to	maintain	well-balanced	levels	of	R	and	

M	 expression	 (Mruk	 &	 Blumenthal,	 2008;	 Mruk	 &	 Kobayashi,	 2014;	 Mruk	 et	 al.,	 2011;	

Nagornykh	et	al.,	2008;	Semenova	et	al.,	2005),	stochastic	events	occurring	at	 the	 level	of	
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the	 single	 cell,	 such	 as	 stochastic	 gene	 expression	 (Elowitz	 et	 al.,	 2002)	 or	 protein	

partitioning	at	cell	division	(Huh	&	Paulsson,	2011),	might	occasionally	disrupt	this	balance	

and	contribute	to	the	overall	rate	of	self-restriction.	In	support	of	this	hypothesis,	we	found	

that	 restriction	 sites	 of	 type	 IIP	 RM	 systems,	 in	 which	 R	 and	 M	 are	 structurally	 and	

functionally	 independent	 enzymes,	were	 on	 average	more	 avoided	 and	 exhibited	 a	wider	

range	of	genomic	frequencies	than	restriction	sites	of	type	IIG	RM	systems,	in	which	R	and	

M	 are	 fused	 into	 a	 single	 bifunctional	 polypeptide	 (R.	 Roberts,	 2003)	 (Figure	 3-7C).	 The	

direct	linkage	of	R	and	M	will	minimize	the	probability	of	stochastic	R	and	M	imbalance	due	

to	fluctuations	of	individual	components,	which	is	expected	to	reduce	self-restriction	rates.	

In	 contrast,	 self-restriction	 in	 type	 IIP	 systems	 (which	 include	EcoRI	and	EcoRV)	 can	 result	

from	 differences	 in	 expression	 levels	 and	 enzymatic	 activities	 of	 R	 and	 M	 as	 well	 as	

stochastic	 imbalance	 between	 their	 concentrations.	 This	 additional	 source	 of	 variance	 in	

type	 IIP	 systems	 is	 consistent	 with	 the	 significantly	 wider	 range	 of	 their	 restriction	 site	

frequencies	and	higher	avoidance	on	average.	
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3.3 Discussion	

Our	 finding	 that	 a	 more	 efficient	 RM	 system	 exhibits	 a	 higher	 self-restriction	 rate	 is	

indicative	of	an	evolutionary	tradeoff	between	enhanced	protection	against	exogenous	DNA	

and	increased	autoimmunity.	Evolution	of	restriction	site	avoidance	in	a	genome	mitigates	

the	long-term	cost	of	an	RM	system,	which	was	previously	estimated	for	6-cutter	enzymes	

to	be	10-5	-	10-4	per	generation	at	mutation-selection	balance	(Qian	&	Kussell,	2012).	While	

we	did	not	observe	a	measurable	fitness	cost	of	self-restriction	under	standard	conditions,	

we	did	observe	a	noticeable	fitness	cost	when	resources	were	limited.	The	long-term	cost	of	

RM	 systems	 in	 natural	 populations	 will	 thus	 depend	 both	 on	 molecular	 properties	 of	

individual	RM	systems	and	on	environmental	determinants.	These	results	are	in	accord	with	

studies	 showing	 that	 other	 phage	 resistance	 mechanisms	 such	 as	 clustered	 regularly	

interspaced	short	palindromic	repeats	CRISPR-associated	 (CRISPR-cas)	systems	 (Vale	et	al.,	

2015;	Westra	et	al.,	2015),	abortive	 infection	 (Berngruber,	Lion,	&	Gandon,	2013;	Refardt,	

Bergmiller,	&	Kümmerli,	2013)	or	envelope	resistance	 (Lenski,	1988;	Lenski	&	Levin,	1985)	

come	with	 a	 cost	 for	 the	 host	 cell,	 and	 that	 the	 cost	 of	 immunity	 can	 be	 accentuated	 in	

environments	with	limited	resource	availability	in	bacteria	(Gómez	&	Buckling,	2011),	as	well	

as	in	higher	organisms	(Boots,	2011).	

The	 ability	 to	 discriminate	 self	 from	 non-self	 is	 a	 crucial	 property	 of	 all	 immune	 systems	

(Marraffini	 &	 Sontheimer,	 2010),	 and	 failure	 to	 do	 so	 leads	 to	 pathogen	 tolerance	 or	

autoimmunity	 (Goldberg	&	Marraffini,	2015).	 In	this	work,	we	show	that	similarly	to	more	

complex	 immune	 systems,	 autoimmunity	 due	 to	 RM	 systems	 affects	 a	 small	 number	 of	

individuals	in	a	population.	RM	systems	are	extremely	abundant	in	prokaryotes	(Oliveira	et	

al.,	 2014;	 Vasu	 &	 Nagaraja,	 2013)	 and	 likely	 play	 an	 important	 role	 in	 their	 ecology	 and	

evolution.	Understanding	 the	 costs	 and	 benefits	 associated	with	 RM	 systems	 is	 crucial	 to	

fully	 evaluate	 this	 role	 (Korona	&	 Levin,	 1993).	 RM	 systems	 can	 protect	 their	 hosts	 from	

parasites	(Arber	&	Dussoix,	1962),	but	also	act	parasitically	(Naito	et	al.,	1995).	While	they	

act	 as	 a	 barrier	 to	 horizontal	 gene	 transfer	 (Corvaglia	 et	 al.,	 2010;	 Murray,	 2002),	 they	

themselves	 are	 often	 mobile	 (Furuta	 &	 Kobayashi,	 2012)	 and	 can	 even	 promote	 DNA	

recombination	 (Arber,	 2000).	 Here,	 we	 describe	 a	 new	 type	 of	 interaction	 between	 RM	

systems	and	their	hosts	–	a	primitive	form	of	bacterial	autoimmunity.	As	a	downside	of	an	
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immunity	mechanism	 based	 on	 a	 balance	 between	 individual	 components,	 bacterial	 self-

restriction	 exemplifies	 a	 link	 between	 stochastic	 events	 occurring	 at	 the	 level	 of	 single	

individuals	and	the	evolution	of	bacterial	genomes.	

	 	



42	

3.4 Material	and	Methods	

 Bacterial	strains,	plasmids	and	growth	conditions	3.4.1

The	 EcoRI	 and	 EcoRV	 RM	 systems	 are	 encoded	 on	 the	 pBR322	 backbone	 (AmpR,	 15-20	

copies	per	cell)	and	are	expressed	in	their	native	configuration	from	their	native	promoters	

(Figure	 3-1A).	The	origin	of	 replication	of	pBR322	 (pMB1)	 is	 closely	 related	 to	pMB4	 from	

which	EcoRI	originates	(Betlach	et	al.,	1976).	To	prevent	post-segregational	killing	(Handa	&	

Kobayashi,	 1999),	 we	 constantly	 selected	 for	 plasmid	 maintenance,	 although	 pBR322-

derived	 plasmids	 have	 been	 shown	 to	 be	 stable	 over	 hundreds	 of	 generations	 in	 the	

absence	 of	 selection	 pressure	 (Chiang	 &	 Bremer,	 1988).	 The	 PsulA-yfp	 reporter	 was	

integrated	 in	 the	HK022	attachment	 site	 in	 the	host	 chromosome.	M9CA	medium	 (1x	M9	

salts,	0.4%	glucose,	2mM	MgSO4,	0.1mM	CaCl2,	0.2%	Casamino	acids)	was	used	for	bacterial	

growth	 unless	 otherwise	 stated.	 The	 medium	 was	 supplemented	 with	 antibiotics	 when	

needed	 at	 following	 concentrations:	 Ampicillin	 100	 μg/ml,	 Chloramphenicol	 15	 μg/ml,	

Kanamycin	 50	 μg/ml.	 Liquid	 bacterial	 cultures	were	 propagated	 in	 the	 dark,	 at	 37°C	with	

vigorous	shaking.	

 Population	doubling	time	measurements	and	spotting	assay	3.4.2

For	 estimation	 of	 population	 doubling	 times,	 overnight	 cultures	 started	 from	 individual	

colonies	were	diluted	1:250	 in	a	 flat-bottom	96-well	plate	 into	fresh	medium	(200	μl	 total	

volume).	The	plate	was	continuously	shaken	inside	the	Synergy	H1	Multi-Mode	Reader	and	

OD600	was	measured	 at	 ten-minute	 intervals	 for	 10	hours.	Growth-rates	were	 calculated	

from	the	background-subtracted	values	of	OD600	as	the	slope	of	ln(OD600)	vs.	time	during	

90	 minutes	 of	 exponential	 growth.	 Population	 doubling	 times	 were	 calculated	 as	

ln(2)/growth	rate.	Outmost	wells	were	used	for	background	subtraction.	We	repeated	the	

growth-rate	experiment	in	5	ml	batch	cultures	and	obtained	consistent	results	(not	shown)	

with	these	presented	 in	Table	3-1.	For	 the	spotting	assay,	overnight	cultures	were	serially	

diluted	 in	 SM	 buffer	 and	 spotted	 (10	 μl)	 on	 M9	 plates	 (without	 Casamino	 acids)	

supplemented	with	respective	antibiotics	and	inducers.	Plates	were	incubated	at	37°C	for	48	

h.	
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 Flow	cytometry	measurements	and	analysis	3.4.3

Overnight	cultures	started	from	single	colonies	were	diluted	1:1,000	into	2	ml	fresh	medium	

and	grown	for	4	hours	to	reach	the	exponential	phase.	The	samples	were	diluted	1:100	into	

filtered	(0.22	μm)	medium	immediately	prior	to	measurement.	Fluorescence	was	measured	

using	 the	 BD	 FACSCanto™	 II	 system	 in	 the	 FITC	 channel.	 Fluorescence	 intensity	 data	was	

exported	 into	 the	 ASCII	 format	 using	 FlowJo	 (Tree	 Star)	 and	 analyzed	 in	 MATLAB.	 The	

fractions	 of	 SOS-ON	 cells	 were	 obtained	 using	 a	 single	 threshold	 value	 determined	 by	

inspection	of	the	 log-log	plots	of	cumulative	tail	probability	vs.	 fluorescence	(Figure	 3-3B).	

The	 cumulative	 tail	 probability	 is	 defined	 as	 the	 cumulative	 probability	 of	 cells	 with	

fluorescence	 higher	 than	𝑥.	 We	 identified	 the	 vicinity	 of	 a	 kink	 in	 the	 wild-type	 (R-M-)	

control,	and	used	it	as	a	natural	threshold	value	for	quantifying	fractions	of	SOS-ON	cells	for	

all	the	samples	analyzed.	The	fraction	of	genuine	SOS	on	cells	was	obtained	by	subtracting	

the	fraction	of	cells	above	the	threshold	in	the	ΔrecA	population,	from	the	fraction	of	cells	

above	the	threshold	in	the	wild-type.	

 Measuring	restriction	efficiency	3.4.4

Efficiency	of	plating	(eop)	was	determined	by	plating	serially	diluted	λ	vir	 lysate	(grown	on	

MG1655)	on	lawns	of	bacteria	with	corresponding	plasmids.	Overnight	cultures	were	mixed	

with	serial	dilutions	of	the	lysate	in	3	ml	of	phage	soft	agar	(1%	tryptone,	0.1%	yeast	extract,	

0.8%	 NaCl,	 0.7%	 Agar,	 0.01%	 glucose,	 0.2	 mM	 CaCl2)	 and	 plated	 on	 phage	 plates	 (1%	

tryptone,	 0.1%	 yeast	 extract,	 0.8%	 NaCl,	 1%	 Agar,	 0.01%	 glucose,	 0.2	 mM	 CaCl2).	 The	

number	of	plaque-forming	units 𝑛!"#	per	ml	of	the	lysate	was	calculated	for	each	strains	as:	

𝑛!"#$%&' × 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 .	 Efficiency	of	plating	 (eop),	which	corresponds	 to	 the	probability	 that	

all	 phage	 restriction	 sites	 are	 methylated	 before	 cleavage,	 was	 calculated	 as	 𝑒𝑜𝑝 =

 𝑛!"#_!"#$%& 𝑛!"#_!"#$%"& ,	 where	 𝑛!"!_!"#$%"& 	is	 the	 number	 of	 plaque-forming	 units	

obtained	on	the	control	(R-M-)	lawn.	For	a	phage	with	n	restriction	sites,	the	probability	that	

a	 single	 restriction	 site	 is	 methylated	 before	 cleavage	 is	 given	 by	 𝑒𝑜𝑝! . 	Restriction	

efficiency	(the	probability	that	a	single	restriction	site	is	cleaved	before	methylation)	is	then	

given	 by	1− 𝑒𝑜𝑝! .	 We	 measured	 no	 significant	 decrease	 in	 eop	 for	 the	 EcoRI	 (R-M+)	

(0.97± 0.07)	and	EcoRV	(R-M+)	(0.99 ± 0.08)	strains	(𝑚𝑒𝑎𝑛 ± 𝑆𝐷,	n=4).	
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 Microscopy	fluorescence	measurements	3.4.5

A	Nikon	Ti-E	microscope	equipped	with	a	 thermostat	chamber	 (TIZHB,	Tokai	Hit),	100×	oil	

immersion	 objective	 (Plan	 Apo	 λ,	 N.A.	 1.45,	 Nikon),	 cooled	 CCD	 camera	 (ORCA-Flash,	

Hamamatsu	Photonics)	and	LED	excitation	light	source	(DC2100,	Thorlabs)	was	used	for	the	

microscopy	fluorescence	measurements.	The	microscope	was	controlled	by	micromanager	

(https://micro-manager.org).	 The	 cells	 were	 grown	 in	 a	microfluidic	 device	 similar	 to	 the	

‘mother	machine’	(P.	Wang	et	al.,	2010).	The	growth	channel	dimensions	were	5	mm(W)×15	

mm(L)×1	mm(D),	which	allowed	to	stably	harbor	approximately	10	cells.	Overnight	cultures	

were	diluted	1:400	into	fresh	medium	and	grown	at	37°C	for	4	hours	to	reach	exponential	

phase.	The	cultures	were	centrifuged	to	obtain	the	cell	suspension	of	OD	~2.0	and	injected	

into	the	device	with	a	1-ml	syringe.	After	the	30-minute	incubation	at	37°C	to	load	the	cells	

into	the	growth	channels,	fresh	pre-warmed	medium	was	flown	at	the	rate	of	5	ml/h	for	5	

minutes	to	remove	the	cells	outside	the	growth	channels.	The	flow	rate	was	fixed	to	1	ml/h	

throughout	the	measurements.	Phase,	YFP	fluorescence	and	RFP	fluorescence	images	were	

taken	 simultaneously	 at	 2-min	 time-lapse	 interval.	 Multiple	 growth	 channels	 were	

monitored	 simultaneously	 in	 a	 single	 experiment.	 We	 used	 a	 custom	 macro	 of	 ImageJ	

(http://imagej.nih.gov/ij/)	 for	 the	 image	 analysis	 and	 a	 custom	 C-program	 for	 the	 data	

analysis.	

