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Let X be a smooth projective hypersurface defined over Q. We provide new bounds for rational points
of bounded height on X. In particular, we show that if X is a smooth projective hypersurface in Pn with
n � 4 and degree d � 50, then the set of rational points on X of height bounded by B have cardinality
On,d,ε(Bn−2+ε). If X is smooth and has degree d � 6, we improve the dimension growth conjecture bound.
We achieve an analogue result for affine hypersurfaces whose projective closure is smooth.

1 Introduction
Let X be a projective geometrically irreducible hypersurface defined over Q of degree d � 2 in Pn. The
uniform dimension growth conjecture [11, Conjecture 2], stated by Heath-Brown, asserts that

N(X, B) �n,d,ε Bn−1+ε , (1.1)

where N(X, B) counts the number of rational points on X of height at most B. This conjecture is now
a theorem [16, Theorem 0.3] by Salberger for d � 4, or by Heath-Brown [11, Theorem 2] for d = 2. The
conjecture remains open for d = 3; however, Salberger proved that it holds if the error term is allowed to
depend on X [16, Theorem 0.1]. The aim of this paper is to improve (1.1) under suitable conditions on X.
Specifically, our goal is to show that if X is smooth, then N(X, B) �n,d,ε Bn−2+ε . This has been proven for
n � 28 by Marmon in [12, Theorem 1.2] and our objective is to extend the result to n � 4, subject to
additional assumptions on d = deg X.

Let X ⊆ Pn be a projective variety. Define

N(X, B) = #

{
x = (x0, x1, . . . , xn) ∈ X(Q) : xi ∈ Z,

|xi| � B ∀ 0 � i � n,
gcd0�i�n(xi) = 1

}
.
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2 | M. Verzobio

We will work with a fixed B � 2 and we will say that x ∈ X is of bounded height if it belongs to the set
above. For d � 6, define the decreasing positive function

θ(d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if d � 50,
11

4 3√d
− 3

4 if 50 > d � 20,
3
3√d

+ 1
3
√

d
− 11

12 if 20 > d � 16,
3
3√d

+ 2
3
√

d
− 1 if 16 > d � 9,

2√
d

if 9 > d � 6.

(1.2)

Theorem 1.1. Let d � 6 and n � 4. Let X be a smooth projective hypersurface defined over Q of
degree d in Pn. Then, for all ε > 0,

N(X, B) �n,d,ε Bn−2+θ(d)+ε if n � 5,

and

N(X, B) �d,ε B2+max
{
0, 45

16
√

d
− 3

4

}
+ε if n = 4.

Notice that, for d � 6, our bound is strictly better than the one that follows from the uniform
dimension growth conjecture, since 45

16
√

d
− 3

4 < 1 and θ(d) < 1 for d � 6. In the case when d < 6,
our method does not provide better bounds than the one from the dimension growth conjecture. The
main reason is that we are not able to bound efficiently the rational points of bounded height that lie on
irreducible curves of degree less than 4 (see Lemma 2.6). The following corollary follows on combining
Theorem 1.1 with the aforementioned result by Marmon [12, Theorem 1.2].

Corollary 1.2. Let n, d � 4 and let ε > 0. Let X be a smooth projective hypersurface defined over
Q of degree d in Pn. If d � 50 or n � 28, then

N(X, B) �n,d,ε Bn−2+ε . (1.3)

We believe that (1.3) should hold for all n � 4 and d � 3, while it is easy to show that it cannot hold
in general for d � 2 or n � 3.

Conjecture 1.3. Let n � 4 and d � 3. Let X be a smooth projective hypersurface defined over Q of
degree d in Pn. For all ε > 0,

N(X, B) �n,d,ε Bn−2+ε .

Remark 1.4. The bound of Theorem 1.1 is optimal (up to ignoring the ε in the exponent), in the
sense that we cannot improve it for all d � 6 and n � 4. For example, let X ⊆ P5 be defined by

F(x0, x1, x2, x3, x4, x5) = x0(xd
0 + xd

5) + x1(xd
1 + xd

4) + x2(xd
2 + xd

3),

that is smooth and contains the plane x0 = x1 = x2 = 0. Thus, N(X, B) � B3.

Remark 1.5. We briefly discuss the assumption n � 4. To prove (1.3) for n = 2, we would need to
show that N(C, B) �d,ε Bε for a smooth projective plane curve C. Since d � 4, the curve C has
genus strictly larger than 1 and then

N(C, B) �C 1

by Falting’s Theorem. However, removing the dependence on C and proving that N(C, B) �d,ε Bε

is a major open conjecture. In the case n = 3, (1.3) holds, for d � 9, if and only if X does not
contain any rational line [16, Theorem 0.5].
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Counting Rational Points on Smooth Hypersurfaces with High Degree | 3

We also prove an affine analogue of Theorem 1.1. Let Y ⊆ An be an affine variety. Define

Naff(Y, B) = #{x = (x1, . . . , xn) ∈ Y(Z) : |xi| � B ∀ 1 � i � n}.

An affine analogue of the uniform dimension growth conjecture has been proved by Vermeulen in [21];
see (2.3) for more details.

Theorem 1.6. Let n � 5 and d � 6. Let Y be an affine hypersurface defined over Q of degree d in
An such that the projective closure of Y is smooth. Then, for all ε > 0,

Naff(Y, B) �n,d,ε Bn−3+θ(d)+ε .

Remark 1.7. We briefly discuss the assumption n � 5. If n = 2, 3, then the bound Naff(Y, B) �d,ε

Bn−3+ε clearly cannot hold, in general. Let n = 4. Let F1(x0, x1, x2) = 0 be a smooth projective
curve C of degree d and let f1(x1, x2) = F1(1, x1, x2). Consider the affine variety Y defined by

f (x1, . . . , x4) = f1(x1, x2) + x3xd−1
4 + xd−1

3 x4.

The projective closure of Y is defined by

F1(x0, x1, x2) + x3xd−1
4 + xd−1

3 x4,

and it is smooth. The hypersurface f1(x1, x2) = x3 = 0 is contained in Y and then

Naff(Y, B) � Naff({f1(x1, x2) = 0}, B)B.