 Identifying	putative	R	and	M	genes	and	assigning	properties	3.4.6

Reference	 sequences	 of	 experimentally	 validated	 type	 II	 R	 and	 M	 proteins	 with	 4-6	 bp	

restriction	 sites	 were	 downloaded	 from	 the	 ReBase	 Gold	 Standard	 Set	 (R.	 Roberts	 et	 al.,	

2015).	Using	these	as	templates,	we	searched	for	potential	R	and	M	genes	in	all	annotated	

full-length	 prokaryotic	 chromosome	 sequences	 (downloaded	 from	 the	 Genbank	 RefSeq	

prokaryotic	 collection)	by	BLASTP	with	 the	 criteria	of	e-value	<	10!!".	 The	 list	of	hits	was	

filtered	 for	 alignment	 length	 within	 ±20%	 of	 the	 template	 length	 and	 protein	 sequence	

similarity	>	50%.	These	hits	constituted	our	full	set	of	R	and	M	predictions.	To	construct	a	

stringent	 set	 of	 potential	 homologues,	 59	 non-redundant	 6-cutter	 R	 enzymes	 that	 had	

matches	with	protein	similarity	>	80%	were	considered	the	core	set	of	“prototypes”	with	the	

source	genomes	assigned	as	their	hosts.	For	each	prototype	enzyme,	its	(forward)	top	hit	in	
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each	genome	was	used	as	 the	 template	 for	a	 (reverse)	BLASTP	search	against	all	genes	 in	

the	 prototype’s	 host	 genome.	 If	 the	 prototype	 ranked	 #1	 among	 all	 the	 reverse	 hits,	 the	

corresponding	forward	top	hit	was	included	in	the	stringent	dataset.	A	stringent	dataset	for	

the	M	 enzyme	 was	 constructed	 in	 the	 same	 way	 from	 73	 prototype	M	 enzymes.	 Target	

specificity	was	assigned	to	all	hits	according	to	their	prototype	enzymes.	A	RM	system	(R-M	

pair)	 was	 identified	 when	 two	 R	 and	 M	 predictions	 sit	 within	 +/-	 2	 genes	 in	 the	 same	

genome.	Subtype	was	assigned	according	to	prototypes.	For	the	C-controlled	RM	systems,	a	

matching	 control	 gene	 also	 had	 to	 be	 present	 to	 call	 the	 assignment.	 Since	 there	 is	

essentially	 no	 information	 on	 the	 activity	 of	 these	 systems	 in	 their	 respective	 hosts,	 we	

cannot	 rule	 out	 the	 possibility	 that	 a	 fraction	 of	 RM	 systems	 in	 our	 set	 are	 no	 longer	

functional	or	have	changed	target	specificity.	For	each	R	enzyme	in	the	stringent	dataset,	we	

measured	the	frequency	𝑞!	of	 its	assigned	restriction	site	w	by	a	sliding	window	across	all	

coding	 regions	 of	 the	 host	 genome.	 To	 account	 for	 word	 frequency	 deviations	 due	 to	

protein	 coding	 constraints,	 we	 randomized	 the	 original	 sequence	 by	 shuffling	 the	

synonymous	codons	genome-wide,	preserving	the	amino	acid	sequences	and	codon	usage	

biases.	 The	 expected	word	 frequency	𝑞!! 	is	 obtained	 by	 averaging	 frequencies	 over	 1,000	

randomizations	of	the	entire	coding	sequence.	The	relative	frequency	is	defined	as	𝑞!/𝑞!! .	

In	cases	where	the	target	specificity	is	degenerate,	e.g.,	ARCGYT	(R	=	G/A,	Y	=	C/T),	all	words	

compatible	with	the	pattern	are	assessed	separately.	

 Competition	experiments	3.4.7

The	 EcoRI	 (R+M+)	 and	 (R-M+)	 and	 EcoRV	 (R+M+)	 and	 (R-M+)	 plasmids	were	 transformed	

into	 MG1655	 strains	 expressing	 Venus	 YFP	 and	 Cerulean	 CFP	 from	 the	 λ	 PR	 promoter,	

integrated	in	the	attP21	site	on	the	chromosome	of	the	host.	A	single	colony	for	each	host	

strain/plasmid	combination	was	picked	from	a	freshly	streaked	plate	and	grown	overnight	in	

2	 ml	 of	 corresponding	 medium	 supplied	 with	 ampicillin.	 The	 strains	 were	 mixed	 in	

approximately	 1:1	 ratio	 and	diluted	 1:1,000	 into	 2	ml	 of	 fresh	medium	and	 grown	 for	 24	

hours.	 Cultures	 were	 diluted	 every	 24	 hours	 by	 1:1,000	 into	 2	 ml	 of	 fresh	 medium.	We	

constantly	selected	for	the	plasmid	maintenance	by	supplying	the	medium	with	ampicillin.	

The	 densities	 of	 individual	 types	 were	 measured	 by	 sampling	 100	 μl	 at	 the	 end	 of	 each	

transfer,	 diluting	 the	 sample	 in	 SM	 buffer	 and	 plating	 on	 LB	 plates	 such	 that	 100-200	



46	

colonies	 per	 plate	 were	 obtained.	 Two	 measurements	 (independent	 platings)	 for	 each	

sample	were	averaged	to	obtain	the	density	of	each	type.	Fluorescent	images	of	the	plates	

were	 taken	 using	 a	 custom	 build	 macroscope	 (Chait,	 Shrestha,	 Shah,	 Michel,	 &	 Kishony,	

2010)	and	colonies	of	each	type	were	counted	manually.	The	selection	coefficients	𝑠 were	

calculated	 by	 linear	 regression	 of	 ln[(𝑦! 𝑐!) ∗ (𝑐! 𝑦!)],	 against	 time	 (Dykhuizen	 &	 Hartl,	

1983),	where	𝑦! and	𝑐! represent	 densities	 of	 yellow	 and	 cyan	 cells,	 respectively	 at	 time	𝑡	

and	𝑦! and	𝑐!	represent	densities	at	the	beginning	of	the	experiment.	
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 List	of	strains	and	plasmids	3.4.8

Name	 Genotype	 Source,	reference	
DH5α	 F–	,Φ80lacZΔM15,	Δ(lacZYA-argF),	U169,	

recA1,	endA1,	hsdR17	(rK–,	mK+),	phoA	
supE44,	thi-1,	gyrA96,	relA1,	λ–	

Lab	collection	

DH5α	λpir+	 F–	,Φ80lacZΔM15,	Δ(lacZYA-argF),	U169,	
recA1,	endA1,	hsdR17	(rK–,	mK+),	phoA	
supE44,	thi-1,	gyrA96,	relA1,	λpir+	

Lab	collection	

Frag1B	 F-,	rha-,	thi,	gal,	lacZ.AM,	,	Δattλ::(PN25-
tetR,	PlacIq-lacI,	SpR)	

Lab	collection	

MG1655	 F-,	λ-,	ilvG-,	rfb-50,	rph-1	 Lab	collection	
MP060	 MG1655,	ΔattHK022::(PsulA-yfp)	 This	work	
MP062	 MG1655,	ΔattHK022::(PsulA-yfp),	

Δattλ::(PN25-tetR,	PlacIq-lacI,	SpR)	
This	work	

MP064	 MG1655,	ΔattHK022::(PsulA-yfp),	ΔrecA	 This	work	
MP066	 MG1655,	ΔattHK022::(PsulA-yfp),	

ΔattP21::(PR-mCherry)	
This	work	

MP068	 MG1655,	ΔattHK022::(PsulA-yfp),	
ΔattP21::(PR-mCherry),	ΔrecA	

This	work	

MP070	 MG1655,	ΔrecA	 This	work	
MP074	 MG1655,	ΔattHK022::(PsulA-yfp),	

Δattλ::(PN25-tetR,	PlacIq-lacI,	SpR),	ΔrecA	
This	work	

MG1655	PR-Venus	 MG1655,	ΔattP21::(PR-Venus)	 Lab	collection	
MG1655	PR-Cerulean	 MG1655,	ΔattP21::(PR-Cerulean)	 Lab	collection	
pBR322	 pMB1	ori,	AmpR,	TetR	 NEB	
pIK166	 pMB1	ori	,	AmpR,	EcoRI	(R+M+)	 Ichizo	Kobayashi	
pIK167	 pMB1	ori	,	AmpR,	EcoRI	(R-M+)	 Ichizo	Kobayashi	
pYNEC107	 pMB1	ori	,	AmpR,	EcoRV	(R+M+)	 Ichizo	Kobayashi	
pYNEC117	 pMB1	ori	,	AmpR,	EcoRV	(R-M+)	 Ichizo	Kobayashi		
pBR322ΔPtet	 pMB1	ori	,	AmpR,	ΔPtet	 This	work	
pAH68-frt-cam	 R6K	ori,	CamR-frt,	attPHK022,	yfp	 Lab	collection	
pMP017	 R6K	ori,	CamR-frt,	attPHK022,	PsulA-yfp	 This	work	
pBR322ΔPtetEcoRI	(R+M+)	 pMB1	ori	,	AmpR,	ΔPtet,	EcoRI	(R+M+)	 This	work	
pBR322ΔPtetEcoRI	(R-M+)	 pMB1	ori	,	AmpR,	ΔPtet,	EcoRI	(R-M+)	 This	work	
pBR322ΔPtetEcoRV	(R+M+)	 pMB1	ori	,	AmpR,	ΔPtet,	EcoRV	(R+M+)	 This	work	
pBR322ΔPtetEcoRV	(R-M+)	 pMB1	ori	,	AmpR,	ΔPtet,	EcoRV	(R-M+)	 This	work	
pZS*11-YFP	 pSC101*	ori,	AmpR,	PLtetO-1-yfp	 Lab	collection	
pZA32-GFP	 p15A	ori,	CamR,	PLlacO-1-GFP	 Lab	collection	
pZS*11-R.EcoRI	 pSC101*	ori,	AmpR,	PLtetO-1-R.EcoRI	 This	work	
pZA32-M.EcoRI	 p15A	ori,	CamR,	PLlacO-1-M.EcoRI	 This	work	
pZA32-M.EcoRV	 p15A	ori,	CamR,	PLlacO-1-M.EcoRI	 This	work	
λ	vir	 Virulent	mutant	of	Phage	λ		 Allan	Campbell	
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 Strain	and	plasmid	construction	3.4.9

The	PsulA	promoter	region	was	PCR-amplified	from	the	MG1655	chromosome	using	the	26_5	

and	 27_3	 primers.	 This	 amplifies	 240	 bp	 long	 region	 (120	 bp	 upstream	 and	 120	 bp	

downstream	of	the	sulA	start	codon)	and	introduces	an	in-frame	stop	codon.	The	amplified	

fragment	was	digested	with	BamHI	 and	XhoI	 and	 cloned	 into	 the	pAH68-frt-cam	 plasmid.	

This	 is	 a	 CRIM-based	 plasmid	 (Haldimann	&	Wanner,	 2001)	 previously	 constructed	 in	 our	

laboratory	 that	 integrates	 into	 the	 HK022	 attachment	 site.	 The	 plasmid	 contains	

promoterless	YFP	and	a	chloramphenicol	resistance	marker	flanked	by	FRT	sites	so	it	can	be	

removed	using	the	pCP20	plasmid	 (Doublet	et	al.,	2008).	DH5α	λpir+	was	used	as	host	 for	

cloning	 the	 plasmid.	 The	 resulting	 plasmid	 (pMP017)	 containing	 the	 PsulA-yfp	 fusion	 was	

integrated	into	the	MG1655	chromosome	using	the	pAH69	helper	plasmid.	The	CmR	marker	

was	removed	with	pCP20	(MP060).	The	activity	of	the	PsulA-yfp	reporter	increased	40-fold	in	

response	to	1	μg/ml	mitomycinC	(not	shown).	MP062	was	constructed	by	transduction	(P1)	

of	 the	 Δattλ::(PN25-tetR,	 PlacIq-lacI,	 SpR)	 cassette	 from	 Frag1B	 into	 MG1655,	 followed	

transduction	 of	 the	 ΔattHK022::(PsulA-yfp,	 CmR-frt)	 allele	 and	 removal	 of	 the	 CmR	 marker	

(pCP20).	MP066	was	constructed	by	P1	transduction	of	the	ΔattP21::(PR-mCherry,	CmR-frt)	

allele	 into	MP060	 followed	 by	 removal	 of	 the	 CmR	marker	 (pCP20).	 All	 the	 ΔrecA	 strains	

were	constructed	by	recombineering	(Thomason,	Sawitzke,	Li,	Costantino,	&	Court,	2014)	of	

the	ΔrecA,	kanR-frt	deletion	PCR	product	into	either	MG1655	(MP070),	MP060	(MP064)	or	

MP066	(MP068)	 followed	by	removal	of	 the	kanR	marker	 (pCP20).	The	ΔrecA,	kanR-frt	PCR	

product	was	obtained	in	a	PCR	reaction	using	the	5delRecA	and	3delRecA	primers	and	the	

pKD13	plasmid	(Cox	et	al.,	2007)	as	the	template.	Genotypes	of	all	the	strains	were	verified	

by	PCR.	 The	MG1655	 PR-venus	 and	MG1655	 PR-cerulean	were	 constructed	by	 integrating	

the	 PR-venus/cerulean	 cassette	 into	 the	 P21	 attachment	 site	 using	 a	 CRIM-based	 plasmid	

with	 removable	 chloramphenicol	 resistance	marker	 (the	markers	were	 removed	 from	 the	

host	strain	using	pCP20).	

To	 prevent	 transcription	 from	 the	 Ptet	 promoter	 of	 pBR322,	 which	 could	 affect	 the	

expression	 levels	 of	 the	 cloned	 RM	 systems,	 BR322ΔPtet	 was	 constructed	 by	 double-

digestion	of	pBR322	with	BamHI	and	HindIII,	blunting	the	ends	using	the	T4	polymerase	and	

relegation.	The	EcoRI	(R+M+)	and	EcoRI	(R-M+)	genes	were	PCR	amplified	from	pIK166	and	

pIK167	 respectively	using	 the	95_5	and	103_3	primers,	 followed	by	digestion	by	XhoI	and	
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HindIII	 (partial	digestion	of	the	EcoRI	(R+M+)	fragment	was	necessary,	as	the	R.EcoRI	gene	

contains	additional	HindIII	site).	The	fragments	were	cloned	into	pBR322	via	the	HindIII	and	

SalI	restriction	sites,	giving	rise	to	pBR322ΔPtet	EcoRI	(R+M+)	and	pBR322ΔPtet	EcoRI	(R-M+).	