In order to have the bound of Theorem 1.6 for Naff(Y, B), that is Naff(Y, B) �d,ε B1+ε , we would
need to show that Naff({f1(x1, x2) = 0}, B) �d,ε Bε . As we already mentioned, this is an open
conjecture. In Lemma 3.6, we prove an analogue of Theorem 1.6 for n = 4.

We will prove Theorem 1.1 and 1.6 via a modification of Salberger’s determinant method [16, Lemma
3.2]. A key feature of this paper is that, rather than applying the determinant method to surfaces, as
it is typically done, we apply it to threefolds. This leads to efficient bounds thanks to recent optimal
bounds on the cardinality of integral points of bounded height on affine curves of very high degree by
Binyamini, Cluckers, and Novikov [2, Theorem 2]. Indeed, when one applies the determinant method to
threefolds, one has to bound the cardinality of rational points of bounded height on surfaces of bounded
degree, which we will handle using [16, Section 7], and on curves that may have very high degree.

The problem of bounding the cardinality of rational points of bounded height on smooth projective
hypersurfaces is well established and has been studied in several works such as [5], [6], [15], [18], and
[19]. For the case of degree 3; see [3]. As already mentioned, Marmon in [12] handles the same problem
for n large, obtaining the bounds via the study of certain exponential sums. As is often the case, when
n is small and d is large, the determinant method yields stronger bounds, and this remains true in our
setting. In the case when d is much larger than n (say, roughly speaking, d � nn), the approach used in
[19] by Salberger and Wooley would lead to better bound; see [19, Corollary 1.2]. Both our method and
theirs rely on iteratively slicing the variety with hypersurfaces. The main difference is that we perform
this slicing procedure using hyperplanes, while they use hypersurfaces that may have higher degree.
In the case when d is much larger than n, the number of hypersurfaces they use is smaller than the
number from our method and so it leads to better results.

We will adopt the following strategy. If X is a smooth hypersurface in Pn (or An), then by fixing one
variable we reduce to studying hypersurfaces in An−1. Up to some cases that we treat separately, we can
assume that the projective closure of these affine hypersurfaces is smooth. We repeat this procedure
to reduce to studying smooth hypersurfaces in A4. Using Salberger’s determinant method [16], we show
that integral points of bounded height lie on a set of surfaces or on a set of curves. We then bound
integral points of bounded height on surfaces or curves using Salberger’s determinant method again
([16, Section 7]) or an optimal bound for points on curves ([2, Theorem 2] if the degree of the curve is at
least 4, or [15, Proof of Corollary 3.9] if the degree of the curve is at most 3).
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4 | M. Verzobio

In recent years, considerable effort has been devoted to eliminating the ε in the exponent of the
dimension growth conjecture bound (1.1) and understanding the dependence on d in the error term; see,
for instance, the work of Castryck, Cluckers, Dittmann, and Nguyen [8], as well as the aforementioned [2].
Similarly, there has been interest in generalizing the dimension growth conjecture bound to the global
field setting; see the work of Sedunova [20], Paredes and Sasyk [13], and Vermeulen [22]. While we believe
that their methods could potentially be adapted to the setting considered in this paper, we do not pursue
this direction here.

While this project was in its final stages, Binyamini, Cluckers, and Kato proved in [1] that the
dependence on the degree in the implied constant of the dimension growth conjecture bound (1.1)
is quadratic. This result provides an efficient way to bound the number of points of bounded height on
hypersurfaces of high degree. With this new tool, it seems reasonable that the bounds established in
this paper can be improved. We intend to pursue this direction in future work.

2 Preliminaries
In this section, we collect some results that we are going to use in the following sections.

Given a projective variety X of degree d, it is rather easy to show [4, Theorem 1] that

N(X, B) �d Bdim X+1. (2.1)

In the same way, given an affine variety Y of degree d, we have

Naff(Y, B) �d Bdim Y. (2.2)

We refer to these bounds as the trivial bounds.
As we pointed out in the introduction, we will need to bound the cardinality of integral points of

bounded height on affine curves of very high degree. We will do so using the work of Binyamini, Cluckers,
and Novikov in [2, Theorem 2]. We state their result in the form we need in the next lemma.

Lemma 2.1. Let C ⊆ An be an algebraic curve of degree d such that each irreducible component
of C has degree at least δ � d. Then, for all ε > 0,

Naff(C, B) �n,ε Bε
(
dB

1
δ + d2

)
.

Fix q a positive integer and z = (z1, z2, . . . , zn) ∈ An(Z). Let

Naff(C, B, q, z) = #{x ∈ C(Z) | |xi| � B, xi ≡ zi mod q ∀1 � i � n}

and then

Naff(C, B, q, z) �n,ε Bε

(
d

(
B
q

) 1
δ

+ d2

)
.

Proof. Let {Ci} be the set of irreducible components of C, each of degree di. So,
∑

di = d and

Naff(Ci, B) �n,ε d2
i B

1
di B

ε
2

by [2, Theorem 2]. If di � 2(ε)−1, then

d2
i B

1
di B

ε
2 �ε B

1
δ
+ε .

If di � 2(ε)−1, then

d2
i B

1
di B

ε
2 �ε d2

i Bε .
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Counting Rational Points on Smooth Hypersurfaces with High Degree | 5

In both cases,

Naff(Ci, B) �n,ε Bε(d2
i + B

1
δ )

and hence

Naff(C, B) =
∑

i

Naff(Ci, B) �n,ε

∑
i

Bε
(
d2

i + B
1
δ

)
�n,ε Bε

(
dB

1
δ + d2

)
.

For the second part of the lemma, we can assume |zi| � q for all 1 � i � n. Let C′ be the curve obtained
by C after the change of variables x → (x − z)/q. Then,

Naff(C, B, q, z) � Naff(C′, 1 + B/q)

and we conclude by applying the first part of the lemma. �

To bound the number of integral points of bounded height on affine surfaces, we use Salberger’s
work in [16, Section 7].