Analogously,	 The	 EcoRV	 (R+M+)	 and	 EcoRV	 (R-M+)	 fragments	 were	 amplified	 from	

pYNEC107	 and	 pYNEC117	 respectively	 using	 the	 96_5	 and	 99_3	 primers,	 followed	 by	

digestion	with	HindIII	and	XhoI	and	cloning	into	the	pBR322	backbone	using	the	HindIII	and	

SalI	restriction	sites,	resulting	in	pBR322ΔPtet	EcoRV	(R+M+)	and	pBR322ΔPtet	EcoRV	(R-M+).	

pZS*11-R.EcoRI	 was	 constructed	 by	 amplifying	 the	 R.EcoRI	 coding	 sequence	 from	 pIK166	

using	 the	 87_5	 and	 88_3	 primers.	 The	 PCR	 product	 was	 digested	 by	 KpnI	 and	 XbaI	 and	

cloned	 into	 pZS*11-Venus	 using	 the	 same	 restriction	 sites.	 The	M.EcoRI	 coding	 sequence	

was	 amplified	 from	pIK166	using	 the	89_5	and	90_3	primers.	 The	 resulting	 fragment	was	

digested	 with	 KpnI	 and	 XbaI	 and	 cloned	 into	 pZS*11-Venus.	 From	 there,	 the	M.EcoRI-T1	

fragment	 (M.EcoRI	+	 terminator	 sequence)	was	cleaved	by	KpnI	and	AvrII	and	cloned	 into	

pZA32-GFP	 using	 the	 same	 restriction	 sites,	 resulting	 in	 pZA*32-M.EcoRI.	 The	 M.EcoRV	

coding	 sequence	 was	 amplified	 from	 pYNEC107	 using	 the	 93_5	 and	 94_3	 primers.	 The	

resulting	 fragment	was	 digested	with	 KpnI	 and	XbaI	 and	 cloned	 into	 pZS*11-Venus.	 From	

there,	the	M.EcoRV-T1	fragment	(M.EcoRV	+	terminator	sequence)	was	cleaved	by	KpnI	and	

AvrII	 and	 cloned	 into	 pZA32-GFP	 using	 the	 same	 restriction	 sites,	 resulting	 in	 pZA*32-

M.EcoRV.	MP062	was	used	as	the	host	for	cloning	of	the	inducible	plasmids.	The	identity	of	

all	 the	plasmids	was	verified	by	 sequencing	of	 the	cloned	 regions.	All	 reagents	were	 from	

Sigma.	All	enzymes	were	from	NEB.	Phusion®	High-Fidelity	DNA	Polymerase	(NEB)	was	used	

to	amplify	fragments	for	cloning.	All	the	cloned	fragments	were	verified	by	PCR.	
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 List	of	primers	3.4.10

Name	 Sequence	(5’	to	3’)a	

26_5	 aattaaCTCGAGTTATGTTTTCCCGTCACCAA	

27_3	 aattaaGGATCCTTCGCGATAGACAACTTCAC	

5delRecA	 TGACTATCCGGTATTACCCGGCATGACAGGAGTAAAAATGGGGGATCCGTC

GACCTGCAGTT	

3delRecA	 AAGGGCCGCAGATGCGACCCTTGTGTATCAAACAAGACGATGTAGGCTGG

AGCTGCTTC	

87_5	 aaGGTACCCATGTCTAATAAAAAACAGTC	

88_3	 aaTCTAGATCACTTAGATGTAAGCTG	

89_5	 aaGGTACCATGGCTAGAAATGCAAC	

90_3	 aaTCTAGACTAACAAACATCAATTACTTTTG	

93_5	 AAggtaCCGGTTCTTATTATGAAAGATAAAG	

94_5	 AATCTAGACCATCACTCTTCAATTACC	

95_5	 aatCTCGAGCATCTGGTTGCATAGGTAT	

96_3	 aatCTCGAGGGAATAGTCTGATGCTAAAT	

99_3	 aaAAGCTTCCATCACTCTTCAATTACC	

103_3	 aaAAGCTTCTAACAAACATCAATTACTTTTG	

a	Annealing	sequences	are	shown	in	bold	
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4 Phage-host	population	dynamics	promotes	

prophage	acquisition	in	bacteria	with	innate	

immunity	

This	chapter	contains	results	and	their	discussion	published	in:	Pleška	M,	Lang	M,	Refardt	D,	

Levin	BR,	Guet	CC	(2018)	Phage-host	population	dynamics	promotes	prophage	acquisition	in	

bacteria	 with	 innate	 immunity.	 Nature	 Ecology	 &	 Evolution	 (in	 press).	 The	 chapter	 was	

written	 in	 collaboration	with	Moritz	 Lang	 (IST	Austria),	who	constructed	and	analyzed	 the	

mathematical	models.	

4.1 Summary	

Temperate	bacteriophages	 integrate	 in	bacterial	 genomes	as	prophages	 and	 represent	 an	

important	source	of	genetic	variation	for	bacterial	evolution,	frequently	transmitting	fitness-

augmenting	 genes	 such	 as	 toxins	 responsible	 for	 virulence	 of	major	 pathogens.	However,	

only	a	fraction	of	phage	infections	are	lysogenic	and	lead	to	prophage	acquisition,	whereas	

the	majority	 are	 lytic	 and	 kill	 the	 infected	bacteria.	Unless	 able	 to	 discriminate	 lytic	 from	

lysogenic	 infections,	mechanisms	of	 immunity	 to	bacteriophages	 are	 expected	 to	 act	 as	 a	

double-edged	sword	and	 increase	 the	odds	of	 survival	at	 the	cost	of	depriving	bacteria	of	

potentially	beneficial	prophages.	We	show	that	although	restriction-modification	systems	as	

mechanisms	of	innate	immunity	prevent	both	lytic	and	lysogenic	infections	indiscriminately	

in	 individual	 bacteria,	 they	 increase	 the	 number	 of	 prophage-acquiring	 individuals	 at	 the	

population	 level.	We	 find	 that	 this	 counterintuitive	 result	 is	 a	 consequence	of	phage-host	

population	dynamics,	 in	which	 restriction-modification	 systems	delay	 infection	onset	until	

bacteria	 reach	 densities	 at	 which	 the	 probability	 of	 lysogeny	 increases.	 These	 results	

underscore	 the	 importance	of	population-level	dynamics	as	a	 key	 factor	modulating	 costs	

and	benefits	of	immunity	to	temperate	bacteriophages.	
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4.2 Introduction	

Restriction-modification	(RM)	systems	abound	 in	the	Archaea	as	well	as	the	Bacteria,	with	

multiple	RM	systems	 frequently	 residing	 in	a	 single	 genome	 (Oliveira	et	 al.,	 2014;	Vasu	&	

Nagaraja,	 2013;	Wilson	&	Murray,	 1991).	 Typically	 composed	 of	 two	 enzymatic	 activities,	

RM	 systems	 represent	 a	 minimal	 mechanism	 of	 self-	 /	 non-self	 discrimination	 (Murray,	

2002).	This	essential	biological	role	is	realized	by	the	restriction	endonuclease,	which	cleaves	

exogenous	 “non-self”	 DNA	 at	 well-defined	 sequences	 termed	 restriction	 sites,	 while	 the	

cognate	 methyltransferase	 prevents	 cleavage	 of	 endogenous	 “self”	 restriction	 sites	 by	

methylation.	As	a	result,	RM	systems	provide	bacteria	with	innate	immunity	(Abedon,	2012)	

against	 bacteriophage	 (phage)	 infections	 (Tock	 &	 Dryden,	 2005).	 While	 this	 function	 has	

typically	 been	 investigated	 in	 the	 context	 of	 obligatorily	 lytic	 phages,	 the	 nature	 of	

interactions	between	RM	systems	and	temperate	phages	remains	elusive.	

In	addition	to	horizontal	spread	by	lysis,	temperate	phages	can	enter	bacterial	genomes	as	

prophages	and	transmit	vertically	in	the	process	termed	lysogeny	(Lwoff,	1953).	Prophages	

are	 a	 prevalent	 feature	 of	 bacterial	 genomes	 (Bobay,	 Rocha,	 &	 Touchon,	 2013)	 and	 can	

constitute	as	much	as	20%	of	their	size	(Casjens,	2003).	A	large	number	of	prophages	carry	

genes	that	increase	fitness	of	their	bacterial	hosts	(Edlin,	Lin,	&	Bitner,	1977;	Lin,	Bitner,	&	

Edlin,	 1977;	 Obeng,	 Pratama,	 &	 Elsas,	 2016;	 Oliver,	 Degnan,	 Hunter,	 &	 Moran,	 2009),	

examples	 of	 which	 include	 determinants	 of	 microbial	 pathogenicity	 and	 virulence	

(Barondess	&	Beckwith,	1990;	Brüssow,	Canchaya,	Hardt,	&	Bru,	2004;	O’Brien	et	al.,	1984;	

Waldor	&	Mekalanos,	1996),	genes	increasing	resistance	to	adverse	environments	(X.	Wang	

et	 al.,	 2010),	 as	well	 as	 those	 controlling	 biofilm	 formation	 (Rice	 et	 al.,	 2009).	Moreover,	

prophages	can	confer	immunity	to	phage	superinfection	(Bondy-Denomy	et	al.,	2016),	serve	

as	 allopathic	 agents	 during	 invasion	 of	 new	 environments	 (Brown,	 Le	 Chat,	 De	Paepe,	 &	

Taddei,	 2006),	 and	 cause	 beneficial	 mutations	 (Davies	 et	 al.,	 2016).	 An	 infection	 by	 a	

temperate	 phage	 can	 thus	 result	 either	 in	 host	 death	 or	 acquisition	 of	 a	 potentially	

beneficial	prophage.	 It	has	 recently	been	shown	that	 some	CRISPR/Cas	 systems,	a	 type	of	

bacterial	adaptive	immunity	(Barrangou	et	al.,	2007),	tolerate	lysogenic	infections	and	only	

interfere	with	lysis	(Goldberg,	Jiang,	Bikard,	&	Marraffini,	2014),	thus	protecting	their	hosts	

without	 compromising	 prophage	 acquisition.	 However,	 tolerance	 to	 lysogeny	 is	 not	 a	
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property	 of	 all	 CRISPR/Cas	 types	 (Edgar	 &	 Qimron,	 2010)	 and	 whether	 it	 occurs	 in	 the	

context	of	RM	systems	 is	not	known.	Can	RM	systems	as	mechanisms	of	 innate	 immunity	

distinguish	between	 lytic	and	 lysogenic	 infections,	or	do	 they	act	as	a	barrier	 to	prophage	

acquisition?	
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4.3 Results	

 RM	 systems	 prevent	 lytic	 and	 lysogenic	 infections	 indiscriminately	 at	4.3.1

the	level	of	individual	bacteria	

To	 address	 this	 question,	 we	 first	 examined	 eleven	 RM	 systems	 originally	 isolated	 from	

Escherichia	coli	for	their	ability	to	prevent	lytic	and	lysogenic	infections.	The	RM	systems	we	

tested	 represented	 all	 four	 types	 into	 which	 RM	 systems	 are	 classified	 based	 on	 their	

molecular	composition	 (R.	Roberts,	2003).	Our	particular	concern	was	whether,	 for	any	of	

these	 systems,	 the	 probability	 of	 a	 temperate	 phage	 escaping	 restriction	 during	

establishment	 of	 lysogeny	 substantially	 exceeds	 the	 probability	 of	 escape	 during	 lysis.	 As	

measures	of	 these	probabilities,	we	used	the	efficiency	of	 lysogen	formation	(eol)	and	the	

efficiency	of	plaque	formation	(eop)	(Figure	4-1A),	respectively.	The	temperate	λ	kan	phage	

used	 in	 these	and	 subsequent	experiments	 carried	a	 gene	 rendering	 lysogens	 resistant	 to	

kanamycin,	which	allows	for	their	direct	selection.	For	ten	of	the	eleven	tested	RM	systems,	

eop	and	eol	did	not	differ	significantly	(Figure	4-1B	and	Table	4-1).	The	eop	of	the	eleventh	

RM	system,	EcoRV,	was	the	lowest	observed	(1.96 ∙ 10!! ± 1.53 ∙ 10!!)	and	because	its	eol	

was	 below	 the	 detection	 limit	 of	 the	 assay	 < 10!! 	the	 two	 efficiencies	 could	 not	 be	

directly	 compared.	However,	 the	 fact	 that	no	 lysogenic	 colonies	were	obtained	 suggested	

that	eol	of	EcoRV	was	not	substantially	higher	than	its	eop.	We	interpret	these	results	to	be	

inconsistent	with	 the	 hypothesis	 that	 any	 of	 the	 tested	 RM	 systems	 possess	 a	molecular	

mechanism	 that	 would	 allow	 individual	 bacteria	 to	 tolerate	 lysogenic	 infections.	 In	 other	

words,	 RM	 systems	 cleave	 DNA	 of	 phages	 entering	 the	 lytic	 and	 lysogenic	 pathway	

indiscriminately,	and	represent	a	barrier	to	prophage	acquisition	in	individual	bacteria.	
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Table	4-1:	eop	and	eol	of	bacteria	carrying	different	RM	systems	

		 		 eopa	 	 eola	

	RM	System	 Type	 Mean	 SD	 	 Mean	 SD	 P	valueb	

EcoAI	 IB	 9.14∙10-3	 1.53∙10-3	 	 1.77∙10-2	 8.17∙10-3	 0.03	

EcoBI	 IA	 7.38∙10-4	 3.50∙10-4	 	 6.26∙10-4	 3.07∙10-4	 0.91	

EcoKI	 IA	 3.90∙10-4	 2.41∙10-4	 	 5.74∙10-4	 3.93∙10-4	 0.18	

EcoR124I	 IC	 2.01∙10-4	 1.47∙10-4	 	 1.05∙10-4	 5.30∙10-5	 0.72	

EcoRI	 IIP	 1.37∙10-5	 1.09∙10-5	 	 6.97∙10-6	 3.83∙10-6	 0.90	

EcoRII	 IIEP	 1.68∙10-5	 6.87∙10-6	 	 8.35∙10-6	 3.72∙10-6	 0.85	

EcoRV	 IIP	 1.95∙10-8	 1.53∙10-8	 	

	 	 	EcoVIII	 IIP	 1.94∙10-4	 2.38∙10-5	 	 2.11∙10-4	 1.83∙10-4	 0.98	

EcoP1	 III	 9.57∙10-5	 2.62∙10-5	 	 5.71∙10-5	 3.97∙10-5	 0.96	

EcoP15I	 III	 1.81∙10-5	 1.09∙10-5	 	 1.94∙10-5	 1.80∙10-5	 0.44	

EcoKMcrBC	 IV	 3.57∙10-1	 9.83∙10-2	 	 3.40∙10-1	 8.51∙10-2	 0.62	
a	 	Calculated	 from	 six	 replicates	 in	 two	 sets	of	 experiments	 (three	 independent	biological	
replicates	per	experiment).	
b	 	 Calculated	 by	 unpaired,	 one-sided	Welch’s	 t-test	 (H0:	𝑒𝑜𝑙 ≤ 𝑒𝑜𝑝).	 P	 values	 were	 not	
signifficant	after	Bonferroni	correction	for	multiple	comparisons	𝛼∗ = !.!"