Lemma 2.2. Let W be an irreducible surface defined over Q in A4 of degree d, and let Naff,e(W, B) be
the cardinality of integral points of bounded height on W that do not lie on irreducible curves
of degree at most e − 1 on W. Then, for all ε > 0,

Naff,e(W, B) �d,e,ε B
2√
d
+ε + B

1√
d
+ 1

e +ε .

Proof. The proof of this lemma follows the second part of the proof of [16, Theorem 6.1]. Assume that
W is geometrically irreducible. By [17, Lemma 8.1], there exists W1 in A3, geometrically integral and of
the same degree as W, such that

Naff(W, B) �d Naff(W1, Od(B)).

Moreover, there exist two curves C ⊆ W and C1 ⊆ W1 such that W \ C is isomorphic to W1 \ C1.
Furthermore, the degree of C and C1 is Od(1). We can bound the integral points of bounded height on
irreducible components of C of degree at least e by Od,e,ε(B

1
e +ε) using Lemma 2.1. By [9, Example 18.16],

the degree of curves on W outside C does not change under the isomorphism. Hence,

Naff,e(W, B) �d,e,ε Naff,e(W1, Od(B)) + B
1
e +ε .

By [16, Theorem 7.2], the non-singular integral points of bounded height on W1 that do not lie on curves
of degree at most e − 1 are

Od,e,ε

(
B

1√
d
+ 1

e +ε + B
2√
d
+ε

)
.

The singular locus of W1 is contained in the union of Od(1) curves of degree Od(1). Thus, the singular
integral points of bounded height on W1 that do not lie on curves of degree at most e − 1 are

Od,e,ε

(
B

1
e +ε

)

and the proof is completed, under the assumption that W is geometrically irreducible.
If W is not geometrically irreducible, the integral points on W would lie on a proper subvariety W1 of

degree Od(1) (see [16, Proof of Theorem 2.1]). Then, dim W1 � 1 and we easily conclude. �

Given a projective variety X, we denote by Ne(X, B) the number of rational points of bounded height
that do not lie on irreducible curves of degree at most e − 1.
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6 | M. Verzobio

Lemma 2.3. Let ε > 0. Let X ⊆ Pn be a projective irreducible surface defined over Q of degree d.
Then,

Ne(X, B) �n,d,e,ε B
3√
d
+ε + B

3
2
√

d
+ 2

e +ε .

If X is smooth and 2 � e � d − 2, then

Ne(X, B) �n,d,ε B
3√
d
+ε + B

2
e +ε .

Proof. The first part of the lemma follows from [16, Corollary 3.22 and Theorem 6.1]. For the second
part of the lemma, notice d � 4 and then

3

2
√

d
+ 2

d − 1
� 3√

d
.

By the first part of the lemma,

Nd−1(X, B) �n,d,ε B
3√
d
+ε + B

3
2
√

d
+ 2

d−1 +ε �n,d,ε B
3√
d
+ε .

As proved by Colliot-Thélène in [11, ], there are Od(1) irreducible curves of degree � d − 2 on X and the
lemma follows. �

Lemma 2.4. Let X be a smooth projective hypersurface of degree d in Pn for n � 4. There are no
varieties of dimension n − 2 and degree less than d lying on X.

Proof. This is a corollary of the Noether–Lefschetz Theorem; see [19, Theorem 2.3]. �

We say that an affine variety W ⊂ An of dimension m is cylindrical over a curve if there exists a linear
map π : An → An−m+1 such that π(W) is a curve.

If W is an irreducible affine variety defined over Q, of dimension m, degree d � 4, and not cylindrical
over a curve, then

Naff(W, B) �n,d,ε Bm−1+ε . (2.3)

This affine version of the uniform dimension growth conjecture has been proved by Vermeulen [21,
Theorem 1.2].

Lemma 2.5. Let Y be an affine hypersurface in An for n � 5 of degree d � 2, such that its projective
closure is smooth. Let W be an irreducible subvariety of dimension n − 2. Then, W cannot be
cylindrical over a curve.

Proof. We assume that W is cylindrical over a curve and we aim for a contradiction. After a linear
change of variables, we can assume that W is defined by polynomials in n − dim W + 1 = 3 variables.
Thus, we assume W = V(fi(x1, x2, x3))1�i�s. Assume that Y is defined by f = 0 with

f (x1, . . . , xn) = h0(x1, . . . , xn) + xd−1
n h1(x1, . . . , xn)

for degxn
(h0(x1, . . . , xn)) � d − 2. Since W ⊆ Y, then

V(fi(x1, x2, x3))1�i�s ⊆ V(h1(x1, . . . , xn))
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Counting Rational Points on Smooth Hypersurfaces with High Degree | 7

and h1 is non-zero since otherwise the projective closure of Y would be singular. So, h1 has degree 1 and
after a linear change of variables we can assume h1 = x3 and W = V(f0(x1, x2), x3). Therefore,

f (x1, . . . , xn) = f0(x1, x2)g0(x1, . . . , xn) + x3g1(x1, . . . , xn)

and the projective closure of Y is defined by

F(x0, x1, . . . , xn) = F0(x0, x1, x2)G0(x0, x1, . . . , xn) + x3G1(x0, x1, . . . , xn) = 0.

Notice that G1 is non-constant since deg F = d � 2 and F0 has degree at least 2, since otherwise W would
have degree 1 contradicting Lemma 2.4. A point that satisfies

x0 = x1 = x2 = x3 = G1 = 0

is singular, contradiction. �

Lemma 2.6. Let ε > 0. Let X be a smooth projective hypersurface defined over Q of degree d > n+1
in Pn for n � 4. Let Z be the union of all algebraic curves on X with irreducible components of
degree at most three. The rational points of bounded height on Z are

On,d,ε
(
Bn−2+ε

)
.

Proof. By [15, Lemma 6.1], the reduced scheme structure of Z is a proper closed subvariety of X, defined
over Q, of degree Od(1). If dim(Z) � n − 3, we conclude by the trivial bound (2.1). If dim(Z) = n − 2, each
irreducible component has degree at least d by Lemma 2.4 and then we conclude using the bound (1.1).
Finally, Z cannot have dimension equal to n − 1 since it is proper. �

Lemma 2.7. Let ε > 0. Let Y be an affine hypersurface defined over Q of degree d > n + 1 in An

for n � 4, such that its projective closure is smooth. Let W be the union of all algebraic curves
on Y with irreducible components of degree at most three. If n � 5, then the integral points of
bounded height on W are

On,d,ε
(
Bn−3+ε

)
.

If n = 4, then the integral points of bounded height on W are

Od,ε

(
B1+ 1

d +ε
)

.

Proof. Let W1 be an irreducible component of the reduced scheme structure of W. By [15, Lemma 6.1]
we cannot have dim(W1) = n − 1 and if dim(W1) � n − 3 we conclude with the trivial bound (2.2). If
dim(W1) = n − 2, then W1 has degree at least d by Lemma 2.4 (since otherwise the projective closure
of W1 would be a hypersurface of degree less than d). If W1 is not cylindrical over a curve, we conclude
by (2.3). If n � 5, then W1 is not cylindrical over a curve by Lemma 2.5 and so we are done. If n = 4, we
conclude by [14, Theorem A]. �

Lemma 2.8. Let F ∈ Z[x0, x1, . . . , xn] be a homogenous non-singular polynomial of degree d. There
exists a matrix A ∈ SLn+1(Z) with max

∣∣ai,j

∣∣ �n,d 1 with the following properties. Let G = F ◦ A−1,
let Yb be the affine variety defined by G(1, x1, . . . , b) = 0, and B be the set of integers b such that
Yb has degree strictly smaller than d or its projective closure is not smooth. Then, the projective
variety G = 0 is smooth, of degree d, and #B �n,d 1.

Proof. See Lemma 5 and the proof of Proposition 2 at page 409 of [5]. �

Lemma 2.9. Let X be a smooth hypersurface in Pn for n � 4. For any hyperplane H, the projective
variety X ∩ H in Pn−1 is irreducible and deg X = deg(X ∩ H).
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8 | M. Verzobio

Proof. We can assume H = {x0 = 0} and that X is defined by F(x0, x1, . . . , xn) = 0 with

F(x0, x1, . . . , xn) = x0G0(x0, x1, . . . , xn) + G(x1, . . . , xn).

Thus, X∩H is defined by G(x1, . . . , xn) = 0. Notice that G is non-zero, since otherwise X would be reducible,
and then deg(G) = deg(F). If X ∩ H would be reducible, then G = G1G2 with G1, G2 non-constant and so

F(x0, x1, . . . , xn) = x0G0(x0, x1, . . . , xn) + G1(x1, . . . , xn)G2(x1, . . . , xn).

A point that satisfies x0 = G0 = G1 = G2 = 0 is singular, contradiction. �

3 Affine Threefolds
In this section we are going to study hypersurfaces in A4, which is the most important part of the proof of
our main results. Many tools used in this section have been introduced by Salberger in [16]. In particular,
we show in Lemma 3.1 (that is the analogue of [16, Theorem 2.2]) that integral points of bounded height
lie on a set of surfaces and we combine this fact with the argument of [16, Lemma 3.2] to bound the
cardinality of integral points of bounded height.

Let Y be an affine hypersurface in A4 defined over Q of degree d such that the projective closure of Y
is smooth. We say that a prime p is non-singular if the reduction modulo p of the projective closure of
Y is smooth. Let q = p1 · p2 . . . pk be the product of distinct non-singular primes. For each 1 � i � k, let Pi

be a point in Y(Fpi ). Let

Y(B, P1, . . . , Pk) = {x ∈ Y(Z) : x ≡ Pi mod pi, ||x|| � B},

where with x ≡ Pi mod pi we mean that x reduces to Pi when we reduce Y modulo pi, and with ||x|| � B
we mean

∣∣xj

∣∣ � B for all 1 � j � 4. Fix ε > 0 and let

K = B
1
3√d

+ε
. (3.1)

Lemma 3.1. There exists a hypersurface Y(P1, . . . , Pk), that does not contain Y, of degree Od,ε(K/q+
1), and such that Y(B, P1, . . . , Pk) ⊆ Y(P1, . . . , Pk).

Proof. Assume q < B
1
3√d

+ ε
2 . Then, by [16, Theorem 2.2], there exists Y(P1, . . . , Pk) as in the statement of

the lemma with degree

Od

⎛
⎝ B

1
3√d

q
log Bq + log Bq + 1

⎞
⎠ = Od,ε

(
K
q

+ 1
)

.

If q � B
1
3√d

+ ε
2 , then we can find Y(P1, . . . , Pk) of degree Od,ε(1). The proof of this fact is basically identical to

the proof of Theorem 15 in [10]. The only difference is that they are taking q to be a non-singular prime
while we are considering q as a product of non-singular primes, but this does not change the proof. �

The next lemma is a modification of [16, Lemma 3.2]. We show that integral points of bounded height
on an affine threefold lie on a certain set of surfaces or curves. A straightforward application of [16,
Lemma 3.2] would produce Od,ε(K) surfaces of degree Od(1) and curves of degree Od,ε(K2). Our bound
produces Od,ε(r2K) surfaces of degree Od(1) and curves of degree Od,ε(K2/r2), for r a fixed prime. In our
setting, this leads to a better bound, by choosing an appropriate r.

Let πsing be the product of all primes p such that the reduction modulo p of Y is singular.

Proposition 3.2. Let Y be an affine hypersurface in A4 defined over Q of degree d such that the
projective closure of Y is smooth. Assume log πsing �d log B. Let d1, d2 � 1 and fix a non-singular
prime r �d,ε K1−ε . Let Yd1,d2 be the complement in Y of the union of all irreducible curves on Y,
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Counting Rational Points on Smooth Hypersurfaces with High Degree | 9

defined over Q, and of degree at most d1 − 1, and all irreducible surfaces on Y, defined over Q,
of degree at most d2 − 1. Then,

Naff(Yd1,d2 , B) �d,d1,d2,ε Bε

⎛
⎝r2B

1
3√d

+ 1√
d2

+ 1
d1 + r2B

1
3√d

+ 2√
d2 + B

4
3√d

r
+ B

3d1−1+ 3√d

d1
3√d

⎞
⎠ .