!"
= 0.005.	
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 RM	systems	promote	lysogenic	infections	at	the	population	level	4.3.2

To	understand	how	the	RM	systems	affect	prophage	acquisition	at	the	population	level,	we	

infected	mixed	RM+	and	RM-	 cultures	 growing	 in	 a	 defined	minimal	medium	 (M9	+	 0.4%	

maltose)	 with	 λ	 kan	 and	 measured	 lysogen	 densities	 after	 24	 hours	 of	 incubation.	 RM+	

bacteria	carried	either	EcoRI	or	EcoRV,	two	RM	systems	chosen	due	to	their	widely	different	

probabilities	 of	 phage	 escape	 (𝑒𝑜𝑝 = 1.37 ∙ 10!! 	and	1.96 ∙ 10!! 	for	 EcoRI	 and	 EcoRV,	

respectively	 (Figure	 4-1B)).	 RM+	 and	 RM-	 bacteria	 were	 isogenic,	 except	 for	 the	

chromosomal	markers	(ara-	cat+	vs.	ara+	cat-	for	RM+	vs.	RM-	in	all	experiments).	Contrary	

to	what	we	anticipated	based	on	RM	systems	acting	as	a	barrier	to	prophage	acquisition	in	

individual	bacteria,	RM+	bacteria	formed	more	lysogens	as	compared	to	RM-	(Figure	4-2A)	

and	were	therefore	more	likely	to	acquire	the	prophage	at	the	population	level.	Indeed,	the	

RM+/RM-	 ratio	 of	 lysogens	 24	 hours	 post	 infection	 significantly	 exceeded	 the	 initial	

RM+/RM-	 ratio	 in	 experiments	 with	 both	 EcoRI	 as	 well	 as	 EcoRV,	 whereas	 no	 significant	

change	 was	 observed	 in	 phage	 free	 controls	 (Figure	 4-2B).	 Notably,	 the	 RM+/RM-	 fold	

increase	 following	 infection	 and	 subsequent	 selection	 for	 lysogens	was	more	pronounced	

for	EcoRV,	which	cleaves	λ	kan	with	a	higher	efficiency	and	was	thus	expected	to	act	as	a	

stronger	barrier	to	prophage	acquisition.	We	obtained	consistent	results	in	a	medium	with	a	

different	composition	(M63	+	0.4%	maltose)	(Figure	4-3).	Increase	in	the	RM+/RM-	ratio	also	

occurred	when	we	measured	the	ratio	of	total	bacteria	without	selection	for	 lysogens	 in	a	

series	 of	 daily	 transfers	 (Figure	 4-4).	 In	 these	 experiments	 both	 the	 RM+	 and	 RM-	

populations	were	dominated	by	lysogens	at	the	time	of	the	first	transfer	and	remained	such	

until	 the	end	of	 the	experiment.	Consistent	with	 results	of	a	previous	study	 (Pleška	et	al.,	

2016),	we	observed	a	small	fitness	cost	of	EcoRI,	but	not	EcoRV,	in	the	absence	of	the	phage	

(Figure	4-4).	

The	above	experiments	show	that	although	RM	systems	do	not	allow	individual	bacteria	to	

selectively	 tolerate	 lysogenic	 infections,	 they	 can	 increase	 the	 number	 of	 prophage	

acquiring	bacteria	at	the	population	 level.	 In	a	series	of	analogous	experiments,	we	tested	

how	this	ability	depends	on	the	initial	population	composition	by	varying	the	initial	density	

of	phages	and	bacteria,	as	well	as	 the	 initial	RM+/RM-	 ratio.	Upon	 infection	by	λ	kan	and	

selection	 for	 lysogeny,	 bacteria	 carrying	 EcoRI	 and	 EcoRV	 produced	 more	 lysogens	 as	
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compared	 to	 RM-	 bacteria	 under	 a	 wide	 range	 of	 initial	 conditions	 (Figure	 4-5).	 In	

experiments	 with	 EcoRI,	 the	 effect	 increased	 at	 low	 initial	 phage	 densities,	 low	 initial	

bacterial	densities,	as	well	as	low	RM+	to	RM-	ratios,	where	it	reached	the	levels	observed	

for	EvoRV.	In	experiments	with	EcoRV	on	the	other	hand,	the	fold	increase	in	RM+/RM-	ratio	

was	 quantitatively	 consistent	 across	most	 conditions	 tested,	 only	 decreasing	 at	 very	 high	

initial	 bacterial	 densities.	 Furthermore,	 in	 experiments	with	 EcoRV	at	 the	 initial	 RM+/RM-	

ratio	 of	 100:1,	 no	 RM+	 lysogens	 were	 detected	 and	 RM-	 bacteria	 formed	 only	 very	 few	

lysogens	 (10! RM-	 lysogens/ml	at	 the	 initial	 ratio	of	100:1	vs.	10!	RM-	 lysogens/ml	at	 the	

initial	 ratio	 of	 10:1).	 This	 is	 likely	 because	 the	 highly	 abundant	 population	 of	 immune	

bacteria	restricts	the	majority	of	phages	and	thus	protects	the	sensitive	subpopulation	from	

infection.	The	results	show	that	unless	overly	abundant,	RM	systems	can	promote	lysogen	

formation	on	a	population	level	under	a	broad	range	of	initial	conditions.	
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 RM	systems	postpone	the	onset	of	infection	4.3.3

To	elucidate	 the	mechanisms	 responsible	 for	 the	unexpectedly	high	number	of	prophage-

acquiring	 RM+	 bacteria,	 we	 followed	 the	 population	 dynamics	 by	 estimating	 phage	 and	

bacterial	 densities	 at	 one-hour	 intervals.	 In	 Figure	 4-6A,	 we	 show	 representative	 results	

obtained	 in	 an	 experiment	 with	 EcoRV.	 During	 the	 initial	 four	 hours,	 the	 density	 of	

unmethylated	 phage	 increased	 as	 a	 fraction	 of	 RM-	 bacteria	 was	 killed	 by	 unmethylated	

phage	(Figure	4-6A,	black	arrow).	At	the	same	time,	a	number	of	RM-	bacteria	acquired	the	

prophage	 and	 formed	 lysogens.	 Since	 lysogens	 are	 immune	 to	 secondary	 infections,	 RM-	

lysogens	survived	and	grew	despite	phage	densities	being	still	high.	RM+	bacteria	 resisted	

infection	and	grew	exponentially	until	five	hours	 into	the	experiment,	when	the	density	of	

unmethylated	 phage	 peaked	 and	 first	 methylated	 phage	 appeared	 as	 a	 result	 of	 phage	

escape,	which	marked	a	turning	point	in	the	experiment.	Because	methylated	phages	evade	

restriction,	they	rapidly	multiplied	on	RM+	bacteria	and	a	second	wave	of	infection	ensued.	

All	 RM+	 bacteria	 were	 either	 lysed	 or	 lysogenized	 by	 ten	 hours	 into	 the	 experiment.	

Importantly,	 the	 drop	 in	 the	 density	 of	 RM+	 bacteria	 due	 to	 killing	 by	methylated	 phage	

(Figure	4-6A,	red	arrow)	was	substantially	smaller	than	the	earlier	drop	in	the	density	of	RM-	

bacteria.	 As	 a	 result,	 the	 final	 density	 of	 RM+	 lysogens	 exceeded	 the	 density	 of	 RM-	

lysogens.	

The	 difference	 in	 the	 fractions	 of	 RM+	 and	 RM-	 populations	 killed	 during	 the	 two	

subsequent	waves	of	infection	was	apparent	from	observing	the	dynamics	of	the	RM+/RM-	

ratio	 in	 three	 sets	 of	 replicate	 experiments	 (Figure	 4-6B).	 In	 experiments	 with	 both	 RM	

systems,	 increases	 in	 the	 RM+/RM-	 ratio	 due	 to	 killing	 of	 RM-	 bacteria	 by	 unmethylated	

phage	 were	 more	 extensive	 than	 subsequent	 drops	 due	 to	 killing	 of	 RM+	 bacteria	 by	

methylated	phage.	However,	there	were	also	subtle	differences	between	experiments	with	

the	two	RM	systems.	In	the	case	of	EcoRV,	phage	escape	ofigueccurred	later	and	was	more	

variable	 in	 time	 between	 replicate	 experiments.	 Furthermore,	 killing	 of	 RM+	 bacteria	

occurred	 later	 and	 was	 smaller	 in	 magnitude	 in	 experiments	 with	 this	 RM	 system.	 We	

observed	 no	 significant	 ratio	 changes	 in	 experiments	 controlling	 for	 the	 effects	 of	

chromosomal	markers	(Figure	4-6B).	RM	systems	thus	did	not	prevent	infection	completely,	

but	merely	postponed	its	onset	until	methylated	phage	appeared	and	spread	in	the	initially	

immune	population.		 	
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 Probability	of	lysogeny	increases	with	population	density	4.3.4

In	 addition,	 the	 above	 experiments	 suggested	 that	 the	 fraction	 of	 RM-	 and	 RM+	bacteria	

lysogenized	during	the	two	waves	of	 infection	were	unequal.	However,	when	measured	in	

early	exponential	phase,	presence	of	an	RM	system	and	phage	methylation	did	not	affect	

the	probability	of	lysogeny,	i.e.	the	probability	that	an	infection	by	a	phage,	which	does	not	

get	 restricted,	 will	 result	 in	 lysogeny	 (Figure	 4-8).	 Importantly,	 the	 population	 dynamics	

results	 (Figure	 4-6)	 showed	 that	RM	 systems	 substantially	 delayed	 the	onset	of	 infection,	

which	could	result	in	altered	probability	of	lysogeny	for	bacteria	infected	at	different	growth	

phase.	 Indeed,	 the	 probability	 of	 lysogeny	 is	 known	 to	 depend	 on	 a	 variety	 of	 host-

physiological	parameters	such	as	cell	size	(St-Pierre	&	Endy,	2008),	or	cAMP	(Hong,	Smith,	&	

Ames,	 1971)	 levels,	 and	 increases	 in	 stationary	phase.	 Indeed,	 the	probability	of	 lysogeny	

under	 our	 experimental	 conditions	 increased	 over	 an	 order	 of	 magnitude	 as	 bacterial	

density	increased	(Figure	4-9A)	and	the	two	variables	were	strongly	correlated	(Figure	4-9A	

inlay).	

We	asked	 if	 this	correlation	can	explain	the	 increased	number	of	prophage-acquiring	RM+	

bacteria	 by	 constructing	 and	 analyzing	 a	 mathematical	 model	 of	 population-level	

interactions	 between	 temperate	 phages	 and	 bacteria	 with	 RM	 systems	 (Material	 and	

Methods).	 Numerical	 solutions	 assuming	 density-dependent	 probability	 of	 lysogeny	

correctly	predicted	increased	abundance	of	RM+	lysogens	for	both	RM	systems	(Figure	4-9B	

and	Figure	4-10).	On	the	other	hand,	numerical	solutions	assuming	a	constant	probability	of	

lysogeny	were	inconsistent	with	the	experimental	results	and	predicted	both	the	RM+	and	

RM-	 bacteria	 to	 produce	 equal	 number	 of	 lysogens.	 RM	 systems	 unable	 to	 selectively	

discriminate	 between	 lytic	 and	 lysogenic	 infections	 can	 thus	 benefit	 their	 hosts	 without	

compromising	prophage	acquisition	simply	by	delaying	infection	onset.	This	delay	allows	the	

initially	immune	bacteria	to	reach	densities	at	which	the	probability	of	an	infection	resulting	

in	prophage	acquisition	is	increased	and	the	risk	of	lysis	reduced.	

Because	more	potent	RM	systems	introduce	longer	delays	in	infection	onset	(Figure	4-11),	

the	number	of	prophage-acquiring	bacteria	 increases	with	decreasing	probability	of	phage	

escape	 (Figure	 4-9B	 inlay	 and	 Figure	 4-11).	 In	 addition	 to	 predicting	 the	 increased	

probability	 of	 prophage	 acquisition	 by	 RM+	 bacteria,	 our	 model	 thus	 also	 explained	 the	
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quantitative	 difference	 in	 effects	 caused	 by	 EcoRI	 and	 EcoRV.	 The	 model	 with	 density-

dependent	probability	of	lysogeny	further	predicted	both	RM	systems	to	promote	prophage	

acquisition	 under	 the	wide	 range	 of	 initial	 conditions	 experimentally	 tested	 in	 Figure	 4-5	

(Figure	 4-12).	While	 the	model	 captured	 the	 general	 effect	 of	 the	 initial	 bacterial	 density	

and	initial	RM+/RM-	ratio,	it	was	inaccurate	in	predicting	the	increased	effect	at	low	initial	

phage	 densities	 observed	 for	 EcoRI.	 This	 disagreement	 is	 likely	 caused	 by	 simplifying	

assumptions	 used	 by	 the	 model,	 such	 as	 constancy	 of	 all	 parameters	 other	 than	 the	

probability	 of	 lysogeny,	 or	 not	 accounting	 for	 effects	 associated	 with	 multiple	 infections	

(Material	and	Methods).	

Because	 phages	 escape	 restriction	 with	 a	 considerably	 low	 probability,	 we	 asked	 how	

stochastic	 effects	 could	 influence	 the	 model	 dynamics.	 Numerical	 simulations	 of	 a	 full	

stochastic	 version	 of	 the	 model	 yielded	 results	 quantitatively	 consistent	 with	 the	

deterministic	 model,	 demonstrating	 that	 stochastic	 “noise”	 played	 a	 relatively	 small	 role	

(Figure	 4-9B	 and	 Figure	 4-13).	 In	 contrast,	 the	 experimental	 results	 exhibited	 higher	

variability,	which	 could	 be	 a	 result	 of	 additional	 sources	 of	 variation	 not	 captured	 by	 the	

stochastic	model,	such	as	small	differences	in	initial	conditions,	sampling	and	measurement	

noise,	as	well	as	phenotypic	variability.	 Importantly,	both	 the	deterministic	and	stochastic	

model	 predicted	 values	 slightly	 underestimating	 the	 experimentally	 measured	 results	 for	

EcoRV	(Figure	4-9B	inlay).	This	underestimation	might	be	a	result	of	parameter	uncertainty.	

For	example,	in	addition	to	the	RM	efficiency,	the	population	dynamics	critically	depend	on	

the	 rate	 at	which	 the	 probability	 of	 lysogeny	 increases	with	 cell	 density,	 and	 a	moderate	

increase	 in	 this	 rate	 significantly	 improves	 the	 quantitative	 agreement	 between	 model	

predictions	and	the	experimental	data	(Figure	4-9B	inlay).	
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4.4 Discussion	

Phages	are	the	most	abundant	biological	entity	on	Earth	(Clokie,	Millard,	Letarov,	&	Heaphy,	

2011)	and,	although	typically	seen	as	a	threat	to	bacteria,	they	do	more	than	simply	kill	their	

hosts.	Phages	play	a	major	role	as	vectors	of	horizontal	gene	transfer	(Canchaya,	Fournous,	

Chibani-Chennoufi,	 Dillmann,	 &	 Brüssow,	 2003),	 which	 is	 a	 key	 source	 of	 variation	 for	

prokaryotic	 evolution	 (Ochman,	 Lawrence,	&	Groisman,	 2000).	 This	 dual	 role	 is	 especially	

important	 in	 the	 case	 of	 temperate	 phages,	 where	 each	 infection	 can	 result	 in	 the	 host	

either	 dying,	 or	 acquiring	 potentially	 fitness-augmenting	 genes.	 As	 a	 key	 life-history	 trait,	

the	probability	of	lysogeny	is	not	constant,	but	instead	depends	on	a	variety	of	factors	such	

as	 host	 physiology	 Lieb,	 1953;	 St-Pierre	 &	 Endy,	 2008)	 and	 multiplicity	 of	 infection	

(Kourilsky,	 1973;	 Zeng	et	 al.,	 2010).	 For	example,	bacterial	 cell	 size,	which	decreases	with	

population	density	(Akerlund,	Nordström,	&	Bernander,	1995),	is	an	important	determinant	

of	 phage	decision	making,	with	 small	 cells	 preferentially	 entering	 lysogeny	upon	 infection	

(St-Pierre	 &	 Endy,	 2008).	 The	 results	 presented	 here	 demonstrate	 how,	 as	 a	 result	 of	

increasing	probability	of	lysogeny,	RM	systems	as	mechanisms	of	bacterial	innate	immunity	

can	benefit	their	hosts	without	posing	a	barrier	to	prophage	acquisition.	Switching	of	phage	

communities	 from	 dominance	 of	 lysis	 to	 lysogeny	 at	 high	 microbial	 densities	 has	 been	

proposed	 to	occur	 in	 a	wide	 range	of	 ecosystems	 (Knowles	 et	 al.,	 2016),	 and	 the	 general	

relationship	between	bacterial	density	and	lysogeny	is	a	matter	of	current	debate	(Knowles	

et	al.,	2017).	Moreover,	some	temperate	phages	have	been	shown	to	use	chemical	signaling	

in	order	to	collectively	increase	the	probability	of	lysogeny	as	the	number	of	infections	in	a	

population	 increases	 (Erez	 et	 al.,	 2017).	 This	 being	 said,	 the	 ecological	 and	 evolutionary	

forces	 determining	 the	 probability	 of	 lysogeny	 of	 temperate	 phages	 in	 general	 remain	

poorly	understood	(Gandon,	2016)	and	represent	an	exciting	direction	for	future	research.	