Proof. Following [16, Lemma 3.2, a-b-c], we can find a sequence of distinct primes p1, . . . , pk with the
following properties:

• For all i � k, pi is non-singular and pi �= r.
• For all i � k, log B � pi �d,ε log B.
• k �d,ε log B.
• Let q = ∏

1�i�k pi. Then,

K
qr

�d,ε 1

and

q �d,ε log B
K
r

.

For all R ∈ Y(Fr) and Pi ∈ Y(Fpi ), we fix Y(R, P1, . . . , Pk) as in Lemma 3.1.
Fix R ∈ Y(Fr). Define {Dγ }γ∈�R as the set of irreducible components of Y ∩ Y(R) which are contained in

Y(R, P1, . . . , Pk) for a sequence of points P1, . . . , Pk with Pi ∈ Y(Fpi ). By Lemma 3.1,

deg(Y(R, P1, . . . , Pk)) �d,ε
K
qr

+ 1 �d,ε 1

and so deg(Dγ ) �d,ε 1 for each γ ∈ �R. Moreover, �R has cardinality bounded by the cardinality of
irreducible components of Y ∩ Y(R), that is bounded by

deg(Y ∩ Y(R)) � deg(Y) · deg(Y(R)) �d,ε
K
r

,

applying again Lemma 3.1. Define

� = ∪R∈Y(Fr)�R.

We have #� �d,ε #Y(Fr)
K
r and, for each Dγ with γ ∈ �, we have deg(Dγ ) �d,ε 1.

Let 1 � j � k and, for all 1 � i � j, let Pi be a point in Y(Fpi ). Define γ (P1, . . . , Pj) as the union of all
intersections of distinct irreducible components of Y ∩ Y(R, P1, . . . , Pj) and Y ∩ Y(R, P1, . . . , Pj−1). Notice
that γ (R, P1, . . . , Pj) has dimension at most 1 and, using again Lemma 3.1, has degree bounded by

deg(Y)2 deg(Y(R, P1, . . . , Pj)) deg(Y(R, P1, . . . , Pj−1))

�d,ε
K2

r2
∏

1�i�j pi
∏

1�i�j−1 pi
. (3.2)

Define γd1 (R, P1, . . . , Pj) as the variety obtained by removing from γ (R, P1, . . . , Pj) all the dimension 1
irreducible components of degree at most d1 − 1 and define

Wd1 (R, P1, . . . , Pj) =
{

x ∈ γd1 (R, P1, . . . , Pj) :
x ≡ Pi mod pi ∀1 � i � j,
x ≡ R mod r

}
.
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10 | M. Verzobio

Given x ∈ Y ∩ Y(R, P1, . . . , Pj), define Yx(R, P1, . . . , Pj) as the irreducible component of Y ∩ Y(R, P1, . . . , Pj)

that contains x. Let x ∈ Y(Z) be a point of bounded height, take Pi ∈ Y(Fpi ) such that x reduces to Pi

modulo pi and R ∈ Y(Fr) such that x reduces to R modulo r. If

Yx(R) = Yx(R, P1) = · · · = Yx(R, P1, . . . , Pk),

then Yx(R) ∈ �R (it is contained in Y(R, P1, . . . , Pk)) and so x ∈ Dγ for some γ ∈ �R. If not, there is j � 1
such that Yx(R, P1, . . . , Pj) �= Yx(R, P1, . . . , Pj−1). So, x ∈ γ (R, P1, . . . , Pj). If x does not lie on a curve of degree
at most d1 − 1, then x ∈ Wd1 (R, P1, . . . , Pj). Whence, an integral point of bounded height that does not lie
on a curve of degree at most d1 − 1 or on a surface of degree at most d2 − 1 must lie on Dγ for γ ∈ � and
deg(Dγ ) � d2, or on Wd1 (R, P1, . . . , Pj) for R ∈ Y(Fr) and Pi ∈ Y(Fpi ).

Let

Naff(Wd1 (R, P1, . . . , Pj), B) = #{x ∈ Wd1 (R, P1, . . . , Pj) : ||x|| � B}

and, given γ ∈ �, let Dγ ,d1 be the complement in Dγ of the union of all irreducible curves, defined over
Q, of degree at most d1 − 1. So,

Naff(Yd1,d2 , B) �
∑
γ∈�

deg(Dγ )�d2

Naff(Dγ ,d1 , B) (3.3)

+
∑

R∈Y(Fr)

∑
1�j�k

∑
Pi∈Y(Fpi

)

1�i�j

Naff(Wd1 (R, P1, . . . , Pj), B).

By Lemma 2.2, the integral points of bounded height on Dγ that do not lie on curves of degree smaller
than d1 are

Od,d1,d2,ε

(
B

1√
d2

+ 1
d1

+ε + B
2√
d2

+ε
)

.

Since

#� �d,ε #Y(Fr)
K
r

,

we obtain

∑
γ∈�

deg(Dγ )�d2

Naff(Dγ ,d1 , B) �d,d1,d2,ε #Y(Fr)

(
K
r

) (
B

1√
d2

+ 1
d1

+ε + B
2√
d2

+ε
)

. (3.4)

Now, we bound Naff(Wd1 (R, P1, . . . , Pj), B). Recall that each 1-dimensional irreducible component in

Wd1 (R, P1, . . . , Pj) has degree at least d1 and the degree of γ (R, P1, . . . , Pj) is Od,ε

(
K2

d(r,p1,...,pj)

)
with

d(r, p1, . . . , pj) = r2
∏

1�i�j

pi

∏
1�i�j−1

pi

by (3.2). So, by Lemma 2.1,

Naff(Wd1 (R, P1, . . . , Pj), B)

�d,d1,εBε

⎛
⎝ K2

d(r, p1, . . . , pj)

(
B

r
∏

1�i�j pi

) 1
d1

+
(

K2

d(r, p1, . . . , pj)

)2
⎞
⎠ .
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By [16, Lemma 2.12],
∏

#Y(Fpi ) �d
∏

p3
i and then

∑
Pi∈Y(Fpi

)

1�i�j

Naff(Wd1 (R, P1, . . . , Pj), B)

�d,d1,εBε

⎛
⎝ pj

∏
i�j piK2

r2

(
B

r
∏

1�i�j pi

) 1
d1

+
p2

j K4

r4
∏

i�j pi

⎞
⎠ .

Recalling that pi �d,ε log B,
∏

pi �d,ε K log B/r, using that log B �ε Bε , and including Bε in the definition
of K, we obtain

∑
1�j�k

∑
Pi∈Y(Fpi

)

1�i�j

Naff(Wd1 (R, P1, . . . , Pj), B)

�d,d1,ε

∑
1�j�k

Bε

⎛
⎝ pj

∏
i�j piK2

r2

(
B

r
∏

1�i�j pi

) 1
d1

+
p2

j K4

r4
∏

i�j pi

⎞
⎠

�d,d1,ε

∑
1�j�k

Bε log2 B

⎛
⎝ (

∏
i�j pi)

1− 1
d1 K2B

1
d1

r2+ 1
d1

+ K4

r4

⎞
⎠

�d,d1,ε

∑
1�j�k

K3− 1
d1

r3
B

1
d1 + K4

r4

�d,d1,εk

(
K3− 1

d1

r3
B

1
d1 + K4

r4

)
.

Recall k �d,ε log B and so

∑
R∈Y(Fr)

∑
1�j�k

∑
Pi∈Y(Fpi

)

1�i�j

Naff(Wd1 (R, P1, . . . , Pj), B)

�d,d1,ε

∑
R∈Y(Fr)

log B

(
K3− 1

d1

r3
B

1
d1 + K4

r4

)

�d,d1,ε#Y(Fr)

(
K3− 1

d1

r3
B

1
d1 + K4

r4

)
.

By (3.3) and (3.4),

Naff(Yd1,d2 , B) �d,d1,d2,ε #Y(Fr)

⎛
⎝ KB

1√
d2

+ 1
d1

r
+ KB

2√
d2

r
+ K3− 1

d1

r3
B

1
d1 + K4

r4

⎞
⎠ (3.5)

and we conclude using that #Y(Fr) �d r3. �

Remark 3.3. Taking r = Od,ε(Bε), Proposition 3.2 would be identical to [16, Lemma 3.2]. Taking r
as large as possible, say r ≈ Od,ε(K1−ε), Proposition 3.2 could be proved using Heath-Brown’s
determinant method [10].

Let Naff,4(Y, B) be the cardinality of the set of integral points of bounded height in Y that do not lie on
curves of degree at most 3 on Y. Recall that θ(d) is defined in (1.2).
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12 | M. Verzobio

Proposition 3.4. Let Y be an affine hypersurface defined over Q of degree d � 6 in A4 such that
the projective closure of Y is smooth. Then, for all ε > 0,

Naff,4(Y, B) �d,ε Bθ(d)+1+ε .

Proof. Assume that the integral points of bounded height on Y are contained in another threefold of
degree at most d. Then, the points of bounded height lie on a surface of degree at most d2. By Lemma 2.4,
there are no surfaces on Y of degree less than d. The integral points of bounded height on an irreducible
surface of degree at least d and at most d2 that do not lie on curves of degree at most 3 are

Od,ε

(
B

1√
d
+ 1

4 +ε + B
2√
d
+ε

)

by Lemma 2.2 and the proposition easily follows. So, we can assume that the integral points of bounded
height on Y are not contained in another threefold of degree at most d, thus we can apply [16, Lemma
3.1 (b)]. Hence, log πsing �d,ε log B and we can apply Proposition 3.2.

By Lemma 2.4, there are no surfaces on Y of degree less than d. So,

Naff,4(Y, B) �d,ε Naff(Y4,d, B).

Applying Proposition 3.2 with d1 = 4 and d2 = d, we obtain

Naff(Y4,d, B) �d,ε Bε

⎛
⎝r2B

1
3√d

+ 1√
d
+ 1

4 + r2B
1
3√d

+ 2√
d + B

4
3√d

r
+ B

11

4 3√d
+ 1

4

⎞
⎠ .

If d � 125, we can take by [16, Lemma 3.1] a non-singular prime r �d,ε Bε , and we obtain

Naff(Y4,d, B) �d,ε Bε

(
B

1
3√d

+ 1√
d
+ 1

4 + B
1
3√d

+ 2√
d + B

4
3√d + B

11

4 3√d
+ 1

4

)

�d,ε B
11

4 3√d
+ 1

4 +ε
. (3.6)

If 20 � d < 125, take r a non-singular prime such that

B
5

4 3√d
− 1

4 < r �d,ε B
5

4 3√d
− 1

4 ,

which exists by [16, Lemma 3.1]. Notice r �d,ε K1−ε , so we can apply Proposition 3.2. Thus,

Naff(Y4,d, B) �d,ε B
7

2 3√d
+ 1√

d
− 1

4 +ε + B
7

2 3√d
+ 2√

d
− 1

2 +ε + B
11

4 3√d
+ 1

4 +ε
.

Since 20 � d, by direct computation

Naff(Y4,d, B) �d,ε B
7

2 3√d
+ 1√

d
− 1

4 +ε + B
7

2 3√d
+ 2√

d
− 1

2 +ε + B
11

4 3√d
+ 1

4 +ε �d,ε B
11

4 3√d
+ 1

4 +ε

and so

Naff,4(Y, B) �d,ε B
11

4 3√d
+ 1

4 +ε
.

Combining this with (3.6), we get that for d � 20, it holds

Naff,4(Y, B) �d,ε B
11

4 3√d
+ 1

4 +ε
. (3.7)
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Notice in particular that, for d � 50, we have Naff,4(Y, B) �d,ε B1+ε . If 16 > d � 9, we conclude by taking

B
1
3√d

− 2
3
√

d < r �d,ε B
1
3√d

− 2
3
√

d ,

and if 20 > d � 16, we conclude by taking

B
1
3√d

− 1
3
√

d
− 1

12 < r �d,ε B
1
3√d

− 1
3
√

d
− 1

12 .