In	addition	to	acting	as	a	mechanism	of	host	defense,	a	variety	of	biological	roles	have	been	

proposed	 for	 RM	 systems	 (Vasu	 &	 Nagaraja,	 2013),	 including	 the	 control	 of	 genetic	 flux	

(Murray,	 2002;	Oliveira	 et	 al.,	 2016)	 and	 selfish	 behavior	 (Naito	 et	 al.,	 1995).	 Tipping	 the	

balance	 from	 lysis	 towards	 lysogeny	 in	 the	 presence	 of	 temperate	 phages	 demonstrated	

here	could	be	another	of	 the	multitude	of	effects	 these	simple	genetic	elements	exert	on	

their	 hosts.	 Bioinformatics	 studies	 revealed	 a	 lack	 of	 a	 negative	 relationship	 between	 the	
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number	of	RM	systems	and	presence	of	prophages	in	bacteria	with	large	genomes,	whereas	

bacteria	 with	 small	 genomes	 encoding	 more	 RM	 systems	 were	 more	 likely	 to	 carry	

prophages	 (Oliveira	et	al.,	2014).	Our	results	offer	an	explanation	of	 these	observations	 in	

face	of	the	fact	that	RM	systems	do	not	tolerate	lysogenic	infections.	In	addition,	temperate	

phages	were	shown	to	avoid	restriction	sites	to	a	lesser	extent	than	virulent	phages	(Rocha	

et	 al.,	 2001),	 suggesting	 that	 the	 two	 classes	 of	 phages	 are	 indeed	 subject	 to	 different	

selection	 pressures.	 While	 numerous	 experimental	 studies	 have	 focused	 on	 interactions	

between	 bacterial	 immune	 systems	 and	 virulent	 phages	 (Korona	&	 Levin,	 1993;	 Lenski	 &	

Levin,	 1985;	 Levin	 et	 al.,	 2013;	Westra	 et	 al.,	 2015),	 the	 nature	 of	 interactions	 between	

bacterial	 immunity	and	temperate	phages	are	yet	to	be	explored.	The	results	of	this	study	

underscore	the	critical	role	of	population	level	dynamics	in	understanding	the	evolution	and	

evolutionary	 consequences	 of	 even	 such	 simple	 and	 mechanistically	 well-understood	

genetic	elements	such	as	RM	systems	and	phage	λ.	
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4.5 Material	and	Methods	

 RM	model	assuming	constant	probability	of	lysogeny	4.5.1

The	 following	 mathematical	 model	 describes	 population-level	 dynamics	 of	 interactions	

between	temperate	phages	(Stewart	&	Levin,	1984)	and	bacteria	with	RM	systems	(Korona	

&	 Levin,	 1993).	We	assume	a	well-mixed	habitat	 of	 unitary	 volume,	 in	which	RM-	(𝑖 = 0)	

and	RM+	bacteria	 𝑖 = 1 	are	present	as	non-lysogens	and	lysogens	at	densities	𝐵!!(𝑡)	and	

𝐵!!(𝑡)	(cells/ml),	respectively.	The	phage	is	present	either	in	a	methylated	or	unmethylated	

form	at	density	𝑃!(𝑡)	and	𝑃!(𝑡)	(phages/ml),	respectively.	We	assume	that,	in	the	absence	

of	 phages,	 all	 bacteria	 grow	 exponentially	 with	 the	 same	 rate	 “constant”	𝜓 𝑅(𝑡) =

𝑣!"# 𝑅(𝑡)/(𝜅 + 𝑅(𝑡))	(h-1),	where	𝑅(𝑡)	(𝜇𝑔/𝑚𝑙)	is	the	concentration	of	the	unique	limiting	

resource,	𝑣!"#	(h-1)	 is	 the	 maximum	 growth	 rate	 constant	 and	𝜅	(𝜇𝑔/ml)	 is	 the	 resource	

concentration	 at	which	 growth	 is	 half-maximal.	While	 a	 small	 fitness	 cost	 of	 EcoRI	 in	 the	

medium	used	has	been	observed	(Pleška	et	al.,	2016)	(Figure	4-2),	this	cost	is	negligible	at	

the	 time	 scale	 of	 the	 24	 hour	 experiments	 explored	 by	 our	model.	We	 therefore	 assume	

equal	 values	 for	𝜅	and	𝑣!"#	for	 all	 bacteria	 (Table	 4-2).	 The	 resource	 is	 consumed	 by	 the	

bacteria	 at	 a	 rate	 proportional	 to	 their	 growth	 rate	 with	 a	 constant	 of	 proportionality	𝜀	

(𝜇𝑔/𝑐𝑒𝑙𝑙;	conversion	parameter).	Phages	adsorb	to	all	bacteria	at	a	rate	jointly	proportional	

to	their	densities	with	a	constant	of	proportionality	𝛿	(ml/h;	adsorption	rate	constant).	For	

RM-	bacteria	infected	by	methylated	or	unmethylated	phages	and	RM+	bacteria	infected	by	

methylated	phages,	we	assume	that	a	fraction	α	(dimensionless;	probability	of	lysogeny)	of	

infections	 result	 in	 lysogeny,	whereas	 the	remaining	 (1− α)	of	 infections	 lead	to	 lysis	and	

release	of	𝛽 (phage	particles;	burst	 size)	phage	particles	with	 the	methylation	state	of	 the	

host	 in	 which	 they	 were	 produced.	 Here,	 we	 assume	 that	 the	 fraction	α 	is	 constant.	

However,	in	the	following	section	we	drop	this	assumption	and	α	will	become	a	function	of	

the	 total	 produced	 biomass.	 For	 the	 sake	 of	 simplicity,	 the	model	 only	 assumes	 lysis	 and	

lysogeny	 as	 possible	 outcomes	 of	 successful	 infections	 and	 does	 not	 consider	

pseudolysogeny,	 which	 can	 occur	 under	 conditions	 of	 severe	 nutrient	 limitation	 (Ripp	 &	

Miller,	 1997).	 For	 RM+	 bacteria	 infected	 by	 unmethylated	 phages,	 the	 fraction	 𝜇	

(dimensionless;	phage	escape	probability)	of	infections	leads	to	phage	escape,	whereas	the	

remaining	(1− 𝜇)	infections	 result	 in	 phage	 restriction.	 We	 assume	 equal	𝜇	for	 lytic	 and	
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lysogenic	 infections	 (Figure	4-1B).	The	bacteria	 in	which	the	 infected	phage	was	restricted	

are	assumed	to	maintain	viability.	For	both	RM-	and	RM+	lysogens,	secondary	infections	do	

not	 lead	to	 lysis,	and	the	 infecting	phages	are	 lost.	We	assume	a	time	delay	of	𝜏	(h;	 latent	

period)	between	adsorption	and	lysis.	Lysogens	lyse	spontaneously	at	rate	𝜉 (h-1;	 induction	

rate)	 and	 produce	𝛽	particles	 with	 the	methylation	 state	 of	 the	 host	 in	 which	 they	 were	

produced.	

Given	these	assumptions,	the	model	describing	the	infection	of	a	mixed	population	of	RM-	

and	 RM+	 bacteria	 by	 initially	 unmodified	 phages	 is	 given	 by	 the	 following	 set	 of	 delay-

differential	equations	(DDEs):	

𝑑𝑅
𝑑𝑡 𝑡 = −𝜀 𝜓 𝑅 𝑡 𝐵!! 𝑡 + 𝐵!! 𝑡 + 𝐵!! 𝑡 + 𝐵!! 𝑡

!"#$%&'()"# !" !"# !"#$%!&" !" !"#$%&'"

 

𝑑𝐵!!

𝑑𝑡 (𝑡) = 𝜓 𝑅(𝑡)  𝐵!!(𝑡)
!"#$%&'"( !"#$%&

−  𝛿 𝐵!!(𝑡) 𝑃! 𝑡 + 𝑃!(𝑡)
!"#$# !"# !"#$%&'()*+($'

 

𝑑𝐵!!

𝑑𝑡 (𝑡) = 𝜓 𝑅(𝑡)  𝐵!!(𝑡)
!"#$%&' !"#$%&

+  𝛿 α 𝐵!!(𝑡) 𝑃! 𝑡 + 𝑃!(𝑡)
!"#$%&'()*+($'

− 𝜉 𝐵!!(𝑡)
!"#$%&'("

 

𝑑𝐵!!

𝑑𝑡 (𝑡) = 𝜓 𝑅(𝑡)  𝐵!!(𝑡)
!"#$%&'"( !"#$%&

−  𝛿 𝐵!!(𝑡) 𝜇 𝑃! 𝑡 + 𝑃!(𝑡)
!"#$# !"# !"#$%&'()*+($'

 

𝑑𝐵!!

𝑑𝑡 (𝑡) = 𝜓 𝑅(𝑡)  𝐵!!(𝑡)
!"#$%&' !"#$%&

+  𝛿 α 𝐵!!(𝑡) 𝜇𝑃! 𝑡 + 𝑃!(𝑡)
!"#$%&'()*+($'

− 𝜉 𝐵!!(𝑡)
!"#$%&'("

 

𝑑 𝑃!

𝑑𝑡 (𝑡) = 𝛿 1− α  𝛽 𝐵!!(𝑡 − 𝜏) 𝑃! 𝑡 − 𝜏 +  𝑃!(𝑡 − 𝜏)
!"#$#

+ 𝜉 𝛽 𝐵!!(𝑡)
!"#$%&'("

− 𝛿 𝑃!(𝑡) 𝐵!! 𝑡 + 𝐵!! 𝑡 + 𝐵!!(𝑡)+ 𝐵!!(𝑡)
!"#$%&'($)

 

𝑑 𝑃!

𝑑𝑡 (𝑡) = 𝛿 1− α  𝛽 𝐵!!(𝑡 − 𝜏) 𝜇 𝑃! 𝑡 − 𝜏 +  𝑃!(𝑡 − 𝜏)
!"#$#

+ 𝜉 𝛽 𝐵!!(𝑡)
!"#$%&'("

− 𝛿 𝑃!(𝑡) 𝐵!! 𝑡 + 𝐵!! 𝑡 + 𝐵!!(𝑡)+ 𝐵!!(𝑡)
!"#$%&'($)

	

Note,	that	the	rate	of	phage	production	by	lysis	at	any	given	time	𝑡	depends	on	the	density	

of	non-lysogens	and	phages	at	time	𝑡 − 𝜏	due	to	the	latent	period	between	adsorption	and	

lysis.	 In	 all	 simulations,	we	assume	 that	phages	 are	 added	 to	 the	 system	at	𝑡 = 0,	 i.e.	we	

assume	  𝑃! 𝑡 < 0 =  𝑃! 𝑡 < 0 = 0 .	 The	 parameters	 of	 the	 model	 (Table	 4-2)	 were	
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estimated	 experimentally	 as	 described	 below.	 Initial	 conditions	 are	 given	 in	 Error!	

eference	 source	 not	 found..	 Deterministic	 simulations	 as	 well	 as	 the	 numeric	 parameter	

sensitivity	 analysis	 were	 performed	 using	 Matlab	 R2015a	 (The	 MathWorks,	 Inc.,	 Natick,	

Massachusetts,	United	States)	using	the	dde23	solver.	

Table	4-2:	Model	parameters	

Parameter	 Symbol	 Estimated	value	 N	replicas	

Maximum	growth	ratea	 𝑣!"# 	 0.55 ℎ!!	 8	 (average	 of	 10	

each)	

Monod	constantb	 𝜅	 1 𝜇𝑔/𝑚𝑙	 	

Conversion	parameter	 𝜀	 5 ∙ 10!! 𝜇𝑔/bacterium	 5	

Adsorption	rate	 𝛿	 4.1 ∙ 10!! 𝑚𝑙/ℎ	 3	

Latent	period	 𝜏	 1 ℎ	 3	

Burst	size	 𝛽	 63 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠	 3	

Phage	escape	probability	 	 	 	

					EcoRI	 𝜇!"#$%	 1.37 ∙ 10!!	 7	

					EcoRV	 𝜇!"#$% 	 1.96 ∙ 10!!	 7	

Probability	of	lysogeny6	 α	 0.02	 4	

Induction	rate	 𝜉	 2.4 ∙ 10!! ℎ!!	 3	

Parameters	 for	 biomass		

dependent	prob.	of	lysogeny	

𝑎 

𝑏	

1.14 ∙ 10!! 

0.44	

	

Mutation	probability	 𝜂	 10!!	 (Levin	et	al.,	2013)	

a	Growth	 rates	of	RM-	and	RM+	 (EcoRI/EcoRV)	bacteria,	 as	well	 as	 λ	kan	 lysogens	did	not	
differ	 significantly	 when	 tested	 by	 linear	 regression,	 with	 growth	 rate	 as	 a	 continuous	
dependent	 variable	 and	 strain	 identity	 as	 an	 independent	 categorical	 variable,	 comparing	
individual	 strains	 to	 the	control	 (RM-)	P	values	were	0.81,	0.67	and	0.64	 for	EcoRI,	EcoRV	
and	λ	kan	lysogens,	respectively.	
b	Arbitrary	value.	Different	values	do	not	affect	the	result	qualitatively.	
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Table	4-3:	Model	initial	conditions	

State	 Symbol	 Initial	condition	

RM-	bacteria,	non-lysogens	 𝐵!!	 4 ∙ 10!	cells/ml	

RM-	bacteria,	lysogens	 𝐵!!, 𝐵!!	 0	cells/ml	

RM+	bacteria,	non-lysogens	 𝐵!!	 4 ∙ 10!	cells/ml	

RM+	bacteria,	lysogens	 𝐵!!	 0	cells/ml	

CRISPR+	bacteria,	non-lysogens	 𝐵!!	 4 ∙ 10!	cells/ml	

CRISPR+	bacteria,	lysogens	 𝐵!!	 0	cells/ml	

Phages,	unmethylated	 𝑃!	 10!	phages/ml	

Phages,	methylated	 𝑃!	 0	phages/ml	

Phages,	mutated	 𝑃!	 0	phages/ml	

Resources	for	growth	 𝑅	 400	𝜇g/ml	

 RM	model	assuming	non-constant	probability	of	lysogeny	4.5.2

The	 experiments	 presented	 in	 Figure	 4-9A	 showed	 a	 clear	 correlation	 between	 the	

probability	 of	 lysogeny	𝛼,	 and	 the	 bacterial	 density	 at	 the	 time	 of	 infection.	 Since	 the	

underlying	 mechanism	 responsible	 for	 this	 correlation	 is	 unknown,	 we	 incorporate	 this	

dependency	into	the	mathematical	model	by	replacing	the	constant	probability	of	lysogeny	

by	a	function	𝛼(𝑁 𝑡 ) = 𝑎 𝑁!(𝑡)	of	the	total	produced	biomass	𝑁 𝑡 ,	which	is	given	by	the	

solution	of	the	additional	differential	equation	

𝑑𝑁
𝑑𝑡 𝑡 = 𝜓 𝑅 𝑡  𝐵!! 𝑡 + 𝐵!! 𝑡 + 𝐵!! 𝑡 + 𝐵!! 𝑡 ,	

with	 initial	 condition	𝑁 0 = 𝐵0− 0 + 𝐵0𝑃 0 + 𝐵1− 0 + 𝐵1𝑃 0 .	Unlike	 the	 total	 cell	 density,	

𝑁(𝑡)	is	monotonically	increasing	in	time,	and	is	less	sensitive	to	specific	modeling	decisions,	

such	as	the	time	point	until	which	infected	bacteria	influence	the	probability	of	lysogeny	of	

other	 infection	 events.	 Furthermore,	 because	𝑅 𝑡 + 𝜀 𝑁 𝑡 	is	 always	 constant,	 rendering	

the	 probability	 of	 lysogeny	 a	 function	 of	 the	 total	 produced	 biomass	 is	 equivalent	 to	

rendering	it	a	function	of	the	limiting	resource.	
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 Multiplicity-of-infection-related	effects	4.5.3

Besides	physiological	 state	of	 infected	bacteria,	 the	average	number	of	phages	 infecting	a	

single	 bacterium,	 also	 known	 as	multiplicity	 of	 infection	 (MOI),	 affects	 the	 probability	 of	

lysogeny	(Kourilsky,	1973).	However,	 to	our	knowledge,	 there	 is	no	established	method	of	

estimating	 the	 MOI	 in	 population	 dynamics	 experiments.	 Note	 that	 in	 dynamical	

experiments,	MOI	 is	not	equal	or	well	approximated	by	the	phage/bacteria	ratio,	as	 is	 the	

case	 in	 short-term	experiments,	 in	which	all	phages	adsorb	 to	bacteria	 synchronously	and	

neither	 phages	 nor	 bacteria	 multiply	 during	 the	 experiment.	 In	 contrast	 to	 such	 setting,	

phages	 in	 our	 experiments	 do	 not	 only	 adsorb,	 but	 are	 also	 continuously	 produced	 by	

previously	infected	bacteria	and	the	total	number	of	infections	is	thus	not	bounded	by	the	

total	 number	 of	 free	 phages	 at	 any	 given	 time.	 Furthermore,	 because	 phages	 adsorb	 to	

bacteria	continuously,	it	is	likely	that	after	the	first	phage	adsorbs	and	infects	a	bacterium,	

subsequent	 infections	 of	 the	 same	 bacterium	 can	 affect	 the	 outcome	 only	 if	 they	 occur	

before	the	infection	outcome	was	decided	by	the	first	adsorbing	phage.	However,	 it	 is	not	

known	how	long	this	time	interval	is,	neither	how	do	infections	at	different	times	affect	the	

outcome.	 Due	 to	 these	 conceptual	 challenges	 regarding	 the	 definition	 of	 the	 MOI	 in	

population	dynamics	experiments,	our	model	does	not	include	MOI	as	a	parameter	affecting	

the	probability	of	lysogeny.	Understanding	how	the	MOI	effects	combine	with	the	effect	of	

host	physiology	to	influence	the	population	dynamics	of	lysogeny	remains	a	goal	for	future	

research.	

 CRISPR	model	4.5.4

The	 presented	model	 is	 a	modified	 version	 of	 the	model	 capturing	 interactions	 between	

CRISPR-carrying	bacteria	and	virulent	phage	 (Levin	et	al.,	2013).	 In	 this	model,	phages	can	

escape	the	effects	CRISPR	by	genetic	mutations	in	the	DNA	sequence	targeted	by	the	CRISPR	

system,	which	stands	in	contrast	to	epigenetic	escape	by	methylation	considered	previously.	

We	assume	that	the	phage	is	present	either	as	the	wild	type	or	as	a	CRISPR	escape	mutant	

at	 densities	 𝑃! 𝑡 	and	 𝑃! 𝑡 	(phages/ml),	 respectively.	 CRISPR+	 (𝑖 = 2) 	and	 CRISPR-	

bacteria	 𝑖 = 0 	are	 present	 as	 non-lysogens	 or	 lysogens.	 Changes	 in	 density	 of	 non-

lysogens	𝐵!! are	modeled	as	described	 in	 the	RM	model,	whereas	we	distinguish	between	
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lysogens	𝐵!! carrying	 the	 wild-type	 prophage,	 and	 lysogens	𝐵!! 	(cells/ml)	 carrying	 the	

escaped	mutant	prophage.	We	assume	that	infections	of	all	CRISPR+	bacteria	with	wild-type	

phages	lead	to	cleavage	of	phage	DNA,	i.e.	the	infecting	phages	are	lost.	All	other	infections	

are	 assumed	 to	 lead	 to	 lysis	 or	 lysogeny	 as	 described	 above.	 When	 bacteria	 lyse,	 the	

majority	of	phages	produced	are	either	wild	 type	 if	 the	 infecting	phage	was	wild	 type,	or	

CRISPR	 escape	mutants	 otherwise.	 However,	 we	 assume	 that	 a	 fraction	𝜂	(dimensionless;	

mutation	 rate)	 of	 the	 produced	 phages	 escape	 by	 mutation	 and	 become	 insensitive	 to	

CRISPR.	With	all	other	interaction	dynamics	assumed	to	be	the	same	as	in	the	RM	model,	we	

obtain	the	following	set	of	equations:	

𝑑𝑅
𝑑𝑡 𝑡 = −𝜀 𝜓 𝑅 𝑡 𝐵!! 𝑡 + 𝐵!! 𝑡 + 𝐵!! 𝑡 + 𝐵!! 𝑡 + 𝐵!! 𝑡

!"#$%&'()"# !" !"# !"#$%!&" !" !"#$%&'"

 

𝑑𝐵!!

𝑑𝑡 (𝑡) = 𝜓 𝑅(𝑡)  𝐵!!(𝑡)
!"#$%&'"( !"#$%&

−  𝛿 𝐵!!(𝑡) 𝑃! 𝑡 + 𝑃!(𝑡)
!"#$# !"# !"#$%&'()*+($'

 

𝑑𝐵!!

𝑑𝑡 (𝑡) = 𝜓 𝑅(𝑡)  𝐵!!(𝑡)
!"#$%&' !"#$%&

+  𝛿 α 𝐵!!(𝑡)𝑃! 𝑡
!"#$%&'()*+($'

− 𝜉 𝐵!!(𝑡)
!"#$%&'("

 

𝑑𝐵!!

𝑑𝑡 (𝑡) = 𝜓 𝑅(𝑡)  𝐵!!(𝑡)
!"#$%&' !"#$%&

+  𝛿 α 𝐵!!(𝑡)𝑃! 𝑡
!!"#$%&'()*'#&

− 𝜉 𝐵!!(𝑡)
!"#$%&'("

 

𝑑𝐵!!

𝑑𝑡 (𝑡) = 𝜓 𝑅(𝑡)  𝐵!!(𝑡)
!"#$%&'"( !"#$%&

−  𝛿 𝐵!!(𝑡)𝑃!(𝑡)
!"#$# !"# !"#$%&'()*+($'

 

𝑑𝐵!!

𝑑𝑡 (𝑡) = 𝜓 𝑅(𝑡)  𝐵!!(𝑡)
!"#$%&' !"#$%&

+  𝛿 α 𝐵!!(𝑡)𝑃!(𝑡)
!"#$%&'()*+($'

− 𝜉 𝐵!!(𝑡)
!"#$%&'("

 

𝑑 𝑃!

𝑑𝑡 (𝑡) = 𝛿 1− α  𝛽 (1− 𝜂)𝐵!!(𝑡 − 𝜏) 𝑃! 𝑡 − 𝜏
!"#$#

+ 𝜉 𝛽 1− 𝜂 𝐵!!(𝑡)
!"#$%&'("

− 𝛿 𝑃!(𝑡) 𝐵!! 𝑡 + 𝐵!! 𝑡 + 𝐵!! 𝑡 + 𝐵!! 𝑡 + 𝐵!! 𝑡
!"#$%&'($)

 

𝑑 𝑃!

𝑑𝑡 𝑡 = 𝛿 1− α  𝛽 𝐵!! 𝑡 − 𝜏 +  𝐵!! 𝑡 − 𝜏  𝑃! 𝑡 − 𝜏
!"#$#

+ 𝜉 𝛽 𝐵!! 𝑡 +  𝐵!! 𝑡
!"#$%&'("

− 𝛿 𝑃! 𝑡 𝐵!! 𝑡 + 𝐵!! 𝑡 + 𝐵!! 𝑡 + 𝐵!! 𝑡 + 𝐵!! 𝑡
!"#$%&'($)

+ 𝛿 1− α  𝛽 𝜂 𝐵!! 𝑡 − 𝜏  𝑃! 𝑡 − 𝜏 + 𝜉 𝛽 𝜂 𝐵!! 𝑡
!"#$%$&'($")

.	

Note	 that,	 since	 we	 assume	 that	 all	 wild-type	 phages	 adsorbed	 by	 CRISPR+	 bacteria	 are	
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cleaved,	 the	 density	 of	 CRISPR+	 lysogens	 carrying	 the	 wild-type	 phage	 is	 always	 zero	

(𝐵!! 𝑡 = 0).	The	case	when	the	probability	of	lysogeny	is	not	constant	but	depends	on	the	

total	produced	biomass	is	treated	in	the	same	way	as	described	in	the	RM	model.	

 Parameter	sensitivity	analysis	4.5.5

	In	 order	 to	 understand	 how	 the	 individual	 key	 properties	 of	 RM	 systems	 and	 temperate	

phages	 affect	 the	 population	 dynamics,	 we	 analyzed	 how	 these	 depend	 on	 the	 phage	

escape	 probability	𝜇 ,	 and	 on	 the	 parameters	𝑎 	and	𝑏 	parametrizing	 the	 probability	 of	

lysogeny	𝛼 𝑁(𝑡) 	as	a	function	of	the	total	produced	biomass	𝑁(𝑡).	To	allow	𝑏	to	be	varied	

over	 a	 broader	 range	 and	 to	 simplify	 comparison,	 we	 used	 a	 slightly	 different	 formula	

𝛼 𝑁 = 𝑎 𝑁!
!!!!𝑁! = 𝑎𝑁!

!! !
!!

!
	for	 the	 probability	 of	 lysogeny	 than	 the	 one	 stated	 in	

Figure	 4-9.	The	“reference	values”	𝑁! = 2.7 10!𝑐𝑒𝑙𝑙𝑠/𝑚𝑙	and	𝑏! = 0.44	were	chosen	such	

that	 the	probability	of	 lysogeny	at	 the	 time	of	 the	 first	wave	of	 infection	 is	approximately	

the	same	for	all	values	of	𝑏.	Note,	that	the	two	formulas	are	identical	when	𝑏 = 𝑏!.	

We	 characterized	 the	 model	 dynamics	 using	 three	 key	 properties	 (Figure	 4-11,	 compare	

with	 Figure	 4-6):	 the	 time	 𝑡! 	quantifies	 the	 time	 point	 when	 a	 sufficient	 number	 of	

unmethylated	phages	have	accumulated	such	that	the	majority	of	 the	RM-	bacteria	either	

lyse	or	become	lysogens.	At	this	point,	 the	ratio	between	RM+	and	RM-	bacteria,	which	 is	

initially	approximately	one,	quickly	 increases	and	approaches	a	maximum	value,	which	we	

refer	 to	 as	 the	 peak	 RM+/RM-	 ratio	𝑟! .	 At	 time	𝑡! ,	 the	 density	 of	 methylated	 phages	

becomes	 sufficiently	 high	 such	 that	 the	 majority	 of	 RM+	 cells	 either	 lyses	 or	 becomes	

lysogenic.	We	 refer	 to	 the	 time	difference	Δ𝑡 = 𝑡! − 𝑡!	as	 the	peak	duration.	After	𝑡!,	 the	

ratio	between	RM+	and	RM-	bacteria	drops	and	approaches	a	final	value,	to	which	we	refer	

as	 the	 final	 RM+/RM-	 ratio	𝑟! .	 For	 each	 combination	 of	𝜇,	𝑎	and	𝑏,	 we	 run	 a	 separate	

numerical	 simulation	 and	 identified	𝑡! 	as	 the	 time	 point	 at	which	 !!
! !

!!
! ! !!!

!(!)
= !

!
,	𝑟!	as	 the	

maximum	 value	 of	𝑟 𝑡 = !!! ! !!!!(!)
!!! ! !!!!(!)

	between	𝑡! 	and	𝑡! ,	 and	𝑟! 	as	 the	 value	 of	𝑟(𝑡) 	for	

𝑡 ≫ 𝑡! .	 In	 order	 to	 compare	 these	 characteristic	 properties	 of	 the	 simulated	 model	

dynamics	 with	 the	 (comparatively	 noisy)	 experimentally	 observed	 dynamics,	 we	 fitted	

piecewise	constant	functions	
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 𝑟 𝑡 =
1 for 𝑡 < 𝑡!
𝑟! for 𝑡! ≤ 𝑡 < 𝑡!
𝑟! for 𝑡 ≥ 𝑡!

	

to	 the	experimental	data	 (Figure	 4-6B).	Since	all	values	of	𝑡!	or	𝑡!	lying	between	the	same	

adjacent	experimental	sampling	times	result	in	the	same	fitting	errors,	we	restricted	𝑡!	and	

𝑡!	to	values	exactly	in	the	middle	of	adjacent	sampling	times.	

Despite	 the	 relatively	 large	 number	 of	 species	 in	 the	 model,	 it	 is	 possible	 to	 derive	 a	

surprisingly	good	analytic	approximation	of	the	peak	duration	and	the	final	RM+/RM-	ratio.	

If	 the	 initial	RM-	 and	RM+	bacterial	 densities	 are	 similar	 and	 sufficiently	high,	 the	growth	

rates	of	both	the	unmethylated	and	the	methylated	phage	are	substantially	higher	than	the	

bacterial	 growth	 rate.	As	a	 consequence,	most	RM-	and	RM+	bacteria	get	 infected	during	

rather	 short	 time	 intervals	 around	𝑡!	and	𝑡!,	 respectively.	 Thus,	 it	 is	 sufficient	 to	 consider	

the	 probabilities	 of	 lysogeny	𝛼! = 𝛼(𝑁 𝑡! )	and	𝛼! = 𝛼(𝑁 𝑡! )	at	𝑡!	and	𝑡!,	 and	 the	 final	

RM+/RM-	ratio	can	be	approximated	by	𝑟! ≈
!!
!!