It remains to deal with the case 6 � d � 8. In this case, we use a different method that leads to
a better bound. Assume that Y is defined by f (x1, . . . , x4) = 0 and define Yb = Y ∩ {x4 = b}, that is an
irreducible surface of degree d by Lemma 2.9. If the projective closure of Yb is not smooth, the integral
points of bounded height are Od,ε(B1+ 1

d +ε) by [14, Theorem A]. By Lemma 2.8, we can assume that there
are Od(1) values of b for which the projective closure of Yb is not smooth. Assume now that the projective
closure of Yb is smooth. By [11, ], there are Od(1) irreducible curves of degree � d − 2 on Yb. Hence, by
Lemma 2.2, the integral points outside curves of degree at most 3 on Yb are

Od,ε

(
B

1
4 +ε + B

1√
d
+ 1

d−2 +ε + B
2√
d
+ε

)
�d,ε B

2√
d
+ε

and so

Naff,4(Y, B) =
∑

|b|�B

Naff,4(Yb, B) �d,ε B1+ 2√
d
+ε .

�

Notice that the proof of the previous proposition holds also for d = 5 with θ(d) = 2/
√

d.

Remark 3.5. We briefly compare the bound of Proposition 3.4 with the bounds that one would
obtain with different methods. If we slice Y with O(B) hyperplanes (by fixing one variable) and
then apply the determinant method we would get

Naff,4(Y, B) �d,ε B
5
4 +ε + B1+ 2√

d
+ε ;

see the end of the proof of Proposition 3.4. This bound is worse than the one in Proposition 3.4
for all d � 9.

One could also apply Heath-Brown’s determinant method [10]. The integral points of bounded

height on Y are contained in Od,ε(B
3
3√d ) surfaces of degree Oε(1). After removing the points

on curves of degree less than 3, the integral points of bounded height on each surface are

Od,ε(B
2√
d
+ε + B

1
4 + 1√

d
+ε

) and so we would get

Naff,4(Y, B) �d,ε B
3
3√d

+ 2√
d
+ε + B

3
3√d

+ 1
4 + 1√

d
+ε

.

Also this bound is worse than the one in Proposition 3.4 for all d � 6.

Now, we prove the analogue of Theorem 1.6 for hypersurfaces in A4. The proof of Theorem 1.6, and
also of Theorem 1.1, will follow from the next lemma.

Lemma 3.6. Let Y be an affine hypersurface defined over Q of degree d � 6 in A4 such that the
projective closure of Y is smooth. Then, for all ε > 0,

Naff(Y, B) �d,ε Bθ(d)+1+ε ,
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14 | M. Verzobio

unless the following hold. After a linear change of variables, Y is defined by an equation of the
form

f (x1, x2, x3, x4) = f0(x1, x2) + x3g(x1, x2, x3, x4).

Let C ⊆ A2 be the curve defined by f0(x1, x2) = 0. Then, C has degree d and its projective closure
is smooth. In this case,

Naff(Y, B) �d,ε Bθ(d)+1+ε + BNaff(C, B).

In particular,

Naff(Y, B) �d,ε Bθ(d)+1+ε + B1+ 1
d +ε .

Proof. By Proposition 3.4, we just need to bound points on curves of degree at most 3. Let W be an
irreducible component of the reduced scheme structure of the Hilbert’s scheme of points on curves of
degree at most 3, that has degree Od(1). As in the proof of Lemma 2.7, W cannot have dimension 3 and
if it has dimension � 1 we conclude by the trivial bound (2.2). So, we assume dim W = 2. If W is not
cylindrical over a curve, we would conclude that

Naff(Y, B) �d,ε Bθ(d)+1+ε ,

following the proof of Lemma 2.7. Assume that W is cylindrical over a curve. Thus, after a linear change
of variables, we can assume that W = V(fi(x1, x2, x3))1�i�s. Assume that Y is defined by f = 0 with

f (x1, x2, x3, x4) =
d∑

i=0

xi
4hi(x1, x2, x3).

Since W ⊆ Y, then W ⊆ {hi = 0} for all 0 � i � d. Hence, hd = 0. If hd−1 = 0, then the point
[x0, x1, x2, x3, x4] = [0, 0, 0, 0, 1] in the projective closure of Y would be singular, contradiction. So, hd−1

must have degree 1 and, after a linear change of variables, we can assume hd−1(x1, x2, x3) = x3. So,
W ⊆ {x3 = 0} and then W = V(f0(x1, x2), x3). Since W has degree at least d by Lemma 2.4, it follows that
f0 has degree at least d. For all i � 1, we have deg(hi) < d and then x3 | hi. Thus,

f (x1, x2, x3, x4) = f0(x1, x2)h′
0(x1, x2) + x3g(x1, x2, x3, x4).

Since deg(f0) � d, we have h′
0 is a constant, and it is not zero since otherwise Y would not be irreducible.

Hence,

f (x1, x2, x3, x4) = f0(x1, x2) + x3g(x1, x2, x3, x4)

with f0 an irreducible polynomial of degree d. Since the projective closure of Y is smooth, we have that
the projective closure of C, the affine curve defined by f0(x1, x2) = 0, is smooth. Notice in particular that
the genus of C is strictly larger than 1. We have Naff(W, B) = (2B + 1)Naff(C, B) and so

Naff(Y, B) �n,d,ε Bθ(d)+1+ε + BNaff(C, B).

Finally, the last line of the statement follows from Lemma 2.1. �

4 General Case
The goal of this section is to prove Theorems 1.1 and 1.6. The cases for n � 5 will follow from the affine
case for n = 4. We will reduce to that case by slicing our hypersurface with hyperplanes. This slicing
procedure is similar to the one done in [5, Section 3] by Browning and Heath-Brown.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2025/16/rnaf249/8230106 by Institute of Science and Technology Austria user on 02 Septem
ber 2025



Counting Rational Points on Smooth Hypersurfaces with High Degree | 15

The projective case for n = 4, which we will establish in the next lemma, follows directly from
Salberger’s work in [15, Section 3]. This result should not be regarded as original, as it merely involves a
straightforward application of Salberger’s techniques. However, since it does not appear in the literature
and we aim to cover all cases, we have chosen to include it. Replicating the approach from the previous
section in the projective setting would lead to a weaker bound.

Lemma 4.1. Let X be a smooth projective hypersurface defined over Q of degree d � 6 in P4. Then,
for all ε > 0,

N(X, B) �d,ε B2+ε + B
45

16
√

d
+ 5

4 +ε .

Proof. This is basically [15, Corollary 3.9], but using Salberger’s new version of the determinant method.
So, we are just going to sketch the proof. The rational points of bounded height that lie on irreducible
curves of degree at most 3 are at most Od,ε(B2+ε) by Lemma 2.6. By Siegel’s Lemma, the rational points
of bounded height lie on a set of O(B

5
4 ) hyperplanes. We call the intersection of X with one of these

hyperplanes a hyperplane section. Given a smooth hyperplane section, the rational points of bounded
height that lie on the smooth hyperplane section and not on irreducible curves of degree � 3 have
cardinality

Od,ε

(
B

3√
d
+ε + B

1
2 +ε

)

by Lemma 2.3. Since there are O(B
5
4 ) hyperplanes sections, rational points of bounded height that lie on

smooth hyperplane sections and not on irreducible curves of degree � 3 have cardinality

Od,ε

(
B

15
16 · 3√

d
+ 5

4 +ε + B
15
16 · 1

2 + 5
4 +ε

)
= Od,ε

(
B

45
16

√
d
+ 5

4 +ε + B
55
32 +ε

)
. (4.1)

The extra saving given by the multiplication by 15/16 in the exponent can be obtained replicating [18,
Proof of Theorem 3.3]; see also [15, Section 5]. As is shown in the proof of Theorem 3.6 in [15], rational
points of bounded height lie on a set of singular hyperplane sections and this set has cardinality

Od,ε

(
B

1
(d−1)d1/3 + 1

2

)
.

Thus, the rational points of bounded height that lie on geometrically reducible hyperplane sections and
not on irreducible curves of degree � 3 have cardinality

Od,ε

(
B

1
(d−1)d1/3 + 3

2
√

d
+1+ε

)

by Lemma 2.3. We conclude by noticing that

1
(d − 1)d1/3

+ 3

2
√

d
+ 1 � 45

16
√

d
+ 5

4
,

for d � 2. �

Now, we are going to prove Theorem 1.6 for n = 5. For n � 6, we are going to prove Theorem 1.6 by
induction and this will be the base case. Recall that θ(d) is defined in (1.2) and θ(d) � 0 for all d � 6.

Lemma 4.2. Let d � 6. Let Y be an affine hypersurface defined over Q of degree d in A5 such that
the projective closure of Y is smooth. Then, for all ε > 0,

Naff(Y, B) �d,ε B2+θ(d)+ε .
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Proof. First of all, we bound integral points of bounded height that do not lie on curves of degree at
most 3. Consider the affine hypersurface Y defined by f (x1, . . . , x5) = 0. Let Yb be the affine variety
defined by f (x1, . . . , b) = 0 and let B be the set of integers such that the projective closure of Yb is
singular or it has degree smaller than d. By Lemma 2.8, we can assume that #B �d,n 1. If b does not
belong to B, then the projective closure of Yb is smooth (and notice it has degree d) and we can apply
Proposition 3.4 to bound the points on Yb. Fix now b ∈ B. Notice that Yb is irreducible, of degree d, and
not cylindrical over a curve by Lemmata 2.5 and 2.9. By (2.3) the integral points of bounded height on
Yb are at most B2+ε . Therefore, by Proposition 3.4,

Naff,4(Y, B) �
∑

0�|b|�B

Naff,4(Yb, B) �d,ε B2+ε + B · Bθ(d)+1+ε .

So, Naff,4(Y, B) �d,ε B2+θ(d)+ε , since θ(d) � 0. It remains to deal with points that lie on curves of degree at
most 3. If d � 7, we conclude by Lemma 2.7 (notice d > n + 1). If d = 6, we repeat the induction above to
get

Naff(Y, B) �ε B2+ε +
∑

0�|b|�B
b/∈B

Naff(Yb, B)

and so, by Lemma 3.6,

Naff(Y, B) �ε B2+ε + B · Bθ(6)+1+ε + B2+ 1
6 +ε .

We conclude by noticing that θ(6) + 2 � 2 + 1/6. �

Lemma 4.3. Let d � 6 and n � 5. Let Y be an affine hypersurface defined over Q of degree d in An

such that the projective closure of Y is smooth. Then, for all ε > 0,

Naff(Y, B) �n,d,ε Bn−3+θ(d)+ε .

Proof. We prove the lemma by induction. We fix n � 5 and assume that the lemma has been proved for
all 5 � m < n (the case m = 5 is done in Lemma 4.2). With an argument identical to the one in Lemma
4.2, we get

Naff(Y, B) �
∑

0�|b|�B

Naff(Yb, B) �n,d,ε Bn−3+ε + B · Bn−4+θ(d)+ε

and easily conclude. �

Lemma 4.4. Let d � 6 and n � 5. Let X be a smooth projective hypersurface defined over Q of
degree d in Pn. Then, for all ε > 0,

N(X, B) �n,d,ε Bn−2+θ(d)+ε .

Proof. Assume that X is defined by F(x0, x1, . . . , xn) = 0. Let fb(x1, . . . , xn) = F(b, x1, . . . , xn) for b �= 0. If
deg fb < d, then x0 | F and so X would be singular. So, deg fb = d and the projective closure of fb is
smooth. For b �= 0, let Yb = X ∩ {x0 = b}, which is an affine hypersurface. Whence,

N(X, B) � N({F = 0} ∩ {x0 = 0}, B) +
∑

1�|b|�B

Naff(Yb, B).
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By (1.1) and Lemma 4.3,

N({F = 0} ∩ {x0 = 0}, B) �n,d,ε Bn−2+ε

and

Naff(Yb, B) �n,d,ε Bn−3+θ(d)+ε .

Therefore, we conclude by recalling θ(d) � 0. �

The proof of Theorems 1.1 and 1.6 is now completed, we summarise it. The projective case for n = 4
is done in Lemma 4.1. The affine case for n � 5 is done in Lemma 4.3. The projective case for n � 5 is
done in Lemma 4.4.
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