 !!! !
!!!(!)

.	Furthermore,	until	shortly	before	𝑡!,	

the	dynamics	of	RM-	lysogens,	RM-	non-lysogens,	and	RM+	non-lysogens,	as	well	as	of	the	

unmethylated	 phage	 are	 approximately	 independent	 of	 the	 dynamics	 of	 the	 methylated	

phage.	 Before	𝑡! ,	 the	 density	 of	 methylated	 phage	 is	 substantially	 below	 that	 of	 the	

unmethylated	phage.	After	𝑡!,	there	are	only	few	RM-	non-lysogens	present	and	production	

of	unmethylated	phage	 is	 thus	negligible.	 If	we	consider	𝑃! 𝑡 ,	𝐵!! 𝑡 ,	𝐵!! 𝑡 	and	𝐵!! 𝑡 	as	

fixed	(time-dependent)	functions,	rather	than	states	 in	the	DDE	for	the	methylated	phage,	

and	if	we	neglect	the	(relatively	small)	influence	of	RM+	lysogens	on	the	methylated	phage	

dynamics	before	𝑡!,	the	DDE	of	the	methylated	phage	becomes	linear.	Thus,	the	methylated	

phage	 dynamics	 are	 approximately	 proportional	 to	 the	 phage	 escape	 probability	 until	

shortly	before	𝑡!.	As	a	consequence,	when	we	scale	the	phage	escape	probability	by	a	factor	

𝑓 < 1,	the	peak	duration	grows	by	the	time	required	for	the	methylated	phage	to	grow	by	a	

factor	of	1/𝑓.	Since,	for	𝜇 = 1,	the	peak	duration	is	zero,	we	obtain	

Δt ≈
1

𝑘!"#! log
1
𝜇 ,	

with	𝑘!"#! = !
!
log 𝛽 − 𝑣!"#	being	the	maximal	growth	rate	of	the	methylated	phage	after	

𝑡!	and	before	𝑡!,	which	 is	approached	at	sufficiently	high	 initial	densities	of	RM+	bacteria.	
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Given	the	peak	duration,	we	can	approximate	the	increase	in	the	total	biomass	between	𝑡!	

and	𝑡!,	and	obtain:	

𝑁 𝑡! ≈ 1+ !!! !
!!! ! !!!! !

(𝑒!!"# !! − 1) 𝑁 𝑡! .	

This	 allows	us	 to	 calculate	 the	 ratio	 between	 the	 probabilities	 of	 lysogeny	𝛼!	and	𝛼!.	 The	

final	ratio	between	RM+	and	RM-	bacteria	can	then	be	approximated	as:	

𝑟! ≈ 1+
𝐵!! 0

𝐵!! 0 + B!! 0 𝜇
! !!"#
!!"#
! − 1

!
 𝐵!! 0
𝐵!! 0 .	

Even	though	these	formulas	for	the	peak	duration	and	the	final	RM+/RM-	ratio	are	based	on	

many	 simplifications,	 they	 are	 in	 surprisingly	 good	 agreement	 with	 the	 numeric	 results	

(Figure	 4-9B	 and	 Figure	 4-11).	 They	 indicate	 that	 the	 peak	 duration	 is	 approximately	

proportional	to	the	logarithm	of	the	inverse	of	the	phage	escape	probability	𝜇,	but	depends	

only	little	on	the	probability	of	lysogeny	𝛼,	given	that	the	latter	does	not	become	too	high.	

On	 the	 other	 hand,	 the	 final	 RM+/RM-	 ratio	 grows	 approximately	 exponentially	 with	 the	

parameter	𝑏,	 but	 depends	 only	 little	 on	 the	 parameter	𝑎	(recall	 that	 the	 probability	 of	

lysogeny	 is	 given	 by	𝛼(𝑁 𝑡 ) = 𝑎 𝑁!(𝑡)).	 Finally,	 for	 small	 enough	 values	 of	𝜇,	 the	 final	

RM+/RM-	 ratio	 is	 approximately	 proportional	 to	 !
!

! !!"#
!!"#
!

.	 The	 final	 RM+/RM-	 ratio	

saturates	for	very	small	phage	escape	probabilities	because	the	peak	duration	becomes	long	

enough	such	that	bacteria	have	already	reached	stationary	phase	before	𝑡!.	

 Stochastic	model	4.5.6

We	implemented	a	stochastic	version	of	the	RM	model	in	which	the	dynamics	are	described	

by	 a	 series	 of	 “events”	 between	 individual	 bacteria	 and	 phages	 taking	 place	with	 a	 given	

probability	per	unit	time,	rather	than	as	continuous	“reactions”	with	deterministic	rates	as	

in	 the	 DDE	 model.	 Thus,	 if	 the	 variation	 in	 the	 time	 when	 the	 first	 methylated	 phages	

occurred	 in	 the	 replicas	 of	 the	 competition	 experiment	 for	 EcoRV	 (Figure	 4-6B)	 was	 a	

consequence	 of	 the	 low	 phage	 escape	 probability,	 we	 would	 expect	 to	 see	 a	 similar	

variation	in	individual	simulations	of	the	stochastic	model.	For	this	model,	we	assumed	the	

same	 interactions	 between	 species	 and	 the	 same	 parameter	 set	 identified	 for	 the	
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deterministic	 model	 (Table	 4-2).	While	 we	 used	 a	 total	 medium	 volume	 of	 10	ml	 in	 the	

experiments,	 we	 assumed	 a	 volume	 of	 only	 1	 ml	 in	 these	 simulations	 to	 reduce	

computational	 time.	 Note	 that	 the	 effect	 of	 stochastic	 noise	 due	 to	 small	 reaction	

propensities	is	usually	the	higher	the	smaller	the	volume.	Simulations	were	performed	using	

Gillespie’s	(Gillesple,	1977)	algorithm	as	implemented	in	the	software	Dizzy	(Ramsey,	Orrell,	

Bolouri,	&	Others,	2005).	Small	modifications	to	the	source	code	of	Dizzy	were	necessary	to	

allow	for	the	specific	type	of	delayed	reactions	 in	the	model,	to	speed	up	the	simulations,	

and	to	reduce	the	memory	requirements.	Specifically,	in	the	original	implementation,	every	

delayed	 reaction	 is	 split	 into	 two	 components:	 a	 first	 component	 immediately	 decreasing	

the	 absolute	 numbers	 of	 the	 reactants,	 and	 a	 second	 component	 increasing	 the	 absolute	

numbers	of	the	products	exactly	after	the	defined	delay.	As	a	consequence,	for	each	firing	of	

the	reaction,	 the	precise	time	of	the	second	component	has	to	be	kept	 in	memory,	which	

significantly	increases	the	memory	footprint	and	decreases	speed.	We	modified	this	original	

algorithm	 such	 that	 second	 components	 closer	 together	 than	 10	 s	 are	 pooled	 into	 a	

common	 second	 component	 “firing	multiple	 times”.	Only	with	 these	modifications	 to	 the	

original	 algorithm,	 and	 only	 by	 assuming	 a	 total	 volume	 of	 1	ml	 instead	 of	 10	ml,	 it	was	

possible	 to	 run	 the	 stochastic	 simulations	 in	 reasonable	 time	 (between	one	and	 two	days	

per	simulation	on	a	3.3GHz	PC	with	8GB	RAM).	

 Parameter	estimation	4.5.7

Maximum	growth	rate:	Overnight	cultures	were	diluted	1:250	in	a	flat-bottom	96-well	plate	

into	 fresh	 medium	 (200	 μl	 total	 volume).	 The	 plate	 was	 continuously	 shaken	 inside	 the	

Synergy	H1	Multi-Mode	Reader	(Bio-Tek)	and	OD600	was	measured	at	ten-minute	intervals	

for	 ten	 hours.	 Growth-rates	 were	 calculated	 from	 the	 background-subtracted	 values	 of	

OD600	as	 the	 time	derivative	of	 ln	OD600)	during	90	minutes	of	exponential	 growth.	The	

outmost	wells	were	used	 for	background	subtraction.	Adsorption	 rate:	Approximately	106	

pfu/ml	of	λ	kan	were	added	to	a	growing	bacterial	culture	and	the	density	of	non-adsorbed	

phage	was	measured	in	10-minute	intervals	for	30	minutes.	At	each	time	point,	1	ml	of	the	

sample	was	filtered	(0.2	μm)	and	serial	dilutions	were	plated	to	estimate	the	density	of	free	

phage.	Bacterial	density	was	estimated	 independently.	The	adsorption	rate	was	calculated	

as	the	time	derivative	of	free	phage	density,	normalized	by	bacterial	density.	Latent	period	
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and	 burst	 size	 were	 estimated	 as	 described	 previously	 (Ellis	 &	 Delbrück,	 1939).	 The	

conversion	parameter	was	calculated	as	𝑒 = 𝑅/𝐷,	where	𝑅	is	the	resource	density	in	fresh	

medium	 (μg/ml)	 and	𝐷 	is	 the	 bacterial	 density	 reached	 in	 a	 fully-grown	 culture.	 The	

induction	 rate	was	 calculated	 from	 the	equilibrium	density	of	 free	phage	𝑃	in	 fully-grown	

cultures	of	λ	kan	lysogens	as	𝑖 = 𝛿/ 𝛽 ∙ 𝑃,	where	𝛿	is	the	adsorption	rate	and	𝛽	is	the	burst	

size.	 Adsorption	 rate,	 burst	 size,	 latent	 period	 and	 the	 probability	 of	 lysogeny	 were	

estimated	using	λ	kan	and	exponentially	growing	E.	coli	MG1655	(four	hour	incubation	after	

1:100	dilution).	

 Media	and	growth	conditions	4.5.8

Unless	otherwise	stated,	bacteria	were	grown	in	M9	maltose	medium	(1x	M9	salts	(12.8	g/l	

Na2HPO4∙7H2O,	3	g/l	KH2PO4,	0.5	g/l	NaCl,	1	g/l	NH4Cl),	0.4%	maltose,	2	mM	MgSO4,	0.1	mM	

CaCl2)	at	37	°C	with	vigorous	shaking.	M63	medium	(1x	M63	salts	(2	g/l	(NH4)2SO4,	13.6	g/l	

KH2PO4,	 0.5	mg/l	 FeSO4.7H2O),	 0.4%	maltose,	 2	mM	MgSO4,	 0.2	mM	CaCl2)	was	 used	 for	

experiments	shown	in	Figure	4-3.	Adding	0.2	mM	CaCl2	into	the	M63	medium	was	necessary	

for	successful	infection	by	λ	kan.	We	used	defined	media	for	the	competition	experiments	to	

increase	reproducibility	and	provide	well-defined	physiological	conditions,	in	which	bacteria	

compete	 for	 a	 single	 limiting	 resource	 (maltose),	 which	 is	 also	 an	 assumption	 of	 our	

mathematical	model.	In	all	competition	experiments,	RM+	and	RM-	bacteria	were	ara-	cat+	

and	ara+	cat-,	respectively.	The	maintenance	of	EcoRI	and	EcoRV	plasmids	was	selected	for	

with	 100	 μg/ml	 ampicillin.	 For	 the	 estimation	 of	 bacterial	 density,	 10-100	 μl	 of	 a	 diluted	

sample	was	plated	on	Petri	dishes	and	spread	with	sterile	glass	beads.	LB	plates	(1%	Agar)	

were	used	for	estimating	the	total	bacterial	density.	Tetrazolium-arabinose	(TA)	agar	plates	

(1%	 tryptone,	 0.1%	 yeast	 extract,	 0.5%	NaCl,	 1%	 agar,	 1%	 arabinose,	 0.005%	 tetrazolium	

(Sigma-Aldrich))	were	used	as	indicator	plates	to	estimate	density	of	ara+	cat-	and	ara-	cat+	

bacteria.	 When	 the	 frequency	 of	 one	 of	 the	 two	 types	 was	 below	 1:50,	 M9	 minimal	

arabinose	plates	(1x	M9	salts,	0.4%	arabinose,	2	mM	MgSO4,	0.1	mM	CaCl2,	1%	agar)	and	LB	

plates	 supplemented	with	 chloramphenicol	 (50	μg/ml)	were	used	 to	estimate	densities	of	

ara+	cat-	and	ara-	cat+	bacteria,	respectively.	Kanamycin	(20	μg/ml)	was	added	to	LB,	TA	and	

chloramphenicol	 plates	 to	 select	 for	 lysogens.	 Phage	 plates	 (1%	 tryptone,	 0.1%	 yeast	

extract,	0.8%	NaCl,	1%	agar,	0.01%	glucose,	0.2	mM	CaCl2)	were	used	for	estimating	phage	
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density.	Lawns	of	RM-	or	RM+	bacteria	prepared	by	mixing	100	μl	of	overnight	cultures	in	3	

ml	of	phage	soft	agar	(1%	tryptone,	0.1%	yeast	extract,	0.8%	NaCl,	0.7%	agar,	0.01%	glucose,	

0.2	mM	CaCl2)	were	used	to	estimate	densities	of	total	and	methylated	phage,	respectively.	

Dilutions	were	performed	in	96-well	plates	with	SM	buffer.	All	plates	were	incubated	at	37	

°C	overnight,	with	the	exception	of	M9	minimal	arabinose	plates,	which	were	incubated	for	

at	 least	 36	 hours	 before	 counting.	 Colonies	 and	 plaques	were	 counted	manually.	 Several	

dilutions	were	 plated	 for	 each	measurement	 and,	whenever	 possible,	 plates	with	 20-200	

colonies/plaques	were	counted.	

 Lysate	preparation	4.5.9

Phage	 lysates	 were	 prepared	 by	 plate	 lysis.	 Specifically,	 individual	 phage	 plaques	 were	

picked	with	a	sterile	pipette	tip,	resuspended	in	3	ml	of	phage	soft	agar	together	with	100	μl	

of	 overnight	 bacterial	 culture	 and	 plated	 on	 top	 of	 phage	 plates.	 The	 plates	 were	 then	

incubated	at	37°C	overnight.	The	soft	agar	was	scraped	with	a	sterile	microscope	glass	slide,	

resuspended	in	10	ml	of	SM	buffer	(100	mM	NaCl,	8	mM	MgSO4,	200	mM	Tris-Cl	(pH	7.5))	

with	 a	 few	 drops	 of	 chloroform	 to	 kill	 the	 residual	 bacteria.	 The	 lysates	 were	 then	

centrifuged	to	remove	the	leftover	agar,	sterilized	by	filtration	(0.2	μm)	and	stored	at	4	°C.	

The	λ	kan	lysates	used	for	competition	experiments	were	grown	on	lawns	of	MG1655.	The	

same	 lysates	were	used	 to	measure	 the	eop	and	eol	of	 EcoRI,	 EcoRV,	 EcoPI,	 EcoP15I	 and	

EcoVIII	 RM	 systems.	 Because	 the	MG1655	 strain	 carries	 a	 type	 I	 RM	 system	 (EcoKI),	 the	

lysates	used	to	measure	the	eop	and	eol	of	EcoAI,	EcoBI,	EcoKI	and	EcoR124I	were	obtained	

by	growing	λ	kan	on	E.	coli	C-1,	a	strain	devoid	of	methyltransferases.	These	 lysates	were	

also	used	to	measure	the	eop	and	eol	of	EcoRII,	a	RM	system	whose	recognition	sequence	

overlaps	 with	 the	 solitary	 methyltransferase	 dcm	 present	 in	 MG1655(Takahashi,	 Naito,	

Handa,	&	Kobayashi,	2002).	The	lysates	used	to	measure	the	eop	and	eol	of	EcoKMcrBC,	a	

type	 IV	 RM	 system	 cleaving	 DNA	 with	 the	 PvuII	 methylation	 pattern	 were	 obtained	 by	

growing	 λ	 kan	 on	 the	 MP084	 strain	 carrying	 a	 plasmid	 with	 this	 RM	 system	 (pPvuII	

3.4(Blumenthal,	Gregory,	&	Cooperider,	1985)).	
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 Measuring	efficiencies	of	plating	and	lysogenization	4.5.10

eop:	serially	diluted	λ	kan	lysate	was	mixed	with	0.1	ml	of	an	overnight	culture	(LB)	in	3	ml	

of	phage	soft	agar	and	spread	on	phage	plates.	eop	was	calculated	as	the	relative	ratio	of	

the	 plaque-forming	 units	 (pfu)	 obtained	 on	 lawns	 of	 RM+	 and	 RM-	 bacteria	 (𝑒𝑜𝑝 =

𝑝𝑓𝑢!"! 𝑝𝑓𝑢!"!).	eol:	0.5	ml	of	an	overnight	culture	(~108	bacteria)	was	mixed	with	the	λ	

kan	lysate	to	reach	phage/bacteria	ratio	of	1.	Samples	were	incubated	on	ice	for	30	min	to	

allow	for	phage	adsorption,	then	incubated	for	additional	30	min	at	37	°C	to	allow	for	phage	

infection	and	expression	of	kanamycin	resistance.	In	order	to	prevent	formation	of	lysogens	

on	agar	plates,	samples	were	washed	once	with	SM	buffer	to	wash	away	the	non-adsorbed	

phage.	Serial	dilutions	were	plated	on	LB	plates	with	20	μg/ml	kanamycin	 to	estimate	the	

density	of	 lysogenic	 colony-forming	units	 (lcfu).	eol	was	 calculated	 as	 the	 relative	 ratio	of	

lcfu	 obtained	 for	 RM+	 and	 RM-	 bacteria	 (𝑒𝑜𝑙 = 𝑙𝑐𝑓𝑢!"! 𝑙𝑐𝑓𝑢!"!).	 The	 following	 strains	

and	 plasmids	 were	 used	 in	 these	 experiments:	 NK354	 (EcoAI),	 WA251(EcoBI),	 MG1655	

(EcoKI	 and	 EcoKMcrBC),	 NK402	 (EcoR124I),	 pBR322ΔPtet	 EcoRI	 (R+M+)	 (EcoRI),	 pMPR001	

(EcoRII),	 pBR322ΔPtet	 EcoRV	 (R+M+)	 (EcoRV),	 pRR0	 (EcoVIII),	 pNR201	 (EcoP1),	 pNR301	

(EcoP15I).	

 Competition	experiments	4.5.11

All	 competitions	 were	 between	MG1655	 (ara+	 cat-)	 and	MP085	 (ara-	 cat+)	 strains.	 These	

strains	carried	either	the	empty	pBR322ΔPtet	plasmid	(RM-),	or	one	of	the	plasmids	carrying	

an	 RM	 system:	 pBR322ΔPtet	 EcoRI	 (R+M+),	 or	 pBR322ΔPtet	 EcoRV	 (R+M+)	 (Pleška	 et	 al.,	

2016).	 Individual	colonies	from	overnight	plates	were	 inoculated	 into	2	ml	of	medium	and	

grown	 for	24	hours	at	37	 °C	with	vigorous	 shaking.	The	 two	strains	were	 then	mixed	 in	a	

desired	ratio	and	diluted	1:100	into	fresh	medium.	Mixtures	were	first	grown	for	24	hours	at	

37	°C	in	the	absence	of	phage	and	then	diluted	into	two	separate	tubes	with	2	ml	of	fresh	

medium	to	reach	the	desired	bacteria	density.	λ	kan	lysates	grown	on	MG1655	were	diluted	

in	SM	buffer	and	2	μl	of	the	corresponding	dilution	was	added	to	reach	the	desired	phage	

density.	When	the	ratio	between	the	two	types	was	close	to	1,	the	density	of	RM+	and	RM-	

lysogens	 was	 estimated	 simultaneously	 by	 plating	 diluted	 cultures	 on	 TA	 plates	

supplemented	 with	 20	 μg/ml	 Kanamycin.	 Otherwise,	 the	 densities	 were	 estimated	
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individually	 by	 plating	 the	 samples	 either	 on	 LB	 plates	 with	 both	 kanamycin	 and	

chloramphenicol	 (RM+	 lysogens),	 or	 minimal	 arabinose	 plates	 with	 kanamycin	 (RM-	

lysogens).	The	RM+/RM-	fold	 increase	was	calculated	as	(!"!
! !"

!"!
! !"

)/(!"
! !

!"! !
),	where	!"!

! !"
!"!

! !"
	

is	the	ratio	of	lysogens	obtained	24	hours	after	infection	and	(!"
! !

!"! !
)	is	the	ratio	of	sensitive	

bacteria	at	the	beginning	of	the	experiment.	

In	experiments	presented	in	Figure	4-4,	the	cultures	were	serially	transferred	every	24	hours	

by	1:100	dilution	into	2	ml	of	medium	and	bacterial	densities	were	estimated	by	plating	on	

TA	plates.	Phage	density	was	estimated	by	spotting	5	μl	of	serially	diluted	sample	on	lawns	

of	MG1655.	After	the	first	and	last	day	of	the	experiment,	five	colonies	of	both	types	from	

each	culture	were	tested	for	their	ability	to	grow	on	kanamycin	to	test	for	lysogeny.	For	the	

experiments	depicted	 in	Figure	4-6,	mixed	cultures	were	diluted	1:100	 into	10	ml	of	 fresh	

medium	and	infected	with	λ	kan	to	reach	the	density	of	approximately	105	pfu/ml.	Cultures	

were	incubated	inside	an	Innova®	3100	(New	Brunswick™)	water	bath	at	37	°C	with	constant	

shaking.	Samples	(200	µl)	were	taken	at	one-hour	intervals.	

 Measuring	the	probability	of	lysogeny	4.5.12

Overnight	cultures	were	diluted	1:100	and	grown	for	4	hours	at	37	°C	with	vigorous	shaking.	

1	ml	samples	were	infected	with	λ	kan	at	phage/bacteria	ratio	equal	to	0.1.	Samples	were	

incubated	on	ice	for	30	min	to	allow	for	phage	adsorption,	then	incubated	for	additional	30	

min	at	37	°C	to	allow	for	phage	infection	and	expression	of	kanamycin	resistance.	Infected	

bacteria	 were	 washed	 with	 SM	 buffer	 to	 remove	 the	 non-adsorbed	 phage	 and	 serial	

dilutions	were	plated	on	a)	LB	kanamycin	plates	to	estimate	the	density	of	lcfu,	and	b)	lawns	

of	sensitive	bacteria	to	estimate	the	density	of	infective	centers.	To	make	sure	that	majority	

of	 the	 infections	 are	 lytic,	 the	 plates	 to	 estimate	 the	 density	 of	 infected	 centers	 were	

exposed	 to	 UV	 before	 incubation.	 The	 probability	 of	 lysogeny	 was	 calculated	 as	α =

𝑙𝑐𝑓𝑢 𝑝𝑓𝑢.	 In	 experiments	 depicted	 in	Figure	 4-9B,	 overnight	 cultures	were	diluted	1:100	

into	 fresh	medium	 and	 incubated	 at	 37	 °C	with	 vigorous	 shaking.	 Samples	were	 taken	 at	

two-hour	 intervals	and	α	was	measured	as	above.	At	each	time-point,	λ	kan	was	added	to	

reach	phage/bacteria	ratio	of	0.1.	
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 Statistical	analysis	4.5.13

All	 statistical	 tests	 were	 performed	 using	 Matlab	 R2015a	 (The	 MathWorks,	 Inc.,	 Natick,	

Massachusetts,	United	States).	In	Figure	4-1B,	the	eop	and	eol	were	compared	for	each	RM	

system	 individually	 using	 Welch’s	 t-test	 (H0:	eol ≤ eop) .	 The	 level	 of	 significance	 was	

adjusted	 using	 Bonferroni	 correction	 for	 multiple	 comparisons:	α∗ = !.!"
!"

= 0.005.	 Linear	

regression	models	were	 fit	 using	 the	 fitlm()	 command.	 RM+/RM-	 fold	 increase	 data	were	

log-transformed	 before	 analysis.	 Normal	 distribution	 of	 errors	 was	 verified	 by	 residual	

analysis.	 The	 symbols	 depicting	 levels	 of	 significance	 correspond	 to:	 ns	 (not	 significant)	

p>0.05,	*	p<0.05,	**	p<0.01,	***	p<0.001.	

 Strain	and	plasmid	construction	4.5.14

MP084	was	constructed	by	P1	 transduction	of	 the	ΔmcrB::kanR	 allele	 from	JW5871	 (KEIO	

collection	 (Baba	 et	 al.,	 2006))	 into	 MG1655,	 followed	 by	 removal	 of	 the	 kanamycin	

resistance	 marker	 using	 the	 pCP20	 plasmid	 (Haldimann	 &	 Wanner,	 2001).	 TB357	 was	

constructed	by	recombineering	of	the	ΔaraA::kanR-frt	PCR	fragment	(amplified	by	5_araA_KO	

and	3_araA_KO	from	pKD13)	into	MG1655.	The	KanR	marker	was	then	flipped	out	using	pCP20.	

MP085	was	constructed	by	 integrating	the	pAH68-frt	 integration	plasmid	into	TB357	using	

the	pAH69	helper	plasmid.	pAH68-frt-cat	 is	 a	CRIM-based	plasmid	 (Haldimann	&	Wanner,	

2001)	previously	 constructed	 in	our	 laboratory	 that	 integrates	 into	 the	HK022	attachment	

site	 and	 contains	 a	 chloramphenicol	 resistance	 marker.	 λ	 kan	 was	 constructed	 by	

recombineering	 Oppenheim	 et	 al.,	 2004).	 Specifically,	 λ	 PaPa	 lysogens	 were	 first	

transformed	with	pKD46	(Datsenko	&	Wanner,	2000).	Arabinose-induced	electro-competent	

cells	were	then	electroporated	with	the	Δbor::	kanR	PCR	product,	followed	by	selection	for	

kanamycin	 resistant	 colonies.	 The	 ability	 of	 the	 resulting	 clones	 to	 release	 free	 phage	

conferring	 kanamycin	 resistance	 upon	 lysogenization	was	 confirmed.	 The	 Δbor::kanR	PCR	

fragment	was	 obtained	 by	 PCR	 using	 the	 lambda_bor_kan_fwd	 and	 lambda_bor_kan_rev	

primers	and	pKD4	as	the	template	(Datsenko	&	Wanner,	2000).	The	EcoRII	RM	system	was	

amplified	 from	 pR209	 using	 primers	 fw_NheI_EcoRII	 and	 rv_SalI_EcoRII.	 The	 resulting	

fragment	 was	 cut	 with	 NheI	 and	 SalI	 and	 cloned	 into	 pBR322	 via	 the	 corresponding	

restriction	sites,	resulting	in	pMPR001.	
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 Bacterial	strains,	plasmids	and	phages	4.5.15

Name	 Genotype	 Source,	reference	
DH5α	 F–	 ,	 λ–,	 Φ80lacZΔM15,	 Δ(lacZYA-

argF),	U169,	recA1,	endA1,	hsdR17	
(rK–,	 mK+),	 phoA	 supE44,	 thi-1,	
gyrA96,	relA1	

Lab	collection	

DH5α	λpir+	 F–	 ,Φ80lacZΔM15,	 Δ(lacZYA-argF),	
U169,	 recA1,	 endA1,	 hsdR17	 (rK–,	
mK+),	 phoA	 supE44,	 thi-1,	 gyrA96,	
relA1,	λpir+	

Lab	collection	

MG1655	 F-,	λ-,	ilvG-,	rfb-50,	rph-1	 Lab	collection		
MP084	 MG1655,	ΔmcrB	 This	work	
MP085	 MG1655,	ΔattHK022::cat,	ΔaraA	 This	work	
TB357	 MG1655,	ΔaraA	 This	work	
C-1	 E.coli	C	 CGSC	
WA251	 E.coli	B,	lon-,	mal+	 CGSC	
NK354	 ΔhsdEcoKI	hsd+EcoAI	 (Makovets	et	al.,	2004)	
NK402	 ΔhsdEcoKI,	lac::(hsd+EcoR124I	,	cat)	 (Makovets	et	al.,	2004)	
pBR322ΔPtet	 pMB1	ori,	bla,	ΔPtet,		 (Pleška	et	al.,	2016)	
pBR322ΔPtetEcoRI	(R+M+)	 pMB1	ori,	bla,	ΔPtet,	EcoRI	(R+M+)	 (Pleška	et	al.,	2016)	
pBR322ΔPtetEcoRV	(R+M+)	 pMB1	ori,	bla,	ΔPtet,	EcoRV	(R+M+)	 (Pleška	et	al.,	2016)	
pR209	 p15A	ori,	bla,	EcoRII	(R+M+)	 (Bhagwat	 &	 Johnson,	

1990)	
pMPR001	 pMB1	ori,	bla,	EcoRII	(R+M+)	 This	work	
pPvuII	3.4	 pMB1	ori,	bla,	PvuII	(R+M+)	 (Blumenthal	 et	 al.,	

1985)	
pRR0	 pMB1	ori,	bla,	EcoVIII	(R+M+)	 Iwona	Mruk	
pNR201	 p15A	ori,	cat,	EcoP1I	 (Hümbelin	et	al.,	1988)	
pNR301	 p15A	ori,	cat,	EcoP15I	 (Hümbelin	et	al.,	1988)	
pAH68-frt-CamR	 R6K	ori,	cat	-frt,	attPHK022		 Lab	collection	
λ	vir	 Virulent	mutant	of	Phage	λ		 Sylvain	Moineau	
λ	kan	 kan	 This	work	
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 List	of	primers	4.5.16

Name	 Sequence	(5’	to	3’)	

lambda_bor_kan_fwd	 TACGATTCTGCGAACTTCAAAAAGCATCGGGAATAACACCTCA

CGCTGCCGCAAGCACTC	

lambda_bor_kan_rev	 TGCAGATAGAGTTGCCCATATCGATGGGCAACTCATGCAAAGC

GCTTTTGAAGCTGGGGTG	

5_araA_KO	 GCTGCCCAGGCCGTTGCGACTCTATAAGGACACGATAATGATT

CCGGGGATCCGTCGACC	

3_araA_KO	 GTCAGCGTCGCATCAGGCGTTACATACCGGATGCGGCTACTGT

AGGCTGGAGCTGCTTC	

fw_NheI_EcoRII	 AATTAAgctagcATCCCACAACCTCATGAGCC	

rv_SalI_EcoRII	 AATTAAgtcgacGCTCAACCACCATTTCGCAG	
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